
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
Smartphone-Based Pedestrian Tracking System for Visually Impaired People

Permalink
https://escholarship.org/uc/item/4m3298p8

Author
Ren, Peng

Publication Date
2024

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4m3298p8
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
SANTA CRUZ

SMARTPHONE-BASED PEDESTRIAN TRACKING SYSTEM FOR
VISUALLY IMPAIRED PEOPLE

A dissertation submitted in partial satisfaction of the
requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER ENGINEERING

by

Peng Ren

March 2024

The Dissertation of Peng Ren
is approved:

Professor Roberto Manduchi, Chair

Professor Chen Qian

Professor Ricardo Sanfelice

Peter F. Biehl
Vice Provost and Dean of Graduate Studies

Copyright © by

Peng Ren

2024

Table of Contents

List of Figures vii

List of Tables xviii

Abstract xxi

Acknowledgments xxiii

1 Introduction 1

2 Related Work 7
2.1 Indoor/Outdoor Localization Systems . 7

2.1.1 Wi-Fi-Based Indoor Positioning . 7
2.1.2 BLE-Beacon-Based Indoor Positioning 8
2.1.3 Visual Odometry . 9
2.1.4 Magnetic-Based Indoor Positioning 10
2.1.5 Ultra-Wide Band-based Indoor Localization System 10
2.1.6 GNSS-Based Outdoor Localization Systems 11

2.2 Inertial Sensor-Based Localization . 13
2.2.1 Strap-Down Inertial Navigation . 13
2.2.2 Pedestrian Dead Reckoning . 14
2.2.3 Learning-Based Odometry . 14

2.3 Localization for Blind People . 15
2.3.1 Indoor Scenario . 16
2.3.2 Outdoor Scenario . 16

2.4 Inertial Sensor Data Sets . 17
2.5 Conclusion . 19

3 Map-Less Indoor Turn Detection 20
3.1 Problem Statement . 20
3.2 Kalman Filter - Review . 21

3.2.1 State Initialization and Matrix Definitions 22

iii

3.2.2 Prediction Step . 24
3.2.3 Update Step . 25

3.3 Mixture Kalman Filter . 27
3.4 Straight Walking (SW) Detector . 30
3.5 Optimizing Turn Detection . 31
3.6 Conclusion . 33

4 Map-Assisted Localization 35
4.1 Problem Statement . 35
4.2 Particle Filter . 36

4.2.1 Algorithm Steps . 37
4.2.2 Drawbacks . 39

4.3 Particle Filter-Based Localization . 41
4.3.1 Implementing Particle Filters for Localization 42

4.4 Multiple Clustering Problem . 43
4.4.1 Mean-Shift Algorithm . 44
4.4.2 Calculating the Final Position Output 45

4.5 Conclusion . 47

5 Particle Filtering for Indoor Localization 49
5.1 Available Data . 49

5.1.1 Map Information . 49
5.1.2 IMU Sensor . 50

5.2 States Definition . 51
5.3 Implementation Details . 52

5.3.1 Prediction Step Details . 53
5.3.2 Update Step Details . 54
5.3.3 Resampling Step Details . 54
5.3.4 Extreme Case Handling for Indoor Scenario 55

5.4 Conclusion . 59

6 Particle Filtering for Outdoor Localization 60
6.1 Available Data . 60

6.1.1 Map Information . 61
6.1.2 GPS Signal . 61
6.1.3 IMU Sensor . 63
6.1.4 Altimeter . 63

6.2 States Definition . 63
6.3 Implementation Details . 63

6.3.1 Prediction Step Details . 64
6.3.2 Update Step Details . 64
6.3.3 Resampling Step Details . 68
6.3.4 Extreme Case Handling for Outdoor Scenario 68

iv

6.4 Conclusion . 69

7 Experiments on the WeAllWalk Dataset 71
7.1 Training/Testing Modalities . 71
7.2 Turn Detection . 72
7.3 Path Reconstruction . 74

7.3.1 Evaluation Metrics . 74
7.3.2 Map-less Path Reconstruction . 75
7.3.3 Map-assisted Path Reconstruction . 77
7.3.4 Results Visualization . 79

7.4 Conclusion . 79

8 Experiments with Indoor Navigation 82
8.1 Indoor Navigation Application Introduction 83
8.2 Localization Model Details . 83

8.2.1 Utilizing IMU Sensor Data: Two PDR methods 84
8.2.2 Calibration Methods . 84
8.2.3 Map Information . 87
8.2.4 Sensor Fusion Algorithm . 88

8.3 User Interface Design . 89
8.4 Experimental Results . 91

8.4.1 Experimental Procedure . 91
8.4.2 User Study . 92
8.4.3 Experiment Details and Localization Results 92
8.4.4 Challenges and Issues: Discussion . 95

8.5 Online GeoJSON File Processing Service . 98
8.5.1 Front-end Website Introduction . 103
8.5.2 Back-end API Introduction . 105

8.6 Conclusion . 106

9 Experiments with Transit Hub Navigation 107
9.1 Outdoor Navigation Application Introduction 107
9.2 Localization Model Details . 108

9.2.1 Transit Hub Information . 108
9.2.2 Utilizing IMU Sensor Data . 109
9.2.3 Map Information . 110
9.2.4 GPS Usage . 111
9.2.5 Sensor Fusion Algorithm . 112
9.2.6 Fail-safe Mechanism . 113

9.3 User Interface Design . 114
9.3.1 User Interface . 114
9.3.2 Route Compass . 118

9.4 User Interface for Challenging Spots . 119

v

9.4.1 Challenging Spots: Underground Tunnel Entrance 120
9.4.2 User as a Sensor . 121
9.4.3 Challenging Spots: Finding Entrance to a Ramp 122

9.5 Experimental Results . 123
9.5.1 Experimental Procedure . 123
9.5.2 User Study . 124
9.5.3 Experiment Details and Localization Results 124
9.5.4 Challenges and Issues: Discussion . 127

9.6 Conclusion . 129

10 Ablation Study 132
10.1 Observations . 133
10.2 Quantitative Study Results: Complete Trail 135
10.3 Quantitative Study Results: Distinct Areas . 136

10.3.1 Open Space . 137
10.3.2 Overground Areas with Map information 138
10.3.3 Overground: Southbound Area . 139
10.3.4 Overground: Northbound Area . 140
10.3.5 Underground . 141

10.4 Conclusion . 141

11 Conclusion and Open Problems 144
11.1 Conclusion . 144
11.2 Open Problems . 147

Bibliography 150

vi

List of Figures

3.1 A visualization of the SW segment detection system. Top: Azimuth signal;

Bottom: output of SW detector is shown in blue, and the feature intervals from

WeAllWalk are shown in orange. 31

3.2 A visualization of the two-stage turn detector. The left blue line represents a

user’s trajectory. The user first walks straightly, then takes a 45° left turn and

a -90° right turn. Middle diagram illustrates our two-stage orientation detec-

tion system structure. In right diagram, SW intervals are highlighted in yellow.

Additionally, a turn is obtained by comparing the user-facing direction between

two consecutive SW intervals. 32

3.3 An example of two-stage turn detection. Blackline: azimuth data. Greenline:

MKF outputs, which is the orientation. Orange line: outputs of the two-stage

turn detection system. Redline: user orientation ground truth provided by the

WeAllWalk dataset. Outputs from the SW detector are not shown here for sim-

plicity. Notice that the MKF orientation resolution is 90° (a) or 45° (b). 33

vii

4.1 Visualization example of the prediction step of a particle filter. Red points: par-

ticle before update. Blue points: particle after update. The velocity originates

from the red rectangle and its direction is indicated by the blue arrow. 37

4.2 Visualization of the update step of a particle filter. (a) Particles before update

step. (b) Particles who stay in the room or goes deeper into the room get less

weights, thus get different color. 38

4.3 Visualization of the resample step of a particle filter. (a) Particles before re-

sample step. (b) Particles after resample step. Particles with low weights get

removed. 39

4.4 This figure visualizes a set of particles at a certain time. The two main clusters

are depicted in red and green. The posterior mean, shown in black, is incor-

rect due to the bi-modal posterior distribution. The highest distribution mode

identified by the mean shift algorithm is marked with a white star. 44

5.1 Visualization example of two different particle filter problem. (a) Visualization

example of the particle degeneracy problem. Only a small number of particles

that lie in the corridor has large weights, while all other particles spread into

different room and has low weights. In this scenario, it becomes challenging

to determine the user’s true position, resulting in the wastage of a majority of

particles. (b) Visualization example of the Sample Impoverishment. The par-

ticles are closely clustered together and positioned in the center of a corridor,

indicating an inefficient method for detecting map information. 57

viii

5.2 Visualization of the long corridor problem. Red points: Particles spread over the

long corridor without any constraints. Blue points: With constraints, particles

won’t be too far away from its cluster center. 58

6.1 GPS Outage Example: The map serves as the background. The blue star rep-

resents the actual user position, the blue dot indicates the GPS position, and

the blue circle represents GPS uncertainty from the smartphone API. (a) In this

scenario, the GPS uncertainty is too large, making it unsuitable for navigation.

(b) Despite a small GPS uncertainty, the provided position is far from the actual

user position, making it unreliable for navigation. 62

7.1 A visualization of three path reconstruction algorithms used in the map-less

case is presented. The ground truth path taken by the walker is depicted in blue,

while the estimated paths are shown in black. Heel strikes are represented by

dots, and turns are represented by circles. 76

7.2 Path reconstruction examples from the TA: LC training/test modality. On the

left: Map-less scenarios using A/S and 90° T/S algorithms; Map-assisted sce-

narios using A/S-PF, A/S-PF-MS, and A/S-PF-MS-G. On the right: Map-less

scenario using the FR algorithm; Map-assisted scenarios using FR-PF, FR-PF-

MS, and FR-PF-MS-G. The legend of each figure displays the values of three

metrics (RMSEwp, Hauss, avHauss). All measurements are in meters. 80

ix

8.1 The application’s debug interface: (a) Initial Interface - Displaying trail and

target information, buttons for modifying display modes, settings for calibrated

step length and RoNIN scaler, as well as options for enabling step beeps. It

comprises two visualization screens with distinct scales, along with controls

for app initiation/termination and various debugging functions. (b) Interface

After Startup - Depicting two trajectories: one generated by the Particle filter

+ RoNIN (yellow line, yellow particles), and the other by the Particle filter +

Azimuth/Steps (red line, blue particles). 85

8.2 Map visualization. Engineering 2, Floor 3 . 87

8.3 Map visualization. (a) Baskin Engineering, Floor 2 (b) Physical Science Build-

ing, Floor 2 . 88

8.4 A practice trail within the E2 building from participant 2. Red line: Particle

filter + RoNIN, Blue line: Particle filter + Azimuth/Steps. Start Waypoint:

Square, End Waypoint: Star . 93

8.5 Reconstructed paths from different modalities. Red line: Particle filter + RoNIN.

Blue line: Particle filter + Azimuth/Steps. Cyan line: Azimuth/Steps. Orange

line: RoNIN. Start Waypoint: Square, End Waypoint: Star. (a) Trail R2W for

Participant P2. (b) Trail R3W for Participant P2. 94

8.6 (a) Participant P1 got stuck in the alcove on the right during Trail R1W of the

experiment. (b) An intervention was provided to prevent the user from exiting

the building during Trail R2W of the experiment. 97

x

8.7 Route R1W. (a): Building floor plan with key elements highlighted: Red circles

represent waypoints, Gray lines indicate traversable graph edges, Dark gray line

shows the shortest path from the start waypoint (Square) to the end waypoint

(Star). Landmarks are shown in Blue. (b)–(d): Recorded paths with Blue lines

representing Azimuth/Step + Particle Filter and Red lines indicating RoNIN +

Particle Filter. (b): Path for P1. (c): Path for P4. (d): Path for P7. 99

8.8 Route R2W. (a): Building floor plan with important features marked: Red cir-

cles denote waypoints, Gray lines represent traversable graph edges, Square

indicates the start waypoint, Star signifies the end waypoint, Dark gray line con-

nects the start and end waypoints. Landmarks shown in Blue. (b)–(d): Recorded

paths with Blue lines showing Azimuth/Step + Particle Filter and Red lines in-

dicating RoNIN + Particle Filter. (b): Path for P5. (c): Path for P2. (d): Path

for P1. 100

8.9 Route R3W. (a): Building floor plan highlighting significant elements: Red

circles denote waypoints, Gray lines represent traversable graph edges, Square

indicates the start waypoint, Star signifies the end waypoint, Dark gray line

connects the start and end waypoints. Landmarks are shown in blue. (b)–(d):

Recorded paths with Blue lines indicating Azimuth/Step + Particle Filter and

Red lines indicating RoNIN + Particle Filter. (b): Path for P3. (c): Path for P6.

(d): Path for P7. Note that P7 mistakenly enters a room via an open door at the

early stage of the trail. 101

xi

8.10 Localization results. Start Waypoint: Square, End Waypoint: Star. Red line:

Particle filter + RoNIN, Blue line: Particle filter + Azimuth/Steps. (a) Route

R1W, path for P1. (b) Route R1W, path for P5. (c) Route R2W, path for P6. (d)

Route R2W, path for P7. 102

8.11 (a) Welcome Page. (b) Server File Management Interface for Remote File Con-

figuration. (c) User Authentication Panel. (d) File Upload Page with Blue

Progress Indicator. 103

8.12 Data Visualization Page Displaying Processed Map Data Graphically. 104

9.1 Map of the Palo Alto train station, highlighting the positions of bus stops, rail-

way platforms, underground passageway tunnels, and the transit center. 109

9.2 Two RoNIN trajectories collected from different users on an overground map.

White lines represent the paths traversed by the users, white circles represent

the destinations, while the black lines represent the RoNIN reconstructed paths.

(a) Bus2NB for participant 5. (b) Bus2NB for participant 1. 110

9.3 Maps utilized by the Palo Alto train station navigation application. (a) Over-

ground map, employed when users navigate above ground. (b) Underground

map, utilized when users navigate within the underground tunnel. In both maps,

distinct areas are differentiated by colors: blue lines represent impassable walls,

green areas denote walkable zones, red areas signify no-go zones, and yellow

areas indicate GPS-denied zones. Please note that the yellow areas are also

walkable. 111

xii

9.4 GPS outage examples. Blue line - GPS (uncertainty visualized by color), White

line - Ground truth path, White Circle - Destination. (a) Participant S1, trail:

Northbound to Southbound. (b) Participant S5, trail: Southbound to Bus Stop. . 112

9.5 The sensor fusion model pipeline. RoNIN is employed to process the IMU sen-

sor data collected from the iPhone in the user’s pocket. Its output velocity is

then used as an input to particle filtering, which incorporates the map infor-

mation. For each particle, its weights are determined by the map and the GPS

distribution. The weighted mean of a cluster of particles is used as the final

output of the model. 113

9.6 Visualization of Tiles on the map. Multiple tiles are displayed on the map, each

with different colors. 116

xiii

9.7 (a) This schematic illustrates how directional error varies with distance to the

next goalpost. The true location of the walker is marked by a star, but local-

ization errors may place the user anywhere within the gray circle, which is

determined by the uncertainty radius. Due to these errors, the system-generated

direction to the target goalpost (thick dot), indicated by dotted arrows, may dif-

fer from the actual correct direction, represented by a solid arrow. The angle

between these two directions forms the angular error, denoted as θerr. The dia-

gram shows that when the user is closer to the goalpost and has the same uncer-

tainty radius, there is a higher likelihood of experiencing larger angular errors,

represented by θerr. (b) Screenshots of the RouteNav app. The screen displays

multiple pieces of information, and various buttons are available for users to

access information from the app by interacting with them using VoiceOver. The

pink dot on the map represents the estimated position of the walker. The dark

circle indicates the next selected goalpost. In the left image, as the walker enters

a tile, the nearest goalpost in the following tile is chosen as the target. In the

right image, as the walker advances within the tile, The target switches to the

goalpost that is farther away in the next tile. 117

xiv

9.8 The RouteNav interface is illustrated using colored rectangles to represent dis-

tinct information categories offered by the application. A green rectangle dis-

plays details of the current tile, including points of interest (POIs). The red

rectangle indicates the direction towards the target goalpost in the subsequent

tile, while the blue rectangle provides information regarding the upcoming tiles

on the route. Additionally, various notification types are represented by circu-

lar icons, each paired with its corresponding interface modality, which includes

speech, sound, vibration, or haptic feedback. 118

9.9 A participant using the Route Compass during one of the experiments, while

holding a walking cane in the other hand. 119

9.10 An underground tunnel entrance pointed by a highlighted yellow line. 120

9.11 The ramp that users need to negotiate, with a highlighted yellow path indicating

the route. 123

9.12 Comparison of Localization Methods. The trajectories are represented as fol-

lows: Black line - RoNIN, Blue line - GPS (uncertainty visualized by color),

Cyan line - Localization estimation results from the model. White line - Ground

truth path, White Circle - Destination. (a) Participant 3, trail: Bus Stop to North-

bound. (b) Participant 4, trail: Bus Stop to Northbound. (c) Participant 2, trail:

Southbound to Bus Stop.(d) Participant 5, trail: Northbound to Southbound. . . 128

xv

9.13 Failure cases. Black line - RoNIN, Blue line - GPS (uncertainty visualized by

color), Cyan line - Localization estimation results from the model. White line

- Ground truth path, White Circle - Destination. (a) Participant S6, trail: Bus

Stop to Northbound (b) Participant S7, trail: Northbound to Southbound 129

9.14 Experimental results visualization from three participants in different trials. The

trajectories are represented as follows: Black line - RoNIN, Blue line - GPS (un-

certainty visualized by color), Cyan line - Localization estimation results from

the model. White line: Ground truth path, White Circle - Destination. Photos

from participants are taken in the location pointed by the yellow arrow. (a) Par-

ticipant 1, trail: from Northbound to Southbound. (b) Participant 3, trail: from

Southbound to Bus stop. (c) Participant 5, trail: from Bus stop to Northbound. 130

10.1 Results of the Ablation Study. Predictions made by each modality when the user

is in the corresponding ground truth points are indicated using distinct symbols

and colors: (1) RoNIN + GPS + Wall (orange line with blue circles), (2) RoNIN

+ GPS (cyan line with orange stars), (3) GPS (purple line with purple circles),

(4) GPS + Wall (green line with cyan triangles), and (5) Ground truth (red line

with red circles). (a) Trail 1. (b) Trail 5. 134

10.2 Ground Truth Trajectory, Ground truth points are shown in red circles: In trials

1, 2, 4, and 6, the user initiates their journey from the blue star point and aims

to reach the destination marked using the cyan rectangle. Conversely, in trials 3

and 5, the trajectory is in reverse order. 135

xvi

10.3 Ground truth points in different areas. Red points: Open space. Blue points:

Southbound area. Purple points: Underground. Cyan points: Northbound area. 137

10.4 Results of the comparisons in various areas. Predictions made by each modality

when the user is in the corresponding ground truth points are indicated using

distinct symbols and colors: (1) RoNIN + GPS + Wall (orange line with blue

circles), (2) RoNIN + GPS (cyan line with orange stars), (3) GPS (purple line

with purple circles), (4) GPS + Wall (green line with cyan triangles), and (5)

Ground truth (red line with red circles). (a) Open space, Trail 2. (b) Southbound

area, Trail 1. (c) Northbound area, Trail 4. (d) Underground area, Trail 1. . . . 142

xvii

List of Tables

7.1 Turn detection (TD) error is reported for both our 45° turn detector and 90° turn

detector. Within each community of blind walkers (LC, DG), the UC rate and

OC rate pair with the smallest sum is highlighted in boldface. 73

7.2 Reconstruction errors (RMSEwp, Hauss, avHauss) of the path reconstruction

algorithms applicable in the map-less case are presented, with units in meters.

The smallest error values for each metric within each community of walkers (S,

LC, DG) are displayed in boldface. 77

7.3 Reconstruction errors (RMSEwp, Hauss, avHauss) for map-assisted path re-

construction algorithms. Units are in meters. The smallest error values of each

metric for each community of walkers (S, LC, DG) are shown in boldface. . . . 78

xviii

8.1 Participant Characteristics: ’B’ denotes blindness since birth, ’L’ indicates blind-

ness later in life. The step length (Calibration) represents the estimated step

length value obtained after the calibration phase for each user. The step length

(Final) represents the average estimated step length value derived from particle

data over three trials. It is worth noting that the Particle Filter estimates the step

length as a state starting from participant P4. The preferred units indicate the

type of units the user wishes to hear in the notifications. 92

8.2 This table summarizes the results of the Wayfinding routes experiment. Com-

pletion times for every route is reported in seconds. If a participant missed some

turns or took a wrong turn but completed the route with app guidance, the table

cell will be displayed with a gray background. Here, ’R’ indicates that a system

reset was required, and ’E’ indicates that, while the route was completed, verbal

instructions from the experimenter were needed during the trail. 94

9.1 Participants’ characteristics. 125

9.2 Traversal times (in minutes) for all participants and all routes. 126

10.1 Comparison results of the different modalities on the complete trail of Palo Alto

train station (in meters). 136

10.2 Comparison results of the different modalities on the overground of Palo Alto

train station in open space (in meters). 138

xix

10.3 Comparison results for different modalities on the Palo Alto train station over-

ground with maps, limited to data within the Overground-Map-SouthBound

area (in meters). 139

10.4 Comparison results for different modalities on the Palo Alto train station over-

ground with maps, limited to data within the Overground-Map-NorthBound

area (in meters). 140

10.5 Comparison results of the different modalities on the underground of Palo Alto

train station (in meters). 141

xx

Abstract

Smartphone-Based Pedestrian Tracking System for Visually Impaired People

by

Peng Ren

Current smartphone-based localization systems, primarily designed towards sighted individuals,

offer wayfinding services by tracking a user’s path. However, this design overlooks the unique

navigation needs of blind individuals who utilize long canes or guide dogs and have distinct

movement patterns. To bridge this gap, this thesis introduces novel localization techniques

tailored for blind pedestrians in both indoor and outdoor settings. These techniques avoid the

need for BLE beacons and Wi-Fi, as well as camera-based systems, all of which are impractical

for blind users. Instead of these options, the proposed methods utilize IMU sensors, allowing

users to conveniently place their phones in their pockets without the requirement of any external

infrastructure.

Indoor localization in the absence of maps is addressed in this thesis through a unique

combination of a Mixture Kalman filter and a GRU-based straight walking detector. Together,

these form a two-stage turn detector that operates under the assumption that corridor intersec-

tions occur at 45° or 90° angles. In situations where maps are accessible, the research incor-

porates two Pedestrian Dead Reckoning (PDR) methods with the map data via a particle filter.

In outdoor settings, this thesis expands the use of IMU sensor data by integrating it with GPS

signals through a particle filter. This method creates a flexible model effective in both open

areas and in environments with wall constraints, as specified by maps. Comprehensive testing

xxi

of these systems involved trials with the WeAllWalk dataset, containing data from visually im-

paired walkers, and user studies conducted using two separate iPhone applications for indoor

and outdoor localization. Results from these tests clearly demonstrate the effectiveness of the

proposed localization solutions.

xxii

Acknowledgments

First, I would like to express my deepest gratitude to my professor, Roberto Manduchi. I am

thankful for the opportunity that he provided, which allowed me to engage in unique and benefi-

cial tasks. His guidance revealed the elegance of academia to me during my master’s studies and

continued throughout my Ph.D. program. Over the past six years, his generous and insightful

mentorship has not only sharpened my problem-solving skills but also taught me the essentials

of research methodology. His encouragement played a crucial role in helping me overcome

the numerous challenges encountered during the development of effective solutions for various

projects. I am deeply appreciative of his help, without which my current achievements would

not have been possible.

I also extend my sincere thanks to Professor Chen Qian and Professor Ricardo San-

felice for serving on my defense committee and reviewing my dissertation. Additionally, I am

grateful to my collaborators on various projects, particularly Fatemeh Elyasi, Chia Hsuan Tsai,

and Jonathan Lam. The brainstorming sessions and discussions we shared are unforgettable.

Further, I express my appreciation to the other members of the UCSC Computer Vision Lab,

especially Yunqian Cheng and Swati, for their indispensable assistance in numerous aspects.

My profound gratitude goes to my mother for her unwavering support, regardless of

the various difficulties I faced during this demanding yet rewarding journey, and to my father

for his consistent assistance, providing a solid foundation. Additionally, I am thankful to Fang

Chieh Chou, my mentor at the Nissan Advanced Technology Center in Silicon Valley, where I

completed a summer internship. He introduced me to the methodologies of industrial research,

xxiii

and the experience was invaluable.

The following published materials are reprinted in this thesis:

1. Tsai, C. H., Elyasi, F., Ren, P., & Manduchi, R. (2024). All the Way There and Back:

Inertial-Based, Phone-in-Pocket Indoor Wayfinding and Backtracking Apps for Blind

Travelers. arXiv preprint arXiv:2401.08021.

2. Ren, P., Lam, J., Manduchi, R., & Mirzaei, F. (2023, October). Experiments with Route-

Nav, A Wayfinding App for Blind Travelers in a Transit Hub. In Proceedings of the 25th

International ACM SIGACCESS Conference on Computers and Accessibility (pp. 1-15).

3. Ren, P., Elyasi, F., & Manduchi, R. (2021). Smartphone-based inertial odometry for blind

walkers. Sensors, 21(12), 4033.

xxiv

Chapter 1

Introduction

In our daily lives, the concept of travel involves physically moving from one position

to another. Whether it’s going from home to school, a restaurant to a movie theater, or the

entrance of a hospital to a doctor’s office, these travel operations, while becoming easier when

we are familiar with the path to different destinations, require an initial information collection

phase known as ”wayfinding.” Gathering the necessary data from the surrounding environment

or a map during this process can be challenging for everyone. Many people, to varying degrees,

have experienced the frustration of getting lost in an urban environment or trying to locate a

specific room in a large building. Such experiences can lead to anxiety and exhaustion. This

issue is even more severe for blind people, as it can be not only anxiety-inducing [19] but also

potentially dangerous since they lack access to visual signs ([12], [65]) present in indoor or

outdoor environments, such as hospitals, airports, or transit hubs. While infrastructure like

tactile paving [8], [45] and acoustic wayfinding, such as soundscape design [25], has been

developed to aid visually impaired individuals, the task of wayfinding for them still presents

1

significant challenges.

