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EPIGRAPH

No man thoroughly understands a truth

until he has contended against it.

—Ralph Waldo Emerson

Furious activity is no substitute for understanding

—H. H. Williams
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ABSTRACT OF THE DISSERTATION

Systems and Language Support for Building Correct, High Performance

Distributed Systems

by

Charles Edwin Killian, Jr.

Doctor of Philosophy in Computer Science

University of California San Diego, 2008

Professor Amin Vahdat, Chair

Daily life involves the use of computers for everything from interpersonal com-

munication to banking and transportation. But while everyday computation has be-

come more decentralized and disconnected, advances in programming and debugging

have centered on individual processes. It is still very challenging to write correct,

high-performance distributed systems. Programmers can choose either to sacrifice

correctness by accepting the complexity of building a distributed system from the

ground up, or to sacrifice performance by using generic toolkits and languages which

provide simplifying functionality like RPC, memory transactions, and serialization,

which makes it easier to code correct systems. Where performance is deemed higher

priority, systems are generally built using C++, and debugged by printing logs at each

node and using ad-hoc tools for analysis, leading to complex, brittle implementations.

This dissertation posits that language support can significantly simplify the

development of distributed systems without sacrificing performance, and can enable

analysis to automatically find and isolate deep bugs in implementations affecting both

xvi



performance and correctness of distributed systems. We focus on finding a middle-

ground between the canonical distributed systems design abstraction, state machines,

and the classical programming tools used for modern high-performance distributed

systems, C++, awk, sed, and gdb. That middle ground is a C++ language extension

wherein users implement a distributed system using syntax yielding the performance

and control of C++, but in a restricted programming model forcing them to structure

their system as a state machine.

This dissertation presents the Mace language extension, runtime, and tools.

Mace makes it possible to develop new high-performance distributed systems in a

fraction of the time. We implemented more than 10 significant distributed systems

using Mace, each both shorter and as fast, or faster, than the original. Structured

programming in Mace also enabled development of the first model checker capable of

finding liveness violations in unmodified systems code, and an automated performance

tester to detect and isolate anomalies. These have been used to find and isolate

previously unknown or elusive bugs in mature Mace implementations. Mace has been

publicly available for four years, and is used worldwide by academic and industrial

researchers in their own research.
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Chapter 1

Introduction

Distributed systems are critically important today. Computers that control

everything from stock markets and communication networks to transportation sys-

tems and hospitals are increasingly interconnected, with distributed computation and

communication vital to their correct functioning. Moreover, these systems must ex-

ecute not only correctly, but at a level of performance that significantly limits their

implementation options. This combination of correct execution at high performance

makes them a challenge to program. Despite the best efforts of systems developers

over the past 30 years, we still produce systems with latent bugs or issues that are

often discovered only by the end-user in production systems. Alternately, the systems

may be inefficiently designed or under provisioned, causing them to perform poorly

during periods of high load.

Failures of these distributed systems, while somewhat rare, are often spectac-

ular and become headline news. There are the cases in which distributed systems

failures cause the markets to cease trading [And05, Pre06], or their indexes to be

incorrectly maintained [PLS07]. There are also cases in which communication sys-

tems, either telephonic [Gar05] or internet-based [Ara07] suffer complete failure due

to bugs. In other cases, network connectivity failures or high load halts transportation

systems [Car07, Pre07] and hospitals [Pre03].

1



2

1.1 Today’s Distributed Systems

The field of modern distributed systems is about thirty years old. One of the

first such systems, Grapevine [SBN83], was an experiment in distributed systems, and

provided the first naming and service location system. Since its development, com-

munication has become even faster and more widespread. Before, it would have been

inefficient to break a computation or job into small pieces divided across vastly dis-

tributed resources, because the communication overhead of the pieces would quickly

dominate the overall task, actually causing it to perform slower than traditional com-

putation. But today, with new, fast, widely deployed networks, it makes sense to

share the load across resources potentially distributed internationally.

Computers and distributed systems play a role in a wide variety of industries,

and an entire survey could be written about them. This introduction will focus on

just three industries whose distributed systems, and their failures, are well known

throughout the world: financial, communication, and transportation systems.

Financial Systems

Banking systems are tightly interconnected, including e-check processing sys-

tems, credit card processing systems, ATMs, branch offices, and so forth. Before these

distributed systems, but after the aforementioned forms of payment were introduced,

sellers accepting these payment types were often at risk that the payment would not

go through, and the seller would have to track down the buyer to collect money. Now,

distributed systems have been established which connect the sellers and processing

systems to the bank accounts. Verification takes place instantly, ensuring that the

buyer has the money he/she is trying to spend. These systems are especially critical

to program correctly because they are tracking someone’s hard-earned money, and

errors usually either mean the bank loses or the client loses, because of incorrect bal-

ances. Plus, there must be a coordination process between these systems, because the

customer may be conducting several transactions at once, and expects a consistent

view of what is going on in the bank account. Thus it is important to verify, given

all the ways two transactions might interleave, that the balances match up with the

transaction history. One common problem occurs if two processes read the balance
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at the same time, each apply their transaction to that balance, then write the value

back. If there is no detection of the concurrent transactions, then the first transaction

to complete will essentially be lost when the second one completes.

But beyond just tracking an individual bank account, today’s distributed sys-

tems also control the stock market. Stock values, purchase requests, and sell requests

are all exchanged in a high-volume trading system around the world, both in pri-

vate networks for brokerage firms and on the public internet. Designing distributed

systems that effectively handle the high trading volume is a rather challenging task.

Added to this burden is the addition of program trading, which in essence is when a

computer program is written to automatically trade stocks under a set of conditions

for which it then monitors. These two properties can in fact combine to produce

conditions where the market races out of control, with the program traders adding

significant load to the system as a whole, leading to a vicious cycle. Take for example

a program trader that detects a significantly declining market and sells off stocks to

get out before they decline too much. The program trader is unwittingly contributing

to the decline of the market, and thus triggering other program trading with similar

policies. This series of events causes the trading volume to increase overall, stressing

market systems.

Safeguarding our market system against overloaded systems, software bugs,

and instabilities in program trading is an immensely complicated task. It has involved

backup systems, monitoring systems, over-provisioned networks, and the creation of

mechanisms to halt the exchange when trading gets out of control—to prevent collapse

of the economy. These systems must be maintained, tested, and themselves debugged,

to avoid recovery mechanisms that fail as soon as they are deployed, and the software

testing process for these systems must aggressively defend against a whole host of

possible problems based on seemingly random and unknown user interactions.

Communication Systems

Communication systems supporting person-to-person communication are also

a kind of distributed system, and are often dual-purpose to support a wide variety

of other distributed systems. These systems can be low-level, such as traditional
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telephony systems, which have dedicated resources for a continuous data flow, or

they can be more modern software communication packages, such as voice-over-IP

provider Skype, which provide streaming media using Internet best-effort service.

Once simple, telephone systems connected calls through the use of human

operators who physically connected patch cables to connect callers to receivers. Since

that time, call traffic has been modified to be transmitted along with other call

traffic sharing a fiber-optic channel, and routed using automated electronic switching

stations. The software for these systems is notably well tested and the PSTN (public

switched telephone network) service generally delivers what is still considered the

gold standard of 5-nines (99.999%) of reliability, better than other networks and

distributed systems. Yet even in this environment, buggy software still manages to

find its way to deployment, as evidenced in the 1990 failure of the AT&T long-distance

switching system. In this instance, a bug in the software caused the long-distance

switch to reboot, and in doing so, caused neighboring switches to suffer the same fate.

The result was a nationwide long-distance outage over a period of about 8 hours. The

bug was exercised by a certain timing of events that had not been tested, suggesting

that existing tools for testing these distributed systems were not considering the range

of possible problems.

More modern communication systems can deliver the same type of service as

traditional telephone service, but do so by splitting communication media into little

pieces, and shipping each of the pieces to destinations using the public Internet. The

most popular such service is Skype, a voice-over-IP provider with 220 million users,

5 to 6 million of whom are generally online at any given time. To save Skype’s band-

width, and ultimately money, users of Skype donate a portion of their bandwidth to

other users, routing calls around circumstances that prevent direct communication

between users. Accordingly, the Skype client executes a peer-to-peer membership

protocol to learn which peers are online, and to support the location of peers for

indirect routing. However, the Skype software designers had not properly accounted

for how the protocol would tolerate a massive restart of users’ computers at roughly

the same time, both drastically reducing the available network resources and increas-

ing the flood of join attempts. This scenario became tested in deployment after a

routine download of updates to Windows boxes through Windows Update caused a
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large quantity of Skype users to restart their computers at nearly the same time.

The result was a Skype outage affecting all users for a three day period. Again, the

environment and methodology for testing this software was not adequate to support

the scope of scenarios that might exist in deployed environments.

Transportation Systems

However, distributed systems do not always fail due to software bugs. They

can just as easily fail due to misconfiguration or under provisioning. So, it is not

sufficient to build tools that search for bugs in the programming itself, but instead

the tools must consider how interactions with the environment or variations in the

timing of events or the offered load might affect the system. Additionally, tools must

be built to enhance our ability to perform post-mortem diagnosis of what happens in

the deployed system, since inevitably we cannot solve all problems before deployment.

This is the case of two distributed systems supporting transportation systems, which

normally manage the safe and efficient transportation of people and cargo over rail

and through the air.

In both the cases of rail-management systems and flight-tracking systems,

operators are concerned with the efficient routing of moving vessels from source to

destination, but they are primarily concerned with the safety of those moving vessels

and their passengers. Unlike vehicular systems, in which routing and safety decisions

are made by independent drivers on the roadways, for railroad and airplane systems

these decisions are made under the supervision of a separate authority who handles

the routing and scheduling of all vessels through a region of space; therefore, it may

make more efficient and globally optimal decisions.

Of course, a primary requirement of these systems is that the information

about where vessels are and where they are going must be made available to the

operators making the decisions. In the case of a June 2007 aviation problem, a

computer in the Atlanta system for processing flight plans and sending them to air-

traffic controllers failed. To avoid shutting down, the traffic was diverted to the Salt

Lake City center. However, the load proved to be too much for the Salt Lake City

center, causing hundreds of flights to be cancelled or delayed.
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In a similar scenario, an engineer for Caltrain in San Francisco was attempting

to complete a network connection to a new central operations facility when the exist-

ing connection to the old central operations facility was disrupted. Initially blamed

on a computer glitch, the inability to tell where the trains were and to signal them

caused them to revert to their failsafe mode, which is to stay in their current posi-

tions. As a result there were no injuries, but at least 8 trains were stopped on the

track during rush-hour commuting.

Clearly, failures in existing distributed systems, whatever the cause, have a

huge social and financial impact on society. Failures can result from buggy software,

hardware, under-provisioning, user error, malice or misconfiguration, or more often,

a combination of multiple contributing factors. Consider next some of the specific

challenges of building and testing that are unique to distributed systems.

1.2 Challenges

There are many challenges to building correct, high-performance distributed

systems. Distributed systems must deal with network errors, disconnections, node

reboots, and widely varying latencies and throughputs. Each node in a distributed

system can only see its local state, and can only query other nodes’ state through

network messaging. This messaging has an inherent delay, so this report may not

reflect current state, making it harder to coordinate and collaborate across nodes.

Furthermore, as multiple nodes communicate with each other, the orderings of these

messages are unpredictable, despite the expectation that the message sent first will

be received first. In fact, the triangle inequality also does not apply: given three

nodes A, B, and C, if A sends messages to B and C, then B forwards a message

to C, the message from A to B to C might arrive before the message from A to C.

These unexpected orderings make it challenging to get the algorithms correct, but

they also impact performance. Performance problems can be caused by bugs in the

code that are exercised when state is inconsistent across nodes. To add insult to

injury, the nature of high-performance and real-time distributed systems also makes

it impractical to include even modest amounts of logging overhead in a deployed
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system, and therefore it is nearly impossible to piece together what happened during

execution even with logging enabled.

1.2.1 Programming Languages and Abstractions

Among the many challenges in building these systems is that currently, pro-

grammers are forced to choose between simple expression and control over perfor-

mance. Simple expression is obtained by using high-level programming languages

and/or communication services, which simplify the construction of networked sys-

tems with general purpose abstractions. However, these general purpose abstractions

tend to have lower overall performance, either due to higher overall load or the fact

that they have to do more work than necessary to accommodate for all the ways the

service might be used.

Take, for example, JAVA serialization. JAVA serialization is built under the

idea that there is an object stream, and that the process reading from the object

stream need not know the type of the object to be received next. In fact the next

object could be any JAVA object, even those not familiar to the local JVM. Addition-

ally, each field of the object may be at runtime replaced with another JAVA object

that is a derivative of the actual field type. The implication of this design decision

is that the serialized object stream must contain complete type information for each

object and field. But, for practical distributed systems, this wholly general feature is

unnecessary, as the messaging protocol will define with only few options what each

field and object in the stream should be, making the actual serialized form much more

simple. The more general JAVA form is simpler to code and use, but comes at the

cost of larger serialized message sizes, and more CPU cost to serialize and deserialize

the object.

Simple primitives for shared memory infrastructure or RPC can similarly be

used to build a wide variety of communication patterns. But often using these primi-

tives for building other abstractions is less than ideal from a performance standpoint,

for much the same reasons as JAVA serialization is not ideal. So while researchers and

prototypes sometimes use these services and languages, current distributed systems

programmers often tend to work closer to the other end of the spectrum, choosing
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a programming language that gives them complete flexibility over the performance

and details of each component. But these programming languages require the pro-

grammer to focus on every detail, not just the ones that matter for the distributed

system. The resulting large body of code leaves many cases where mistakes may be

made, which leads to bugs and errors. Plus, much of the code is tedious, following a

copy-paste-edit paradigm, where the same pattern is to be used, but must be tailored

slightly differently in each case. If a problem is later found in the pattern, each case

must be visited and fixed, and missed cases can also lead to bugs.

Also, the simpler high-level abstractions are easier to understand and reason

about, which helps those implementations be more correct than they would be using

low-level abstractions. But the practical systems are generally much more complex,

and cannot be reasoned about in any convenient way. It is possible to build tools to

process added instrumentation data collected from an actual execution of a specific

system, but these tools and systems then have to be organically grown for each

component needed, as opposed to a unified framework which is possible for higher

level systems. Of course, when it comes to debugging, even the process of adding

instrumentation can cause the result to change, making it impossible to reproduce

the problem exactly. So we either seek a way to debug the system without keeping

track of what it is doing, or to make the constant instrumentation overhead small

enough to not affect the result.

1.2.2 Runtime Variations

Concretely, consider the challenges in building a simple distributed hash-table

(DHT). A distributed hash-table distributes the buckets of a hash-table across nodes

throughout the network. In doing so, it makes it possible to build a load-balanced

system that distributes key-value pairs throughout the network. To tolerate the

inherent churn in the network, DHTs replicate data at peer nodes, so that if nodes

reboot, they download fresh copies of the data to prevent loss. Furthermore, since

the DHTs are designed to be quite large, they maintain routing tables that enable

efficient lookup of any particular datum. Generally, this means that from any node in
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the DHT, any key-value pair can be determined by routing a query through at most

lg n peers, where n is the total number of peers.

However, there are many problems which can occur that prevent this design

from being met. First, consider a reboot operation. It will download a fresh copy

of the data from a peer by design, but consider also a simultaneous query. The pro-

grammer naturally assumes the copy of the data will be received first, and tends not

to consider the rather unlikely event that a query is received before the rebooting

node can download the data again. But if the query does arrive first, a naive im-

plementation of the DHT would respond with the incorrect response that the key

has no value. This result is due to the fact that the node is a bucket maintainer for

that key, and does not have any data for it. In this case, the ordering of messages is

critical to whether a bug will be exercised. A programmer gets progressively worse

at considering all the possible scenarios as the number of nodes grows larger, causing

an exponential state space explosion.

Another problem occurs early on in the DHT execution, when the routing

tables are incomplete and only basic routing is available. In this event, nodes do not

know other good nodes to which to forward data, so the path of these queries can be

quite long. The designer’s view of this problem is that it is a “startup” problem only,

and in the steady state is not a concern. But, this view overlooks problems where

the design for the construction of routing tables takes an excessive amount of time,

and becomes a problem for the average case.

A final example problem occurs when, due to node churn, the network is left

in a bad state, and a routing loop forms. These loops can cause lookup messages to

be forwarded indefinitely through the system. Further churn can eliminate the loops,

“correcting” the system, and allowing the lookup message to complete. Instead of

observing a correctness problem, an operator would instead observe a significant

performance problem. Similarly, if the implementation language has high overhead

in terms of CPU or memory usage, or certain machines are under-provisioned or

overloaded, the performance of the whole system will degrade. This degradation is

because in a distributed system, the complete operation involves several serial steps

of nodes waiting for other nodes to complete, and the whole chain is brought down by

the weakest link. This degradation is more subtly true in parallel systems that must
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wait for the total response set before continuing—the slowest response will dominate

the performance of the overall system.

1.2.3 Heisenberg Uncertainty Principle

Determining what is happening in a distributed system is much like locating a

particle in a small region of space. Generally, users can only see the macro outputs—

that is, those outputs that are results of application behavior. To get a better look

at what is precisely happening in a distributed system, the state of the art is to add

logging to each node in the distributed system. Increasing the amount of logging

generally leads to equivalent increases in the visibility into the actions at each node.

But adding even small amounts of logging subtly affects the timings of events

in the system. This modification may prevent or mask problematic behaviors of the

system, making the error condition impossible to reproduce, even if the error condition

is observed. Additionally, too much logging can slow down the performance of the

system noticeably, an unacceptable outcome for a deployed system. Thus, distributed

systems developers expend a lot of energy in making sure their logging has a minimal

impact on the system, and can easily be disabled to achieve the best performance.

Even after instrumenting distributed systems, determining what is happen-

ing in the distributed system as a whole is still a challenging problem. Each node

generates its own independent log file. These log files are kept on a local disk, so

network I/O from logging does not impact system performance. Understanding what

happened in a slow query, for example, involves tracing the query message from the

source computer’s log, matching up each message sent and received, skipping from

log to log on different computers, and trying to piece together what happened.

Often, the exact trace of the message path is not enough to understand what

happened, as more information is needed about the state of each node when it pro-

cesses messages, and the other things going on simultaneously at the node. Under-

standing the state of the system often comprises relational properties of the variables

at each node, collected globally. For example, to see the state of a tree, one would

construct a map of the node each node considers its parent. Further, since clocks are
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not synchronized across nodes, it is non-trivial to even produce a consistent snapshot

of the system state.

1.3 Hypothesis

The hypothesis of this dissertation is that language support can significantly

simplify the development of distributed systems without sacrificing performance, and

can enable analysis to automatically find and isolate deep bugs in implementations

affecting both performance and correctness of distributed systems. This disserta-

tion provides a partial solution to the problem of building correct, high performance

distributed systems, that both advances the state of the art, and is a practical so-

lution that can be used in addition to and along with existing tools, systems, and

programming experience.

• First, this dissertation argues that a new programming language can be devel-

oped for the domain of distributed systems, that allows programmers to easily

write simple, efficient implementations that contain semantic information al-

lowing the compiler to handle tedious code, generic tools that provide useful

functionality, and automatically instrument the code with event processing and

tracing.

• Second, this dissertation argues that to effectively test distributed systems, it

is critical to test liveness properties, which ensure not only that the system

never enters a bad configuration, but that it eventually accomplishes its goals.

Further, the dissertation argues that it is possible to extend existing model

checking techniques to effectively test these properties on unmodified imple-

mentations. Using model checking also avoids the problem of determining what

happens during execution and understanding log files, because a model checker

runs the unmodified code in simulation, where the model checker, and not the

performance of the node, controls the interleaving of events.

• Third, this dissertation argues that the ideas and concepts of model checking

may be extended to develop a new set of tools which can support the location

of performance problems in distributed systems implementations. Specifically,
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these tools can help find bugs in implementations that are masked by robust

engineering, and would otherwise be ignored by correctness checking.

To this end, we have developed the Mace programming environment for dis-

tributed systems, the MaceMC model checker that can test liveness properties, and

extended MaceMC to help find and isolate performance problems in unmodified dis-

tributed systems implementations. Figure 1.1 illustrates the Mace architectural de-

sign. The user writes the state-machine representation and the interface description

of a distributed system service, which the Mace compiler translates into a high-

performance implementation, debugging hooks, and its annotated structure. These

pieces can then be used equally by user applications and tools designed to work

generically with Mace implementations such as the MaceMC model checker and its

extensions.

Figure 1.1: The Mace architectural design.
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1.3.1 Mace

We developed the Mace programming language, runtime, and toolkit to sim-

plify development of efficient, high-performance distributed systems implementa-

tions. Mace is fully operational, has been in development for five years, is pub-

licly available for download, and has been used by researchers at UCSD, HP Labs,

MSR-Asia, and a handful of universities worldwide in support of their own research

and development. We have implemented more than ten significant distributed sys-

tems in Mace, most of which were originally proposed by others. This set includes

Distributed Hash Tables [RGRK04a, RD01, SMK+01], Application Layer Multi-

cast [CDK+03, JGJ+00, KBK+05], and network measurement services [DCKM04]

ready to run over the Internet. In each of these cases, the Mace implementation was

as fast or faster than the original implementation, and two to ten times shorter in

source code. We have also used Mace in multiple graduate and undergraduate courses

as a teaching tool, where students successfully used Mace as an implementation lan-

guage for course projects.

1.3.2 MaceMC

To accompany the Mace compiler and runtime, we built many tools supporting

debugging, each taking advantage of the support available from the domain-specific

language. In particular, we built the Mace Model Checker (MaceMC), to support

systematic automated testing of unmodified Mace implementations in the many sce-

narios to which each system could be exposed, simplifying the task of finding bugs.

MaceMC can also test whether systems violate liveness properties. Once a violation

is found, MaceMC can identify the specific point where an execution becomes dead,

classifying an entire set of executions as liveness-violating, and directing the devel-

oper to the specific problem that caused the execution to violate liveness. MaceMC

has been used to find more than 50 bugs in Mace implementations, and is part of the

active development cycle for all core Mace developers.
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1.3.3 MaceMC-Performance

We also developed a variant of MaceMC to help the developer search for per-

formance problems. Performance problems are more difficult to detect automatically,

because they do not have black-and-white boundaries. They require testing that con-

siders a wide variety of probable or possible timings of events. This new variant takes

input timing distributions and generates fully-reproducible time-based executions.

It can then take anomalous executions and explore the space of similar executions,

helping the developer understand where in the execution a performance problem may

have occurred. This new technique for finding performance problems has allowed us

to find an interesting new class of bugs—correctness bugs that are masked by robust

design. For example, a bug sometimes preventing the construction of an overlay tree

may get masked by a protocol designed to recover from network partitions. This bug

would be overlooked by the original MaceMC, but found by the enhanced version

since it would cause anomalous performance.

1.4 Summary

Mace, MaceMC and the performance tester have each advanced the state of

the art towards easily building correct, high-performance distributed systems. It now

takes experienced Mace developers a fraction of the time previously needed to im-

plement a new distributed system once its design is conceived, and debugging and

testing are greatly simplified thanks to the model checker and performance tester.

Mace represents five years of development work and has been publicly available for

four years. In addition to the Mace research contributions, the Mace distribution

also represents many of the best-quality publicly-available implementations of the in-

cluded services, and by itself represents a practical contribution that users worldwide

recognize and utilize.

This dissertation presents Mace, MaceMC, and the performance-testing exten-

sion to MaceMC. Chapter 2 explores the space of related work. Chapter 3 describes

the design of the Mace language and runtime, while Chapter 4 describes the language

in detail. Chapter 5 describes the MaceMC modelchecker, and Chapter 6 describes
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the variant of MaceMC that can find performance problems. The dissertation con-

cludes with Chapter 7, which describes future directions and open problems.



Chapter 2

Related Work

The Mace toolkit includes a new domain-specific programming language, li-

braries, a model checker, and various tools for performance testing and monitoring.

It is therefore closely connected to a large body of work in the area of languages,

libraries and toolkits for building concurrent systems. We, however, focus our atten-

tion on those specific to distributed systems. It is also related to other systems for

testing, and in particular, model checkers.

2.1 Related Languages and Toolkits

The features developed in the Mace language are not wholly new. Rather,

Mace eclectically composes elements of language design available in other languages

to develop a language suitable for high-performance distributed systems.

2.1.1 MACEDON

Mace builds upon the earlier MACEDON [RKB+04] work—a domain-specific

language for fair comparisons of overlay systems. MACEDON also represents systems

as I/O automata, but does not consider how compiler extensions that restrict spec-

ifications can support model checking, high performance, debugging, etc. Whereas

MACEDON focused on building prototype lab experiments, we designed Mace as a

practical, real-world environment for developing deployable high-performance, reli-

able applications.

16
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2.1.2 State-Event Systems

The state-event-transition model on which Mace is founded is closely related

to other event-driven languages and libraries. NesC [GLvB+03] is a language for

building sensor networks with limited resources requiring static memory allocation.

Broadly speaking, several researchers have investigated language support for building

concurrent systems out of interacting components, such as Click [KMC+00] for

building routers from modules and the Flux OsKit [FBB+97] for building operating

systems. These approaches, however, target concurrent systems executing within one

physical machine rather than distributed systems scattered across a network.

2.1.3 Declarative Languages

P2 [LCH+05] is a declarative, logic-programming based language for rapidly

prototyping overlay networks by specifying data-flow between nodes using logical

rules. While P2 specifications are substantially more succinct than those of Mace, we

feel the corresponding specification is not as natural to programmers. Additionally,

the P2 authors admit their runtime sacrifices performance—performing only within

an order of magnitude for the best case. Also, while Mace is well-suited for build-

ing overlays, its applicability is broader. There is a line of work in the functional

programming community for advanced, type-safe languages for distributed compu-

tation [SLW+05]. At the moment these languages are somewhat experimental, em-

phasizing full understanding of the semantics of high-level constructs for distributed

programming and their interplay with the type system rather than enabling the rapid

deployment of robust, high-performance distributed systems.

2.1.4 Library Toolkits

Several libraries and toolkits also support many of the common primitives re-

quired for building distributed systems. Libasync [Maz01] uses a single-threaded

event-driven model that makes extensive use of callbacks. Libasync also provides

some compiler support for dealing with remote procedure calls and for generating

some of the serialization code for messaging. Another instance, SEDA [WCB01],
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provides an architecture for event-based systems. Both of these systems focus on

simplifying the implementation of event-driven code, rather than a structure for dis-

tributed systems.

2.1.5 Aspect-Oriented Programming

Mace uses ideas proposed by Aspect-Oriented Programming (AOP) [Kic96].

One of the first examples of AOP was a domain-specific language for writing dis-

tributed software [Lop96]. One primary contribution of Mace is the identification

of different concerns that comprise a distributed system—e.g. the messages, events,

transitions, failures, and logging—and designing a language that enables program-

mers to think about these in isolation. The Mace compiler seamlessly puts each of

these together to create an efficient implementation of the system. An immediate

payoff of this separation is the ease with which a programmer can log and monitor

entire event flows without cluttering the code with print statements.

2.1.6 High-Level languages

There are several high-level languages for describing network protocols, rather

than entire distributed systems. Some of these, such as LOTOS [BB87] and ES-

TELLE [BD87], are intended largely to formally specify protocols using message

passing finite state machines. Promela [Hol03] and TLA [Lam02] are two more

general languages that can be used to model concurrent systems. Instead of pro-

ducing executable systems, they compile the description into large finite state ma-

chines to exhaustively analyze for errors. RTAG [And88], based on grammars, and

Prolac [KKM99], based on an object-oriented model, are two examples of proto-

col description languages that actually compile the description into executable code.

Mace combines the benefits of both approaches by structuring the description of the

system such that the subsequent compiled implementation is amenable to exhaustive

analysis.
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2.2 Error Location Tools

Our work is related to several techniques for finding errors in software systems.

Some of these techniques fall under the broad umbrella of model checking. These

can be further classified as classical model checking, model checking by systematic

execution, and model checking by abstraction. Another related approach is the use of

dataflow-based static analyses and the analysis of program text to find errors.

2.2.1 Classical Model Checking

“Model checking,” i.e., checking a system described as a graph (or a Kripke

structure) was a model of a temporal logic formula independently invented two 1981

research papers [CE81, QS82]. A Turing award was recently awarded for this research

result. Advances like Symmetry Reduction, Partial-Order Reduction, and Symbolic

Model Checking have enabled the practical analysis of hardware circuits [McM00,

AHM+98], cache-coherence and cryptographic protocols [DDHY92], and distributed

systems and communications protocols [Hol97]. SPIN [Hol97] introduced the idea

of state-hashing used by MaceMC. However, the tools described above require the

analyzed software to be specified in a tool-specific language, using the state graph

of the system constructed either before or during the analysis. Thus, while they

are excellent for quickly finding specification errors early in the design cycle, it is

difficult to use them to verify the systems implementations. MaceMC by contrast

tests the C++ implementation directly, finding bugs both in the design and the

implementation.

2.2.2 Model Checking by Random Walks

West [Wes86] proposed the idea of using randomization to analyze network-

ing protocols whose state spaces were too large for exhaustive search. Sivaraj and

Gopalakrishnan [SG03] propose a method for iterating exhaustive search and random-

ization to find bugs in cache-coherence protocols. Both of the above were applied to

check safety properties in systems described using specialized languages which yield
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finite state systems. In contrast, MaceMC uses randomization to find liveness bugs,

and determine where in an execution a liveness violation occurred.

2.2.3 Model Checking by Systematic Execution

Two model checkers that directly analyze implementations written in C and

C++ are Verisoft [God97] and CMC [MPC+02]. Verisoft, from which MaceMC

takes the idea of bounded iterative depth-first search, views the entire system as

several processes communicating through message queues, semaphores, and shared

variables visible to Verisoft. It schedules these processes and traps calls that access

shared resources. By choosing the process to execute at each such trap point, the

scheduler can exhaustively explore all possible interleavings of the processes’ execu-

tions. In addition, it performs stateless search and partial order reduction, allowing

it to find critical errors in a variety of complex programs. Unfortunately, when we

used Verisoft to model-check Mace services, it was unable to exploit the atomicity

of Mace’s transitions, and this combined with the stateless search meant that it was

unable to exhaustively search to the depths required to find the bugs MaceMC found.

A more recent approach, CMC [MPC+02], also directly executes the code

and explores different executions by interposing at the scheduler level. However, to

avoid re-exploring states, CMC uses state hashing instead of partial-order reductions.

CMC has found errors in implementations of network protocols [ME04] and file sys-

tems [YTEM04].

JavaPathFinder [HP00] takes an approach similar to CMC for Java pro-

grams. Unlike Verisoft, CMC, and JavaPathFinder, MaceMC addresses the

challenges of finding liveness violations in systems code and simplifies the task of

isolating the cause of a violation. Additionally, Verisoft, CMC, and JavaP-

athFinder uniformly ignore time, and hence cannot find errors related to perfor-

mance anomalies, as Mace performance tools can.

2.2.4 Model Checking by Abstraction

A different approach to model checking software implementations is to first

abstract them to obtain a finite-state model of the program, which is then explored
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exhaustively [Hol00, CDH+00, CW02, GS97, BR02, CPR06] or up to a bounded

depth using a SAT-solver [CKL04, XA05]. This model can be obtained either by

restricting the types of variables to finite values, as is done in Feaver [Hol00], Ban-

dera [CDH+00], Mops [CW02] or by using predicate abstraction [GS97] as is done in

Slam [BR00] and Blast [HJMS02]. A related technique is bounded model checking

implemented in CBMC,Saturn where all executions up to a fixed depth are encoded

as a propositional formula, which is then solved using fast modern SAT solvers to find

bugs. Of the above, only Feaver and Bandera can be used for liveness-checking

of concurrent programs, and they require a user to manually specify how to abstract

the program into a finite-state model.

2.2.5 Dataflow Based Static Analyses

Dataflow based static analyses are typically highly scalable. Examples include

Splint [EL02], Cqual [USW01, JW04], MC [ECCH00], and Esp [DLS02], which

have found many bugs such as null-pointers, data races and buffer overflows in a

variety of large applications. However, these methods are best at finding a particular

class of errors. Furthermore, the relatively high rate of false positives prohibits their

use for finding the subtle protocol errors targeted by our work.

2.2.6 Isolating Causes from Violations

Naik et al. [BNR03] and Groce [GV03] propose ways to isolate the cause of a

safety violation by computing the difference between a violating run and the closest

non-violating one. MaceMC instead uses a combination of random walks and binary

search to isolate the cause of a liveness violation, and then uses a live path with a

common prefix to help the programmer understand the root cause of the bug.

2.2.7 Model Checking for Real-Time and Hybrid Systems

There is a significant body of research on extending temporal logic and au-

tomata to account for the passage of time [ACD90, AH92], and for hybrid sys-

tems [ACH+95]. Moreover, there are model checkers like Uppaal [BLL+96] and
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Hytech [HHWT97] for checking manually constructed models of real-time and hy-

brid systems. These systems find errors by locating executions that violate timed

temporal properties. For example, they might locate executions that violate a spec-

ification of the form “event B must happen no later than 10 seconds after event

A”. In contrast, our system runs on implementations and finds the “common case”

performance and uses outlier executions to find performance anomalies.

2.2.8 Performance Error Detection

Pip is a concurrent, complementary technique for finding bugs in distributed

systems [RKW+06]. Pip is an annotation language and an expectation checker that

can be applied to executions. It provides a way to visualize distributed path-flow

in a system and to write expectations to validate system paths. By writing a set of

execution validators, the idea is that one can find performance bugs by looking at

any non-validated paths. Our model checker is simpler to use and run because it

does not require deployment of the system, it can automatically test a wide variety of

executions, and it does not require careful examination of every possible distributed

path-flow.

X-Trace [FPK+07], an effort similar to Pip in many ways, focuses on the

tracing of messaging between applications through extensions to the existing proto-

col stack. It allows tracing across protocol layers and networks, and allows devel-

opers to better understand the performance of their system. Like Pip, X-Trace

is focused on individual debugging of live executions, whereas our model checker

is focused on automatic location and detection of anomalous executions. Finally,

Trend-Prof [GAW07] allows users to measure the empirical computational com-

plexity of implementations, by plotting the performance of the system across a range

of input sizes. Divergences in expected behavior can pinpoint bottlenecks in the code

e.g. functions whose run-times should grow linearly with input size, but instead grow

at a faster rate. It is not clear if such techniques can be adapted to the dynamic and

uncertain environment of distributed systems.
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2.3 Summary

Despite previous and concurrent work in distributed systems toolkits, tools for

finding bugs, and performance supporting tools, building distributed systems remains

challenging. In light of this work, Mace seeks to bring together the best of these

efforts with its own contributions to provide a complete programming environment

for building distributed systems.



Chapter 3

Mace Design

Currently, there are three ways of specifying distributed systems. First, for-

malisms such as I/O Automata [Lyn96] or the Pi-Calculus [Mil89] can be used to

model distributed algorithms as collections of finite-state automata (or processes),

one for each node of the system, that interact by sending and receiving messages.

Though these formalisms succinctly capture the essence of many distributed protocols

and algorithms, they abstract away and ignore the low-level implementation details

essential to the deployment of robust, high-performance systems. Second, higher-

level programming languages such as Java, Python, and Ruby have eased some of the

tedium associated with building distributed systems. However, they often introduce

performance overheads and do not significantly simplify the task of ensuring system

correctness or identifying inevitable performance problems.

Thus, developers seeking efficiency resort to the third option of assembling

applications in an ad-hoc, bottom-up manner. While the resulting systems may be

fast and reliable, they sacrifice structure, readability, and extensibility. The lack of

structure in particular significantly limits the ability to apply automated tools, such

as model checkers, to find subtle performance and correctness problems.

