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This work reports a precise measurement of the reactor antineutrino flux using 2.2 million inverse
beta decay (IBD) events collected with the Daya Bay near detectors in 1230 days. The dominant
uncertainty on the neutron detection efficiency is reduced by 56% with respect to the previous
measurement through a comprehensive neutron calibration and detailed data and simulation
analysis. The new average IBD yield is determined to be (5.91±0.09)×10−43 cm2/fission with total
uncertainty improved by 29%. The corresponding mean fission fractions from the four main fission
isotopes 235U, 238U, 239Pu, and 241Pu are 0.564, 0.076, 0.304, and 0.056, respectively. The ratio of
measured to predicted antineutrino yield is found to be 0.952±0.014±0.023 (1.001±0.015±0.027) for
the Huber-Mueller (ILL-Vogel) model, where the first and second uncertainty are experimental and
theoretical model uncertainty, respectively. This measurement confirms the discrepancy between
the world average of reactor antineutrino flux and the Huber-Mueller model.

I. INTRODUCTION

Nuclear reactors are an intense man-made source
of electron antineutrinos and were used for the first
observation of the neutrino [1]. Electron antineutrinos
can be detected through inverse beta decay (IBD)
on target protons, where a prompt positron and a
delayed neutron capture signals are measured in time
coincidence. Since the early 2000s, the energy and
baseline (the distance between source and detector)
dependent neutrino disappearance at nuclear reactors [2–
4] has provided strong evidence of neutrino oscillation [5–
7]. However, a recent re-evaluation of the theoretical
prediction (referred to as Huber-Mueller model [8, 9])
of the reactor neutrino flux resulted in a ∼6% deficit in
measured flux from short-baseline experiments [10] and
the previous ILL-Vogel model [11–14]. The difference
between the data and Huber-Mueller prediction, i.e. the
so-called “reactor antineutrino anomaly” (RAA), could
be interpreted as active-to-sterile neutrino oscillation
with a mass-squared splitting (∆m2) around 1 eV2.
It is also shown in Refs. [15–17] that the allowed
parameter space is compatible with earlier anomalies
from LSND [18, 19], MiniBooNE [20], GALLEX [21],
and SAGE [22]. On the other hand, a number of
authors [23–26] have argued that the RAA may be due
to the theoretical uncertainties in the flux calculations.
Recent antineutrino flux evolution results from Daya Bay
are in tension with the sterile-neutrino-only explanation
of RAA [27].

∗ Now at Department of Chemistry and Chemical Technology,
Bronx Community College, Bronx, New York 10453

The uncertainty of the reactor antineutrino flux in
our previous measurement [27] is dominated by the
uncertainty of neutron detection efficiency. The neutron
detection efficiency was determined to be εn = (81.83 ±
1.38)% [28, 29], and the ratio with respect to the total
uncertainty is σ2

εn/σ
2
total = 65%. To further elucidate

the RAA situation, this work presents an updated flux
measurement from Daya Bay using the same 1230-day
data set, but with a more precise determination of the
neutron detection efficiency. Key improvements include
an elaborated neutron calibration campaign covering
a wide range of neutron energy and positions, an
improved simulation with different physics models, and
a data-driven correction to the neutron efficiency.

This paper is organized as follows. In Sec. II, we
explain the general method to measure reactor neutrino
yield, and highlight our approach here to improve its
estimate. Sec. III discusses the neutron calibration
campaign and the analysis of calibration and simulation
data. In Sec. IV we present an improved reactor
antineutrino flux measurement and a comparison with
the world data and theoretical models.

