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Opinion

Genetic Risk Scores and Missing Heritability 
in Ovarian Cancer
Yasaman Fatapour and James P. Brody*1

1Department of Biomedical Engineering, University of California, Irvine.
* Correspondence: jpbrody@uci.edu.

Abstract:  Ovarian cancers are curable by surgical resection when discovered early. Unfortunately, most
ovarian cancers are diagnosed in the later stages. One strategy to identify early ovarian tumors is to screen
women who have the highest risk. This opinion article summarizes the accuracy of different methods used to
assess the risk of developing ovarian cancer, including family history, BRCA genetic tests, and polygenic
risk scores. The accuracy of these is compared to the maximum theoretical accuracy, revealing a substantial
gap. We suggest that this gap, or missing heritability, could be caused by epistatic interactions between
genes. An alternative approach to computing genetic risk scores, using chromosomal-scale length variation
should  incorporate  epistatic  interactions.  Future  research  in  this  area  should  focus  on  this  and  other
alternative methods of characterizing genomes.
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Background.
Ovarian cancer is known as the silent killer. The symptoms of ovarian cancer in the initial

stages are minimal and non-specific. Constipation, heartburn, fatigue, and bloating are early signs
of ovarian cancer, but also associated with other common maladies. Because of these non-specific
symptoms, ovarian cancer is often undiagnosed until the tumor has grown large, spread to nearby
organs, and invaded the lymph system. At these later stages, treatment options are limited, and so
is survival time. Ovarian tumors,  like most solid tumors,  can be surgically removed if found
early. Removal of the tumor often leads to a complete cure[1]. However, most early detection
strategies for ovarian cancer are ineffective for screening average risk women [2]. 

Current risk assessment tools for ovarian cancer do not work well enough. Specific genetic
tests on BRCA1/BRCA2 status are available and work well for ovarian cancer, but only a small
fraction (about 10%) of ovarian cancers are associated with those variants  [3]. Otherwise, risk
assessment is usually based on family history, but many people have limited knowledge of their
family history and in any case a  germline genetic test should work better than a perfect family
history. Development of a genetic test to identify women at high-risk of ovarian cancer could lead
to a reduction in the number of ovarian cancer deaths.

Genetic mutations are known to cause ovarian cancer, but the full extent is not known. The
BRCA1/2 mutations account for a small percentage of ovarian cancer, but the others are called
sporadic, with no known genetic cause. We suggest that these sporadic ovarian cancers are caused
by as yet unknown genetic alterations in the germline. These genetic alterations might consist of
epistatic  effects,  multiple  combinations  of  mutations,  unlike  the  simple  mutations  present  in
BRCA1/2 that cause ovarian cancer.  This suggestion is based on several lines of evidence.  First,
analysis  of  somatic  mutational  data  from  tumors  suggest  that  these  tumors  take  decades  to
develop[32].  Second,  age  specific incidence  data  suggests  that  most  cancers  originate  during
development[33]. Third, the current lack of a detailed search for epistasis in germlines of ovarian
cancer  patients.  Finally,  an  alternative  hypothesis,  that  cancers  originate  from  exposure  to
environmental  mutagens  that  cause  point  mutations  in  people  is  not  supported  by  evidence
despite decades of studies [34]. 

Quantifying the accuracy of predictive tests.
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Predictive tests often produce a numerical score that can be a continuous value, for instance
from 1-100. From this score, one has to choose a cutoff value to make a prediction, which is a
binary choice. Parameters like the sensitivity, specificity, positive predictive value, and negative
predictive value are all a function of both the test and the choice of a cutoff value.  The best way
to characterize such a predictive test is with a Receiver Operating Characteristic curve[4,5].  This
curve represents all cut off values, and one can read the sensitivity and specificity for the test for a
given cutoff value. 

The  area  under  the  curve  of  the  receiver  operating  characteristic  curve,  or  AUC,
characterizes  different  predictive  tests.  The AUC,  sometimes  called  a  c-statistic,  reduces  the
receiver operating characteristic curve to a single number, which is useful for comparing different
tests.  However,  the complete  ROC curve can  show that  two tests  with similar  AUC are  not
equivalent in some instances. Thus it is always best to examine the ROC curve for a test when
judging its effectiveness.

The  AUC  can  vary  from  0.5,  which  is  equivalent  to  random  guessing,  to  1.0,  which
indicates a perfect test that is always correct. The AUC is equivalent to the accuracy, when the
two classes have equal numbers. The AUC is insensitive to class imbalance. 

One example that illustrates how a predictive test with a low AUC can still be effective is
the BRCA1 test for breast  and ovarian cancer.  This test works very well but only in a small
subpopulation. Although the AUC is small, the test is quite valuable for that subpopulation.