This chapter demonstrates how programming language, compiler, and runtime

support can combine the elegance of high-level specifications with the performance

and fault-tolerance of low-level implementations. We seek to drastically lower the bar-

rier to developing, maintaining, and extending robust, high-performance distributed

24
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applications that are readable and amenable to automatic analysis for performance

and correctness problems.

The main difficulty in building these systems arises from the distributed, con-

current, asynchronous, and failure-prone environment in which distributed systems

run. System complexity requires that applications be layered on top of fast routing

protocols, which are built on top of efficient messaging layers. Concurrency and

asynchrony imply that events simultaneously take place at multiple nodes in unpre-

dictable orders. Messages may be delivered in arbitrary orders, dropped completely,

or delayed nearly indefinitely. Nodes may at any time have multiple outstanding

messages in-flight to other nodes and multiple pending received messages ready to

be processed. Further, an arbitrary subset of nodes or links may fail at any time,

leaving the system as a whole in a temporarily inconsistent state.

These properties make maintaining performance and correctness difficult. A

single high-level system request may require communication with many nodes spread

across the Internet. Often, even seemingly correct distributed system implementa-

tions perform an order of magnitude more slowly than expected. Analyzing executions

to find the source of such problems frequently reduces to searching for a needle in a

haystack: among (at least) millions of individual message transmissions, algorithmic

decisions, and the large number of participating nodes, which network link, computer,

or low-level algorithm resulted in performance degradation?

While each of these problems has well-known solutions, the task of address-

ing these issues simultaneously proves to be quite challenging because of their subtle

interactions. For example, object-oriented design is the canonical way to build sys-

tems from sub-systems, but for distributed systems, hiding internal state from other

layers results in serious performance penalties and duplicate effort. Similarly, there

are standard ways to detect and handle failures, but the code for doing so must be

interspersed (usually repeatedly at multiple points) with the code for handling com-

mon case operation, not only obfuscating the code but also eliminating the high-level

structure required to use techniques such as model checking [God97] and performance

debugging [AMW+03, BIMN03, CKF+02].

In this chapter, we present Mace, a new C++ language extension and source-

to-source compiler for building distributed systems in C++. Mace seamlessly com-
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bines objects, events, and aspects to simultaneously address the problems of layering,

concurrency, failures, and analysis. While these are well known programming lan-

guage ideas, the key advances of Mace are twofold. First, we unify, in one development

environment, the diverse elements required to build robust and high-performance dis-

tributed systems. Second, and more importantly, by defining a language extension

to write distributed systems, we are able to restrict the ways in which such systems

can be built. For our domain, this restriction is both expressive enough to permit

the compilation of readable high-level descriptions into implementations matching the

performance of hand-coded implementations and structured enough to enable the use

of automatic, efficient, and comprehensive static and dynamic analysis to locate and

understand behavioral anomalies in deployed systems.

By using a structured—yet expressive—approach tailored to distributed sys-

tems, Mace provides many concrete benefits:

• Mace allows the programmer to focus on describing each layer of the distributed

system as a reactive state transition system, using events and transitions as the

basis for system specification. This explicitly maintains the structure given by

high-level formalisms while enabling high-performance implementations.

• Mace uses the semantic information embedded in the system specification to au-

tomatically generate much of the code needed for failure detection and handling,

significantly improving readability and reducing the complexity of maintaining

internal application consistency.

• Mace supports automatic profiling of each individual causal path—the sequence

of computation and communication among nodes in a distributed system cor-

responding to some higher level operation, e.g., a lookup in a distributed hash

table. Mace exports a simple language that allows developers to match their

expectations of both system structure and performance against actual system

behavior, thereby isolating performance anomalies.

• Mace’s state transition model enables practical model checking of distributed

systems implementations to find both safety and liveness bugs. The Mace model

checker, MaceMC, successfully finds subtle bugs in a variety of complex dis-
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tributed systems implementations. Most of the bugs we found with MaceMC

were quite insidious, present in mature code, and could not be found without

exploiting the structure preserved by Mace.

3.1 Overview

Drawing from our experience building a variety of distributed systems based

on high-level specifications, we categorize the gap between specification and low-level

features essential to real deployments into the following categories:

• Layers: To manage complexity, network services consist of a hierarchy of layers,

where higher level layers are built upon lower levels. The canonical example is

the Internet protocol stack where, for example, the physical layer is responsible

for modulating bits on a medium; the link layer delivers packets from one node

to another on the same physical network; the network layer delivers packets

between physical networks; and the transport layer provides higher level guar-

antees such as reliable, in-order delivery to application end-points. Each layer

builds upon well-defined functionality of the layer below it and can typically

work on a variety of implementations of the underlying layer’s interface.

• Concurrency: A distributed implementation must properly contend with and

exploit concurrency to maximize performance. For example, an overlay routing

application must simultaneously contend with the application layer sending re-

quests to the routing layer, the networking layer receiving new messages that

must be passed up to the routing layer, and timers executing scheduled tasks.

While these events may be interleaved on a single node, they can also be arbi-

trarily interleaved across nodes.

• Failures: A robust implementation must account for the inevitable failures

of different components or nodes of the distributed system. Failures are often

difficult to detect; for instance it is impossible to distinguish between a failed

node and one that is particularly slow. Further, the remaining nodes must

correctly update their state to reflect the new configuration, lest inconsistencies

lead to further errors.
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• Analysis: Given the complex operating environment, there are always per-

formance bottlenecks and correctness issues that arise because the developers

overlooked some subtle scenario or miscalculated some parameter like a message

timeout. An implementation must be structured and readable enough to per-

mit the manual and automatic analyses required to fix such performance and

correctness problems.

While well-known techniques address each of these issues in isolation, the

primary challenge in our setting is to devise mechanisms that help the programmer

resolve the tensions arising from complex interactions between the four problems. For

example, the standard solution to the problem of layering is Object-Oriented design.

However, for high-performance applications, treating layers as black boxes that hide

their internal state and mask failures leads to performance bottlenecks. For instance,

higher level routing algorithms greatly benefit from lower level information about link

latencies and knowledge about which nodes or links have failed. Further, multiple

sources of concurrency complicate the task of propagating information consistently

between layers.

Similarly, failures make it difficult to design a layering mechanism. The ap-

proach of masking low-level failures—while appealing because it simplifies higher

layers—is insufficient in distributed environments because it sacrifices significant per-

formance gains available from notifying the upper layers of the failure. For instance,

the transport layer could mask failures by buffering sent messages and attempting

to resend them until it succeeds; however, doing so would prevent higher layers from

adjusting their own state to achieve better performance. An example of this is a

multicast layer reconfiguring its tree structure for higher throughput after a failure.

Unfortunately, the task of notifying the upper layers is complicated by the fact that

failures can happen concurrently with other system events. Further, concurrency

makes it tricky to cleanly separate the failure detection and handling code from the

rest of the common-case code, obfuscating the resulting system and destroying struc-

ture.

Standard techniques such as profiling to find performance bottlenecks and

model checking to find pernicious bugs typically cannot be applied to distributed

systems implementations. In ad-hoc implementations, the code that handles concur-



29

Recursive
Routing

Bamboo

Routing
UDP

Routing
TCP

ApplicationDHT

OS Kernel

Figure 3.1: Bamboo DHT design architecture.

rency and failures obscures code structure making manual and automated reasoning

difficult (but essential). The principle technique used by developers to analyze de-

ployed systems is tedious ad-hoc logging that clutters the code and often delivers only

limited value because the programmer must manually stitch together spatially and

temporally scattered logs.

Finally, concurrency makes it difficult to reason about or to even replicate

behaviors (due to non-deterministic factors like network latencies and scheduling de-

cisions), thereby severely increasing the time and effort required to find complex bugs

via testing. In our experience, particularly subtle bugs may remain latent for weeks

in a deployed system. Further, because these bugs often result from inconsistencies

between the state at multiple nodes, the subsequent departure or failure of a node af-

ter the bug manifests itself can push the system back into a consistent state, masking

the bug and making it even more difficult to track.

Thus, to develop high-performance systems from high-level specifications, we

must devise techniques to architect the system, to determine when failures have oc-

curred, and to propagate and exploit information throughout the architecture. These

techniques must operate in a concurrent setting, enable modularity and reuseability,

and explicate the high-level structure of the algorithm, thereby enabling manual and

automatic system level analyses.
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Mace Design Principles

To address the challenges posed by the domain of distributed applications, we

base Mace on three fundamental concepts.

• Objects: Mace structures systems as a hierarchy of service objects connected

via explicit interfaces. We use an object to implement each layer of the system

running on an individual node. The interface for each layer specifies both the

functionality provided by that layer as well as any requirements that must be

satisfied to use that layer.

• Events: Mace uses events as a unified concurrency model for all levels of the

system: within an individual layer, across the layers at a single node, and across

the nodes comprising the entire system. Each event corresponds to a method

implemented by a service object.

• Aspects: Mace provides aspects to describe computations that cut across the

object and event boundaries; in particular, aspects define tasks that need to be

performed when particular conditions become satisfied.

While each of these ideas has been studied extensively in isolation, we demon-

strate that they combine synergistically to preserve the high-level structure of the dis-

tributed system and simultaneously address the complexity and challenges of building

robust, high performance implementations. We use a popular Distributed Hash Ta-

ble (DHT) to illustrate the challenges associated with building distributed systems

and our approach to addressing these challenges. DHTs support put and get opera-

tions on a logical hash table whose actual storage is spread across multiple physical

machines, and thus form a convenient abstraction for building higher-level applica-

tions like distributed file systems [DKK+01, MMGC02]. The key properties of a

DHT implementation are scalability and robustness to failure. We consider a DHT

built on the Bamboo routing protocol [RGRK04a] (similar to Chord [SMK+01] or

Pastry [RD01]).
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Layers

Nodes in Bamboo self-organize into a structure that enables rapid routing of

messages using node identifiers. This protocol forms a single layer of the DHT as

shown in Figure 3.1. Bamboo is built on top of a TCP subsystem that maintains

network connections and delivers messages and a UDP subsystem that sends latency

probes. A recursive routing subsystem routes messages to the node owning a given key

by asking Bamboo for the next hop towards the destination. The DHT application

layer uses the lower layers to store and retrieve data.

Mace enables programmers to build layered systems by using objects to im-

plement individual layers and events to facilitate interaction across layers. For each

layer, the programmer writes interfaces specifying the events that may be received

from or sent to the layers both above and below. A layer’s implementation consists

of a service object that must be able to receive and may send all the events specified

in the interfaces. Thus, Mace combines objects and events to enable programmers

to build complex systems out of layered subsystems, thereby abstracting functionality

into layers with specified interfaces and allowing the safe reuse of different implemen-

tations (meeting the same interfaces) of a particular layer in different systems.

Concurrency

In Bamboo, a key challenge is to provide fast message routing while simulta-

neously dealing with node churn – i.e. the arrival and departure of nodes from the

system. To achieve this goal, the system must concurrently process network errors,

messages from newly created nodes, and it must periodically perform maintenance to

ensure routing consistency.

In Mace, each service object consists of a state-transition system beginning in

some initial state. Each node progresses by sequentially processing external events

originating from the application, the physical network layer, or self-scheduled timers.

Upon receiving an event, the service object executes a corresponding transition to

update its state, during which it may transitively send new events to the layers

above and below, each of which are processed synchronously without blocking until

completion. Furthermore, a transition may queue new external events locally by
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scheduling timers and remotely by sending network messages. Once processing for a

given external event completes, the node picks the next queued external event and

the process repeats.

The Mace event-driven model provides a unified treatment of the diverse kinds

of concurrency that must be handled in an efficient implementation: the reception of

messages from other nodes (via the transport layer), the reception of high-level appli-

cation requests, the firing of timers, and cross-layer communication all correspond to

events that the relevant layers must handle via appropriate transitions. Additionally,

Mace ensures that the transitions execute without preemption, freeing the program-

mer from worrying about exponential interleavings of concurrent executions. Finally,

because Mace automatically dispatches events through a carefully tuned scheduler,

Mace systems can achieve the throughput necessary for high performance applications

with minimal programmer involvement. Thus, objects, events, and aspects enable

Mace to describe each layer of a complex application with the simplicity and con-

ciseness of high-level models. When combined with the modular layering mechanism,

Mace provides a succinct representation of the entire computation stack for each node

of the distributed system.

Failures

Bamboo builds an overlay network which forms a logical ring among the nodes.

To create and maintain this topology, each node keeps references to its adjacent peers

in the ring. If one node fails, the application-level state which correspond to the

relationships between that node and its neighbors may become inconsistent, breaking

the overlay structure.

Mace uses aspects to cleanly specify how to consistently update local state in

response to a variety of cross-layer events, such as: node arrivals, departures, and

application-level failures. The developer can specify predicates over the variables of

a given node that test for programmer-specified inconsistencies. Mace generates code

to evaluate the predicate whenever the relevant variables change and to execute the

aspect when the predicate is satisfied. Aspects provide an ideal mechanism for speci-

fying and detecting failures and inconsistencies, because without them, the developer

would have to undertake the tedious and error-prone task of manually placing check-
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ing code throughout the system, additionally reducing readability. When a failure

occurs, the Mace runtime sends notification events to the appropriate layers. Upon re-

ceiving these events, the system executes recovery transitions. Thus, Mace combines

objects, events, and aspects to provide clean mechanisms for specifying, notifying,

and handling various types of failures and for maintaining the consistent internal

state necessary for fault-tolerant implementations.

Analysis

Bamboo routes messages through several intermediary nodes, so tracing the

forwarding path for a specific message manually, for instance to debug the timing of

a request, involves inspecting multiple physically scattered log files. Mace simplifies

such analysis tasks through preservation of the explicit high-level structure of the dis-

tributed application with three techniques. First, Mace uses aspects to separate code

needed to log statistics, progress, or debugging information from the actual event han-

dling implementation. By removing the distracting logging statements, Mace keeps

the system code readable. Second, Mace exploits the structuring of the computation

into causally related event chains to generate event logs, which may be spatially and

temporally scattered. These event logs can be automatically aggregated into flows

describing high-level tasks, extracting the events at individual nodes corresponding

to some higher-level operation. The structure preserved in the flows allows developers

to use automated analysis techniques to find and fix performance anomalies.

Third, the modular structure of Mace applications enables developers to test

the system using simulated network layers that facilitate deterministic replay, as

described in § 5. MaceMC combines these deterministic layers with a special scheduler

that iterates over all possible event orderings. MaceMC systematically explores the

space of possible executions to find subtle bugs in the system. The event-driven nature

of Mace applications reduces the number of interleavings that must be analyzed,

enabling MaceMC to search deep into the execution space. Thus, objects, events, and

aspects combine to structure Mace implementations that enable automated analysis

techniques to improve the performance and reliability of the distributed application.
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  upcalls {
interface Route {

    void deliver(NodeKey source,
                         NodeKey destination, string s);
  }
  downcalls {

  }
    bool route(NodeKey dest, string s);

};

RecursiveOverlayRoute
Service

    void notifySuccessors(NodeSet successors);
    void notifySuccessorAdded(NodeKey id);
    void notifySuccessorRemoved(NodeKey id);

  }
    void notifyIdSpaceChanged(KeyRange range);

interface Overlay {
  upcalls {

  downcalls {
    bool idSpaceContains(NodeKey id);
    NodeSet getSuccessors();
    NodeKey getNextHop(NodeKey dest);

  }
};

    NodeKey getNextHop(NodeKey dest, 
                                       NodeKey& overlayId);

Service
UdpTransport TcpTransport

Service

Route

Route

Bamboo Service

Overlay

Overlay

Route

Route

DHT Application

OS Kernel

Mace

Figure 3.2: Mace service composition for a DHT application using Recursive Over-
lay Routing implemented with Bamboo. Shaded boxes (dark for downcall, light for
upcall) indicate the interfaces implemented by the service objects.

3.2 Mace

We now describe the details of how Mace combines objects, events, and as-

pects to generate high performance, fault-tolerant implementations from high-level

specifications. Our C++ language extensions structure each service object as a state

machine template with blocks for specifying the interface, lower layers, messages,

state variables, inconsistency detection, and transitions containing C++ code im-

plmentations of event handlers. The template syntax allows the Mace compiler to

enforce the architectural design by performing a high-level validation of the service

object. Additionally, the structure gives the Mace compiler the necessary information

to automatically generate efficient glue code for a variety of tasks that in previous,

ad-hoc implementations, had to be manually inserted by the developer.
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3.2.1 Layers

To specify a distributed system in Mace, the programmer simply specifies the

set of layered service objects (abbreviated to services) that comprise a single node

and the implementation of the required interface for each service object. Figure 3.2

depicts a more detailed view of the Bamboo architecture (shown earlier in Figure 3.1),

including the interfaces.

Interfaces. An interface comprises a set of downcall events and a set of upcall events.

Upper layers send downcalls received by lower layers. Lower layers send upcalls

received by upper layers. We model events using methods – sending corresponds to

calling the appropriate method, and receiving corresponds to executing the method.

In Figure 3.2 on the left, we show two interfaces: Overlay and Route. For each

interface, the top half (lightly shaded box) corresponds to the upcall events, and the

lower half (darkly shaded box) shows the downcall events. (Note that the syntax

shown is for illustrative purposes only. The actual syntax is described in § 4.1.1.)

Architecture. Developers layer service objects implementing higher layers on top of

service objects implementing lower layers. To facilitate modular design and seamless

replacement of one service object with another, we specify for each service object the

set of lower-level interfaces it uses and the upper-level interface it provides.

• Used Interfaces: When specifying a service, the developer declares each lower-

level service with a name and an interface. The service may send any of the

downcall events specified in the interface to any of the lower layers, and it must

implement all the upcall events to receive any callbacks.

Bamboo uses two lower-level services of type Route, which it binds to local

names TCP and UDP. The Bamboo implementation can call downcall route

for the TCP or UDP service object implementing the lower level, as route is a

downcall event in the used interface. Similarly, the lower-level TCP and UDP

services can invoke the deliver callback on Bamboo, as it is an upcall in the

Route interface.

• Provided Interface: When writing a service, the developer specifies how up-

per layers can use the service via a provides interface. The service must imple-
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ment all downcall events specified in the provides interface and may also send

callback events to upper layers, typically in response to some prior request.

Figure 3.2 shows that all arrows pointing to Bamboo have type Overlay, in-

dicating that Bamboo provides the Overlay interface to upper-level services.

Thus, the Bamboo service object must be able to receive the getNextHop event

from the upper layers, as it is a downcall event in the Overlay interface. Like-

wise, the Bamboo service may send an upcall notifyIdSpaceChanged event,

which must be implemented by any upper layers using Bamboo.

Static Checking. The Mace compiler performs two compile time checks to enforce

that each service object meets the requirements of the interfaces that it uses and pro-

vides. First, the compiler checks that the object implements methods corresponding

to all the upcall events in the used interfaces and the downcall events in the provided

interface. Second, the compiler checks that the object only calls methods correspond-

ing to downcall events in the used interfaces, and the upcall events in the provided

interface.

The service specification explicitly names lower-level services because this

knowledge is required to build the service. For example, Bamboo requires two trans-

ports: one for sending protocol related messages (TCP by default) and one for probing

(UDP by default). However, any upper layers that use a given service are unknown

when specifying the service, hence those need not and cannot be explicitly named. We

observe that the upcall events sent to upper level services are in response to previous

requests made by those services. Thus, the Mace compiler automatically generates

code such that every downcall is accompanied by a reference to the source of the

downcall, and the service employs this reference to determine the destination of the

subsequent upcall.

By explicitly decomposing the whole system using layers and interfaces, Mace

allows implementations of subsystems to be easily reused across different systems, as

any service implementation that meets the statically checked interface specifications

can be used as the subsystem. For example, our DHT application works equally well

by replacing the Bamboo service object with service objects implementing the Chord

or Pastry algorithms, which also provide the Overlay interface.
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3.2.2 Concurrency

The standard way of modeling distributed algorithms at a high-level is with

state-transition systems. Mace enables developers to reap the many benefits of this

structured approach by requiring them to specify each service object as a state transi-

tion system where the transitions represent the execution of the methods correspond-

ing to received events. Given specifications for individual service state machines,

Mace can automatically compose layers to obtain an efficient, structured system im-

plementation. A state machine specification comprises two basic entities: states and

transitions.

States. States are a combination of the finite high-level control states of the service

protocol, along with the (possibly infinite) data states corresponding to values taken

by variables such as routing tables, peer sets, and timers. Figure 3.3 shows how the

programmer specifies the high-level states and state variables of the Bamboo service.

The finite high-level states, init, preJoining, Joining, and Joined correspond

to the four stages of joining the system. The state variables myhash, myleafset,

mytable, and range correspond to the node’s unique identifier, the set of peers and

routing table maintained by the node, and the space of keys assigned to the node.

In addition, Bamboo uses two timers, one of which is automatically rescheduled at

MAINTENANCE TIMEOUT intervals by Mace compiler generated code.

Transitions. There are four kinds of transitions and corresponding events: upcalls

received from lower layers, downcalls received from upper layers, scheduler events

received from self-scheduled timers, and aspect transitions which occur immediately

following the other event types. Methods implement the transitions and update the

state upon receipt of the corresponding event. Figure 3.3 shows different kinds of

transitions corresponding to events the Bamboo service object may receive. The full

syntax is described in § 4.2.3, but briefly, a keyword labels each method and indicates

its transition type. Each transition method can be guarded by a predicate over the

state variables. This condition may reference the current high-level service state,

service state variables, or event parameters. The transition only fires if the guard is

true.
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states { init; preJoining; joining; joined; }

state variables {

NodeKey myhash;

leafset myleafset;

KeyRange range;

Table mytable;

timer global maintenance attribute((recur(MAINTENANCE TIMEOUT)));

timer join timer;

}

transitions {

/* Other transitions . . . */

guard(state == joined) {

scheduler global maintenance() {

NodeKey d = myhash;

for(int i = randint(ROWS); i < ROWS; i++) {

d.setNthDigit(randint(COLS), B);

}

NodeKey n = make routing decision(d);

downcall route(n, GlobalSample(d), TCP);

}

upcall forward(const NodeKey& src, const NodeKey& dest,

NodeKey& nextHop, const GlobalSample& msg) {

nextHop = make routing decision(msg.key); return true;

}

upcall deliver(const NodeKey& src, const NodeKey& dest,

const GlobalSample& msg) {

downcall route(src, GlobalSampleReply(msg.key, myhash), TCP);

}

upcall deliver(const NodeKey& src, const NodeKey& dest,

const GlobalSampleReply& msg) {

update state(src, msg.destHash, true/*known live*/, true/*do probe*/);

}

}

}

Figure 3.3: States and Transitions for Bamboo Service Object

To understand how the programmer structures the code for each service into

events and transitions, consider the high-level state machine for the Bamboo object il-

lustrated in Figure 3.4. The figure shows what happens when Bamboo receives events

such as application join requests, network messages, or timers causing reattempted

joins. The system begins in the init state, and transitions to the preJoining state
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upcall deliver(leafsetPull)

cancel join timer
notify app joined
add peers

downcall init

compute nodeId
prepare to join

notify app joined

(peer=me)
downcall joinOverlay

send join msg

scheduler join

schedule join timer

schedule join timer
send join msg

downcall joinOverlay
(peer!=me) 

upcall deliver(join)

compute nextHop

else forward to nextHop
if (nextHop=me)  send LeafsetPull msg

Init Joining
Pre−

JoiningJoined

Figure 3.4: State machine model for Bamboo. States are shown in light gray; event-
transitions are represented by arrows with names in white and actions in dark gray.
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Figure 3.5: Message diagram for global sampling. In response to a scheduled timer,
Node A routes a GlobalSample message to an identifier id by sending it to node B,
which is forwarded to its owner, node C. Node C responds with a GlobalSampleReply
message informing node A about node C, potentially causing a routing table update.

aspect<range> rangeChange(const KeyRange& pre range) {

upcallAll(notifyNewRange,range);

} // local detection of changes to the range variable

detect {

leafset monitor {

nodes = myleafset;

interval = 5 SEC;

timeout = 5 * 60 SEC;

interval trigger(leafnode) {

downcall route(leafnode, LeafsetPush(myhash, myleafset));

}

timeout trigger(leafnode) {

leafFailed(leafnode);

}

suppression transitions {

upcall deliver(src, dest, const LeafsetPull& m) {

reset leafset monitor(src);

}

}

}

} // distributed detection (across myleafset)

Figure 3.6: Local and Distributed inconsistency and failure detection in Mace.
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upon receiving a downcall event init from the application. When it subsequently

receives the downcall event joinOverlay, it transitions to the joining state if it is

not its own peer (captured via a predicate guarding the event), or to the joined

state otherwise, in either case sending appropriate notification events and scheduling

timers. In the joining state it periodically sends join messages to other nodes re-

questing to join the system, and finally, when it receives a deliver(leafsetPull)

message from another node, it moves into the joined state. The rest of a node’s life

is spent in the joined state, where it periodically globally samples the other nodes

to improve its local routing information.

Sequence diagrams are an informal technique programmers use to reason about

low level interactions, such as those taking place while in the joined state. Figure 3.5

shows a sequence diagram depicting the interaction between nodes performing global

sampling to improve routing tables. The periodically scheduled global maintenance

timer fires on node A causing it to select a random routing identifier id, and to then

send a GlobalSample message to the node B, which is the next hop along the route.

This message gets (transitively) forwarded by B until it reaches C, which actually owns

the identifier id. C then sends a GlobalSampleReply message back to A, which, upon

receiving the reply, may update its routing information.

Once the programmer has worked out the details of the protocol using the

sequence diagram, it is straightforward to code in Mace using transitions and events.

Figure 3.3 shows (in order) how the events corresponding to (i) the firing of the

global maintenance timer at A, (ii) the forwarding of the GlobalSample message

to B and C, (iii) the final delivery message to the destination C, and (iv) the delivery

of the GlobalSampleReply back to A, are implemented as transitions in the Bamboo

service object. The bodies of the respective transitions implement the actions taken

upon receiving the corresponding events shown in Figure 3.5.

3.2.3 Failures

Mace’s use of service objects and events greatly simplifies the task of detecting,

notifying, and handling failures and inconsistencies. While layering is essential for

building complex services, the information hiding endemic to layered systems often
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makes it difficult to deliver the best performance or the most agile fault handling.

For example, when a DHT application’s socket breaks due to a node failure, the TCP

transport layer could attempt to mask the error. However, doing so may prevent

Bamboo from being able to route around the failed node, leading to degraded perfor-

mance or incorrect message delivery. Rather, the TCP transport layer must propagate

the error to Bamboo so that it can update its routing table and leafset. Bamboo, in

turn, further propagates the error to the DHT application, so that it can redistribute

the keys assigned to the failed node. Mace provides clean mechanisms for layering

network services while also making it easy to deliver error notifications automatically

from one layer to another when required for performance or fault tolerance.

Mace employs upcalls to signal higher layers of potential performance and cor-

rectness issues. It may be possible to correctly handle an issue entirely at a lower

layer, but with suboptimal performance. If this is acceptable to upper layers, then

they can simply ignore the corresponding upcall. However, for best performance it

may be necessary to register handlers for such upcalls. While such cross-layer commu-

nication usually obfuscates code and eliminates many of the benefits of layering, we

leverage our event-based structure to cleanly separate the notification and recovery

code from the rest of the system that executes in the non-exceptional case.

Mace addresses the remaining challenge of providing programmers with a suc-

cinct but flexible mechanism for detecting both failures and inconsistencies through

the use of aspects. Aspects provide a unified way to maintain consistent state, re-

gardless of whether the state needs to be updated in response to an expected protocol

event, such as a node arrival, or an unexpected event, such as a failure. Mace aspects

check for two types of inconsistency/failure detection: those that involve purely local

state and those that involve multiple nodes.

Local Failure Detection. Failures occurring in distributed systems can be charac-

terized via inconsistencies in the values of state variables. A local failure occurs when

the values of state variables at a single node are inconsistent. For example, in our

DHT application built on top of Bamboo, the data that each node is responsible for

depends on the key space specified by the range variable. In other words, the views of

the range of the DHT layer and the Bamboo layer must be synchronized, and if they
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are not, recovery action must be taken so that the DHT relocates the data according

to the new range, potentially involving communication with remote system nodes.

Such failures can be specified using a predicate that characterizes the inconsis-

tent values, i.e., which becomes true when the values of the variables are inconsistent.

Thus, such failures can be locally detected by monitoring the predicate, and firing

an event when the predicate becomes true. In Mace, the programmer specifies how

failures should be detected and how to react to the failure using an aspect transition.

A failure occurs when this predicate is true, which fires an error event and notifies

the upper layers of the inconsistency.

Consider the example in the top of Figure 3.6, showing a local detection aspect

that specifies that an inconsistency failure occurs when the value of the variable range

changes (the aspect only fires when the monitored variables change, so no additional

guard function is needed). When the change occurs, Mace sends a notifyNewRange

event to the upper DHT layer indicating that its portion of the key space has changed

and prompting the DHT to reorganize stored data appropriately. This aspect will

correctly react to all events that change the range, whether it be the arrival of a new

peer adhering to the Bamboo protocol or an unexpected peer failure.

The local detection aspect checks the predicate only at transition boundaries,

avoiding notification of state that may become temporarily inconsistent in the middle

of a transition. Thus, aspects and events provide a clean way to separate the failure

detection, notification, and handling from the rest of the “common-case” code. We

implement detection by keeping a shadow copy of monitored state variables, checking

and updating them after each transition. In ad-hoc implementations, built without

language support, the programmer would have to manually insert the check and

notification each time the variables might be modified. In addition to greatly reducing

readability, this task is error-prone, especially as the code evolves or is maintained by

multiple programmers.

Distributed Failure Detection. A distributed failure occurs when the values across

two or more nodes are inconsistent. For example, in Bamboo, each node maintains

the set of its immediate peers in the state variable myleafset. Each such peer, in

turn, must include the node in its own set of known peers. A distributed failure

occurs if some element of a node’s leafset does not include the node in its own set of
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peers. As a node cannot directly access the other nodes’ internal state, the only way

to determine the presence of such a failure is to actively exchange information across

nodes, checking that the received information is consistent, and if so, returning mes-

sages acknowledging consistency. If the originating node receives the acknowledgment

before a timeout occurs, it confirms that no failure has occurred.

The programmer specifies how to detect and react to distributed failures in

Mace using a detection aspect, defining elements for the aspect, as shown at the bot-

tom of Figure 3.6. The nodes are the set of nodes monitored by the aspect. In

this example, it is the nodes stored in the set myleafset. The interval trigger

method indicates how the probes are sent to the elements of nodes. Here, the

node sends LeafsetPush messages with the current value of myhash and myleafset

state variables to the elements of myleafset, once every 5 seconds. Finally, a

suppression transitions block indicates the response expected from the other

nodes, together with a timeout before which the response must arrive. Here, it

stipulates that the node must receive a LeafsetPull message from each of the other

nodes in myleafset before a timeout period of 5 minutes elapses.

Mace generates extra state and the code needed to keep track of the last

time it has heard from each monitored node. It sets a timer to fire sometime after

it expects to receive an acknowledgment of a particular remote configuration. If

the timeout occurs and the guard is true, then Mace calls the event specified in

the timeout trigger, notifying upper layers of the failure. As in the case of the

local failures, the transition corresponding to the error event corresponds to the code

that implements the recovery mechanism. Likewise, Mace simplifies the detection of

distributed failures by separating the detection code into an aspect and automating

the process of sending the probe messages and detecting timeouts.

3.2.4 Analysis

By using objects and events to preserve the high-level structure of the dis-

tributed system, Mace can automate a variety of post-development analyses that find

performance or correctness problems.
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Execution Logging and Debugging. Mace uses aspects to generate debugging and

logging code without cluttering the service specification. Mace exploits the preserved

structure to enable different levels of automatic logging. First, with event-level log-

ging, the generated program logs the beginning and end of each high-level event. This

process captures the order and timing of events at each node. With state-level log-

ging, every time a transition finishes, the generated program logs the node’s complete

state, which indicates the change caused by the transition. Finally, with message-level

logging, the generated program additionally logs the content and transmission time

for each message sent from or received by the node.

We have used the automatically generated logs to implement mdb, a replay

debugger for Mace distributed applications. mdb collects all individual node log files

centrally and allows the developer to single step, forward and backward, through the

execution of individual nodes. The developer may move from node to node, inspecting

global system state, in a manner similar to traditional single process debuggers.

Causal-Paths. Mace provides a more advanced form of logging that aggregates

execution events distributed across multiple nodes into a set of causal paths. Each

path starts at a given node, with a particular seed event, and contains the sequence

of all events that are causally, transitively related to the seed event. For example,

if the seed event is a request generated by a particular node, then the causal path

includes the sequence of messages (and resulting events and transitions) that span

the different nodes until the response returns to the requester.

To obtain such causal paths in a Mace application, the programmer specifies

the seed event where the path begins and the event that ends the path. Mace tags

all the relevant, causally related activity that occurs between the seed and the end

(i.e., all events, transitions, messages sent and received) with a dynamically generated

path identifier and generates logs such that events distributed across multiple nodes

can be collected using their shared path identifier. As a result, Mace enables logging

at a semantic-level and allows programmers to understand and analyze the behavior

of the system at a high level. In addition, previous work [RKW+06] describes how

the causal-path logging done by Mace can be automatically mined to find and fix per-

formance anomalies, by comparing the causal paths resulting from actual executions

with programmer-specified high-level expectations.
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Table 3.1: Lines of code measured in semicolons for various systems implemented in
Mace and other distributions.

System Mace Distribution
Bamboo 500 1800

BulletPrime 1000 2800
Chord 250 3400

Overcast 450 NA
Pastry 600 3600
Scribe 300 500

SplitStream 200 331
Vivaldi 100 250

While this earlier work on the benefits of causal paths to performance de-

bugging is independent of Mace, it requires significant manual logging in standard,

unstructured C++ applications. We have found that more than 90% of the logging

required for causal path analysis can be automatically inserted by the Mace compiler,

significantly lowering the barrier for leveraging the benefits of such performance de-

bugging tools.

Model Checking. A high-level model of a distributed system enables exhaustive

analyses like model checking to find subtle bugs in either the protocol or implemen-

tation of a distributed system. Mace allows developers to use the same analysis to

find subtle errors in the actual implementation of the system by making it easy to

systematically explore the space of executions of the implementation. The full details

of the model checker, MaceMC, are found in § 5.

3.3 Experiences

In this section, we outline some of our experiences developing distributed ap-

plications with Mace. Mace itself is implemented as a source-to-source compiler in

Perl using a recursive descent parsing module. The Mace compiler emits C++ code,

which is then compiled using any C++ compiler such as g++. We have imple-

mented over ten substantial distributed systems in Mace, many of which we have

run across the Internet, in part on testbeds such as PlanetLab [PACR02]. In ad-
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dition to the Bamboo implementation discussed here, we have also implemented

the systems shown in Figure 3.1. These systems include Chord [SMK+01], Pas-

try [RD01], Scribe [RKCD01], SplitStream [CDK+03] (from the FreePastry [fre06]

distribution), BulletPrime [KBK+05] (from the MACEDON [RKB+04] distribution),

Overcast [JGJ+00] (not available to us for line counting), and Vivaldi [DCKM04]. Ex-

cepting BulletPrime (which was written in the MACEDON language), each of these

services was originally developed in unstructured C++ or Java.

The Mace compiler eliminates many tedious tasks that must otherwise be

hand-implemented to achieve high performance, such as message serialization and

event dispatch, and correspondingly drastically reduces the implementation size. A

Mace service object implementation contains a block for specifying message types

(essentially a struct with optional default values), for each of which the compiler

generates a class containing optimized methods to serialize and deserialize the mes-

sage to and from a byte string that can be sent across the network. The Mace compiler

also generates methods to automatically perform event sequencing and dispatch. The

generated code selects the next pending event, performs locking to prevent preemp-

tion, evaluates any guard tests for the transition, executes the appropriate method

implementing the event handler (assuming the guards succeeded), tests any aspect

predicates that might have been updated by the transition, and finally releases the

acquired locks. Overall, we find that the structure imposed by Mace greatly simpli-

fies the implementation by allowing the programmer to focus only on the essential

elements, without compromising performance or reliability.

