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Review Paper 

A review of machine learning and big data applications in addressing 
ecosystem service research gaps 

Kyle Manley *, Charity Nyelele, Benis N. Egoh 
Department of Earth System Science, University of California Irvine, Irvine, CA 92697, United States   
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A B S T R A C T   

Ecosystem services are essential for human well-being, but are currently facing many natural and anthropogenic 
threats. Modeling and mapping ecosystem services helps us mitigate, adapt to, and manage these pressures, but 
overall the field faces multiple major limitations. These include: 1) data availability, 2) understanding, esti-
mation, and reporting of uncertainties, and 3) connecting socio-ecological aspects of ecosystem services. Recent 
technological advancements in machine learning coupled with rising availability of big data, offer an opportunity 
to overcome these challenges. We review studies utilizing machine learning and/or big data to overcome these 
limitations. We collect 56 papers that exemplify the current use of machine learning and big data to address the 
three identified gaps in the ecosystem service field. We find that although the use of these tools in ecosystem 
service research is relatively new, it is growing quickly. Big data can directly address data gaps, especially as new 
big data resources relevant to ecosystem service mapping become available (ex. social media data). Some 
properties of machine learning can also contribute to addressing data gaps in data sparse environments. Also, 
many machine learning algorithms can estimate and consider uncertainty, whereas big data can significantly 
increase sample size, reducing uncertainties in some situations. Some big data sources, like crowdsourced data, 
provide direct sources of social behaviors and preferences that relate to ecosystem service demand, thus allowing 
researchers to connect social and biophysical aspects of ecosystem services. Machine learning algorithms provide 
an effective and efficient tool for handling these large nonlinear socio-ecological datasets in tandem, giving 
researchers the ability to more realistically model and map ecosystem services without relying on oversimplified 
proxies or linear algorithms. Despite these opportunities, implementation is still lacking and limitations still 
hinder use.   

1. Introduction 

Ecosystems provide critically important ecosystem services, i.e., the 
benefits humans derive from ecosystems, such as raw materials, water 
purification, and recreation, which ultimately contribute to overall 
human well-being (Millennium Ecosystem Assessment, 2002; Díaz et al., 
2018). To convey the importance of functioning ecosystems and justify 
the protection of forests, wetlands, and other ecosystems that provide 
these services, the concept of ecosystem services is increasingly being 
incorporated into global policies and assessments (European Commis-
sion, 2020; Convention on Biological Diversity, 2020; Intergovern-
mental Science-Policy Platform on Biodiversity and Ecosystem Services 
(IPBES), 2018, Díaz et al, 2018). Additionally, the literature on 
ecosystem services is maturing as evidenced by the increasing number of 
studies across the world devoted to modeling and mapping ecosystem 

services from local to global scales (McDonough et al., 2017; Ochoa and 
Urbina-Cardona, 2017; Kosanic and Petzold, 2020; Xu et al., 2020). 
Despite this increased attention and recognition of the importance of 
ecosystem services, particularly after the Millennium Ecosystem 
Assessment (MA, 2005), several assessments are still reporting the 
continuous decline in ecosystem service provision. The IPBES global 
assessment of 2019 (IPBES, 2019), for example, showed that 14 of the 18 
channels through which nature provides benefits to humans are being 
affected negatively. Considering this, the need for tools to model, map, 
and monitor ecosystem services in response to calls for the management, 
protection, and restoration of areas with high ecosystem service pro-
duction could not be more important. 

Following the demand to model and map ecosystem services, several 
models and tools have been developed and used around the world. The 
Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) suite 
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of models (Tallis and Polasky, 2009) integrate biological, physical, 
chemical, and economic properties of landscapes to assess how changes 
in ecosystems impact a plethora of ecosystem services. The Soil and 
Water Assessment Tool (SWAT) is a conceptual and continuous time 
model developed to assess watershed resources (Gassman et al., 2007). 
These are two examples of some of the widely used tools for modeling 
and mapping ecosystem services (Burkhard and Maes, 2017; Ochoa and 
Urbina-Cardona, 2017; Kim et al., 2019; Chun et al., 2020). Other 
ecosystem service assessment models and tools that have seen increasing 
usage include ARtificial Intelligence for Ecosystem Services (ARIES), 
Social Values for Ecosystem Services (SolVES), and i-Tree (Hirabayashi 
et al., 2011; Villa et al., 2014; Sherrouse and Semmens, 2015). Despite 
the advances in developing ecosystem service modeling and mapping 
approaches, some of these resources are limited by data availability, 
particularly data that can properly account for the multidimensional 
traits of ecosystems and model the socio-ecological system in order to 
identify and quantify ecosystem service flows. This has prompted sci-
entists to rely upon expert knowledge or use simple proxies, such as land 
use and land cover, to generate information that feeds into these models 
and tools in an attempt to overcome data availability barriers. However, 
this leads to greater uncertainty due to oversimplifications and gener-
alizations of the nonlinear dynamics of ecosystem services (Spake et al., 
2017; Lautenbach et al., 2019; Willcock et al., 2021). Furthermore, there 
remains a lack of information on the quality of model output and vali-
dation methods (Grêt-Regamey et al., 2017; Ochoa and Urbina-Cardona, 
2017). As such, there is a need to reduce or better illustrate un-
certainties, close data availability gaps, and improve on key indicators 
necessary for mapping both the supply and demand of ecosystem ser-
vices at various scales and in different management contexts (Lavorel 
et al., 2017; Willcock et al., 2018; Mandle et al., 2021). 

