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Abstract

Defects in over 500 genes underlie a diverse collection of neuromuscular disorders (NMDs). By 

definition, NMDs are diseases that arise from defects in muscle or nerve. The subset of NMDs that 

impact skeletal muscle are referred to as “myopathies” and “muscular dystrophies”, and are due 

to mutations in genes encoding muscle proteins. Many of these genes encode proteins that provide 

structural stability or bolster membrane integrity, while others are involved in protein turnover, 

trafficking, and electrical excitability. In this review, the genetic basis and biological function of 

mutant proteins associated with myopathies will be discussed. In addition, pathomechanisms and 

treatment strategies for these disorders will be highlighted. Because the causal genetic defects 

are known in most cases, strategies that target the underlying molecular defect will likely be the 

most efficacious approach to therapies, and current strategies utilizing this approach will be briefly 

mentioned. Since the identification of the first gene associated with a neuromuscular disorder in 

1987 to the current day, the field has made tremendous progress and has led in advancing gene 

therapeutics.

Introduction

Skeletal muscle cells are large and multinucleated, containing highly organized contractile 

proteins that interact with each other to generate force and allow movement of the body. 

Each multinucleated muscle cell is surrounded by a thin layer of specialized connective 

tissue called the basal lamina which serves as an intermediary between the cell and the 

reticular lamina. This connective tissue bolsters membrane integrity, transmits forces of 
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muscle contraction, and communicates endocrine and paracrine signals to the cell. Each 

muscle cell is innervated from a single synapse of the motor neuron, with the contact point 

termed the neuromuscular junction, which is the site where muscle contraction is initiated. 

Neuromuscular junction signals are transduced to the contractile apparatus via a process 

called excitation contraction coupling (ECC), which is mediated through a specialized 

structure called the triad. Defects can arise at essentially all points of the contractile process, 

from the neuromuscular junction, to the triad, to the contractile apparatus itself, and to the 

specialized matrix-membrane contacts that maintain and preserve membrane integrity. When 

mutations arise, they can lead to devastating consequences for skeletal muscle, leading 

to impaired ambulation, compromised breathing, and in the most severe conditions early 

death. These muscle diseases are collectively referred to as myopathies and/or muscular 
dystrophies, depending on the underlying genetic cause and the morphological appearance 

of the abnormal muscle on biopsy. Disorders that primarily impact the neuromuscular 

junction are termed myasthenic syndromes. While the latter share many similarities with 

other primary muscle conditions; however, these disorders will not be discussed further in 

this review, as they have been recently presented in depth1.

The discovery of the first gene linked to a muscle disease demonstrated that mutations in 

the DMD gene underlie Duchenne muscular dystrophy (DMD)2,3, followed later by the 

discovery of dystrophin as its protein product4. This initial finding led to an explosion 

of information about novel muscle proteins linked to skeletal muscle disorders. Many 

of the discovered genes and their protein products were previously unknown and thus 

these discoveries lent new insights and understanding about normal muscle cell biology. 

Over three decades later, at least 500 genetic loci have been identified and linked to 

neuromuscular disorders, i.e. disorders which originate from defects in motor neurons 

(neuropathic origin) or skeletal muscles (myopathic origin). Most of these loci encode for 

proteins; however, a subset is due to repeat expansions that create toxic RNA (e.g. myotonic 

dystrophy type 1 and 2), while another set of diseases are caused by aberrant transcriptional 

activity of a key regulator of myogenesis (DUX4, in fascioscapulohumeral dystrophy types 1 

and 2). This review will not cover the myotonic dystrophies5 or FSHD6,7.

In this review, we summarize what is known about myopathies and muscular dystrophies 

caused by mutations in protein coding loci, with a focus on those that are most common, 

best understood and that provide the most insight into muscle biology. We will discuss the 

function(s) of these proteins in skeletal muscle and how mutations lead to disease.

Myopathies Linked to Dystrophin (Dystrophinopathies and Dystroglycanopathies)

Introduction to dystrophin and the dystrophin glycoprotein complex (DGC)
—The dystrophin glycoprotein complex (DGC) is a multi-protein membrane complex 

comprised of intracellular, extracellular and transmembrane proteins8,9. The complex can be 

divided into two main sub-complexes referred to as the sarcoglycans and the dystroglycans, 

which are linked together by sarcospan10,11 and retained at the membrane by dystrophin9. 