In the context of wayfinding, one of the most crucial objectives is to determine the

user’s current location, as navigation would be impossible without this information. The widespread

use and portability of smartphones make them ideal devices for providing indoor and outdoor

localization services, made feasible by the advancements in hardware. Localization relies pri-

marily on the various sensors within the smartphone and prior map data. It’s worth noting that

map-less wayfinding techniques are also available ([23, 42, 82]).

Numerous studies have been conducted in this field, addressing both outdoor and

indoor navigation challenges. In outdoor scenarios, GPS is widely used; however, it can be

unreliable when satellite signals are reflected or partially blocked. Indoor environments, on the

other hand, present challenges for GPS due to signal blockage and multipath issues. To address

indoor navigation, several technologies have been explored, including Bluetooth Low Energy

(BLE) beacons [83], Wi-Fi [9], magnetic field [33], and Ultra-Wideband (UWB) [3]. Each of

these methods has its own limitations.

BLE beacons and Wi-Fi require environment fingerprinting and ongoing mainte-

nance, which can be time-consuming and costly. The installation of BLE beacons is essential

for the operation of this system. Magnetic field-based localization also relies on fingerprinting

to map magnetic patterns to a user’s location. UWB, while capable of providing accurate indoor

localization, requires external infrastructure support and specialized hardware in smartphones,

which may not be available in all devices.

Alternatively, methods that don’t rely on external infrastructure exist. Visual-based

odometry, for instance, utilizes the smartphone’s camera. However, this approach necessitates

2

an unobstructed field of view for the camera. It may not gather sufficient visual data if the phone

is placed in a pocket or if the camera only captures images of the floor, ceiling or crowd, which

may not include useful features.

In comparison to the methods mentioned above, inertial navigation systems offer sev-

eral advantages. They can operate without relying on external infrastructure, making them

suitable across different scenarios. Inertial sensors are also power-efficient, and the system can

even function when the smartphone is placed in the user’s pocket. However, inertial navigation

has its downsides, including errors that slowly add up over time, leading to incorrect position

information.

To address the drift issue, researchers have proposed various solutions. For instance,

when an inertial measurement unit (IMU) is attached to a user’s foot, Zero-velocity updates

(ZUPT) and Zero Angular Rate Update (ZARU) [59] can be employed to mitigate drift. Utiliz-

ing Heuristic Heading Reduction (HDR) [10] represents an alternative approach to constraining

drift. Combining inertial sensors with other technologies like Wi-Fi localization, which is drift-

resistant, can also enhance robustness. If an environmental map is available, it can be used to

apply constraints on the reconstructed path. Machine learning techniques can also be utilized to

achieve more accurate results.

It’s worth noting that many existing inertial sensor navigation systems are designed

for sighted individuals and may not be suitable for blind walkers. Gait differences between

sighted people and visually impaired individuals who use long canes or guide dogs can affect

heading stability, leading to challenges in navigation accuracy. Blind travelers may also stop

or reorient themselves when encountering obstacles or people, introducing errors into conven-

3

tional navigation systems. Therefore, developing a system tailored to individuals with visual

impairments requires using datasets collected from blind walkers rather than sighted ones. The

importance of the data source becomes even more critical when employing data-driven machine

learning methods that rely heavily on training data. In this context, the WeAllWalk dataset, cre-

ated by Professor Manduchi’s group, stands out as the only publicly available dataset collected

from individuals with visual impairments, which has been extensively utilized in various models

introduced in this thesis.

This thesis centers on smartphone-based localization techniques designed to assist

blind individuals in both indoor and outdoor settings. Specifically, we have chosen the iPhone

as our experimental platform due to its popularity within the blind community [50]. In the

indoor context, our research is concentrated on several buildings within the UCSC campus. For

the outdoor scenario, our focus is on the Palo Alto transit hub, which encompasses both open

ground areas and underground tunnels.

In the indoor environment, we rely on IMU sensors, including accelerometers and gy-

roscopes, in conjunction with prior map information. These data sources are integrated using a

sensor fusion algorithm, specifically the particle filter. We also delve into the map-less scenario

within indoor settings, where we employ a Kalman filter-based model to determine the user’s

heading while following to predefined constraints.

In the case of the transit hub, we leverage GPS signals to enhance the performance

of the particle filter, especially in outdoor open spaces. Altimeter data is employed to facilitate

the transition between the overground and underground maps. It is important to note that the

localization systems discussed here can be easily extended to other buildings or transit hub

4

centers.

The thesis is organized as follows:

• Chapter 2 focuses on the related work, with a particular emphasis on the various sensors

mentioned earlier and IMU-based localization methods applicable in both indoor and

outdoor scenarios.

• Chapter 3 presents a two-stage turn detection algorithm based on the Mixture Kalman

Filter designed to operate in map-less situations.

• In Chapter 4, we delve into the fundamental concept of the particle filter and introduce

the Mean-Shift algorithm, which can be employed for automatic particle clustering.

• Chapter 5 and Chapter 6 provide a comprehensive discussion of the application of the

particle filter in indoor and outdoor settings, emphasizing distinct steps and approaches

for handling extreme cases.

• Chapter 7 offers an evaluation of the two-stage turn detection model and examines the

paths reconstructed through various methodologies using the Weallwalk dataset.

• Chapter 8 and Chapter 9 offer an extensive exploration of two navigation applications:

one designed for indoor use and the other for transit-hub scenarios. These chapters en-

compass model details, user interface design, and experimental results, along with solu-

tions to the challenges encountered.

• Chapter 10 conducts an ablation study on different components of the localization model

in the transit-hub scenario, confirming the efficiency of integrating data from various

5

sources.

• Finally, Chapter 11 serves as a conclusion, summarizing the entire thesis and highlighting

open problems for future research.

6

Chapter 2

Related Work

2.1 Indoor/Outdoor Localization Systems

In this section we talk about different sensors that are used in localizing a smartphone

user in either indoor or outdoor scenarios. We begin with indoor localization systems, which

includes sensors: Wi-Fi, BLE-Beacon, Camera, UWB, and Magnetic field. Then we focus on

the GNSS signal which is widely used in the outdoor scenario. Notice that, the inertial sensor

which is extensively used in this thesis, are discussed in a separate section right after this one.

2.1.1 Wi-Fi-Based Indoor Positioning

Wi-Fi positioning utilizes the signal strength received from multiple Wi-Fi beacons

to ascertain the precise location of an individual within a given environment. To achieve this,

an initial fingerprinting operation must be conducted, during which Wi-Fi signals are collected

from various locations within the environment. The strength of these received signals serves

7

as a unique fingerprint for each location. Consequently, the first step involves constructing

a fingerprint database that correlates vectors of received signal power with known locations.

Subsequently, during real-time operation, the user’s location can be estimated based on the re-

ceived signal power vector [72][77]. It is important to note that in many public spaces, Wi-Fi

beacons may already be installed for other purposes, eliminating the need for additional infras-

tructure. However, if any of these beacons are deactivated, the fingerprint data may require

recalibration. Furthermore, the accuracy of fingerprinting can be affected by minor environ-

mental changes, such as the rearrangement of furniture, potentially rendering Wi-Fi positioning

less reliable [70]. Additionally, it is worth mentioning that obtaining accurate information about

the walker’s position during data collection for database construction can be a challenging task.

2.1.2 BLE-Beacon-Based Indoor Positioning

A comparable approach to Wi-Fi-based localization is offered by BLE (Bluetooth

Low Energy) positioning. In this scenario, BLE beacons prove cost-effective and durable over

long periods. Presently, two primary Bluetooth Low Energy (BLE) beacon-based positioning

methods are available [84]: the range-based method and the fingerprinting-based method. In the

former method, estimates of distances between the user and various BLE-beacon stations are

calculated. If the precise positions of the BLE-beacon stations are known, the user’s position

can be determined [73]. However, it is important to note that the range-based method generally

exhibits limited effectiveness indoors. The second method mirrors the approach discussed ear-

lier in the Wi-Fi section. This involves initially constructing a fingerprinting database during

the offline phase. Subsequently, in the online phase, newly acquired fingerprints are compared

8

against the entire database to ascertain the user’s location. BLE beacons have demonstrated suc-

cessful use in the localization of visually impaired individuals within indoor environments [2].

Nonetheless, it is crucial to acknowledge that this system demands supplementary infrastructure

and support. Furthermore, similar to the Wi-Fi-based approach, the development of a database

comprising received power vectors at known locations can be challenging due to difficulties in

accurately determining the location during data collection [83].

2.1.3 Visual Odometry

Sighted individuals acquire crucial spatial information through their sense of sight.

Consequently, utilizing visual information for indoor localization holds significant promise. For

instance, visual odometry relies on well-established techniques such as Structure from Motion

or visual SLAM [61]. This approach enables the reconstruction of camera location, orienta-

tion, and world structure up to scale by tracking visual features from one frame to another

[61]. Scale information can be derived through the utilization of data from acceleration sen-

sors or depth sensors. Notably, the Apple ARKit framework 1 seamlessly integrates visual

odometry with inertial odometry to provide camera position and orientation within a global

coordinate framework. Visual odometry has also previously demonstrated utility in aiding vi-

sually impaired individuals [26]. Nevertheless, it is important to emphasize that continuous,

unobstructed camera views of the environment are essential for visual odometry to function

effectively. Consequently, visual odometry may encounter limitations when the camera’s view

is obstructed by people or when the user keeps the camera in their pocket. Considering that

1https://developer.apple.com/augmented-reality/

9

https://developer.apple.com/augmented-reality/

visually impaired users typically require one hand for holding a walking cane or guiding a dog,

the visual odometry-based method may prove impractical for their needs.

2.1.4 Magnetic-Based Indoor Positioning

The indoor magnetic field, vulnerable to persistent distortions caused by electrical ap-

pliances or steel frame structures in buildings, can serve as a valuable resource for localization.

A fingerprinting approach, similar to those discussed earlier, is necessary in this context, with

measured values comprising the magnitude of the magnetic field [31]. Researchers have suc-

cessfully employed this technology for indoor user localization using smartphones 2. However,

it is important to note that the construction of a magnetic map can be a time-consuming process,

and the magnetic field has been observed to be variable in time.

2.1.5 Ultra-Wide Band-based Indoor Localization System

Ultra-Wide Band (UWB), widely recognized as one of the most common building-

dependent localization technologies [54], offers precise indoor user localization capabilities.

This method relies on two distinct sets of hardware: the UWB tag, which is attached to the

user’s body, and the anchors positioned throughout the environment, with their precise locations

predetermined. During operation, the anchors and the UWB tag engage in communication

through UWB signals, employing the Time of Arrival (TOA) algorithm [51] to measure the

distances between the anchors and the tag. Subsequently, the trilateration algorithm is employed

to determine the user’s precise position. Alternatively, other techniques like Time Difference of

2https://www.indooratlas.com/

10

https://www.indooratlas.com/

Arrival (TDOA) [17] or Angle of Arrival (AOA) [46] can be employed for the same purpose.

An inherent advantage of the UWB method lies in its immunity to multipath interference [6].

However, there are certain drawbacks associated with the UWB method. It neces-

sitates the pre-installation of external infrastructures, and users are required to carry specific

UWB tags. While UWB technology is becoming increasingly accessible in modern smart-

phones, such as the iPhone 11 models and later 3, it may not be available in slightly older

devices, thus limiting its widespread usage.

2.1.6 GNSS-Based Outdoor Localization Systems

GPS, an abbreviation for Global Positioning System, is a technology that can pro-

vide users in outdoor scenarios with their absolute positions when they have the necessary

GPS equipment. Nowadays, affordable GPS technology is embedded in smartphones [38] and

smartwatches [71], making it a cost-effective yet highly efficient solution for users interested

in determining their outdoor locations. It finds application in a wide range of uses, including

navigation, recommendations for nearby restaurants, route tracking, and so on.

The fundamental concept of GPS[78] involves multiple satellites orbiting the Earth,

where GPS receivers receive signals from these satellites, enabling the calculation of the dis-

tance between the user’s receiver and each satellite. By combining these distances, the user’s

current position on Earth can be determined. GPS, although commonly associated with a spe-

cific technique, originally referred to the positioning service provided by the USA. Other coun-

tries also offer their satellite positioning services; for instance, the European Union provides

3https://support.apple.com/en-us/109512

11

https://support.apple.com/en-us/109512

Galileo[52], Russia offers Glonass [60], and China provides the Beidou service[81]. When

users employ satellites from multiple sources mentioned above, the technique is commonly

referred to as GNSS (Global Navigation Satellite System).

While GNSS services can combine signals from numerous satellites worldwide, it is

essential to note that the achievable localization accuracy can be limited. This limitation arises

due to various errors introduced during signal transmission between satellites and the user’s

equipment [36]. These errors include satellite clock inaccuracies, satellite position discrepan-

cies, errors induced by the ionosphere and atmosphere, and the well-known multipath problem

[66], which arises from signal reflections off tall buildings, trees or ground. These errors often

make the measured distance between the equipment and remote satellites inaccurate. In fact,

the raw distance calculated in this manner is termed ”pseudorange,” indicating its high unrelia-

bility. Techniques aimed at mitigating these inaccuracies have been extensively studied within

a specific research domain, including methods such as Differential GPS [49], RTK-GPS (Real-

Time Kinematic Global Positioning System) [43], and PPP (Precise Point Positioning) [40].

However, discussing the advantages and drawbacks of these methods falls beyond the scope

of this thesis. Nevertheless, a valuable takeaway is that, irrespective of the efforts invested,

relying solely on GPS for high-precision localization services in environments such as urban

can remain quite challenging, particularly in scenarios where GPS signals are not consistently

available or when satellite positions in the sky closely overlap.

12

2.2 Inertial Sensor-Based Localization

The inertial sensors, including accelerometers and gyroscopes, integrated into a smart-

phone can serve as a valuable tool for odometry. This approach offers the advantage of not

requiring external infrastructure and functions effectively even when the phone is placed in a

user’s pocket. Furthermore, inertial sensors consume less power compared to a camera. How-

ever, a significant drawback of the IMU (Inertial Measurement Unit) sensor is its susceptibil-

ity to drift. Both accelerometers and gyroscopes within the IMU are prone to various noise

sources, such as constant bias error, temperature effects, random walk noise, and flicker noise

[75]. These noise sources are responsible for the drift errors that occur in various methods

utilizing the IMU sensor, all of which are discussed below.

2.2.1 Strap-Down Inertial Navigation

The strapdown inertial navigation algorithm utilizes data from accelerometers and

gyroscopes to reconstruct a user’s trajectory [22]. The concept involves integrating data from the

gyroscope to estimate the phone’s attitude relative to an initial frame of reference, defined with

the Z-axis pointing downward (in the direction of gravity). At each time step, readings from

the accelerometer and gyroscope are reoriented to the initial reference frame. Subsequently,

after double-integrating the user’s acceleration with gravity removed and obtaining azimuth

information from gyro integration, these two pieces of information are combined to determine

the current position. Unfortunately, low-cost inertial sensor readings can be affected by bias and

noise mentioned above, which, when integrated, lead to directional and positional inaccuracies.

13

2.2.2 Pedestrian Dead Reckoning

Pedestrian Dead Reckoning (PDR) [76] presents a straightforward approach that elim-

inates the need for double integration of acceleration. To calculate the distance traveled, a PDR

system detects steps and estimates step length. The user’s facing direction (azimuth) can be ob-

tained through the integration of data from the gyroscope (note that this information is readily

provided by modern operating systems). Step detection can be accomplished using data from

accelerometers and/or gyroscopes. For instance, Alzantot et al. [4] used a finite state machine

and accelerometer data magnitude to perform step detection. To accurately estimate step length,

various methods have been proposed, relying on predefined coefficients and user data such as

accelerometer readings, user height, and step frequency [76]. More recently, deep learning

methods have been applied for step length estimation [32].

It is important to note that even when step counts and step lengths are accurately esti-

mated, the estimated azimuth may suffer from drift due to any remaining bias in the gyroscopes,

leading to substantial positioning errors over time. Furthermore, both PDR and strapdown inte-

gration methods measure the smartphone’s orientation rather than the user’s orientation. There-

fore, these systems may fail if the user repositions the phone while walking. Methods employing

Principal Component Analysis (PCA) have been introduced to address this issue and ascertain

the user’s movement direction [41][55].

2.2.3 Learning-Based Odometry

With the availability of larger sensor datasets for training, machine learning-based

odometry techniques have emerged. Among these methods, Chen et al. [13] employed a seg-

14

mentation approach to divide inertial data into windows and trained a deep learning model to

estimate velocity and orientation within each window. The model introduced in [80] utilizes

data from accelerometers and gyroscopes to regress walking velocity vectors. Yan et al. [79]

introduced RoNIN, a position estimation model that achieves state-of-the-art results when ap-

plied to data from sighted individuals. Taking raw accelerometer data, raw gyroscope data, and

attitude data as inputs, RoNIN generates velocity vectors that can be integrated to determine

user positions. One notable feature of RoNIN is its ability to measure user orientation rather

than relying on phone orientation. Additionally, the authors have ensured RoNIN’s compatibil-

ity with various phone attitudes through a process known as coordinate frame normalization.

During this transformation, sensor data is converted into a coordinate frame where the Z-axis

points toward the ground. It’s important to note that while RoNIN represents a form of dead

reckoning (using data from accelerometers and gyroscopes), its structure requires 200-length

data as input. The design with a limited window size also presents challenges in accurately

mitigating drift, and RoNIN still encounters drift-related issues.

2.3 Localization for Blind People

This section explores navigation systems designed for visually impaired individuals,

focusing on two distinct environments: indoor and outdoor.

15

2.3.1 Indoor Scenario

Indoor navigation systems can offer numerous benefits to blind travelers, enhancing

various aspects of their mobility. Such systems can encourage them to travel, assist in locating

specific destinations within buildings, and provide guidance for retracing their steps back to the

starting point. Several studies focused on wayfinding for visually impaired individuals have

made notable contributions. Fusco et al. [27] combined the Visual-Inertial Odometry algorithm

with a particle filter to leverage map constraints and track visually impaired individuals. Addi-

tionally, computer vision technology is employed to recognize exit signs, reducing localization

uncertainty. Leung et al. [44] designed a head-mounted stereo system to aid blind individuals

in navigating through obstacles. Leveraging a BLE beacons network, the system introduced in

[2] effectively localizes visually impaired users. Riehle et al. [57] explored the use of magnetic

sensing to address indoor navigation challenges for the visually impaired. Furthermore, Fallah

et al. [21] and Riehle et al. [58] conducted experiments with inertial odometry systems for blind

navigation. Flores and Manduchi [23] introduced an indoor backtracking system based on step

counts and turn detection.

2.3.2 Outdoor Scenario

Outdoor navigation systems are incredibly valuable for blind travelers, although they

present more challenges compared to indoor scenarios due to the complexity and size of outdoor

environments. Enabling blind travelers to navigate outdoors can greatly increase their mobility

and improve their overall quality of life. Similar to indoor navigation, extensive research has

been conducted in this domain. [28] and [29] proposed the use of GPS for personal naviga-

16

tion systems tailored to blind travelers. Nowadays, commercially accessible navigation systems

like Apple Maps and Google Maps utilize GPS for positioning and employ geographical in-

formation datasets for guidance. Additionally, specialized apps designed for visually impaired

individuals, such as GoodMaps Outdoors, APH Nearby Explorer, and BlindSquare, are readily

available. Recognizing that GPS localization can be prone to inaccuracies, both Apple Maps

and Google Maps have implemented modes that enhance localization accuracy by utilizing the

camera to capture images of buildings, which are then matched against 3-D point datasets when

available. [20] created a system that uses a single camera worn on the body and visual SLAM

technology to deliver highly accurate global positioning and navigation. [63] uses advanced

deep learning methods to analyze photos taken with smartphones for identifying obstacles and

measuring distances. [47] introduced a support system that utilizes BLE beacons on buses and

stops, making it easier for visually impaired people to locate public transport and stops, thereby

improving their travel experience. [48] merges GPS with BLE beacons to overcome GPS limi-

tations and enhance accuracy in determining one’s location.

2.4 Inertial Sensor Data Sets

To train machine learning models effectively, well-calibrated datasets with accurate

labels are essential. Such datasets also serve as valuable resources for method evaluation and

comparisons. In the field of inertial sensors, numerous datasets are available today. For instance,

the dataset introduced in [80] comprises IMU sensor data collected from ten sighted individuals,

with the smartphone placed in four different positions on their bodies. An integrated visual-

17

inertial odometry system is used to obtain precise ground truth. Chen et al. [14] have provided

a dataset containing inertial and magnetic data gathered from a variety of phones, users, and

motion scenarios, reflecting phone movements in diverse situations. They utilize an Optical

Motion Capturing System to provide highly accurate ground truth labels. The dataset proposed

in [79] encompasses inertial sensor data collected from 100 participants, allowing unrestricted

device placement. A 3D tracking phone is employed to achieve high-quality ground truth.

Unfortunately, the datasets mentioned earlier only contain data from sighted individu-

als, making them unsuitable for developing models for blind travelers. The WeAllWalk dataset4

[24] is the sole publicly accessible dataset gathered from visually impaired individuals. It en-

compasses inertial data recorded at a 25Hz frequency, collected from ten blind travelers utilizing

either a walking cane or a guide dog. Specifically, nine participants utilize walking canes, while

three choose guide dogs. Additionally, the dataset includes data from five sighted individuals.

The WeAllWalk participants collectively covered a total distance of 7 miles during their walks,

each carrying two iPhones placed at different locations on their bodies. This dataset records

inertial sensor data, attitude data, and timestamps for specific waypoints, typically located at

the endpoints of straight corridor segments. Furthermore, it captures instances when a blind

traveler encountered obstacles, opened doors, or came to a halt, all categorized as ”features”

within the dataset.
4https://datadryad.org/stash/dataset/doi:10.7291/D17P46

18

https://datadryad.org/stash/dataset/doi:10.7291/D17P46

2.5 Conclusion

In this section, we delve into the related work relevant to this thesis. Initially, we

investigate the drawbacks associated with indoor localization systems based on Wi-Fi, BLE-

Beacon, visual odometry, UWB, and magnetic field technologies. Subsequently, we shift our

focus to the limitations of the GNSS system, primarily suited for outdoor scenarios. Follow-

ing that, we explore the advantages and disadvantages of inertial sensor-based localization and

initiate a discussion on various methods to utilize IMU sensor data, including strap-down nav-

igation, pedestrian dead reckoning, and learning-based odometry. Our attention then turns to

the challenges faced by blind individuals, and we discuss the diverse localization techniques

employed to facilitate their navigation in both indoor and outdoor settings. Lastly, we examine

the availability of inertial sensor datasets collected for both sighted and blind individuals.

19

Chapter 3

Map-Less Indoor Turn Detection

In this section, we explore how to perform turn detection while people are inside a

building without using a map. First, we’ll describe the problem. Then we’ll discuss the specific

Kalman filter used, as well as a simplified version that’s easier to implement. After that, we’ll

introduce the Mixture Kalman Filter model [15] and explain the two-stage process for detecting

turns, which helps make our method more precise.

3.1 Problem Statement

Tracking blind people indoors using only smartphone IMU data is a complex task.

As previously discussed, we’re avoiding the use of cameras or external infrastructure like BLE

beacons or Wi-Fi and instead rely on methods such as Pedestrian Dead Reckoning (PDR). For

successful tracking, we must count steps, measure stride length, and accurately determine the

user’s orientation. While we can count steps and measure stride length, ensuring the correct

orientation without visual hints is particularly challenging. We determine orientation using

20

the azimuth angle, which represents the facing direction. This azimuth data is calculated by

measuring the angle between the phone’s Y-axis and the world’s Y-axis after projecting the

phone onto a plane—a horizontal surface defined by the X and Y axes of the world frame.

However, the azimuth can drift over time due to the inherent inaccuracies of the IMU sensor,

and this drift can render the orientation data unreliable after just a short period. Thus, the

primary challenge is to correct this azimuth drift. We will next explore an effective model, the

Mixture Kalman Filter, that addresses this issue.

3.2 Kalman Filter - Review

Before we delve into the Mixture Kalman Filter model, it’s important to understand

the basic Kalman filter [74]. The Kalman filter is a Bayesian filter known for its efficiency in

linear problem-solving. Although the Kalman filter we use here is quite basic, the rationale and

intuition behind the equations are valuable to discuss. The objective of the Kalman filter in this

context is to monitor the drift in the azimuth data. This data can be represented as:

zt = O∗(t)+d∗t (3.1)

where zt is the measured azimuth at time t, O∗(t) is the actual orientation of the user at time

t, and d∗t is the actual drift noise at time t. One can determine the value of O∗(t) if the drift

d∗t is accurately tracked. However, without access to a map, tracking drift for different visually

impaired users—who may each experience unique drift values—becomes exceedingly difficult.

To manage this, we begin with a fundamental assumption:

As users walk through corridors, their orientation is typically a multiple of 90 degrees

21

or 45 degrees, a pattern consistent with most indoor building layouts. Mathematically, the

orientation can be expressed as:

Ok(t) =
k×360◦

N
(3.2)

where N equals 4 or 8, and k varies from 1 to N.

The Kalman filter model leverages this 4-class or 8-class orientation hypothesis by

utilizing a specially designed process. This involves establishing a transition matrix that cap-

tures the likelihood of each potential turn. The transition probability is outlined as:

P(Ok(t)|Om(t−1)) =

q, if m = k

(1−q)/2, if |m− k|= 1

0, otherwise

(3.3)

Here, Ok(t) and Om(t−1) represent the orientation candidates at the current and previous time

steps, respectively. Transition probabilities default to zero if the absolute difference between

m and k exceeds 1, indicating that turns larger than 360°/N between two timestamps are not

feasible (e.g., an 180° turn is treated as two consecutive 90° turns for N = 4). This assumption

simplifies parameter selection. The value of q may vary based on the user’s walking pattern,

with a higher q during non-straight walking intervals when orientation changes are more prob-

able. With these assumptions in place, we will now examine the Kalman filter equations in

detail.

3.2.1 State Initialization and Matrix Definitions

Standard matrices are initialized as follows:

22

State: The initial step in configuring a Kalman filter is to define its states, which

comprise the data that the filter is designed to estimate. Our model aims to monitor drift and

determine orientation for each Kalman filter, and is represented by the state vector:

x =

d

1

 (3.4)

Here, d represents the drift within azimuth data.

Observation Matrix: Let O(t) denote the orientation of the Kalman filter at time t.