3.3.1 Performance Evaluation

To evaluate the performance of Mace systems, we compare our Bamboo imple-

mentation in Mace with its well-tested counterpart [RGRK04b]. To distinguish the

two versions, for this section we will refer to our implementation as Mace-Bamboo. We

chose Bamboo because of its excellent performance, detailed published performance

evaluation, and its publicly available and well documented code base. Bamboo is a

highly optimized Java implementation of a distributed hash table, based originally on

Pastry [RD01]. We compare behavior of node lookups under churn. Lookups operate
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by forwarding a message using increasing prefix matching to nodes whose identifiers

are progressively closer to the key. Bamboo explores the limitations of previous pro-

tocols in providing consistent routing in the presence of node churn, and proposes

several modifications to Pastry to allow it to deliver high consistency and low latency

even when nodes are entering and leaving the system at a high rate.

Consistency is a measure that captures whether different nodes routing to the

same identifier will reach the same destination. This is the most important require-

ment for correct performance of applications using a DHT, since they rely on being

able to share data by using the same identifier to store and retrieve values. Our

exercise of re-implementing Bamboo serves to show the simplicity of implementing

distributed systems in Mace and our ability to generate robust, efficient, and high

performance code. Two experienced Mace developers implemented the primary Bam-

boo algorithms in twelve hours (excluding the reliable UDP transport), starting from

an existing Mace Pastry implementation.

To compare against published Bamboo experimental results (we attempted

to reproduce the published results but could never achieve them, most likely due

to having fewer machines), we prepare a framework that matches, to the best of our

ability, the original experimental conditions. The experiment consists of 1000 Bamboo

nodes organized into groups of 10 performing simultaneous lookups of random keys.

A lookup result is considered consistent if a majority of the 10 nodes return the same

result. Each group of 10 nodes performs lookups according to a Poisson process with

an average inter-lookup delay of 1 second. For the runs, we vary the median churn

rate also according to a Poisson process, ranging from on average 8 deaths per second

to 1 death per second.

We run 1000 Bamboo instances on 16 physical machines (the published Bam-

boo results used 40 machines), using the ModelNet [VYW+02] network emulator with

a single FreeBSD core. Each of the physical machines is a dual Xeon 2.8Mhz processor

with 2GB of RAM. During the runs, load averages ranged from 0.5 to 1.5. The emu-

lated topology consists of an INET network with 10,000 nodes, 9,000 of them routers.

Client bandwidths on the topologies ranged from 2-8Mbps. To start the experiment,

nodes were staggered, starting one on each machine each second for a minute. The

churn and lookup schedules began as soon as all nodes were live. This experimental
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setup differs from the published Bamboo experiments in that the stagger-start of our

experiments is at a much faster rate, we do not wait for the network to settle after

starting all nodes, we run with 1/3 the number of machines, and our request load is

10 times higher.

Figure 3.7 shows the consistency numbers for the Java-Bamboo and Mace-

Bamboo. The published consistency values demonstrate near-perfect consistency at

all churn levels. While still above 92% consistent, Mace-Bamboo nodes are slightly less

consistent than their counterpart, though they track its performance closely. However,

as shown in Figure 3.8, the Mace-Bamboo latency outperforms Java-Bamboo at each

of these churn levels, and by a factor of 5 at high churn levels.

3.3.2 Undergraduate Course

To aid in the evaluation and development of Mace, we have used it in two un-

dergraduate networking courses, and it has also been used in several graduate course

projects. During the spring quarter of 2005 and the spring quarter of 2006, students

in advanced undergraduate networking classes at UCSD were “asked” to program in

Mace for a class project. None of the students enrolled in the class had been exposed

to Mace previously. The project involved implementing a peer-to-peer file sharing

program loosely based on the popular FastTrack protocol. The protocol includes a

number of distributed concepts, such as: flood-based searching, distributed election,

and random network walks. To prepare for the project, students were given a one-

hour introduction to Mace, a list of protocol messages (to support inter-operation),

and a skeleton template for a basic Mace service. 90% of the students successfully

completed the project and a majority expressed a preference for programming in Mace

relative to Java or C++.

3.4 Summary

In this chapter, we argued for the benefits of language support to construct

robust, high-performance distributed systems. The principle challenge in this envi-

ronment is resolving tensions between the tasks of developing a clean layering system,
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handling concurrency and failures, and preserving enough structure to enable auto-

mated performance and correctness analyses. The key insight behind Mace is that

objects, events, and aspects can be seamlessly combined to simultaneously address

the intertwined challenges.

Mace’s language structure and restrictions enable a number of important fea-

tures that are otherwise difficult or impossible to express with existing languages:

language support for failure detection, causal path performance and correctness de-

bugging, and model checking unmodified Mace code. We have employed Mace to

build more than ten significant distributed applications, which have been successfully

deployed over the Internet. Others are using Mace to support their own indepen-

dent research and development. Using automated debugging tools that exploit the

Mace structure to find and fix problems, exploiting the flexible architecture to reuse

optimized subsystems across applications, and leveraging the uniform and efficient

event-driven concurrency model, Mace system specifications are about a factor of five

smaller than original versions in Java and C++, while delivering better performance

and reliability.
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Chapter 4

Lessons of the Mace Language

In the prior chapter, we described the design, implementation, and evaluation

of the Mace programming language extension to C++. In this chapter, we describe in

detail the grammar of Mace, and some lessons we learned in the process of designing

Mace. Some code examples appear in Chapter 3, and some more short examples are

given in this chapter. Full examples of services implemented in Mace can be found

in its HOWTO documentation, and also from the public release of the code.

Implementing a system in Mace entails breaking it up into a layered, asyn-

chronous, state-event-system. Each layer should be divided by a clean separation of

concerns, providing a generic service interface to higher level services. The interface

must be designed such that the operation requested can be completed without having

to block. If an operation would have to block, it should be considered two operations,

a request and a completion, which can be delayed to a future callback. The only

way to access the state of any given layer is through an event-method from its inter-

face, protecting its state from outside harm. This chapter will describe how this is

accomplished in the Mace language.

Programming in mace is described in the following sections. Section 4.1 covers

the architectural design grammar, which includes the layering of services. Section 4.2

presents the individual components of the Mace language grammar for services, while

Section 4.3 details the set of options that can be supplied to the compiler in the

grammar in various places. Finally, Section 4.4 gives a few notes about programming

in Mace.

53
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4.1 Architecture Design

The complete structure of a Mace specification is given in § 4.2. But the first

part of this specification syntax describes the definition of the architectural design

of the service—both the interface it provides, and the layering of services atop other

services. This section first describes the syntax of the header files that we use to

define the interfaces (§ 4.1.1), and then the syntax for this first part of the component

architecture (§ 4.1.2).

4.1.1 Interfaces

The first task when implementing any system is to break it up into its interface

and layer design. For a DHT application, this interface will generally be directly tied

to the service it provides. In this case, the interface in question should have a method

to get data based on a key, to put data based on a key, to check whether the DHT

contains a given key (without retrieving the data), and to remove the given key. In

Mace, we’ll use the MaceKey type, which can support a variety of types of keys, to

represent keys or addresses.

This can generally be written in a C++ header file as:

class DHTInterface {

public:

virtual string get(const MaceKey& key);

virtual bool containsKey(const MaceKey& key);

virtual void put(const MaceKey& key, const string& data);

virtual void remove(const MaceKey& key);

};

Unfortunately, this cannot be directly used in Mace, as some implementations

of a DHT will likely not be able to respond to get or containsKey requests without

checking with other nodes.

Lesson 1: In designing an interface, we must strike a balance between the perfect

interface for the service implementation we have in mind, and a general imple-

mentation of that interface. When designing a new interface, we should ask
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ourselves what requirements the interface design itself places on the implemen-

tation of the service. If an interface lends itself to only a single implementation,

it is probably not the right interface.

In this case, the best thing to do is to separate the request from the result,

allowing the result to be asynchronously “called back” or upcalled. A service that

does provide immediate availability of the result can simply perform the upcall im-

mediately.

Mace uses two types of interface files to describe service interfaces. An interface

for a service (to be used by applications or higher-level services) is called a service

class, while the upcall interface (or call back interface) of the service is defined by

the set of handlers that are registered with the service. This relationship can be seen

in Figure 3.2 (though it uses a different syntax than the one shown below). The

downcalls make up the service class, while the upcalls make up the handlers.

A handler syntax file looks like this:

Handler: ‘handler’ Name ‘{’ HandlerStatement* ‘}’

Name: (a token/word that gives the name of the Handler)

HandlerStatement: CppStatement | Function

CppStatement: (C++ statement for constants, enumerations, etc.)

Function: ‘virtual’(?) FunctionDecl FunctionImpl

FunctionDecl : (C++ function declaration without terminator)

FunctionImpl : ‘;’ | ‘{’ (C++ function body) ‘}’

The handler filename should be NameHandler.mh, where Name is replaced by

the name of the handler. It will generate a C++ class whose name is NameHandler.

C++ statements that are parsed will be pasted into the generated C++ class, and can

be used to define constants or enumerations. Each of the functions defined will also be

included in part of the generated C++ class. A function can either be declared (ending

with a semicolon), or defined (ending with a method body), and can be virtual, or

non-virtual. As with C++, virtual methods can be overridden by implementing

service handlers, and non-virtual methods cannot (the latter generally are useful in

an interface only to transform parameters and call another virtual method). Methods

cannot be defined as purely virtual—this is because handler classes must have default

implementations for any method, for the null reference handler implementation. The
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default implementation for a declared (but not defined) method will therefore be to

abort execution at runtime.

Another transformation the Mace compiler makes is to add a registration uid t

parameter to each method. The registration uid t parameter is used to identify a

specific registration of a specific handler with a specific instance of a service class.

In a handler method, it tells the called function which service instance is calling the

method. All service class functions also have a registration uid t parameter added to

them, and they tell the implemented service which registered handler should receive

upcalls related to this function call.

The handler interface of the DHT service, therefore, is used to asynchronously

deliver the result of calls from its primary interface. For example, the result of a

call to the ‘get’ method will be returned by a call to the handler’s ‘dhtGetResult’

method, and the result of a call to the ‘containsKey’ method will be returned by a

call to the handler’s ‘dhtContainsKeyResult’ method. The ‘put’ and ‘remove’ calls,

in our design, provide no feedback when they eventually complete, and therefore do

not have a callback.

We call the DHT handler object the ‘DHTData’ handler, and define it as such:

handler DHTData {

virtual void dhtContainsKeyResult(const MaceKey& key, bool result)

{ }

virtual void dhtGetResult(const MaceKey& key,

const mace::string& value,

bool found) { }

};

The service class interface therefore is largely the same as the desired interface,

but does not immediately return the value. The service class interface is defined in

NameServiceClass.mh, and its syntax is the following:

ServiceClass: ‘serviceclass’ Name ‘{’ ServiceClassStatement* ‘}’

Name : (a token/word that gives the name of the service class)

ServiceClassStatement : CppStatement | Function | Handlers | MaceBlock

CppStatement: (C++ statement for constants, enumerations, etc.)

Function: ‘virtual’(?) FunctionDecl FunctionOptions(?) FunctionImpl

FunctionDecl : (C++ function declaration without terminator)

FunctionOptions : ‘[’ (key) ‘=’ (value) ( ‘;’ (key) ‘=’ (value) )* ‘]’

FunctionImpl : ‘;’ | ‘{’ (C++ function body) ‘}’
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Handlers : ‘handlers’ HandlerName (‘,’ HandlerName)* ‘;’

MaceBlock : ‘mace’ WhenToInsert ‘{’ MacFileBlocks ‘}’

WhenToInsert : ‘provides’ | ‘services’

MacFileBlocks : (mac file syntax blocks)

This is much like the handler interface description, except that it allows two

additional types of statements, and synchronous options on functions. The first ad-

ditional type of statement is the Handlers statement. It tells which Handler interface

files are upcall handlers associated with this service class. For each handler in the

list, the generated service class C++ object will contain a registerHandler method,

which allows a Handler object of the given type to be registered to receive upcalls

in response to the downcalls made to the service class. In the DHT case, it will list

‘DHTData’. For any DHT service implementation, a DHTDataHandler should first

be registered for a particular registration uid, then calls made on the DHT service

should pass in the same registration uid, telling the service which registered handler

to return upcalls to. This way, the same service can be shared by multiple higher

level services, using the registration uids to keep their data distinct.

The second additional type of statement is a MaceBlock element, which al-

lows the interface designer to add blocks of code to services that either provide this

interface, or use a lower level service that does. The syntax of these will be described

later, but this block can for example be used to (1) indicate strings that should be

generally deserialized into messages through ‘method remappings’ (see TransportSer-

viceClass.mh), or (2) add transitions to every implementation such as to support

automatic bootstrapping on initialization (see OverlayServiceClass.mh).

The function options (FunctionOptions) within service classes specify syn-

chronous compiler options that can be used to make it easier to use a service from

code that does not wish to use it in an asynchronous manner. By defining these

options, an extra class is generated in the NameServiceClass.h file that automatically

blocks the calling thread until the appropriate upcall is made, resuming its operation

and filling in the functional parameters. To take advantage of these options, the

interface designer should specify 4 things:

syncname The name of the function that will provide synchronous behavior

callback The function of the handler that is the upcall response for this downcall.
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id The parameter of the function that can be used to match the request and response

(the function listed in callback must have the same parameter of the same

type),

type The type of synchronous behavior to use. Implemented options include ‘block’

and ‘broadcast’. Under ‘block’, only one outstanding operation for any given id

can be outstanding, and subsequent operations will block waiting for the first.

Under ‘broadcast’, the first outstanding operation for any given id will cause

a call to the implementation, and others will just wait. When a response is

received for the first, the result will be delivered to all waiting threads.

The DHT service class interface is defined as follows:

serviceclass DHT {

virtual void containsKey(const MaceKey& key)

[syncname=syncContainsKey; type=block;

id=key; callback=dhtContainsKeyResult];

virtual void get(const MaceKey& key)

[syncname=syncGet; type=block; id=key; callback=dhtGetResult];

virtual void put(const MaceKey& key, const mace::string& value);

virtual void remove(const MaceKey& key);

handlers DHTData;

}

Here you will notice essentially the same four functions, though in each case

void is returned since a callback provides the result. containsKey and get both define

synchronous options for callbacks, to make it easy to use DHT from C++ threads

that may block. An example of how to use the generated syncGet method is shown

here:

pair<string, bool> get(const string& k) {

boost::shared_ptr<SynchronousDHT::SyncGetResult> p =

dht->syncGet(MaceKey(sha160, k));

return pair<string, bool>(p->value, p->found);

} // get

The generated syncGet method takes the same parameters as the original method,

waits until the result is available, and returns a generated object that contains each

of the parameters from the matched callback method.
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4.1.2 Component Architecture

The first part of a Mace specification describes the component architecture of

the service. The syntax is:

ComponentArch: Name Provides(?) Registration(?) GenOpts(?) Services(?)

Name: ‘service’ (token giving the name of the service)(?) ‘;’

Provides: ‘provides’ ServiceClass ( ‘,’ ServiceClass )(*) ‘;’

ServiceClass: (the name of a defined service class interface)

Registration: ‘registration’ ‘=’ RegType ‘;’

RegType: ‘static’ | ‘dynamic’ ‘<’ (registration object type name) ‘>’

GenOpts: Trace(?) Time(?)

Trace: ‘trace’ ‘=’ ( ‘off’ | ‘manual’ | ‘low’ | ‘med’ | ‘high’ ) ‘;’

Time: ‘time’ ‘=’ ( ‘uint64_t’ | ‘MaceTime’ ) ‘;’

Services: ‘services’ ‘{’ ServiceVariable(*) ‘}’

ServiceVariable: InlineFinal(?) ServiceClass Handlers(?) VarName

SVOptions SVImpl(?) ‘;’

InlineFinal: ‘inline’ | ‘final’

Handlers: ‘[’ Handler (‘,’ Handler)(*) ‘]’

Handler: (the name of a defined handler interface)

VarName: (token for the variable name of the service class)

SVOptions: RegistrationUid(?) DynamicRegistration(?)

RegistrationUid: ‘::’ (the number of a fixed registration uid)

DynamicRegistration: ‘<’ (the type name of the registration type ‘>’

SVImpl: ‘=’ ( (another service variable name) |

(service name) ‘(’ (parameters) ‘)’

)

The second line, required, gives the name of the service. The name itself is

optional, and if omitted, will be the basename of the file. If provided, it should match

the basename of the file for proper integration with the build system.

The next line, the provides line, tells the service class this service provides.

This service should implement each of the methods in the interface as downcall transi-

tions. Then, the compiler adds a set of upcall helper methods to return results to the

higher-level service. Recall that in each ServiceClass, a set of handlers may be listed.

Given each method methodname in some handler listed, a method upcall methodname

is created, and when called, will return an upcall to a higher-level service. The sig-

nature of the generated upcall method matches exactly the method generated from

the handler interface, including the generated registration uid parameter. That reg-

istration uid parameter is used to determine to which of the registered handlers to
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actually deliver the upcall. If the provides line is omitted, the default is to provide

the ‘Null’ service, which contains no additional methods other than maceInit and

maceExit.

For each service class listed in the provides line, a function of the name

new service serviceclass will be generated, with the parameter list based on the ser-

vices and constructor parameters (§ 4.2.2). These functions will be declared in the file

named ServiceName-init.h. This file can be included by other C++ files without

including any actual code from the service itself, which helps reduce compile time and

increases code protection/isolation, as no actual details of the service need be known

except for the constructor list and the service class it provides.

Lesson 2: Mace provides a sort of extension of the OSI layered model. On top

of the transport layers, which are provided to services through the transport

services, each distributed system will provide its own set of layers through the

component architecture. However, unlike OSI, the purpose of each layer above

the transport will vary for each distributed system, and no total-ordering is

possible for all interfaces, as they may be composed over each other in creative

ways.

The registration line determines whether handlers are registered with this ser-

vice “statically” or “dynamically”, based on the RegType grammar element. Statically

registered handlers are the default, and provide basic operation. But consider, for

example, the case of the Overlay and Group service classes. These are essentially the

same services, with both providing join and leave methods. The major difference be-

tween these interfaces is that the group interface provides a MaceKey parameter and

can be used for multiple groups simultaneously. The present design of these interfaces

is to use static registration. Services, such as Scribe, that can distinguish groups use

the group interface, while other services, such as Overcast, would use the overlay

interface. However, both of these services are implementations of a tree protocol. To

enable modularity, the Tree service class has to include a groupId parameter, which

is summarily ignored by services that don’t support groups. These interfaces were

designed before dynamic registration was an option, and have remained to support
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existing services. However, dynamic registration presents a new design option to

consider.

A dynamic registration is one in which the same Handler object can be dynam-

ically registered with multiple registration uids, in contrast with a static registration

which is either fixed or based on instantiation order. A dynamic registration asso-

ciates the registered object at both levels with a registration uid and a static handler

registration. The new registration uid is computed as the hash of the concatenation of

the static registration uid and the object being registered, allowing deterministic reg-

istration uids based on the object. This is critical, because the same object registered

dynamically with the same static registration must result in the same registration

uid, to support coordination across nodes.

Consider using dynamic registration to merge the Overlay and Group inter-

faces. Then, implementations of a Group service declare:

registration=dynamic<MaceKey>;

This allows them to associate a registration uid with each group key. Then,

calls to join and leave use the dynamically allocated registration uid, and either service

can query to determine the key associated with the registration. Tree services then

need not contain a groupId parameter in the method signatures, instead they get it

from the dynamically registered object.

Dynamic registration is a relatively new language feature, and is still being

evaluated. It enables services with mostly similar interfaces to actually provide the

same interface, but requires a dynamic check to make sure the supplied service ac-

tually provides the same registration. Furthermore, as dynamic registrations have to

match up between the higher and lower level services, care must be taken to have

a small number of dynamic registration options, lest modularity cease to be useful.

In that sense, a small sacrifice in interface design may be desirable over too much

flexibility that prevents modularity.

Next in the language definition come two optional generation options. The

first defines the trace level of the generated code (how verbose the auto-generated

tracing should be). The ‘manual’ option is not yet fully supported, and is identical

in practice to ‘off’. The difference by design is that under the ‘off’ option, all logging
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using the mace logging facility is removed from the generated code, including manual

log messages added by users, whereas the ‘manual’ option copies manually inserted

user logs into generated code, but adds no instrumentation by the Mace compiler.

Both currently behave as ‘manual’. The remaining options auto-generate increasingly

verbose trace logs. Under ‘low’, a statement is logged when each transition, routine,

or auto type method is called, logging the values of parameters (except for Message

parameters, for which only the name of the message is logged). Under ‘med’, message

details are logged as well, and additionally the beginning and ending of each transition,

routine, and auto type method are logged, allowing a sort of stack trace view of the

log file, so one can see where each message was logged from. Finally, under ‘high’,

in addition to the logs of ‘med’, the state of a service is logged at the end of any

non-const transition, to create a view of how the state of the system changes over

time.

Lesson 3: Between the compiler’s ability to automatically instrument a service with

logging, and the logging infrastructure’s ability to enable and disable logs at

a fine grained level, the user needs to write fewer and fewer of his/her own

logs. Many services can be built and debugged without the user ever writing a

single log message. This is because most user debug logging is just to indicate

the state of a given variable, the occurrence of an event, or the parameter to

a method. The compiler understands these at the granularity of events, which

makes it possible to generate an appropriate degree of logging automatically.

The other generation option that can be specified is the type used to repre-

sent timestamps. The two options are uint64 t, which is slightly more efficient, and

MaceTime, which is modelchecker-friendly. If a service will be model checked, and it

contains any time-based non-determinism (comparing the latency of operations, for

example), then MaceTime should be used. Functionally, the primary difference is

that when using MaceTime, helper functions (and not standard operators) should be

used to compare two timestamps, or to combine/scale timestamps. These functions

expose to the model checker the operations of time, helping it distinguish between a

deterministic time value and a non-deterministic time value, allowing it to properly
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explore non-deterministic comparisons of time. During actual execution, the system

runs as though with real time values.

The final portion of the architecture section of a Mace implementation is the

set of lower level services a service will use. The services block can contain any number

of service variables.

Lesson 4: Though simplistic layered systems, like a tree service running over just a

transport service, assume a single stack of layered service objects, this is neither

a limitation nor always practical. Mace instead supports a directed acyclic graph

(DAG) of services, which preserves the notion of layering, but greater flexibility

and modularity. One such DAG was shown in Figure 3.1. Each service may

use multiple lower level services, and provide multiple interfaces and be used by

multiple higher-level services. This requires a bit of extra effort when coding

some services, as the service must be shareable, but the benefit is greater re-

usability.

Each service variable is declared to provide a given service class interface. For

every method meth in the service class interface, a method is generated for the ser-

vice of the name downcall meth, allowing the service to make calls into the lower level

service. As with the upcall generated methods, the signature matches the generated

signature exactly (modulo method remappings, § 4.2.5), including the generated reg-

istration uid parameter. The variable name of the service variable represents the

statically registered uid, and can be passed as the final parameter to the downcall

method to tell it on which service variable to make the call. If there is only one ser-

vice variable that provides the given function, and it is not being used with dynamic

registration, or if a default has been set explicitly, this parameter may be omitted,

and the Mace generated code will determine upon which service variable to make the

call.

Service variables represent the statically allocated registration uid they have

received. The registration uid can be manually set using the ‘RegistrationUid’ syntax,

and should be done if non-parallel service instances need to talk to each other. As an

example, for a client and server to talk over a shared transport, they must each allocate

the tranposrt the same registration uid. As registration uids are allocated sequentially
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increasing starting at 0, generally large integers should be used for fixed registration

ids. To indicate that the service variable will be used with dynamic registration, use

the ‘DynamicRegistration’ syntax, which specifies the type for registration. A runtime

check will assure that the types match up with what the service provides. Then, in

addition to the declared service class, a dynamic registration service can be used

with the DynamicRegistrationServiceClass<typename T> service defined in the

DynamicRegistration.h file of the interfaces directory under the services directory

within Mace. Downcall methods will be generated for each of these as well.

Next, for each handler listed for a service class of a named service variable,

the service implementation will generate appropriate methods for receiving callbacks

from the service variable, and will generate the code for registering the service with

the lower level service as a handler. The service should therefore implement each of

these methods as upcall transitions. The set of handlers can be restricted using the

‘Handlers’ syntax, which will let the service register only the specified set of han-

dlers with the service variable. Restricting the handlers will reduce the generated

code size, reduce the number of warnings from the Mace compiler about unimple-

mented interface methods, and can in rare circumstances be used to share services in

unconventionainterface methods ways.

Each service listed in the services block will be included in the constructor for

a service, unless modified by either ‘inline’ or ‘final’, according to the ‘InlineFinal’

syntax. This allows any service to be overridden at construction time by passing in

a different implementation of the service class. The ‘inline’ keyword prevents the

variable from being part of the constructor, and will even prevent the service variable

from being an actual variable of this service, but instead is only constructed inline

as needed to pass it into lower level services. No methods, handlers, etc. will be

generated as a result of inline services. The purpose of inline services is to allow

configuration of the lower level services, beneath the services used by this service.

For example, to make a transport that is shared by two lower level services, make it

inline, then pass it into both of the services.

The ‘final’ keyword also prevents a service from being part of the constructor,

but otherwise it behaves like any other service. That is to say, the implementation or
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construction specified by the ‘SVImpl’ syntax is the final choice of what will implement

that service, and cannot be overridden at construction time.

Finally, the syntax describes the default (or final) implementation of a service

should an overriding value not be available. This can be omitted, but then must be

provided at construction time1. Options for an implementation are to either provide

another service variable, in which case a dynamic cast will be performed at construc-

tion time to ensure a match, or a service name, with its constructor parameters and

services. This will cause the method new service serviceclass() to be called with these

same parameters, to construct the given service.

Lesson 5: Service construction can be one of the hardest parts of building services

in Mace, because by design it is highly modular. The component architecture

provides a flexible language for defining how to construct lower-level services,

including declaring some as inline or final. All other services may be overridden

by higher-level services, or by the application creating the services. A helpful tip

when creating a service is to diagram the service DAG used in the application

to help you construct all the services appropriately.

4.2 Service Specification

The specification of a Mace service is given by:

MaceService: ComponentArch ServiceBlocks(*)

ServiceBlocks: TypeDefinitions | PersistentState | Execution

| Debugging | Miscellaneous

TypeDefinitions: Typedefs | AutoTypes | Messages

PersistentState: Constants | ConstructorParameters | States

| StateVariables

Execution: Transitions | Routines | Detect

Debugging: Properties | StructuredLogging

Miscellaneous: MethodRemappings | MInclude

Anything that appears before the ‘ComponentArch’ block is copied into the

generated output files. This therefore is an ideal place to put include statements for

1This is commonly done for simulated application services, as the modelchecker requires a service
to avoid default construction anyway.
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necessary C++ header files. The service blocks may appear in any order, but no

more than once in the main specification file. The Transitions block is required to

be present, but the others are all optional. The ‘ComponentArch’ was described in

§ 4.1.2, but the others are described in the following sections.

4.2.1 TypeDefinitions

There are a three types of type definitions commonly used in distributed sys-

tems implementations: Typedefs, AutoTypes, and Messages.

Typedefs

The first of these are basic C++ typedefs, which are essentially used to give a

new name to an existing type. The syntax is

Typedefs: ‘typedefs’ ‘{’ Typedef(*) ‘}’

Typedef: ‘typedef’ ExisitngType NewTypeName ‘;’

The syntax is identical to a simple renaming typedef in C++. Typedefs in

Mace cannot map new structure or class definitions to a typename, as was commonly

done in older C designs. In Mace, we find that these typedefs generally serve two

common usages, (1) to give names to various integral types that represent something

specific, such as registration uid t, or (2) to map complex STL types or template

types into more conveniently typed names. In addition to standard C++ types, the

typedefs block may reference earlier defined typedefs, or auto-types.

AutoTypes

Auto types in Mace are a convenient place to create all kinds of struct or class

types, while letting the compiler generate formulaic domain specific code for you. The

syntax is

AutoTypes: ‘auto_types’ ‘{’ AutoType(*) ‘}’ ‘;’

AutoType: TypeName TypeOpts ‘{’ Typedef(*) Field(*) CppConstructor(*)

Method(*) ‘}’ ‘;’(?)

TypeOpts: ‘__attribute((’ TypeOpt (‘,’ TypeOpt)(*) ‘))’

TypeOpt: AttributeName ‘(’ SubTypeOpts(?) ‘)’

SubTypeOpts: SubTypeOpt (‘;’ SubTypeOpt)(*) ‘;’(?)
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SubTypeOpt: (Value | Key ‘=’ Value)

Field: Type VarName TypeOpts(?) ( ‘=’ DefaultValue )(?) ‘;’

Method: MethodDecl MethodOptions(?) MethodImpl

MethodDecl : (C++ function declaration without terminator)

MethodOptions : ‘[’ (key) ‘=’ (value) ( ‘;’ (key) ‘=’ (value) )* ‘]’

MethodImpl : ‘{’ (C++ function body) ‘}’

There may be any number of auto types, and they may reference previously-

defined auto-types, or types defined in the typedefs block. The common use for

an auto-type is to behave essentially like a struct—each field listed will be copied

as a public member of the output class. Several auto-generated methods will be

generated: (1) a default constructor which initializes each parameter to its default

value, or Type() otherwise; (2) a constructor with each parameter as a field (in the

same order) with default values as given for fields, which sets the value for each field

based on what’s passed in; (3) accessor methods of the form get fieldname which

return a copy of the field—these can be used as function pointers to STL algorithms

or collection methods taking a function pointer to compute over the objects; (4) a

method to print the object by printing each of its fields, and (5) methods to serialize

and deserialize the object according to the Serializable interface, by serializing and

deserializing each object in turn, which includes normal and XMLRPC serialization.

An example auto types block might look like:

auto_types {

VersionedData {

int32_t version;

string data;

};

}

This defines a class called VersionedData in the scope of the service, with public fields

version and data, auto-serialization and printing methods, a default constructor, and

a constructor which takes each of the fields. Many other examples of auto types can

be found in the downloadable Mace code.

There are many ways to customize an auto-type, and these will be described

now.
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Typedefs As with the typedefs block, new types may be named within the context

of an auto-type. These will be created as inner-types of the auto-type, and serve

the same purpose as the typedefs block.

CppConstructors One can define any number of C++ constructors for your auto-

type, which can override the default constructors that are otherwise auto-

defined. The syntax for these is as it would be for standard constructors in

C++.

Methods You can define any number of C++ methods as member functions of the

auto-type. These use the normal syntax for defining methods in C++, but may

contain an optional ‘MethodOptions’ block between the method signature and

the method body, which may contain a ‘trace’ option that changes the trace

level for this function only. These methods cannot directly access variables or

methods of the service itself, though the auto-type is declared as a friend of the

service instance. The auto-type may contain a pointer to the service instance,

which can be passed in by the constructor, and this pointer can be used to

access variables and methods of the service.

FieldOptions Each field of the auto-type can be given a variety of options that

control how it is generated within the auto-type. These options overlap sub-

stantially with other fields in the specification, and so are described in detail in

§ 4.3.1.

Serialize The ‘serialize’ option with sub-option ‘no’ (serialize(no)), can be spec-

ified for the auto-type, which causes it not to have the serializable methods

generated for it.

Comparable Auto-type objects are not, by default, comparable—meaning there are

no equality or comparison operators defined automatically. The ‘comparable’

option can be specified, and admits three sub-options: ‘equals’, ‘lessthan’, and

‘hashof’. The value provided for each should be ‘default’, other options are

not presently supported. If ‘equals’ is supplied, then an operator== method

will be defined. If ‘lessthan’ is supplied, then an operator< method will be
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defined, and ‘equals’ will be implied. Finally, ‘hashof’ will cause a hash tem-

plate to be generated for use in hash maps. A full specification would be

comparable(equals=default; lessthan=default; hashof=default). The

generated methods will consider the fields in order, omitting those fields that

are marked ‘notComparable’.

Private Giving the ‘private’ option with the sub-value ‘yes’ has the effect of making

the fields of the auto-type private, instead of the public default, while leaving

the auto-type methods as public. This is to allow normal C++-style protection

for parameters.

Node The node attribute tells the Mace compiler this auto-type represents a node.

This causes it to add several auto-generated features for the type. First, an

‘id’ field is generated for the object, which is hidden and protected. The value

can be retrieved using getId(), which will return a copy of the id. The id

field will be the first parameter to any constructor, and must be set at the

time of construction. The purpose of setting the node attribute is twofold.

First, future compiler options can take advantage of types that are known to

represent nodes, in the same way Mace takes advantage of the MaceKey and

NodeSet types, but with more richness. Second, the node attribute is for use

with the mace::NodeCollection data type, which is a hybrid map and set

type. Nodes in the collection can be located and referenced using only their

MaceKeys, as with a map, but the key is also automatically a field of the

mapped type, or value type, as though it were a set. Part of this support for

node collections is the addition of a getScore function, which is the default

function pointer used with the greatestScore and leastScore functions of

the node collection. By default, getScore simply returns 0.0, but by giving

the name of a field as the ‘score’ sub-option, it can return that field instead.

(example node(score=delay)).

Messages

The messages block allows one to define messages for sending to other nodes.

The syntax is described below:
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Messages: ‘messages’ ‘{’ Message(*) ‘}’ ‘;’

Message: TypeName TypeOpts ‘{’ Fields(*) ‘}’ ‘;’(?)

Fields: Type VarName TypeOpts(?) ‘;’

Example:

messages {

JoinRequest {

MaceKey source;

}

JoinReply __attribute((number(6))) {

NodeSet peers;

}

}

This example contains two messages, one named JoinRequest, and the other Join-

Reply. Each message has a single field. The JoinReply message will be allocated

message number 6 while JoinRequest will get its number by sequential assignment.

The only valid type option for message fields is the ‘dump’ option, which can

be used to restrict how a message field is printed in its output methods. The sub-

options and values for ‘dump’ are described in § 4.3.1. Serialization is automatically

generated for each message, and cannot be modified. Methods similarly cannot be

added to messages. To support distinguishing messages during deserialization, each

message of a service is assigned a sequential number in the order listed, from an

int8 t numerical space. To support sharing messages across services, the ‘number’

type option may be set for the message type, with a sub-value of the desired number.

Subsequent messages will be one greater than this message. (Example: number(5)).

The serialized form, then, will contain the number at the beginning of the bytestream,

and is automatically handled for dispatch and deserialization by deserialization code.

Messages are highly optimized for minimizing copies of data, and therefore

cannot be stored past their stack-lifespan. The message itself is a set of const refer-

ences, which either point to the variables passed in by constructor, or to the variables

of a separate struct generated just for the message. The former is used for serializing

a message, while the latter for de-serializing a message. Messages therefore should

not be passed by copy or stored, as these references will become invalid and cause

memory problems.
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In some cases, it is desirable to save a message, so as to preserve its contents

for future delivery. Presently, there are two ways to do this. First, you can create

an auto-type with the same fields, and either send the auto-type in the message (and

store the auto-type), or write a constructor for the auto-type that takes the message

and initializes all the fields. The second way to do this is to serialize the message into

a string, so it may be deserialized later. If the goal will be to re-deliver the message,

the latter option may be preferred, as the string can be delivered directly by calling

a service’s own deliver method, with the string serialized as an argument.