II. METHOD

A. Overview of procedure

The Daya Bay experiment has four near and four
far identically designed antineutrino detectors (ADs),
located at different baselines (360 m–1900 m) [30]
measuring the electron antineutrino flux from six reactor
cores. The structure of the detector is shown in Figure 1.
Each AD consists of a cylindrical target volume with 20
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4-m acrylic vessel
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Gd-loaded liquid 
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FIG. 1. Schematic diagram of the Daya Bay antineutrino
detector. On the top, three automated calibration unit
(ACU-A, B, and C), are installed. The three related vertical
calibration axes are shown as the dashed lines, with all the
locations of the calibration points highlighted.

tons of 0.1% gadolinium loaded liquid scintillator (GdLS,
3.1 m in diameter and 3.1 m in height), surrounded by
a layer of 42-cm thick liquid scintillator (LS) to enclose
the gammas or electrons escaped from the central GdLS
region. The GdLS and LS are separated by a 1-cm
thick acrylic vessel. An energy deposit in the GdLS
and LS regions is detected by photomultiplier tubes
(PMTs). The origin of the coordinate system is set at
the geometrical center of the GdLS cylinder, with the
z-axis pointing up. IBD neutrons are detected by delayed
capture either on hydrogen emitting one 2.2 MeV gamma
or on gadolinium emitting several gammas with total
energy of about 8 MeV. The kinetic energy of the IBD
neutrons is less than 50 keV. The average capture time
in the GdLS region is about 28.5 µs and 216 µs in the
LS [31].

The reactor antineutrino IBD candidates are selected
with the same criteria as in Ref. [32], which are also
described here. 1) Removal of events caused by PMT
light emission. 2) The time between the prompt and
delayed signal is in the range of [1, 200] µs. 3)
Prompt signal must have a reconstructed energy, E,
between 0.7 and 12 MeV. 4) Delayed signal must have
E between 6 and 12 MeV to select gadolinium captures.
5) Muon anti-coincidence. 6) Multiplicity cut to remove
events with E > 0.7 MeV in the interval 200 µs before
the prompt signal, 200 µs after the delayed signal,
or between the prompt and delayed signals. The
dominant backgrounds are accidental coincident events
and cosmic-ray muon induced 9Li/8He, which are less
than 2% of the signal IBD rate for the four near ADs.
After statistical subtraction of background, the total
number of IBD signals, NIBD, is 2.201× 106 for the four
near detectors.

To compare to the theoretical predictions, the reactor
antineutrino yield σf , defined as the number of
antineutrinos times IBD cross-section per fission, can be
calculated by solving the following equation:

NIBD(1− cSNF) = σf

4∑
d=1

6∑
r=1

NP
d εIBDP

rd
surN

f
r

4πL2
rd

, (1)

where the index d is for four near detectors, index r is
for the six reactor cores, NP

d is the number of target
protons of detector d, εIBD is the IBD detection efficiency,
P rdsur is the mean neutrino survival probability from the
reactor r to detector d, Nf

r is the predicted number
of fissions of the rth reactor core, Lrd is the distance
from reactor r to detector d, and cSNF is a correction
term for spent nuclear fuel. P rdsur is calculated by
integrating the cross-section-weighted oscillation survival
probability over the ν̄e energy spectrum, using sin2 2θ13
and |∆m2

ee| determined from the same data [32]. The
average oscillation correction for near detectors is 1.5%.

The IBD detection efficiency is divided into two
factors:

εIBD = εn × εother, (2)

where εn is the neutron selection efficiency due to the [6,
12] MeV cut and εother is for the PMT light emission,
prompt energy, and coincident time cuts.

The predicted number of fissions of the rth reactor core
is

Nf
r =

∫
Wr∑4

iso=1 f
iso
r Eiso

dt, (3)

where Wr is the thermal power of the rth core, Eiso is
the mean energy released per fission for each isotope, and
f isor is the average fission fraction of the rth core for each
isotope, and the ratio is integrated over the live time of
the detectors. The original thermal power and fission fuel
composition data are provided by the power plant. cSNF

was estimated to be (0.3± 0.3)% previously [29].
Different components of relative uncertainties for the

antineutrino yield measurement from previous work [28,
29], including εn and εother, are summarized in Table I.
Clearly εn dominates the uncertainty, and is the target
of improvement in this paper.

B. Principle of improvement

The neutron detection efficiency, εn, is composed of
three individual factors.