The observation matrix H is then defined as:

H =

[
1 O(t)

]
(3.5)

The observation matrix transforms states from the state space to the observation space. Multi-

plying H by x will reconstruct the azimuth data, according to the aforementioned model.

Covariance Matrix: The covariance matrix estimates the covariance between states

and the variance of each state individually. We focus solely on the variance of drift, located at

the top-left corner of the covariance matrix. The variance/covariance of O(t) is considered to

be zero since its value is sampled from a probability distribution, which is detailed later.

P =

1 0

0 0

 (3.6)

State Transition Matrix: For the prediction step, the state transition matrix F re-

mains an identity matrix, indicating no change to the state.

F =

1 0

0 1

 (3.7)

23

Process Noise: The matrix Q represents the internal noise of the Kalman filter model.

In our model, we account for the process noise associated with the drift state as Gaussian noise

with a standard deviation of σw, and we assume that there is no noise in the other states.

Q =

σ2
w 0

0 0

 (3.8)

Observation Noise: Observation noise, distinct from model noise, is modeled as

Gaussian noise with a standard deviation of σv.

R = σ
2
v (3.9)

After defining and initializing the matrices, the Kalman filter begins with the predic-

tion step.

3.2.2 Prediction Step

Without new observations, the model predicts the next state using the current state:

xt|t−1 = F · xt−1 (3.10)

Given that F is an identity matrix, there is no change in the state.

The covariance matrix P is also predicted:

Pt|t−1 = F ·Pt−1 ·FT +Q (3.11)

It is essential to ensure that Pt|t−1 retains zeros except for the top-left element, which represents

the drift variance.

24

Using the previous orientation Om(t−1) from the Kalman filter, we can calculate the

likelihood of each possible orientation Ok(t) using the transition matrix.

P(Ok(t)|Om(t−1)), k = 1, . . . ,N (3.12)

3.2.3 Update Step

During this step, the azimuth observation refines the state estimate. The drift d is

modeled as a Gaussian distribution, allowing for the calculation of the likelihood of observing

zt given the drift model and a hypothesized orientation Ok(t):

P(zt |dt−1,Ok(t)), k = 1, . . . ,N (3.13)

The variance of the drift error σ2
d is estimated using the top-left element of the P matrix. This

variance is utilized to evaluate the observed drift against the Kalman filter’s drift model by

computing the probability density function (PDF):

P(zt |dt−1,Ok(t)) = N (Di f f (zt ,Ok(t)+dt−1);0,σ2
d), k = 1, . . . ,N (3.14)

To ensure precise calculation of the angular difference, we must take into account the cyclical

characteristic of angles. For example, the angular difference between 0 degrees and 90 degrees

should be correctly computed as 90 degrees, and not the supplementary angle of 270 degrees.

The correct angular difference is determined by a specific formula that respects the circular

continuity of angles:

Di f f (zt ,Λt) = ((zt −Λt)+π)%2π−π (3.15)

25

After computing P(zt |dt−1,Ok(t)), it can be integrated with the probability of different possible

orientations.

P(zt |dt−1,Ok(t)) ·P(Ok(t)|Om(t−1)), k = 1, . . . ,N (3.16)

By accumulating the likelihood across all orientations, we can calculate P(zt |KF), the likeli-

hood of observing the current azimuth value zt given the Kalman filter. This likelihood can

be interpreted as the significance of the current Kalman filter. This measurement will subse-

quently be utilized in the Mixture Kalman Filter model to update the Kalman filter weight.

Furthermore, to determine the new orientation O(t) of the Kalman filter, we can sample it:

O(t) ∝ P(zt |dt−1,Ok(t)) ·P(Ok(t)|Om(t−1)), k = 1, . . . ,N (3.17)

Sampling from this resultant distribution allows for the assignment of O(t) at each time step.

This process forms a continuous orientation sequence within the Kalman filter:

Upon selecting O(t), the observation matrix H is updated, and the innovation, the

discrepancy between the observed and estimated drift, is computed as:

zt −H · xt|t−1 = Di f f (zt ,O(t)+dt−1) (3.18)

Following this process, the innovation derived from measurements is applied to improve the

state estimate. It is important to note that within the state vector, only the drift component needs

to be updated. The other components of the state vector are reset to their initial values after this

update step.

xt = xt|t−1 +Kt · (zt −H · xt|t−1) (3.19)

The Kalman gain Kt , calculated using R and P, measures the relative reliability of the obser-

vations versus the model predictions. It is derived as follows, where the numerator represents

26

the predicted system uncertainty transformed to the observation space, and the denominator ac-

counts for observation noise. Note that the results are subsequently transformed back into the

state space:

Kt = H−1 ·
H ·Pt|t−1 ·HT

H ·Pt|t−1 ·HT +R
(3.20)

The Kalman gain influences the degree to which the predictions are adjusted based on new

observations. A smaller Kt suggests a higher level of trust in the model’s predictions over the

measurements, whereas a larger Kt suggests higher trust in the observational data. Finally,

the covariance matrix P is updated to reflect the revised uncertainty after incorporating the

observation:

Pt = (I−Kt ·H) ·Pt|t−1 (3.21)

Given that the orientation is not tracked via the covariance matrix P, we can simplify the update

process. Only the top-left element of P and the first element of the state vector x are updated

after each iteration:

Pt [0,0] =
1

1
σ2

v
+ 1

Pt|t−1[0,0]+σ2
w

(3.22)

xt [0] = xt|t−1[0]+
Pt [0,0]

σ2
v
· (zt −H · xt|t−1) (3.23)

3.3 Mixture Kalman Filter

The Kalman filter described above, also referred to as the Conditional Dynamic Lin-

ear Model (CDLM) [15], relies on an indicator variable O(t) to track the system’s drift via a

standard Kalman filter approach. To refine the estimation of the target mixed Gaussian distri-

27

bution P(State|Observation), a Mixture Kalman Filter (MKF) [15] is employed to approximate

this distribution and offer enhanced accuracy.

MKF algorithm is an algorithm that mixes different kalman filter to obtain a better

results. The system makes decisions by considering the outputs from all the Kalman filters,

each assigned a weight that reflects its agreement with the observed data, taking into account

various potential orientations. The MKF algorithm is shown in Algorithm 1.

Algorithm 1 Update Kalman Filters with New Observations
1: Initialization: Each Kalman filter begins with equal weights, 1

number of Kalman filters .

2: New Observation: Upon receiving a new observation, the system uses the SW detector to

determine whether the user’s walking status is normal.

3: if user is walking normally then

4: Use a specific set of turn probabilities for normal walking.

5: else

6: Use a different set of higher turn probabilities.

7: end if

8: Update each Kalman filter based on the observation and the chosen turn probabilities.

9: Normalize the weights of each Kalman filter.

10: Remove any Kalman filter whose weight is less than 10−12.

11: Initiate a resampling process if the Coefficient of Variation for all Kalman filters exceeds a

predefined threshold.

12: Normalize the weights of each Kalman filter again.

At the beginning, each kalman filter is equally weighted, since each of them are the

28

same. Upon receiving new azimuth data, we first check whether the user is walking normally.

The turn probabilities are determined based on the user’s walking condition. Following the up-

date of the Kalman filter as we discussed above, we do the kalman filter weights normalization

to make sure the sum of weights equals 1, in this case one can view the weight of each kalman

filter as its probability, which is convenient. Subsequently, we perform the resmapling process.

A metric named COV is utilized to measure the discrepancy of weights of each kalman filter.

COV =
σ

µ
(3.24)

σ is the standard deviation of the weight list, and µ is the mean of the weight list. The goal here

is to provide a list of kalman filters whose weights are almost equally distributed. If the discrep-

ancy is too large, it means that some kalman filter with low weights needs to be removed. The

COV threshold is set to 0.3 in this case. A standard resampling or rejuvenation process is then

applied to maintain an effective list of Kalman filters. During resampling, filters are selected

proportional to their weights. Once resampling is done, we do the weights normalization again.

Finally, the final output is performed by considering the normalized weights of each kalman

filter.

For this study, a set of 50 Kalman filters is utilized. The parameters σv, σw, and q

are optimized using a grid search on training datasets from WeAllWalk, aiming to minimize the

weighted sum of the overcount and undercount rates for a two-stage detector. Given that turn

undercounts can lead to more significant path reconstruction errors—since two consecutive in-

correct turns of opposing angles may cancel each other out—a greater weight of 2.5 is assigned

to the undercount rate in the optimization process.

29

3.4 Straight Walking (SW) Detector

The straight walking (SW) detector determines whether a user is walking ”regularly”

on a straight path at each timestamp. The system is based on a Gated Recurrent Unit (GRU)

[18], a variant of recurrent neural networks. This model, trained on the WeAllWalk dataset,

employs a Leave-One-Person-Out cross-validation policy [39]. Taking azimuth and user accel-

eration magnitude (smoothed by a Gaussian filter with σ = 15) as inputs, this model outputs

a probability of the user walking straight. Subsequently, the threshold yielding the highest

f1-score on the training dataset is selected. Comparing the probability to this threshold, the

detector’s output is binary (0/1), where zero indicates straight walking.

Data within straight segments are labeled as SW, whereas data within other segment

types (e.g., turn segments and feature sub-segments) are labeled as non-SW. Since participants

in the WeAllWalk dataset typically remained stationary at the start and end of each trajectory,

these sub-segments were manually labeled as non-SW. To accurately predict the label, the model

must have access to adequate future data. Therefore, the GRU model makes its prediction with

a 1.2-second delay, which has been empirically found to be effective. This method enables the

model to learn the pattern of walking in a straight line, basing its decisions on a combination of

both the azimuth pattern and the magnitude of the user’s acceleration. The model, constructed

using Keras and Python3, has an input window size of 150 samples and a hidden unit size of

32. Additionally, a dropout rate of 0.4 is set, and the model is trained over three epochs with a

batch size of 2048. Figure 3.1 visualizes the SW detection results.

30

Figure 3.1: A visualization of the SW segment detection system. Top: Azimuth signal; Bottom:
output of SW detector is shown in blue, and the feature intervals from WeAllWalk are shown in
orange.

3.5 Optimizing Turn Detection

To enhance the navigation of visually impaired individuals, indoor walking trajecto-

ries can be visualized as a series of straight paths mixed with occasional turns. However, several

scenarios may lead to erroneous turn detection for visually impaired users. For instance, a per-

son may pause and keep changing directions to better perceive their environment, or they may

execute a series of maneuvers, like turning left then right, to circumvent an obstacle. These

movements can result in misleading turn signals, making the navigation instructions less ef-

fective in guiding the user back to their starting point. It’s important to note that such false

positives primarily occur during non-straight walking (non-SW) intervals, where changes in the

user’s facing direction are not of concern. To mitigate this, I analyze the orientation data from

the Mixture Kalman Filter (MKF) model before and after non-SW intervals to obtain the actual

31

turn angle (see Figure 3.2). This method allows for the exclusion of incorrectly identified turns.

Figure 3.2: A visualization of the two-stage turn detector. The left blue line represents a user’s
trajectory. The user first walks straightly, then takes a 45° left turn and a -90° right turn. Middle
diagram illustrates our two-stage orientation detection system structure. In right diagram, SW
intervals are highlighted in yellow. Additionally, a turn is obtained by comparing the user-facing
direction between two consecutive SW intervals.

It is assumed that user orientation remains constant during SW intervals; however, this

may not always hold true due to the imperfections of our SW detector. For instance, orientation

changes could occur at the start of an SW interval due to potential delays in our MKF model.

To address this, the mode of the orientation distribution within each SW interval is computed to

alleviate such discrepancies.

It has been observed that the MKF with a 90° orientation resolution demonstrates

greater robustness compared to one that detects 45° turns. Within the WeAllWalk dataset, 13%

of turns are ±45°. A 180° turn is identified by the MKF as either two consecutive ±90° turns

or four consecutive ±45° turns. This detection is refined when comparing orientations between

successive SW intervals. For example, two -45° turns would be detected as a single -90° turn by

32

our two-stage strategy in Figure 3.2. Examples of outputs from the two-stage turn detection sys-

tem are illustrated in Figure 3.3. In Figure 3.3(a), notable variations in azimuth measurements

around t = 30 seconds result in a series of detected turns. Since these orientation changes occur

within a non-SW interval, our two-stage detection approach disregards these extra turns, yield-

ing the correct turn angle. A comparable scenario is depicted in Figure 3.3(b) at approximately

t = 95 seconds.

(a) (b)

Figure 3.3: An example of two-stage turn detection. Blackline: azimuth data. Greenline: MKF
outputs, which is the orientation. Orange line: outputs of the two-stage turn detection system.
Redline: user orientation ground truth provided by the WeAllWalk dataset. Outputs from the
SW detector are not shown here for simplicity. Notice that the MKF orientation resolution is
90° (a) or 45° (b).

3.6 Conclusion

In this section, we address the challenge of detecting the direction of an indoor user

in the absence of a map. To achieve this, I propose a two-stage model. The initial stage employs

a Gated Recurrent Unit (GRU)-based detector to ascertain whether the user is proceeding in a

straight line. The subsequent stage operates under the assumption that an indoor walker’s turns

33

are typically in increments of 45 or 90 degrees. Here, a Mixture Kalman Filter (MKF) model

is leveraged to correct for drift in the azimuth data. During periods identified as non-straight

walking (non-SW), the probability of a turn is increased to better reflect real-world behavior.

By integrating these two stages, this model creates a sequence of straight paths with turns.

facilitating precise path reconstruction and navigation.

34

Chapter 4

Map-Assisted Localization

This section presents the problem of map-assisted localization. We will start by ex-

plaining the particle filter[68], which is the main algorithm used in our application for locating

pedestrians inside buildings and outside in open environments. We will first discuss what a

particle filter is, including how it works and its limitations. Then, we will go into how the par-

ticle filter is applied to localization tasks, particularly its role in combining data from different

sensors and maps to improve the accuracy of determining a location. We will also look at how

to handle situations where the particle filter detects multiple groups of data points.

4.1 Problem Statement

Though we are assuming that map data is available for this study, tracking people

with visual impairments in both indoor and outdoor environments is still challenging. I want to

clarify that we are not using cameras or other external devices. We no longer assume that the

person is always in a corridor intersecting at 45° or 90°. This is because outdoor spaces can

35

be more complex and the idea of a fixed orientation doesn’t apply. Also, using the map data

provides a stronger constraint than just assuming a fixed orientation, so we can leave out the

weaker assumption. The particle filter is the tool we use to maximize the utility of the map data.

Let’s start with a brief introduction to the particle filter.

4.2 Particle Filter

The particle filter is a type of Bayesian filter that proves highly effective in handling

the complexities of real-world probability distributions, particularly in the context of incorpo-

rating map information. In the projects outlined within this thesis, floor plans and outdoor maps

serve as constraints for the particle filter, enhancing its capacity to refine velocity errors and

estimate user localization. This approach relies on a group of particles, with each one standing

for a possible sample from the posterior distribution. The diversity of particles also helps in

handling the uncertainties contained within sensor inputs, with each sensor presenting its own

level of uncertainty that must be carefully managed.

The particle filter estimates the posterior distribution through a series of steps, using

information from previous time steps and the current observation to estimate the current state.

Specifically, it goes through predicting, updating, and resampling. We will also discuss the

drawbacks of the particle filter later in this chapter.

36

4.2.1 Algorithm Steps

A standard particle filter operates through three main steps: the prediction step, the

update step, and the resampling step. The details of these steps are as follows:

4.2.1.1 Prediction Step

This step predicts future states of the model using the current state and the necessary

model input. No additional information is required. However, it is crucial to understand that

predictions made in this step are not reliable on their own. We must adjust the weight of each

particle by incorporating information from other sources to approximate the true distribution

more closely.

Figure 4.1: Visualization example of the prediction step of a particle filter. Red points: particle
before update. Blue points: particle after update. The velocity originates from the red rectangle
and its direction is indicated by the blue arrow.

37

4.2.1.2 Update Step

In the update step, we use data from various sources to update each particle’s weight.

We evaluate how well the state of each particle matches with the observed data. Particles that

correspond closely with the observed data are given higher weights. It is also important to

consider the reliability of each information source; sources with questionable reliability should

have less impact on the particle weights compared to those that are considered highly reliable. If

a source is entirely unreliable, it should be excluded. Conversely, if we are completely confident

in the accuracy of a source, we might adjust the particles solely based on that information.

(a) (b)

Figure 4.2: Visualization of the update step of a particle filter. (a) Particles before update step.
(b) Particles who stay in the room or goes deeper into the room get less weights, thus get
different color.

38

4.2.1.3 Resampling Step

After updating the weights, we resample the particles based on their new weights, a

process that can happen at different frequencies. This step focuses on the more promising parti-

cles—those with higher weights—by replacing those with lower weights. Although resampling

does not necessarily occur after every update, it is an essential process for the particle filter to

converge on an accurate distribution, a technique also known as importance sampling.

(a) (b)

Figure 4.3: Visualization of the resample step of a particle filter. (a) Particles before resample
step. (b) Particles after resample step. Particles with low weights get removed.

4.2.2 Drawbacks

The particle filter, while a robust tool for managing non-linear systems, comes with

several drawbacks that must be carefully managed for effective use. Let’s discuss these limita-

tions in detail.

39

4.2.2.1 Particle Degeneracy

Particle degeneracy occurs when almost all particles have very low weights except

for a few with disproportionately high weights. This often results from infrequent resampling

due to poor design choices. That is, particles with larger weights continue to dominate, while

those with smaller weights diminish further. This would not be a concern if the high-weight

particles accurately represented the real distribution, but this is seldom the case due to noisy

input signals. Therefore, it’s not wise to depend only on a few particles with high importance

weights. A diverse set of particles with comparable weights is preferable, allowing the model

to navigate uncertainties more effectively and estimate the true distribution more accurately.

4.2.2.2 Sample Impoverishment

Although resampling can mitigate particle degeneracy, it can introduce the issue of

sample impoverishment. This occurs when particles have similar weights but are not diverse,

limiting the model’s ability to explore the true distribution. The lack of diversity arises when

insufficient randomness is introduced during the prediction and resampling steps, resulting in

particle states that are too alike.

4.2.2.3 Computational Cost

Particle filters can be computationally demanding, particularly when utilizing a large

number of particles. This necessitates careful consideration of the particle filter implementation,

balancing performance against computational costs to optimize the model’s efficacy.

The optimization of particle filter lies on nearly every aspect of the algorithm. Here

40

we are going to highlight the reason why the particle filter can be time consuming. The solution,

or speed up methods will be discussed in more details in later sections. Now let’s begin with

how we design the usage of this algorithm. More specifically, we assume the user starts at a

position instead of spreading particles everywhere, this significantly decrease the computational

cost. For particle filter, it’s going to be a problem if it takes too much time to perform the update

steps of each particle because we need to multiply the consumed time with the particle number

at each iteration. The more particles we have, the more time it consumes. For instance, it’s

questionable when one want to figure out whether each particle trajectory bumps into a wall.

Additionally, when dealing with GPS, given the GPS model, the code used to calculate the

necessary PDF for the weights update must be optimized for efficiency, which can be achieved

by using SIMD to implement the PDF calculation function. Additionally, one may not want to

do the resampling process too frequently because it’s also time-consuming. In fact, if there are

too many prediction and update steps in each second, one may want to use metric such as ESS

(Efficient Sample Size) to decide when to perform a resampling. Also, the particle filter may

have multiple cluster problem, and the mean-shift algorithm is needed to handle that. The speed

up of the mean-shift algorithm is another topic needs to be taken care of.

4.3 Particle Filter-Based Localization

In the preceding section, we examined the advantages and disadvantages of the par-

ticle filter. We will now shift our attention to the practical application of particle filters in the

real world, particularly for localization tasks. This section will present a more generalized dis-

41

cussion on particle filter-based localization, applicable to both indoor and outdoor scenarios,

comparing two distinct methodologies and assessing their strengths and weaknesses.

4.3.1 Implementing Particle Filters for Localization

A common approach in particle filter application is for each particle to represent a

2D position within a map’s floor plan. Initially, these particles are spread across the entire map

area. As the system receives observations from various sensors, it updates the weights of the

particles. After several iterations and the necessary resampling, one or more clusters emerge,

pinpointing the user’s current location. However, the computational demands of this method are

significant, as distributing and continually updating a large number of particles can be resource-

intensive, which is not suitable for smartphone applications. Reducing the number of particles

is not a viable solution either, as an inadequate density of particles may fail to capture the map’s

characteristics. Additionally, the convergence time and the likelihood of identifying multiple

clusters when the information is incomplete or inaccurate make this approach less suitable for

navigation tasks that require immediate feedback.

Therefore, the localization project developed in this thesis employs an alternative use

of particle filtering. By assuming a known initial point and walking direction, the model up-

dates the position of all particles by integrating data from the smartphone’s inertial sensors,

adjusting their weights according to other available sensors and map data. This approach en-

sures a sufficient distribution of particles around the user, facilitating a thorough examination

of nearby walls, rooms, or landmarks without exhausting the computational resources available

on a smartphone platform.

42

Though the first method has the benefit of not necessitating a known starting point,

acquiring such a starting point and initial walking direction is typically not problematic for vi-

sually impaired users. Finding a recognizable location, such as an elevator, building entrance,

or landmark, and following along a wall can provide the essential initial data. Additionally,

while the first method can autonomously estimate initial starting points, in the case of an ex-

ceedingly large map, a subarea must still be provided to manage the overall number of particles

effectively, thereby requiring a rough starting point.

4.4 Multiple Clustering Problem

For both indoor and outdoor scenarios, an important issue that must be managed

when using particle filtering is the multi-cluster problem. Typically, particles will converge in

proximity to one another. However, there are instances, especially when some particles do not

accurately reflect the real environment, where this is not the case. For instance, some particles

may advance significantly faster than others, or a large cluster may be divided by a wall after

the user takes a turn. In such situations, two or multiple clusters may form, each representing a

potential location in the particle filter’s estimation. Figure 4.4 illustrates two clusters of particles

at a specific moment in time.

To address this issue, the initial step is to determine the number of clusters present.

There are several off-the-shelf cluster detection algorithms available, such as k-means[1]. How-

ever, k-means requires pre-setting the number of clusters, which is not feasible in an online

context. Although there are techniques to adjust the k value dynamically [64], they add unnec-

43

Figure 4.4: This figure visualizes a set of particles at a certain time. The two main clusters are
depicted in red and green. The posterior mean, shown in black, is incorrect due to the bi-modal
posterior distribution. The highest distribution mode identified by the mean shift algorithm is
marked with a white star.

essary complexity to the system. Therefore, in my projects, the mean-shift algorithm has been

adopted.

4.4.1 Mean-Shift Algorithm

The mean-shift algorithm [16] is a clustering technique that processes a set of parti-

cles and automatically assigns each particle to a cluster. Unlike k-means, the number of clusters

is not predetermined but is instead determined by the mean-shift algorithm as an output. How-

ever, this algorithm has its own trade-offs. To utilize mean-shift, the user must specify a critical

parameter referred to as the bandwidth. This parameter defines the neighborhood size within

which a particle searches for its neighbors. Once the bandwidth is established, the algorithm

proceeds as follows. Firstly, each particle’s neighbors within a certain bandwidth are identified.

We calculate the mean position of these neighbors. This mean then becomes the new reference

point for the next iteration, where we identify neighbors around this new mean and recalculate

44

it. This process repeats until the mean stabilizes or reaches a maximum iteration count. In

this manner, a mean position is determined for each particle. The subsequent step involves

removing mean points that are close to each other, resulting in a set of mean points that are

well-separated. Each of these mean points can be considered a cluster center. Following this,

we assign each particle to its nearest mean point, thereby assigning each particle to a cluster. It’s

important to note that the bandwidth value can be adjusted based on the specific environment.

For example, a 5-meter bandwidth might be suitable for indoor scenarios, while a 7-meter band-

width could be more appropriate for outdoor environments. The detailed mean-shift algorithm

are shown in Algorithm 2. One very important thing is to speed up the meanshift algorithm since

we need to run this in realtime on an iPhone. For the original mean-shift algorithm mentioned

above, it used every position as a candidate to calculate the cluster mean center. However, it’s

not possible to do that frequently in an iPhone. Thus, as we can see in Algorithm 2, we deploy

the normally used method: we do the sampling with a grid.

4.4.2 Calculating the Final Position Output

After acquiring cluster information, the next task is to select which cluster should

be used to determine the output position. The previously mentioned weighted mean method

is effective when only one cluster is detected, but it fails with multiple clusters, resulting in

a position that may fall in an inaccessible area. I introduce two algorithms to derive the final

output position from multiple clusters: the local-maximum and global-maximum algorithms.

The local maximum algorithm, while intuitive, is quite popular. It involves selecting

the cluster with the most particles and using its weighted mean as the output position. Alterna-

45

Algorithm 2 Modified Mean-Shift Clustering
1: Define Parameters:

2: bandwidth: The radius of the window used for mean shift. Adjust according to different

scenarios.

3: MaxIter: Maximum number of iterations to stop the algorithm if it does not converge.

4: Select Bin Points:

5: Select a subset of points (bin points) from all points using a binning method. The bin size

is set equal to the bandwidth value.

6: Mean Position Calculation:

7: for each candidate point in bin points do

8: Initialize iteration count iteration to 0.

9: repeat

10: Calculate the mean position of all points within bandwidth of the candidate point.

11: Update the candidate point to this mean position.

12: Increment iteration by 1.

13: until distance between new and previous candidate positions is less than 1e− 3×

bandwidth or iteration exceeds MaxIter

14: end for

15: Remove Near-Duplicate Centers:

16: Remove cluster centers that are within a small threshold distance of each other.

17: Assign Points to Clusters:

18: Assign each point in the original dataset to the nearest cluster center determined by the

mean shift process.

46

tively, the cluster with the highest cumulative weight may be chosen. The primary advantage of

this method is its simplicity and ease of implementation. However, a potential drawback is that

the largest cluster may not always correspond to the actual user location, regardless of its size.

Now, let’s delve into the global maximum algorithm. By continuously tracking each

particle’s cluster transitions, we can refine the entire particle trajectory based on the current

largest cluster. In practice, given the current local maximum, one can trace the origins of all

particles within that cluster. This process yields a more accurate historical trajectory, which

can be valuable for applications such as trajectory analysis. Note that for real-time applications

concerned only with the user’s current position, the global maximum algorithm provides the

same output as the local maximum since it returns the largest cluster at that instant. However, the

global maximum algorithm can enhance previous location estimates, unlike the local maximum

method.