In addition to serialization and logging code, messages are handled specially by

the Mace compiler, as will be described in § 4.2.5. In general, however, special message

handling is to leverage the fact that the Mace compiler knows, for each service, the

complete set of messages it may send and receive, and so generates appropriate code

to handle multiplexing and demultiplexing of the messages efficiently rather than

trying to deserialize an arbitrary object, as happens in other languages like Java.

4.2.2 Persistent State

Few distributed systems are stateless. Thus, the Mace specification language

has to provide mechanisms for storing the state of each node in the system. I have

identified four types of persistent state a service maintains—(1) compile-time con-

stants, which support compile-time optimization of the service based on the constant

value, (2) run-time constants, which are set during the service initialization by its

constructor’s parameters, (3) high-level states, which are used to break-up the imple-

mentation into phases, and (4) detailed state variables, which let the service maintain

specific information in addition to its current phase of operation.

Constants

Syntax:

Constants: ‘constants’ ‘{’ CppInclude(*) Variable(*) ‘}’

Variable: Type Varname ‘=’ Value ‘;’

The constants block contains two portions. The first is a set of C++ header

files that may be needed to define types for constants. To make compilation more
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efficient, a file, ServiceName-constants.h, is generated for defining the constants, and

this file only includes “MaceBasics.h”. Thus, if the type is not defined there, it will

need to be #include-d inside the constants block. Two cases in which this is necessary

are constant std::string variables and constant mace::MaceTime variables. The

syntax of a CppInclude are the same as in standard C++. The variables themselves

are defined as other C++ variables are defined. Each must have a value provided,

which will be the compile-time constant used for the variable.

Constructor Parameters

Both constants and constructor parameters are constants at runtime. The

distinguishing feature of these is that constructor parameters may be set at runtime

rather than compile time, limiting optimizations the compilers may make. Any pa-

rameter listed here will be placed, in order, in the initialization function of a service

so it may be over-ridden at instantiation time.

Syntax:

Constants: ‘constructor_parameters’ ‘{’ Variable(*) ‘}’

Variable: Type Varname ‘=’ Value ‘;’

Unlike the constants block, there is no need for C++ includes in this block, as

it will enjoy the set of includes the rest of the service code does as well, including any

files included from the constants block. Each variable in this block must be given a

default value, to support a parameter-less instantiation of the service.

In actuality, two initialization functions will be generated for services that use

both lower level services and that have constructor parameters. The first will have

the list of services first, and the second will have the list of constructor parameters

first. This supports default initialization of either set while only passing in the other.

In fact, there will only be one constructor generated, and it will contain no default

parameters. This was done for simplicity of code generation and shortness of compi-

lation – all of the default value mapping happens in the initialization functions, which

are defined in ServiceName-init.cc and declared in ServiceName-init.h. As such, no

service implementation file depends directly on another service, so when a service is

modifyied, only the initialization functions of dependent services need be recompiled.
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States and State Variables

The remaining state is the mutable persistent state. It comes in two types—

high level states, and lower level state variables. To understand the distinction,

consider a TCP implementation. The TCP implementation defines a state-transition

diagram, which includes the states CLOSED, LISTEN, SYN-RCVD, SYN-SENT, ES-

TAB, FIN-WAIT-1, FIN-WAIT-2, CLOSING, CLOSE-WAIT, TIME-WAIT, LAST-

ACK, and CLOSED. These determine the phase of the transport protocol, and de-

termine how to handle incoming packets at a high-level. But nodes also maintain

some specific information, such as the congestion window, and the local and remote

sequence numbers, which are not encoded in the state-transition diagram. This di-

chotomy captures exactly the design difference between states and state variables.

Lesson 6: While the high-level state could be captured as an enumeration in a nor-

mal state variable, it is more natural to use the states block to define these

high-level states. Doing so also exposes to the Mace compiler and tools that

these state transitions are more significant to the operation of the service, and

this information can be used to better visualize the execution or search the state

space in model checking tools.

Lesson 7: Some services, because they provide logical service for multiple purposes,

would be better served by a high-level state that is not only service specific, but

also specific to a group or registration id. These services currently tend not to

use the high-level state variable, to the detriment of automated understanding.

We are currently considering new language features to preserve this dichotomy,

even for these kinds of services.

States Syntax:

States: ‘states’ ‘{’ StateName ‘;’ (StateName ‘;’)(*) ‘}’

In addition to the states listed as StateName(s), two states are automatically

added to every service: init and exited. The service will begin in the init state. When

the service is exiting, though calls to the maceExit event handler, the service will

automatically transition to the exited state. Once in the exited state, no transitions



74

may occur except maceExit, so a service should only transition itself to the exited

state if it wishes to prevent all future transitions. Usually this is not done by the

programmer, as it is handled automatically on the call to maceExit. In each service,

the state of the service can be checked and modified through the state variable. An

enumeration is created from the set of states, so the state variable may be compared

to the names of the states, or assigned a new value.

To capture the lower-level states of the service, these variables are defined as

part of the ‘StateVariables’ block.

StateVariables Syntax:

StateVariables: ‘state_variables’ ‘{’ Variable(*) ‘}’

Variable: Type VarName TypeOpts(?) ( ‘=’ InitialValue )(?) ‘;’

TypeOpts: ‘__attribute((’ TypeOpt (‘,’ TypeOpt)(*) ‘))’

TypeOpt: AttributeName ‘(’ SubTypeOpts(?) ‘)’

SubTypeOpts: SubTypeOpt (‘;’ SubTypeOpt)(*) ‘;’(?)

SubTypeOpt: (Value | Key ‘=’ Value)

These variables generally share the standard C++ syntax for declaring vari-

ables, and are generated as private member variables of the service. They may only

be accessed or referenced from code within the service specification—such as tran-

sitions, routines, or as discussed in auto-type methods—and may not be externally

influenced. This supports encapsulation and checking because only by calling a tran-

sition may the state of the service be affected. These variables can also be affected

by a variety of attribute field options, which are described in detail in § 4.3.1. The

Mace compiler does not enforce, but it is strongly urged, that no pointer or reference

variables are placed in a state variables block, because it may violate the encapsula-

tion that is assumed by MaceMC and other Mace tools. State variables may be set

to an initial value, or will be initialized to Type() otherwise. Variables can be of any

standard C++ type, a type named in a typedefs block, or an auto-type. They should

not, as described earlier, be a message type.

One state variable type in particular deserves special mention, because it is

treated specially by the Mace compiler. This is the timer type. In its basic form, a

user can define a timer as such:

timer printer;
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This creates a new timer, with the name printer. Timers are used in Mace to

schedule future callbacks as timed events rather than in response to external stimuli.

There are two main kinds of timers: plain and multi-timers. Plain timers can be

recursive or not, depending on the type options. Recursive timers are simply plain

timers that automatically reschedule themselves as they expire. The service must

schedule them the first time to start the sequence, and they will fire until cancelled.

Multi-timers cannot be recursive, and have the property that they may be scheduled

multiple-times simultaneously. Timers may also contain a set of variables that are

passed into the schedule methods, and returned during the expire transition. Because

of the various specializations, each timer is generated individually.

Example timer definitions are:

timer plain;

timer<int, float> plainWithVariables;

timer recursive5sec __attribute((recur(5000000)));

timer multi __attribute((multi(yes)));

timer<int, float> multiWithVariables __attribute((multi(yes)));

Timers support these methods:

schedule() The schedule method takes a uint64 t parameter that is the number of

microseconds until the timer should expire. Additionally, there is a parameter

for each value to be stored with the timer, which the timer will make a copy

of for safekeeping. In a multi-timer, the schedule method will return the exact

timestamp the timer is scheduled to expire, which is used as a key for other

methods. In a plain timer, schedule will assert that the timer is not scheduled.

reschedule() This call is only generated for plain timers. It differentiates itself from

schedule only by the fact that it will cancel this timer if already scheduled before

scheduling it as requested.

isScheduled() This call with no parameters returns a boolean indicating whether this

timer is presently scheduled. For multi-timers, one can pass in a specific times-

tamp, from the return value of a call to schedule, and the timer will tell whether

is a timer scheduled with that timestamp. Timers with variables will also im-

plement an isScheduled method that takes the variable list, and will return true

if there is a scheduled timer with that set of variables.
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nextScheduled() This call, for all timers, returns the first time this timer is scheduled

to expire.

cancel() The cancel method can be used to cancel timer expirations. The form with-

out parameters, for both plain and multi-timers, cancels all outstanding expi-

rations of the timer. For multi-timers, there will be two additional forms. One

takes a timestamp, and cancels only that specific expiration. The other takes

the set of timer variables, and cancels all matching timer expirations.

The transitions that occur when a timer expires are discussed in § 4.2.3.

4.2.3 Execution

There are three places in the service where designers can place executable code

that executes directly in the scope of the service itself. These are transitions, which

are event handlers, routines, which are private methods of the service, and detect

transitions and triggers, which are normal transitions, but separated for convenience.

It should be stressed that nowhere in Mace execution code within a service context

should the thread be allowed to block, as this would prevent other threads from

executing their events in the current Mace implementation.

Transitions

Transitions are the key of all Mace services—it is through transitions that all

useful work of the service occurs. There are four kinds of transitions: upcalls, down-

calls, scheduler, and aspect transitions. Upcalls are transitions that come from lower

layers, namely the registered handlers of services in the services block. Downcalls

are transitions that come from higher layers: interfaces in the provides statement of

this service. Scheduler transitions are expiration transitions of a timer variable, and

aspect transitions are those that occur atomically at the end of a transition in which

a monitored state variable is modified.

Syntax:

Transitions: ‘transitions’ ‘{’ GuardedTransitionSet ‘}’

GuardedTransitionSet: ‘guard’ Guard ‘{’ GuardedTransitionSet ‘}’

| Transition(*)
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Guard: ‘(’ (const boolean expression) ‘)’

Transition: TransitionType Guard(?) ReturnType(?) TransitionName

ParameterList MethodOptions ‘{’ CppMethodBody ‘}’

TransitionType: ‘upcall’ | ‘downcall’ | ‘schedule’ | AspectType

AspectType: ‘aspect’ ‘<’ Variable (‘,’ Variable)(*) ‘>’

TransitionName: (function name from the valid interface methods)

ParameterList: (Type)(?) VarName (‘,’ (Type)(?) VarName)(*)

In the execution of a service, event processing happens by threads acquiring

the privilege to execute a given event, then calling that event handler. Because

different threads are competing to fire events, the order of events is unpredictable,

and fair-sharing across threads is handled by operating system primitives. Associated

with each transition is a stack of guard boolean expressions, which defaults to a single

‘true’ if empty. This is the stack parsed from the nested GuardTransitionSet blocks

into the specific transition Guard. For example, consider this block:

transitions {

downcall maceInit() { /* event body */ }

guard (state == waiting) {

upcall (src == me) deliver(src, dest, const JoinRequest& r) {

//error?

}

}

}

It shows a maceInit event, whose guard stack defaults to < true >, and a deliver

event for a JoinRequest message. The guard stack for the deliver event is < (state ==

waiting), (src == me) >. When a thread receives permission to execute its event, it

will find the first matching and enabled transition, and execute that transition. An

enabled transition is one whose guard stack returns true. In the case of the deliver

event, the guards stack would be true if the state is the waiting state and the source

is the local node. If no matching and enabled transition is found, the default behavior

from the interface description will be used instead.

Lesson 8: There is functionally no difference between defining multiple transitions

with different guards, and having a single transition with an if /else if /. . .. The

latter can even be more efficient due to limitations of the current implementa-

tion. Despite this, the guards are recommended, because they allow the user
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to group transitions by something other than transition type, the compiler to

better understand how the system is structured, and the analysis tools to make

better use of the guard information.

There are a few caveats and exceptions to the default behavior, which have

to do with the transition options described in § 4.3.2. Basically, transitions may be

declared as ‘pre’ or ‘post’ transitions, and may be marked as only executing once.

Marking a transition as execute-once is equivalent to adding a guard that checks

if the execution has happened before, and returns false if so. Otherwise, all pre

transitions will be considered for execution, based on their guards and will execute in

the order they appear in the specification. Then, after all pre transitions execute, the

first matching normal transition will execute, followed by all matching and enabled

post transitions, in the order they appear. Finally, aspects and deferred actions

will be executed. Since these can in turn cause other things to execute by calling

other methods, their interaction is not well understood, so care must be taken when

combining all of these features.

Transition code is written in C++, and can make calls to other services (using

upcall and downcall functions), to routines, or asynchronous, non-blocking libraries.

Transitions can also defer certain routines, downcalls, and upcalls until the end of

events, by prefixing those calls with ‘defer ’. To defer an ‘upcall deliver’, for example,

the programmer would write ‘defer upcall deliver’. Note that no return value may be

collected from those calls, as they are not immediately executed. The specification of

transition signatures allows most types to be omitted. The return-type may always

be omitted, and will be taken from the interface definition. Also, the types of the

parameters may be omitted, as long as they are not needed to distinguish which

interface the transition should match.

The parameters of a transition must match exactly the type listed in the

interface definition. However, there are a few exceptions. First, the registration uid

parameter common to upcalls and downcalls may be omitted, though it should not

be omitted if the transition is a downcall and the variable needs to be saved or used

for an eventual related upcall. Second, the parameters of a scheduler transition are

taken from the template parameters of the timer type, except that they are passed
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to the scheduler transition as reference parameters. Finally, the parameters of an

aspect method are constant reference parameters to variables of the same type as the

template variables of the aspect.

An aspect transition is declared as an aspect that monitors the changes of

a set of state variables. The compiler checks this list to make sure they are all

state variables, and bases the parameters of the transition on the types of the state

variables. An aspect will detect when a state variable changes, and if any of the

flagged state variables change, the guard will be checked to see if it is enabled. If so,

the prior value will be passed in as a parameter to the aspect transition, by constant

reference.

Routines

Syntax:

Routines: ‘routines’ ‘{’ (Routine | RoutineObject)(*) ‘}’

Routine: Method

RoutineObject: ( ‘class’ | ‘struct’ ) TypeName ‘{’ CppBody ‘}’ ‘;’

Routines are nothing more than private member functions of a service. Rou-

tines may not be called from outside the service, thus entry points into the service are

restricted to transitions. Routines are defined using normal C++ syntax for meth-

ods, though they may contain MethodOptions between the signature and the method

body.

As a special case, the routines block may also contain a class or struct, who’s

implementation will be copied verbatim from the routines block to the service. This

use is deprecated, but remains to support defining a functor for use as a secondary

sort function on objects that have a different primary sort.

Detect

The detect block is a shortcut for a common setup in distributed systems. The

basic idea is that for a node or group of nodes, often a protocol wants to exchange

periodic information, and will declare the remote peer failed if there is no response

in an appropriate amount of time. This is often implemented as a set of timers, state
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used to keep track of the last time a node was heard from, and messages to exchange

information. Timers are reset when an appropriate response from a peer is seen. This

block was developed in Mace as an experiment to clean the code related to this.

Syntax:

Detect: ‘detect’ ‘{’ DetectSpec(*) ‘}’

DetectSpec: Id ‘{’ DetectBody ‘}’

DetectBody: DWho DTimerPeriod(?) DWait(?) DInterval(?) DTimeout(?)

DWTrigger(?) DITrigger(?) DTTrigger(?)

SuppressionTransitions(?)

DWho: ( ‘node’ | ‘nodes’ ) ‘=’ state-variable ‘;’

DTimerPeriod: ‘timer_period’ ‘=’ Expression ‘;’

DWait: ‘wait’ ‘=’ Expression ‘;’

DInterval: ‘interval’ ‘=’ Expression ‘;’

DTimeout: ‘timeout’ ‘=’ Expression ‘;’

DWTrigger: ‘wait_trigger’ ‘(’ varname ‘)’ ‘{’ MethodBody ‘}’

DITrigger: ‘interval_trigger’ ‘(’ varname ‘)’ ‘{’ MethodBody ‘}’

DTTrigger: ‘timeout_trigger’ ‘(’ varname ‘)’ ‘{’ MethodBody ‘}’

SuppressionTransitions: ‘suppression_transitions’ ‘{’

GuardedTransitionSet ‘}’

In the detect block, multiple detect specifications (DetectSpec) can be defined.

For each specification, there is a name name for the specification, and either a node

or set of nodes must be defined. Given the name of the specification, a method called

reset name is generated, which takes a MaceKey parameter. Whenever the method is

called, that node is marked as having responded, and the node clock is reset. The node

set of nodes listed in the syntax refers to a state variable, and for each node listed,

a virtual clock is started. A timer is generated for the detect specification, which

expires at the interval specified by timer period. Whenever the timer expires, each

node’s virtual clock is consulted, and timers are fired as appropriate. The triggers

specified are executed according to the chart in Figure 4.1. First, a wait period occurs

before any trigger. Then, the wait trigger is executed, followed by the first interval

trigger. Then, every time the interval passes, the interval trigger is executed again.

Finally, if timeout time elapses on the virtual clock from its start, the timeout trigger

is executed.

As a convenience, transitions may be defined as part of the detect specification.

These transitions are equivalent to transitions in the transitions block, and will be



81

Figure 4.1: This figure shows how timeout periods and triggers interact in detect
specifications in Mace. Time is represented by the arrow going to the right. Arrows
pointing up indicate triggers executing.

included as though implemented there, though they are automatically marked as

pre transitions, to prevent conflicts with transitions in the rest of the specification.

The idea is that as a convenience, suppression can often be expressed in separate

pre-transitions, to keep these concerns separate.

Many of the detect declarations are optional and have default values. These

are currently set as follows:

timer period. By default, the timer will expire every 1 second, measured in mi-

croseconds, so the specific value is 1000000.

wait period. The default wait period is 0, meaning the intervals begin immediately.

interval period. The interval period defaults to the setting of the timer period.

timeout period. There is no timeout by default – intervals continue until the peer

clock is reset.

Triggers can also be left undefined, causing no action to occur when the timeouts are

passed.

4.2.4 Debugging

There are two parts of a Mace specification that are focused on debugging: the

definition of properties and structured logging. Properties are conditions for verifying

the correctness of a service, and structured logging is the idea of logging by calling
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a method rather than writing a text message, which supports more efficient logging

and adds structure for automated tools.

Properties

The properties block can be used to define both safety and liveness properties.

Safety properties are state conditions that must always be true, at every point during

execution. Liveness properties are state conditions that should eventually hold along

any execution.

Syntax:

Properties: ‘properties’ ‘{’

( LivenessProperties | SafetyProperties)(*) ‘}

LivenessProperties: ‘liveness’ ‘{’ Property(*) ‘}’

SafetyProperties: ‘safety’ ‘{’ Property(*) ‘}’

Property: Id ‘:’ GrandBExpression ‘;’

GrandBExpression: BExpression ( Logical BExpression )(*)

BExpression: Equation | BinaryBExpression | BBlock | Quantification |

‘\not’ GrandBExpression | Var

Equation: Expression Op Expression

BinaryBExpression: Element ElOp Set | Set SetOp Set

ElOp: \in | \notin

SetOp: \subset | \propersubset | \eq

BBlock: ‘(’ GrandBExpression ‘)’ | ‘{’ GrandBExpression ‘}’

Quantification: ( ‘\forall’ | ‘\exists’ | ‘\for{’ Op ‘}{’ Count ‘}’ )

VarName ‘\in’ Set ‘:’ GrandBExpression

Op: < | > | \geq | \leq | = | \neq

Logical: \implies | \and | \or | \xor | \iff | \not

Each property is given a name, and defined with a ‘GrandBExpression’. The

idea of the language is to use a latex-like language. In large part, a goal was to

be able to copy/paste the property into a latex document, and have it generate the

mathematical formula to be tested.

Some common operators and expressions include:

• equality: =

• inequality: \neq

• Element-Set (ElOp): \in, \notin
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• Set-Set (SetOp): \subset, \propersubset, \eq (set equality, not C++ equality)

• Numerical: = (C++ equality), <, >, \geq, \leq

• Logical: \implies, \and, \or, \xor, \iff , \not

All properties presently have to start with a quantification over the nodes

(special variable \nodes). The quantification options are (n can be any variable

name):

• \forall n \in \nodes:

• \exists n \in \nodes:

• \for{OP}{COUNT} n \in \nodes:, Where Op is <, >, \geq, \leq, \neq, or

=, and Count is a number.

For example,

\for{=}{4} n \in \nodes

would be “for exactly 4 n in nodes”, while

\for{<}{4} n \in \nodes

would be “for fewer than 4 n in nodes”.

One can use n as a reference to a node, and use the dot operator to access its

state variables, state , or a const transition/routine.

Any variable that is a MaceKey can be “promoted” to a node reference. That

is, suppose a service had a MaceKey variable peer where it stored the address of a

peer.

Then the property:

\forall n \in \nodes: n = n.peer.peer

says that for each node n, n is the peer of its peer.

You can also compute the closure of a recursion, in a property like this:

\forall n \in \nodes: n.peer(.peer)* \eq \nodes
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which would be: The set containing n.peer and the closure formed by continually

adding each new node’s peer to the set, is the set of all nodes.

We use this property to check that successor pointers in Chord form a ring of

all nodes. You can also take the cardinality of a set like this:

\forall n \in \nodes: |n.peer(.peer)*| = 4

which would test that for each node n, the closure of n.peer(.peer)∗ has size exactly

4.

You can use multiple quantifications, and parentheses to designate order of

operations. This gives you something like:

\forall n \in \nodes: (n.state = init \or

(\exists m \in \nodes: m.p = n)

)

Which would say, for all nodes n, either n is in the init state, or there exists

a node m such that m.p = n. The parentheses may not actually be needed here, but

can provide clarity. Additionally, curly braces can be used instead of parentheses for

nesting, as desired for clarity.

Each property should begin with a property name and a colon, contain a

“grand boolean expression” (GrandBExpression in the grammar), and end with a

semicolon.

StructuredLogging

Structured logging is the idea that instead of writing a text log message, such

as:

maceout << "Received block " << b << " from peer " << peer

<< Log::end;

One could just write this as a function:

receivedBlock(b, peer);

This approach would in theory allow the logging subsystem to understand the

structure of the log, rather than just be presented with the human-readable string of

a log message. For example, it could know there is a log with name “receivedBlock”
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with two parameters, one being a block number and the other a MaceKey called peer,

rather than a string with no particular meaning. This allows for shorter logs with

lower overhead, while allowing post-processing to reformat logs for human reading or

for automated tools to take the fields and process them.

To support this, we first add a structured logs block to the service specification

according to this syntax:

StructuredLogging: ‘structured_logging’ ‘{’ MethodDecl(*) ‘}’

MethodDecl: MethodName ‘(’ CppParameterList ‘)’

This generates a method with the given name, which when called, generates a

log entry structured with the fields of the method. The selector string of the method

will be ServiceName::MethodName. It can be called from any transition or routine

of the service.

4.2.5 Miscellaneous

There are two other parts of the Mace specification that don’t fit nicely in

the rest of the groupings. The first is the method-remappings block, which allows

you to remap the signatures and default values of methods in the defined interface,

particularly to support serialization and deserialization of parameters. The second is

an include-file directive, which allows portions of a Mace service to be provided from

separate files.

MethodRemappings

The method remappings block can be used to remap the signatures of ei-

ther transitions the service implements, both upcalls and downcalls, or the interface

methods it uses (upcall methodname and downcall methodname) from the interface

of either services in the services block, or the registered handlers of the provided

interface.

The syntax breaks these methods into groups to keep their usage straight,

since a service might use the same interface it provides, and the remapping might not

work in both cases.
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MethodRemappings: ‘method_remappings’ ‘{’ (Uses | Implements)(*) ‘}’

Uses: ‘uses’ ‘{’ UsesMethodRemap(*) ‘}’

Implements: ‘implements’ ‘{’ (Upcalls|Downcalls)(*) ‘}’

Upcalls: ‘upcalls’ ‘{’ MethodRemap(*) ‘}’

Downcalls: ‘downcalls’ ‘{’ MethodRemap(*) ‘}’

UsesMethodRemap: ( ‘upcall_’ | ‘downcall_’ ) MethodRemap

MethodRemap: MethodName ‘(’ RemapParam (‘,’ RemapParam)(*) ‘)’

RemapParam: NoRemap | RemapValue | RemapType

NoRemap: Type Name(?)

RemapValue: Type Name(?) ‘=’ Value

RemapType: Type (‘<-’ | ‘->’) Type

The first division within the method remappings block is the division between

methods that are used and methods that are implemented. Used methods refer to

ones that this service specification may call from within transition or routine bodies,

and that begin with the prefix ‘downcall ’ or ‘upcall ’. These methods will come from

either the provided interface of services in the services block, or the handlers defined

for the interfaces this service provides. When included in the ‘uses’ block, a method

should include its prefix, to help the Mace compiler distinguish in which interface to

search for the method, and to prevent conflict. The registration uid t parameter may

be omitted, though is often included to specify the default service to which to deliver

the call. Including the prefix also makes it consistent in how it is shown in this block

with how one actually calls the method from service implementation.

Implemented methods are those transitions that are part of the upcall or

downcall interface of this service. The ‘downcalls’ sub-block is for transitions that

appear in the provides interfaces of the service being implemented. The ‘upcalls’

sub-portion is for transitions that appear as handler methods of the used services

provided interfaces. For both of these cases, type signatures may be remapped, but

remapping default values has no effect, since the caller will be the one supplying

the value. As a result, the registration uid t parameter is often omitted from the

implemented methods, though it is not removed from the transition signature, which

also has an option of including it as needed.

To remap a value for any parameter, define it with a new value as in a C++

function definition, though the parameter name is optional. You cannot give a default

value to a parameter that did not already have a default value. However, you can
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let the default value be a variable name, unlike in C++ where the value must be a

constant, which allows the default value to change during the execution.

To instead remap the type signature of any parameter, place the type of the

actual parameter from the interface definition on the right, and the new type on

the left, with an arrow between to indicate in which direction the translation should

occur. For a used method, the arrow should point to the right, indicating the passed

in parameter (on left) should be translated to the type in the actual signature on

the right, while for an implemented method, the arrow should point left, indicating

the calling method will provide a variable of the type on the right, which should

be translated to the type on the left before implementing it within the service. At

present, only string types may be remapped to other types. A string may either

be mapped directly to another type, in which case simple serialization is used, or it

may be mapped to the ‘Message’ type, which will cause special handling that will

allow remapping to/from any of the expected message types defined for the service,

providing support for dispatching the appropriate message.

When remapping, if the type being remapped is a constant reference, it will

be translated into/from the string provided, while if it is a non-constant reference, it

will be translated both at the beginning and ending of the transition. This allows,

e.g. a lower level service to pass in a string to an upcall, which might be remapped

to a type, modified in the higher-level service, and then re-serialized into the lower

level service’s string as an update.

One special case occurs if in a used method a string is remapped from a

‘Message’. In this case, after doing so, the method may be further remapped to

provide different default values depending on which Message is passed in.

Also, the special syntax described earlier in § 4.1.1 is sometimes used by inter-

face designers to provide default remappings, so individual service implementers need

not worry about them. In particular, the Transport service class provides default

remappings that the string in the route and deliver calls should be remapped to a

Message. This portion of the interface looks like this:

mace services {

method_remappings {

uses {
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downcall_route(const MaceKey&,

const Message& -> const std::string&,

registration_uid_t);

downcall_send(const MaceKey&,

const Message& -> const std::string&,

registration_uid_t);

}

implements {

upcalls {

deliver(const MaceKey&, const MaceKey&,

const Message& <- const std::string&);

messageError(const MaceKey&, TransportError::type,

const Message& <- const std::string&,

registration_uid_t);

}

}

}

}

This automatically causes services that use a Transport service to have the

indicated method remappings block. This block remaps Message to string in the route

and send used calls, and the string back to a Message in the deliver and messageError

calls. Note that this can be overridden in a service by defining the same block, but

without the remapped types.

method_remappings {

uses {

downcall_route(const MaceKey&, const std::string&,

registration_uid_t);

downcall_send(const MaceKey&, const std::string&,

registration_uid_t);

}

implements {

upcalls {

deliver(const MaceKey&, const MaceKey&, const std::string&);

messageError(const MaceKey&, TransportError::type,

const std::string&, registration_uid_t);

}

}

}



89

MInclude

Finally, a Mace file may include parts of its specification from other files.

The #minclude directive may appear anywhere in the service specification after the

ComponentArch syntax, and outside of any ServiceBlocks. Any of the service blocks

may be included, even if the block is also defined in the source file2. These blocks

will be merged with the blocks in the source file, and sorted by order of appearance.

4.3 Options

Many options may be provided at various parts of a Mace specification, which

are directives to the Mace compiler for tailoring the generated code for the field, type,

or method shown. The type options are generally not shared, and were described

above with each type. Below are the field and method options and their descriptions.

4.3.1 Field

Field options are specifically intended to share syntax from the C++ attribute

syntax. This syntax is quite ugly, but is used for consistency. Specifically, this syntax

is:

TypeOpts: ‘__attribute((’ TypeOpt (‘,’ TypeOpt)(*) ‘))’

TypeOpt: AttributeName ‘(’ SubTypeOpts(?) ‘)’

SubTypeOpts: SubTypeOpt (‘;’ SubTypeOpt)(*) ‘;’(?)

SubTypeOpt: (Value | Key ‘=’ Value)

What follows is a description of each of the type attributes, and valid sub-type

keys and values for fields. With each is also an indication of in what contexts the

field option may be applied. Possibilities include the fields of an auto-type, message,

or state variable. In the state-variable case, some options are reserved for timer-type

variables.

dump (Context: auto types, message, state variables) The dump option refers to

whether to include the value of the field when printing the containing object to

a human-readable string. By default, the value is ‘yes’. To cause the variable

2Recall that normally a block may appear only once, but included blocks are an exception.
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not to be dumped, the value ‘no’ can be provided. In some cases, you may wish

to control the standard print method separately from the version that is used

by the model checker to print the state of a service. Printing the state should

omit things like a timestamp that will vary during model checking but don’t

indicate distinct states. To do this, the sub-key ‘state’ can independently set to

‘yes’ or ‘no’.

serialize (Context: auto types, state variables) The serialize option refers to whether

or not to encode the variable when converting the enclosing object for trans-

mitting in a wire protocol. Valid values are ‘yes’ and ‘no’. This option is not

valid in a message field, because it is unreasonable to declare a message field as

not serialized. You might not serialize a field if it simply represents local state

that is either only relevant locally, or is computed from other values.

recur (Context: state variables:timer) This option marks a timer as a recursive

timer. Recursive timers automatically reschedule themselves when they expire.

The value passed in should specify the period of the recursion.

multi (Context: state variables:timer) This option marks a timer as a multi-timer.

Multi-timers can be scheduled more than once simultaneously, and might store

data to return on each expiration of the timer.

reset (Context: state variables) This option is used for advanced model checking.

When set on a state variable, it declares that on the maceReset method call,

this variable should not be reset, perhaps to mimic persistent state or to keep

track of state across reboots in the simulated application.

notComparable (Context: auto types) This option can be set on fields of auto

types. When set, it omits them from the automatically generated comparison

functions, which are generated when the comparable option is set on the auto-

type.
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4.3.2 Method

Method options can be passed into transitions, routines, or methods of an

auto-type. The syntax is:

FunctionOptions : ‘[’ (key) ‘=’ (value) ( ‘;’ (key) ‘=’ (value) )* ‘]’

There are only three options presently supported:

merge (Context: transitions) This option tells the Mace compiler to merge this

transition in with other transitions in the way specified. The two valid options

are ‘pre’ and ‘post’. Specifying the value ‘pre’ means this transition will be

considered before the main dispatch of the transition, and ‘post’ means it will

be considered after the main dispatch of the transition. Merged transitions are

considered independently, unlike other transitions where only one may execute.

exec (Context: transitions) This option can take one value, ‘once’, which tells the

Mace compiler that this transition should be executed at most once. It is

equivalent to adding a guard that checks this same condition, and then sets a

variable when the transition is in fact executed.

trace (Context: transitions, routines, auto types) The trace option may be specified

on transitions, routines, or auto-type methods. This option sets a routine-

specific trace level, according to the trace-level semantics described earlier.

4.4 Programming Notes

Now that the Mace specification is fully described, we add a few brief pro-

gramming notes. First, there are several macros defined in the

mace/lib/mace-macros.h file that can be used somewhat ‘magically’ within a Mace

specification. These include the logging macros, ‘curtime’, ‘upcallAll’, and ‘upcallAl-

lVoid’. The mace library is documented using doxygen-style comments. Doxygen

allows generation of multiple formats of documentation by following the README

in mace/docs/doxygen/README.

Without going into the definitions of these macros, a sample transition might

look like this:
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downcall maceInit() {

maceout << "My service is now being initialized!" << Log::end;

if (curtime % 2 == 0) {

macedbg(0) << "The current time " << curtime <<

" is an even number of microseconds" << Log::end;

} else {

ASSERT((curtime-1)%2 == 0);

}

upcallAllVoid(initDone, downcall_getLocalAddress());

}

In this illustrative initialization transition, the logging macros are being used.

Each log message ends with a Log::endl object, which tells the logging system to emit

the log message without waiting for more text. The maceout macro is used to emit

a normal logging message, while the macedbg macro is being used to print a debug

message at log level 0. The curtime macro is used multiple times, demonstrating its

special property: it works like a time variable, but is only evaluated the first time it is

called from any transition. It is only evaluated if needed though, and retains its value

for the whole transition, reducing the overall number of calls to gettimeofday. Finally,

instead of using the assert function from the cassert header file, the ASSERT macro

is used, which prints error messages using a variety of mechanisms to effectively be

supported by mace tools. ASSERT also ensures the error will be printed, and not

ignored when logging is disabled. Finally, the upcallAllVoid macro is called to deliver

the initDone upcall to all registered handlers, passing each the return value of the

downcall getLocalAddress method, being made to the lower level service. The macro

upcallAllVoid is used when the upcall has a void return type, or if the return value

will be ignored. A separate upcallAll macro can be used to aggregate return values

across upcalls.

When the actual C++ is generated from this specification, the Mace compiler

will insert #line directives to tell the C++ compiler where the original source file

and line were in case of a compile error, making it easier to fix these problems.

Upon invocation, the Mace compiler needs to be told where to search for

interface header files and included mace specification files. This is done through

multiple -I options, as is done with the g++ compiler. The build system that cmake

uses to build Mace will automatically pass in the interfaces directory of the repository,



93

as well as the current directory. Additional include directories can be defined to tell

it to search elsewhere. Finally, upon invoking the Mace comipler, if the environment

variable VERBOSE is set to 1, it will output more information during the parse about

progress and certain masked warnings. Note that setting VERBOSE to 1 will also

cause the cmake build system to be more verbose.

4.5 Summary

The Mace language has been developed and grown to serve the needs of dis-

tributed systems designers, and we have learned many lessons along the way. Some

parts of it remain complicated and not well fleshed out, which suggests that more

opportunity remains to simplify the language and enhance it further. But already

with these few building blocks, we are able to build substantially complicated sys-

tems quite simply, and without restricting ourselves to a small subset of distributed

systems.



Chapter 5

Mace Modelchecker

Now that we’ve seen how to implement services in Mace, we next describe

MaceMC, the Mace model checker, capable of finding liveness violations in unmodi-

fied Mace implementations. Hard-to-find, non-reproducible bugs have long been the

bane of systems programmers. Such errors prove especially challenging in unreliable

distributed environments with failures and asynchronous communication. For ex-

ample, we have run our Mace implementation of the Pastry [RD01] overlay on the

Internet and emulated environments for three years with occasional unexplained erro-

neous behavior: some nodes are unable to rejoin the overlay after restarting. Unable

to recreate the behavior, we never succeeded in tracking down the cause of the error.