New tools such as machine learning (ML) algorithms and big data, 
which are increasingly being used in the ecological field, lend them-
selves to be used for modeling and mapping ecosystem services (Farley 
et al., 2018; Willcock et al., 2018; Willcock et al., 2021; Scowen et al., 
2021). Although big data is relatively new within the ecological science 
community and has yet to be fully taken advantage of (Scowen et al., 
2021), it is quickly gaining popularity as a way of filling in key gaps that 
exist in modeling and mapping ecosystem services. Multiple definitions 
of big data exist in the literature (Sagiroglu and Sinanc, 2013; Vitolo 
et al., 2015; Sun and Scanlon, 2019). Here, we adopt a commonly used 
definition by the National Institute of Standards and Technology (NIST, 
2015) and refer to big data as datasets characterised by high volume, 
variety, velocity, and variability (4 V) which can not be handled effi-
ciently by traditional data architectures. Volume refers to the size, va-
riety describes the heterogeneity of the format and source, velocity 
refers to the rate of flow of the data, and variability refers to the changes 
in a dataset (i.e. flow rate, format/structure, and volume) (NIST, 2015). 
Currently there exists a diverse range of ecologically relevant datasets 
that would qualify as big data under this definition. Key examples 
include datasets in repositories such as AmeriFlux (https://ameriflux. 
lbl.gov), Nutrient Network (NutNet) (https://nutnet.org/home) and 
Neotoma (https://www.neotomadb.org) as well as datasets provided by 
ecological monitoring networks including the National Ecological Ob-
servatory Network (NEON), Long Term Ecological Research (LTER), and 
Critical Zone Observatory (CZO). Additionally, big data is collected 
across various social media sites, applications, Global Positioning Sys-
tem integrated devices, citizen science and other crowdsourced projects. 
These big data sources collect high volumes of data products (terabytes 
to exabytes every year), provide a wealth of information on a wide va-
riety of environmental factors ranging from genomic to global scale, can 
be collected at high rates, and ultimately can give useful insights into 
ecosystems and the services they provide (Farley et al., 2018; Havinga 
et al., 2020a; Xia et al., 2020). Although big data has started to become 
relatively popular in ecology, its uptake for use of ecosystem service 
modeling and mapping has been slower and there remains a need to 
transition and apply this resource into the ecosystem service field 

(Havinga et al., 2020a; Scowen et al., 2021). 
ML has emerged as a valuable tool for processing and analyzing big 

data as well as an effective and efficient way to address the key meth-
odological concerns and challenges encountered in modeling and map-
ping ecosystem services. ML is a “subset of artificial intelligence, which 
builds a mathematical model based on sample data (not necessarily al-
ways big data), known as “training data”, to make predictions or de-
cisions without being explicitly programmed to perform the task” 
(Zhang et al., 2020). ML algorithms can process the huge collections of 
data that would otherwise be difficult or sometimes implausible to 
analyze using traditional techniques. Additionally, through validation of 
training data with a predefined set of testing data, ML can also auto-
matically provide estimates of uncertainty enabling users to assign their 
own acceptable thresholds of uncertainty and ultimately increasing the 
decision relevance of such analyses (Grêt-Regamey et al., 2017; Hamel 
and Bryant, 2017). This is a powerful component considering that 
currently there remains a lack of information on the quality of model 
output and validation methods (Grêt-Regamey et al., 2017; Ochoa and 
Urbina-Cardona, 2017). These attributes and the data driven charac-
teristics of ML can enhance current models in the modeling of nonlinear 
and highly dimensional data without relying on any assumptions about 
the data prior to analysis. This is particularly important in identifying 
indicators for mapping ecosystem services, given that many different 
indicators are being used for the same service (Egoh et al., 2012). ML 
also allows us to infer when data is missing or limited in availability, and 
oftentimes to more accurately represent reality, improving our overall 
understanding of the complex interactions and dynamics within eco-
systems and the services they provide across various scales (Rammer and 
Seidl, 2019; Frey, 2020). ML can be divided into two sub-categories: 
supervised learning algorithms that require and make use of an input 
training dataset to learn a function that can most effectively approxi-
mate the relationship between the inputs and outputs from a dataset; 
and unsupervised learning algorithms that learn without predefined 
data by grouping similar attributes and identifying trends, patterns, 
and/or relationships within the data to infer natural structure within a 
dataset (McCue, 2015; Zhang, 2020). 