For indoor localization, the weighted mean of all clusters is currently used since no

significant extra clusters have been observed during user studies. For outdoor localization, the

local maximum algorithm is employed to yield better localization results when multiple clusters

are detected.

4.5 Conclusion

This section has concentrated on the algorithm for map-assisted localization. We

started with the fundamental concept of the particle filter, which involves prediction, update,

and resampling steps. We then explored its drawbacks, such as particle degeneracy, sample

47

impoverishment, and computational cost. Next, we discussed two approaches for the particle

filter implementation. Subsequently, we introduced an off-the-shelf clustering algorithm named

mean-shift and described two methods to leverage the clustering results, namely the local max-

imum and global maximum algorithms.

48

Chapter 5

Particle Filtering for Indoor Localization

In this section, we explore into the application of particle filtering within indoor envi-

ronments. We will discuss the smartphone sensors that are available for indoor use, explore the

common states used in indoor localization scenarios, and provide detailed descriptions of the

particle filter steps, including special considerations for handling extreme cases.

5.1 Available Data

In this section, we will focus on the data sources used in indoor environments, par-

ticularly emphasizing the role of map data and the iPhone’s Inertial Measurement Unit (IMU)

sensor.

5.1.1 Map Information

Map information plays a crucial role once it is available, offering strong constraints

to mitigate potential drift errors from IMU sensors. The maps used in this research are in the

49

geojson format, supplied by the SIM web application1 [69]. An online service, which will be

introduced later in this thesis, converts the map into a specific format suitable for the app. Notice

that direct usage of geojson files is avoided due to the need for specialized handling; particularly,

during the particle filter update process, it is necessary to ascertain whether a particle’s trajectory

intersects with any walls. A straightforward approach would be to compare each trajectory

against all walls, but this is computationally prohibitive. Assuming the number of particles is

N and the number of walls is M, the computational complexity for each update step would be

O(NM), which is typically O(N2) when N and M are large and of similar value.

To resolve this, a trade-off between time complexity and space is made. Initially, the

map is rendered onto a 2D matrix using the Bresenham algorithm [11], where wall segments are

marked with a value of 1. Subsequently, each particle’s trajectory is also drawn onto this matrix,

checking for any overlap with wall segments. Since the length of trajectories is significantly

less than M, the overall time complexity is reduced to O(N), making particle filter execution

feasible on a smartphone. Other matrices are similarly created to efficiently represent rooms

and corridors.

5.1.2 IMU Sensor

The range of sensors available on a smartphone for indoor applications is limited.

The onboard IMU sensor, which provides acceleration and rotation rate data, is utilized in this

study. More specifically, we have two models in use: the pedestrian dead-reckoning model and

the RoNIN model, which were introduced in earlier sections.
1https://sim.soe.ucsc.edu

50

https://sim.soe.ucsc.edu

The iPhone provides multiple types of IMU sensor data, including the raw acceler-

ation and gyroscope data, which can be obtained from CMMotionManager 2, namely the ac-

celerometerData and gyroData fields. These data are used as input to the RoNIN model, and are

collected in 200Hz. Another choice is the userAcceleration and rotationRate from the CMde-

viceMotion 3. Additionally, the attitude property of CMdeviceMotion provides rotation matrix

R, which can be used to extract the azimuth angle:

Azimuth = atan2(R.m12,R.m11) (5.1)

The azimuth, userAcceleration are used as inputs to the straight walking detector, and the user-

Acceleration with rotationRate are used as inputs to the step counter model. These data are

collected in 25Hz.

5.2 States Definition

The state of an individual particle is defined as follows, where t is the current times-

tamp and i is the index of the particle. The variables xi
t and yi

t represent the particle’s current

position, di
t denotes the drift, si

t is the stride length, and wi
t is the particle’s weight.

statei
t = [xi

t ,y
i
t ,d

i
t ,s

i
t ,w

i
t] (5.2)

It should be noted that stride length is necessary if pedestrian dead-reckoning is employed;

however, it is omitted if the RoNIN model is used. Let us examine these states in greater detail:

2https://developer.apple.com/documentation/coremotion/cmmotionmanager
3https://developer.apple.com/documentation/coremotion/cmdevicemotion

51

https://developer.apple.com/documentation/coremotion/cmmotionmanager
https://developer.apple.com/documentation/coremotion/cmdevicemotion

1. Position: Each particle’s state includes its current position on the 2D map, representing a

potential location of the user.

2. Drift: To account for azimuth data drift, each particle maintains a drift value.

3. Stride Length: For pedestrian dead-reckoning, an initial stride length is obtained through

calibration for each user. While a constant stride length could be used, its reliability is

questionable due to variations in walking patterns between calibration and actual use.

Therefore, a better approach is to allow the particle filter to estimate stride length dy-

namically. Each particle starts with a stride length perturbed by Gaussian noise from the

calibrated value, allowing the particle filter to converge on a more accurate estimate as

the user moves, particularly after turns. A similar approach to estimating stride length

using a particle filter can be found in [5].

4. Weight: The weight of each particle is a scalar indicating its relative importance or our

confidence in it. This weight is updated during the update and resampling steps, which

will be discussed later in this section.

5.3 Implementation Details

Now, we’ll explore the details of implementing the particle filter in indoor environ-

ments. We’ll first discuss the three main steps: the prediction step, update step, and resampling

step. After that, we’ll examine the extreme scenarios that occur in indoor settings, using exam-

ples to illustrate these cases.

52

5.3.1 Prediction Step Details

In the prediction step, velocity data from inertial sensors serve as the input. This

velocity is derived from a reconstructed path, which has been aligned with the app’s coordinate

system during an initial calibration phase. The reconstructed path may originate from either the

RoNIN model or another pedestrian dead-reckoning model. Velocity is computed by calculating

the distance between two consecutive points on the reconstructed path and dividing by the time

elapsed.

With the velocity obtained, the next step is to update the position of each particle.

We first introduce random walk Gaussian noise to the drift state. Then, we introduce Gaussian

noise to the magnitude and direction of the input velocity before updating the particle’s position,

accounting for the drift in the angle calculation. This ensures diversity in the drift values across

particles and compensates for the uncertainty in velocity input. Here are the formulas:

di
t = N (di

t−1,σ
2
d) (5.3)

xi
t = xi

t−1 +(vm ·∆t +N (0,σ2
m)) · cos(N (va,σ

2
a)+di

t) (5.4)

yi
t = yi

t−1 +(vm ·∆t +N (0,σ2
m)) · sin(N (va,σ

2
a)+di

t) (5.5)

The elapsed time since the last iteration is represented by ∆t, with vm and va denoting

the velocity magnitude and angle, respectively. The variances for the Gaussian noise applied to

the drift, magnitude, and angle are given by σ2
d , σ2

m, and σ2
a, respectively.

53

5.3.2 Update Step Details

The update step adjusts the weights of the particles based on the map information.

Several assumptions about the map are made to optimize the use of this information:

1. Doors on the map are assumed to be open, maintaining the possibility that a user could

mistakenly enter a room. This assumption aligns the model more closely with real-world

scenarios and was validated during the user study. Since room entry is not encouraged, as

the focus is on guiding the user through corridors, particles that enter a room have their

weights reduced by a factor of 0.9 at each time step.

2. Particles are not permitted to pass through walls, reflecting the impossibility of a per-

son doing so. Particles with trajectories intersecting walls are identified using the 2D

map matrix and are assigned a weight of zero, which results in their removal during the

immediate subsequent resampling step.

3. Particles that move outside the building are also assigned a weight of zero, reflecting the

focus on indoor localization. Additionally, for users on floors above the ground level, it

is impossible for them to exit the building boundary.

5.3.3 Resampling Step Details

Resampling is a critical step that aligns the proposal distribution closer to the target

distribution. resampling occurs under the following conditions:

1. If any particles collide with a wall, they are immediately replaced with a ’healthy’ particle

that has survived without collision.

54

2. resampling is performed immediately when particles enter a room to discourage this

movement and to make instant use of the room information.

Given these considerations, I have decided to execute the resampling process at each

step for indoor navigation. This is done using a low-variance sampling algorithm, which is

computationally efficient and avoids overburdening smartphone CPUs.

Prior to and following resampling, weights are normalized to ensure the sum of all

particle weights equals one. This normalization is straightforward: each particle’s weight is

divided by the total sum of weights. For N particles, the normalized weight of particle i, wi∗
t , is

calculated as follows:

wi∗
t =

wi
t

∑
N
j=1 w j

t
(5.6)

Once resampling is complete, the particle filter output is ready. Typically, the weighted mean of

all particle positions is used as the output location. This approach is logical since the weight of

each particle signifies its relative importance, with particles of higher weight contributing more

significantly to the final result.

5.3.4 Extreme Case Handling for Indoor Scenario

Although the particle filter model is generally efficient, extreme cases in practical

implementation necessitate additional considerations to ensure real-world applicability. These

cases often stem from the inherent limitations of particle filtering, which have been previously

discussed. Here, we focus on how these limitations appear in indoor localization scenarios and

propose potential solutions.

55

5.3.4.1 Environmental Modeling Errors

Occur when the particle filter fails to accurately represent the environmental distribu-

tion. An example is when all particles erroneously exit the building, resulting in zero-weight

particles and an empty list, which halts the model. A fail-safe mechanism is necessary to counter

this. Another issue is particles getting trapped in a corner, continuously colliding with a wall

and being resampled, which hinders further progress. Introducing positional noise during re-

sampling can provide trapped particles with an opportunity to escape and return to the correct

path.

5.3.4.2 Particle Degeneracy

This situation can happen when most particles enter a room, leaving only a few in

the corridor, those in the corridor may dominate weight distribution (see Figure 5.1(a)). High-

frequency resampling can prevent this imbalance, promoting a more even distribution of parti-

cles throughout the corridor to explore the map effectively.

5.3.4.3 Sample Impoverishment

This situation can happen when no noise is added during the prediction step. One

example is that, all particles start with same initial value, with same velocity input will certainly

went to the same position, and their weights will be updated in the same way. In this case,

even though each particle gets equal weights, the power of particle filter doesn’t really release,

since its results is similar to just using a single particle. The correct way to deal with this is

to add enough noise during the prediction step. Figure 5.1(b) illustrates an example of sample

56

(a) (b)

Figure 5.1: Visualization example of two different particle filter problem. (a) Visualization
example of the particle degeneracy problem. Only a small number of particles that lie in the
corridor has large weights, while all other particles spread into different room and has low
weights. In this scenario, it becomes challenging to determine the user’s true position, resulting
in the wastage of a majority of particles. (b) Visualization example of the Sample Impoverish-
ment. The particles are closely clustered together and positioned in the center of a corridor,
indicating an inefficient method for detecting map information.

57

impoverishment caused by insufficient noise added during the prediction step.

5.3.4.4 Long Corridor Problem

Long corridors or open spaces present unique challenges for particle filtering due to

the limited map information available. While particle diversity is desired, excessive spreading

without constraints can be problematic. Implementing a limit on how far particles can move

away from the cluster center can prevent them from spreading too widely, ensuring they remain

within a relevant range for resampling.

Figure 5.2: Visualization of the long corridor problem. Red points: Particles spread over the
long corridor without any constraints. Blue points: With constraints, particles won’t be too far
away from its cluster center.

58

5.4 Conclusion

This section has centered on the particle filter approach to indoor localization. We

began by examining the data sources available, including maps and IMU sensor data. We dis-

cussed the state components for two different PDR methods, which include user position, drift,

weight, and stride length. Detailed implementation steps for prediction, update, and resampling

were addressed, highlighting the use of IMU sensor data to move particles during prediction

and the use of map data to adjust particle weights during updates. The resampling process is

executed at each iteration with normalization of particle weights. Finally, we explored multiple

extreme cases—environmental modeling errors, particle degeneracy, sample impoverishment,

and the long corridor issue—along with their respective solutions.

59

Chapter 6

Particle Filtering for Outdoor Localization

In this section, we will discuss the application of particle filtering in outdoor local-

ization scenarios. While the core structure of the particle filter remains similar to the indoor

case, additional sources of information are available, and unique challenges must be addressed.

We begin by examining the sensors available for outdoor localization, including the advantages

and disadvantages of GPS signals. We then detail the specific steps of the particle filter tailored

for outdoor use. Finally, we explore the extreme cases that require careful handling in outdoor

localization tasks.

6.1 Available Data

Localizing users outdoors presents more complex challenges compared to indoor sce-

narios. Along with map data, sensor inputs from IMU, GPS, and altimeters are available. This

subsection discusses the characteristics of these sensors, along with their benefits and limita-

tions.

60

6.1.1 Map Information

The use of map information in outdoor environments follows a similar approach to

that of indoor localization, such as employing the Bresenham algorithm for efficiency. However,

outdoor maps typically offer less detail and fewer constraints compared to indoor maps. The

lack of structural constraints like walls and landmarks means that drift errors from IMU sensors

cannot be accurately estimated using map data alone. Consequently, additional sensor inputs,

particularly GPS signals, are essential for achieving satisfactory localization results.

6.1.2 GPS Signal

As we discussed in subsection 2.1.6, GPS provides the user’s absolute location on

earth estimated from distances to multiple satellites. This technology is embedded in many

modern devices, including smartphones, and is especially useful outdoors where satellite sig-

nals are clear. However, GPS availability diminishes indoors or in locations like underground

tunnels where signals are blocked or highly reflected. Our system utilizes the iPhone’s Core Lo-

cation API 1 to obtain positions and their associated uncertainty radius. Actually, the positions

provided by Core Location are a combination of data from various sources, including GPS, cel-

lular, and Wi-Fi. Additionally, this API does not provide the raw GPS satellite signal. For the

sake of clarity and readability, we will refer to this localization data as ”GPS” throughout this

thesis. The GPS signal is crucial for the following usages:

1. Initial rough positioning for system initialization, especially when starting points and

1https://developer.apple.com/documentation/corelocation/getting_the_current_location_of_
a_device

61

https://developer.apple.com/documentation/corelocation/getting_the_current_location_of_a_device
https://developer.apple.com/documentation/corelocation/getting_the_current_location_of_a_device

walking directions are not easily identifiable by blind users outdoors.

2. Providing additional information in open spaces where map data is insufficient for particle

filter and IMU tracking.

3. Offering absolute positioning to complement the relative positioning from the particle

filter and IMU system, aiding in system correction when necessary.

However, GPS signals can exhibit large uncertainty radius, which may be insufficient

to navigate visually impaired users (Figure 6.1(a)). Furthermore, GPS reliability can vary, even

with a small reported uncertainty (Figure 6.1(b)). These characteristics necessitate cautious

treatment of GPS data.

(a) (b)

Figure 6.1: GPS Outage Example: The map serves as the background. The blue star represents
the actual user position, the blue dot indicates the GPS position, and the blue circle represents
GPS uncertainty from the smartphone API. (a) In this scenario, the GPS uncertainty is too large,
making it unsuitable for navigation. (b) Despite a small GPS uncertainty, the provided position
is far from the actual user position, making it unreliable for navigation.

62

6.1.3 IMU Sensor

As in the indoor scenario, IMU sensor data is crucial for the particle filter’s predic-

tion step. For outdoor localization, we focus on the RoNIN model, as previously detailed in

subsection 2.2.3.

6.1.4 Altimeter

Altimeter data from the iPhone is essential for applications involving navigation through

underground tunnels. It helps determine when to switch from overground to underground maps

based on altitude changes. However, pinpointing the exact moment for this switch is challeng-

ing due to the variability and bias inherent in altitude measurements. Further discussion on the

use of altimeter data will follow in section 9.4.

6.2 States Definition

The state definition for outdoor localization closely mirrors that of the indoor particle

filter. The following state vector includes the position, drift, and weight of each particle:

statei
t = [xi

t ,y
i
t ,d

i
t ,w

i
t] (6.1)

For more detailed information, please refer to Chapter 5, which covers indoor localization.

6.3 Implementation Details

The implementation details for the outdoor particle filter share similarities with those

in the indoor case, yet there are notable distinctions. For example, in the update step, the

63

availability of the GPS signal is a key factor, and its utilization is explored in this section. We

also introduce an algorithm to adapt to uncertainty values. Furthermore, this section delves into

additional extreme cases that are encountered in outdoor scenarios.

6.3.1 Prediction Step Details

The prediction step in the outdoor particle filter closely resembles the indoor ap-

proach. However, the parameters, such as the noise applied to the velocity input, require careful

adjustment to reflect the different environmental factors present outdoors.

6.3.2 Update Step Details

While we continue to remove particles that collide with walls, the update step in

the outdoor particle filter significantly differs from the indoor process, primarily due to the

inclusion of GPS data and the absence of room boundaries in outdoor settings, necessitating

careful integration.

6.3.2.1 Integrating GPS Signal

For implementation, the GPS data is modeled as a bi-variate Gaussian distribution.

Updating the weight of each particle involves calculating its probability density function (PDF)

from the GPS distribution, depending on the particle’s distance from the GPS position and the

GPS uncertainty. This process evaluates the alignment between the particle filter states and the

GPS sensor readings, adjusting particle weights accordingly. The position of the ith particle is

64

denoted by:

X i =

pi
x

pi
y

 (6.2)

The GPS position and uncertainty are represented by:

µ =

gx

gy

 (6.3)

Σg =

σ2
g 0

0 σ2
g

 (6.4)

The PDF for updating the weight of particle i is given by:

pi(x) =
1√

2π|Σg|
exp
(
−1

2
(X i−µ)T

Σ
−1
g (X i−µ)

)
(6.5)

It is important to note that the uncertainty value should not be taken directly from

the smartphone platform’s reported GPS uncertainty, as it may not be reliable. Instead, the

uncertainty in our bi-variate Gaussian model should be set based on our confidence in the GPS

sensor. A mechanism to determine a robust GPS uncertainty value, resistant to GPS errors, will

be introduced as follows.

6.3.2.2 GPS Uncertainty Value Adaptation

According to our practical observation, a known issue with GPS is the occasional

erroneous jump to a distant location, followed by a return to the correct position after several

timestamps. This behavior necessitates a distinction between two cases for handling GPS data:

65

First, when the GPS position is significantly incorrect, particles tend to be updated

with similar weights, as they are all distant from the GPS position. In such instances, no addi-

tional handling is required since the particles are largely unaffected by the distant, inaccurate

GPS signal.

Second, when the GPS position is only slightly off before returning to an accurate

state, particles coincidentally near the erroneous GPS location receive higher weights, skewing

the trajectory. This more subtle GPS error is the focus of this section and requires a refined

approach to ensure robustness.

The goal is to limit the influence of GPS on particle weights when GPS data is suspect.

We employ an adaptive algorithm to dynamically adjust the GPS uncertainty based on observed

behavior. This method operates under two assumptions:

1. GPS data may occasionally be incorrect but will return to an accurate value eventually.

2. The erroneous GPS position will not be extremely distant from all particles.

The proposed method limits GPS influence by defining a dynamic uncertainty value

at each timestamp. Rather than directly setting a distance threshold, we establish a particle

number threshold Nm, representing the number of particles beyond a certain distance D from

the GPS location. By controlling Nm, we indirectly set the influence range of the GPS signal.

Let N0 be the number of particles observed beyond the distance D. If N0 exceeds Nm, it suggests

GPS inaccuracy, and D is increased to maintain Nm particles within the influence range. In cases

where N0 is less than Nm, it implies that the GPS accuracy is within an acceptable range, and no

further adjustments are needed.

66

Algorithm 3 Estimate GPS Adaptive Uncertainty Value
1: Sort all particles by their distance from the GPS location in descending order.

2: Calculate N0, the count of particles at a distance greater than σ, the last known GPS uncer-

tainty radius set in the previous timestamp.

3: Identify the min(Nm,N0)-th particle in the sorted array. Let D be this particle’s distance to

the GPS location.

4: Update σ to equal D.

5: Apply weights to all particles using a Gaussian distribution with σ centered on the GPS

location.

6: Adjust Nm using an exponential filter: Nm← α ·N0 +(1−α) ·Nm.

As we can see in the Algorithm 3, the last step employs an exponential filter to update

Nm. α, in this context, determines how quickly the parameter Nm responds to changes in the

GPS signal behavior. In practice, it’s advisable to choose a small value for α. This adjustment

is key because Nm should not remain static; it must respond to the ongoing GPS signal behavior

at a moderate rate. The exponential filter functions as follows: After a GPS jump, a large N0

value will occur since current particles are aligned with the pre-jump GPS signal. There are two

possible outcomes:

1. If the GPS signal is incorrect but corrects itself quickly, Nm remains relatively stable due

to the small alpha value, limiting the impact of the erroneous N0. Consequently, the GPS

uncertainty D will be larger, reducing the influence on particles. Once the GPS returns to

accuracy, N0 will decrease, maintaining a stable Nm.

67

2. If the GPS signal is accurate after a jump, it’s necessary for particles to converge towards

the new GPS location. Nm will update continuously based on N0 until it matches N0,

indicating reduced GPS uncertainty and prompting particles to move towards the GPS

position.

6.3.3 Resampling Step Details

The resampling process in the outdoor particle filter shares similarities with its indoor

counterpart but also exhibits distinct differences. Notably, resampling does not occur at every

iteration due to the presence of open spaces where particles are less likely to encounter physical

barriers after a prediction step. Instead, resampling is conditional, based on the diversity of

particle weights as measured by the effective sample size (ESS) [53], defined as:

Et =
1

∑
N
i=1(w

i
t)2

(6.6)

The ESS equals the number of particles N when weights are uniformly distributed; its value

diminishes as weight diversity decrease. Resampling is performed when ESS falls below half

the number of particles.

6.3.4 Extreme Case Handling for Outdoor Scenario

Handling extreme cases in the outdoor environment follows a similar framework to

that of the indoor scenario, but with additional considerations for managing unreliable GPS

signals.

68

6.3.4.1 Handling Extreme GPS Signal

While the adaptive algorithm to adjust GPS uncertainty is effective, GPS can still be

consistently unreliable in certain areas, like the entrance of underground tunnels where signals

are partially blocked. A practical solution is to ignore GPS data in known areas of consistent

unreliability.

6.3.4.2 Open Space Problem

Localization in open spaces is particularly challenging due to the lack of map con-

straints. In such situations, the particle filter relies solely on IMU and GPS data. If GPS signals

are precise, particle spreading is limited, but with large GPS uncertainty, the particles may

spread everywhere until more constraints occur. This issue may be mitigated through user in-

terface design, such as prompting users to locate nearby landmarks to recalibrate particle posi-

tions. However, it is important to acknowledge that providing accurate localization based solely

on phone-based inertial sensors remains an open problem that necessitates further research.

6.4 Conclusion

This section has explored into the utilization of a particle filter model for outdoor

localization. We began by discussing critical data sources for outdoor environments, particu-

larly GPS, which facilitates rough initialization, aids in navigating open spaces, and provides

absolute positioning to complement the relative positions from the particle filter. We reviewed

the model’s states and three key steps, with special attention given to the integration and adap-

69

tive estimation of GPS uncertainty to address the challenge of GPS signal jumps. The concept

of effective sample size was introduced as a metric for assessing weight diversity and deter-

mining the need for resampling. Lastly, we examined two extreme cases in outdoor scenarios:

unreliable GPS signals and the challenge of open space navigation.

70

Chapter 7

Experiments on the WeAllWalk Dataset

In this chapter, we present the experimental results of our methods applied to the

WeAllWalk dataset. Initially, we explore various test and training modalities. Subsequently, we

evaluate the performance of the two-stage turn detector on the WeAllWalk dataset. Furthermore,

we introduce evaluation metrics for the reconstructed path using our methods. We assess the

results in two scenarios: the map-less case and the map-assisted cases. The outcomes are

visualized on map images for a thorough analysis.

7.1 Training/Testing Modalities

Given the varying walking characteristics between long cane users and dog guide

users [35], we approached the training and testing modalities separately for each group. The

following schemes were considered:

1. Train on Sighted (TS). In this scenario, the model is exclusively trained using data from

71

sighted individuals. Subsequently, the model’s performance is evaluated using data col-

lected from either long cane users (TS: LC) or dog guide users (TS: DG).

2. Train in the Same Community (TC). Three distinct communities are taken into account:

long cane users (TC: LC), dog guide users (TC: DG), and sighted users (TC: S). Within

each community, a Leave-One-Person-Out cross-validation policy [39] is employed. This

involves training and evaluating the model using data from different individuals within

the same community.

3. Train on All (TA). The training dataset comprises all available data from WeAllWalk,

and a Leave-One-Person-Out cross-validation policy is applied (TA:LC, TA:DG). For

instance, if a dog guide user is part of the test set, the model is trained using data from all

sighted participants, all long cane users, and all other dog guide users.

For the subsequent modality tests, we calculate the average of the relevant measure-

ments across both iPhones carried by the walkers, all paths, and all participants in the test set to

obtain evaluation results.

7.2 Turn Detection

To evaluate the performance of our proposed two-stage turn detector, we employ the

Longest Common Subsequence (LCS) algorithm. Specifically, we compare two sequences of

turns and identify the longest ordered matching subsequences. Subsequently, we compute the

overcounts (OC) and undercounts (UC). These counts are then normalized by dividing them by

the ground-truth number of turns to obtain the overcount rate and undercount rate. It’s worth

72

noting that the 90° turn detector is incapable of detecting 45° turns. Therefore, any potential

overcounts or undercounts attributed to this limitation are excluded from the analysis. The

results are presented in Table 7.1.

Error Type 45° TD-Error 90° TD-Error

UC rate % OC rate % UC rate % OC rate %

TS:LC 0.64 6.85 0 1.87

TS:DG 1.14 4.49 0.81 0.81

TC:S 0 0 0 0

TC:LC 1.64 3.98 0.54 0.26

TC:DG 1.11 4.30 0 0.79

TA:LC 0.37 3.51 0 0.79

TA:DG 1.15 5.39 0 0.83

Table 7.1: Turn detection (TD) error is reported for both our 45° turn detector and 90° turn
detector. Within each community of blind walkers (LC, DG), the UC rate and OC rate pair with
the smallest sum is highlighted in boldface.

As depicted in Table 7.1, our two-stage turn detector yields perfect results for sighted

walkers. Notably, the 90° turn detector exhibits lower error rates compared to the 45° turn

detector. Furthermore, among long cane users, the model trained using all available data (TA:

LC) outperforms the one trained solely with data from sighted individuals (TS: LC). For dog

guide users, the model trained with data from dog guide users (TC: DG) demonstrates the most

favorable results.