Motivated by this and similarly subtle bugs, we turned to model checking to

assist us in building robust distributed systems. Unfortunately, existing model check-

ers able to run on systems implementations (rather than specifications) can only

find safety violations—counterexamples of a specified condition that should always

be true. Simple examples of safety properties are assert() statements and unhan-

dled program exceptions. For our target systems however, specifying global liveness

properties—conditions that should always eventually be true—proved to be more de-

sirable. In the above example, we wished to verify that eventually all Pastry nodes

would form a ring. Somewhat paradoxically, specifying the appropriate safety prop-

erty requires knowledge of the nature of the bug, whereas specifying the appropriate

liveness property only requires knowledge of desirable high-level system properties.

94
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It is acceptable for a node to be unable to join a ring temporarily, but in our case,

the bug made it impossible for a node to ever join the ring, thus violating liveness.

Existing software model checkers focus on safety properties because verifying

liveness poses a far greater challenge: the model checker cannot know when the

properties should be satisfied. Identifying a liveness violation requires finding an

infinite execution that will not ever satisfy the liveness property, making it impractical

to find such violating infinite executions in real implementations. Thus, we set out to

develop practical heuristics that enable software model checkers to determine whether

a system satisfies a set of liveness properties.

The Mace model checker, MaceMC, is the first software model checker that

helps programmers find liveness violations in complex systems implementations. We

built our solution upon three key insights:

Life: To find subtle, complicated bugs in distributed systems, we should search for

liveness violations in addition to safety violations. Specifying liveness properties

frees us from only specifying what ought not happen—that is, error conditions

and invariants, which may be hopelessly complicated or simply unknown—and

instead let us specify what ought to happen.

Death: Instead of searching for general liveness violations, which require finding

violating infinite executions, we focus on a large subset: those that enter dead

states from which liveness can never be achieved regardless of any subsequent

actions. We thereby reduce the problem of determining liveness to searching for

violations of previously unknown safety properties. We present a novel heuristic

to identify dead states and locate executions leading to them by combining

exhaustive search with long random executions.

Critical Transition: To understand and fix a liveness error, the developer must

painstakingly analyze the tens of thousands of steps of the non-live execution

to find where and how the system became dead. We show how to extend our

random execution technique to automatically search for the critical transition,

the step that irrecoverably cuts off all possibility of ever reaching a live state in

the future.
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To further help the programmer understand the cause of an error, we developed mdb,

an interactive debugger providing forward and backward stepping through global

events, per-node state inspection, and event graph visualization. In our experience,

mdb, together with the critical transition automatically found by MaceMC, reduced

the typical human time required to find and fix liveness violations from a few hours

to less than 20 minutes.

Using MaceMC and mdb, we found the Pastry bug described at the beginning

of this chapter: under certain circumstances, a node attempting to rejoin a Pastry ring

using the same identifier was unable to join because its join messages were forwarded

to unjoined nodes. This error was both sufficiently obscure and difficult to fix that we

decided to check how FreePastry[fre06], the reference implementation, dealt with

this problem. The following log entry in a recent version of the code (1.4.3) suggests

that FreePastry likely observed a similar problem: “Dropped JoinRequest on rapid

rejoin problem – There was a problem with nodes not being able to quickly rejoin

if they used the same NodeId. Didn’t find the cause of this bug, but can no longer

reproduce.”

We have catalogued more than 50 bugs using MaceMC thus far across a va-

riety of complex systems, and MaceMC is now an integral part of the testing and

development of new systems in Mace. The techniques developed for MaceMC are

immediately available to any service implementation in Mace; however, we note that

these techniques for finding liveness violations and the critical transition generalize to

any state-exploration model checker capable of replaying executions. It should there-

fore be possible to use this technique with systems prepared for other model checkers

by defining liveness properties for those systems. Although our approach to finding

liveness violations is necessarily a heuristic—a proof of a liveness violation requires

finding an infinite execution that never satisfies liveness—we have not had any false

positives among the set of identified violations to date.

5.1 System Model

Software model checkers find errors by exploring the space of possible execu-

tions for systems implementations. We establish the MaceMC system model with
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our simplified definitions of programs and properties (see [Kin94] for the classical

definitions). We then discuss the relationship between liveness and safety properties.

5.1.1 Distributed Systems as Programs

We model-check distributed systems by composing every node and a simu-

lated network environment in a single program (cf. §5.3.1 for the details of preparing

unmodified systems for model checking). A program state is an assignment of values

to variables. A transition matches the Mace definition of a transition or an event

handler, and maps an input state to an output state. A program comprises a set

of variables, a set of initial states, and a set of transitions. A program execution

is an infinite sequence of states, beginning in an initial program state, with every

subsequent state resulting from the application of some transition (an atomic set of

machine instructions) to its predecessor. Intuitively, the set of variables corresponds

to the state-variables of the services at each node together with the distributed envi-

ronment, such as the messages in the network. Thus, a state encodes a snapshot of

the entire distributed system at a given instant in time.

Conceptually, each node maintains a set of pending events. At each step in the

execution, the model checker selects one of the nodes and an event pending at that

node. The model checker then runs the appropriate event handler to transition the

system to a new state. The handler may send messages that get added to event queues

of destination nodes or schedule timers to add more events to its pending set. Upon

completing an event handler, control returns to the model checker and we repeat the

process. Each program execution corresponds to a scheduling of interleaved events

and a sequence of transitions.

5.1.2 Properties

A state predicate is a logical predicate over the program variables or state-

variables. Each state predicate evaluates to TRUE or FALSE in any given state. We

say that a state satisfies (resp., violates) a state predicate if the predicate evaluates

to TRUE (resp., FALSE) in the state.
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Table 5.1: Example predicates from systems tested using MaceMC. Eventually refers
here to Always Eventually corresponding to Liveness properties, and Always corre-
sponds to Safety properties. The syntax allows a regular expression expansion ‘*’,
used in the AllNodes property.

System Name Property

Pastry AllNodes Eventually ∀n ∈ nodes : n.(successor)∗ ≡ nodes

Test that all nodes are reached by following successor pointers from each node.

SizeMatch Always ∀n ∈ nodes : n.myright .size() + n.myleft.size() = n.myleafset .size()

Test the sanity of the leafset size compared to left and right set sizes.

Chord AllNodes Eventually ∀n ∈ nodes : n.(successor)∗ ≡ nodes

Test that all nodes are reached by following successor pointers from each node.

SuccPred Always ∀n ∈ nodes : {n.predecessor = n.me ⇐⇒ n.successor = n.me}

Test that a node’s predecessor is itself if and only if its successor is itself.

RandTree OneRoot Eventually for exactly 1 n ∈ nodes : n.isRoot

Test that exactly one node believes itself to be the root node.

Timers Always ∀n ∈ nodes : {(n.state = init)‖(n.recovery .nextScheduled() 6= 0)}

Test that either the node state is init, or the recovery timer is scheduled.

Mace- AllAcked Eventually ∀n ∈ nodes : n.inflightSize() = 0

Transport Test that no messages are in-flight (i.e., not acknowledged).

No corresponding safety property identified.

Safety Property: a statement of the form always p where p is a safety (state) pred-

icate. An execution satisfies a safety property if every state in the execution

satisfies p. Conversely, an execution violates a safety property if some state in

the execution violates p.

Liveness Property: a statement of the form always eventually p where p is a live-

ness (state) predicate. We define program states to be in exactly one of three

categories with respect to a liveness property: live, dead, or transient. A live

state satisfies p. A transient state does not satisfy p, but some execution through

the state leads to a live state. A dead state does not satisfy p, and no execution

through the state leads to a live state. An execution satisfies a liveness property

if every suffix of the execution contains a live state. In other words, an execution

satisfies the liveness property if the system enters a live state infinitely often

during the execution. Conversely, an execution violates a liveness property if

the execution has a suffix without any live states.
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It is important to stress that liveness properties, unlike safety properties, apply over

entire program executions rather than individual states. Classically, states cannot

be called live (only executions)—we use the term live state for clarity. The intuition

behind the definition of liveness properties is that any violation of a liveness state

predicate should only be temporary: in any live execution, regardless of some violating

states, there must be a future state in the execution satisfying the liveness predicate.

Table 5.1 shows example predicates from systems we have tested in MaceMC.

We use the same liveness predicate for Pastry and Chord, as both form rings with

successor pointers.

5.1.3 Liveness/Safety Duality

We divide executions violating liveness into two categories: Transient-state and

Dead-state. Transient-state (TS) liveness violations correspond to executions with

a suffix containing only transient states. For example, consider a system comprising

two servers and a randomized job scheduling process. Let the liveness property be

that eventually, the cumulative load should be balanced between the servers. In

one TS liveness violation, the job scheduling process repeatedly prefers one server

over the other. Along a resulting infinite execution, the cumulative load is never

balanced. However, at every point along this execution, it is possible for the system

to recover, e.g., the scheduler could have balanced the load by giving enough jobs to

the underutilized server. Thus, all states in the violating execution are transient and

the system never enters a dead state.

Dead-state (DS) liveness violations correspond to an execution with any dead

state (by definition all states following a dead state must also be dead because recovery

is impossible). Here, the violating execution takes a critical transition from the last

transient (or live) state to the first dead state. For example, when checking an

overlay tree (cf. §5.5), we found a violating execution of the “OneRoot” liveness state

predicate in Table 5.1, in which two trees formed independently and never merged.

The critical transition incorrectly left the recovery timer of a node A unscheduled in

the presence of disjoint trees. Because only A had knowledge of members in the other

tree, the protocol had no means to recover.
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Our work focuses on finding DS liveness violations. We could have found

these violations by using safety properties specifying that the system never enters the

corresponding dead states. Unfortunately, these safety properties are often impossible

to identify a priori. For instance, consider the liveness property “AllNodes” for Chord

shown in Table 5.1: eventually, all nodes should be reachable by following successor

pointers. We found a violation of this property caused by our failure to maintain the

invariant that in a one-node ring, a node’s predecessor and successor should be itself.

Upon finding this error, we added the corresponding safety property for Chord. While

we now see this as an “obvious” safety property, we argue that exhaustively listing

all such safety properties a priori is much more difficult than specifying desirable

liveness properties.

Moreover, liveness properties can identify errors that in practice are infeasible

to find using safety properties. Consider the “AllAcked” property for our imple-

mentation of a transport protocol, shown in Table 5.1. The property is for the test

application, which sends a configurable total number of messages to a destination.

It states that all sent messages should eventually be acknowledged by the destina-

tion (assuming no permanent failures): the transport adds a message to the inflight

queue upon sending and removes it when it is acknowledged. The corresponding

safety property would have to capture the following: “Always, for each message in

the inflight queue or retransmission timer queue, either the message is in flight (in the

network), or in the destination’s receive socket buffer, or the receiver’s corresponding

IncomingConnection.next is less than the message sequence number, or an acknowl-

edgment is in flight from the destination to the sender with a sequence number greater

than or equal to the message sequence number, or the same acknowledgment is in the

sender’s receive socket buffer, or a reset message is in flight between the sender and

receiver (in either direction), or . . .” Thus, attempting to specify certain conditions

with safety properties quickly becomes overwhelming and hopelessly complicated, es-

pecially when contrasted with the simplicity and succinctness of the liveness property:

“Eventually, for all n in nodes, n.inflightSize() = 0,” i.e., that eventually there should

be no packets in flight.

Thus, we recommend (and ourselves practice) the following iterative process

for finding subtle protocol errors in complex concurrent environments. A developer
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Figure 5.1: State exploration: we perform an iterative, bounded depth-first search
(BDFS) from the initial state (or search prefix): most periphery states are indetermi-
nate. We execute random walks from the periphery states and flag walks not reaching
live states as suspected violating executions.

begins by writing desirable high-level liveness properties. As these liveness proper-

ties typically define the correct system behavior in steady-state operation, they are

relatively easy to specify. Developers can then leverage insight from DS liveness vi-

olations to add new safety properties. In Table 5.1, we show safety properties that

became apparent while analyzing the corresponding DS liveness violations. While

safety properties are often less intuitive, the errors they catch are typically easier to

understand—the bugs usually do not involve complex global state and lie close to the

operations that trigger the violations.

5.2 Model Checking with MaceMC

This section presents our algorithms for finding liveness and safety violations in

systems implementations. We find potential liveness violations via a three-step state

exploration process. While our techniques do not present proofs for the existence of a

liveness violation, we have thus far observed no false positives. In practice, all flagged

violations must be human-verified, which is reasonable since they point to bugs which

must be fixed. As shown in Figure 5.1, our process isolates executions leading the

system to dead states where recovery to a configuration satisfying the liveness state

predicate becomes impossible.
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Step 1: Bounded depth-first search (BDFS) We begin by searching from an

initial state with a bounded depth-first search. We exhaustively explore all executions

up to some fixed depth in a depth-first manner and then repeat with an increased

depth bound. Due to state explosion, we can only exhaustively explore up to a

relatively shallow depth of transitions (on the order of 25-50); as system initialization

typically takes many more transitions (cf. Figure 5.3), the vast majority of states

reached at the periphery of the exhaustive search are not live. We call these states

indeterminate because at this point we do not yet know whether they are dead or

transient.

Step 2: Random Walks While the exhaustive search is essential to finding a

candidate set of liveness violations, to prune the false positives, we must distinguish

the dead from the transient states. To do so, we perform long random walks to give

the system sufficient time to enter a live state. If the system still fails to reach a live

state by the end of the walk, we flag the execution as a suspected liveness violation.

Our random walks typically span tens or hundreds of thousands of transitions to

minimize the likelihood of false positives.

Step 3: Isolating the Critical Transition The model checker presents the exe-

cution exhibiting a suspected liveness violation to the developer to assist in locating

the actual error. The programmer cannot understand the bug simply by examining

the first states that are not live, as these are almost always transient states, i.e., there

exist executions that would transition these initial indeterminate states to live states.

Thus, we developed an algorithm to automatically isolate the critical transition that

irreversibly moves the system from a transient state to a dead state.

5.2.1 Finding Violating Executions

We now describe the details of our algorithms. Suppose that MaceMC is given

a system, a safety property always ps, and a liveness property eventually pl.

Our algorithm MaceMC Search (Algorithm 1) systematically explores the space

of possible executions. Each execution is characterized by the sequence of choices

made to determine the node-event pair to be executed at each step. We iterate over

all the sequences of choices of some fixed length and explore the states visited in the
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Algorithm 1 MaceMC Search

Input: Depth increment

depth = 0

repeat

if Sequences(depth) is empty then

depth = depth + increment

Reset system

seq = next sequence in Sequences(depth)

MaceMC Simulator(seq)

until Stopping Condition

execution resulting from the sequence of choices. Consider the set of all executions

bounded to a given depth depth. These executions form a tree by branching whenever

one execution makes a different choice from another. To determine the order of

executions, we simply perform a depth-first traversal over the tree formed by this

depth bound. Sequences(depth) returns a sequence of integers indicating which child

to follow in the tree during the execution. It starts by returning a sequence of 0’s,

and each time it is called it increases the sequence, searching all possible sequences.

For each sequence, MaceMC Search initializes the system by resetting the values of all

nodes’ variables to their initial values and then calls the procedure MaceMC Simulator

to explore the states visited along the execution corresponding to the sequence. After

searching all sequences of length depth, we repeat with sequences of increasing depth.

We cannot search extreme system depths due to the exponential growth in state

space. While they have not been necessary to date, optimizations such as multiple

random walks or best-first search may enhance coverage over initial system states.

Algorithm 2, MaceMC Simulator, takes a sequence of integers as input and

simulates the resulting execution using the sequence of choices corresponding to the

integers. MaceMC Simulator simulates an execution of up to dmax transitions (cf. §5.3.4

for setting dmax ). At the i th step, MaceMC Simulator calls the procedure Toss with

i , the sequence, and the number of ready events to determine pending node event

pairs to execute, and then executes the handler for the chosen event on the chosen

node to obtain the state reached after i transitions. If this state violates the given
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Algorithm 2 MaceMC Simulator

Input: Sequence seq of integers

for i = 0 to dmax do

readyEvents = set of pending 〈node, event〉 pairs

eventnum = Toss(i, seq , |readyEvents|)

〈node, event〉 = readyEvents [eventnum]

Simulate event on node

if ps is violated then

signal Safety Violation

if i > depth and pl is satisfied then

return

signal Suspected Liveness Violation

safety predicate, then MaceMC Simulator reports the safety violation. If this state is

beyond the search depth and satisfies the given liveness predicate, then the execution

has not violated the liveness property and the algorithm returns. Only considering

liveness for states beyond the search depth is required to test that every suffix of the

execution contain a live state. Otherwise, we would be testing that for any execution,

a single live state must be reached. If the loop terminates after dmax steps, then we

return the execution as a suspected liveness violation.

Combining Exhaustive Search and Random Walks

The procedure Toss ensures that MaceMC Search and MaceMC Simulator to-

gether have the effect of exhaustively searching all executions of bounded depths and

then performing random walks from the periphery of the states reached in the exhaus-

tive search. Toss(i , seq, k) returns the i th element of the sequence seq if i is less than

|seq| (the length of the sequence) or some random number between 0 and k otherwise.

Thus, for the first |seq| iterations, MaceMC Simulator selects the seq [i ]th element of

the set of pending node event pairs, thereby ensuring that we exhaustively search the

space of all executions of depth |seq|. Upon reaching the end of the supplied sequence,

the execution corresponds to a random walk of length dmax − |seq| performed from

the periphery of the exhaustive search. By ensuring dmax is large enough (hundreds
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of thousands of transitions), we can give the system enough opportunity to reach a

live state. If the execution never enters a live state despite this opportunity, we flag

the execution as a suspected liveness violation.

5.2.2 Finding the Critical Transition

If MaceMC reaches the maximum random walk depth dmax without entering

a live state, we have a suspected liveness violation. The execution meets one of two

conditions:

Condition 1 (C1): The execution is a DS liveness violation, meaning the system

will never recover. The execution should be brought to the attention of the

programmer to locate and fix the error.

Condition 2 (C2): The execution does not reach any live states, but might still in

the future. The execution should be brought to the attention of the program-

mer to determine whether to proceed by increasing dmax or by inspecting the

execution for a bug.

Before discussing how we distinguish between the two cases, consider an execution

that does enter a dead state (meets condition C1). The programmer now faces the

daunting and time consuming task of wading through tens of thousands of events

to isolate the protocol or implementation error that transitioned the system to a

dead state. Recall that while the system may enter a transient state early, typically

a much later critical transition finally pushes the system into a dead state. After

attempting to find liveness errors manually when only the violating execution was

available, we set out to develop an algorithm to automatically locate the critical

transition. Importantly, this same procedure also heuristically identifies whether an

execution meets C1 or C2.

Algorithm 3 shows our two-phase method for locating the critical transition.

It takes as input the execution E from the initial random walk, which from step dinit

onwards never reached a live state even after executing to the maximum depth dmax .

The function Recovers(E, i, k) performs up to k random walks starting from the ith

state on the execution E to the depth dmax and returns TRUE if any of these walks
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Algorithm 3 FindCriticalTransition

Input: Execution E non-live from step dinit to dmax

Input: Number of Random Walks k

Output: (Critical Transition dcrit , Condition C1 or C2)

1: {Phase 1: Exponential Search}

2: if not Recovers(E, dinit , k) then return (dinit ,C2)

3: dcurr = dinit

4: repeat

5: dprev = dcurr

6: dcurr = 2 × dcurr

7: if dcurr > dmax/2 then return (dcurr ,C2)

8: until not Recovers(E, dcurr , k)

9: {Phase 2: Binary Search}

10: {dprev is highest known recoverable}

11: {dcurr is lowest believed irrecoverable}

12: loop

13: if (dprev = dcurr − 1) then return (dcurr ,C1)

14: dmid = (dprev + dcurr )/2

15: if Recovers(E, dmid , k) then dprev = dmid

16: else dcurr = dmid

hit a live state, indicating that the ith state should be marked transient; and FALSE

otherwise, indicating that the ith state is dead. In the first phase, MaceMC doubles

dcurr until Recovers indicates that dcurr is dead. dmax and the resulting dcurr place

an upper bound on the critical transition, and the known live state dprev serves as a

lower bound. In the second phase, MaceMC performs a binary search using Recovers

to find the critical transition as the first dead state dcrit between dprev and dcurr .

If we perform k random walks from each state along the execution, then the above

procedure takes O(k · dmax · log dcrit) time (Note that dcrit ≤ dmax ).

In addition to the full execution that left the system in a dead state and the

critical transition dcrit , we also present to the programmer the event sequence that

shares the longest common prefix with the DS liveness violation that ended in a
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live state. In our experience, the combination of knowing the critical transition and

comparing it to a similar execution that achieves liveness is invaluable in finding the

actual error.

Two interesting corner cases arise in the FindCriticalTransition algorithm. The

first case occurs when Phase 1 cannot locate a dead state (indicated by dcurr > dmax/2

in line 7). In this case, we conclude that as the critical transition does not appear early

enough, the system was not given enough opportunity to recover during the random

walk. Thus, case C2 holds. The developer should raise dmax and repeat. If raising

dmax does not resolve the problem, the developer should consider the possibility that

this execution is a TS liveness violation. To help this analysis, MaceMC provides the

set of live executions similar to the violating execution, but the developer must isolate

the problem. In the second case, we find no live executions even when in the initial

state (line 2); either the critical transition is at dinit (the initial state), or, more likely,

we did not set dmax high enough. The programmer can typically determine with ease

whether the system condition at dinit contains a bug. If not, once again we conclude

that case C2 holds and raise dmax and repeat Algorithm 1.

5.3 Implementation Details

This section describes several subtle details in our MaceMC implementation.

While we believe the techniques described in Section 5.2 could be applied to any state-

exploration model checker capable of replaying executions, MaceMC operates on sys-

tems implemented using the Mace compiler and C++ language extensions described

in § 3. Leveraging Mace code frees us from the laborious task of modifying source code

to isolate the execution of the system, e.g., to control network communication events,

time, and other sources of potential input. Thus, using Mace-implemented systems

dramatically improves the accessibility of model checking to the typical programmer.

5.3.1 Preparing the System

To model check a system, the user writes a driver application suitable for model

checking that should initialize the system, perform desired system input events, and
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check high-level system progress with liveness properties. For example, to look for

bugs in a file distribution protocol, the test driver could have one node supply the file,

and the remaining nodes request the file. The liveness property would then require

that all nodes have received the file and the file contents match. Or for a consensus

protocol, a simulated driver could propose a different value from each node, and the

liveness property would be that each node eventually chooses a value and that all cho-

sen values match. In the case of MaceMC, the simulated application is implemented

as a C++ object which provides two methods, one which returns whether an applica-

tion event is waiting, and another which simulates the given application event. It is

generally implemented within Mace as a service which provides the SimApplication

service class. The user also must implement a function which configures all the nodes

in the system, each of which may execute different code. The MaceMC application

links with the simulated driver, the user’s compiled Mace object files, and Mace li-

braries. MaceMC simulates a distributed environment to execute the system—loading

different simulator-specific libraries for random number generation, timer scheduling,

and message transport—to explore a variety of event orderings for a particular system

state and input condition.

Non-determinism

To exhaustively and correctly explore different event orderings of the system,

we must ensure that the model checker controls all sources of non-determinism. So

far, we have assumed that the scheduling of pending 〈node, event〉 pairs accounts for

all non-determinism, but real systems often exhibit non-determinism within the event

handlers themselves, due to, e.g., randomized algorithms and comparing timestamps.

When being model checked, Mace systems automatically use the deterministic simu-

lated random number generator provided by MaceMC and the support for simulated

time, which we discuss below. Furthermore, we use special implementations of the

Mace libraries that internally call Toss at every non-deterministic choice point. For

example, the TCP transport service uses Toss to decide whether to break a socket

connection, the UDP transport service uses Toss to determine which message to de-

liver (allowing out-of-order messages) and when to drop messages, and the application

simulator uses Toss to determine whether to reset a node. Thus, by systematically
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exploring the sequences of return values of Toss (as described in MaceMC Search

in the previous section), MaceMC analyzes all different sequences of internal non-

deterministic choices. Additionally, this allows MaceMC to deterministically replay

executions for a given sequence of choices.

One special note about non-determinism is that certain forms of it are outside

the control of MaceMC, and must be avoided if model checking is to be used. One

example of this is uninitialized stack variables. Since these may contain different

values each time the method is called, this will cause non-determinism leading the

executions to behave differently, preventing the model checker from properly detecting

problems. Other things which would cause this include a wide variety of memory bugs

as well as using the c-library directly to access time and random number functions.

The model checker will detect non-determinism if different calls are made to the

random number generator, and will report it to the user (though debugging it is

challenging).

Time

Time introduces non-determinism, resulting in executions that may not be re-

playable or, worse, impossible in practice. For example, a system may branch based

on the relative value of timestamps (e.g., for message timeout). But if the model

checker were to use actual values of time returned by gettimeofday(), this compari-

son might always be forced along one branch as the simulator fires events faster than

a live execution. Thus, MaceMC must represent time abstractly enough to permit

exhaustive exploration, yet concretely enough to only explore feasible executions. In

addition, MaceMC requires that executions be deterministically replayable by sup-

plying an identical sequence of chosen numbers for all non-deterministic operations,

including calls to gettimeofday.

The options of returning a random, constant or monotonically increasing value

for all calls to gettimeofday would result in both the incorrect pruning of valid

executions (thus missing bugs), and the unnecessary exploration of executions that

cannot occur in practice. The option of replacing all calls to gettimeofday with a

call to Toss to generate an arbitrary 64-bit integer would result in an explosion in the

space of sequences to be searched, rendering MaceMC useless for finding bugs.
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We observed that systems tend to use time to: (i) manage the passage of

real time, e.g., to compare two timestamps when deciding whether a timeout should

occur, or, (ii) export the equivalent of monotonically increasing sequence numbers,

e.g., to uniquely order a single node’s messages. Therefore, we address the prob-

lem of managing time by introducing two new Mace object primitives—MaceTime

and MonotoneTime—to obtain and compare time values. When running across a

real network, both objects are wrappers around gettimeofday. However, MaceMC

treats every comparison between MaceTime objects as a call to Toss and implements

MonotoneTime objects with per-node counters. Developers concerned with negative

clock adjustments (and more generally non-monotone MonotoneTime implementa-

tions) can strictly use MaceTime to avoid missing bugs, at the cost of extra states

to explore. Compared to state of the art model checkers, this approach frees devel-

opers from manually replacing time-based non-determinism with calls to Toss, while

limiting the amount of needless non-determinism.

5.3.2 Mitigating State Explosion

One stumbling block for model-checking systems is the exponential explosion

of the state space as the search depth increases. MaceMC mitigates this problem

using four techniques to find bugs deep in the search space.

1. Structured Transitions

The event-driven, non-blocking nature of Mace code significantly simplifies the

task of model-checking Mace implementations and improves its effectiveness. In the

worst case, a model checker would have to check all possible orderings of the assembler

instructions across nodes with pending events, which would make it impractical to

explore more than a few hundred lines of code across a small number of nodes. Model

checkers must develop techniques for identifying larger atomic steps. Some use manual

marking, while others interpose communication primitives. Non-blocking, atomic

event handlers in Mace allow us to use event-handler code blocks as the fundamental

unit of execution. Once a given code block runs to completion, we return control
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to MaceMC. At this point, MaceMC checks for violations of any safety or liveness

conditions based on global system state.

2. State Hashing

When the code associated with a particular event handler completes without a

violation, MaceMC calculates a hash of the resulting system state. This state consists

of the concatenation of the values of all per-node state variables and the contents of

all pending, system-wide events. The programmer may optionally annotate Mace

code to ignore the value of state variables believed to not contribute meaningfully to

the uniqueness of global system state, or to format the string representation into a

canonical form to avoid unneeded state explosion (such as the order of elements in a

set). MaceMC Simulator checks the hash of a newly-entered state against all previous

state hashes. When it finds a duplicate hash, MaceMC breaks out of the current

execution and begins the next sequence. In our experience, this allows MaceMC to

avoid long random walks for 50-90 percent of all executions, yielding speedups of 2-10.

3. Stateless Search

MaceMC performs backtracking by re-executing the system from an initial

state, following the sequence of choices used to reach an earlier state, similar to the

approach taken by Verisoft [God97]. For example, to backtrack from the system state

characterized by the sequence 〈0, 4, 0〉 to a subsequent system state characterized by

choosing the sequence 〈0, 4, 1〉, MaceMC reruns the system from its initial state,

re-executing the event handlers that correspond to choosing events 0 and 4 before

moving to a different portion of the state space by choosing the event associated with

value 1. This approach is simple to implement and does not require storing all of the

necessary state (stack, heap, registers) to restore the program to an intermediate state.

However, it incurs additional CPU overhead to re-execute system states previously

explored. We have found trading additional CPU for memory in this manner to be

reasonable because CPU time has not proven to be a limitation in isolating bugs

for MaceMC. However, the stateless approach is not fundamental to MaceMC—we

are presently exploring hybrid approaches that involve storing some state such as



112

sequences for best-first searching or state for checkpointing and restoring system

states to save CPU time.

4. Prefix-based Search

Searching from an initial global state suffers the drawback of not reaching sig-

nificantly past initialization for the distributed systems we consider. Further, failures

during the initial join phase do not have the opportunity to exercise code paths deal-

ing with failures in normal operation because they simply look like an aborted join

attempt (e.g., resulting from dropped messages) followed by a retry. To find viola-

tions in steady-state system operation, we run MaceMC to output a number of live

executions of sufficient length, i.e., executions where all liveness conditions have been

satisfied, all nodes have joined, and the system has entered steady-state operation.

We then proceed as normal from one of these live prefixes with exhaustive searches for

safety violations followed by random walks from the perimeter to isolate and verify

liveness violations. We found the Pastry bug described in the introduction using a

prefix-based search.

5.3.3 Biasing Random Walks

We found that choosing among the set of all possible actions with equal prob-

ability had two undesirable consequences. First, the returned random walks on error

paths had unlikely event sequences that obfuscated the real cause of the violation.

For example, the system generated a sequence where the same timer fired seven times

in a row with no intervening events, which would be unlikely in reality. Second, these

unlikely sequences slowed system progress, requiring longer random walks to reach a

live state. Setting dmax large enough to ensure that we had allowed enough time to

reach live states slowed FindCriticalTransition by at least a factor of ten.

We therefore modified Toss to take a set of weights corresponding to the rough

likelihood of each event occurring in practice. Toss returns an event chosen randomly

with the corresponding probabilities. For example, we may prioritize application

events higher than message arrivals, and message arrivals higher than timers firing.

In this way, we bias the system to search event sequences in the random walk with
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the hope of reaching a live state sooner, if possible, and making the error paths easier

to understand.

Creating the weighted version of Toss had another side effect—making the

state space smaller, while retaining application logic. Consider a system which has as

logic “70 percent of the time do X”. The application logic requires this to be coded as

if(Toss(10) < 7)X. But this would present MaceMC with 10 options. The weighted

version instead presents MaceMC with only 2 options, but tells it what weight they

shall occur in real execution (and therefore random walks). The weighted version of

Toss can also be used in Mace services by developers to inject random actions with

weight 0, meaning they would only occur during exhaustive search, and not during

random walks. This is used to prevent timeouts in testing a user-level transport.

Figure 5.2 shows that the average depth before reaching a live state from an

unmarked state using unbiased random walks is larger than appropriately chosen

biased walks. This figure plots the cumulative distribution of steps to live paths for

a simple 2-node overlay tree (see § 5.5 for protocol details).

Biasing the random walks to common sequences may run counter to the in-

tuition that model checkers should push the system into corner conditions difficult

to predict or reason about. However, recall that we run random walks only after

performing exhaustive searches to a certain depth. Thus, the states reached by the

periphery of the exhaustive search encompass many of these tricky corner cases, and

the system has already started on a path leading to—or has even entered—a dead

state. Other mechanisms may be used to push the system into bad states, but the

biased random walks are specifically to test that a dead state has not been entered.

One downside to this approach is that the programmer must set the relative

weights for different types of events. In our experience, however, every event has

had a straightforward rough relative probability weighting. Further, the reductions

in average depth before transitioning to a live state and the ease of understanding

the violating executions returned by MaceMC have been worthwhile. If setting the

weights proves challenging for a particular system, MaceMC can be run with unbiased

random walks.

In one special case, an application wished to set different weights for different

application events, and so the eventsWaiting call was modified to allow setting the
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Figure 5.2: Compared performance of random walks with and without biasing.

event weight. This was to bias the walk away from restarting a node after a reboot.

At first glance, an application could just return that no events were waiting for some

period of time. However this does not work (and should not be used in practice),

because if no other events are waiting, the path will abruptly end. Rather, set a low

event weight, and restarting will simply be less likely.

We admit that a particular weight assignment may in fact bias the simulator

away from a sequence of events, however unlikely, that would be able to transition

the system back to a live state. In this case, MaceMC would report false positives

because it would confirm the presence of a liveness violation that could have been

invalidated by pure random walks. However, by setting dmax to be large enough, these

false positives can be eliminated, and in practice, have never been encountered.

Fairness

Liveness properties are traditionally checked over fair system executions. For

example, in a messaging system where we wish to check that all messages are even-

tually acknowledged, the liveness property may be violated along an execution where

the receiving node is never scheduled and thus may never send its ACK, or along

another execution where the network drops every ACK packet. Classically [CGP99],

the user prohibits the model checker from considering such executions by specifying

fairness constraints that force the model checker to only consider those executions
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Figure 5.3: CDF of simulator steps to a live state at a search depth of 15.

where each node gets to execute infinitely often and messages are not dropped in-

finitely often. Unfortunately, these constraints are hard to specify and enforce for real

systems implementations. Our random-walk-based approach eliminates the need for

explicitly specifying the fairness constraints but nevertheless, with high probability,

restricts the checker to consider only those executions that meet the fairness con-

straints. We intuitively achieve this by running the walk long enough to ensure that

the probability of an unfair execution drops to zero, as over time all possible transi-

tions get selected often enough. As a result, the random walks ensure that MaceMC

finds violations that satisfy the implicit fairness constraints and thus correspond to

genuine liveness bugs.

5.3.4 Tuning MaceMC

In addition to event weights discussed above, MaceMC may be tuned by setting

dmax (random walk depth), k (number of random walks), and a wide variety of knobs

turning features on and off. Feature knobs include whether to test node failures,

socket failures, UDP drops, UDP reordering, and the number of simulated nodes,

and are generally easy to set based on the target test environment.

Setting k is a bit more complex. k represents the tradeoff between the time

to complete the critical transition algorithm and the possibility that the reported

critical transition is before the actual critical transition. This occurs when k random
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executions of dmax steps did not satisfy liveness, but some other path could have. We

informally refer to this occurrence as “near dead”. In our tests, we generally use k

between 20 and 60. At 60, we have not observed any prematurely reported critical

transitions, while at 20 we occasionally observe the reported critical transition off by

up to 2 steps. To tune k, the programmer considers the output critical transition. If

it is not obvious why it is the critical transition, the programmer can increase k and

re-run to refine the results.

Finally, we discuss how to set dmax . We ran MaceMC over four systems using

random walks to sample the state space beyond an exhaustive search to 15 steps.

Figure 5.3 plots the fraction of executions that reached the first live state at a given

depth. What we observe is that in these four systems, since all sample executions

reached a live state by 10,000 steps, a random execution that takes 80,000 steps

to reach a live state would be a significant outlier, and likely somewhere along the

execution it became trapped in a region of dead states. Setting dmax too low generally

leads to the critical transition algorithm reporting condition C2, which is what we

treat as the signal to increase dmax .

Figure 5.3 also illustrates that the depths required to initially reach a live state

are much greater than what can be found with exhaustive search. MaceMC found only

60% of executions reached a live state for MaceTransport after considering 50 steps

(the edge of what can be exhaustively searched using state-of-the-art model checkers),

less than 1% of executions for RandTree and Chord, and none of the executions for

Pastry.