There are six different sarcoglycan genes and one dystroglycan gene (DAG) that generates 

two different DAG proteins (αDAG and βDAG) after post-translational processing of a 

single polypeptide chain12,13. The skeletal muscle sarcoglycan complex is comprised of four 
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sarcoglycans (α,β,γ,δ).14 Dystrobrevin binds to the DGC, acts as a scaffold and provides 

additional stabilization; however, the DGC’s membrane association is not wholly dependent 

on dystobrevin.15

The DMD gene is the largest in the genome (2.2 Mb), which encodes a 14kb dystrophin 

mRNA. Six different promoters drive expression of dystrophin isoforms in skeletal, cardiac, 

smooth muscle and brain. These isoforms are named Dp426 (the primary skeletal and 

cardiac muscle isoform), Dp260, Dp116, Dp140, and Dp71. In skeletal muscle, dystrophin is 

enriched at costameres, which are sites where terminal Z-discs connect to the sarcolemma, 

and where force transmission occurs across the membrane16 (Figure 1).

Dystrophin has four main structural domains: 1) the N terminal region comprised of two 

actin binding domains17,18; 2) a central rod domain (discussed more below); 3) a cysteine 

rich region that anchors dystrophin to beta dystroglycan19 and 4) a C terminus that scaffolds 

molecules like syntrophin20 and dystrobrevin15. It also contains four proline-rich hinges 

that contribute to dystrophin’s flexibility. The central rod domain is comprised of 24 alpha 

helical spectrin-like repeats that confer dystrophin’s spring-like properties. The spectrin 

repeats serve other functions as well, including interaction (via repeats 1–3 and 10–12) 

with phospholipids in the sarcolemmal membrane21 and binding (via repeats 16–17) the 

adapter alpha syntrophin22, which help retain neuronal nitric oxide synthase (nNOSμ) at the 

sarcolemmal membrane22,23. Neuronal NOS also interacts with syntrophin proteins bound to 

the C terminus of dystrophin. Spectrin repeats 4–15 and 20–23 have been shown to organize 

transverse microtubules24.

The DGC serves three main roles in skeletal muscle fibers: 1) protecting the sarcolemmal 

membrane from stresses that arise during muscle contraction; 2) linking the intracellular 

cytoskeleton to the extracellular matrix and transmitting forces of muscle contraction to 

the tendon and 3) serving as a scaffold for signaling molecules such as syntrophin and 

Grb2.25 Other proteins that associate with the DGC include filamin C26, Ankyrin B27, 

Synemin28, aquaporin29, syncoilin30,31 and keratin 1932. Dystrophin is anchored to the 

membrane at its cysteine-rich C terminal region via beta dystroglycan, which in turn binds 

the C-terminus of alpha dystroglycan33. Alpha dystroglycan is an important receptor for 

many basement membrane proteins such as laminin34, agrin35, nidogen36,37 and perlecan38. 

These associations help organize the ECM, contribute to the its structural stability and 

transmit forces of muscle contraction.

Defects in dystrophin and DGC members (dystrophinopathies and LGMDs)—
Mutations in a number of DGC-linked genes cause muscular dystrophy or myopathy and 

are referred to as “dystrophinopathies” with a subset named “dystroglycanopathies”. The 

best characterized and most prevalent of these is Duchenne muscular dystrophy (DMD) due 

to mutations in DMD3,39–41. DMD is on the X chromosome, so mutations primarily affect 

boys, with females primarily as asymptomatic carriers. The majority of pathogenic DMD 
mutations are deletions that occur within the central rod domain, and lead to frameshift with 

loss of RNA stability or a introduction of a premature termination codon.
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Since the original discovery of the DMD gene42,43, basic science investigations have 

provided new insights on the role of dystrophin and the DGC on muscle biology. A 

phenotypically milder disease called Becker muscular dystrophy (BMD) also arises from 

DMD mutations, but BMD mutations maintain the DMD reading frame and generate 

internally deleted, but functional dystrophin proteins. In-frame deletions that preserve the 

phasing of the repeats, as compared to ones that do not, result in dystrophins with enhanced 

sarcolemmal membrane protection, suggesting the concept that dystrophin protects the 

sarcolemma through its spectrin repeats44. The majority of studies in the mdx mouse model 

of Duchenne have shown that loss or reduction of dystrophin leads to impaired membrane 

integrity and subsequent muscle cell degeneration45–47, following by inflammation48–51, 

regeneration52 and ultimately, muscle cell replacement by fat and fibrosis. Serum creatine 

kinase is elevated from birth, due to loss of dystrophin’s contribution to structural integrity 

of the sarcolemmal membrane.45–47 The clinical progression of the dystrophinopathies has 

been previously described53–55.