• The Gd capture fraction is the fraction of neutrons
produced by IBD in the GdLS target that are
captured on Gd. The capture fraction is lower at
the edge of GdLS volume because neutrons may
drift into un-doped LS volume (spill-out effect).
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TABLE I. Summary of relative uncertainties for the flux
measurements and the measured flux to model prediction
ratio measurements in our previous study [29] and this work.
Central values of the detector efficiencies, εn and εother, are
also listed.

Previous This work
source value rel. err. value rel. err.
statistic - 0.1% - 0.1%
oscillation - 0.1% - 0.1%
target proton - 0.92% - 0.92%
reactor

power - 0.5% - 0.5%
energy/fission - 0.2% - 0.2%
IBD cross section - 0.12% - 0.12%
fission fraction - 0.6% - 0.6%
spent fuel - 0.3% - 0.3%
non-equilibrium - 0.2% - 0.2%

εIBD

εn 81.83% 1.69% 81.48% 0.74%
εother 98.49% 0.16% 98.49% 0.16%

total - 2.1% - 1.5%

• The nGd gamma detection efficiency is the fraction
of neutron Gd capture signals with detected gamma
energy above 6 MeV.

• Spill-in: efficiency increase due to IBD events
produced in the LS and acrylic but with neutron
capture on Gd.

We note that the estimation of Gd capture fraction and
spill-in effects are strongly correlated since they are both
driven by the modeling of neutron propagation including
neutron scattering in materials and the subsequent
nuclear capture. The estimation of the nGd gamma
detection efficiency depends on the modeling of gamma
emission including the multiplicity and energy spectrum
of the emitted gammas.

In the previous study [29], we attempted to use
different neutron calibration data to estimate these
individual effects. The main difficulty was that no data
can cleanly separate their uncertainties. In this paper,
instead, we evaluate εn and its uncertainty directly using
a new neutron calibration data set and a data-simulation
comparison. This approach is data driven and allows a
significant reduction of the uncertainty.

III. IMPROVED DETECTION EFFICIENCY
ESTIMATION

A. Neutron calibration campaign

An extensive neutron calibration campaign was carried
out in Daya Bay at the end of 2016. Two types
of custom sources were fabricated, 241Am-13C (AmC,
neutron rate ∼ 100 Hz) [33] and 241Am-9Be (AmBe,
neutron rate ∼ 30 Hz). They produce neutrons through
13C(α, n)16O or 9Be(α, n)12C reactions with the final

nucleus either in the ground state (GS) or excited state
(ES). The kinetic energy of the neutrons from AmC
(AmBe) in the GS and ES are [3, 7] MeV ([6, 10] MeV)
and <1 MeV ([2, 6] MeV), respectively. Calibration
events are formed from the prompt energy of the proton
recoil and deexcitation gammas, if 16O∗ or 12C∗ is
created, and the delayed neutron capture. The high
neutron rate and delayed-time-coincidence present a high
signal-to-background ratio for the calibration study.

The sources, sealed in a small stainless steel cylinder
(8 mm in both diameter and height), were enclosed in
a highly reflective PTFE (Polytetrafluoroethylene) shell.
These sources were deployed vertically into a near-site
AD using the automated calibration units (ACUs) [34]
along the central axis (ACU-A), an edge axis of GdLS
at a radius of 1.35 m (ACU-B), and through a middle
axis of the LS layer at a radius of 1.77 m (ACU-C).
During deployment, the absolute precision of the source
z location is 7 mm [34]. All calibration positions are
illustrated in Figure 1. In total, data in 59 different
source (final nucleus states) and location points (SLPs),
were collected.