Despite the availability of big data and ML algorithms, the ecosystem 
services community has not taken full advantage of these opportunities 
to model and map the supply and demand of ecosystem services. This is 
demonstrated by Scowen et al. (2021) who describe how ML usage 
within ecosystem service research has predominantly been for descrip-
tive or predictive tasks. They highlight how ML can be used in ecosystem 
service assessments and identify how to further the repeatability of 
methodologies that utilize ML. Although Scowen et al. (2021) conduct a 
somewhat similar review, ours centres on how ML and big data are both 
being used to address the major gaps in the ecosystem service field. As 
big data becomes more readily available and temporally viable, and ML 
algorithms become increasingly routine and implementable for 
providing further insight into complex socio-ecological interactions and 
the provision of ecosystem services (Thessen, 2016; Huettmann et al., 
2018; Rammer and Seidl, 2019; Willcock et al., 2018). As such, inte-
grating big data and ML algorithms into ecosystem service research will 
help develop the field into a more robust, interdisciplinary, and exten-
sive research field. Considering this, there is a need to take stock of how 
big data and ML have been used in the modelling and mapping of 
ecosystem services, particularly how they have addressed gaps within 
the field, and to explore what potential they hold in developing more 
robust approaches to respond to the ever-increasing policy and science 
demand for ecosystem service research. The aim of this review is to 
demonstrate the utility of ML and big data to ecosystem service research 
in addressing three key gaps that exist, namely: 1) data availability, 2) 
understanding and estimating uncertainty, and 3) modelling the social 
and biophysical (socio-ecological) aspects of ecosystems and the services 
they provide. While most ecosystems services research has focused on 
mapping the biophysical aspects and using ecological indicators such as 
land cover, few studies incorporate social data that captures the demand 
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of these services (Reyers et al., 2013; Mandle et al., 2021), a major gap 
that can be filled by these new techniques. 

2. Methods 

In this study we used “Scopus” (https://www.scopus.com/), to 
compile literature published on the use of ML and big data in ecosystem 
service research. Scopus was chosen because of the vast, comprehensive, 
and multidisciplinary features of the abstract database that fit well for 
the purposes of this review. We conducted the search in July 2021 using 
search terms in the title, keywords, or abstract that included: “ecosystem 
service”, OR “environmental service” OR “nature’s contribution to 
people” AND “machine learning”, OR “big data”. We classified the paper 
as using big data if the authors specifically referred to their data as “big 
data”. Although this method only captures studies that classify their data 
specifically as big data and does not comprehensively identify all studies 
that actually use big data, the method has the potential to capture the 
general patterns of big data use in ecosystem service research. To further 
confirm that this method captures the overall pattern of big data use, we 
conduct a Pearson’s correlation analysis between big data use and ML 
use to assess whether big data usage is similar to ML usage over time. 
Furthermore, we assess the data used for all papers that label their data 
as “big data” to confirm whether it would qualify as big data under the 
previously stated definition used in this review. Our search terms 
resulted in a total of 256 papers. We then used the same search terms in 
Web of Science (https://www.webofscience.com/), a website with 
multiple databases that provide comprehensive citation data for many 
different academic disciplines, to create a more robust search. After 
removing duplicates, the Web of Science search resulted in 19 additional 
papers, bringing our total to 275 papers. We then read the titles and 

abstracts of all the 275 papers and removed papers that were conceptual, 
theoretical or reviews (95 in total) resulting in 180 potential papers to 
review. We conducted a second more in-depth screening by reading all 
180 papers, resulting in 56 papers that were deemed appropriate for the 
objectives of the review, since the other 124 papers only mentioned 
ecosystem services and did not directly study them. Fig. 1 illustrates the 
steps undertaken to identify relevant papers for the review. In order to 
properly collect, organize, and analyze the data on the selected papers, 
we first had to standardize a few categories. For the scale of study, four 
categories were used: local (an area within a country), national (across 
an entire country), regional (within multiple countries), and global. For 
the ecosystem service classes, five categories were adopted: general (for 
unspecified ecosystem services), cultural, regulating, provisioning, and 
supporting following the Millennium Ecosystem Assessment classifica-
tion (Millennium Ecosystem Assessment, 2002). 