In addition to DMD and BMD, a class of muscular dystrophies referred to as limb girdle 

muscular dystrophies (LGMDs) result from mutations in genes associated with the DGC. 

LGMDs are progressive muscle wasting disorders that initially present with symptoms in 

the proximal musculature; however, weakness progresses to many muscles in the body, 

depending on the type of LGMD. They can be inherited in autosomal dominant or autosomal 

recessive fashion, and of the over 30 genetically defined LGMDs, a majority are linked to 

the DGC. Mutations in genes encoding four of the sarcoglycans (alpha56, beta57, delta58 and 

gamma59) cause autosomal recessive LGMD. Assembly of the sarcoglycan complex occurs 

in the golgi, starting with association between delta and beta sarcoglycans, followed by 

addition of alpha and gamma14. Null mutations in delta sarcoglycan prevent the sarcoglycan 

complex from forming, suggesting that it is a key organizer of the complex14. Null 

mutations in the other sarcoglycans tend to lead to a reduction, but not complete loss of 

the sarcoglycan complex.

Dystroglycan (DAG) is a key component of the skeletal muscle DGC which is also 

expressed in other tissues, where it assembles DGC-like complexes. In skeletal muscle, 

αDAG resides on the extracellular surface and serves as a receptor for many ECM proteins, 

most important of which is laminin (laminin 111/211) in the basement membrane. αDAG 

binds laminin in the central part of the molecule (mucin domain) which is glycosylated 

by several glycosyl transferases, each of which adds its unique sugar in order to build 

the O-linked moieties that are necessary for αDAG’s attachment to laminin. The first 

glycosyltransferases to add O-mannose to serine and threonine residues on αDAG are 

POMT1 and POMT2, which reside in the ER60, followed by addition of GlcNAc by 

POMGNT2 and addition of GalNAc by β3GalNT2. Subsequently, this O-linked glycan is 

modified by ISPD (which attaches ribitol61). This core structure of three sugars (“M3 core”) 

is then phosphorylated on the O-linked sugar by a kinase named POMK (SGK196)60,62 

and further growth of the sugar structure takes place on this phosphate residue in the 

golgi. POMGNT1 and other glycosyl transferases such as FKRP, FKTN, TMEM5, and 

LARGE1 work together to generate the laminin binding motif63, comprised of a repeating 

di-saccharide (-GlcA-β3-Xyl-α3)n64 referred to as “matriglycan”65. The specific roles of 

FKRP, FKTN and TMEM5 and the manner in which matriglycan is attached to the 
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phosphate is still not known. The length of matriglycan is modulated by a sulfotransferase, 

HNK-1, which competes with LARGE1 by 3-O-sulfation of glucuronic acid66. The presence 

of DAG’s N-terminal “DGN” domain is necessary for proper glycosylation of the mucin 

domain, which may be linked to N-linked glycosylation; however, further exploration is 

needed to elucidate the relationship between the presence of DGN and O glycosylation of 

the mucin domain. For additional review of dystroglycan glycosylation, please see65.

Defects in dystroglycan and dystroglycan glycosylation 
(dystroglycanopathies)—Dystroglycanopathies share a common feature of impaired or 

absent αDAG glycosylation and encompass a spectrum of phenotypes, ranging from severe 

congenital muscular dystrophies with eye and brain involvement to milder “muscle only” 

presentations including subtypes of LGMD. Since αDAG is not restricted to skeletal muscle, 

and because it serves an important developmental role, loss or mutations in a subset of 

glycosyl transferases can result in severe CMDs with multi-organ involvement, affecting 

the eye and brain, such as Fukuyama CMD, muscle-eye-brain disease, and Walker–Warburg 

syndrome.67–72 Of note, DAG mutations have been reported as an extremely rare cause of 

muscular dystrophy; it is assumed that most DAG mutations would not be compatable with 

life.