73

7.3 Path Reconstruction

In this section, we introduce three evaluation metrics that will be used to assess the

paths reconstructed by various algorithms, both in the map-less and map-assisted cases.

7.3.1 Evaluation Metrics

The WeAllWalk dataset provides timestamps t i
j corresponding to when walkers pass

each waypoint. To approximate the ground-truth trajectories, we assume that each user was

positioned in the middle of the corridor when passing each waypoint. We measure path recon-

struction errors by comparing the estimated positions Pi(t) of walkers at timestamp t with the

waypoint positions P̄i
j. It’s important to note that an alignment process [67] is necessary before

comparison due to the undefined reference frame of an estimated trajectory. To address this,

we employ Procrustes analysis [30] to determine the rotation and translation that minimizes the

squared distance between P̄i
j and Pi(t i

j).

Three metrics are used to evaluate the estimated trajectories. The first metric is the

Root-mean-square deviation (RMSE), with N representing the number of waypoints:

RMSEwp =

√
1
N ∑

j

∥∥∥P̄ j−Pi
j(t

i
j)
∥∥∥2

(7.1)

The estimated trajectory can be further sampled into Ni
e points Qi

m with an inter-

sample distance of 1 meter. A similar procedure is applied to the approximated ground truth

trajectory, which is generated by connecting consecutive waypoints. Consequently, the ground

truth can be represented by Ni
gt points Qi

n. Please note that the sampling algorithm was de-

veloped and implemented by another Ph.D. student in our Lab. With these two sets of points,

74

we can evaluate the model using the Haussdorff distance and average Haussdorff distance [62],

allowing us to comprehensively assess the goodness of the estimated trajectory.

Hauss = max
(

max
m

(
min

n

(
∥Qi

m−Qi
n∥
))

,max
n

(
min

m

(
∥Qi

m−Qi
n∥
)))

(7.2)

avHauss =
1
2

(√
1

Ne
∑
m

min
n

(
∥Qi

m−Qi
n∥2
)
+

√
1

Ngt
∑
n

min
m

(
∥Qi

m−Qi
n∥2
))

(7.3)

7.3.2 Map-less Path Reconstruction

In this section, we discuss the utilization of the following algorithms for reconstruct-

ing trajectories without prior knowledge of the building map (and therefore without employing

a particle filter), as depicted in Figure 7.1:

1. Azimuth/Steps (A/S): In this approach, azimuth data is employed to determine the user’s

orientation, and an LSTM-based step counter developed by another Ph.D. student in our

group is used for step counting. A PDR system with a fixed step length is applied to

reconstruct the paths.

2. 45° – 90° Turns/Steps (T/S): This algorithm is similar to the first one, with the distinction

that the user’s orientation is provided by the two-stage 45° or 90° turn detector.

3. RoNIN (R) – Fine-tuned RoNIN (FR): An introduction to RoNIN can be found in

subsection 2.2.3. To evaluate the WeAllWalk dataset using RoNIN, the sensor data are

upsampled from 25Hz to 200Hz through linear interpolation. I utilized the PyTorch im-

plementation of RoNIN based on ResNet18 [34], which is provided by the authors 1.

For fine-tuned RoNIN, the model is trained further using data from blind walkers in the
1https://github.com/Sachini/ronin

75

https://github.com/Sachini/ronin

WeAllWalk dataset. This process involves updating RoNIN’s weights with additional

training data from visually impaired individuals. However, the WeAllWalk dataset only

provides timestamps when users pass each waypoint, whereas RoNIN requires continu-

ous location and orientation data for training. To address this, I assumed that users walk

at a constant velocity within each corridor segment in the paths from WeAllWalk, and that

their orientations are parallel with the corridors. This assumption allowed me to generate

the required ground truth by interpolating locations between waypoints. The RoNIN net-

work was fine-tuned for two epochs with a batch size of 128, using the Adam optimizer

[37] with a learning rate set to 0.0001. Since RoNIN was originally trained on data from

sighted individuals, I only used data from blind walkers for fine-tuning.

Figure 7.1: A visualization of three path reconstruction algorithms used in the map-less case is
presented. The ground truth path taken by the walker is depicted in blue, while the estimated
paths are shown in black. Heel strikes are represented by dots, and turns are represented by
circles.

Results employing the three evaluation metrics are displayed in Table 7.2. According

to this table, the combination of a 90° turn detector along with an LSTM-based step counter

76

A/S 45° T/S 90° T/S R FR

TS:LC 9.43 14.68 4.90 9.17 14.48 4.70 9.03 13.90 4.63 5.43 8.56 2.93 – – –

TS:DG 5.81 8.97 3.30 5.64 8.67 2.82 4.94 7.50 2.75 5.66 8.55 2.84 – – –

TC:S 4.45 7.06 2.39 3.96 6.12 1.89 3.93 5.97 1.88 4.26 6.75 2.39 – – –

TC:LC 3.85 6.21 2.30 3.86 6.45 2.22 3.46 5.47 1.97 5.43 8.56 2.93 4.36 7.37 2.54

TC:DG 6.38 9.90 3.29 6.28 9.86 2.92 6.13 9.60 2.92 5.66 8.55 2.84 6.80 10.42 3.29

TA:LC 6.29 10.27 3.60 5.99 9.79 3.32 5.88 9.47 3.31 5.43 8.56 2.93 6.18 9.90 3.27

TA:DG 5.21 8.37 2.88 5.00 8.18 2.52 4.59 7.64 2.50 5.66 8.55 2.84 5.17 8.08 2.50

Table 7.2: Reconstruction errors (RMSEwp, Hauss, avHauss) of the path reconstruction algo-
rithms applicable in the map-less case are presented, with units in meters. The smallest error
values for each metric within each community of walkers (S, LC, DG) are displayed in boldface.

yields the best results across most modalities. Notably, for long cane users, models trained

on data from sighted individuals (TS: LC) produce poorer performance compared to models

trained on data from long cane users (TC: LC). Additionally, the performance of TC: LC is

comparable to the best modality for sighted walkers, reflecting impressive results. For dog

guide users, training models with all available data (TA: DG) consistently produces the best

results in most cases. It’s worth noting that fine-tuning RoNIN does not significantly improve

the path reconstruction performance.

7.3.3 Map-assisted Path Reconstruction

In this scenario, we employed three different algorithms in conjunction with particle

filter techniques, utilizing knowledge of the building maps. The selected algorithms include

Azimuth/Steps (A/S), RoNIN, and fine-tuned RoNIN. Notably, the Turns/Steps algorithm was

excluded as it demonstrated poor results in this context. We evaluated the performance of these

77

algorithms using three types of particle filters:

• PF: The standard particle filter.

• PF-MS: A particle filter enhanced with a mean-shift algorithm in the local maximum

mode (as described in subsection 4.4.1).

• PF-MS-G: A particle filter enhanced with a mean-shift algorithm in the global maximum

mode (as detailed in subsection 4.4.1).

The results of these evaluations are presented in Table 7.3.

A/S A/S PF-MS A/S PF-MS-G R PF R PF-MS R PF-MS-G FR PF FR PF-MS FR PF-MS-G

TS:LC 5.68 8.11 2.62 5.98 9.48 2.80 5.53 8.40 2.44 4.80 7.01 2.47 5.01 7.72 2.54 4.83 6.90 2.28 - - - - - - - - -

TS:DG 4.07 5.78 1.78 4.15 6.36 1.81 3.87 5.86 1.62 5.19 7.45 2.48 5.28 7.61 2.46 5.25 7.33 2.33 - - - - - - - - -

TC:S 3.35 4.93 1.60 3.35 5.01 1.48 3.32 4.80 1.38 3.10 4.46 1.46 3.29 4.92 1.45 2.96 4.24 1.19 - - - - - - - - -

TC:LC 2.78 3.95 1.36 2.86 4.35 1.28 2.73 3.49 1.08 5.05 7.44 2.54 5.17 7.98 2.51 4.95 7.37 2.30 3.54 5.43 1.89 3.62 6.15 1.86 3.50 5.24 1.66

TC:DG 5.77 8.12 2.46 6.09 8.50 2.61 6.08 8.39 2.35 5.56 7.98 2.74 6.08 8.65 2.92 5.47 7.64 2.39 6.10 8.68 3.03 6.19 9.62 2.97 6.16 8.59 2.77

TA:LC 3.30 4.71 1.62 3.46 6.21 1.68 3.20 5.06 1.44 5.36 7.69 2.54 5.55 8.38 2.62 5.40 7.69 2.40 4.53 6.53 2.32 4.79 7.29 2.42 4.51 6.55 2.13

TA:DG 4.19 6.10 1.99 4.62 6.44 2.03 3.80 5.13 1.54 5.09 7.56 2.48 5.29 8.13 2.46 5.23 7.62 2.40 4.28 6.01 2.16 4.32 6.64 2.14 3.97 5.56 1.81

Table 7.3: Reconstruction errors (RMSEwp, Hauss, avHauss) for map-assisted path reconstruc-
tion algorithms. Units are in meters. The smallest error values of each metric for each commu-
nity of walkers (S, LC, DG) are shown in boldface.

Table 7.3 illustrates that a combination of the azimuth/steps (A/S) algorithm and the

particle filter algorithm (PF-MS-G) yields the best results for the visually impaired community.

Notably, the constraint of wall impenetrability significantly reduces drifts and path reconstruc-

tion errors. Consistent with the prior cases discussed, models trained on data from sighted

individuals do not perform effectively on visually impaired individuals.

78

7.3.4 Results Visualization

Figure 7.2 presents visualizations of paths reconstructed by different algorithms in

both map-less and map-assisted scenarios. In Figure 7.2 (a)(b), both algorithms (A/S, FR)

produce trajectories with substantial drifts. The application of the particle filter successfully

eliminates these drifts and reconstructs paths accurately. In Figure 7.2 (c)(d), the estimated

path is either too short (A/S) or too long (FR). For the A/S case, the path can be correctly

reconstructed using PF-MS-G. However, PF-MS-G struggles to rectify trajectory errors in the

FR case. A similar scenario is observed in panel Figure 7.2 (e)(f), where PF-MS-G performs

well in the A/S case but poorly in the fine-tuned RoNIN case.

7.4 Conclusion

In this chapter, we began by discussing the training and testing modalities, addressing

them separately for long cane users and dog guide users. Three distinct schemes, denoted as

TS, TC, and TA, are considered. We evaluated the two-stage turn detection algorithm using the

Longest Common Subsequence (LCS) algorithm on the WeAllWalk dataset. This evaluation

involved computing overcount and undercount values based on the matching results.

Furthermore, we examined three different methods for reconstructing the user’s path

in the WeAllWalk dataset. These methods included Azimuth/Steps (A/S), T/S (Turns/Steps),

and RoNIN. We conducted evaluations in two cases: the map-less case and the map-assisted

case. Notably, if a map was available, we integrated A/S, RoNIN and fine-tuned RoNIN meth-

ods with map information using a particle filter.

79

(a) (b)

(c) (d)

(e) (f)

Figure 7.2: Path reconstruction examples from the TA: LC training/test modality. On the left:
Map-less scenarios using A/S and 90° T/S algorithms; Map-assisted scenarios using A/S-PF,
A/S-PF-MS, and A/S-PF-MS-G. On the right: Map-less scenario using the FR algorithm; Map-
assisted scenarios using FR-PF, FR-PF-MS, and FR-PF-MS-G. The legend of each figure dis-
plays the values of three metrics (RMSEwp, Hauss, avHauss). All measurements are in meters.

80

To assess the accuracy of path reconstruction, we compared the reconstructed paths

to the ground truth using three distinct metrics: Root Mean Square Error (RMSE), Haussdorff

distance, and average Haussdorff distance. The visualization results illustrated that the particle

filter effectively corrected the drift problem within the paths reconstructed by A/S or fine-tuned

RoNIN.

81

Chapter 8

Experiments with Indoor Navigation

In this chapter, we will explore the practical implementation of the indoor navigation

method previously discussed in Chapter 5. Navigating in the indoor scenario can be confusing

for those who visit the building for the first time, and this becomes more challenging for visually

impaired users due to the fact that they are not able to obtain visual information. Additionally,

though multiple researches has been presented nowadays, there still doesn’t exist a wide-spread

commercially available system that can be used by the blind people. To guide a visually im-

paired individual from one location to another indoors, we have developed a navigation app

for iOS. This application utilizes a particle filter and data from the Inertial Measurement Unit

(IMU) sensor to ascertain the user’s position and aid in navigation. We begin this chapter by

delving into an indoor navigation app, covering its localization algorithm, interface design, and

operational steps. Next, we examine the findings from a user study involving seven visually im-

paired participants, outlining the localization results of the app. Finally, we discuss the online

service that I developed, which is capable of performing map format conversions.

82

8.1 Indoor Navigation Application Introduction

Let’s first focus on a practical indoor navigation application designed specifically for

visually impaired individuals. This application empowers users to determine a route from their

current location to a selected destination, within indoor environments. It efficiently serves its

navigational function by solely relying on the Inertial Measurement Unit (IMU) sensor and map

data, thus allowing the phone to be conveniently carried in a pocket. We’ve already talked about

the sensor fusion algorithm in this app in Chapter 5.

The app uses an Apple Watch and a Bluetooth bone-conduction earphone for its user

interface. Users can control the app on their iPhone through the Apple Watch, using swipes

and crown rotations. Then, the app’s responses are sent to the Bluetooth earphone. This setup

allows users to clearly hear the app’s feedback through the bone-conduction earphone, even in

noisy environments.

8.2 Localization Model Details

One of the most critical aspects of the navigation application is accurately localizing

the user, as the design of navigation functions heavily depends on the accuracy of user local-

ization. However, despite assuming a known starting point and initial walking direction, the

localization task remains highly challenging due to the limited sensors available and the inher-

ent drift in the IMU sensor. In this section, we will begin by discussing the two Pedestrian

Dead Reckoning (PDR) methods utilized in the application, followed by an explanation of two

essential calibration methods. Additionally, we will provide insights into the map details, which

83

are essential as they are utilized by the particle filter to handle the drift associated with the two

PDR methods. Finally, we will discuss the various parameters used by the particle filter.

8.2.1 Utilizing IMU Sensor Data: Two PDR methods

The application utilizes two Pedestrian Dead Reckoning (PDR) methods: Azimuth/Steps

and RoNIN. Although only one method’s results are presented to the user, the concurrent oper-

ation of both methods offers distinct advantages. Firstly, it serves as a fail-safe mechanism; in

the rare event of one algorithm malfunctioning, the other can maintain operational continuity.

Such an occurrence was observed only once in our experiments. Secondly, running both meth-

ods concurrently enables real-time comparison of their performance under varying conditions,

as visually depicted in Figure 8.1 (b).

8.2.2 Calibration Methods

To ensure the correct functioning of the application, two distinct types of calibration

are essential. These calibrations are required to determine the stride length or scalar for the

Pedestrian Dead Reckoning (PDR) methods and to align the reconstructed path with the correct

world reference frame. Let’s discuss each calibration process in detail:

8.2.2.1 Stride Length Calibration

For the Azimuth/Steps method, prior knowledge of the user’s stride length is crucial

and must be obtained before conducting any experiments. Although we have access to the

WeAllWalk dataset, which allows us to estimate an average stride length and use it as a constant,

84

(a) (b)

Figure 8.1: The application’s debug interface: (a) Initial Interface - Displaying trail and target
information, buttons for modifying display modes, settings for calibrated step length and RoNIN
scaler, as well as options for enabling step beeps. It comprises two visualization screens with
distinct scales, along with controls for app initiation/termination and various debugging func-
tions. (b) Interface After Startup - Depicting two trajectories: one generated by the Particle filter
+ RoNIN (yellow line, yellow particles), and the other by the Particle filter + Azimuth/Steps (red
line, blue particles).

85

practical experimentation has revealed that this approach lacks the required accuracy. Hence,

we introduce a calibration phase for each participant. During this phase, participants traverse a

known distance, and their stride counts are measured. Subsequently, the user’s stride length can

be easily calculated by dividing the known distance by the total stride counts.

Similar considerations apply to RoNIN. This model operates differently for various

users with distinct scalars. Consequently, calibration of the RoNIN scalar is also incorporated

into this process. Specifically, the known length is divided by the RoNIN-estimated length to

determine the scalar value. During experiments, this scalar is used to adjust the RoNIN velocity.

It is worth noting that the stride length obtained through this calibration may still not

yield optimal results. Visually impaired individuals may exhibit different walking patterns dur-

ing experiments compared to the calibration path, as the latter is a narrow straight line, while

experiment paths involve more complex features, including turns, open spaces, and landmarks.

Therefore, additional adjustments are necessary. As previously mentioned in Chapter 5, mul-

tiple stride lengths are generated by introducing Gaussian noise to the calibrated stride length

value. The particle filter then selects the appropriate stride length based on the map information.

8.2.2.2 Reference Frame Calibration

While the above-mentioned calibration procedure is time-consuming, it is only re-

quired once for each user across multiple trajectories. However, another vital calibration, known

as reference frame calibration, is necessary for each trajectory. This is attributed to the utiliza-

tion of two PDR methods, resulting in reconstructed trails within a frame in which the z-axis

points downward and the orientation of the xy-axis is unknown. Aligning this reference frame

86

with the world frame is essential to accurately determine the user’s position on the map. To

achieve this alignment, we follow a specific procedure:

First, we collect a short traversed trajectory by instructing the user to walk forward

for six steps in a predefined initial direction. We then reconstruct the path based on these initial

steps and compare it to the known initial segment of the ground truth path to determine the

angle required to align the two aforementioned frames: the frame of the reconstructed path and

the world reference frame, which is used throughout the entire trail after calibration.

8.2.3 Map Information

Following calibration, the map serves as an strong constraint of information to cor-

rect errors in the navigation process. The map, initially provided in geojson format, has been

converted into a suitable format using the online service mentioned in section 8.5. For our ex-

perimental purposes, we consider three maps, which originate from different locations within

our campus: Engineering 2, Floor 3; Baskin Engineering, Floor 2; and the Physical Science

Building, Floor 2. Their visualizations are depicted below:

Figure 8.2: Map visualization. Engineering 2, Floor 3

87

(a) (b)

Figure 8.3: Map visualization. (a) Baskin Engineering, Floor 2 (b) Physical Science Building,
Floor 2

8.2.4 Sensor Fusion Algorithm

To leverage the map and enhance navigation accuracy, we employ the sensor fusion

algorithm as previously discussed in the Chapter 5. In this section, we focus on essential pa-

rameters specific to the indoor scenario, omitting details covered elsewhere.

In our setup, we utilize 500 particles to balance computational speed and tracking

accuracy effectively. During initialization, all particles start from a known location. The drift

angle for each particle is sampled from a Gaussian distribution with σ = 30◦ and a zero mean.

The step lengths are sampled from a Gaussian distribution with a σ value of 6 cm. It is important

to note that all particles have equal initial weights, each being 1/500.

Upon detecting every step, we update the drift angle ∆θ,i of each particle using Gaus-

88

sian noise with σ = 1◦. Additionally, for particle i with stride length si, Gaussian noises are

added to the velocity magnitude and velocity direction, with σ values of σ = 0.5 · si and σ = 1◦,

respectively. During the resampling step that happens every step, a new particle is sampled

using the available ”healthy” particle, with a Gaussian noise of σ = 10 cm added to the position

of the new particle. Finally, we compute the weighted mean as the resulting position.

It is crucial to emphasize that when employing PDR, the use of a particle filter to

estimate the stride length is paramount. Otherwise, the calibrated stride length may not provide

the required accuracy, particularly when the user needs to identify a turn between two walls,

such as a T-shaped intersection. A failure case, where the particle filter is not used to estimate

stride length, is illustrated in Figure 8.7(b), and it will be discussed in greater detail later.

8.3 User Interface Design

Despite users keeping their phone in their pocket, they still need notifications and

guidance from the application. The app communicates with the user through a Bluetooth bone-

conduction earphone and an Apple Watch, which provides haptic feedback via vibrations when

crucial notifications, such as upcoming turns, are available. This feature proves especially valu-

able in noisy environments where information from the Bluetooth bone-conduction earphone

may be challenging to distinguish.

Furthermore, users need to interact with the application. They may want to select a

route, start or end the application, or revisit a previous notification in case they missed it. All

of these interactions can be managed through the Apple Watch user interface. The following

89

gestures are available for the watch:

Select Route: Prior to starting a trail, participants are prompted to choose a specific

route from a list. They can navigate the path list by swiping left or right in both directions. It is

noteworthy that the path names are converted to participant via the Bluetooth bone-conduction

earphone.

Start/End the Trail: Participants can initiate or terminate the entire trail process by

rotating the watch’s crown. Activation occurs when the user rotates the crown for two full

rounds, after which they will hear a ’ding’ sound from the watch. Depending on the app’s

status, they will either hear ”Please start walking” if they are at the beginning stage of the app

or nothing if they are ending the app tracking.

Information During the Trail: While on a trail, participants can swipe right to re-

play the last notification or swipe left to receive remaining route information from their current

location to the destination.

Additionally, the app itself, although invisible and undetectable to users as it remains

in their pocket, provides an interface on the screen for debugging purposes. While users walk,

the app’s content is transmitted to another iPhone for real-time monitoring, which is vital for

assessing the model’s condition (Figure 8.1 (b)). The app interface is explained in the caption

of Figure 8.1.

90

8.4 Experimental Results

In this section, we start by offering information on the experimental procedure and a

user study. Subsequently, we concentrate on the results of the experiments, with a primary focus

on the localization outcomes achieved through the two methods, Azimuth/Steps and RoNIN. We

will discuss their respective performance, considering both positive and negative examples.

8.4.1 Experimental Procedure

The experimental procedure for the application is outlined as follows:

1. The experimenter initiates the calibration process by clicking the calibration button within

the app.

2. The user performs a one-time stride length calibration by walking a certain length of a

straight line. During this process, the necessary scalar values are automatically calculated

and recorded.

3. After calibration, the user is directed to the starting point of a trail. They can position

the phone anywhere on their body while wearing an Apple Watch and a bone-conduction

earphone.

4. Using the Apple Watch, the user selects their desired destination.

5. The user starts by walking straight for six steps, after which they receive essential no-

tifications via the Apple Watch to guide them to their destination. Instructions may be

repeated via the Apple Watch if needed.

91

6. Once the user reaches the destination, they can rotate the crown on the Apple Watch to

stop the entire process.

8.4.2 User Study

All participants in this study are blind, and their information is presented in Table 8.1.

Out of the seven users, four are female, and three are male. Additionally, two users prefer dogs,

while five use canes. Their ages range from 53 to 76, with an average age of 70. The calibrated

step length and RoNIN multiplier, along with the step length estimated by the particle filter, are

also visible in this table.

Participant Gender Age Blindness Onset Mobility Aid Step Length (Calibration) Step Length (Final) RoNIN Multiplier Preferred Units

P1 F 73 L Dog 48 – 0.96 Steps

P2 M 69 B Cane 51 – 1.08 Feet

P3 M 53 B Cane 54 – 1.14 Feet

P4 F 69 B Cane 51 44 1.0 Feet

P5 M 75 L Cane 44 41 1.21 Meters

P6 F 76 L Cane 40 40 1.11 Steps

P7 F 72 L Dog 63 58 1.08 Feet

Table 8.1: Participant Characteristics: ’B’ denotes blindness since birth, ’L’ indicates blindness
later in life. The step length (Calibration) represents the estimated step length value obtained
after the calibration phase for each user. The step length (Final) represents the average estimated
step length value derived from particle data over three trials. It is worth noting that the Particle
Filter estimates the step length as a state starting from participant P4. The preferred units
indicate the type of units the user wishes to hear in the notifications.

8.4.3 Experiment Details and Localization Results

Each user’s total experiment consists of four trials. To ensure user familiarity with

the interface before the actual experiment, we include a practice trail for each participant. This

92

practice trail is conducted within the E2 building of our campus, which features multiple turns

and landmarks, including benches along the route (Figure 8.4).

Figure 8.4: A practice trail within the E2 building from participant 2. Red line: Particle filter +
RoNIN, Blue line: Particle filter + Azimuth/Steps. Start Waypoint: Square, End Waypoint: Star

After completing the practice trail, we guide the user to the Jack Baskin Engineering

building, where three trajectories are traversed consecutively by all participants: R1W, R2W,

and R3W. Visualization of these trails can be found in Figure 8.7, Figure 8.8, and Figure 8.9.

Each trajectory’s endpoint serves as the starting point for the subsequent trajectory. Please note

that we did not test the physical science building because most participants ran out of energy

after completing the practice trail and the three trials on the Jack Baskin Engineering building.

The comprehensive details regarding all three trajectories are as follows:

Overall, the system functions efficiently. In Figure 8.5, one can see that the drift

error within either RoNIN or Azimuth/Steps gets removed significantly by the sensor fusion

algorithm. With occasional intervention from the experimenter, the app successfully navigates

users from the start point to their destination, even under challenging conditions.

93

P1 P2 P3 P4 P5 P6 P7 Length

R1W 261 (R,E) 355 (R) 297 (R) 216 271 223 206 123 m

R2W 304 (E) 209 134 163 211 262 171 97 m

R3W 125 170 98 127 144 139 330 72 m

Table 8.2: This table summarizes the results of the Wayfinding routes experiment. Completion
times for every route is reported in seconds. If a participant missed some turns or took a wrong
turn but completed the route with app guidance, the table cell will be displayed with a gray
background. Here, ’R’ indicates that a system reset was required, and ’E’ indicates that, while
the route was completed, verbal instructions from the experimenter were needed during the trail.

(a) (b)

Figure 8.5: Reconstructed paths from different modalities. Red line: Particle filter + RoNIN.
Blue line: Particle filter + Azimuth/Steps. Cyan line: Azimuth/Steps. Orange line: RoNIN.
Start Waypoint: Square, End Waypoint: Star. (a) Trail R2W for Participant P2. (b) Trail R3W
for Participant P2.

94

8.4.4 Challenges and Issues: Discussion

Now, let’s examine three scenarios in which the application exhibits less than perfect

performance. These situations include: ”Switching operation,” where manual switching from

Azimuth/Steps to RoNIN model is necessary; ”Extra instructions,” where the experimenter pro-

vides additional instructions alongside the app’s guidance; and ”Missing turns,” in which case

the user misses a turn but recovers to the correct one under the instruction of the app.