Theoretical Maximum Accuracy of an Ovarian Cancer Genetic Risk Score
The highest possible AUC for predicting ovarian cancer in women is about 0.99  [6].  The

discriminative accuracy of a genetic test depends on two factors, the heritability and prevalence
of the trait. The Nordic Twin Study measured the heritability of ovarian cancer at about 40% [7].
Based on this heritability measurement and the prevalence of ovarian cancer, an ovarian cancer
genetic  test  could  have  a  maximum  discrimination  accuracy  (AUC)  in  excess  of  0.99.  A
substantial gap exists between the current best genetic risk tests and what should be possible. 

Predicting Risk: Family History
Understanding a patient’s family history is the first step in predicting whether a woman will

develop  ovarian  cancer.  Predictions  based  solely  on  family  history  have  not  been  well
characterized for ovarian cancer, but breast cancer predictive models have been well characterize,
because it occurs ten times more frequently than ovarian cancer. For instance, one commonly
used  predictive  model,  the  Gail  model  [8],  has  an  AUC  of  0.58 (95%  confidence  interval
[CI]=0.56 to 0.60)  [9].  The Gail  model incorporates  several  parameters  including first  degree
relatives who were diagnosed with breast cancer but does not include any genetic information.
Certain  germline mutations in BRCA1 and BRCA2 are known to increase the risk of ovarian
cancer.

The  Tyrer-Cuzick  model  includes  a  more  detailed  picture  of  genetics  including
BRCA1/BRCA2 status and a hypothetical low-penetrance gene that is designed to encompass all
other genetic factors [10]. The Tyrer-Cuzick model is an improvement over the Gail model and
has an AUC = 0.62, with a 95% CI of (0.60 to 0.64) [11].

Several  mutations  in  the  BRCA1/BRCA2  genes  are  known  to  increase  the  risk  of
developing ovarian cancer.  However,  these mutations account for only about 10% of ovarian
cancers in the general population[3,12]. Similarly, the fraction of breast cancers attributable to
mutations in BRCA1 or BRCA2 is about 10%. Thus, the best AUC which could be expected for
ovarian cancer predictive tests based on family history and supplemented with information on
BRCA1/BRCA2  mutation  status  is  probably  similar  to  breast  cancer,  or  about  AUC=0.60-
0.65[13–19].

The BRCA1/2 genetic tests are used to predict women at a high risk for breast and ovarian
cancers.  Some  women  whose  BRCA  test  indicates  a  high  risk  of  breast  cancer  choose  to
surgically remove their breasts to avoid breast cancer.  Although less common, some women also
choose  a  prophylactic  oophorectomy--the  surgical  removal  of  the  ovaries--to  avoid  ovarian
cancers.

A positive BRCA1/2 test is highly predictive of breast/ovarian cancer, but a negative test is
not  very predictive of  not  having these cancers.  In  the US,  only about  5-10% of breast  and
ovarian cancers are associated with mutations in BRCA1/2. A need exists to develop an effective
genetic test for these other 90-95% of breast and ovarian cancers.

Predicting Risk: Polygenic Risk Scores
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To fill this need, the most common approach is to use polygenic risk scores [13–19] . These
are  linear  combinations  of  single  nucleotide  polymorphisms  (SNPs)  found  more  often  in
breast/ovarian cancer patients than in the general population. Models based on detailed germline
genetics should perform better than models based on family history alone, since family history is
often incomplete; limited to just a generation or two, and genetic factors present in relatives might
not be inherited. 

The polygenic risk scores  used today originate  from Genome Wide Association Studies
(GWAS)[20–22]. These GWAS studies were designed to find genes that drive disease, not for
predictive tests. These polygenic risk scores are usually computed as a linear combination of the
“hits,” each with a different weight, found in GWAS studies. Different algorithms use slightly
different criteria to decide on which “hits” to include and how to weigh them.

The  current  state  of  research  knowledge  on  ovarian  cancer  genetic  risk  scores  is  best
represented by two recent papers. The first was published in JNCI in 2020 [23] and the second
was published in the European Journal of Human Genetics in 2022 [24]. 

The 2020 paper  [23] evaluated polygenic risk scores for ovarian cancer, and seven other
common cancers, using the UK Biobank. In this dataset, they identified 358 women who had been
diagnosed with ovarian cancer. They constructed a polygenic risk score based upon 31 different
SNPs.  Then,  they evaluated  the performance of  this  polygenic risk score  to predict  ovarian
cancer using the UK Biobank dataset. This test had a predictive accuracy of AUC=0.568 (95%
CI 0.537 to 0.598). 

The second paper,  with over 150 authors,  is  a  tour-de-force [24].  Compared to the first
paper, they increase the number of ovarian cancer subjects by nearly a factor of 100, using 23,564
cases.   They thoroughly explored different combinations of SNPs and different algorithms for
combining these SNPs into a polygenic risk score.  The second paper  [24] describes  the best
model found to be one based on measurements of 27,240 SNPs, almost 1000 times more than the
2020 paper [23].  After all that optimization, they found an AUC of 0.588. (They did not report a
95% confidence interval for the AUC). 