Defects in extracellular matrix (ECM) proteins—The sarcolemmal membrane 

attaches to the basal lamina (comprised of laminin α2, type IV collagen, heparin sulfate 

proteoglycan, agrin and perlecan), which is in turn is connected to collagen VI, which 

links the basement membrane to the reticular lamina (comprised mainly of collagens I 

and III). Mutations in genes encoding the three chains of the collagen VI fibril (COL6A1, 
COL6A2 or COL6A3) underlie autosomal dominant Bethlem or autosomal recessive Ullrich 

myopathy, characterized by muscle weakness and contractures. Mutations in COL6A2 can 

also lead to the milder LGMD R22 or LGMD D5. Most often, these mutations interfere 

with formation of the trimeric collagen myofibril, with severity dictated by which stage 

of myofibril assembly is interrupted73–75. Laminins are also trimers, but only mutations 

in the α2 chain are linked to muscular dystrophy. Mutations in the LAMA2 gene lead 

to loss or reduction of laminin with corresponding clinical severity from mild (LGMD 

presentation) to severe (CMD presentation). While laminin 211 and collagen VI are 

extracellular matrix proteins, mutations share a common pathomechanism of increased 

myofiber apoptosis. Promoting myocyte survival is one potential treatment strategy for these 

muscular dystrophies; pre-clinical work has supported the efficacy of this approach, and one 

drug (omigapil) is currently in early-stage clinical trials.

Gene Therapeutics for DGC-linked diseases—Most myopathies and muscular 

dystrophies are amenable to gene replacement, antisense oligonucleotide-mediated exon 

skipping or gene editing approaches to therapy. Much of the focus in therapeutic 

development for the dystrophies has been on DMD, because this disease is the most 

prevalent. Because dystrophin can tolerate large, in frame mutations (as evidenced by 

the clinically milder BMD), most DMD-therapies have focused on altering the reading 

frame of the mRNA to change DMD mutations into BMD mutations. Modified antisense 

oligonucleotides (e.g. phosphorodiamidate morpholino oligomers or PMOs), can be 
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systemically administered to skip single exons to reframe the mRNA, and three such 

therapies have been FDA approved (Exondys 51, Vyondys 53 and Viltepso) for mutations 

amenable for skipping exons 51 or 53. Additional PMOs are in development for other DMD 

exons. These exon skipping therapies must be administered by weekly infusion, do not target 

the heart, and result in only approximately 1% dystrophin re-expression. Adeno associated 

virus (AAV) has been used to deliver ASOs in murine studies with good success76. New 

oligonucleotide chemistries are in development (e.g. PPMO), and these new formulations 

show improved uptake in skeletal muscle and heart77,78. Exon skipping has also shown 

promise for gamma sarcoglycan deficiency79 and in diseases in which mutations create 

pseudo-exons that can be skipped80. Gene replacement therapies using AAV to deliver an 

engineered DMD transgene that retains approximately 30% of the native protein (referred to 

as mini- or micro-dystrophin) are in phase II and phase III trials, with promising preliminary 

reports. AAV-mediated gene replacement therapies are also in various stages of development 

for several of the autosomal recessive LGMDs and CMDs. For reviews of gene replacement 

therapies please see63. CRISPR/Cas9 gene editing therapies are in preclinical development 

for DMD and clinical trials may initiate in the next few years81–85. For review of CRISPR 

gene editing for neuromuscular disorders, please see Young et al.86

Sarcomere pathologies

Introduction to sarcomeric proteins—The sarcomere is the fundamental unit of the 

myofiber and is the structure that ultimately generates force (Figure 2). It is composed 

of two primary components, the thin filament and the thick filament, embedded and 

tethered between two Z discs. The thin filament is composed primarily of skeletal muscle 

actin (encoded by ACTA1), with the addition of a group of proteins that regulate its 

length, dynamic interactions with the thick filament, and its stability. The thick filament is 

composed primarily of myosin, with different myosin isoforms found in distinct muscle fiber 

subtypes (for example, slow oxidative skeletal muscle vs fast glycolytic muscle). Muscle 

contraction is achieved when myosin slides along the actin thin filament, made possible 

by the regulated release of intracellular calcium (released from stores in the sarcoplasmic 

reticulum), which binds the troponin complex, changing tropomyosin’s confirmation to 

expose and enable myosin interaction with actin. In keeping with the importance of 

sarcomeric proteins in muscle contraction, mutations in components of both the thin and 

thick filaments lead to muscle disease. Also, and perhaps unsurprisingly because of the 

fact that the sarcomere ultimately performs the “end step” of muscle function, sarcomeric 

diseases have proven mostly refractory to therapy, and it is likely that gene correction or 

replacement-based strategies will be necessary to treat the majority of patients with these 

myopathies87.