8.4.4.1 Switching Operation

As indicated in Table 8.1, there are situations where a reset or switch is necessary,

marked as ’R.’ In the case of P1, we had to switch to RoNIN after the first turn. This was due to

changes in the user’s walking pattern near a staircase, resulting in a significantly shorter stride

length compared to the constant stride length obtained during the calibration phase. Conse-

quently, when the user made a turn, Azimuth/Steps underestimated the user’s trajectory, result-

ing in all particles colliding with the wall. The trajectory is depicted in Figure 8.7 (b). Thus, the

transition to RoNIN became necessary.

For Participants P2 (Trail R1W) and P3 (Trail R1W), a reset was required for sim-

ilar reasons. The constant stride length didn’t meet the necessary accuracy needed for indoor

navigation. Therefore, after P3, the stride length was estimated by the particle filter, and there

was no longer a requirement to switch from P4 to P7. However, it’s worth noting that while we

chose to switch to RoNIN in certain conditions, RoNIN isn’t always guaranteed to provide ac-

curate results. For example, in Figure 8.10 (a), RoNIN fails to track the user’s position correctly

during the first trail of P2, R1W. This observation suggests that running both PDR methods in

95

parallel remains advantageous in the current state of the application.

8.4.4.2 Extra Instructions

In rare cases, we found it necessary to provide extra instructions to the user. This

occurred twice during our experiments:

The first instance involved P1, who was accompanied by a guide dog. During the

experiment, P1 encountered difficulty in an alcove to the right (Figure 8.6 (a)). While she might

have eventually determined the correct direction, we chose to provide her with instructions,

leading the app to successfully guide her to the destination after the intervention.

The second case requiring intervention also involved P1 during the R2W trajectory.

Initially, the instruction to turn right from the user to the guide dog was delayed because the

user had already passed the intersection. Subsequently, when the user correctly turned around

with app assistance and attempted to turn left following the instruction, the guide dog refused

and continued walking straight toward the exit door. Thus, our intervention was necessary to

prevent them from leaving the building. The dog’s hesitation may have been due to nervousness

related to the trails, as explained by P1.

8.4.4.3 Missing Turns

In the Table 8.2, cells shown in gray indicate instances where participants success-

fully completed the trajectories despite missing a turn. The app’s notifications guided users

back on track after the missing event. It’s important to note that these cases may not be consid-

ered failures since participants were able to complete the entire trajectory with app assistance,

96

(a) (b)

Figure 8.6: (a) Participant P1 got stuck in the alcove on the right during Trail R1W of the
experiment. (b) An intervention was provided to prevent the user from exiting the building
during Trail R2W of the experiment.

without requiring any external help. Examples of these missing turn cases can be observed in

Figure 8.7(d), Figure 8.8(c)(d), and Figure 8.9(c)(d).

The occurrence of missing turns can be attributed to various factors. For instance,

participants might have been distracted by others nearby (P5 in R1W, Figure 8.10(b)) or engaged

in conversation when notifications were issued (P2 in R2W, Figure 8.8(c)). Additionally, in

large open spaces, users may struggle to identify intersections without adjacent walls (P6 in

R3W, Figure 8.9(c)). The app’s notifications may also have been slightly delayed, leading

to a missed turn due to localization module undershooting. In our experiments (P6 in R2W,

Figure 8.10(c)), the app promptly instructed the user to turn around, successfully guiding them

through the turn.

An interesting case of a missed turn occurred when P1 (in R2W, Figure 8.8(d)) gave

instructions received from the app to the guide dog, but the dog refused to obey and continued

walking straight. Another factor contributing to missed turns is the user’s walking speed. For

instance, P7 missed a turn in R1W (Figure 8.7(d)) and R2W (Figure 8.10(d)) and multiple turns

in R3W because of her fast pace with a guide dog. By the time notifications were completed

97

and delivered, the user had already passed the junction, resulting in a missed turn event. No-

tably, P7 also entered a small room through an open door at the beginning of one trail (R3W,

Figure 8.9(d)) and missed the final turn of the same trajectory multiple times. Despite these

outliers, the localization module effectively tracked the user, ensuring they reached the correct

destination, highlighting its robustness.

8.5 Online GeoJSON File Processing Service

In Chapter 5, we established that while a GeoJSON file holds essential map data, it is

not immediately usable by our model. Specifically, a parser script is required to extract essential

details, including walls, landmarks, and room information, from the GeoJSON data. To render

the map onto a 2D matrix for algorithmic application, we employ the Bresenham algorithm. To

facilitate this, several Python3 scripts have been crafted. While these scripts are fully functional,

they present a challenge: processing each new building’s GeoJSON file is boring, demanding

custom adjustments for every file, and manual integration of the resulting map into the app. To

streamline this process, I introduced an online service. This service provides a user-friendly

front-end for interaction and a back-end that handles file processing and serves APIs, details

of which will be presented in the subsequent section. Although this service is straightforward,

it significantly automates the inclusion of new buildings and accelerates the expansion of our

app’s navigational capabilities.

98

1
2

3

4

5

10

11

7

8

9

6

12

meters

m
et
er
s

(a) (b)

(c) (d)

Figure 8.7: Route R1W. (a): Building floor plan with key elements highlighted: Red circles
represent waypoints, Gray lines indicate traversable graph edges, Dark gray line shows the
shortest path from the start waypoint (Square) to the end waypoint (Star). Landmarks are shown
in Blue. (b)–(d): Recorded paths with Blue lines representing Azimuth/Step + Particle Filter
and Red lines indicating RoNIN + Particle Filter. (b): Path for P1. (c): Path for P4. (d): Path
for P7.

99

5

7

8

9

10

11

12

6

4

3

2
1

meters

m
et
er
s

(a) (b)

(c) (d)

Figure 8.8: Route R2W. (a): Building floor plan with important features marked: Red circles
denote waypoints, Gray lines represent traversable graph edges, Square indicates the start way-
point, Star signifies the end waypoint, Dark gray line connects the start and end waypoints.
Landmarks shown in Blue. (b)–(d): Recorded paths with Blue lines showing Azimuth/Step +
Particle Filter and Red lines indicating RoNIN + Particle Filter. (b): Path for P5. (c): Path for
P2. (d): Path for P1.

100

4

5

10

1
2

3
9

8

76

11

12

meters

m
et
er
s

(a) (b)

(c) (d)

Figure 8.9: Route R3W. (a): Building floor plan highlighting significant elements: Red cir-
cles denote waypoints, Gray lines represent traversable graph edges, Square indicates the start
waypoint, Star signifies the end waypoint, Dark gray line connects the start and end waypoints.
Landmarks are shown in blue. (b)–(d): Recorded paths with Blue lines indicating Azimuth/Step
+ Particle Filter and Red lines indicating RoNIN + Particle Filter. (b): Path for P3. (c): Path for
P6. (d): Path for P7. Note that P7 mistakenly enters a room via an open door at the early stage
of the trail.

101

(a) (b)

(c) (d)

Figure 8.10: Localization results. Start Waypoint: Square, End Waypoint: Star. Red line:
Particle filter + RoNIN, Blue line: Particle filter + Azimuth/Steps. (a) Route R1W, path for P1.
(b) Route R1W, path for P5. (c) Route R2W, path for P6. (d) Route R2W, path for P7.

102

8.5.1 Front-end Website Introduction

The system’s user interface is accessible via a website, developed using the widely-

adopted VUE2 framework 1 and enhanced with the bootstrap-vue2 package for an improved

visual experience. It includes several key sections:

(a) (b)

(c) (d)

Figure 8.11: (a) Welcome Page. (b) Server File Management Interface for Remote File Config-
uration. (c) User Authentication Panel. (d) File Upload Page with Blue Progress Indicator.

1. Welcome Page: By navigating to http://geojsonservice.online/ in a web browser, users

are greeted by the welcome page (Figure 8.11 (a)).

2. Login Panel: To ensure security and prevent unauthorized access, a login feature restricts

file submission to authenticated users only. Credentials are required for login, after which
1https://v2.vuejs.org/
2https://bootstrap-vue.org/

103

https://v2.vuejs.org/
https://bootstrap-vue.org/

Figure 8.12: Data Visualization Page Displaying Processed Map Data Graphically.

the user receives a temporary bearer authorization key. This key must accompany all

subsequent requests to the backend, thereby activating the service (Figure 8.11 (c)).

3. Upload Page: After logging in, users are redirected to the upload page. Users have the

option to either select a GeoJSON file for upload via a dialog box or drag and drop the file

directly onto the page. Once the upload process begins, the front-end continuously checks

the backend’s processing status. The completion time for processing varies, typically

ranging from one to two minutes on a standard AWS EC2 t2.micro instance3, but may

decrease significantly with more powerful servers. A progress bar informs users of the

upload status, enhancing the user experience (Figure 8.11 (d)). After processing, users

can immediately review the parsed results and landmark positions directly on the site to

confirm correct file handling by the backend (Figure 8.12).

4. Control Panel: The backend hosts the processed files as static assets, which can be

3https://aws.amazon.com/ec2/instance-types/t2/?nc1=h_ls

104

https://aws.amazon.com/ec2/instance-types/t2/?nc1=h_ls

managed through the front-end interface. Users can configure which GeoJSON files are

served by the server, view processed map images, or delete files as needed (Figure 8.11

(b)).

8.5.2 Back-end API Introduction

The backend operates on an AWS EC2 Ubuntu instance and utilizes Flask 4 in con-

junction with Nginx5 and uWSGI6 to deliver the APIs discussed earlier. In this setup, uWSGI

is employed to run a Flask application, while Nginx takes on the role of managing incoming

requests from the frontend and serving static files. The APIs provided are as follows:

1. Login API: This API verifies the user’s username and password against a server-stored

file containing all registered accounts. Due to the experimental nature of the project

and potential security issues, a registration API has not been implemented at this stage.

Currently, only individuals with server access are able to modify the account file.

2. Process API: This API takes GeoJSON files uploaded from the front-end and processes

them asynchronously into multiple required formats. Upon completion, the processed

files are stored in a directory which Nginx serves as static content.

3. Status API: This API verifies the presence of specific files and returns a boolean value

to indicate their existence. It is employed to assess the current task’s status by checking

for the presence or absence of the resulting file. While the current system does not use

4https://flask.palletsprojects.com/en/3.0.x/
5https://www.nginx.com/
6https://uwsgi-docs.readthedocs.io/en/latest/

105

https://flask.palletsprojects.com/en/3.0.x/
https://www.nginx.com/
https://uwsgi-docs.readthedocs.io/en/latest/

a database for file management since the number of maps to be converted are limited,

incorporating a database such as MySQL or MongoDB could be a future enhancement.

4. File List API: This API provides a list of all static map files available for download by

our application.

5. Delete API: Through this API, users can delete specific map files from the server, en-

abling the remote management of files via the front-end.

8.6 Conclusion

This chapter primarily centers on the indoor navigation application. We begin by

delving into the details of our localization model, with a particular emphasis on two crucial cal-

ibration processes: one for estimating step length and the other for reference frame calibration.

These processes play a crucial role in ensuring the app’s robust functionality.

Furthermore, we provide details about the map used in our study, coupled with the

sensor fusion algorithm, grounded in the particle filter methodology. We also highlight the

user-friendly design of our interface, tailored for Apple Watch.

Subsequently, we provide a brief overview of the experimental setup, including ex-

perimental procedure, participant information, and presenting detailed results. Our primary

focus remains on the localization aspect. We carefully examine the outcomes of the application

evaluation, analyzing both successful cases and failure cases.

Lastly, we introduce a straightforward and user-friendly online service that enables

the seamless conversion of geojson files into the format needed by the navigation app.

106

Chapter 9

Experiments with Transit Hub Navigation

Navigating an unfamiliar transit hub can be a challenging and stressful task, particu-

larly for individuals with visual impairments who lack access to essential wayfinding informa-

tion through visual signage. In this chapter, we focus on the Transit Hub Navigation experiment,

conducted through the utilization of an iOS application named RouteNav. We start by introduc-

ing various aspects of the application, namely, we will cover the localization model, fail-safe

mechanism, and user interface design. Then, we present the outcomes of our experiments, with

a primary focus on the localization findings, along with the discussion of the results.

9.1 Outdoor Navigation Application Introduction

RouteNav is designed to assist visually impaired individuals in navigating a transit

hub that includes both overground and underground environments. This application enables

users to begin their journeys from pre-defined starting points and guides them to destinations

they have chosen in advance. The localization model incorporates multiple sensor components,

107

including Inertial Measurement Unit (IMU) sensors and GPS. These sensor data are fused with

map data using a particle filter algorithm, as discussed in Chapter 6, to provide localization

services.

The user interface has been carefully designed to assist users in navigating through

challenging areas. To use the app, the user has the option to either hold the phone or place

it in their pocket. Navigation instructions are delivered through a bone-conduction Bluetooth

earphone, while interaction with the app is facilitated through VoiceOver1 by interacting with

buttons on the screen.

9.2 Localization Model Details

In this section, we focus on the details of the localization model. We begin by in-

troducing the Palo Alto train station. Following that, we evaluate the performance when using

only IMU or GPS data, and examine the map employed by our application. Lastly, we delve

into the parameters of the sensor fusion algorithm, and talk about a fail-safe mechanism.

9.2.1 Transit Hub Information

In this experiment, our primary aim is to evaluate the performance of the application

within the Palo Alto train station. The Palo Alto train station serves as a transportation hub,

enabling a smooth transition between buses and trains. Notably, it features an underground

tunnel that must be traversed by users seeking access to specific train boarding areas. The map

1https://developer.apple.com/documentation/accessibility/supporting_voiceover_in_your_
app

108

https://developer.apple.com/documentation/accessibility/supporting_voiceover_in_your_app
https://developer.apple.com/documentation/accessibility/supporting_voiceover_in_your_app

of the Palo Alto train station is depicted in Figure 9.1.

Figure 9.1: Map of the Palo Alto train station, highlighting the positions of bus stops, railway
platforms, underground passageway tunnels, and the transit center.

9.2.2 Utilizing IMU Sensor Data

We first focus on the application of the RoNIN model as a key method for estimating

the user’s velocity and reconstructing their paths. Here we present two examples that highlight

issues encountered with RoNIN during our experiments, as depicted in Figure 9.2. As we can

see, in Figure 9.2 (a), evident drift is observed in the reconstructed path. In Figure 9.2 (b),

the RoNIN velocity magnitude significantly deviates from the correct value, being excessively

large. Additionally, these two trajectories in Figure 9.2 (a) and Figure 9.2 (b) demonstrate

variations in RoNIN’s performance among different blind users.

109

(a) (b)

Figure 9.2: Two RoNIN trajectories collected from different users on an overground map. White
lines represent the paths traversed by the users, white circles represent the destinations, while
the black lines represent the RoNIN reconstructed paths. (a) Bus2NB for participant 5. (b)
Bus2NB for participant 1.

9.2.3 Map Information

Since IMU sensor data alone is insufficient, map information is required to comple-

ment it. The following two figures, presented in Figure 9.3, depict the maps used in our system

after post-processing: the overground map and the underground map. Various assumptions are

associated with the different colored areas on these maps:

1. Walls: These walls are impassable barriers, and we do not expect users to traverse

them.

2. Walkable Zones: Users are expected to walk within these areas.

3. No-go Zones: Users are discouraged from entering these areas, as they may be

hazardous (e.g., railway tracks) or inaccessible (e.g., fenced zones).

110

4. GPS-denied Zones: These areas consistently exhibit significant GPS errors or un-

reliability. Consequently, we ignore GPS data when users are within these zones. For instance,

in the overground map, this includes the area near the underground tunnel where the GPS signal

is partially blocked. In the underground map, we do not use GPS since it’s unavailable when

users are within the underground tunnel.

(a) (b)

Figure 9.3: Maps utilized by the Palo Alto train station navigation application. (a) Overground
map, employed when users navigate above ground. (b) Underground map, utilized when users
navigate within the underground tunnel. In both maps, distinct areas are differentiated by colors:
blue lines represent impassable walls, green areas denote walkable zones, red areas signify no-
go zones, and yellow areas indicate GPS-denied zones. Please note that the yellow areas are
also walkable.

9.2.4 GPS Usage

In addition to map information, GPS, which is available outdoors, can also serve

as a valuable source of data. Here, we initially focus on cases where only GPS is utilized.

Unfortunately, as depicted in Figure 9.4 (a), GPS data can exhibit significant inaccuracies when

the user walks underground. Additionally, when the user walks in the Southbound platform, the

GPS has erroneous outcomes, despite relatively small uncertainties (Figure 9.4 (a)(b)).

111

(a) (b)

Figure 9.4: GPS outage examples. Blue line - GPS (uncertainty visualized by color), White
line - Ground truth path, White Circle - Destination. (a) Participant S1, trail: Northbound to
Southbound. (b) Participant S5, trail: Southbound to Bus Stop.

While relying solely on GPS or IMU data may not yield accurate results, the fusion

of these signals with map data leads to improved outcomes. Now, let’s delve into further details

about the sensor fusion algorithm used.

9.2.5 Sensor Fusion Algorithm

At this stage, we employ a particle filter-based sensor fusion algorithm to merge data

from the IMU sensor and GPS. The complete pipeline is illustrated in Figure 9.5. It is worth

noting that the particle filter employed in this context shares similarities with the one used in the

indoor navigation app mentioned in section 8.1. Specific differences in parameters are reported

as follows: We utilize a total of 750 particles, each initialized with equal weights (1/750). The

particle filter’s prediction step operates at a frequency of 25 times per second. During each

iteration, the drift angle ∆θ,i of each particle is updated by Gaussian noise with a sigma value

112

of σ = 0.2◦. Notably, this value is smaller than that used in the indoor case, owing to the higher

prediction frequency. Additionally, we introduce Gaussian noise to the velocity from RoNIN,

with σ = 4.3 meters added to the magnitude and σ = 4◦ added to the velocity direction. In the

resampling step, each resampled particle is perturbed by Gaussian noise with σ = 2.5 meters.

These larger noise values signify the more challenging outdoor environment compared to the

indoor scenario.

Figure 9.5: The sensor fusion model pipeline. RoNIN is employed to process the IMU sensor
data collected from the iPhone in the user’s pocket. Its output velocity is then used as an input
to particle filtering, which incorporates the map information. For each particle, its weights are
determined by the map and the GPS distribution. The weighted mean of a cluster of particles is
used as the final output of the model.

9.2.6 Fail-safe Mechanism

While the entire system is efficient, it can still encounter failures in extreme cases.

To address this, a fail-safe mechanism has been developed. Specifically, when the user exits

a tunnel and the provided GPS position significantly deviates from the current particle filter

prediction, if the GPS uncertainty remains small, we reset all particles to the GPS position.

113

Although this mechanism is effective in resolving errors within the particle filter as one can see

in Figure 9.13 (a), it comes with some risks, especially when GPS uncertainty is unreliable.

This problematic situation was observed in the experiment shown in Figure 9.13 (b), which will

be discussed in more detail later. Hence, it is advisable to be cautious when employing this

mechanism.

9.3 User Interface Design

Another crucial aspect of this application is the user interface. Unlike the previously

mentioned indoor navigation app, we do not rely on an Apple Watch interface in this project.

This project is earlier than the aforementioned one, and the use of an Apple Watch was not

considered at this stage. Therefore, the primary means of user interaction with the app is through

VoiceOver, accompanied by necessary feedback mechanisms such as vibration and sound when

buttons on the screen are pressed. In this section, we will first introduce the user interface in

general, then focus on the Route Compass, a highly valuable feature appreciated by multiple

users.

9.3.1 User Interface

In this section, we will discuss the user interface design of RouteNav (see Figure 9.7

(b)). It is important to note that this is a collaborative project, and specific details related to the

contributions of other collaborators have been omitted. We encourage the reader to refer to [56]

for more information on their work.

114

Considering the limited accuracy of the localization model, we have taken great care

in designing the user interface for RouteNav. To creatively illustrate spatial representation and

traversal routes, we have introduced an innovative method using tiles, as shown in Figure 9.6.

A tile is defined as an area of polygonal space, with a size that is at least equal to the expected

localization resolution. The traveler’s location, marked at each timestamp, is assigned to a

specific tile (or an out-of-tile state), which contains detailed information such as highly localized

features and landmarks. As a result, all information provided to the user is based on the tile that

the traveler currently occupies. Furthermore, the use of tiles simplifies the representation of

paths for users, making them easier to comprehend and remember.

In addition, to guide users to their target tile, we introduce a novel concept called

the ’goalpost,’ which replaces traditional waypoints that require physical arrival. Each tile is

associated with two goalposts that serve as references for directional guidance. Importantly, a

goalpost is used solely to set the travel direction, eliminating the need for the user to physically

reach it. This approach mainly provides direction to the next tile and automatically shifts to a

further one as the user approaches the current goalpost. This strategy, as illustrated in Figure 9.7

(a)(b), aims to reduce directional errors when the user’s position lacks precision.

The RouteNav interface also incorporates redundant modalities to enhance efficiency.

These modalities consist of two mechanisms for directing users to their target goalpost: user-

solicited and user-unsolicited notifications. Both are illustrated in conjunction with various

notifications offered by RouteNav in Figure 9.8. More specifically, for the user-solicited sce-

nario, users can activate the interface by double-tapping the on-screen button to obtain a route

preview or answers to the following questions through speech: ”What’s around me?” ”Where

115

am I?”. In the unsolicited case, users will receive speech alerts when they enter or approach

a new tile. Furthermore, sound and vibration are utilized to assist the user in determining if

they are moving in the correct direction. If the difference between the user’s walking direction

and the target direction exceeds 45◦, the user will be notified by an unpleasant sound (nfc-scan-

failure.caf) along with a brief vibration repeated twice every other second. Otherwise, a short

whooshing sound (mail-sent.caf in iOS) will be generated, accompanied by a brief vibration

every other second. Details about the Route Compass and Tunnel/Ramp alerts are provided in

subsection 9.3.2 and section 9.4.

Figure 9.6: Visualization of Tiles on the map. Multiple tiles are displayed on the map, each
with different colors.

116

(a)

(b)

Figure 9.7: (a) This schematic illustrates how directional error varies with distance to the
next goalpost. The true location of the walker is marked by a star, but localization errors may
place the user anywhere within the gray circle, which is determined by the uncertainty radius.
Due to these errors, the system-generated direction to the target goalpost (thick dot), indicated
by dotted arrows, may differ from the actual correct direction, represented by a solid arrow.
The angle between these two directions forms the angular error, denoted as θerr. The diagram
shows that when the user is closer to the goalpost and has the same uncertainty radius, there
is a higher likelihood of experiencing larger angular errors, represented by θerr. (b) Screen-
shots of the RouteNav app. The screen displays multiple pieces of information, and various
buttons are available for users to access information from the app by interacting with them us-
ing VoiceOver. The pink dot on the map represents the estimated position of the walker. The
dark circle indicates the next selected goalpost. In the left image, as the walker enters a tile, the
nearest goalpost in the following tile is chosen as the target. In the right image, as the walker
advances within the tile, The target switches to the goalpost that is farther away in the next tile.

117

Figure 9.8: The RouteNav interface is illustrated using colored rectangles to represent distinct
information categories offered by the application. A green rectangle displays details of the cur-
rent tile, including points of interest (POIs). The red rectangle indicates the direction towards
the target goalpost in the subsequent tile, while the blue rectangle provides information regard-
ing the upcoming tiles on the route. Additionally, various notification types are represented by
circular icons, each paired with its corresponding interface modality, which includes speech,
sound, vibration, or haptic feedback.

9.3.2 Route Compass

During our experiments, we implemented a highly useful functionality known as the

Route Compass, which resembles the ”wand” modality discussed by [7]. As the name suggests,

the Route Compass serves as a directional tool, enabling users to determine the direction of their

next target. In this feature, we leverage the magnetic compass built into the iPhone to provide

absolute direction information. It’s important to emphasize that in outdoor environments, the

magnetic field tends to be significantly more stable than that in indoor environments, making

compass-based orientation reliable. Specifically, we calculate the user’s target direction and

map it to the map, providing users with one of the following eight directions: East, West, South,

North, Northeast, Northwest, Southeast, or Southwest. To use this feature, the user simply

holds the phone in their hand and rotates it. A vibration feedback is triggered when the phone’s

direction aligns with their target direction. This feature is particularly helpful when users are

118

uncertain about their route and can aid them in mentally marking their destination. Figure 9.9

illustrates a user using the Route Compass during one of our experiments.

Figure 9.9: A participant using the Route Compass during one of the experiments, while holding
a walking cane in the other hand.

9.4 User Interface for Challenging Spots

Despite the utilization of a particle filter-based localization model to merge various

sensor data, localization accuracy can still pose challenges, particularly in spaces where open

areas exist, and GPS signals are unreliable. In such scenarios, careful design of the user interface

is essential to manage this inaccuracy. Here, we primarily focus on two challenging spots: the

entrance of the underground tunnel and the ramp. We will first address the map-switching

problem that arises near the entrance of the underground tunnel, followed by a similar solution

for the ramp problem.

119

9.4.1 Challenging Spots: Underground Tunnel Entrance

As previously mentioned, the transit hub comprises two parts: the overground and

underground sections. Users need to switch between these parts, and it’s vital to switch maps at

suitable timestamps. Ideally, with a highly accurate localization model, we could switch maps

as soon as the user enters the underground tunnel. However, this is not always feasible, par-

ticularly given the frequent unreliability of GPS signals near the underground tunnel entrances.

Furthermore, particles may gather in two groups near the entrance: one inside the tunnel and

the other outside, causing unpredictability in predictions. Therefore, we need a better approach

to address this issue. The Figure 9.10 shows one of the tunnel entrances.

Figure 9.10: An underground tunnel entrance pointed by a highlighted yellow line.

To facilitate map switching, one might consider using the altimeter from iPhone as

an additional sensor. By utilizing the provided attitude data, we can track changes in the user’s

altitude and perform map switches based on these changes. However, altimeter data itself con-

120

tains biases that vary each time the app is started, making it unsuitable to set a fixed threshold

for map switching.

To overcome this challenge, my second approach involves monitoring changes in

altimeter data. If the altimeter data consistently increases or decreases, and the absolute change

exceeds a certain threshold, we trigger the map switch. However, in the context of the Palo

Alto transit hub’s underground tunnel, which features a gentle slope, this method encounters a

challenge. The altimeter data may change too slowly, causing a delay in the map switch. The

solution to this problem involves treating the user as a sensor [21], which we will discuss in the

next section.