5.3.5 Diverging Event Handlers

Inside MaceMC Simulator, we have assumed that each event handler termi-

nates and returns control to the outer loop so that the next node event pair can be

executed. However, a buggy Mace event handler may not terminate and return con-

trol to the simulator, as it may, for example, deadlock or enter an infinite loop. Inside

the procedure MaceMC Simulator, we set a separate timer before invoking each event

handler. If the timer fires before the event handler completes, we signal a divergence,

a liveness violation where the system enters a state where it cannot make forward
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progress because a single node remains stuck in an event handler. Though a diver-

gence could just be due to a complex computation or blocking call that took too long,

we still report a bug since experience with Mace has shown that events lasting that

long can have a significant impact on the throughput of the system. However, since

there could be a system which makes use of such code, MaceMC can be configured

to use different timeout intervals, or ignore the divergence timer altogether.

5.4 MaceMC Debugger

Although MaceMC flags violating executions and identifies the critical tran-

sition that likely led the system to a dead state, the developer must still understand

the sequence of events to determine the root cause of the error. This process typically

involves manually inspecting the log files and hand-drawing sketches of evolving sys-

tem state. To simplify this process, we built mdb, our debugging tool with support

for interactive execution, replay, log analysis, and visualization of system state across

individual nodes and transitions. mdb is similar in function to other work in dis-

tributed debuggers such as the WiDS Checker [LLPZ07] and Friday [GAM+07]. mdb

allows the programmer to: (i) perform single step system execution both forward and

backward, (ii) jump to a particular step, (iii) branch execution from a step to explore

a different path, (iv) run to liveness, (v) select a specific node and step through events

only for that node, (vi) list all the steps where a particular event occurred, (vii) filter

the log using regular expressions, and (viii) diff the states between two steps or the

same step across different executions by comparing against a second, similar log file.

mdb also generates event graphs that depict inter-node communication. It

orders the graph by nodes on the x-axis and simulator steps on the y-axis. Each

entry in the graph describes a simulated event, including the transition call stack

and all message fields. Directional arrows represent message transmissions, and other

visual cues highlight dropped messages, node failures, etc.

mdb recreates the system state by analyzing detailed log files produced by

MaceMC. While searching for violations, MaceMC runs with all system logging dis-

abled for maximum efficiency. Upon discovering a violation, MaceMC automatically

replays the path with full logging. The resulting log consists of annotations: (i) writ-
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$ ./mdb error.log

(mdb 0) j 5

(mdb 5) filediff live.log

. . .

localaddress=2.0.0.1:10201

out=[

− OutgoingConnection(1.0.0.1:10201, connection=ConnectionInfo(cwnd=2, packetsSent=2, ack-

sReceived=1, packetsRetransmitted=0),

− inflight=[ 6002 → MessageInfo(seq=6002, syn=0, retries=0, timeout=true) ],

− rtbuf=[ ], sendbuf=[ ], curseq=6002, dupacks=0, last=6001)

+ OutgoingConnection(1.0.0.1:10201, connection=ConnectionInfo(cwnd=1, packetsSent=1, ack-

sReceived=0, packetsRetransmitted=0),

+ inflight=[ 6001 → MessageInfo(seq=6001, syn=1, retries=0, timeout=true) ],

+ rtbuf=[ ], sendbuf=[ MessageInfo(seq=6002, syn=0, timer=0, retries=0, time-

out=true) ], curseq=6002, dupacks=0, last=0)

]

in=[ ]

−timer<retransmissionTimer>([dest=1.0.0.1:10201, msg=MessageInfo(seq=6002, syn=0, re-

tries=0, timeout=true)])

+timer<retransmissionTimer>([dest=1.0.0.1:10201, msg=MessageInfo(seq=6001, syn=1, re-

tries=0, timeout=true)])

. . .

Figure 5.4: mdb session. Lines with differences are shown in italics (− indicates the
error log, + the live log), with differing text shown in bold. The receiver is IP address
1.0.0.1 and the sender is 2.0.0.1.

ten by the programmer, (ii) generated automatically by the Mace compiler marking

the beginning and end of each transition, (iii) produced by the simulator runtime

libraries, such as timer scheduling and message queuing and delivery, and (iv) gen-

erated by the simulator to track the progress of the run, including random number

requests and results, the node simulated at each step, and the state of the entire

system after each step. For our runs, logs can span millions of entries (hundreds to

thousands of megabytes).

To demonstrate the utility of our debugging tools for diagnosing and fixing er-

rors, we consider a case study with a bug in MaceTransport: a reliable, in-order,

message delivery transport with duplicate-suppression and TCP-friendly congestion-
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Figure 5.5: Automatically generated event graph for MaceTransport liveness bug.

control built over UDP. Unlike TCP, MaceTransport is fundamentally message-

rather than stream-oriented, making it a better match for certain higher-level ap-

plication semantics. As such, rather than using sequence numbers to denote byte

offsets as with TCP, MaceTransport assigns an incrementing sequence number to

each packet. To obtain lower-latency communication, MaceTransport avoids a

three-way handshake to establish initial sequence numbers. A key high-level liveness

property for MaceTransport is that eventually every message should be acknowl-

edged (unless the connection closes).

MaceMC found a violating execution of the “AllAcked” property in Table 5.1,

where a sender attempts to send two messages to a receiver. Figure 5.5 shows a

pictorial version of the event graphs automatically generated by mdb; the actual event

graph is text-based for convenience and contains more detail. In Step 1, the sender

sends a data packet with the SYN flag set and sequence number 2001. In Step 2, the

retransmission timer causes the connection to close and MaceTransport signals

an error to the application. The application responds by attempting to resend the

packet, causing MaceTransport to open a new connection with sequence number

6001. At this point, both the old “SYN 2001” and the new “SYN 6001” packets are

in flight. In Step 3, the network delivers the packet for the new 6001 connection,

and the receiver replies by sending an “ACK 6001” message. In Step 4, the network
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delivers the out-of-order “SYN 2001” message, and the receiver responds by closing

the connection on 6001, thinking it is stale, and opening a new incoming connection

for 2001.

Unfortunately, in Step 5 (the critical transition) the sender receives the mes-

sage “ACK 6001.” Believing the 6000-sequence connection to be established, the

sender transmits “DATA 6002,” at odds with the receiver’s view. From here on, the

execution states are dead as the receiver keeps ignoring the “DATA 6002” packet,

sending ACKs for the 2001 connection instead, while the sender continues to re-

transmit the “DATA 6002” packet, believing it to be the sequence number for the

established connection.

We illustrate a portion of an mdb session analyzing this bug in Figure 5.4. We

load the error log in mdb, jump to the critical transition step (5), and diff the state

with the live path with the longest shared prefix (output by MaceMC while searching

for the critical transition (see §5.2.2)). The excerpt shows the state for the sender

node. The key insight from this output is that in the live execution (lines indicated

with +), the retransmission timer is scheduled with “SYN 6001,” meaning that the

packet could be retransmitted and the receiver could become resynchronized with the

sender. Comparing the differences with the violating execution (lines indicated with

−), where 6001 has been removed from the inflight map and timer because of the

ACK, allows us to identify and fix the bug by attaching a monotonically increasing

identifier in the SYN packets, implemented using a MonotoneTime object. Now, when

the receiver gets the “SYN 2001” message out of order, it correctly concludes from the

identifier that the message is stale and should be ignored, allowing acknowledgment

of the “DATA 6002” message.

5.5 Experiences

We have used MaceMC to find and catalog safety and liveness bugs in a variety

of systems implemented in Mace, including a reliable transport protocol, an overlay

tree, Pastry, and Chord. Now, MaceMC is an integral part of our implementation

and testing, and we use it daily to debug implementations of Paxos, a distributed

shared memory service, a community information synchronization service, and all
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our implementations. For the reliable transport protocol, overlay tree, and Pastry,

we ran MaceMC over mature implementations manually debugged both in local- and

wide-area settings. MaceMC found several subtle bugs in each system that caused

violations of high-level liveness properties. All violations cataloged (save some found

in Chord, see below) were beyond the scope of existing software model checkers be-

cause the errors manifested themselves at depths far beyond what can be exhaustively

searched. We used the debugging process with Chord as control—we first performed

manual debugging of a new implementation of Chord and then employed MaceMC

to compare the set of bugs found through manual and automated debugging.

Table 5.2 summarizes the bugs cataloged with MaceMC. This includes 52

bugs found in four systems. Spanning the three mature systems, the 33 bugs across

1500 lines of Mace code correspond to one bug for every 50 lines of code. MaceMC

actually checks the generated C++ code, corresponding to one bug for every 250

lines of code. In the only comparable check of a complex distributed system, CMC

found approximately one bug for every 300 lines of code in three versions of the

AODV routing protocol [MPC+02]. Interestingly, more than 50% of the bugs found

by CMC were memory handling errors (22/40 according to Table 4 [MPC+02]) and

all were safety violations. The fact that MaceMC finds nearly the same rate of

errors while focusing on an entirely different class of liveness errors demonstrates the

complementary nature of the bugs found by checking for liveness rather than safety

violations. To demonstrate the nature and complexity of liveness violations we detail

two representative violations below; and include a detailed discussion of each bug we

cataloged in § 5.6.

Typical MaceMC run times in our tests have been from less than a second to

a few days. The median time for the search algorithm has been about 5 minutes.

Typical critical-transition algorithm runtimes are from 1 minute to 3 hours, with the

median time being about 9 minutes.

5.5.1 RandTree

RandTree implements a random overlay tree with a maximum degree designed

to be resilient to node failures and network partitions. This tree forms the backbone
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Table 5.2: Summary of bugs found for each system. LOC=Lines of code and reflects
both the Mace code size and the generated C++ code size.

System Bugs Liveness Safety LOC

MaceTransport 11 5 6 585/3200
RandTree 17 12 5 309/2000

Pastry 5 5 0 621/3300
Chord 19 9 10 254/2200
Totals 52 31 21

for a number of higher-level aggregation, streaming, and gossip services including our

implementations of Bullet [KRAV03] and RanSub [KRA+03]. We have run RandTree

across emulated and real wide-area networks for three years, working out most of the

initial protocol errors.

RandTree nodes send a “Join” message to a bootstrap node, who in turn

forwards the request up the tree to the root. Each node then forwards the request

randomly down the tree to find a node with available capacity to take on a new

child. The new parent adds the requesting node to its child set and opens a TCP

connection to the child. A “JoinReply” message from parent to child confirms the

new relationship.

Property. A critical high-level liveness property for RandTree (and other overlay tree

implementations) is that all nodes should eventually become part of a single spanning

tree.

We use four separate Mace liveness properties to capture this intuition: (i)

there are no loops when following parent pointers, (ii) a node is either the root or

has a parent, (iii) there is only one root (shown in Table 5.1), and (iv) each node N ’s

parent maintains it as a child, and N ’s children believe N to be their parent.

Violation. MaceMC found a liveness violation where two nodes A, D have a node C

in their child set, even though C’s parent pointer refers to D. Along the violating

execution, C initially tries to join the tree under B, which forwards the request to A.

A accepts C as a child and sends it a “JoinReply” message. Before establishing the

connection, C experiences a node reset, losing all state. A, however, now establishes

the prior connection with the new C, which receives the “JoinReply’ and ignores it

(having been reinitialized). Node C then attempts to join the tree but this time is

routed to D, who accepts C as a child. Node A assumes that if the TCP socket to
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C does not break, the child has received the “JoinReply” message and therefore does

not perform any recovery. Thus, C forever remains in the child sets of A and D.

Bug. The critical transition for this execution is the step where C receives the “Join-

Reply” from A. mdb reveals that upon receiving the message, C ignores the message

completely, without sending a “Remove” message to A. Along the longest live alter-

nate path found from the state prior to the critical transition, we find that instead of

receiving A’s join reply message, C gets a request from the higher-level application

asking it to join the overlay network, which causes C to transition into a “joining”

mode from its previous “init” mode. In this alternate path, C subsequently receives

A’s “JoinReply” message, and correctly handles it by sending A a “Remove” message.

Thus, we deduced that the bug was in C’s ignoring of “JoinReply” messages when

in the “init” mode. We fix the problem by ensuring that a “Remove” reply is sent in

this mode as well.

5.5.2 Chord

Chord specifies a key-based routing protocol [SMK+01] with guarantees that

a message can be routed in O(lg N) hops using only O(lg N) space at each node.

The overlay network is self organizing, has a low constant probe overhead, and is

resilient to node failures. Chord structures an overlay in a ring such that nodes have

pointers to their successor and predecessor in the key-space. To join the overlay a

new node gets its predecessor and successor from another node. A node inserts itself

in the ring by telling its successor to update its predecessor pointer, and a stabilize

procedure ensures global successor and predecessor pointers are correct through each

node probing its successor.

Property. We use a liveness property to specify that all nodes should eventually

become part of a single ring (see Table 5.1). This minimal correctness condition

guarantees that routing reach the correct node.

Violation. MaceMC found a liveness violation in the very first path it considered. This

was not unexpected, given that Chord had not been tested yet. This was, in fact, the

second bug MaceMC found, the first being a safety violation for a timer firing earlier

than expected, which was quickly fixed. In this bug found, the critical transition
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algorithm returned transition 0 and condition C2, implying that the algorithm could

not determine if the path had run long enough to reach liveness.

Looking at the event graph, we saw the nodes finished their initial join quickly

(step 11), and spent the remaining steps performing periodic recovery. This process

suggested that the system as a whole was dead, since reaching a live state would

probably not require tens of thousands of transitions when the initial join took only

11.

mdb showed us that mid-way through the execution, client0’s successor pointer

was client0 (implying that it believed it was in a ring of size 1), which caused the

liveness predicate to fail. The other nodes’ successor pointers correctly followed from

client1 to client2 to client0. We believed the stabilize procedure should correct this

situation, expecting client2 to discover that client0 (its successor) was in a self-loop

and correct the situation. Looking at this procedure in the event graph, we saw

that there was indeed a probe from client2 to client0. However, client2 ignored the

response to this probe. We next jumped to the transition in mdb corresponding to

the probe response from the event graph. In fact, client0 reported that client2 was

its predecessor, so client2 did not correct the error.

Starting at the initial state in mdb we stepped through client0’s transitions,

checking its state after each step to see when the error symptom occurs. After 5

steps, client0 receives a message that causes it to update its predecessor but not its

successor, thus causing the bug.

Bug. This problem arose because we based our original implementation of Chord

on the original protocol [SMK+01], where a joining node explicitly notified its pre-

decessor that it had joined. We then updated our implementation to the revised

protocol [SMLN+03], which eliminated this notification and specified that all routing

state should be updated upon learning of a new node. However, while we removed

the join notification in our revisions, we failed to implement the new requirements for

updating routing state, which we overlooked because it concerned a seemingly unre-

lated piece of code. We fixed the bug by correctly implementing the new protocol

description.

We found the same bug using manual testing, but we expended a great deal

more effort. We found the following aspects of using MaceMC particularly valuable:
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(i) automatically determining that a bug had occurred, (ii) running separate nodes

in one process with unified logging, (iii) matching message sending with message

receiving, (iv) snapshots of the system state, (v) using the critical transition to rule

out the possibility of a concurrency problem, and (vi) automated tools for visualizing,

examining, and stepping through the execution.

Overall, both our manual testing and model checking approaches found slightly

different sets of bugs. On the one hand, manual testing found many of the correct-

ness bugs and also fixed several performance issues (which cannot be found using

MaceMC). Manual testing required that we spend at least half of our time trying to

determine whether or not an error even occurred. A single application failure may

have been caused by an artifact of the experiment, or simply the fact that the liveness

properties had not yet been satisfied. Because of these complexities, identifying errors

by hand took anywhere from 30 minutes to several hours per bug.

On the other hand, MaceMC did find some additional correctness bugs and

moreover required less human time to locate the errors. MaceMC examines the

state-snapshot across all nodes after each atomic event and reports only known bugs,

thereby eliminating the guesswork of determining whether an error actually occurred.

Furthermore, the model checker outputs which property failed and exactly how to re-

produce the circumstances of the failure. MaceMC also produces a verbose log and

event graph, and in the case of liveness violations, an alternate path which would have

been successful. These features make it much easier to verify and identify bugs using

MaceMC, without the hassle of conducting experiments that require running many

hosts on a network. We spent only 10 minutes to an hour using MaceMC to find the

same bugs that we painstakingly identified earlier with manual testing; and we found

the new bugs (those not caught with manual testing) in only tens of minutes.

5.6 Bugs

For every system we apply MaceMC to, we have found errors. In this section,

we discuss each of the bugs cataloged with MaceMC. The errors we describe are quite

complex, and indicate both bugs in the implementation of the systems as well as

holes in the specification of some well-known protocols like Pastry and Chord. We
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now briefly describe each of these protocols and the bugs that MaceMC has found in

them.

5.6.1 RandTree

RandTree is an overlay tree implementation available in Mace which builds

a random tree. Its key features include robustness to failures, including failure of

the root of the tree, and the ability to recover from network partitions by periodic

probing of nodes (called a peer set) passed into the tree on joinOverlay().

It is perfectly valid for RandTree to temporarily form multiple different trees,

since the root is elected, and trees are expected to merge over time. Accordingly, it is

not clear what safety properties to write for RandTree. We do specify that loops are

invalid, but other safety properties are not well understood. However, we can write

a variety of liveness properties generic to all overlay trees, which specify that the

nodes do eventually organize into a spanning tree. These properties were described

in § 5.5.1.

The join procedure for RandTree is to contact a member of the peer set. (If

that times out, round-robin to the next member of the peer set). When contacted, a

node will pass along a join request to the root of the tree. The root of the tree then

either accepts the new child, or pushes it down if it doesn’t have capacity for a new

child. As a special case, if the joining node has a numerically lower IP address than

the root, the root will rejoin under that node instead, making it the new root. This

mechanism is designed to let nodes deterministically agree on a root node.

Periodically, every node probes members of its peer set (in round robin fashion)

to make sure they are in a tree which shares the same root. If the roots do not match

– corrective action is taken, asking the larger IP root to join under the smaller IP

root.

We found seventeen bugs in RandTree, each of which is discussed below. With

RandTree, as with other protocols, the methodology was to run MaceMC until a bug

is found, then to fix the bug and restart. This is necessary because once an initial

bug is found, the MaceMC cannot just ‘ignore’ the bug and go on, since there may

be many instances of the same bug along different paths. However, once the rate of
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finding new bugs decreases, we do sometimes branch out, running the same protocol

under different configurations to find additional bugs simultaneously.

RT1 This first bug was a divergence. A node’s join timer fired, which normally causes

it to initiate a new join request to the next member of the peer set. However,

it skips over any members of the peer set which are its children. However, if it

has already accepted its entire peer set as children, but receives a join request

from another node with a lower IP address, by the protocol it will attempt to

join under them. If that join times out, it would then enter an infinite loop

trying to find a suitable member of the peer set, but finding none because it

had already accepted all specified peers as children. As a fix, in the join deliver

handler, in addition to sending a join message to the new node, RandTree was

modified to add that new node to the peer set.

RT2 As first written, a RandTree node, when asked for its parent, would return

the null address if it was the root of the tree. Some time later, we modified

the API to require that tree-roots return their own address as their parent (a

self-loop), to distinguish them from nodes which are in the process of joining,

and therefore have no parent. As a result, RandTree appeared to never form a

spanning tree – since no node ever claimed to be the root by that API call.

RT3 The recovery timer (which is what periodically checks to make sure all potential

peers share the same root to merge trees) was being manually rescheduled when

it fired. However, in the Mace specification for RandTree, the timer firing would

only be processed when the node was in the joined state. So if the timer ever

fired when the node was in the joining state, no event handler would execute,

and it would never again be scheduled. As a result – when peers connect to each

other and form distinct trees, they would never merge, and RandTree would not

form a single spanning tree.

RT4 When the root of a tree changes, a new root message is propagated down the

tree to inform peers of a new root. Each node maintains the root of its tree, to

compare with probes from other nodes to see if they are members of the same

tree. However, in cases where the join timer fired, and as a result multiple peers
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(temporarily) accepted the same node as a child, that child node may receive a

new root message from a node other than the one which would eventually be-

come its actual parent. However, no check was being performed on the new root

message, and it would update its root field on any receipt. As a result, when

later being probed by members of the other tree, it would mistakenly believe

they were all part of the same tree, preventing proper recovery.

RT5-9 Five more instances of RT1 were discovered. These were other cases where

a RandTree node decided to join a node other than those listed in its peer set,

and when they were all children, it reverted to the same infinite loop. Upon

finding the second path with the same root cause, a find was done on the code

to fix the remaining four cases without finding them independently.

RT10 If a node initially accepts another as a child, and then the child later asks to

be removed, but the parent node receives the remove message while it is busy

joining under another node, it will ignore the remove message. In this case,

though the child node will no longer recognize it as a parent – the parent node

will forever believe it is a child (short of a network failure or node departure),

causing an inconsistent network view.

RT11 RT11 is a safety property violation. The property is that for each node,

either the node is in state RandTree init, or the recovery timer is scheduled

(exclusively). This property was added after discovering RT3, when we realized

that this was a safety property whose violation can lead to liveness violations.

When a node has had maceInit called on it, and receives a probe message from

another node, it may attempt to join that node, transitioning to the joining

state. This effectively prevents the recovery timer from ever being called, as it

was supposed to be scheduled later during the joinOverlay call. This is another

instance of the programmer not being prepared events to occur in the brief time

between node initialization and when the application calls joinOverlay. The fix

was to ignore probe messages until a node is no longer in the init state.

RT12 RT12 is a liveness bug. It was caused by a remove message being dropped by

the sending transport, because the transport buffer was full. Though the send
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error was immediately reported by the transport, no reaction was implemented

or taken by the sending node. As a result, the recovery message was never

received, and the kid state never matched the parent state.

In isolating this bug, the most useful tool was the FindCriticalTransition tech-

nique. It correctly reported the problem was step 68. In the end, I had to go to

the log, rather than event graph, to discover the problem, because the graph did

not report the send error, and displayed only the attempt to send the remove

message. This also caused us to update mdb to show the matching of message

sends and receives, and graphically display when messages encounter errors.

Two possible fixes for RandTree present themselves – (1) on an enqueue failure,

call a method to close and reset the connection, removing the peer from our own

state. (2) queue the send for later sending. In practice, RandTree is generally

run without buffer limits on control messages, preventing this problem.

Starting with RT12, we modified MaceMC to output statistics about the search,

so we could report its performance. The search for this bug was executed using

our automated tool for running the search, followed by graph generation and

critical transition search where appropriate. The search phase of this took 9.5

hours, searching 2.85 million paths, searching in the end at a depth of 35.

FindCriticalTransition ran in 1.5 minutes.

Also noteworthy, though the critical transition was random number 158 at a

simulator step of 68, the first 35 random numbers were a significant contributor

to finding this bug, since they caused a large number of messages to be queued

between the source and destination, which at a higher depth caused the dropped

message. I believe this would have been more unlikely/harder to find without

using exhaustive searching, because random walks will tend not to explore this

kind of extremity as reliably.

RT13 RT13 is the bug described in § 5.5.1. The specific liveness bug occurs when a

node A sends a join message to another node B, who forwards the join to node

C (since in RandTree, joins all get forwarded to the root of the tree). Then,

before node C responds to node A, node A reboots. The socket from node A

to B is broken, but that does not help node C, who has not yet opened its
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socket to A. If the timing is such that the response from node C to node A

arrives between A being initialized and having joinOverlay called, the message

is ignored as A is in the init state. In this case, A joins a fourth node D, and

the child pointer from C to A is never fixed. It is not clear whether the presence

of the fourth node is necessary.

The bug was found in path number 383365, working on a search depth of 15

(about the 280000th path searched at depth 15). FindCriticalTransition correctly

identified the critical transition as position 18, in which the joinReply from C

to A is delivered. In the closest live path, instead, joinOverlay is called on A,

preventing the problem.

RT14 RT14 is a safety bug. Specifically, it is a violation of the timers property,

which asserts that at all times, if a node is not in the init state, its recovery

timer is scheduled. As with RT11, this bug occurs as a result of transitioning

out of the init state based on receiving a message. In this case, it was not the

probe message, but instead the probe join message, which is sent to a root node

to inform it of another root node to merge two trees. This error is not seen

without node failures because a probe join message would only be sent about a

live node. A node failure resets this, and so the bug is now found.

This bug was found as path number 1350198, at a search depth of 15, but an

actual random depth of 22 (simulator depth of 21). Step 22/21 is also the critical

transition (though FindCriticalTransition is not functional for safety property

violations), because if instead joinOverlay had been called before receiving the

message, things would have worked fine.

RT15-17 RT15 is another safety bug. In this case, after forming a full tree of 6

nodes, the root node dies, followed by node 3. When node 2 gets the network

error from node 0, it tries to join node 1 (the new root by minimum IP address).

However, before node 1 responds, the join timer fires on node 2. It then tries to

join node 3 (because it is looking round-robin in its joinSet), the newly restarted

node 3 responds to node 2 with a response of FORCE ROOT, which means that

node 3 will soon be joining under node 2, as 3 was a root, but 2 has a smaller

address. In the JoinReply, node 3 lists node 2 as the root, since it would be
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the new root in a tree. This causes node 2, who at the time believes node 0 is

still root, to experience a failed assertion, since it asserts that msg.root (which

should be node 2 by the protocol) matches node its own root value. To fix this

bug, we modify RandTree to set the root back to itself on a join timer firing –

since that falls back to old join methods.

RT15 was found using the prefix search. First, I ran MaceMC on RandTree

with PRINT SEARCH PREFIX set to 1, and MAX PATHS set to 20. This

caused the MaceMC to output 20 path prefixes which lead to live states. I then

restarted the MaceMC, using prefix1.path as the search prefix. This searched

535 paths before finding this scenario, which required 4 nodes, two of which

restarted (or at least one restarted, and the other suffered a socket error). Once

I had the error path, our tools created error.log and error.graph. I used mdb and

the event graph to figure out why the assertion had fired. The event graph was

the primary tool in observing what happened, while mdb was used to confirm

details of the failure, ensuring I understood specifically what was happening.

The whole process took less than 30 minutes.

RT16 and RT17 are also safety bugs, in the same vein of RT15. The fix in

RT15 is not sufficient to prevent cases where we get a force root message and

the roots do not match. Instead, we now reset the root any time our parent

dies. This may prevent some shortcuts during tree recovery, but should be more

safe. In this 6 node case, several nodes died, and a node which did not die sent

a message to another node, which eventually got forwarded through another

couple of hops to a newly restarted node with a higher address, and a root force

message was sent to the joiner. One key in this scenario is the root itself has

failed. This bug was found using the same prefix as RT15, but was found as

path 38365, still at the search depth of 5. The appearance of these two bugs

also led us to write a safety property that ties together the joining state to the

state of the root pointer.
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5.6.2 Pastry

Pastry [RD01] is a distributed algorithm for node location and overlay rout-

ing. Every node joining the overlay becomes responsible for receiving and handling

messages destined for a range of a 160-bit integer space, localized around an identifier

chosen for the node1. The node location and routing are determined using a decen-

tralized protocol where each node keeps track of a logarithmic subset of the total set

of nodes in the system.

Joining requires contacting a bootstrap peer and routing a message to the

node presently managing the identifier space containing the new node’s identifier,

with responses that bootstrap the joining node’s own state. Joining the overlay is

only complete when the new node receives routing table entries for each row of its

routing table, and the leaf set from its immediate neighbor. After the node has finish

joining, it informs members of its leaf set about its presence, and enters the normal

operating mode of the protocol, wherein it performs periodic probes and updates to

ensure that every node’s routing table is correct.

Pastry correctness properties are defined in terms of eventual correctness of the

overlay routing structure, and in particular the ring structure formed by the nodes.

It is very similar to Chord in this sense.

We have cataloged 5 bugs in our Pastry implemenation using MaceMC:

Pastry1 The first Pastry bug found was a combination of several factors, which

led to the third node of the simulated 3 nodes being unable to join. First, a

node joining sends a message to a bootstrap node, who forwards it on towards

the present owner of the address. In addition to forwarding it on each node

along the path sends the number of rows to the joining node to which it shares

in common a common prefix. The final destination node sends a copy of all

remaining routing table rows, as well as the leaf set.

Commonly, transport services are configured with a limited buffer size, to help

flow-control services sending data to slow receivers. In the Pastry implementa-

1The identifier is frequently chosen by taking the SHA1 hash of the IP address or hostname,
but the method of selecting node identifiers isn’t so important as the fact that they are generally
“evenly” dispersed in the 160-bit address space.
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tion, nodes are not required to check that each sent message fit in the buffer—

instead, the assumption is that the joining node will timeout a join attempt

eventually, and re-initiate it. When it does so, the joining node sends the first

row it needs, to prevent duplicate sending of rows already received. However,

a bug in the forwarding node caused it to forward the wrong start row, instead

always forwarding the number 1. Coupled with the fact that 40 row messages

need to be received, and that a buffer might be limited to 20 messages at a time,

each time the destination node received the Join message, it began with row 1,

failing at by row 21. As a result, the joining node could never successfully join

the overlay network.

Pastry2 The second Pastry bug illustrates a case where the Pastry specification does

not fully explain how to handle the situation. When a node briefly becomes

disconnected from its peers (or more generally, a network partition), and all

sockets between the nodes break, on each side of the partition all references

to the other side are removed, with the intention of re-establishing peering

relationships through standard periodic maintenance. However, in the case of

a network partition, each partition “forgets” completely about the other one,

and periodic maintenance does not resolve it. As a result, in a 3 node system,

MaceMC found a case where all three nodes form Pastry rings of size 1.

Pastry3 This third bug in Pastry was discovered in a system of 8 nodes, setting the

leafset size to 4. It was a liveness failure – namely that the leafset relationship

was not reflexive. FindCriticalTransition pinned it down to step 355, in which

node A received an inform message from node B. However, upon adding node

B to A’s leafset, Lmax, which is supposed to be the hash id of the furthest node

away in the right half of the leafset, was improperly set to the other node in the

right half of the leafset. This occurred because of a bug in MaceKeyDiff’s ≤

operator, which was returning the wrong value. Specifically, if the difference be-

tween the two keys was greater than half of the address space, it was incorrectly

treated as an overflow. As it turns out, this same bug had appeared in basic

testing (without the modelchecker), and had been fixed for the < operator, but

not applied to the other.
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Though FindCriticalTransition correctly returned the right step, it a bit more

challenging than usual to determine the problem. In addition, we used the

event graph and mdb, even directly viewing the logs. The need to look at the

logs was to be able to compare two states to each other, a feature we added to

mdb after finding this bug.

Below is the detailed procedure we used to find this bug:

1 FindCriticalTransition is run automatically on any non-live path

2 The event graph is automatically generated for both the error path and

the live path found

3 The event graph summarizes the property failure, and can be used to see

at a glance the bad step (as well as what worked)

4 Switch to mdb, where I skip ahead toward the end to see the details of the

failed property – find the nodes which failed the property. I note that one of

the two nodes happens to be the one event 355 (from FindCriticalTransition)

occurred on.

5 Going back to step 355, I see that its the receipt of an inform message.

I suspect that maybe the problem is these two nodes got confused about

each other, and one doesn’t share the other. Looking back at a later state,

I realize that the sender was not one of the two nodes with a problem,

though it does still appear in the other node’s leafset.

6 I decide I now need to figure out the correct leafset. I go to the log (future

mdb) to see all nodes values of myhash, and sort them manually. Upon

further inspection, all nodes have their correct leafset, except the one event

355 occurs on. I conclude something must have happened in step 355 which

locked that node into its leafset. I use mdb to reinspect 355, to see both

the logs for that event, as well as the state of the node at the end.

7 I briefly go back to the logfile, where its easier to compare the difference in

this node’s state between two steps. (354 and 355). Not seeing anything

particularly out-of-the ordinary in this exercise, I look at the state of the

node at 355 in more detail. This is the point where I notice that Lmax
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and Lmin state variables are strangely asymmetric – Lmin is the further

away of two nodes, but Lmax is the closer of them. Inspecting the code, I

determine this to be a bug.

8 Looking at the logs, I examine the code within recompute leaf bounds,

the function which is supposed to update Lmax. I conclude the most likely

scenario is that something must be broken about comparing MaceKeyDiff

objects. This code was not overly well tested, so that makes sense. Careful

inspection (and the logs already generated by the run) allow me to deter-

mine the problem – that the comparison is incorrect in these values due to

incorrect belief about overflow.

9 Finally, analysis of the suspected bug matches what actually happens,

affirming the work done thus far. Specifically, with Lmax containing the

wrong value, the larger element of the leafset is never replaced, because no

node is closer than Lmax, and if its further than Lmax it isn’t considered.

This would cause the leafset to be permanently incorrect. Considering its

severity, it can only happen when a node’s initial leafset is pretty bad –

its nearest neighbor, and one further than half the keyspace away. It is

therefore less likely in scenarios with more nodes, and with larger leafsets.

However, the bug in MaceKeyDiff could have many other subtle effects,

which this fixes.

Stats for this bug. It was found in path 5 (the first 4 of which were abandoned

as duplicates), therefore at a search depth of 5. The last nail step was 355, with

the last nail random position at 373.

Pastry4-5 The fourth Pastry bug found was another violation of a liveness prop-

erty. In this case, we developed the prefix search, where MaceMC performs its

exhaustive search, not from the initial state, but at the end of a fixed execution

prefix. First, we run MaceMC, and tell it to output the paths as it completes

them. We let it run for a few paths, generating potential execution prefixes

that end in live states. We then re-run the model checker, instructing it to run

the execution prefix before beginning its search. This allows the modelchecker

to get past the joining phase of the protocol, where, since it takes an 8-node
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Pastry ring on the order of 700-800 steps to reach liveness, where exhaustive

search would not reach.

The specific bug found was one where not all nodes find a path to a joined

state, despite starting in one. In the violating path, node 5, after restarting,

cannot rejoin. Node 0 (the bootstrap node) sees the socket error from node 5,

but before 5’s second join attempt begins, it receives state from another node

(in this case a leafset info message) which mentions node 5. Though 5 will not

be added to node 0’s leafset (it only adds known live nodes to a leafset), it is

added to node 0’s routing table. Later, when node 5’s join is received by node

0, node 0 forwards it back to node 5, preventing it from being able to join.

One heavyweight solution to this problem would seem to be to probe all nodes

before adding them to the routing table, and only inserting them if they re-

spond that they are alive and running. This, however, was determined to be

prohibitively expensive, and so was ignored as a solution. (It also only works if

nodes maintain a connection to each peer in their routing table.)

Looking beyond that solution, at first approximation, the problem is that a node

forwards the join message back to the joining node. Accordingly, our initial

naive implementation was to check when forwarding a Join message that we

were not forwarding the message back to the joining node. While this attempted

solution did in fact prevent the specific case observed using MaceMC, it did not

solve the problem. When running MaceMC again, we found bug Pastry5,

another variation of the same problem.

In the new violating execution, two nodes failed simultaneously. Though their

socket error removes them from node 0’s state, subsequent periodic updates

cause them to be re-added to the routing table for node 0. Although the new

code prevents their join messages from being routed back to them, in this case,

each node’s join message is forwarded to the other node (also not joined). The

actual solution implemented to fix this bug was to respond to messages received

before join completion with a note to the sending node to remove the joining

node from their routing table. This way, the node state can be cleared, for

future join attempts to succeed.
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5.6.3 MaceTransport

MaceTransport is an implementation in Mace of a (user-level) transport

service providing reliable, in-order, message delivery with duplicate-suppression and

TCP-friendly congestion-control. MaceTransport is implemented using a basic

unreliable UDP transport.

The simulated application for the MaceTransport sends a configurable num-

ber of messages to remote destinations, restarting if the connection socket is broken

before the transmission is complete. The liveness properties for this service are that

eventually the messages should be delivered, and the safety properties are that each

message should be delivered at most once on any connection. Allowing restart means

the simulated application can test cases with node failures. The simulated application

keeps track of whether a complete transmission is received during the lifetime of a

node, so even if the node reboots, it need not retransmit all the messages.