Defects in thin filament proteins that cause myopathies

Nemaline myopathy – the myopathy of the thin filament: Mutations in many components 

of the thin filament cause a subtype of congenital myopathy called nemaline myopathy88. 

The most common cause of nemaline myopathy is recessive mutation in the NEB gene89, 

with heterozygous mutation of the ACTA1 gene being second most common90–92. While 

there are exceptions, the majority of patients with mutations in components of the thin 

filament present with a consistent clinical picture (non-progressive diffuse weakness, 
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reduced muscle bulk, and selective involvement of the bulbar and axial musculature) and 

with shared features on muscle biopsy (myofiber hypotrophy, type I fiber predominance, 

myofibril disorganization, and the presence of aggregated Z disc material termed nemaline 

rods or nemaline bodies)93.

Nebulin and NEB related NM: NEB encodes for nebulin, one of the largest proteins 

in the human genome, the function of which was a mystery for many years, resulting 

in the unique naming of the gene and its product94. Nebulin is composed primarily of 

a repeat structure characterized by a series of actin binding domains interspersed with 

tropomyosin binding domains95. The extreme N terminus extends to the end of the thin 

filament (where it interacts with tropomodulin), while the C terminus binds and embeds 

into the Z disc94. A growing body of evidence supports that the main function of nebulin is 

to serve as a molecular ruler that dictates the length of the thin filament96–99. Key data in 

this regard include the fact that loss of nebulin results in reduction of thin filament length, 

that across different species thin filament length correlates with the size of the nebulin 

protein, and that manipulating nebulin size (making it larger or smaller) correspondingly 

changes the length of the filament96,100. Since muscle force is generated through the 

interaction between thick and thin filaments, there is a tight correlation between actin 

filament length and force generation; thus, loss of nebulin results in reduced contractile force 

and muscle weakness101. Nebulin has additional functions including regulating actin/myosin 

cross bridging (independent of its impact on thin filament length102) and participating in 

signalling pathways critical for actin filament formation103. The importance of these latter 

functions is less well established, and the consequence of their loss not known.

ACTA1 related NM: ACTA1 encodes skeletal muscle actin; polymers of ACTA1 

form the core structure of the thin filament. Actin polymers interact with nebulin, 

tropomyosins, troponins, elements in the Z disk, and, critically, myosin (to enable muscle 

contraction)104,105. Mutations in ACTA1 are the commonest dominant mutations found in 

congenital myopathies, and can produce a range of pathological changes in the muscle (with 

nemaline myopathy pathology the most common)88. More than 200 different mutations in 

ACTA1 have been described106. The majority of disease associated variants are missense 

changes that impair some aspect(s) of actin function, including assembly and stability of 

the actin filament, as well as potentially altering thin filament dynamics (calcium binding, 

sliding speed, etc). As with NEB loss of function, the majority of ACTA1 mutations are 

associated with reduced maximal force generation, which may result from reduced thin 

filament length in some instances101, and dysfunctional contractility in others107. Of note, 

some mutations result in hypercontractility that causes a clinical phenotype associated with 

muscle stiffness108.

There are currently no treatments for ACTA1-related myopathy, and few therapeutic targets. 

Case report level data has implicated L-tyrosine as a potential therapeutic for several 

nemaline myopathy subtypes109, primarily for improving bulbar function, but studies in 

pre-clinical models have not supported its efficacy110,111. Because myofiber smallness is a 

nearly invariant feature in muscle biopsies from ACTA1 patients, myostatin inhibition has 

been tested in a transgenic mouse model of the disease, with the result being increased 
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muscle size and muscle force generation112. Conversely, a similar examination of myostatin 

inhibition in nebulin deficient mice did not produce meaningful improvements113. Lastly, 

cardiac alpha actin is an intriguing target for ACTA1 disease. In addition to expression in 

the heart, ACTC is expressed in fetal skeletal muscle, and it functions similarly in terms 

of thin filament mechanics. Germline replacement of Acta1 with Actc in mice results in 

normal mice without evidence of muscle abnormalities114. Further, overexpression of Actc1 
improves survival in one transgenic mouse model of dominant Acta1 mutation, though for 

unclear reasons does not promote improvement in a knock-in model harboring a different 

mutation115.