9.4.2 User as a Sensor

The concept here is to empower the user to detect their surroundings and provide input

to the app actively. In this approach, users are not passive recipients of instructions from the

app. Rather, they are active agents capable of interacting with the app and the environment. This

concept, referred to as ”User as a Sensor” [21], acknowledges that users have greater access to

environmental information than the sensors on a smartphone. For instance, users can interact

with their surroundings by using their hands or a walking cane, receive guidance from a trained

guide dog capable of perceiving visual information and navigating, or even seek assistance from

sighted individuals nearby. As a result, input from these ”sensors” is exceptionally reliable,

and when designing the app, confidence in this ”sensor” input should be set to a high value.

Furthermore, respecting user input is essential for ensuring a positive user experience.

For the map-switching problem mentioned earlier, when the app detects the user’s

121

position near the underground entrance, it displays a prompt asking if the user has entered the

tunnel. If the user confirms, the map switch is executed immediately, ensuring improved lo-

calization accuracy and a seamless user experience. If there is no response from the user, the

app continues to monitor the altimeter data and triggers a map switch upon detecting significant

changes. The reason for this design is that if the user does not respond, it may mean they have

not entered the entrance, in which case the altimeter data remains relatively stable, and no action

is needed. Alternatively, if the user does enter the entrance without responding, it suggests they

may not require navigation information at that moment and are relying on their own judgment.

In this case, the app can provide a slowly map switch. Notably, both the overground and un-

derground maps provide overlapping areas near the tunnel entrance, allowing the app to offer

flexible and seamless instructions regardless of the user’s choice.

9.4.3 Challenging Spots: Finding Entrance to a Ramp

The previously described mechanism can be applied in multiple scenarios where lo-

calization accuracy is not sufficient. For instance, consider the situation where a user encounters

a challenging spot, such as a downward ramp with a narrow entrance, parallel to the walkway,

as illustrated in Figure 9.11.

In such case, achieving the required accuracy with the localization system can be

challenging. The system may struggle to distinguish whether the user is on the walkway or the

ramp (and vice versa). As a result, the app’s instructions based on the incorrect user position

can lead to user confusion. To address this issue, we employ a similar ”User as a Sensor”

approach: when the user enters the area near the ramp, the app prompts the user to confirm

122

Figure 9.11: The ramp that users need to negotiate, with a highlighted yellow path indicating
the route.

whether they have entered the ramp. Subsequently, the app provides instructions based on the

user’s response. Once again, if there is no response from the user, we assume that the user is

aware of their actions and offer default instructions that can be ignored by the user.

9.5 Experimental Results

In this section, we’ll start by explaining the experiment’s procedure and the user study

details. Afterward, we’ll examine the paths reconstructed during the experiment, focusing on

both successful and unsuccessful instances of the particle filter-based localization method, along

with related discussions.

9.5.1 Experimental Procedure

Here is the procedure for conducting experiments with this app.

123

1. The user must select a route from the list displayed on the app screen. These routes are

predefined by the user through a front-end, which is part of a system developed by other

contributors of this project.

2. The user is positioned at a known starting point and is required to walk in a specified

direction for a certain distance (typically, 6 steps) to initiate the initial calibration process.

3. The navigation process then begins. Users can interact with the app using a Bluetooth

bone-conduction earphone and VoiceOver. Although it is allowed for users to place the

phone in their pockets, all users decided to hold the phone in their hands. The Route

Compass feature assists users in determining the direction to their next target, and the

app prompts users to respond when it is uncertain about their precise position.

4. The entire process concludes when the user reaches the destination of the current route.

9.5.2 User Study

In the user study, seven blind participants took part, with ages ranging from 59 to 74

and a mean age of 67. Among the participants, there were two females and five males. Three

of the participants used guide dogs, while the remaining four relied on walking canes. The

Table 9.1 provides more details.

9.5.3 Experiment Details and Localization Results

The task assigned to these users was to traverse three selected trajectories within the

Palo Alto train station. We defined three starting/end points in the transit hub: Northbound,

124

ID Age Gender Onset of blindness Independent traveler? Mobility aid

P1 74 M Since teen age Rarely travels alone Long cane

P2 74 M Since teen age Yes (when younger) Long cane

P3 60 M Since birth Yes Long cane

P4 65 F Since birth Yes Dog guide

P5 69 M Since 3 years of age Yes Dog guide

P6 59 F Since teen age Yes Dog guide

P7 70 M Since birth Yes Long cane

Table 9.1: Participants’ characteristics.

Southbound, and Bus stop. The trajectories are as follows. The visualization of these three

trajectories can be found in the different figures this chapter, which are represented by white

lines.

1. NB2SB: The first trajectory starts at Northbound and ends at Southbound.

2. SB2BUS: The second trajectory starts at Southbound and ends at the Bus stop.

3. BUS2NB: The third trajectory starts at the Bus stop and ends at Northbound.

It’s worth noting that the first and third paths require users to navigate within an un-

derground tunnel, making the trajectories more challenging and representative of real-life con-

ditions. It’s important to acknowledge that the study environment contains various challenges.

Despite conducting the user studies on weekends, the station remained busy, with numerous

125

people standing, walking, and biking, and several unhoused individuals sitting or lying on the

ground. The presence of periodically incoming diesel-powered trains contributed to the noise

in the environment. Additionally, when users walked through the underground passageway, the

intense car traffic in the nearby highway underpass added to the noise levels.

The traversal times for all participants on these three routes are displayed below, along

with the length of each trajectory. Since outdoor navigation trajectories often take longer com-

pared to indoor cases, we use minutes as the unit of measurement here, rather than seconds. It’s

worth noting that the traverse time for the ”Bus stop to Northbound” trajectory for participant

P6 is not available due to a localization system failure, which will be explained in the next

section.

P1 P2 P3 P4 P5 P6 P7 Length

NB2SB 19 20 9 9 4 8 11 130 m

SB2Bus 27 20 13 22 11 21 10 145 m

Bus2NB 47 28 13 13 6 - 10 225 m

Table 9.2: Traversal times (in minutes) for all participants and all routes.

This app demonstrates the capability to accurately track the user’s position in most

instances, despite the presence of GPS errors and IMU sensor drift. It is noteworthy that the

drift observed in the RoNIN trajectory can be rectified through the incorporation of GPS and

map information (see Figure 9.12 (a)(b)). Furthermore, it is evident that the combination of

GPS signal and map can correct the incorrect scalar of the RoNIN trajectory (see Figure 9.12

126

(a)(b)(d)). In Figure 9.12 (a)(b)(d), the particle filter continues to function when the user tra-

verses the underground tunnel, even in areas where GPS signals are denied. Additionally, in

Figure 9.12 (d), as the user reaches the Southboarding area, the GPS signal becomes signifi-

cantly inaccurate, with the user’s position erroneously placed in an No-go zone (the railway)

with low accuracy. However, by leveraging the map information, the model manages to provide

a correct trajectory. More visualization results can be found in Figure 9.14.

9.5.4 Challenges and Issues: Discussion

Although the app performs correctly in most cases, and all participants success-

fully complete their routes, there are two instances of failure due to incorrect user localiza-

tion/tracking. For participant P7, at the end of the NB2SB route, the user’s estimated location is

inaccurately placed at the Northbound platform when it should be at the Southbound platform

(Figure Figure 9.13 (b)). This mislocalization occurred because, when the user exited the tun-

nel, a significant and sustained GPS error with a very low uncertainty radius was observed. This

erroneous GPS data led the system to erroneously trust the GPS accuracy, pushing all particles

to the wrong side of the tracks. Another failure case involves participant P6 in the Bus2NB

route (Figure 9.13 (a)). In this case, RoNIN undershot the user’s position, making it impossible

for the model to correctly track the user. Note that when the user entered the Northbound area,

the fail-safe mechanism was activated, and the user’s location was accurately corrected by the

GPS signal.

127

(a) (b)

(c) (d)

Figure 9.12: Comparison of Localization Methods. The trajectories are represented as follows:
Black line - RoNIN, Blue line - GPS (uncertainty visualized by color), Cyan line - Localization
estimation results from the model. White line - Ground truth path, White Circle - Destination.
(a) Participant 3, trail: Bus Stop to Northbound. (b) Participant 4, trail: Bus Stop to North-
bound. (c) Participant 2, trail: Southbound to Bus Stop.(d) Participant 5, trail: Northbound to
Southbound.

128

(a) (b)

Figure 9.13: Failure cases. Black line - RoNIN, Blue line - GPS (uncertainty visualized by
color), Cyan line - Localization estimation results from the model. White line - Ground truth
path, White Circle - Destination. (a) Participant S6, trail: Bus Stop to Northbound (b) Partici-
pant S7, trail: Northbound to Southbound

9.6 Conclusion

In this chapter, we have provided an in-depth exploration of the RouteNav navigation

app, which assists users in navigating from their starting point to their chosen destinations.

We began by discussing the limitations of using only IMU sensors or GPS for localization,

highlighting the need for compensation with a map and sensor fusion. Then, we delved into

the particle filter algorithm, detailing its parameters, and discussed the fail-safe mechanism

implemented within the application.

Subsequently, we focused on the specific user interface design and consider challeng-

ing navigation scenarios. We addressed the challenges associated with altimeter data and the

difficulty in determining the optimal time to switch between overground and underground maps.

We talked about the usage of ”user as a sensor” mechanism, which can help the user overcome

129

(a)

(b)

(c)

Figure 9.14: Experimental results visualization from three participants in different trials. The
trajectories are represented as follows: Black line - RoNIN, Blue line - GPS (uncertainty visual-
ized by color), Cyan line - Localization estimation results from the model. White line: Ground
truth path, White Circle - Destination. Photos from participants are taken in the location pointed
by the yellow arrow. (a) Participant 1, trail: from Northbound to Southbound. (b) Participant 3,
trail: from Southbound to Bus stop. (c) Participant 5, trail: from Bus stop to Northbound.

130

sensor uncertainty effectively.

Moving forward, we talked about the experimental procedure and a user study, pro-

viding comprehensive details about the study participants, experiment design, and user trajec-

tories. We concluded this section by presenting the results of our experiments, which included

both successful and unsuccessful cases.

131

Chapter 10

Ablation Study

After discussing the experimental results involving visually impaired individuals in

the transit-hub environment, an interesting question arises: how does the sensor fusion model

perform when some of the information is omitted? In Chapter 9 we have already considered

cases where RoNIN or GPS is utilized individually, and we have ascertained that this leads

to poor results. However, what about other scenarios, such as RoNIN + GPS (without map

information) or GPS + Wall (GPS data integrated with map information without relying on

RoNIN)? Do these scenarios yield similar or even superior results compared to our standard

model, RoNIN + GPS + Wall? We will explore these scenarios in this chapter. It’s worth noting

that another potential combination is RoNIN + Wall. However, given the numerous open spaces

on the map, we have decided not to pursue this option since particles in open areas, without any

constraints, are prone to disperse without restriction.

Here, we present the results collected during experiments conducted by myself and

my advisor, Professor Manduchi, at the Palo Alto station during the summer of 2023. We used

132

multiple iPhone, either held in our hands or placed in our pockets while walking. It’s important

to note that here we aimed to demonstrate that our system is effective and beneficial not only

for blind individuals but also for sighted users. Six trajectories, start at index 1 are analyzed

here. Ground truth path are shown in Figure 10.2. For trail 1,2,4,6, we start at the Bus stop and

reach the NorthBound, while for trail 3,5, the whole trajectory is in a reversed order.

10.1 Observations

We have selected two trajectories from our collected data for a qualitative study

among different modalities. As depicted in Figure 10.1, the GPS data can be highly inaccu-

rate. In Figure 10.1 (a), the GPS readings placed the user within the railway area, significantly

affecting the accuracy of the RoNIN + GPS results. GPS + Wall, on the other hand, yielded

better results since the map prevented the particles from entering into the railway area. One

may wonder how to integrate GPS information with map data when employing a particle filter,

which relies on velocity for updating particle positions during the prediction step. To address

this challenge, I adopted an approach in which I extracted the differences in GPS positions be-

tween consecutive readings and computed the corresponding velocities as inputs. However, it is

worth noting that the combination of GPS and wall data proved to be insufficient when the GPS

signal became unavailable within the underground tunnel (Figure 10.1(a)). Additionally, the

velocity obtained from GPS, even when collected above ground, may not consistently reflect

the user’s actual velocity.

133

0 50 100 150 200 250 300
meters

75

100

125

150

175

200

225

250

m
et

er
s

RoNIN_gps_wall
RoNIN_gps
GPS
gps_wall
CompleteTrail

(a)

0 50 100 150 200 250
meters

75

100

125

150

175

200

225

250

m
et

er
s

RoNIN_gps_wall
RoNIN_gps
GPS
gps_wall
CompleteTrail

(b)

Figure 10.1: Results of the Ablation Study. Predictions made by each modality when the user
is in the corresponding ground truth points are indicated using distinct symbols and colors: (1)
RoNIN + GPS + Wall (orange line with blue circles), (2) RoNIN + GPS (cyan line with orange
stars), (3) GPS (purple line with purple circles), (4) GPS + Wall (green line with cyan triangles),
and (5) Ground truth (red line with red circles). (a) Trail 1. (b) Trail 5.

134

10.2 Quantitative Study Results: Complete Trail

Let’s now delve into the quantitative results. The ground truth points were pre-defined

as a series of stationary points. During data collection, we stood still at each ground truth point

for several seconds. Later, when processing the data, we used the RoNIN magnitude to detect

the timestamps of these stationary points. This allowed us to determine the predicted positions

of the different modalities mentioned earlier when our actual position aligned with the ground

truth points. As a result, we obtained two sets of points: ground truth points and predictions.

The mean L2 error was used to measure the discrepancy between these points. The ground truth

trajectory is displayed in Figure 10.2.

0 50 100 150 200 250
meters

75

100

125

150

175

200

225

250

m
et

er
s

Ground truth trajectory
Start point
End point

Figure 10.2: Ground Truth Trajectory, Ground truth points are shown in red circles: In trials
1, 2, 4, and 6, the user initiates their journey from the blue star point and aims to reach the
destination marked using the cyan rectangle. Conversely, in trials 3 and 5, the trajectory is in
reverse order.

Table 10.1 shows the comparison results of various modalities on the complete trajec-

tories of Palo Alto train station. As observed, the combination of RoNIN, GPS, and Wall data

135

exhibits the lowest error, demonstrating its effectiveness. Combining RoNIN with GPS does

not necessarily result in improved outcomes compared to using GPS alone, and the combina-

tion of GPS and wall data appears to worsen the outcomes. A more detailed understanding of

these results will become clear as we analyze the performance of these modalities separately in

various areas, a task we will address in the subsequent sections.

Trail Index RoNIN GPS Wall RoNIN GPS GPS GPS Wall

Trail 1 3.83 7.83 9.88 14.52

Trail 2 3.94 5.4 5.82 11.36

Trail 3 3.21 6.35 7.6 6.65

Trail 4 3.07 7.19 6.18 9.13

Trail 5 3.29 7.29 6.6 6.56

Trail 6 5.14 6.51 8.99 14.57

Mean 3.75 6.76 7.51 10.47

Table 10.1: Comparison results of the different modalities on the complete trail of Palo Alto
train station (in meters).

10.3 Quantitative Study Results: Distinct Areas

One may also be interested in comparing these modalities in various areas. For in-

stance, the comparison of open space area, the comparison of overground map areas, and the

comparison of underground area. The ground truth points’ definitions in different areas are rep-

resented using different colors in Figure 10.3. Considering these distinct areas, let us proceed

136

with separate comparisons.

0 50 100 150 200 250
meters

75

100

125

150

175

200

225

250

m
et

er
s

Ground truth: Overground-OpenSpace
Ground truth: Overground-Map-SouthBound
Ground truth: UnderGround
Ground truth: Overground-Map-NorthBound

Figure 10.3: Ground truth points in different areas. Red points: Open space. Blue points:
Southbound area. Purple points: Underground. Cyan points: Northbound area.

10.3.1 Open Space

For the ground truth points located in open spaces, it is evident that the particle filter

has a minimal impact on the results due to the absence of map information. Therefore, the

differences between RoNIN + GPS + Wall and RoNIN + GPS, GPS + Wall and GPS alone, are

negligible, as one can see in Table 10.2. Additionally, the use of GPS data results in slightly

lower errors compared to the combination of RoNIN and GPS, although with a relatively small

difference. Notably, these disparities stem from the drift error within RoNIN and the random

noise introduced at various stages of the particle filtering process (Figure 10.4(a)).

137

Trail Index RoNIN GPS Wall RoNIN GPS GPS GPS Wall

Trail 1 7.34 7.05 7.71 5.65

Trail 2 4.08 4.55 3.41 3.16

Trail 3 6.87 6.91 5.04 5.62

Trail 4 4.61 5.38 3.42 3.59

Trail 5 6.62 6.62 5.93 6.42

Trail 6 8.28 8.45 8.85 9.82

Mean 6.3 6.49 5.73 5.71

Table 10.2: Comparison results of the different modalities on the overground of Palo Alto train
station in open space (in meters).

10.3.2 Overground Areas with Map information

Once the map information becomes available, we analyze the ground truth points

separately for the Southbound area and the Northbound area. This separation is necessary due

to the fact that Trail 3 and Trail 5 start from the Northbound, while other trails (Trail 1, 2, 4,

6) start from the bus stop. For Trails 1, 2, 4, and 6, GPS + Wall may face challenges when

navigating the underground tunnel due to the potential unreliability of velocity extracted from

the GPS trajectory in such conditions. As a result, the particles in this scenario may never

reach the Northbound area, causing significant errors in the Northbound platform. Therefore,

it is more informative to present the results in two separate tables for these two sets of points.

Additionally, it’s worth noting that for Trail 3 and 5, even when users start in the Northbound

area and need to enter an underground tunnel, the GPS + Wall trajectory manages to reach the

138

other side of the railway. Therefore, it makes sense to include predictions from Trail 3 and 5 in

the GPS + Wall modality in Table 10.3.

10.3.3 Overground: Southbound Area

Now, let’s focus on the points near the Southbound area. As we can see in Table 10.3,

RoNIN + GPS + Wall demonstrates superior performance compared to all other modalities.

Comparing it with the results of RoNIN + GPS suggests the importance of map information.

Additionally, when compared with GPS + Wall, one can conclude that RoNIN is another crucial

contributor to the model’s performance. Notably, combining RoNIN with GPS does not lead

to improved results compared to using GPS alone, whereas the integration of GPS with wall

information leads to enhanced performance, as observed in cases such as Figure 10.4 (b). This

also underscores the significant impact of map information in improving outcomes.

Trail Index RoNIN GPS Wall RoNIN GPS GPS GPS Wall

Trail 1 3.07 7.39 8.28 4.2

Trail 2 3.53 4.1 3.45 4.22

Trail 3 1.99 5.15 6.66 4.52

Trail 4 2.61 6.72 4.77 5.21

Trail 5 2.22 6.56 6.52 4.76

Trail 6 5.23 6.06 5.93 6.42

Mean 3.11 6.0 5.94 4.89

Table 10.3: Comparison results for different modalities on the Palo Alto train station overground
with maps, limited to data within the Overground-Map-SouthBound area (in meters).

139

10.3.4 Overground: Northbound Area

Results of the Northbound area are shown in Table 10.4. Within the table, we still

observe that RoNIN + GPS + Wall remains the most effective option, while RoNIN + GPS

performs worse than using GPS alone. For trails that commence at the bus stop (Trails 1, 2,

4, and 6), these discrepancies arise due to the absence of constraints provided by the map. In

the case of Trails 3 and 5, where the user initiates their journey in the Northbound area without

entering the underground tunnel, the drift from RoNIN can impact the final outputs. Regarding

GPS + Wall, as explained in subsection 10.3.2, Trails 1, 2, 4, and 6 exhibit larger errors when

compared to using GPS alone (Figure 10.4 (c)). For Trails 3 and 5, the results from GPS + Wall

remain reasonable.

Trail Index RoNIN GPS Wall RoNIN GPS GPS GPS Wall

Trail 1 1.4 7.87 1.81 80.47

Trail 2 6.2 8.6 6.38 30.54

Trail 3 3.17 6.93 6.76 7.19

Trail 4 1.59 8.51 4.38 38.16

Trail 5 3.4 6.16 8.95 8.58

Trail 6 1.1 4.99 3.45 40.33

Mean 2.81 7.18 5.29 34.21

Table 10.4: Comparison results for different modalities on the Palo Alto train station overground
with maps, limited to data within the Overground-Map-NorthBound area (in meters).

140

10.3.5 Underground

Now, let’s examine the results within the underground tunnel (Table 10.5). As one

might expect, the GPS signal is unusable here. While RoNIN clearly outperforms GPS, it

still exhibits some drift, which can be alleviated through the inclusion of map information.

Therefore, RoNIN + GPS + Wall produces the best results in this scenario (Figure 10.4(d)).

Trail Index RoNIN GPS Wall RoNIN GPS GPS GPS Wall

Trail 1 3.8 12.05 31.96 28.19

Trail 2 3.85 11.73 24.34 51.43

Trail 3 3.21 11.79 19.24 20.9

Trail 4 4.24 12.33 21.96 14.68

Trail 5 2.92 14.18 6.11 15.65

Trail 6 2.33 6.85 33.14 47.24

Mean 3.39 11.49 22.79 29.68

Table 10.5: Comparison results of the different modalities on the underground of Palo Alto train
station (in meters).

10.4 Conclusion

In this chapter, we discuss the results of the ablation study conducted using six tra-

jectories gathered in the Palo Alto transit-hub by two sighted individuals. We explore various

combinations of information sources, including RoNIN + GPS, GPS + Wall, GPS alone, and

RoNIN + GPS + Wall. Apart from visually comparing predictions to ground truth points, we

141

(a) (b)

(c) (d)

Figure 10.4: Results of the comparisons in various areas. Predictions made by each modality
when the user is in the corresponding ground truth points are indicated using distinct symbols
and colors: (1) RoNIN + GPS + Wall (orange line with blue circles), (2) RoNIN + GPS (cyan
line with orange stars), (3) GPS (purple line with purple circles), (4) GPS + Wall (green line
with cyan triangles), and (5) Ground truth (red line with red circles). (a) Open space, Trail 2.
(b) Southbound area, Trail 1. (c) Northbound area, Trail 4. (d) Underground area, Trail 1.

142

conduct multiple quantitative analyses of the study results. Specifically, we initially compare

the complete trail and subsequently delve into comparing results in distinct areas, including

open space, the Southbound overground area, the Northbound overground area, and the un-

derground section. These results together indicate that both map information and GPS data

are essential components, with the combination of RoNIN + GPS + Wall producing the most

favorable outcomes.

143

Chapter 11

Conclusion and Open Problems

11.1 Conclusion

This thesis focuses on the development of a smartphone-based indoor/outdoor lo-

calization system designed to assist visually impaired individuals. Various sensors used for

localization have their limitations. BLE beacons and Wi-Fi require external infrastructure, and

their fingerprinting-based method necessitates the creation and maintenance of a fingerprinting

database, resulting in significant costs. Furthermore, determining the user’s precise location

during data collection can be challenging. The magnetic sensor, while not requiring external in-

frastructure, still faces the mentioned challenges when building its fingerprinting database. The

UWB method, although not depending on a database, demands external infrastructure and spe-

cific hardware which is not universally available on smartphones. The camera sensor, while free

from these drawbacks, demands a continuous, unobstructed line of sight, making it unsuitable

for visually impaired travelers.

144

Our primary focus centers on IMU sensors. Despite inherent drift errors, IMU sensors

can be employed for localization and tracking without the aforementioned limitations, making

them particularly well-suited for visually impaired users. In scenarios without a map, we intro-

duce a two-stage turn detection method based on the Mixture Kalman Filter (MKF) and Gated

Recurrent Unit (GRU). Specifically, the MKF method utilizes azimuth angle data to ascertain

the user’s indoor orientation, subject to the constraint that the user’s orientation is a multiple of

either 45◦ or 90◦. The MKF maintains a list of Kalman filters, each tracking a potential user

orientation. At each timestamp, azimuth data is used as input for these filters to evaluate their

alignment with the input. Depending on this alignment, each Kalman filter is assigned weights

that determine their contributions to the final MKF output. The GRU makes use of user accel-

eration and azimuth data as inputs to determine if the user is walking in a straight line or not.

The GRU outputs serve two valuable purposes: Firstly, we increase the turn probability of the

MKF when the user isn’t walking in a straight line. Furthermore, through the comparison of the

user’s facing direction before and after each non-straight walking interval, we can efficiently

eliminate incorrectly identified turns, leading to improved outcomes.

When a map is available, the Particle Filter can be integrated with the map and Pedes-

trian Dead Reckoning (PDR) techniques to enable accurate localization. The velocity obtained

from the PDR method serves as input for the particle filter’s prediction step, while map data

is employed to modify particle weights during the update step, followed by a resampling step

based on these weights. The map is represented as a 2D matrix utilizing the Bresenham algo-

rithm, optimizing the time-space trade-off to ensure efficient execution of the particle filter on

a smartphone. Two PDR methods are examined: the first method, named Azimuth/Steps, using

145

Long Short-Term Memory (LSTM) for counting steps and a particle filter for estimating step

length. The second method uses an open-source model called RoNIN, which is trained with

data from sighted individuals and determines the user’s walking direction instead of the phone

orientation. Additionally, the Mean-Shift algorithm can detect multiple clusters of particles.

Two methods for managing clustered data and providing model output are presented: the local

maximum and global maximum algorithms. When GPS data is present, it is modeled through

a bivariate Gaussian distribution with a flexible radius. This method enhances the precision of

particle filter weight updates, particularly in open spaces and in cases where GPS positions may

exhibit back-and-forth jumps.

In the experimental chapters, this thesis evaluates the two-stage turn detection algo-

rithm and the particle filter algorithm using the WeAllWalk dataset, demonstrating their effi-

ciency on data from visually impaired individuals. To examine these methods in real-world

scenarios, two iOS applications are discussed: the indoor navigation app incorporates PDR

methods with the particle filter, offering an intuitive interface seamlessly integrated with the

Apple Watch. Furthermore, a user-friendly front-end is provided for managing essential map

information. In the transit hub navigation app, the interface is designed to compensate local-

ization uncertainty. Concepts like tiles and goalposts reduce the influence of positioning errors

on notifications and directional instructions. A user-oriented route compass is introduced and

favored by participants. Additionally, we implement a ”User as a Sensor” mechanism, enabling

users to collaborate with the application to address challenges posed by GPS outages and IMU

drift errors, which may affect the model’s accuracy. The efficiency of these two applications is

confirmed through user studies, and our qualitative and quantitative ablation study results un-

146

derscore the effectiveness of integrating data from various sources, namely RoNIN, GPS, and

maps.