During analysis of the 56 papers included in the review, some basic 
initial data was gathered, including the year of publication, the region or 
country studied, the country of the first author’s institute (to understand 
where expertise is), the publishing journal, as well as the scale of the 
study. The main analysis included collecting data on what ML algorithm 
was used, what big data was used, and which of the three ecosystem 
service gaps identified for this review were being filled using ML, big 
data or a combination of both. To identify whether and in what way the 
studies were addressing the three gaps, we read each paper and sub-
jectively identified the knowledge gaps being filled (oftentimes, but not 
always, the paper would specifically refer to the gap being filled). This 
analysis allowed for an assessment of how ML and big data are currently 
being used to fill key knowledge and methodological gaps. In addition, it 
helps in the identification of emerging patterns in the use of these tools 
to fill the gaps and opportunities to further address these major gaps in 

Fig. 1. Flow chart of peer-review procedure.  
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the future. We also collected supplementary information on the program 
or software used to implement ML or assess big data, what indicators 
were used for each service, the class of each indicator (biophysical, so-
cial, or economic), and whether the study was looking into ecosystem 
service supply, demand, or both. 

We classified studies as filling the data availability gap if there is 
limited data in the study area or for the service being assessed that 
would cause an assessment to be difficult or impossible without the use 
of ML and/or big data, or if the authors explicitly stated they were filling 
the data availability gap. Additionally, we classified studies that filled 
the uncertainty gap if the authors had the aim to reduce uncertainty and 
stated this in the paper, if the authors tested multiple indicators or sets of 
covariates to identify the most suitable proxy for modeling and map-
ping, and/or if uncertainty would be increased or unknown without the 
use of ML/big data. Studies were classified as filling the third gap related 
to modeling the socio-ecological system if they considered the socio- 
ecological aspects together by using multiple indicators or covariates 
together. For example, the use of social media data to map recreation 
where both human behaviour (i.e. visitation) is combined with aspects 
of the ecosystem in which recreation occurs (i.e. environmental cova-
riates), instead of just a reliance on a single biophysical proxy to linearly 
estimate human behavior. 

3. Results 

Our results show that the use of ML and big data in ecosystem service 

research started in 2012 and is increasing quickly. As illustrated in 
Fig. 2, results show that prior to 2017 only a few studies used these tools, 
followed by a steady increase peaking in 2019. The use of ML alone is 
seen more often (48 %) than the use of big data alone (32 %). Cultural 
services and regulating services saw a large increase in attention after 
2018. Publications included in this study showed similar patterns in the 
use of big data and ML over time (Pearson correlation of 0.92). Analysis 
of the data used when authors claimed to be using big data showed that 
all such studies used data that would qualify as big data based on the 
definition adopted for this review. Additionally, most studies were 
focused on and had first authors from Asia (~46 % & ~45 % respec-
tively) and Europe (~32 % & ~43 % respectively). For both the location 
of the first author and the location of the study, most countries with 
publications range from around 1 – 6 studies, of which studies in China 
clearly stand out from the rest of the group. China is the most studied 
country with 25 % of all studies carried out there and 29 % of all first 
authors being affiliated with institutions located in China. There is a 
clear lack of studies utilizing these tools within many regions of the 
world including the Middle East, Africa, Oceania, as well as South and 
Central America. Furthermore, when assessing the study scale, the ma-
jority of studies (~77 %) were conducted at a local scale. Studies 
focusing on the national scale were the second most popular (~12 %), 
while few studies were carried out at the global scale (~4%). 

We find that a plethora of ML algorithms are used throughout the 
studies (Table 1). The algorithms used can be categorized into super-
vised and unsupervised algorithms, where the supervised algorithms are 

Fig. 2. Properties of the studies assessed in the review: a) map of the countries of study (shading) and countries of first author (numbering); b) distribution of studies 
over time, distinguished between studies using ML, big data, and both; and c) plot of the different ES classes assessed over time. 
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used for classification and regression tasks and the unsupervised algo-
rithms were used for clustering tasks. The use of supervised algorithms 
was much more common than the use of unsupervised algorithms. 
Table 1 provides a synopsis of the algorithms used and gives specific 
examples for readers to refer to. For more information on the studies 
assessed, what algorithms and software are used, as well as what big 
data sources are used we refer readers to Tables S2 and S4. 

Our results indicate that ML and big data are used to overcome the 

three gaps examined in this review (i.e., data availability, model and 
output uncertainty as well as difficulties in mapping the socio-ecological 
system). Fig. 3 shows that as expected big data helped fill the data 
availability gap in the majority of the studies analysed (54 %). Within 
the reviewed studies, results also indicate that the high model and 
output uncertainty in most ecosystem service research was addressed 
mainly through the use of ML algorithms (58 %) such as random forest 
and Bayesian networks. The third gap related to difficulties of mapping 
the biophysical and social aspects of ecosystem services was addressed 
using both big data and ML (48 % and 40 % respectively). Big data 
sources were highly variable and ranged from social media data, to 
census data, to Google search engine data. The most commonly used big 
data came from social media sites (ex. Flickr and Weibo) with applica-
tion data (ex. trail tracking application), mobile phone data, and citizen 
science being the second most commonly used big data sources. The 
majority of ML algorithms used were supervised (97 %) including 
random forest, support vector machines, and convolutional neural net-
works. The most commonly used ML algorithm was random forest (24 
%) with Bayesian networks as the second most common (14 %). The 
most common software used to implement ML was R (36 %) most often 
using the random-forest package (Lorilla et al., 2020), while also using 
various other packages including “caret” (Degerickx et al., 2020), Roo-
gleVision (Richards and Tuncer, 2018), and “clarifai” (Lee et al., 2019). 
It is also noteworthy that it was relatively common that the specific 
package used was not mentioned. Some other environments and pro-
gramming languages used to carry out ML include WEKA (Debanshi and 
Pal, 2020), the Maxent software (Havinga et al., 2020b), Google Earth 
Engine (Escobedo et al., 2020), and Python (Landuyt et al., 2014). 