Other forms of Nemaline Myopathy—Mutations in TPM2, TPM3, TNNT1, TNNT3, 

TNNI2, and LMOD3 are all associated with nemaline myopathy and/or distal arthrogryposis 

(a syndrome of congenital joint contractures discussed below) and are regulatory 

components of the thin filament116–121. TPM2 and TPM3 encode tropomyosin 2 (found 

in type 1 fibers) and tropomyosin 3 (found in type 2 fibers) respectively. Tropomyosins 

are coiled-coil proteins that bind along the length of the actin filament and both help 

stabilize the thin filament and participate in the calcium dependent switch between the 

relaxed and active state122. Mutations in TPM2 and TPM3, which typically impact 

tropomyosin dimerization and/or actin binding, generally result in either hypocontraction, 

associated with reduced calcium sensitivity and decreased actin-myosin sliding speeds, or 

hypercontraction, with higher calcium sensitivity and increased filament sliding123. Of note, 

the hypercontraction mutations are more likely to be associated with joint contractures, 

and can present with a phenotype of arthrogryposis124. TNNT1 encodes the slow skeletal 

muscle form of troponin; three troponin isoforms (T, C, and I) interact with tropomyosin 

and together form a complex that regulates the calcium sensitivity of muscle contraction. 

Interestingly, mutations in the I isoform (i.e. TNNT1) cause congenital myopathy118, while 

mutations in TNNT3 and TNNI2 are predominantly associated with arthrogryposis125,126. 

LMOD3 encodes leiomodin 3, a member of the leiomodin protein group that are part of the 

tropomodulin family119. Tropomodulins in general are found at the barbed end of the actin 

filament where they interact with tropomyosins and “cap” the end of the thin filament, thus 

helping establish the length of the filament. LMOD3 in particular is a strong nucleator of 

actin polymerization, and may have a specific role in promoting and regulating thin filament 

formation.

The function of the remaining genes associated with nemaline myopathy (CFL2, KBTBD13, 

KLHL40, and KLHL41)127–130 are less well understood. The latter three genes encode kelch 

domain containing proteins, and are substrate adaptors for the U3 ubiquitin ligase cullin-3. 

Evidence is emerging that they participate in the regulation of turnover of the core thin 

filament proteins. KLHL40, for example, interacts with both NEB and LMOD3, and may 

reduce their turnover by limiting their polyubiquitination131. KLHL41 binds and targets 

for ubiquination NRAP (nebulin anchoring protein). Overexpression of NRAP impairs 

myogenesis, while reducing NRAP levels in zebrafish lacking klhl41 rescues aspects of their 

myopathic presentation, suggesting a critical interplay between KLHL41 expression and 

activity, NRAP chaperone function, and muscle development and that KLHL41 mutation 

driven NM pathology132.
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Myopathies of the thick filament—The core unit of the thick filament is the myosin 

hexamer. It is composed of two units of myosin heavy chains, two essential light chains, 

and two regulatory light chains. Myosin slides over the thin filament in an ATP dependent 

manner to generate a muscle contraction. There are 8 myosin heavy chains, 3 essential 

light chains, and 3 regulatory light chains that predominate in skeletal muscle133. In 

addition, there are several regulatory proteins are associated with the thick filament, the 

most important of which from a muscle disease consideration is titin (TTN).

Disorders of the myosin heavy chain—Myosin heavy chains form homodimers 

that function as the main action component of the thick filament. They have a globular 

head domain that interacts directly with actin and has ATPase activity, and a distal rod 

domain important for dimerization and other protein-protein interactions. Of the 8 myosin 

heavy chains (MyHCs) found in skeletal muscle, mutations in 4 genes (MYH2, MYH3, 
MYH7, and MYH8) are associated with muscle disease134–137. Mutations in MYH3 and 

MYH8 are associated with arthrogryposis, a condition characterized by multiple joint 

contractures present from birth. MYH3 encodes an embryonic form of myosin heavy 

chain, and dominant mutations cause a spectrum of severe joint contracture disorders that 

likely result from weakness and lack of limb movement during embryogenesis135. MYH8 
encodes a perinatal MyHC isoform, and dominant mutations cause a milder arthrogryposis 

syndrome called Trismus-pseudocamptydactyly syndrome (jaw contracture and unusual 

finger bending). MYH2 codes for myosin heavy chain IIA (found exclusively in Type IIA 

fibers) and mutations cause both dominant and recessive myopathies134,138. Both forms 

have important involvement of the eye muscles; dominant mutations are associated with 

myopathy with rimmed vacuoles and a typically milder clinical presentation, while recessive 

mutations cause a congenital onset myopathy with absent type 2A fibers.