MaceTransport1 In the first MaceTransport bug found by MaceMC, a message sent

by the simulated application was delivered to the receiver twice. The specific

steps leading to the bug were: 1) The source sends the first message in a new

connection (syn flag is set). 2) The receiver receives and delivers it and sends an

ack. 3) Before the source receives the ack, the retransmission timer fires, so the

source retransmits the message. 4) The receiver receives the duplicate. Because

the syn flag is set, the receiver concludes that the source died and came back, so

it erases all state associated with the connection, creates new connection state,

and then delivers the duplicate.

This exercises a corner case, where a retransmitted message contains a syn flag,

confusing the destination. To prevent the error (and the duplicate delivery,

additional state is kept at the receiver about the initial sequence number, to

support special duplicate suppression of the data+syn packet.

MaceTransport2 The second bug found in MaceTransport manifested itself as a

failed map lookup, where state that had been deleted was referenced. The

problem was that the retransmission timer was not canceled for all inflight mes-

sages associated with a connection that was being closed. When a connection is
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closed, all of its state is erased. A new connection to the same destination was

then opened. When the retransmission timer fired for an old message, it actu-

ally executed because the guard thought that the connection was still present

as it had been re-opened. The timer then tried to reference the deleted state

and caused an assertion to fail.

The fix is that all timers for inflight messages must be canceled when closing

the connection. We also added a new safety property that would have caught

this problem in the first place.

MaceTransport3 MaceTransport3 is the bug described in § 5.4. For Mace-

Transport3, when syn packets were delivered out-of-order, the receiver may

expect different sequence numbers than the sender and no data will be sent or

delivered on the connection. This situation could be corrected by the retrans-

mission timer closing the connection with an error, so this is best considered a

performance bug. MaceMC however found it using a liveness property, because

the weight of a timeout event was selected to be 0, preventing it from occurring

during random execution. The implication of this decision is to assert that the

MaceTransport should be able to recover from any problems without reverting

to a timeout, in the absence of node and network failures.

Setting this weight of a timeout to be non-zero would have allowed the timeout

to occur, and there would have been no bug found by MaceMC. However, the

techniques described in § 6 would have isolated it as a performance bug. This

demonstrates that many of our systems are robust enough to mask even their

own bugs, making them seem to be simple performance problems. Interestingly,

this complicates the debugging process as well, as the problems are masked from

the tester as well.

The fix is to have each sender send a monotonically increasing identifier (imple-

mented as a fine-grained timestamp) in the syn packet. The receiver maintains

the most recent identifier from each sender and ignores syn packets with an

identifier that is old.

The modelchecker also discovered two errors in the initial attempted fixes. The

first was that we omitted a necessary check in an if-else clause which caused an
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out-of-order syn identifier to still be processed. This was fixed by adding the

check and clause. The second was that the identifier was initially stored in the

incoming connection state, which was lost when the incoming connection was

closed or reset. The fix for this was to store the identifier in a separate state

variable map that persists across connections.

MaceTransport4 Out-of-order packet delivery to the transport caused an internal

assertion to fire that prevented duplicate message delivery to the application.

The fix was to increment a counter when delivering buffered messages that

arrived out-of-order.

MaceTransport5 Out-of-order packet delivery caused the transport to send an ac-

knowledgment for a future sequence number, which should never happen, in-

stead of the most recently received packet. The fix was correctly setting the ack

sequence number when packets arrive out of order.

MaceTransport6 Out-of-order packet delivery caused the transport to continue to

retransmit packets that had already been acknowledged. On receipt of an ac-

knowledgment with a sequence number not found in the inflight message map

(ie, the sequence number is greater than any inflight message), the transport

would previously do nothing. The fix was to check if the sequence number is

greater than all inflight messages, and, if so, have the transport mark all inflight

messages as acknowledged.

MaceTransport7 Out-of-order packet delivery caused a receiver to delete buffered

data upon receipt of an ack when the data will need to be retransmitted. A

somewhat complicated series of events need to occur to demonstrate this per-

formance/bounded liveness bug (note that the retransmission timer will fix this

condition).

Essentially, the bug occurs because when a reset is received, both incoming and

outgoing state get erased. This is problematic when resets are received out-of-

order, as the incoming connection state is lost, even though the sender does not

realize this.
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The fix is to to close the connection in only a single direction. On a reset,

close the outgoing connection. On a syn, close the incoming connection. On a

timeout, close both directions.

MaceTransport8 Out-of-order plus duplicate packet delivery caused the transport

to attempt to deliver fragmented message before all the fragments had been

received. The fix is to check if an out-of-order received message is already

buffered, and, if so, do not process it again.

MaceTransport9 In another performance bug, the transport was sending an ac-

knowledgments for the most recently received packet, rather than the cumula-

tive last in-order packet. The fix is to check for out-of-order buffered messages

before sending the acknowledgment. MaceMC did not directly find this bug

(there were no assertions for this property), but rather it was discovered while

inspecting the event graphs for other runs.

MaceTransport10 The Clear-To-Send timer was not being canceled when the con-

nection signaled an error, causing too many CTS callbacks to be made to the

application. This was caught by a safety property. This bug did not manifest

itself until testing with 3 nodes, since with 2 nodes the liveness properties were

being satisfied before the extra CTS callbacks could occur.

MaceTransport11 Another performance/bounded liveness bug. Out of order mes-

sage delivery can cause the sender and receiver expected sequence numbers to

differ. The fix is track the number of duplicate out-of-order buffered messages

received. If this value exceeds some threshold, then reset the connection (“fast

reset”).

5.6.4 Chord

MaceMC has also been used to model check our implementation of the DHT

routing protocol Chord [DZD+03]. The Chord protocol is very similar in concept

to the Pastry protocol, but varies in some significant technical details. However, our

experimentation has shown that Chord suffers from the same troubles as Pastry when

it comes to recovering from network partitions.
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In testing Chord, we first tested it by hand, initially with just 2 and 3 nodes,

to verify basic functionality without failure. Then, we conducted Bamboo-style

tests [RGRK04a], conducting lookups on a churning network with 300 nodes always

alive. Multiple identical lookups are executed simultaneously, to determine if the

network is performing consistent lookups. Between these two tests, we debugged our

implementation over the course of several weeks. Once the Chord implementation

achieved an acceptable performance of lookups, we returned to the modelchecker from

the initial version to compare the bug finding techniques. We ran the modelchecker

for 5 nodes, allowing network failures, UDP drops, and node failures.

Both approaches found a slightly different set of bugs. Using the manual

testing approach we found many of the known correctness bugs, but additionally

fixed a number of issues with performance which can not be found using MaceMC.

However, the modelchecker found all the correctness bugs of the lookup tests, and

also some additional ones. Furthermore, it did so while requiring less human time.

When conducting manual testing, once past the basic sanity tests, a large portion of

time was spent even trying to determine whether or not bugs even occurred. After

all, a single inconsistent lookup is only an indication of a problem, but could also be

explained by a node failing while handling the lookup, or non-synchronized lookups

which get correctly delivered to different nodes based on arrival or departure of the

destination node. Because of this, identifying bugs manually took from 30 minutes

to several hours per bug.

Instead, MaceMC can examine the state-snapshot across all nodes after each

atomic event, and can report only known bugs. Furthermore, the modelchecker re-

ports which property failed, and exactly how to reproduce the circumstances of the

failure. It also produces a verbose log and event graph, as well as in the case of live-

ness bugs an alternate path which would have been successful. These features make

it much easier to verify and identify bugs using MaceMC, and without the hassle of

conducting experiments which require many hosts and a modelnet environment. The

same bugs found by MaceMC took only 10 minutes to an hour to find. Bugs which

were not found by manual testing might take longer to isolate, but in practice these

too took only a tens of minutes to find.
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Chord 1 At the beginning of testing bugs, the Chord implementation was untested.

As a result, the model checker quickly found its first bug – a case where the

fix fingers timer fired, and (next == me) (which was asserted to be false).

This tests that the next hop towards the finger we are trying to fix is not the

local node. In this early version of Chord, if we are the successor for a key,

we go ahead and route the message locally, instead of, as is required, to the

strict predecessor for a key. To solve this, we added a flag for isPred, which

would be true if we were the successor or predecessor for a key. The assertion

then became ASSERT (isPred||next! = me), and if isPred, we would route to

our predecessor. (Safety violation at step 143, on path number 9 [the first 8

terminated early due to duplicate detection], modelchecking time 4.7 seconds,

search depth 5)

Chord 2 (This bug is described in § 5.5.2.) After fixing the first bug, the MaceMC

quickly found its second bug. This one however, was a liveness bug, but the

critical transition was the first transition. This case raised condition C2, so

we had to determine whether the system was completely dead, or whether the

random walk simply hadn’t been given enough time. The condition violated was

one where from each node, following the successor pointers should encompass all

nodes in the Chord ring. Looking at the event graph, the only thing immediately

obvious was that the nodes finished their initial startup events quickly (step 11),

and spent the remaining steps performing periodic recovery. This suggests that

probably the system as a whole was dead, since if it could have recovered, it

likely would have given the pattern of recovery steps. Next step was to look

at mdb, which allowed me to see that at step 10000 (just to pick a random

step) showed that client0’s successor pointer was client0. Client1 had client2

as its successor, and client2 had client0 as its successor, so only client0 seemed

to be problematic. At this point we wanted to determine 2 things. First, how

did it get in this state in the first place, and second, why was the periodic

recovery not correcting it? Starting with the second question, we looked at

the code, and discovered that the stabilize timer is supposed to correct this

situation, expecting client2 to probe client0, and discover that its predecessor



143

is incorrect, and tell it to insert itself in the after client2. Looking at this

recovery in the event graph, we see client2 send a get pred message to client0,

who responds with a get pred reply message. So far so good. But client2,

upon its receipt, does nothing. Looking further into this, we jump to transition

10014 in mdb, which is a get pred reply receipt. However, this shows us that

client0 is in fact reporting that client2 is its predecessor, which is why client2

thinks everything is okay. With this new information about why the problem

persists, we now turn our attention to where this first happened. In mdb we

jump back to the initial state, and start stepping through client0, checking its

state after each step to see when this occurs. 5 steps into client0, in system

step 12, client0 receives an update pred message which causes it to update its

predecessor, but it does not update its fingers (and in particular its successor),

which leads to the bug. A bit more checking indicates that this problem arose

because the original MACEDON implementation of Chord was based on the

conference paper [SMK+01], where the TON paper [SMLN+03] was used in the

revisions for Mace. The solution was to update the fingers when receiving an

update pred message. (Liveness violation, on path number 6 [first 5 exercised

duplicate states], critical transition at step 0, model checking time 5.9 seconds,

last nail ran in 70 seconds, search depth 5)

Chord 3 This bug was one which pointed out a downcall which was not imple-

mented. The downcall was required to test the properties, and therefore caused

an assertion to fail. The solution was to implement getNextHop(). This also

demonstrated a problem in our event graph generation tool, which had assumed

it need not worry about incomplete events. We fixed the event graph genera-

tion to handle such errors more gracefully. (Safety violation at step 102, model

checking time unknown, path number around 235000, search depth 15).

Chord 4 The first three bugs were found before with MaceMC configured not to fail

nodes or sockets. Now, with failures turned on, the first bug found was one

we had noticed during the port, but left in the code to verify the modelchecker

could find it. The bug was in handling errors; the code there incorrectly updated

the fingers and successor, and the result was a liveness violation found by the
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modelchecker, with a critical transition at step 9, where client1 rebooted. To

solve this problem, we simply enabled the fix we had put in place during the

port. (Liveness violation, on path number 1022, critical transition at step 9,

model checking time 11.2 seconds, last nail ran in 4 minutes, search depth 10).

Chord 5 This bug was another one we had anticipated, where a partition in the

Chord network causes two distinct rings to form. In this case, a 3 node network,

where one node was partitioned from the other two formed a ring of one, while

the other two created a ring of two. This behavior was expected since we had

seen the analog of this bug while testing our Pastry implementation. Neither

system contains a description of how to solve this problem in their protocol

description. To fix this for Chord, we added a recovery timer, and periodically

execute ”find pred” to your bootstrap peers with your own key. If you get

a find pred reply, that means recovery is needed. You consider adding the

respondent to your routing, and then you tell their predecessor to consider

adding you. (Liveness violation, on path number 1021, critical transition at

step 9, model checking time 9.5 seconds, last nail ran in 3.5 minutes, search

depth 10)

Chord 6 After the initial fix for Chord 5, an exception was being thrown due to a

null predecessor after error. We added a new safety property to check for this,

as well as some code to fix it. (Safety violation in step 46, model checking time

12 seconds, path number 1905, search depth 10)

Chord 7 A liveness bug found when bootstrap nodes are chosen randomly from

the set of nodes previously initialized instead of always as client0. This bug

occurred where nodes formed distinct rings due to a mistake in find pred when

the message is initially sent to a node which is the destination (and not the

predecessor). Solving this bug involved modifying the technique to route strictly

to a predecessor when executing find pred. Upon finding this bug, MaceMC had

found all the bugs observed in manual testing of Chord. It did not isolate any of

the additional performance bugs found in manual testing, because as it has no

notion of how long anything takes, performance bugs cannot be found. (Liveness
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violation, on path number 58720, critical transition at step 36, model checking

time 8 minutes, last nail ran in 9 minutes, search depth 10)

Chord 8 Another liveness bug where a node bootstraps off of a node which doesn’t

realize this node rebooted. The joining node gets itself back as successor, and

updates its successor state to point to itself, despite having a predecessor other

than itself. Further, the fix fingers timer returns if pred == self or succ ==

self, since the ring is empty, and therefore ignores this case. The solution for

this bug involved updating the joining path to update fingers when getting your

initial predecessor. Thus, at least the node gets a successor even though it is

told it is its own successor. Also, since this was the second time we had seen

problems when the successor variable was a self-reference while the predecessor

variable referenced another node, we added a new safety property that (pred =

me ⇔ succ = me), which we call SuccessorPredecessor. (Liveness violation,

on path number 5,118,422, critical transition at step 37, model checking time

10 hours, last nail ran in 3.5 minutes, search depth 15)

Chord 9 After adding the new safety property, the model checker began to find other

cases where this occurred. This occurred in reboot scenarios and in conjunction

with the recovery timer. When a peer recovery occurred and we got back a

find pred reply, we were updating the fingers with the node we discovered, but

did not update our predecessor if it was better than our own. This was only a

problem when we thought we were our own predecessor. The solution was to

check this case and update our predecessor in these cases. (Safety violation in

step 35, model checking time 58 seconds, path number 8086, search depth 10)

Chord 10 A liveness bug was seen in which a node A, while joining, may have its

own, or or another node’s join attempt routed to them, while this A’s join

request was being routed to that node. This problem we note also was present

in our Pastry implementation as well. Here we were able to solve the problem

by adding a remove message, which is sent if you detect that another node

has you in their routing table, and you are presently joining. That message

causes them to remove you from their routing state. Over time, this clears

this problem and allows nodes to join again. (Liveness violation, path number
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3,969,436, critical transition at step 33, model checking time 7.1 hours, last nail

ran in 6.5 minutes, search depth 15)

Chord 11 A new execution which violated the SuccessorPredecessor property.

This was simply a case where the solution for Chord 9 added a new case where

the predecessor was set, but not the successor. (Safety violation at step 41, on

path number 13,425,634, model checking time 28.8 hours, search depth 20)

Chord 12 A new execution which also violated the SuccessorPredecessor property,

and was a corner case forgetting to set the predecessor. This case was found

using the prefix search technique, which started each execution prefixed with an

initial execution to a live state. (Safety violation at step 161, on path number

4990, model checking time 5 minutes, search depth 5)

Chord 13 A new execution which also violated the SuccessorPredecessor property.

In this case, upon getting a find pred message when a node has no predecessor

and no peers, it was updating the finger table, but not setting its predecessor.

(Safety violation at step 179, on path number 554906, model checking time 8.5

hours, search depth 10). This bug was found using the prefix search technique,

which started each execution prefixed with an initial execution to a live state.

Chord 14 A new execution which also violated the SuccessorPredecessor property.

In this case, applying the fix for Chord 13 opened up a new case to violate the

property which was exercised because a range check was being applied to the

wrong identifier: it should have checked the actual identifier instead of the

identifier plus one. (Safety violation at step 39, on path number 2, checking

time 7.6 seconds, search depth 5). After fixing this bug, we next merged the

two versions of Chord, the one we fixed by hand-testing, and the one we fixed

using MaceMC. This of course introduced new bugs.

Chord 15 One difference in the two versions had been that in the hand-tested ver-

sion, for efficiency’s sake, when a node’s predecessor dies, you do not modify

your node’s id space, but instead clear your predecessor to indicate you are wait-

ing for a node to fill it. In the merge, the keyrange was not properly updated in

some cases when setting the predecessor. This was a liveness violation that all
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nodes could not be reached through the closure of getNextHop called on each

of the node’s identifiers. The incorrect keyrange affected the routing to prevent

its success. This bug took a significantly longer period of time to diagnose com-

pared with the other Chord bugs, because although MaceMC provided the last

nail, event graphs for live and dead paths, and mdb to consider both logs, it

took a long time to figure out exactly what should have been happening for the

routing to work properly. In this case, though it took a long time, it was espe-

cially valuable to have mdb to step through and compare states from the live

and dead executions, and the event graphs to see at a glance what happened in

both cases. This bug was also interesting in the sense that MaceMC stumbled

on it mostly by chance, in the first path searched, when the critical transition

was not even in the first 50 steps. (Liveness violation, path number 1, critical

transition was step number 89, model checking time 25.3 seconds, last nail ran

in 1.4 hours—the machine was thrashing with other jobs while running this last

nail)

Chord 16 We found an execution which fired an assertion because the constant ver-

sion of the getHashIdP lusOne() method was called when the finger’s hashId

was null. This occurred as a result of the decision that in the merged version, on

failure the predecessor would be cleared rather than set to another node. Then,

when processing a find pred reply, to consider whether to add as the predeces-

sor, we tried to see if it was in range. Under the new paradigm, we simply check

to see if the predecessor is empty, and set it automatically then. Additionally,

with this bug we updated the properties to allow null predecessors to imply

that a node’s successor is itself. (Safety violation at step 72, path number 6472,

model checking time 81.5 seconds, search depth 10)

Chord 17 After fixing Chord 16, there were circumstances where a node gets a

find pred reply when its predecessor is itself. Thus, if a node is about to add

a peer to its finger routing table, and its predecessor is itself, the code must

update it. This caused a violation of the updated SuccessorPredecessor prop-

erty. (Safety violation at step 93, path number 35556, model checking time 7.6

minutes, search depth 10).
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Chord 18 Previously, if a strict predecessor could not be found when one was re-

quested, and the local node’s predecessor is not set, then a null key was returned

from nexthop. But the find pred message is dropped if null is returned, meaning

nodes cannot join in an empty ring. To solve this problem, we modified nexthop

to return me instead of null, correcting this problem. (Liveness violation, path

number 907856, critical transition at step 24, model checking time 3.8 hours,

last nail ran in 2 minutes)

Chord 19 This bug was a liveness violation caused by a faulty state guard on the

transition to send “remove” messages to nodes who had bad routing table entries

(of joining nodes). The broken guard did not send the message if it was the first

hop of the “find pred” message (assuming it was an attempted join). However,

other first hop “find pred” messages exist, and the failure to respond to these

caused a bug where some nodes could not rejoin after rebooting. Finding this

bug within MaceMC took about an hour. Fixing this bug involved adding a

“joining” flag to “find pred” messages, to distinguish between these messages to

allow the join-cache to remain. (Liveness violation, path number 3638, critical

transition at step 169 (random position 193), model checking time 5 minutes,

last nail ran in 20.8 minutes) Last nail took as long as it did due to the large

number of dead executions it visited.

5.7 Summary

The most insidious bugs in complex distributed systems are those that occur

after some unpredictable sequence of asynchronous interactions and failures. Such

bugs are difficult to reproduce—let alone fix—and typically manifest themselves as

executions where the system is unable to ever enter some desired state after an error

occurs. In other words, these bugs correspond to violations of liveness properties

that capture the designer’s intention of how the system should behave in steady-state

operation. Though prior software model checkers have dramatically improved our

ability to find and eliminate errors, elusive bugs like the subtle error we found in

Pastry have been beyond their reach, as they only find violations of safety properties.
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We have described techniques that enable software model checkers to heuris-

tically isolate the complex bugs that cause liveness violations in systems implemen-

tations. A key insight behind our work is that many interesting liveness violations

correspond to the system entering a dead state, from which recovery to the desired

state is impossible. Though a safety property describing dead states exists mathe-

matically, it is often too complex and implementation-specific for the programmer to

specify without knowing the exact bug in the first place. Thus, we have found that

the process of finding the errors that cause liveness violations often reveals previously

unknown safety properties, which can be used to find and fix more errors. We have

used MaceMC to find and catalog 31 liveness (and 21 safety) errors in Mace imple-

mentations of four complex distributed systems. We believe that our techniques—a

combination of state-exploration, random walks, critical transition identification, and

mdb—radically expand the scope of implementation model checkers to include live-

ness violations, thereby enabling programmers to isolate subtle errors in systems

implementations.
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Chapter 6

Analysis of Performance

Using MaceMC (just described in § 5) we can find violations of liveness proper-

ties by systematically exploring the space of possible executions from a fixed starting

point, then testing each state we encounter to see if it is a dead state using long

random executions that only terminate when some high-level liveness property even-

tually becomes true. While this approach has been successful at helping us discover

and fix corner-case executions that cause our systems to fail in deployed scenarios, it

is incapable of helping us detect and solve bugs that affect the performance of our

system, because the tests only care if the liveness condition is ever satisfied, and not

when.

In fact, after performing extensive model checking of the random tree protocol,

which serves as the backbone for many of our higher-level services, we had deemed it

to be mostly correct, only to have users complain that in practice, some nodes were

never joining the tree, and therefore were never downloading a file that BulletPrime, a

file distribution protocol which makes use of a tree service, was trying to disseminate.

When we used mdb to explore the logfiles to see what was happening, it became

apparent that the nodes were in fact forming independent trees, despite all trying to

bootstrap off of the same peer. We hypothesized that after forming disconnected

trees, the recovery timer, whose responsibility is to correct network partitions, should

correct the problem. But the recovery timer had only been scheduled to expire every

hour, since network partition events are expected to be infrequent, and in practice

it was not ever expiring during a 10 minute experiment. To test the hypothesis, we

150
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adjusted the recovery timer to fire every 20 seconds, and re-ran the experiment. This

time, though multiple trees did initially form, over the period of about a minute, they

did merge into a single tree.

Practically, it does not make sense to fire the recovery timer every second,

which was the interval required for the join process to not impact the results of the

file distribution, a matter of only 2 minutes. Furthermore, there is the question of

how the tree became disjoint in the first place. The recovery timer was correctly

fixing partitions, but the programmer had believed partitions would only occur in the

presence of network errors or node churn.

In manually tracking down this bug, we learned an important lesson—the

robust nature of distributed protocols can actually mask bugs, converting correctness

bugs into performance bugs. Furthermore, since these bugs are not readily observed

by correctness testing, they often persist in deployed mature code, never being found,

instead being felt as occasional performance glitches.

Our first approach to fixing these bugs in our random tree protocol was to dis-

able the recovery timer, and then also configure MaceMC to not explore executions

that have node or socket failures. This approach did allow us to fix several problems

in our RandTree implementation, but unfortunately was not satisfying, as it may

not always be practical to separate functionality like the recovery timer paired with

model checking search parameters. Even in the case of RandTree, we would not find

any performance bugs caused by problems in handling node or socket failures. Ac-

cordingly, we sought out to develop an extension to MaceMC that can automatically

explore the execution space, isolating performance and correctness bugs.

While ensuring the correctness of distributed systems is a necessity, finding

performance problems is arguably even more challenging. Relatively rare interactions

among individual nodes in the distributed system or the inconvenient delay or drop

of a single message can lead to poor performance. These performance anomalies are

typically rare and also difficult to reproduce because of the high expense associated

with logging overall system behavior on multiple distributed nodes. Even once the

conditions leading to a performance bug can be isolated, the process of diagnosing

the actual error is currently tedious and error prone. Individual programmers are

left with the daunting task of wading through hundreds of megabytes of log files
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and manually tracing communication and control flow across nodes in the distributed

system.

In this chapter we describe tools to: (i) automate the process of finding per-

formance bugs in distributed systems and (ii) to isolate the root cause of the error to

assist the programmer in fixing the performance issue. To be widely applicable, we

believe any such tools must operate on the unmodified source code of the distributed

system. Further, the tools cannot require running the system across the network as

a part of the debugging process. Acquiring the necessary computation and network

resources to run a distributed system and then collecting and parsing individual log

files from multiple nodes are sufficient impediments to limit many debugging efforts

even with appropriate tools.

The key insight behind our work is that we can employ guided search us-

ing techniques similar to model checking to compare the performance of distributed

systems implementations under a range of random executions. The key distinction

between such guided search and traditional model checking techniques is that the

search must maintain a realistic notion of time and that the exploration of the search

space cannot be exhaustive because of the infinite space of possible timing interac-

tions, when compared to the merely very large space of possible event orderings for

traditional model checking.

This chapter makes three principal contributions. First, we show how to build

a system to performance check a distributed systems implementation. We train the

system to follow distributions of per-event execution times measured from simulated

executions of the actual, unmodified system code. We then explore a variety of

random event orderings and timings to develop a profile of expected system perfor-

mance. This allows us to flag executions that significantly deviate from the average

case performance as demonstrating a performance anomaly. These poorly performing

executions often produce log files consisting of hundreds of megabytes of data with

tens of thousands of events spread across one hundred or more nodes.

Manually inspecting these log files to verify, isolate, and fix a performance

error is a challenging task. Thus, our second contribution is an algorithm to auto-

matically characterize the divergence point in a given execution. That is, we isolate

the particular point in the execution after which it likely becomes impossible for any
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possible future event ordering to ever achieve good performance. Prior to this di-

vergence, some alternate path would still achieve acceptable performance. Equipped

with both the divergence point and an alternate execution that achieves good per-

formance after the divergence, we find programmers are able to much more quickly

diagnose and fix performance errors.

Finally, we present the results of applying our techniques to four real, com-

plex distributed systems. We discuss in detail the application of our tool to these

systems, the subtle performance bugs we found, and our solutions. Importantly, all

of our implementations were mature and have been run across the Internet for several

years. Further, while we had been aware of intermittent performance issues and had

attempted to diagnose them on multiple occasions, we were unable to do so without

the techniques presented in this paper.

6.1 Background

6.1.1 From Model Checking to Performance Testing

The design of this tool is heavily inspired by MaceMC, and in fact shares some

implementation code. However, the differences are substantial enough that it has not

been possible to have a single implementation perform both tasks. At a high level, the

biggest difference in the two systems is that the new tool must track the time at each

node, which forces the implementation to be different in several ways. For example,

consider the event processing loop: MaceMC would enumerate all possible events and

randomly pick one, doing a ‘late-binding’ of the event ordering, while the new tool

randomly schedules future events, doing an ‘early-binding.’ These, and other subtle

differences lead to different design decisions, and the new design is described in the

following sections. One of the real surprises for us was that the critical transition

technique used in MaceMC could be adapted to help isolate the divergence point in

a poorly performing execution.
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6.1.2 Basic System Model

As with MaceMC, a distributed system is mapped into a single process by

running each node as a separate object in the process and connecting the nodes

together through a simulated in-memory network. The addition of application and

timer simulators and a modified random number generator allow deterministic replay

and search of system executions.

The implementation of a distributed node consists of a set of service objects

that implement event handlers. When not in an event handler, a node blocks waiting

for another event. Services implement three kinds of event handlers as state tran-

sitions : application, network, and timer transitions. An event occurs by calling a

handler on one of the service objects at the node. It may in turn execute an arbitrary

piece of non-blocking code and invoke an arbitrary set of transitions on other service

objects in the same node. The event executes atomically to completion, modifying

local variables and generating new events to deliver later.

The state of a node is the set of all variables of all service objects at that node.

The state of all nodes together, combined with the network, timer, and application

simulator state comprise the system state.

An execution of the distributed system is an initial system state and an ordered

set of pairs:

〈node, event〉

At each simulator step, the simulator simulates the given node, executing the un-

modified transition corresponding to the event event . After each event, the system

is in a new state. The system can then be tested for violations of state conditions

satisfaction of the stopping condition, which tells the model checker to move on to

the next execution.

6.1.3 Dealing with Time

Thus far, we have completely ignored the importance of time in the system

model. While ignoring time is standard practice in model checking for correctness,

maintaining a notion of time is required in nearly all analyses of system performance.
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In an event driven system, there are two basic ways time affects system execu-

tion. The first is the schedule of when events should occur at individual nodes. This

accounts for both the latency of network messages and the delay caused by scheduling

a timer to fire later. The second is the execution time of the event code itself. While

our system model requires event handlers to be non-blocking, and therefore fast, in

practice they take a non-negligible amount of time. To be consistent, a node’s time

must be updated according to both of these factors.

Thus, taking time into account, we describe an execution as an initial system

state and an ordered set of tuples:

〈node, event , start , duration〉

At each simulator step, the model checker simulates the first event in the list (ordered

by start). It first updates the system clock for the simulated node to be the maximum

of its current time and the time the event was scheduled. The simulator then calls

the transition for the event and updates the node time by the amount of the duration

when the event completes.

As part of the system state, we will now include a clock for each node. At the

end of each event, the time at each node is consistent with the (start+duration) of the

last event at that node. We then define the average system time as the average time

across nodes. By subtracting the system start time from the average system time,

we can measure how long the execution has been running. We define the average

execution duration as the length of the execution when the system state satisfies the

stopping condition.

6.2 Model Checking

In this section we describe our algorithms for finding performance-oriented

bugs in unmodified systems code. Our model checking process occurs in two main

phases. In the first phase, we simulate the execution of a system as described in

Section 6.1.2 to produce a set of executions suspected to have performance bugs. In

the second phase, we compare these anomalous executions to non-anomalous ones to
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aid the programmer in finding the cause of the bugs. Our overall system architecture

can be seen in Figure 6.1.

At the core of our techniques are two main algorithms, presented as Algo-

rithm 4 (EventSimulator) and Algorithm 5 (Search). EventSimulator implements the

simulator as described in Section 6.1.3. This algorithm takes three parameters: the

system we wish to model check, the stopping condition, and a set of event timing dis-

tributions (further described in Section 6.2.1). The algorithm constructs three queues:

(i) an events queue initialized with a small set of events to bootstrap the system—

typically an application “init” event on every node, (ii) an empty timedEvents queue,

and (iii) an empty realTimes queue.

The algorithm pops the first event, which has the smallest start time, off the

queue. The node running the chosen event sets its clock to the maximum of its current

clock value and the start time of the event. Next, we record the real time and execute

the event, potentially causing other events to be added to the queue (e.g., in the case

where a new timer or network event is scheduled). After execution, we retrieve the

timing distribution corresponding to the event (this will be explained in § 6.2.1 as the

event duration distribution, or EDD) and evaluate it at a randomly chosen percentile

to capture variations in the execution of individual events. The value returned is

assigned the event’s duration.

The node advances its clock by this duration and adds a new

〈node, event , start , duration〉 tuple to timedEvents. An entry containing the event’s

ID, a string representation of an event, and the event’s actual execution time is

added to realTimes. Finally, we test the stopping condition, and if it is met, return

timedEvents and realTimes. This process continues until we meet the stopping con-

dition or the system has no more events to process. However, the latter case indicates

an error.

Note that our approach to timing events assumes events are independent and

hence uncorrelated with one another. While not true in practice (e.g., a particularly

slow node is likely to have multiple consecutive slow events), this approach has been

sufficient to explore naturally occurring variations in event orderings and timings,

enabling us to find a number of interesting performance bugs. We leave modeling

potential correlations among event and network timings to future work, though we
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believe our initial simpler approach will, in general, suffice to find a range of interesting

performance problems.

Algorithm 4 EventSimulator

Input: System S

Input: Stopping condition C

Input: Set EDD of timing distributions

events = Queue of 〈node, event , start〉

timedEvents = Queue of 〈node, event , start , duration〉

realTimes = Queue of 〈eventId , realTime〉

S .initEvents(events)

while not events .empty() do

〈node, event, start〉 = events .pop()

node.time = max(node.time, start)

startTime = RealTime()

Simulate event on node

endTime = RealTime()

realTime = endTime − startTime

dist = EDD [event .getId()]

duration = dist [rand()]

node.time = node.time + duration

timedEvents.push(〈node, event , start , duration〉)

realT imes.push(〈event.getId(), realTime〉)

if S satisfies C then

return 〈timedEvents, realTimes〉

signal Error

Algorithm 5, Search, simply calls EventSimulator in a loop, implementing a

guided search of the execution space. This algorithm takes the system to evaluate, a

stopping condition, a set of event timing distributions, and an integer N as param-

eters and calls EventSimulator N times. It appends the execution object returned

from each execution to the execs queue and flattens the times queues into a single
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eventTimes queue, returning both execs and eventT imes upon termination. Be-

tween each invocation of EventSimulator, the algorithm resets the system state, which

includes tasks such as clearing the simulated network of all messages, instantiating

new nodes for the next execution, removing all scheduled timers, and resetting the

random number generator state.

Algorithm 5 Search

Input: System S

Input: Stopping condition C

Input: Set EDD of timing distributions

Input: Integer N

execs = Queue of 〈execution〉

eventTimes = Queue of 〈eventId , realTime〉

for i = 1 to N do

Reset system

〈ex , times〉 = EventSimulator(S ,C ,EDD)

execs .push(ex )

Add all elements in times to eventTimes

return 〈execs, eventTimes〉

6.2.1 Searching

The first phase of performance model checking is the search phase. As men-

tioned above, the goal of the search phase is to find executions with suspected perfor-

mance bugs. Doing so requires characterizing a “normal” execution. Because we are

primarily concerned with the average execution duration, it is paramount that our

simulation of time be as accurate as possible. Although it is feasible to simply time

the execution of each event on each node and use these values to advance the node’s

clock, we chose a more flexible abstraction.

We represent the timings of each event with a distribution generated from

actual executions of the system. We call these the event duration distributions or

EDD. To collect these distributions, we pick a value N such that N random executions
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of the system should generate all possible events. We define an arbitrary EDD that

maps all events to a constant value. Next, we execute Search on the system, the

stopping condition, our contrived EDD, and N . When the search is complete, we

can discard the execs queue, because we are only interested in the actual time each

event took. By looking at the eventTimes queue, we can compile distributions for

each event, using eventId as the identifier for the distribution.

Letting the simulator draw from timing distributions has three main advan-

tages over using raw execution times for each run:

Repeatability: After each event, the simulator determines the amount of time taken

by evaluating the event’s distribution at a randomly chosen percentile. Since the

sequence of random numbers is already recorded, the execution can be replayed

and have the exact same execution time, regardless of how long it actually takes.

A side-effect of this property is that the code can even be modified—perhaps

to add logging, perform more time-intensive testing, etc.—but still behave as if

the system were running the original, unmodified code.

Coverage: By combining timing values across multiple executions, it is possible

to produce an execution with timing values never seen in a single run. This

allows the simulator to explore more variations in timing behavior, including

potentially hard-to-find corner cases.

Malleability: With a timing distribution for each event, it is easy to explore “what

if” scenarios with event times. One can simply change the distribution for an

event or events in question to see how the average execution duration would be

affected. This could be useful for evaluating the effects of a potentially time-

consuming algorithmic improvement, buffering strategy, etc., without actually

implementing anything.

It is also possible to construct similar distributions for network latency/bandwidth

observed on a particular real-world topology. Our simulator does not currently do

this; rather, we take a simpler approach that uses randomized latency values. For

more details, see Section 6.3.3.