There are also differences in the ecosystem service classes being 
studied and the gaps that are being filled within those studies as illus-
trated in Fig. 4. Papers assessing cultural ecosystem services were 
focused on filling the data availability gap often (~53 % of papers filling 
the data gap) and the socio-ecological gap (~61 %). Papers assessing 
multiple ecosystem service classes were commonly addressing the un-
certainty gap (~32 %). From the studies analysed, supporting services 
were the least assessed class (~4% of studies). Within the studies on 
cultural ecosystem services, 38 % addressed the gap of connecting the 
biophysical and social aspects of ecosystems and modeling the 
ecosystem services realised from those systems, while 36 % of the 
studies sought to address the data availability gap. 44 % of the studies 
that assessed multiple ecosystem service classes addressed gaps 

Table 1 
Overview of the machine learning algorithms found within reviewed studies, 
what tasks they were used for, and references to specific example case studies.  

Category Subcategory ML Example Articles 

Supervised     
Classification Convolutional 

Neural Net. 
Callau et al. 2019    

Lee et al. 2019   
Decision Tree Sannigrahi et al. 2019   
Random Forest Tsai et al. 2019    

Strohbach and Haase 
2012   

Rotation Forest Shuangoa et al. 2021   
Support Vector 
Machine 

Rathmann et al. 2020    

Sannigrahi et al. 2019  
Regression Artificial Neural 

Net. 
Morshed et al., 2022    

Debanshi and Pal 2020   
Bayesian Balbi et al. 2019    

Ouyang et al. 2019   
Boosted Regression 
Tree 

Ciesielski and Stereńczak, 
2021    
Osborne and Alvares 2019   

CART Rippy et al. 2021    
Escobedo et al. 2020   

Conditional 
Inference Tree 

Liu et al. 2021   

Maxent Bernetti et al. 2019    
He et al. 2019   

Random Forest Havinga et al., 2020a; 
Havinga et al., 2020b    
Shiferaw et al. 2019 

Unsupervised     
Clustering K-means Kang et al. 2018   

Non-negative 
Matrix Fact. 

Jaung 2021  

Fig. 3. Number of studies that use ML (black), big data (dark grey) and a combination of both (light grey) to address the three gaps identified in ecosystem ser-
vice research. 
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associated with model and output uncertainty. Patterns within provi-
sioning, regulating, and supporting services were difficult to assess due 
to the low number of studies analyzing just these service classes. 

Studies that did not look at a specific ecosystem service were lumped 
into the general category (unspecified). We identified 16 different 
ecosystem services studied within the literature: recreation, aesthetic 
appreciation, tourism, sense of place, carbon sequestration and storage, 
local climate regulation, air quality regulation, erosion prevention, 
waste treatment, biological control, fresh water supply, raw materials, 
food provision, maintenance of genetic diversity, nutrient cycling, and 
habitat for species. Most studies assessed cultural ecosystem services 
(32 %), with recreation being the most studied cultural service. Regu-
lating services were the second most studied service using big data and/ 
or ML (26 %), with carbon sequestration and storage as the most studied 

regulating service. With the exception of sense of place, waste treatment, 
and nutrient cycling, most individual services addressed similar gaps as 
the overall service classes shown in Fig. 4. Fig. 5 summarizes the specific 
ecosystem services analysed while distinguishing between the gaps 
being addressed for each service. 

4. Discussion 

We set out to understand how big data and ML are increasingly being 
used to fill key knowledge and methodological gaps in ecosystem service 
research including data availability, model and output uncertainty, and 
linking socio-ecological systems. Our results show that the uptake of 
both big data and ML algorithms in ecosystem service research is 
increasing rapidly, especially since 2017, and that trend looks to 

Fig. 4. Proportion of ecosystem service classes assessed and the specific gaps addressed in each of those classes.  