11.2 Open Problems

Despite the significant progress achieved in this thesis, the research domain of utiliz-

ing smartphones to aid visually impaired individuals in navigation presents several unresolved

issues. When employing the particle filter algorithm, the presence of multiple clusters necessi-

tates further exploration to determine the optimal method for effectively conveying this infor-

mation to guide users. For instance, in cases where two clusters are detected, a decision must be

made regarding what information should be presented to the user through the interface. Should

we provide the position of the larger cluster, both clusters, or simply inform the user of the un-

certainty due to the presence of multiple clusters? The situation becomes more intricate when

additional clusters are identified, each with varying distances from one another. Furthermore,

while it may not be practical for visually impaired users to constantly hold their smartphones,

occasionally taking the device out of their pocket to use the camera for obtaining an accurate ab-

solute position could significantly improve the accuracy of the relative position provided by the

particle filter. Another intriguing area of research would be to develop a model that accurately

predicts the walking direction of visually impaired individuals, rather than just determining the

orientation of their phone. Current systems like RoNIN, although capable of identifying walk-

ing direction, often yield inaccurate results when applied to data from visually impaired users.

This issue persists even with fine-tuning. Addressing this challenge can be rather difficult due

147

to the limited availability of data from blind individuals, but it certainly worth exploration given

its potential impact.

For the indoor localization app, automating the process of adding new buildings to

the application is desirable. This would involve providing a floor plan image and having it au-

tomatically incorporated into the app. Subsequently, examining the scalability of the app by

evaluating its performance across various buildings would be interesting. In case of the transit

hub localization app, doing more experiments and explore the efficiency of different compo-

nents of the localization model for sighted users who also navigate complex indoor/outdoor en-

vironments warrants investigation. Furthermore, for mobile platforms like Android that provide

raw GPS data, investigating tight sensor fusion between GPS and the particle filter represents a

promising direction for addressing outdoor pedestrian localization challenges. Given the rapid

advancement of hardware, an intriguing topic emerges: can the particle filter be executed on a

smartwatch instead of a smartphone? This could prove particularly valuable in the smartwatch

industry, as it would ensure stability and trajectory reliability during GPS outages, especially in

urban environments where GPS signals are often unreliable.

Concerning visually impaired individuals, there remain open challenges in designing

the user interface. Adapting the interface to accommodate varying hardware capabilities and

positioning accuracy is a interesting area of exploration. While this thesis has already discussed

an interface designed for the Apple Watch and iPhone, leveraging the capabilities of the lat-

est Apple Watch to assist blind individuals is another interesting possibility. This is especially

applicable since the newest Apple Watch supports AssistiveTouch1. Moreover, it is interesting

1https://developer.apple.com/documentation/uikit/uiguidedaccessaccessibilityfeature/
3089190-assistivetouch

148

https://developer.apple.com/documentation/uikit/uiguidedaccessaccessibilityfeature/3089190-assistivetouch
https://developer.apple.com/documentation/uikit/uiguidedaccessaccessibilityfeature/3089190-assistivetouch

to investigate how ChatGPT2 can contribute to further enhancing the user interface. For in-

stance, instead of presenting multiple buttons on the screen, a natural language interface could

be implemented. In this approach, users could interact directly with the application through a

Bluetooth earphone. Spoken input would be converted to text using the iPhone’s Speech frame-

work3, combined with contextual map information, and presented to ChatGPT through specific

prompts. ChatGPT’s responses would then be synthesized into speech using the Speech Synthe-

sis framework4. Implementing such a system could significantly improve the user experience

for blind individuals, enabling them to focus solely on the information they require without the

burden of processing unnecessary details. For example, a user might ask, ”What is the most

notable landmark nearby?” Rather than offering a list of landmarks for the user to review, Chat-

GPT could identify a significant landmark based on its understanding of the term ”notable” and

provide this landmark information directly to the user. To sum up, researchers in the field of

navigation assistance for visually impaired individuals should consider exploring various new

techniques to consistently enhance their solutions.

2https://chat.openai.com/
3https://developer.apple.com/documentation/speech/
4https://developer.apple.com/documentation/avfoundation/speech_synthesis/

149

https://chat.openai.com/
https://developer.apple.com/documentation/speech/
https://developer.apple.com/documentation/avfoundation/speech_synthesis/

Bibliography

[1] Mohiuddin Ahmed, Raihan Seraj, and Syed Mohammed Shamsul Islam. The k-means

algorithm: A comprehensive survey and performance evaluation. Electronics, 9(8):1295,

2020.

[2] Dragan Ahmetovic, Cole Gleason, Chengxiong Ruan, Kris Kitani, Hironobu Takagi, and

Chieko Asakawa. Navcog: a navigational cognitive assistant for the blind. In Proceed-

ings of the 18th International Conference on Human-Computer Interaction with Mobile

Devices and Services, pages 90–99, 2016.

[3] Abdulrahman Alarifi, AbdulMalik Al-Salman, Mansour Alsaleh, Ahmad Alnafessah,

Suheer Al-Hadhrami, Mai A Al-Ammar, and Hend S Al-Khalifa. Ultra wideband indoor

positioning technologies: Analysis and recent advances. Sensors, 16(5):707, 2016.

[4] Moustafa Alzantot and Moustafa Youssef. Uptime: Ubiquitous pedestrian tracking us-

ing mobile phones. In 2012 IEEE Wireless Communications and Networking Conference

(WCNC), pages 3204–3209. IEEE, 2012.

[5] Ilias Apostolopoulos, Navid Fallah, Eelke Folmer, and Kostas E Bekris. Integrated online

150

localization and navigation for people with visual impairments using smart phones. ACM

Transactions on Interactive Intelligent Systems (TiiS), 3(4):1–28, 2014.

[6] Safar M Asaad and Halgurd S Maghdid. A comprehensive review of indoor/outdoor lo-

calization solutions in iot era: Research challenges and future perspectives. Computer

Networks, 212:109041, 2022.

[7] Shiri Azenkot, Richard E Ladner, and Jacob O Wobbrock. Smartphone haptic feedback

for nonvisual wayfinding. In The proceedings of the 13th international ACM SIGACCESS

conference on Computers and accessibility, pages 281–282, 2011.

[8] Billie L Bentzen, Janet M Barlow, and Lee S Tabor. Detectable warnings: Synthesis of

US and international practice. US Access board Washington, DC, 2000.

[9] Joydeep Biswas and Manuela Veloso. Wifi localization and navigation for autonomous

indoor mobile robots. In 2010 IEEE international conference on robotics and automation,

pages 4379–4384. IEEE, 2010.

[10] Johann Borenstein, Lauro Ojeda, and Surat Kwanmuang. Heuristic reduction of gyro drift

in imu-based personnel tracking systems. In Optics and Photonics in Global Homeland

Security V and Biometric Technology for Human Identification VI, volume 7306, pages

244–254. SPIE, 2009.

[11] Jack Bresenham. A linear algorithm for incremental digital display of circular arcs. Com-

munications of the ACM, 20(2):100–106, 1977.

151

[12] Chris Calori and David Vanden-Eynden. Signage and wayfinding design: a complete

guide to creating environmental graphic design systems. Wiley Online Library, 2015.

[13] Changhao Chen, Xiaoxuan Lu, Andrew Markham, and Niki Trigoni. Ionet: Learning to

cure the curse of drift in inertial odometry. In Proceedings of the AAAI Conference on

Artificial Intelligence, volume 32.1, 2018.

[14] Changhao Chen, Peijun Zhao, Chris Xiaoxuan Lu, Wei Wang, Andrew Markham, and Niki

Trigoni. Oxiod: The dataset for deep inertial odometry. arXiv preprint arXiv:1809.07491,

2018.

[15] Rong Chen and Jun S Liu. Mixture kalman filters. Journal of the Royal Statistical Society:

Series B (Statistical Methodology), 62(3):493–508, 2000.

[16] Yizong Cheng. Mean shift, mode seeking, and clustering. IEEE transactions on pattern

analysis and machine intelligence, 17(8):790–799, 1995.

[17] Yun Cheng and Taoyun Zhou. Uwb indoor positioning algorithm based on tdoa technol-

ogy. In 2019 10th international conference on information technology in medicine and

education (ITME), pages 777–782. IEEE, 2019.

[18] Junyoung Chung, Caglar Gulcehre, KyungHyun Cho, and Yoshua Bengio. Empirical

evaluation of gated recurrent neural networks on sequence modeling. arXiv preprint

arXiv:1412.3555, 2014.

[19] Adele Crudden, Jennifer L Cmar, and Michele C McDonnall. Stress associated with trans-

152

portation: A survey of persons with visual impairments. Journal of Visual Impairment &

Blindness, 111(3):219–230, 2017.

[20] Ping-Jung Duh, Yu-Cheng Sung, Liang-Yu Fan Chiang, Yung-Ju Chang, and Kuan-Wen

Chen. V-eye: A vision-based navigation system for the visually impaired. IEEE Transac-

tions on Multimedia, 23:1567–1580, 2020.

[21] Navid Fallah, Ilias Apostolopoulos, Kostas Bekris, and Eelke Folmer. The user as a sensor:

navigating users with visual impairments in indoor spaces using tactile landmarks. In

Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pages

425–432, 2012.

[22] Carl Fischer, Poorna Talkad Sukumar, and Mike Hazas. Tutorial: Implementing a pedes-

trian tracker using inertial sensors. IEEE pervasive computing, 12(2):17–27, 2012.

[23] German Flores and Roberto Manduchi. Easy return: an app for indoor backtracking as-

sistance. In Proceedings of the 2018 CHI Conference on Human Factors in Computing

Systems, pages 1–12, 2018.

[24] German H Flores and Roberto Manduchi. Weallwalk: An annotated dataset of inertial

sensor time series from blind walkers. ACM Transactions on Accessible Computing (TAC-

CESS), 11(1):1–28, 2018.

[25] Michael D Fowler. Soundscape as a design strategy for landscape architectural praxis.

Design studies, 34(1):111–128, 2013.

[26] Giovanni Fusco and James M Coughlan. Indoor localization using computer vision and

153

visual-inertial odometry. In Computers Helping People with Special Needs: 16th Interna-

tional Conference, ICCHP 2018, Linz, Austria, July 11-13, 2018, Proceedings, Part II 16,

pages 86–93. Springer, 2018.

[27] Giovanni Fusco and James M Coughlan. Indoor localization for visually impaired travelers

using computer vision on a smartphone. In Proceedings of the 17th international web for

all conference, pages 1–11, 2020.

[28] Reginald G Golledge, Roberta L Klatzky, Jack M Loomis, Jon Speigle, and Jerome Tietz.

A geographical information system for a gps based personal guidance system. Interna-

tional Journal of Geographical Information Science, 12(7):727–749, 1998.

[29] Reginald G Golledge, Jack M Loomis, Roberta L Klatzky, Andreas Flury, and Xiao Li

Yang. Designing a personal guidance system to aid navigation without sight: Progress on

the gis component. International Journal of Geographical Information System, 5(4):373–

395, 1991.

[30] John C Gower. Generalized procrustes analysis. Psychometrika, 40:33–51, 1975.

[31] Brandon Gozick, Kalyan Pathapati Subbu, Ram Dantu, and Tomyo Maeshiro. Magnetic

maps for indoor navigation. IEEE Transactions on Instrumentation and Measurement,

60(12):3883–3891, 2011.

[32] Fuqiang Gu, Kourosh Khoshelham, Chunyang Yu, and Jianga Shang. Accurate step length

estimation for pedestrian dead reckoning localization using stacked autoencoders. IEEE

Transactions on Instrumentation and Measurement, 68(8):2705–2713, 2018.

154

[33] Janne Haverinen and Anssi Kemppainen. Global indoor self-localization based on the

ambient magnetic field. Robotics and Autonomous Systems, 57(10):1028–1035, 2009.

[34] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for

image recognition. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

[35] Michael Horvat, Christopher Ray, Vincent K Ramsey, Tanya Miszko, Roger Keeney, and

Bruce B Blasch. Compensatory analysis and strategies for balance in individuals with

visual impairments. Journal of Visual Impairment & Blindness, 97(11):695–703, 2003.

[36] Malek Karaim, Mohamed Elsheikh, Aboelmagd Noureldin, and RB Rustamov. Gnss error

sources. Multifunctional Operation and Application of GPS, pages 69–85, 2018.

[37] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980, 2014.

[38] Silviya Korpilo, Tarmo Virtanen, and Susanna Lehvävirta. Smartphone gps track-

ing—inexpensive and efficient data collection on recreational movement. Landscape and

Urban Planning, 157:608–617, 2017.

[39] Heli Koskimäki. Avoiding bias in classification accuracy-a case study for activity recog-

nition. In 2015 IEEE symposium series on computational intelligence, pages 301–306.

IEEE, 2015.

[40] Jan Kouba, François Lahaye, and Pierre Tétreault. Precise point positioning. Springer

handbook of global navigation satellite systems, pages 723–751, 2017.

155

[41] Kai Kunze, Paul Lukowicz, Kurt Partridge, and Bo Begole. Which way am i facing:

Inferring horizontal device orientation from an accelerometer signal. In 2009 international

symposium on wearable computers, pages 149–150. IEEE, 2009.

[42] Masaki Kuribayashi, Tatsuya Ishihara, Daisuke Sato, Jayakorn Vongkulbhisal, Karnik

Ram, Seita Kayukawa, Hironobu Takagi, Shigeo Morishima, and Chieko Asakawa.

Pathfinder: Designing a map-less navigation system for blind people in unfamiliar build-

ings. In Proceedings of the 2023 CHI Conference on Human Factors in Computing Sys-

tems, pages 1–16, 2023.

[43] Richard B Langley. Rtk gps. Gps World, 9(9):70–76, 1998.

[44] Tung-Sing Leung and Gerard Medioni. Visual navigation aid for the blind in dynamic

environments. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition Workshops, pages 565–572, 2014.

[45] Jiangyan Lu, Kin Wai Michael Siu, and Ping Xu. A comparative study of tactile paving de-

sign standards in different countries. In 2008 9th International Conference on Computer-

Aided Industrial Design and Conceptual Design, pages 753–758. IEEE, 2008.

[46] Tobias Margiani, Silvano Cortesi, Milena Keller, Christian Vogt, Tommaso Polonelli, and

Michele Magno. Angle of arrival and centimeter distance estimation on a smart uwb

sensor node. IEEE Transactions on Instrumentation and Measurement, 2023.

[47] Salvador Martı́nez-Cruz, Luis A Morales-Hernández, Gerardo I Pérez-Soto, Juan P

Benitez-Rangel, and Karla A Camarillo-Gómez. An outdoor navigation assistance system

156

for visually impaired people in public transportation. IEEE Access, 9:130767–130777,

2021.

[48] Fatemeh Mirzaei, Jonathan Lam, and Roberto Manduchi. Accurate self-localization in

transit stations: A case study. In 2020 IEEE International Conference on Pervasive Com-

puting and Communications Workshops (PerCom Workshops), pages 1–6. IEEE, 2020.

[49] GJ Morgan-Owen and GT Johnston. Differential gps positioning. Electronics & Commu-

nication Engineering Journal, 7(1):11–21, 1995.

[50] John Morris and James Mueller. Blind and deaf consumer preferences for android and ios

smartphones. In Inclusive designing: Joining usability, accessibility, and inclusion, pages

69–79. Springer, 2014.

[51] Monica Navarro, Simon Prior, and Montse Najar. Low complexity frequency domain toa

estimation for ir-uwb communications. In IEEE Vehicular Technology Conference, pages

1–5. IEEE, 2006.

[52] Jari Nurmi, Elena Simona Lohan, Stephan Sand, Heikki Hurskainen, et al. GALILEO

positioning technology, volume 176. Springer, 2015.

[53] Emin Orhan. Particle filtering. Center for Neural Science, University of Rochester,

Rochester, NY, 8(11), 2012.

[54] Alwin Poulose and Dong Seog Han. Uwb indoor localization using deep learning lstm

networks. Applied Sciences, 10(18):6290, 2020.

157

[55] Jiuchao Qian, Jiabin Ma, Rendong Ying, Peilin Liu, and Ling Pei. An improved indoor

localization method using smartphone inertial sensors. In International Conference on

Indoor Positioning and Indoor Navigation, pages 1–7. IEEE, 2013.

[56] Peng Ren, Jonathan Lam, Roberto Manduchi, and Fatemeh Mirzaei. Experiments with

routenav, a wayfinding app for blind travelers in a transit hub. In Proceedings of the 25th

International ACM SIGACCESS Conference on Computers and Accessibility, pages 1–15,

2023.

[57] Timothy H Riehle, Shane M Anderson, Patrick A Lichter, Nicholas A Giudice, Suneel I

Sheikh, Robert J Knuesel, Daniel T Kollmann, and Daniel S Hedin. Indoor magnetic nav-

igation for the blind. In 2012 Annual International Conference of the IEEE Engineering

in Medicine and Biology Society, pages 1972–1975. IEEE, 2012.

[58] Timothy H Riehle, Shane M Anderson, Patrick A Lichter, William E Whalen, and

Nicholas A Giudice. Indoor inertial waypoint navigation for the blind. In 2013 35th An-

nual International Conference of the IEEE Engineering in Medicine and Biology Society

(EMBC), pages 5187–5190. IEEE, 2013.

[59] Michailas Romanovas, Vadim Goridko, Ahmed Al-Jawad, Manuel Schwaab, Martin

Traechtler, Lasse Klingbeil, and Yiannos Manoli. A study on indoor pedestrian local-

ization algorithms with foot-mounted sensors. In 2012 international conference on indoor

positioning and indoor navigation (IPIN), pages 1–10. IEEE, 2012.

158

[60] Udo Roßbach. Positioning and navigation using the Russian satellite system GLONASS.

Univ. der Bundeswehr München, Studiengang Geodäsie und Geoinformationen, 2001.

[61] Davide Scaramuzza and Friedrich Fraundorfer. Visual odometry [tutorial]. IEEE robotics

& automation magazine, 18(4):80–92, 2011.

[62] Sean L Seyler, Avishek Kumar, Michael F Thorpe, and Oliver Beckstein. Path similar-

ity analysis: a method for quantifying macromolecular pathways. PLoS computational

biology, 11(10):e1004568, 2015.

[63] Saleh Shadi, Saleh Hadi, Mohammad Amin Nazari, and Wolfram Hardt. Outdoor naviga-

tion for visually impaired based on deep learning. In Proc. CEUR Workshop Proc, volume

2514, pages 97–406, 2019.

[64] Ahamed Shafeeq and KS Hareesha. Dynamic clustering of data with modified k-means

algorithm. In Proceedings of the 2012 conference on information and computer networks,

pages 221–225, 2012.

[65] E. Smitshuijzen. Signage Design Manual. Lars Müller, 2007.

[66] Jérôme Soubielle, Inbar Fijalkow, Patrick Duvaut, and Alain Bibaut. Gps positioning in a

multipath environment. IEEE Transactions on Signal Processing, 50(1):141–150, 2002.

[67] Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and Daniel Cremers.

A benchmark for the evaluation of rgb-d slam systems. In 2012 IEEE/RSJ international

conference on intelligent robots and systems, pages 573–580. IEEE, 2012.

[68] Sebastian Thrun. Probabilistic robotics. Communications of the ACM, 45(3):52–57, 2002.

159

[69] Viet Trinh and Roberto Manduchi. Semantic interior mapology: A toolbox for indoor

scene description from architectural floor plans. In 24th International Conference on 3D

Web Technology, volume 2019. NIH Public Access, 2019.

[70] Raghav H Venkatnarayan and Muhammad Shahzad. Enhancing indoor inertial odometry

with wifi. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous

Technologies, 3(2):1–27, 2019.

[71] Michal Vorlı́ček, Tom Stewart, Jasper Schipperijn, Jaroslav Burian, Lukáš Rubı́n, Jan

Dygrỳn, Josef Mitáš, and Scott Duncan. Smart watch versus classic receivers: Static

validity of three gps devices in different types of built environments. Sensors, 21(21):7232,

2021.

[72] He Wang, Souvik Sen, Ahmed Elgohary, Moustafa Farid, Moustafa Youssef, and

Romit Roy Choudhury. No need to war-drive: Unsupervised indoor localization. In

Proceedings of the 10th international conference on Mobile systems, applications, and

services, pages 197–210, 2012.

[73] Yapeng Wang, Xu Yang, Yutian Zhao, Yue Liu, and Laurie Cuthbert. Bluetooth position-

ing using rssi and triangulation methods. In 2013 IEEE 10th Consumer Communications

and Networking Conference (CCNC), pages 837–842. IEEE, 2013.

[74] Greg Welch, Gary Bishop, et al. An introduction to the kalman filter. 1995.

[75] Oliver J Woodman. An introduction to inertial navigation. Technical report, University of

Cambridge, Computer Laboratory, 2007.

160

[76] Yuan Wu, Hai-Bing Zhu, Qing-Xiu Du, and Shu-Ming Tang. A survey of the research sta-

tus of pedestrian dead reckoning systems based on inertial sensors. International Journal

of Automation and Computing, 16:65–83, 2019.

[77] Shixiong Xia, Yi Liu, Guan Yuan, Mingjun Zhu, and Zhaohui Wang. Indoor fingerprint

positioning based on wi-fi: An overview. ISPRS international journal of geo-information,

6(5):135, 2017.

[78] Guochang Xu and Yan Xu. GPS. Springer, 2007.

[79] Hang Yan, Sachini Herath, and Yasutaka Furukawa. Ronin: Robust neural inertial

navigation in the wild: Benchmark, evaluations, and new methods. arXiv preprint

arXiv:1905.12853, 2019.

[80] Hang Yan, Qi Shan, and Yasutaka Furukawa. Ridi: Robust imu double integration. In

Proceedings of the European conference on computer vision (ECCV), pages 621–636,

2018.

[81] Yuanxi Yang, Weiguang Gao, Shuren Guo, Yue Mao, and Yufei Yang. Introduction to

beidou-3 navigation satellite system. Navigation, 66(1):7–18, 2019.

[82] Chris Yoon, Ryan Louie, Jeremy Ryan, MinhKhang Vu, Hyegi Bang, William Derksen,

and Paul Ruvolo. Leveraging augmented reality to create apps for people with visual

disabilities: A case study in indoor navigation. In Proceedings of the 21st International

ACM SIGACCESS Conference on Computers and Accessibility, pages 210–221, 2019.

161

[83] Yuan Zhuang, Jun Yang, You Li, Longning Qi, and Naser El-Sheimy. Smartphone-based

indoor localization with bluetooth low energy beacons. Sensors, 16(5):596, 2016.

[84] Zheng Zuo, Liang Liu, Lei Zhang, and Yong Fang. Indoor positioning based on bluetooth

low-energy beacons adopting graph optimization. Sensors, 18(11):3736, 2018.

162

	List of Figures
	List of Tables
	Abstract
	Acknowledgments
	Introduction
	Related Work
	Indoor/Outdoor Localization Systems
	Wi-Fi-Based Indoor Positioning
	BLE-Beacon-Based Indoor Positioning
	Visual Odometry
	Magnetic-Based Indoor Positioning
	Ultra-Wide Band-based Indoor Localization System
	GNSS-Based Outdoor Localization Systems

	Inertial Sensor-Based Localization
	Strap-Down Inertial Navigation
	Pedestrian Dead Reckoning
	Learning-Based Odometry

	Localization for Blind People
	Indoor Scenario
	Outdoor Scenario

	Inertial Sensor Data Sets
	Conclusion

	Map-Less Indoor Turn Detection
	Problem Statement
	Kalman Filter - Review
	State Initialization and Matrix Definitions
	Prediction Step
	Update Step

	Mixture Kalman Filter
	Straight Walking (SW) Detector
	Optimizing Turn Detection
	Conclusion

	Map-Assisted Localization
	Problem Statement
	Particle Filter
	Algorithm Steps
	Drawbacks

	Particle Filter-Based Localization
	Implementing Particle Filters for Localization

	Multiple Clustering Problem
	Mean-Shift Algorithm
	Calculating the Final Position Output

	Conclusion

	Particle Filtering for Indoor Localization
	Available Data
	Map Information
	IMU Sensor

	States Definition
	Implementation Details
	Prediction Step Details
	Update Step Details
	Resampling Step Details
	Extreme Case Handling for Indoor Scenario

	Conclusion

	Particle Filtering for Outdoor Localization
	Available Data
	Map Information
	GPS Signal
	IMU Sensor
	Altimeter

	States Definition
	Implementation Details
	Prediction Step Details
	Update Step Details
	Resampling Step Details
	Extreme Case Handling for Outdoor Scenario

	Conclusion

	Experiments on the WeAllWalk Dataset
	Training/Testing Modalities
	Turn Detection
	Path Reconstruction
	Evaluation Metrics
	Map-less Path Reconstruction
	Map-assisted Path Reconstruction
	Results Visualization

	Conclusion

	Experiments with Indoor Navigation
	Indoor Navigation Application Introduction
	Localization Model Details
	Utilizing IMU Sensor Data: Two PDR methods
	Calibration Methods
	Map Information
	Sensor Fusion Algorithm

	User Interface Design
	Experimental Results
	Experimental Procedure
	User Study
	Experiment Details and Localization Results
	Challenges and Issues: Discussion

	Online GeoJSON File Processing Service
	Front-end Website Introduction
	Back-end API Introduction

	Conclusion

	Experiments with Transit Hub Navigation
	Outdoor Navigation Application Introduction
	Localization Model Details
	Transit Hub Information
	Utilizing IMU Sensor Data
	Map Information
	GPS Usage
	Sensor Fusion Algorithm
	Fail-safe Mechanism

	User Interface Design
	User Interface
	Route Compass

	User Interface for Challenging Spots
	Challenging Spots: Underground Tunnel Entrance
	User as a Sensor
	Challenging Spots: Finding Entrance to a Ramp

	Experimental Results
	Experimental Procedure
	User Study
	Experiment Details and Localization Results
	Challenges and Issues: Discussion

	Conclusion

	Ablation Study
	Observations
	Quantitative Study Results: Complete Trail
	Quantitative Study Results: Distinct Areas
	Open Space
	Overground Areas with Map information
	Overground: Southbound Area
	Overground: Northbound Area
	Underground

	Conclusion

	Conclusion and Open Problems
	Conclusion
	Open Problems

	Bibliography