Delayed coincidence events for the calibration sample
are selected with a time requirement of 1 µs < ∆t <
1200 µs for all events with E between [0.3, 12] MeV. The
1200 µs selection cut is set to efficiently include neutron
captures in the LS and acrylic region. Two example
distributions of the prompt-delay energies of AmC
(ACU-B z=0 m) and AmBe (ACU-B z=0 m) samples are
shown in Figure 2 and Figure 3, respectively. The data in
different channels are selected using the following prompt
energy cut: [0.3, 4] MeV for AmC GS, [5.5, 7] MeV for
AmC ES, [1, 4] MeV for AmBe GS, and [4.2, 7] MeV
for AmBe ES. The accidental background contributes
0.1–20% of the neutron candidates depending on the SLP,
and is estimated by randomly paired single events [31].
The reactor antineutrino and cosmogenic backgrounds
are estimated by applying the same selection cuts on
the data acquired immediately before and after the
calibration campaign. They contribute <0.1% to the
neutron source signals. All of these backgrounds are
statistically subtracted.

B. Neutron and gamma modeling in simulation

The neutron calibration data were compared to the
model predictions obtained using the Geant4-based [35]
(v4.9.2) Daya Bay Monte Carlo (MC) simulation
framework NuWa [3, 30] with improvements to the
calibration pipe geometry, detector energy response, and
neutron transport modelling [36]. These modifications
improve the agreement between the neutron calibration
data [32] and simulation.

Neutrons lose energy through various scattering
processes before capture on a nucleus. There are no
scattering models in Geant4 for the Daya Bay scintillator
(average hydrogen-to-carbon ratio CH1.61∼1.64) or acrylic
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FIG. 2. The prompt vs. delayed energy distribution of one
AmC sample (ACU-B z=0 m). The selected ground state
(GS) and excited state (ES) are indicated. The clusters in
the prompt energy spectrum between [4, 5.5] MeV are caused
by 12C(n,nγ)12C, and are not used. Negative bin content is
due to background subtraction.
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FIG. 3. The prompt vs. delayed energy distribution of one
AmBe sample (ACU-B z=0 m). The selected ground state
(GS) and excited state (ES) are indicated. Negative bin
content is due to background subtraction.

(C5O2H8). Above 4 eV, a generic Geant4 model,
“G4NeutronHPElastic” can be selected for neutron
simulation. Below 4 eV, three possible options from
the Geant4 data libraries are an elastic scattering model
without molecular bonds (“free gas”), a water model
(H2O), and a polyethylene model (CH2, “poly”) [35].
The latter two models are built based on the ENDF
database [37] and are quite different from the free gas
model. The total scattering cross-section as a function
of energy for the three models is shown in Figure 4. To
approximate the Daya Bay (scintillator, acrylic) material
pair, five combinations (Table II) of models were studied,

Energy [eV]
3−10 2−10 1−10 1

C
ro

ss
 s

ec
tio

n 
[b

ar
n]

20

40

60

80

100

120

140
water
polyethylene
free gas

FIG. 4. Total scattering cross-section as a function of neutron
kinetic energy for three models. The data are extracted from
Geant4 simulation.

including a) (water, free gas) b) (water, poly), c) (poly,
poly), d) (poly, free gas), and e) (free gas, free gas).

For the neutron capture gamma energy and
multiplicity distributions, four different models (Table II)
were selected, including 1) a native Geant4 model, 2) a
Geant4 model with the photon evaporation process, 3) a
model based on the Nuclear Data Sheets by L. Groshev et
al. [38], and 4) a model based on the measured single
gamma distribution of nGd capture at Caltech [29].
The energy spectra of the deexcitation gammas of
gadolinium-155 and 157 are shown in Figure 5(a) and
Figure 5(b), respectively, for these models. The gamma
model-3 has the hardest gamma spectra.

The 20 available combinations provided by the five
neutron scattering model combinations (a-e) and the four
gamma models (1-4) are used to estimate εn. Model a-1
was used in the previous analyses [29, 32].

C. Data and simulation comparison

For each calibration SLP, a ratio F is calculated.