Fig. 5. Distribution of ecosystem services studied and the gaps being addressed.  
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continue beyond 2021 (Fig. 2). This is not surprising as we have seen 
similar increases in the use of ML in the ecology field for a variety of 
tasks such as species distribution modeling, species identification, and 
predicting the conservation status of species (Liu et al., 2018; Lucas, 
2020). However, based on the number of studies identified during this 
review process (N = 56), it is evident that the field of ecosystem services 
has not fully utilized the opportunity to use these new tools and ap-
proaches, in particular the capacity to use ML to exploit big data 
(Willcock et al., 2018; Scowen et al., 2021). This is a missed opportunity 
because although traditional techniques, like linear regression or 
multinomial logistic regression, can integrate big data in ecosystem 
service research, the use of ML algorithms has the potential to discern 
more detailed patterns within the data, create more timely and precise 
predictions, and provide other benefits that can help fill major gaps in 
ecosystem service research (Zhou et al., 2017). 

Using ML and big data together has even more potential to address 
the major gaps in ecosystem service research. For example, Callau et al. 
(2019) use 8-bit image recognition software to classify images, in order 
to analyze a crowdsourced social media dataset for the modeling and 
mapping of regional ecosystem services. This task would have otherwise 
been extremely difficult and time-consuming to complete manually, and 
without the big data, an alternative but similar dataset could likely not 
be found. Similarly, Bragagnolo et al. (2018) utilized a dataset of social 
media photographs to classify cultural ecosystem services within a re-
gion of Brazil, but acknowledged that using ML would have allowed for a 
more efficient larger scale analysis and less reliance on human 
interpretation. 

4.1. Data availability and uncertainty gaps 

In general, our findings show that most studies address the data 
availability as well as the model and output uncertainty gaps as illus-
trated in Fig. 3 (example case studies in appendix: Box 1). This is not 
surprising considering that big data and ML have inherent abilities to 
address data availability and uncertainty issues (Willcock et al., 2018). 
For example, big data introduces significant amounts of novel data that 
can directly and indirectly fill data availability gaps in areas of low data 
availability. Bragagnolo et al. (2018) demonstrate this when using 
crowdsourced data from Flickr to scale up their valuation of cultural 
services to cover their entire study region of the Caatinga in Brazil, 
which otherwise is too large an area to assess using traditional data. ML 
algorithms also give researchers the ability to directly quantify model 
and output uncertainty. Degerickx et al. (2020) illustrate this ability 
when using random forest to classify remotely sensed images and set a 
threshold for an acceptable amount of uncertainty to effectively high-
light regions with higher uncertainty. 

The data availability gap is most often filled using big data (54 %), 
but ML also plays a sizable role in filling this gap (36 %) (Fig. 3). This is 
due to the fact that multiple ML algorithms, especially Bayesian Net-
works, can be effective in modeling ecosystem services and their related 
dynamics in data sparse environments (Landuyt et al., 2014; Balbi et al, 
2019). ML is used most often to address the uncertainty gap to produce 
robust outputs of ecosystem services and to understand the level of 
uncertainty associated with these outputs. Many ML algorithms, most 
notably random forest and Bayesian networks, automatically provide 
estimates of uncertainty (Cimburova and Barton, 2020; Degerickx et al., 
2020), and can increase the accuracy of model predictions (Ciesielski 
and Sterenczak 2021; Morshed et al., 2021). Furthermore, ML increases 
the sample size that can be assessed, which can help mitigate 
uncertainty. 

4.2. The socio-ecological gap 

One of the biggest challenges in ecology, which has also been iden-
tified as one of the gaps hindering the attainment of global sustainability 
goals, is understanding and studying the socio-ecological components of 

ecosystems and finding indicators that can capture both the social and 
biophysical aspects of ecosystem services (Mastrángelo et al., 2019). 
Considering that the field of ecosystem services is relatively new, most 
scientists have used proxy data and/or expert knowledge in the 
modeling and mapping of services, relying on linear assumptions of the 
non-linear dynamics of socio-ecological connections. However, some 
studies have shown that simple proxies such as land use and land cover 
provide an oversimplified and often poor representation of ecosystem 
services in reality (Eigenbrod et al., 2010; Schulp et al., 2014; Lau-
tenbach et al., 2019). In this study, we find the gap between the bio-
physical and social aspects of ecosystem services are addressed 
relatively equally by big data (48 %) and ML (40 %), although big data 
contributes slightly more. For example, new big data resources like so-
cial media and mobile phone data, have a huge potential and are being 
used to assess people’s preferences for different ecosystems/ecosystem 
services and how they relate to human behavior (Lee et al., 2019; Jaung 
and Carrasco, 2020) (Also see appendix: Box 2). Such resources can 
address the third gap by providing a measure of the social behaviour and 
preferences of people and improving our understanding of the interac-
tion between biophysical supply and social demand of ecosystem ser-
vices within different landscapes. This gives ecosystem service 
researchers a tool to directly capture the connection between the social 
and biophysical aspects of ecosystems as well as the ability to directly 
assess the demand for ecosystem services. 