Comparing the two papers, one can see that despite the extraordinary efforts of the second
paper, the AUC of the test was not significantly higher than the first paper (AUC=0.588 vs 95%
CI 0.537 to 0.598). From this comparison, we can conclude that most of the useful information
for predicting ovarian cancer has been extracted from SNP data using current algorithms. It seems
unlikely that the AUC can be significantly improved with different algorithms, a different set of
SNPs,  or  more  patients  in  a  dataset.  This  AUC  is  substantially  lower  than  the  theoretical
maximum; something is missing.

Missing heritability?
Many human diseases, including ovarian cancer, are known to be inherited. It was thought

that  the  advent  of  large  scale  genome  wide  association  studies  (GWAS)  would  reveal  the
underlying genes that led to this inheritance for different disease[25,26]. However, GWAS results
have  consistently  shown that  a  substantial  gap  exists  between  the  heritability  that  could  be
attributed to known factors by GWAS and the heritability observed by studying inheritance in
families. The size of this gap varies by disease or trait, but it can be as large at a factor of ten [27].
The general missing heritability problem, and potential solutions, is well described by [26], in the
specific case of ovarian cancer, Flaum et al put it succinctly: "However, a significant proportion
of women who develop ovarian cancer with a strong family history of breast  and/or  ovarian
cancer still do not have a known variant to explain their increased risk, and there must be other
genetic factors at play that we do not yet understand."[12] 

Beyond polygenic risk scores.
Epistatic interactions, nonadditive interactions between two or more genes, are one factor

usually cited as part  of the missing heritability problem[26,28]. The methods used in GWAS
studies ignore non-linear interactions between genes, which are necessary to measure epistatic
interactions. Modern statistical techniques, or machine learning, allow one to consider non-linear
interactions between features, but these techniques inevitably require substantially more features
(SNPs) than samples  (patients),  which is  not useful  when a few thousand patient  samples  is
considered large, and genomes are characterized by millions of SNPs. 

One approach to the problem is to construct a different representation of the genome as an
alternative  to  SNPs.  A more  compact  representation  that  still  accounts  for  the  variability  in
humans would allow the use of machine learning algorithms. 

One example of this approach is to use measures of chromosome-scale length variation[29].
Chromosome-scale length variation can be computed from SNP array data. SNP arrays provide
calibrated intensity values for each SNP location. This intensity data is usually processed into
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copy number variation data,  which is represented by a multiplicity number (where two is the
normal  multiplicity)  and  chromosome segment.  Instead,  one  can  take  this  intensity  data  and
compute an average multiplicity across an entire chromosome. By measuring this multiplicity
across an entire chromosome for many people, one finds a distribution in values (See Figure 1). A
person’s germline genome, then, can be characterized by a series of twenty-three numbers where
each number represents the average multiplicity across each chromosome.

Figure  1.  This  figure  shows  a  histogram  of  chromosome  scale  length  variation  measurements  of
Chromosomes 1, 7, 13, and 19 for 10,000 people in the NIH All of Us dataset.  “Chromosome length” is
measured by averaging calibrated intensity measurements taken from SNP arrays for many SNPs located on
each of the four chromosomes.  These calibrated intensity measurements are representative of local copy
number.  Chromosomes can have many deletions, insertions, and translocations that affect copy number.
The values measured in log_2(Ratio Units) represent the overall length of the chromosome, where a value of
zero indicates the nominal average chromosome length.  By measuring this parameter for all chromosomes,
one can characterize each person’s germline genetic makeup with these 23 numbers.

This representation of a person’s genome, twenty-three numbers, has some advantages over
the  conventional  SNP  representation  of  a  genome.  It  is  more  compact,  but  still  sufficiently
complex to capture the enormity of the human population. The compactness allows one to use
modern  machine  learning  techniques.  It  is  extensible;  you  can  split  the  chromosomes  into
arbitrarily small sections.

Using a data set acquired as part of the Cancer Genome Atlas (TCGA) project, we evaluated
a genetic  risk score computed from chromosomal  scale  length variation  derived  from TCGA
normal blood samples. In this data set, it had an AUC of 0.88 (95% CI of 0.86-0.91)[29].  Women
with the highest 20% had 160 times the risk of developing ovarian cancer as compared to the
lowest 20%. Although these numbers showed extraordinary discrimination, it is unclear whether
these results are generalizable to the general population. The TCGA data set only contains people
who had been diagnosed with cancer, so this work really distinguished one form of cancer from
other forms of cancer.   It  is also possible that the TCGA  has subtle batch effects,  leading to
falsely high discrimination[30,31].
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Conclusion.
Ovarian cancer is completely curable in the early stages. While convincing data does not yet

exist, we believe that the propensity to develop ovarian cancer appears to be transmitted through
the genome, primarily through epistatic interactions. Thus, our opinion is that identification of
signatures in the germline genome that indicate future diagnosis of ovarian cancer should be a
primary and important target of research. We describe one early effort to use chromosome scale
length variation measurements to quantify insertions and deletions that might hold promise for
predicting risk of developing ovarian cancer. 
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