F =
N([6, 12] MeV)

N([1.5, 12] MeV)
, (4)

where N([6, 12] MeV) and N([1.5, 12] MeV) are the
numbers of events with reconstructed delayed energy in
the range of [6, 12] MeV and [1.5, 12] MeV, respectively.
1.5 MeV is chosen to include the hydrogen capture
peak. F is very sensitive to the relative strength of
H vs. Gd capture peaks and the containment of the
8 MeV of gamma energy from nGd capture, and therefore
provides a crucial benchmark for the neutron and gamma
simulation models. For the 59 calibration SLPs, a χ2

is constructed to measure the overall difference between
data and MC predictions,

χ2 = (Fdata − FMC)T · V −1 · (Fdata − FMC), (5)
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TABLE II. Summary of five neutron scattering model combinations and four gamma models, including the efficiency for
detecting inverse beta decay neutrons and the χ2 with 59 calibration source-location points. See text for details.

εn,χ2 1. Geant4 native 2. Geant4 Phot. Eva. 3. Nuclear Data Sheets 4. Caltech
a. water, free gas 82.23%, 76.0 82.35%, 86.4 80.56%, 316 82.55%, 156
b. water, poly 81.75%, 52.1 81.93%, 85.1 80.42%, 350 82.43%, 119
c. poly, poly 81.61%, 56.6 82.00%, 63.9 79.96%, 389 82.00%, 96.9
d. poly, free gas 82.01%, 57.7 82.28%, 79.9 80.28%, 371 82.36%, 115
e. free gas, free gas 84.76%, 1183 84.65%, 1273 82.70%, 576 85.37%, 1569
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FIG. 5. Energy distribution of the deexcitation gammas of
155Gd (a) and 157Gd (b) for the four models as indicated in
the legend.

where (Fdata − FMC) is a vector with 59 elements of
the difference of F between the data and MC, and V
is the covariance matrix. For most of the calibration
points, the statistical uncertainty is dominant, but for
the points near a GdLS boundary (ACU-A top, ACU-A
bottom, ACU-B top, or ACU-B bottom), the distance to
the acrylic and LS volume is comparable to the neutron
drift distance, so they share a large common uncertainty
due to the source location z uncertainty. The χ2 and εn
values for all models are shown in Table II. The eight

combinations with either neutron model-e or gamma
model-3 are discrepant (χ2 > 300), and therefore are
excluded. The remaining twelve (4×3) models agree with
the data reasonably well with χ2 in the range of 52.1–156
(“reasonable models”). The best model with minimum
χ2 is model b-1. In Figure 6, the delayed energy spectra
at two boundary calibration locations from data are
compared to models b-1 and e-1, where model b-1 shows
a better agreement with data for F .

The data and best MC F values and their differences
are shown explicitly in Figure 7 for all sources and
locations. The systematic variations among the twelve
reasonable models are overlaid, where the full spread
among them, maximum minus minimum, are plotted
as the gray bars. The variation in F from 1 to 85%
for the 59 data points is due to the differences in the
local geometry and neutron kinetic energy and is well
reproduced by simulation. For most points, the best
MC model, b-1, reaches an agreement with data at the
sub-percent level, and the residual difference is mostly
smaller than the model spread. Another quantity, F ′ =
N([3, 4.5] MeV)/N([3, 12] MeV), is also constructed,
which is also sensitive to the gamma model and energy
leakage. The same data-model comparison procedure
confirms that gamma model 3 should be rejected and
that gamma model 1 is reasonable.

To further investigate potential effects due to the
discreteness of the calibration sources and the energy
difference between neutron sources and IBD neutrons, we
exploited a large sample of IBDs from data as a special
SLP to be compared to the model prediction. Due to the
resolution in position reconstruction, selection of pure
GdLS IBDs is impossible. Instead, a GdLS+LS IBD
sample from all four near site ADs were selected using
cuts identical to those used on the neutron calibration
data (Sec. III-A), except that the prompt energy cut
was adjusted to be greater than 3.5 MeV to suppress
accidental background. About 2 million GdLS+LS IBD
events in total were selected. The measured ratio F is
consistent AD to AD with an average of 47.1%±0.1%.
The ratio from model b-1 is 47.0%, and the full model
spread is from 46.7% to 47.5%.