ML can help bridge gaps in the modeling of socio-ecological systems 
through a variety of algorithms that have the unique abilities to both 
analyze and classify large crowdsourced datasets and handle the highly 
nonlinear and complicated relationships between the biophysical and 
social aspects of ecosystems (Debanshi and Pal., 2020; Rippy et al., 
2021). ML deciphers relationships directly from the data with no prior 
assumptions or linear constraints, allowing for a more effective gener-
alization of the complex structures and functions of ecological systems 
(Huettman et al., 2018; Humphries et al., 2018). This is especially the 
case when the modeled relationship between the dependent and inde-
pendent variables is nonlinear and complex like those common when 
modeling cultural ecosystem services or the human demand or prefer-
ence for the biophysical supply of ecosystem services (i.e., socio- 
ecological relationships), or when data is missing or low in availability 
(Thessen, 2016; Willcock et al., 2018; Debanshi and Pal., 2020; Frey, 
2020; Lorilla et al., 2020). ML is not going to perform better than 
traditional techniques under every circumstance and should be thought 
of more as an additional toolset for ecosystem service research in which 
the method used, whether traditional or ML based, should be carefully 
chosen on a study-by-study basis (Thessen 2016; Willcock et al., 2018). 

4.3. Patterns of addressing gaps within ecosystem services 

The emerging patterns of which gaps are being addressed are also 
highly variable when looking at what ecosystem service class each paper 
is assessing (Fig. 4). Traditionally, cultural ecosystem services are the 
least mapped and most understudied compared to other service classes, 
due largely to limited data that fails to effectively interpret and capture 
these services (Brown et al., 2016; Cheng et al., 2019; Kosanic and 
Petzold, 2020). Cultural ecosystem services are difficult to map as they 
are subjective and intangible due to their dependence upon both social 
and biophysical factors (Hølleland et al., 2017; Cheng et al, 2019). 
However, in this review, 38 % percent of the studies addressing the data 
availability gap and 36 % of those modeling the socio-ecological system 
were focused on cultural ecosystem services. This is not surprising, 
considering that more recently, with the advent of crowdsourced data 
there has been an increase in the modeling of cultural services via 
geolocated crowdsourced data from a variety of sources. For example, 
traditionally, recreation is mapped using visitor numbers to protected 
areas that are often collected at an entrance or using stated preference 
methods, but this data is severely limited in both spatial and temporal 
resolution (Vaz et al., 2020, Wood et al., 2020). Big data offers 
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thousands to millions of visitation data points with high spatial and 
temporal resolution. The combination of such data with ML allows re-
searchers to predict where and when ecosystem services are provided, 
what specific ecosystems and services people are interested in, and what 
socio-ecological factors influence the demand for those services. 
Richards and Tuncer (2018) are a great example of this as they use 
Google Cloud Vision’s image recognition software (https://cloud. 
google.com/vision) to classify 25,000 Flickr photographs in order to 
identify and map important cultural ecosystem services within 
Singapore. They proceeded to model the probability of other photograph 
occurrences as a proxy for each of the classified cultural services using 
Maxent and multiple socio-ecological covariates (Richards and Tuncer, 
2018). 

Studies that address multiple ecosystem services tend to focus on 
addressing uncertainty gaps and often utilize decision tree-based ML 
algorithms such as random forest, conditional inference tree, and Clas-
sification and Regression Trees (CART) to perform classification and 
regression tasks using the non-uniform and multifaceted variables 
required to assess multiple different service classes (Kang et al., 2018; 
Havinga et al., 2019; Degerickx et al., 2020). Since these studies do not 
focus on a single ecosystem service class, uncertainty has the potential to 
increase. For example, there will be an increase in types of data/in-
dicators needed and generalizations will have to be made between 
multiple classes to assess them in a similar fashion. There are major 
concerns of the uncertainties in ecosystem service research relating to 
too many indicators used for the same service, a different level of un-
derstanding of various services, and different services being assessed 
using different methods (process based or knowledge based) (Schulp 
et al., 2014). Inherently, if you include multiple service classes in an 
assessment, such uncertainties increase and need to be addressed. ML 
algorithms assist with this issue by explicitly accounting for and quan-
tifying uncertainty and improving the accuracy of models that handle 
the many variables that go into the assessment of multiple ecosystem 
services or service classes at various scales. For example, Lorilla et al. 
(2020) used random forest to identify the multitude of socio-ecological 
factors that contribute to the supply and demand of multiple ecosystem 
services across different service classes including provisioning, regu-
lating, and cultural. Utilizing random forest allows the reduction of 
uncertainty at multiple levels as it has been proven to be robust to 
overfitting even with a large and variable sample of socio-ecological 
data. 