When we have a suitable EDD for our target system, the next step is to

quantify what should be deemed an anomaly by using the EDD to supply event



160

timings. Once again, we use the Search algorithm, but this time we pass the system,

the stopping condition, our new generated EDD, and another value of N . Using the

execs queue, we compute the values of the first and third quartiles of the average

execution time of each execution. We then compute a lower bound, defined as Q1 −

1.5×(Q3−Q1), and an upper bound, defined as Q3+1.5×(Q3−Q1). Execution times

outside of this range represent “mild outliers” [MM99] and are deemed anomalous.

The final step in the first phase finds anomalous paths. To do so, we run

Search with the same parameters as before, except we watch for executions that fall

outside our bounds determined in the previous step. In this case, it is reasonable to

set N to a fairly large number and terminate the search when we find an anomalous

path.

6.2.2 Analysis

Once the model checker identifies an execution with anomalous performance,

which often consists of tens of thousands of events, the programmer faces the daunting

task of determining the cause of the anomaly. In this section, we discuss our strategies

for analyzing executions and techniques we have implemented in the model checker

to help focus our search efforts.

One of the key properties of our simulator is that it provides deterministic

replay of executions. By recording each event tuple during the search phase, the

model checker has a path describing the complete execution, and can later replay

this path by executing each event on the appropriate node at the time indicated in

the event tuple. To provide consistent executions when replaying a path, the model

checker must control all sources of non-determinism. We address non-determinism in

event orderings by using a simulated source of time, as discussed above. In addition

to the event orderings, real systems often make use of non-determinism within the

event handlers themselves, such as using randomized algorithms. When executing in

the simulator, Mace systems automatically use the deterministic simulated random

number generator provided by MaceMC.

By leveraging deterministic replay, the model checker can provide the pro-

grammer with a verbose log file containing the event details and system state after
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Figure 6.1: System Architecture: first, the unmodified system is run through a set
of training runs to determine a set of event duration distributions (EDD). Next, the
system, along with the EDD, is fed into the Search algorithm, which will produce
one or more anomalous paths. We then use the ExecutionSearch tool to analyze
the anomalous path, giving us the most similar “normal” path. At this point, any
debugging tool can be used to compare the two executions until the source of the bug
is found.

every event, a valuable starting point for debugging the execution. While search-

ing for anomalous executions, the simulator runs with all system logging disabled

for maximum efficiency. When the model checker finds a violation, it automatically

replays the path with full logging. The resulting log contains annotations (i) writ-

ten by the programmer, (ii) generated automatically by the Mace compiler, which

mark the beginning and end of each transition, as well as details of the event, such
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as a method invocation call stack with parameters, (iii) produced by the simulator

runtime libraries, such as message queuing and delivery and timer scheduling, and

(iv) generated by the simulator tracking the execution’s progress, including random

numbers generated and the complete state of the simulated node after the each event

execution. The verbose logs for the systems we have examined span tens of thousands

of events and are hundreds to thousands of megabytes in size.

Verbose log files enable generic debugging, allowing different approaches for

analyzing the execution results. For example, one of the authors used a set of scripts

he had written for debugging and analyzing live BulletPrime runs, after splitting the

simulated log file into per-node log files. In contrast, one of the other authors preferred

using mdb, the interactive debugger designed for MaceMC, which can navigate long

log files and isolating events of interest. Having the simulator generate structured log

files along with the custom logging added by the programmer gives the developer the

flexibility to choose the most appropriate tools for a given analysis.

Although verbose log files provide a foundation for analyzing an execution,

due to the length of many anomalous execution paths and the size of their corre-

sponding log files, our tools are often insufficient for quickly finding the source of a

performance problem. Thus, we have sought better techniques for isolating the cause

of the performance problems. One important contribution of this work is a technique

to automatically determine where in the execution the performance problem becomes

apparent. This powerful technique both allows the programmer to essentially ignore

a potentially large portion of the log and points to the part of the execution where

they should focus their attention. We call the execution event that first exhibits the

anomalous performance to be the divergence point, and we automatically identify the

divergence point as described below.

The insight behind our algorithm is as follows. Up to some prefix point in an

anomalous execution, the overall performance of the system is likely fine and exhibits

similar overall behavior to other runs with acceptable performance. Even if individual

anomalous events take place, later system behavior is sufficient to recover. However,

there is some point in the anomalous execution beyond which it becomes impossible

to ever match the performance of the good executions. Our approach is to conduct

guided random walks from various points in the anomalous execution to determine



163

Figure 6.2: We first perform an exponential search (E1−E5) to determine bounds for
the divergence point, then a binary search (B1 − B3) to isolate the divergence point.

whether the completion time of all random walks from this point remains anomalous

or falls within the good range exhibited by most runs. If a sufficient number of random

walks from a given prefix all wind up with an anomalous execution, we have found

an upper bound on the prefix. That is, the system diverged to a state where it likely

became impossible to ever achieve good performance somewhere before that prefix.

By conducting multiple such guided searches as described below, we can precisely

bracket this divergence point in the execution, tremendously easing the programmer’s

job in locating the root cause of the performance bug.

We employ the deterministic replay capability of the model checker as well

as random executions to perform a search along the anomalous path. As illustrated

in Figure 6.2, we begin by initializing the prefix length to one event, replaying the

portion of the path overlapping with the prefix, and then performing up to k random

walks. If one of the random walks satisfies the timing constraint, then we double the

prefix length and repeat. Eventually, we reach a part of the path where none of the k

random executions satisfy the timing constraint, and thus we have lower and upper

bounds on the divergence point. The algorithm then begins the next phase, in which

we perform a binary search between the upper and lower bounds. For each round

of this search, we once again perform up to k random walks, and if any satisfy the

timing constraint then we increase the lower bound, and if none of them satisfy the

constraint, then we decrease the upper bound. The algorithm terminates when the
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bounds converge on the divergence point—the step indicating the longest common

prefix between the anomalous execution and a different execution that will satisfy the

timing constraint if a different choice had been made in the divergence point.

6.3 Implementation Details

This section describes several challenges we encountered while adapting

MaceMC to search for performance bugs. Although we believe the techniques de-

scribed in this chapter can be applied to any systems implementation, our perfor-

mance checker works with systems implemented using the Mace source-to-source

compiler and C++ language extensions (§ 3). Recall that Mace structures a sys-

tem component as a state machine with messages, C++ state variables, and atomic

event handlers—implemented as methods in C++—that process the receipt of mes-

sages, timers, and application requests. Mace furthermore provides syntax to compose

reusable and interchangeable system components into complex distributed systems.

The Mace compiler generates C++ code ready to run on live networks by construct-

ing classes and methods to handle event dispatch, serialization, callbacks, timers, etc.

By using Mace, we avoid the painstaking task of modifying the implementation to

identify blocks of code representing discrete events (e.g., the processing of a message).

6.3.1 Preparing the Test

Users write a simulated driver application to prepare their system for per-

formance testing. The simulated application should initialize the system, perform

desired system input events, and check high level system progress with the stopping

condition. For example, to look for performance anomalies in a file distribution sys-

tem, the test driver could have one node publish the file and the other nodes request

the file, and use the stopping condition that all nodes have finished downloading the

file. The compiled simulated application links with the compiled Mace system object

files and Mace libraries. The performance tester executes the system by starting the

simulated application to drive the system forward and simulating a distributed envi-

ronment, loading simulator-specific, deterministic libraries for message queuing and
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delivery, supplying the current system time, timer scheduling, and random number

generation.

6.3.2 Pending Event Lists

At each step of the simulated execution, the simulator picks an event to fire

from a set of pending events. In MaceMC, we would construct the set of pending

events at every step by querying the system components—the simulated application,

simulated network, and simulated scheduler—for their respective subsets of ready

events. The model checker would randomly choose the event for the current step from

the combined set of all ready events and then discard the set because each system

component maintained its events in its state. We chose this approach because of its

simplicity—each simulated component constructs the set of pending events from its

state at the time when the simulator requests them, which ensures the accuracy of the

set of events. We contrast this with the complexity of the alternative we ultimately

implemented for our new performance tester, described below.

When we began our performance debugging work, we initially tried using our

prior model checker, and we found it was far too slow to allow us to search long enough

to discover any performance bugs. When we initially wrote the prior model checker,

we knew the approach was not the most efficient, but it worked sufficiently well for

the size of the systems we model checked, which usually had less than ten nodes.

With the performance tester, we needed to support configurations with hundreds of

nodes, and the event picking algorithm was so slow we were not willing to wait to

search more than a single path. Thus, we implemented our current approach, in which

we assign each event a start time and have the simulator maintain a list of pending

events each simulated component must update as appropriate. The advantage of

this approach is efficiency—before, computing the set of events for the simulated

network required performing an O(n2) operation, while the new algorithm is an O(1)

operation—pick the event with the earliest start time. The drawback of the new

approach is additional complexity, that mainly stems from the need to remove events

from the pending list. For example, consider the example of a service canceling a

timer. With the old approach, the timer would be removed from the scheduler state,
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so when the simulator queried the scheduler for the set of events, the scheduler would

just return all currently scheduled timers. With our current scheme, the scheduler

needs to actually remove the canceled timer event from the pending list. As another

example of additional complexity, the simulated network needs to remove all pending

messages if a socket error occurs. However, the new approach of maintaining an

incrementally updated pending event list is two orders of magnitude faster than our

old algorithm, and the changes allow our new tool to search executions fast enough

to be practical for the systems we need to check.

6.3.3 Simulated Network

Since our performance tester simulates the execution of an entire distributed

system on a single machine, it is necessary to simulate a network interconnecting the

system. As mentioned in Section 6.2.1, one possible way of doing this would be to

gather distributions for all-pairs latency/bandwidth measurements from real runs of

the system on a real network. Then, when determining the arrival time for a message,

the proper distribution could be consulted.

However, we use a simpler network abstraction in our system. The computed

arrival time of each message to be delivered is the sum of three factors: (i) a minimum

latency intending to model the delay induced by the speed of light, currently 1ms,

(ii) the propagation delay due to constrained outgoing bandwidth between nodes and

the number of simultaneous “flows”, and (iii) a random delay taken from a Pareto

distribution.

More specifically, we model the bandwidth between all pairs of nodes as 8000

Kbps arbitrarily. To simulate the common case where a node’s first-hop link is the

bottleneck, we count the number of active outgoing flows the node has to all other

nodes above a certain size, and use this value to divide up the available 8000 Kbps.

Thus, if a node has two flows, the latency generated for a new packet in part (ii)

above will be based on the time it takes to send the message over a 4000 Kbps link.

We assume here all flows with a certain threshold number of bytes in transmission are

receiving their “fair share” from TCP. In particular, we make sure to exclude “light”
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flows from this equation, because we do not want to equally penalize these flows. In

our current implementation, this threshold is set to 300 bytes.

Although our simulation of network timing does not perfectly mirror an 8000

Kbps interconnected topology, we have found that the values it generates are generally

suitable for our needs.

6.3.4 Large Log Files

In Section 6.2.2, we discussed the verbose log files the simulator automatically

generates after finding an anomalous execution by replaying the path with full system

logging enabled. The log files resulting from the performance tester presented us with

more scaling challenges in several respects. First, log files required much more storage

largely because there were far more nodes in the system. One change we made to

help reduce log size was to only log the state of the node that just executed the

current step, whereas previously we would log the state of all the nodes, which made

inspecting the system state convenient when there were only a handful of nodes, but

was too inefficient for larger systems.

Second, in our prior model checking work, a property violation and error typ-

ically occurred near the beginning of a path, almost always within the first few thou-

sand steps. As a result, we could truncate the path when generating the log file,

which would help keep it a more manageable size. With the performance bugs we

have found, this is not the case, in that the divergence point may be anywhere in

the execution. Thus, we adapted our log analysis tool to be able to ignore a prefix

portion of the log, as well as a truncated part of the log, so we could focus on the

portion of the log just surrounding the divergence point. Finally, we modified our

tool for generating a graphical representation of the events in the execution to make

better use of screen real estate by condensing the graphical portion of the log into

a small column, and using the remaining space for text describing the event. This

change allowed our event graph to scale from five to ten nodes to up to one hundred.
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6.4 Experiences

We ran our performance tester on implementations of BulletPrime [KBK+05],

Pastry [RD01], Chord [SMK+01], and a random tree protocol (RandTree) as described

below, and found significant, previously unsolved performance issues with each. In

each example, we describe the system being executed, the process we took, and the

stopping condition we used for the systems. We then describe the performance issues

we found using our tool and the steps we took to improve them.

All the systems we evaluated have been extensively tested in live runs, and

in the case of Pastry, Chord, and RandTree, were tested for correctness during our

prior work. BulletPrime, though not run through MaceMC, has been tested the most

extensively for performance.

In each of the experiments below (except RandTree, which was tested at small

scale and resulted in fast executions), the performance tester was configured to use

40-100 nodes. Note that it is impractical to perform any kind of exhaustive search

using standard model checking techniques on systems of this size. Executions run

in the simulator took anywhere from 8 seconds to 3 minutes. The execution length

in real time is sensitive to the complexity of the stopping condition, because it is

executed after every step. In the case of Pastry, for example, the stopping condition

is O(n2 log n) for n nodes in the worst case, which makes testing it very slow for larger

n. In general, training the performance tester took between 5-30 minutes for each

system.

The time spent searching for anomalous executions varied depending on how

hard the simulator had to search, but the bugs we found appeared relatively quickly.

The longest part of the performance tester execution was the ExecutionSearch step,

which has to run O(k log s) steps, where k is the number of random paths at each

step, and s is the output step. ExecutionSearch ranged from 1 hour to 22 hours to

run (in the latter search, 630 executions were performed at an average of 130 seconds

per execution). Though 22 hours is perhaps excessive, the search was unattended,

and did allow us to ignore nearly 62% of the 22000 events in the anomalous execution.
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6.4.1 BulletPrime

BulletPrime is a mesh-based, peer-to-peer file distribution protocol similar in

functionality to Bittorrent [bit]. Each node contacts a source node, receives a set of

initial peers to join, and then begins downloading a file in parallel from other nodes.

Before discussing the bugs we found, there are a few relevant implementation details

to discuss. First, BulletPrime uses two transports – one for data and a second for

control messages. The data transport is configured to only buffer one block’s worth

of data at a time, while the control transport is configured to buffer an unbounded

number of messages. However, “Diff” messages, or those that inform a peer about

blocks a node possesses, are sent over the data transport. Another necessary com-

ponent of the protocol is the method for which nodes learn about new peers in the

system. BulletPrime is structured on top of RanSub [KRA+03], a gossip protocol that

periodically delivers a changing random subset of mesh participants to each node.

Stopping Condition. The stopping condition for BulletPrime is straightforward – it is

simply the condition that all nodes have finished downloading the file. To test this,

we check whether each node has downloaded all of the blocks it expects.

Anomalies. In the first experiment with BulletPrime, we used a setup of 100 nodes

downloading a 20MB file. The performance tester found the first anomaly after

134 executions, finding an 11 second execution, which exceeded the 9.5 second upper

bound (as computed in Section 6.2.1). Each execution took approximately 18 seconds

of real time, and terminated in between 56000-57000 simulator steps.

After examining the times that each individual node took in this execution, we

determined there was only one slow node. Once we used the ExecutionSearch tool,

we found that the discrepancy was based on the timing of one particular message the

slow node sent to one of its peers. Upon further investigation, we realized that in the

“good” execution, the slow node’s message caused a Diff to be sent to it successfully,

which happened to contain information about two blocks that were never successfully

sent by any other node. The slow node was then able to request these blocks from

this peer and complete the file download. In the anomalous execution, the message

was timed such that the Diff message sent from the slow node’s peer was dropped by

the transport because it was already full. As a result, the slow node never learned
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about the two blocks, leaving it stuck since it did not know about any peers who had

the missing blocks. Eventually, RanSub delivered a new set of candidate nodes, and

the slow node was able to join one of them and retrieve the missing blocks. However,

waiting on RanSub was responsible for the few second delay, causing the anomalous

execution.

The second experiment with BulletPrime used only a 2MB file, but the per-

formance tester found the second anomaly in less than 10 executions. In this case,

the anomalous execution took around 5.5 seconds, whereas a normal execution took

no more than 2 seconds of simulated time. To debug this case, we once again looked

at individual node completion times and found that only a few nodes were slow. This

time, we used “traditional” debugging techniques to look for certain things in the log

file. The first thing that was obvious from inspecting the slow nodes’ logs was that

they did not receive any blocks until approximately 5 seconds into the run, and then

quickly retrieved all the blocks. We found that the node did not acquire any peers

for the first 5 seconds. The slow node did receive a list of candidate peers from the

source when it joined. However, its attempts to join each of them failed because all

of the candidates were full. As a result, the node had to wait for RanSub to deliver

it a set of new peers, which did not occur for 5 seconds.

Improvements. To fix our first anomalous condition, we simply changed Diff messages

to be sent over the control transport instead of the data transport. This eliminated

the problem of Diffs being dropped by the transport, and ensured that all nodes

received all intended Diff messages.

The second performance problem was based on the fact that when a node is

rejected by potential peers, it could have to wait for RanSub to deliver it new ones.

To overcome this idle time, we changed the JoinReject message to contain the list of

the rejecting node’s peers. Then, when a node receives the JoinReject message, it has

a set of other nodes it can try to join.

Note that in both cases, the overall system execution was correct. However,

just as corner cases in execution can lead to errors, similar corner cases can lead to

unexpectedly slow performance. Model checking techniques appear to be well suited

to automatically find both types of conditions.
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6.4.2 Pastry

Pastry enables nodes to self-organize into a ring structure. Each node in the

ring takes an address in a circular address space, and becomes responsible for the

address space in the immediate vicinity of its own address. The Pastry protocol

organizes the ring to enable routing to any address using a path of no more than

log(n) hops.

The primary functionality we are concerned with is the stabilization of the

Pastry network. Pastry’s performance can be measured by how long it takes nodes to

finish their self-organization protocol. This protocol includes two basic components.

The active join component allows a joining node to connect to an existing node and

follows a protocol to find out where in the network it should insert itself. This protocol

is correct as long as only one node is joining at a time, and in the absence of departing

nodes.

To handle multiple simultaneous node joins and departures, a second protocol

component involves periodically exchanging information with peers to ensure that

each node’s state is accurate. This protocol component can correct a wide variety of

errors, mistakes, and dropped messages, and therefore mask many bugs and oppor-

tunities for performance improvements.

Stopping Condition. We implement the stopping condition for Pastry to be the time

all nodes’ routing information has stabilized to a consistent state. This involves

checking that both the leafset information is correct at each node, which is important

for correctness and fault tolerance, and that the routing distance between all pairs of

nodes is logarithmic in the number of nodes.

Anomalies. During the training of Pastry anomaly conditions, we stopped the training

tool early. This was because in the first 6 paths, the average execution times for the

40 pastry nodes (in seconds) were:

(60.0073, 60.0061, 60.0085, 40.0051, 20.0369, 20.0313)

Variations of this magnitude were immediate indicators of a performance problem.

We re-ran the performance tester having it save any execution that took longer than

50 seconds. 22 of the first 40 paths it ran took longer than 50 seconds, the longest

taking 100.0044 seconds in 8848 simulator steps. All executions were within a second
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of a multiple of 20 seconds, a clue that the execution time was being dominated by

the behavior of the system following a timer that fires every 20 seconds.

Anomalies such as these were not unexpected. In earlier experiments, we had

observed that our Pastry implementation required either a long stabilization period

after first being started, or an extended stagger-start period where nodes are slowly

started over the first 30 seconds of the experiment. But our earlier model checker did

not detect these as problems because Pastry was still executing correctly, and we did

not attempt to extensively debug this performance problem in live executions because

of the difficulties of debugging a distributed system, and the knowledge that we could

just wait for it to stabilize before conducting other experiments using Pastry.

The ExecutionSearch tool indicated the performance was not terminally bad

before step 5681. In both fast and slow executions, all nodes are trying to join at

once. This causes nodes to initially believe there are only a few nodes in a small ring,

and then they all nearly simultaneously announce themselves as new members of this

small ring, largely oblivious to the other arrived nodes. In the ensuing mayhem of the

active join protocol, the nodes closest in the address space to the bootstrap node are

successful, while the state of other nodes further away depends on the precise order

in which nodes are added and removed from the leafset of the bootstrap node.

Unlucky nodes take one or more executions of the periodic protocol to finally

correct their state, each time learning about nodes closer to their final position in the

overlay.

Improvements. The basic problem is that waiting 20 seconds for each execution of

the periodic protocol is a huge performance penalty in the ring construction time.

Scheduling the protocol more frequently would help, at the added cost of higher

overhead in the common case—such fixes are only required during times of high

node churn. An adaptive timer could be used, though its design would likely involve

difficult and network-specific tuning parameters.

After exploring a range of options, we settled on the following solution. The

problems essentially occur for nodes who are replaced in the bootstrap leafset but

know nothing about nodes near them in the address space. Thus, we notify a node

with the current leafset when removing it from the leafset. When it receives the

leafset, it will be informed of several closer nodes to its correct place in the ring.
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We note this is also the same information it would receive later when its timer fires,

but then it will be more out-of-date and less relevant. It is important the node get

this particular version of the leafset, because the later version will only contain nodes

close to the peer, not to the evicted node.

After making these improvements, nearly all paths complete in almost exactly

20 seconds, eliminating most of the extra delays. During analysis of this performance

problem, we also noted that one of the causes of stabilization latency was due to the

fact that we were testing Pastry under a configuration where the transport will only

buffer a small amount of network data, resulting in dropped messages. Reconfiguring

the transport to use a large buffer, all execution times varied in length from 1.5-2

seconds.

6.4.3 Chord

Chord is an overlay network protocol that provides the same interface as Pas-

try, though through a slightly different design and implementation. The performance

metrics of interest are the same in both Chord and Pastry.

Stopping Condition. The stopping condition of Chord is conceptually the same as for

Pastry.

Anomalies. Overall, executions in Chord were faster, in both simulated time and

real time, than in Pastry, taking a typical 2.2-3.3 simulated seconds for 80 nodes

to join. Our analysis determined that any execution taking longer than 5.1 seconds

was abnormally high. On the 7th path searched the performance tester reported an

execution that took 7.2 seconds. ExecutionSearch ran for 16 hours and eventually

reported an event which, under careful scrutiny, forced an alternate ordering of two

messages. When these messages were received in one order, a node A learned about

another node B from node C, which it needed to learn about to stabilize its position

in the ring. In the other order, node C discards information about node B, and

does not include it in its message to A. As a result, node B goes through a lengthy

iterative process to learn about node C. This process involves the periodic repair

protocol executing, each time bringing node B one step closer to its final place in the
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ring. Although the stabilization timer was scheduled for every 500ms, this process

had to be repeated about 10 times, causing the overall delay.

Improvements. This example demonstrates how even making a periodic protocol more

frequent can lead to anomalous executions. We implemented a similar modification

to Chord as we did to Pastry, where any time a node gets a new predecessor, it alerts

its old predecessor about its new predecessor. This operation is more efficient than its

Pastry counterpart, because it distributes less data. After applying this modification,

the new executions now typically take only 1.2 to 2.0 seconds, with only a few longer

executions taking 2.7 to 3.0 seconds.

6.4.4 RandTree

RandTree is a random tree protocol we use as a component in many other

distributed systems (including BulletPrime). Nodes in RandTree self-organize to

form a tree structure, which is used by services such as multicast.

Stopping Condition. We set the stopping condition to be that the nodes have formed a

single spanning tree. Each node tracks its parent and children in local state variables,

so the property requires that these are consistent across the network and that from

all nodes the parent pointer can be followed to the single root of the spanning tree.

Anomalies. We had previously observed through manual inspection of a distributed

experiment that under some circumstances, the initial tree joining protocol left the

system in a state with multiple disjoint trees, which is only corrected after executing

a periodic recovery protocol.

Manual inspection of the logs from the live run did not, however, provide

enough detail to fully diagnose what had happened, nor how to fix it. Running

RandTree in our original model checker did not solve this problem either, because

each execution did eventually lead to a consistent spanning tree.

With our new performance tester, however, we were able to identify four types

of performance anomalous executions:

• Re-routed messages cause an earlier remove message to be received after a later

join message, with the result that the node trying to join is unsuccessful and

moreover is not aware of the failure.
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• join messages can be received before the tree is ready to process them. Since

there is no network error, the sender is unaware the message was ignored.

• join messages are redirected from the root of one tree to the root of another tree

and handled incorrectly because the root of the tree handles messages specially.

• join reply messages received in different orders lead to different numbers of trees

being initially created.

Improvements. For each of these types of anomalies, we were able to develop a

modification to RandTree to overcome these performance limitations, and after doing

so, users of the application using RandTree report that it is no longer a performance

bottleneck for their system.

These improvements were:

• Distinguishing old from new joining attempts by associating each with a join

sequence number. Nodes discard any messages from earlier sequences.

• Handling early join messages by storing them in a deferral queue until the node

is ready to process them.

• If one root sees a join message forwarded through another tree, forward it back

to the root for that tree. In the meanwhile, the node that was inconsistent will

have corrected the problem preventing a re-occurrence.

• Whenever a node receives a join reply message and it is not already joined,

check to see if the root matches that node’s own view of the root. If not, that

node pro-actively initiate the recovery protocol to merge the two trees.

6.5 Limitations

While this approach to finding performance bugs has been successful and seems

quite promising, it is not a panacea. We describe a number of limitations with our

approach.

First, the system can only consider the performance of system conditions de-

veloped by the programmer. That is, we are in effect running the real system code
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with real input. While the system can find corner cases in the performance of the

system for a particular set of input conditions, the coverage of the system is only as

good as the test cases provided by the developer.

Second, because the performance tester is generating executions based on real-

istic distributions of event timings, it is less likely to cover as much of the code paths

as a traditional model checker. This means it may have to be run separately for

different environmental conditions it may be run under (e.g., different network con-

ditions or different distributions of processor speeds, etc.). The alternative approach

of considering all possible performance conditions is infeasible. As future work how-

ever, we are considering the benefits of additional heuristics to inform the relative

performance and distribution of individual events.

Third, while the performance tester is good at finding anomalous executions,

the ExecutionSearch technique will be less applicable if there is no clear divergence

point. That is, if execution times are evenly spread on the timeline, the divergence

point may be only a small delta from the anomalous execution—a similar execution

with a small change may perform just enough better to not be considered a mild

outlier. To combat this, we use the quartile, and not the outlier bound for the

ExecutionSearch execution, but this utility is not yet well-explored.

Fourth, if the system being checked has an algorithmic deficiency that exhibits

itself on all executions, this performance tester will not locate it through anomaly

detection, since all executions will seem “average.”

Finally, our present implementation has not considered complicated execution

search strategies, correlations between individual event timings, network topology

models, or event timing distribution methods, because they have not yet been needed.

The design supports these possibilities, and we anticipate that additional performance

bugs may be isolated with additional detail.

6.6 Summary

We demonstrate how to use model checking techniques to automatically find

and isolate performance bugs in unmodified distributed systems code. Our approach

involves employing an automated search of a subset of the execution space looking
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for runs that perform abnormally with respect to typical executions. Implementing

the simulator to faithfully track the time of each node in the system by training it

with timing characteristics of actual executions is key to being able to identify these

anomalous executions.

Further, once the performance tester has found an anomalous execution, we

show how to perform a systematic search for the most similar execution that does not

exhibit the performance bug. These two runs, along with an automatically identified

divergence point—the step after which it becomes impossible for the execution to

achieve acceptable performance—serves dually to direct the developer to a portion

of the execution believed to contain the bug, and to attest that the bug does not

occur before the divergence point. We have applied this performance tester to four

mature systems, finding long-outstanding performance bugs in each. Relative to

running experiments on nodes spread across the Internet, or even on a local-area

network emulator, we have found that our performance tester significantly simplifies

and speeds the task of performance debugging.



Chapter 7

Conclusions and Future Work

Currently, the primary challenge to developing distributed systems is that it

is difficult for developers to internally conceive of and manage the complexity of a

distributed system. Sources of complexity in understanding include:

• The magnitude and complexity of the implementation code.

• The need to blend algorithmic and mechanical implementation code.

• The concurrent events within and across nodes.

• The uncertainty at each node of the status of peer nodes.

• The dynamic and heterogeneous environment across participants and networks.

• The challenge of multi-node execution replay and analysis.

• The challenge of tracing the causal flow of distributed control paths.

• The challenge of distinguishing between random bad luck, and incorrect or sub-

optimal behavior.

This dissertation presents the Mace language, runtime, and toolkit supporting the de-

velopment of correct, high performance distributed systems. Mace achieves a balance

between performance and expressiveness, enabling human and computer analysis of

distributed systems without sacrificing performance, proving the hypothesis of this

dissertation.

178
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7.1 Contributions

This dissertation makes the following specific contributions:

• Semantic implementation of distributed systems. Mace supports the

development of distributed system through the use of service objects, events,

and aspects. What separates these notions from the simply using standard

object-oriented programming with aspect-oriented programming is the distinc-

tion made by the programmer between semantically different things. Object-

oriented programming would allow you to say something about all objects, or all

objects that derive from a specific type, or all public methods of an object. But

there are many different objects, with different inheritance diagrams, and all

are not created equal. Similarly, events are like methods, but should be treated

specially because they are events of a service object, rather than generic meth-

ods. Finally, aspects are important, but when should they be considered? Not

at the end of every method, but rather only at the event boundaries. It is the

combination of these three programming techniques with the semantic meaning

the designer gives them through the language which makes them so useful for

building distributed systems in a structured way.

• Detecting and isolating liveness violations. Prior to MaceMC, it was not

known how to test liveness properties in unmodified systems implementations,

as their state space was simply too complex. MaceMC presents a novel technique

for testing encountered states to see if they are dead states, making it possible

to use dynamic model checking to find and isolate violations of liveness that

enter a dead state. This technique uses long random executions from each state

encountered to ensure that executions make progress towards satisfying liveness

properties, and in the absence of progress, isolate the specific step, which we

call the critical transition, that prevents progress from being made.

• Automated performance-anomaly testing. Much effort is expended in

logging and more recently structured logging, as a technique for reflecting on

problems in observed executions. But less effort is spent on being able to auto-

matically search for and detect performance anomalies. We demonstrate that
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an interesting class of bugs, which would cause correctness errors in the absence

of a robust implementation, can be observed, automatically detected, and iso-

lated automatically by combining the techniques of a model checker with the

reality of a traditional simulator.

• Practical implementations. In addition to its research contributions, Mace

represents 4 years of practical implementation effort. The Mace toolkit is pub-

licly available, and has been so for several years. It is used by researchers at

several universities and labs around the world. The Mace compiler, by itself,

generates much of the mechanical code that users would otherwise have to write,

and all too often get wrong, and what is more, new features in the compiler

affect all Mace implementations. These contributions by themselves make Mace

an excellent tool for the development of distributed systems. Additionally, Mace

comes with an implementation of the model checker, which easily works with

nearly any service implemented in Mace. The Mace development effort also

comes with a highly optimized library for logging and networking, and a set of

pre-implemented services, including Chord, Pastry, Bamboo, RandTree, Scribe,

SplitStream, and a whole host of others. We regularly evaluate new tools and

services implemented in Mace to see if they are ready for public release, and do

so as soon as it is sensible.

7.2 Future Work

As we develop new distributed systems, we do occasionally run into a class of

tedious code that a compiler could simplify for us, and in such occasion, we debate

whether to extend the language. But in general, the Mace language has largely

stabilized, and does not change often. However, much of the work described in this

thesis could be extended in a wide variety of ways. Four of these are summarized in

this section.
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7.2.1 Static Analysis

Currently, Mace treats event handlers as black-box C++ code. Mace does

not try to parse the code, or understand the specific side effects it has. As a result,

the Mace implementation is inefficient in many ways, because event-boundary code—

e.g. property testing, aspect monitoring, and evaluation of transition guards—must

be evaluated at every event boundary. Similarly, MaceMC cannot prune the search

space or guide the search based on the actual code it is testing. Using static analysis,

even a limited amount, could prove useful in increasing the efficiency of a Mace

implementation of model checking in MaceMC. Specifically, if we could determine

which state variables are referenced and written by each transition, this would allow

a variety of compile-time optimizations.

7.2.2 Finding Liveness-Violating Executions

The techniques in MaceMC have been successful at finding violating execu-

tions, and in particular are good at isolating the critical transition once a violating

execution is found. But, after testing any system for a period of time, the easy-to-find

bugs are exhausted, and users have to determine how best to find new bugs. That

process may involve changing the system configuration, the test driver, using a prefix

execution, or allowing failures further in the execution. The reality is that bounded-

execution-depth searching is limited and only finds problems within a certain area

of the state space. We are interested in finding new techniques to help the model

checker find property violations. One promising approach is to use a different bound-

ing model. For example, we can use bounded-failures or bounded-context-switches,

which might be adapted from CHESS [MQ07] to work with causal-paths. Alter-

nately, new techniques that can discover code-coverage may help guide the model

checker search to get better coverage of the state space. Finally, the model checker

may need to be adapted to support more complex events, such as network partitions,

which it cannot effectively explore using exhaustive techniques in exponential state

spaces.
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7.2.3 Machine-Learning Based Performance Testing

The performance tester has the ability to generate a large quantity of data

about different random simulated executions, and to generate an endless supply of

such executions. It is therefore an interesting problem to consider how data mining or

machine learning might be used to create correlations between what happens during

an execution and the eventual performance metric. One example would be that a tree

protocol may be particularly sensitive to the root of the tree dying, which could be

learned by detecting the delay in forming a spanning tree if a node reset event occurs

on the same node that a “notify root” event occurs. The Mace performance tester is

an ideal environment for this, because executions can be replayed as necessary, with

additional logging to generate the right data. Further, the ability to generate new

random executions, and guide them on a similar path to other existing executions

will present an opportunity to automate a feedback loop for validating hypotheses

generated during the analysis.

7.2.4 Online Monitoring and Debugging

Since we do not expect to be able to fix all bugs and problems before deploy-

ment, we want to be able to support automated monitoring and debugging of Mace

implemented services. Since the Mace compiler understands the structure of each

service, the set of correctness properties defined for the service, and moreover, the

structure of most of the log messages for services, it actually could be made to support

live debugging of distributed systems through (1) automated light-weight messaging

between nodes in the system to evaluate properties and general expressions, and (2)

the conceptualization of each node’s structured logfile as a database of tables, and

the whole system as a streaming database. Being able to support queries across

a distributed system, and also queries that support a hybrid XML-structure/table-

structure model will make it much easier to monitor and detect what is happening

in a deployed system, while also being more efficient, as structured data will use less

disk space and bandwidth, and alleviate string processing.
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7.3 Summary

Mace is presently a hotbed of new research. For new systems, this encompasses

everything from development of a data center replicated storage system to high-

bandwidth video streaming systems. New Mace tools are also being built to ease the

challenge of understanding and monitoring distributed systems, and existing tools are

being enhanced to make them more effective and efficient. New language features are

also being considered to further simplify the construction of distributed systems or

otherwise enhance the ability of supporting tools. The security of distributed systems

is another area in which Mace research might continue, leveraging compiler support

to enhance the ability to thoroughly detect vulnerabilities in distributed systems.
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[GS97] Susanne Graf and Hassen Säıdi. Construction of abstract state graphs
with pvs. In International Conference on Computer-aided Verification,
pages 72–83, Haifa, Israel, June 1997. Springer-Verlag.

[GV03] Alex Groce and Willem Visser. What went wrong: Explaining counterex-
amples. In Spin Model Checking and Software Verification, volume 2648
of Lecture Notes in Computer Science, Portland, Oregon, May 2003.

[HHWT97] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi. hytech: A
model checker for hybrid systems. Software Tools for Technology Trans-
fer, 1:110–122, 1997.

[HJMS02] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire
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