D. Neutron detection efficiency determination

Each model can give a prediction on εn for IBDs (see
Table II). For the twelve reasonable models, εn ranges
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FIG. 6. Delayed energy spectra of neutron sources at
two calibration locations for data and simulation and the
corresponding residual plots (MC-data). Two MC models,
b-1 (best fit) and e-1 (rejected), are overlaid. Normalization
is determined using the integral between 1.5 and 12 MeV.
The difference of relative gadolinium/hydrogen capture ratio
between sub-figure (a) and (b) is due to the relative position
to the GdLS volume. In (b), a weak signal of neutron capture
on carbon can be seen. In (b), a mismatch of the energy scales
of data and MC at nH peak is observed, but our selection cut
efficiency is not sensitive to the difference.

from 81.61% (model c-1) to 82.55% (model a-4), and
that from model b-1 is 81.75%. Instead of taking the
prediction as is, one can translate the data and MC
difference in F to a correction to εn, since the two
are intrinsically correlated (linear to the lowest order)
through the neutron and gamma models mentioned
above. In mathematical form, for the ith SLP, we have

εn = ci · (Fdata,i − FMC,best,i) + εMC,best, (6)
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FIG. 7. Upper panel: The measured and best MC model
(b-1) values of F for AmC and AmBe (ground and excited
states) neutrons at three calibration axes and different z
positions. The model spread of F , maximum minus minimum,
for each source-location point are also shown. The results at
z=-1.45 m and -1.6 m are plotted together as are 1.5 m and
1.6 m. Lower three panels: The difference of data and best
MC in F along the three vertical calibration axes, with the
data and MC uncertainties combined. The gray bars indicate
the spread of the twelve reasonable MC models relative to the
best model.

where εMC,best is the neutron detection efficiency given by
the best MC model. ci characterizes the linear correlation
between Fi and εn, and can be estimated through a
linear regression (fit) using predicted values of εn and
Fi from all 20 MC models. This procedure is illustrated
in Figure 8. The eight rejected models were also included
here by default as larger variations in εn and F are
allowed. Excluding them from the fit does not change
the result (See Figure 8 for an example). In addition
to εn determined from 59 individual SLPs, a multiple
regression procedure was also applied to model the linear
relation between εn and F from a set of SLPs. Taking
all values of corrected εn into account, a shift of −0.27%
with a standard deviation of 0.47% was obtained, relative
to that from the best model (81.75%). The standard
deviation of 0.47% is consistent with the model spread
on εn.

Aside from the model uncertainties, other systematic
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FIG. 8. F−FMC,best vs. εn−εMC,best for the 20 MC models at
two example SLPs. The vertical dashed line and the shaded
band indicates the mean and uncertainty of measured F with
data. The vertical intercept of the linear fit passing through
the best MC model (solid blue line) with the vertical dashed
line gives the corrected value of εn.

effects (e.g. gadolinium abundance, source geometry,
absolute energy scale, and material density variations)
have been studied in the MC and found to be negligible.

Based on the above discussions, the final IBD neutron
efficiency after the correction is εn = ((81.75 − 0.27) ±
0.60)% = (81.48± 0.60)%, where 0.60% is conservatively
estimated using the half-spread, 0.47%, of εn predicted
by all reasonable models (listed in Table II.) plus the
statistical uncertainty from the MC, 0.12% (absolute
uncertainty).

IV. ANTINEUTRINO YIELD AND
COMPARISON WITH PREDICTION

Using the new neutron detection efficiency εn and
Eq. 2, the IBD detection efficiency εIBD is (80.25 ±
0.61)%. Using the procedure as in Eq. 1, the mean IBD

reaction yield per nuclear fission is

σf = (5.91± 0.09)× 10−43 cm2/fission, (7)

where the major uncertainties (Table I) are from the
target proton fraction 0.92% (relative uncertainty),
dominated by the hydrogen-to-carbon ratio due
to instrumental uncertainty in the combustion
measurements, and reactor-related uncertainty 0.90%
(relative uncertainty) due to reactor power and fission
fractions.