4.4. Techniques used for addressing gaps 

Different ML algorithms have different advantages and disadvan-
tages and are thus used for a multitude of purposes within ecosystem 
service research (Table 1). Almost all studies that utilized ML algorithms 
chose to use supervised algorithms such as random forest, Bayesian 
networks, and Maxent particularly for regression and classification 
tasks. For example, Maxent has been used for modeling aesthetic 
appreciation services (Bernetti et al., 2019; He et al., 2019), Bayesian 
networks and random forest have been used to model carbon seques-
tration services (Landuyt et al., 2014; Havinga et al., 2020b; Cimburova 
and Barton, 2020), and convolutional neural networks have been used to 
classify various cultural services like recreation, aesthetic appreciation, 
and tourism (Richards et al., 2018; Callau et al., 2019; Gosal et al., 2019; 
Lee et al., 2019). The few times unsupervised learning was used within 
our data sample, it was utilized for data analysis and processing pur-
poses (e.g. clustering) as in Jaung (2021) (See Box 2 in appendix). Un-
supervised learning algorithms hold a potentially important key for 
future research in ecosystem services, especially relating to the rise in 
ecological big data, due to their efficacy in finding previously uniden-
tified patterns in data with no a-priori assumptions (Rammer and Seidl, 
2019). 

Bayesian networks specifically are highly effective at modeling in 
low data availability situations in which many other alternative methods 

would have higher uncertainty (Landuyt et al., 2014; Cimburova and 
Barton, 2020). Random forest was used often for both classification and 
regression tasks. Many researchers used random forest due to the 
robustness against overfitting, high accuracy in past ecosystem service 
assessments, and the ability to quantify variable importance and esti-
mate uncertainty, both helping address the uncertainty gap (Kang et al., 
2018; Shiferaw et al., 2019; Lorilla et al., 2020). Random forest’s effi-
cacy in classification tasks along with the rise in big data relevant to 
ecosystem services helps address the data availability gap. This ability to 
effectively classify big data (social media, remotely sensed data, etc.) 
should make random forest a significant part of future ecosystem service 
research, especially in situations of low data availability. Maxent is the 
third most common ML algorithm and most often addressed the socio- 
ecological gap. Maxent often used for species distribution modeling, 
has seen an increase in use for modeling cultural ecosystem services 
(Bernetti et al., 2019; He et al., 2019). Maxent has the ability to explore 
the relationship between environmental covariates and people’s actual 
use of cultural ecosystem services, providing researchers with tools to 
overcome the difficulties of connecting the socio-ecological system. 
Furthermore, some models require both presence and absence data, but 
Maxent only requires presence data, helping with data availability is-
sues. There are many other supervised and unsupervised algorithms that 
have a multitude of relevant uses, but for a more in-depth discussion we 
refer readers to Mohri et al. (2018) or for more examples of ML use in 
ecology we suggest Humphries et al. (2018). 

4.5. Limitations 

While big data and ML present opportunities for future ecosystem 
service research, like any other data source or methodology there exist 
limitations. For example, one significant limitation for both tools is the 
high level of expertise needed to utilize ML algorithms and big data 
which can often lead to the impression that ML algorithms are “black 
boxes” (Zhou et al. 2017). Additionally, the use of ML as well as the 
collection and use of big data may require a significant amount of re-
sources, whether they be training, internet, software, or other compu-
tational or technical resources (Thessen, 2016; Farley et al., 2018). For 
the most part, these resources are already in place (ex. established 
universities and research organizations) and have been collecting and 
analyzing relevant data for long periods of time (Martin et al., 2012), but 
only in certain parts of the world. For example, the majority of studies in 
this review were from China and western Europe, suggesting regions 
elsewhere need increased access and infrastructure for these resources. 
Some of the absence of countries in this study may be due to the fact that 
we do not fully capture all ecosystem service studies using ML or big 
data due to the keywords used, an English language focus, no grey 
literature being included, and other limitations of literature reviews. 

5. Conclusions 

As shown within this review, ML and big data are useful tools that 
can help address data availability, uncertainty, and socio-ecological 
gaps in ecosystem service research. Specifically targeting regions that 
are understudied due to these major gaps will benefit these regions and 
the ecosystem service field overall. Many regions, especially within the 
global South, are understudied within the ecosystem service field mainly 
due to low data availability. The application of newly relevant big da-
tabases (e.g. social media data), the increasing size and resolution of big 
data, and the ability of several ML algorithms to estimate uncertainty 
and effectively model the complex dynamics of ecosystem services in 
low-data environments all can assist in providing tools to these under-
studied and under-resourced regions. Also, improving relevant 
computing, data, and other resources as well as expertise within regions 
that lack studies of ecosystem services in general and specifically, using 
big data and/or ML, can help fill gaps in current knowledge. To this 
point, these tools have not been fully taken advantage of, especially 
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within these regions, and thus, there remains significant opportunity for 
future studies to address major gaps and disparities in ecosystem service 
research. 
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