The ratio of the yield to the prediction of the
Huber-Mueller (or ILL-Vogel) reactor model can be
calculated. The effective fission fractions for four fission
isotopes are defined as

fiso =

4∑
d=1

6∑
r=1

NP
d P

rd
surN

f,iso
r

L2
rd

/

4∑
d=1

6∑
r=1

NP
d P

rd
surN

f
r

L2
rd

,

(8)
where iso refers to one of the four major fission isotopes,
i.e. 235U, 238U, 239Pu, and 241Pu, Nf,iso

r is the predicted
number of fissions contributed by the isoth isotope in
the rth reactor core, and other symbols are defined in
Eq. 1. In the analyzed data, the effective fission fractions
for the four fission isotopes (235U, 238U, 239Pu, and
241Pu) are determined to be (0.564, 0.076, 0.304, and
0.056), respectively. The predicted IBD yield is the sum
due to all four isotopes, including corrections due to
nonequilibrium effects,

σf =

4∑
iso=1

fiso

∫
(Siso(Eν) + kNE

iso (Eν))σIBD(Eν)dEν ,

(9)
in which Siso(Eν) is the predicted antineutrino spectrum
for each isotope given by Huber-Mueller or ILL-Vogel
model, σIBD(Eν) is the IBD cross section, and kNE

iso (Eν)
corrects for the non-equilibrium long-lived isotopes. The
calculation integrates over neutrino energy Eν and the
non-equilibrium effect contributes +0.6% [29]. The ratio
between the measured to predicted reactor antineutrino
yield R is 0.952 ± 0.014 ± 0.023 (Huber-Mueller) and
1.001 ± 0.015 ± 0.027 (ILL-Vogel), where the first
uncertainty is experimental and the second is due to
the reactor models themselves. A breakdown of the
experimental uncertainties can be seen in Table I (see also
Ref. [29]). The uncertainties from power, spent fuel, and
non-equilibrium are treated to be uncorrelated among
different reactor cores in the oscillation analysis [32],
and those from fission fraction, IBD cross section, and
energy/fission are treated to be correlated. They are
conservatively treated as fully correlated in this analysis,
and the total reactor-related uncertainty is 0.9%. The
total experimental uncertainty has been reduced to
1.5%, which is a relative 29% improvement on our
previous study. The new flux measurement is consistent
with the ILL-Vogel model, but differs by 1.8 standard
deviations with respect to the Huber-Mueller model,
with the uncertainty now dominated by the theoretical
uncertainty.
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distance from the reactor to detector. Each ratio is corrected
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2.4% model uncertainty is shown as a band around unity. The
measurements at the same baseline are combined together for
clarity. The Daya Bay measurement is shown at the flux
weighted baseline (578 m) of the two near halls.

With the new result, a comparison with the other
measurements is updated using the same method
presented in Ref. [29]. A summary figure is shown in
Figure 9. The Daya Bay new result on R is consistent
with the world data. The new world average of R is
0.945± 0.007 (exp.)± 0.023 (model) with respect to the
Huber-Mueller model. This more precise measurement
further indicates that the origin of RAA is unlikely to be
due to detector effects.

V. SUMMARY

In summary, an improved antineutrino flux
measurement is reported at Daya Bay with a 1230-day
data set. The precision of the measured mean IBD
yield is improved by 29% with a significantly improved
neutron detection efficiency estimation. The new reactor
antineutrino flux is σf = (5.91±0.09)×10−43 cm2/fission.
The ratio with respect to predicted reactor antineutrino
yield R is 0.952 ± 0.014 ± 0.023 (Huber-Mueller) and
1.001 ± 0.015 ± 0.027 (ILL-Vogel), where the first
uncertainty is experimental and the second is due
to the reactor models. This yield measurement is
consistent with the world data, and further comfirms
the discrepancy between the world reactor antineutrino
flux and the Huber-Mueller model.
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