MYH7 mutations are the most common form of myosin related myopathy. MYH7 encodes a 

“slow” MyHC isoform expressed in type I skeletal myofibers and in cardiomyocytes. More 

than 200 dominant mutations have been identified that cause either skeletal and cardiac 

myopathy, with some rare patients manifesting both diseases133. The skeletal myopathy is 

associated with a range of clinical phenotypes and biopsy findings, including the named 

syndromes of Laing distal myopathy and Myosin Storage Myopathy137,139, and most 

commonly occurs with mutations in the distal rod domain. Clinical symptoms most typically 

start in the distal musculature, with the hanging big toe a common presenting sign, and are 

often mild. However, severe presentations, including those with congenital onset and failure 

to achieve ambulation, have been described140.

Titin and TTNopathies—TTN encodes the giant myofilament protein titin, one of the 

largest and most complex proteins in the human genome. Titin spans from the Z-disc (at 

its N terminus) to the M line, so is essentially the length of one half of the sarcomere 

(approximately 1 μM). It is laid down early in development and is believed to be a template 

for sarcomere formation. Titin has myriad functions in skeletal muscle, the most important 

and well-studied of which are its roles as a molecular spring, as a generator of passive 

stiffness for the myofiber, and as a regulator of actin contractile force generation141. It also 

has kinase functions and has been implicated in signalling pathways. Unsurprisingly, given 
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its large size and importance for muscle physiology, mutations in TTN are a frequent cause 

of skeletal myopathy, and may be the second most common cause of non-dystrophic muscle 

disease in childhood142. TTN is also one of the most frequently encountered causes of 

cardiomyopathy.

TTN mutations affecting skeletal muscle were first described in patients with a rare, mild 

dominant form of muscular dystrophy called tibial muscular dystrophy143. An additional 

dominant form of TTNopathy, termed myofibrillar myopathy with early respiratory failure 

to reflect the clinical and histopathologic features, was subsequently described144. More 

recently, and reflecting the increased ability to interrogate the TTN genomic locus affording 

by next generation sequencing, TTN has been identified as a cause of several recessive 

subtypes of congenital myopathy, including centronuclear myopathy and myopathy with 

cores. The clinical spectrum of patients with recessive TTNopathy is broad, ranging from 

early onset with delayed motor milestones and impaired ambulation, to later onset forms 

with mild/moderate diffuse weakness145. At present, there are no therapies for the skeletal 

muscle manifestations of TTN mutations.

Introduction to the nuclear envelope—Just as structural proteins are essential to 

connect the extracellular matrix to the sarcolemma, myonuclei similarly have structural 

proteins that span the nuclear envelope and anchor the nuclear matrix (Figure 3). 

Specifically, the protein Lamin A/C (LMNA) connects the nuclear lamina on the inside of 

myonuclei with the inner nuclear membrane by interacting with emerin (EMD) and the SUN 

domain proteins, SUN1 and SUN2146. These proteins then connect with the outer nuclear 

envelope and cytoskeleton via a family of proteins with a KASH domain termed nesprins 

(SYNE). This complex creates the linker of nucleoskeleton-and-cytoskeleton (LINC) that 

maintains myonuclear organization and structural integrity147. The nuclear membrane serves 

to separate proteins in the sarcoplasm and nucleoplasm. While the nucleus requires this 

protective isolation, it also needs to communicate with the rest of the myofiber, exchanging 

proteins and RNA, for a variety of nuclear and cytoplasmic processes which act in 

concert. The nuclear pore complex (NPC), perhaps the largest protein complex in the cell 

(~125mDa), is responsible for the protected exchange of components between the nucleus 

and cytoplasm148. The nucleocytoplasmic shuttling of proteins and RNA across the nuclear 

envelope via nuclear pore complexes (NPCs) further requires a family of nuclear transport 

receptors called importins to enter the nucleus, and exportins to exit. These receptors target 

specific cargo and facilitate transport through the NPC utilizing the hydrolysis of GTP 

within the nucleus via the small ras GTPase, Ran148.

Disorders linked to the nuclear membrane—Null or missense mutations in genes 

encoding LINC complex proteins (EMD, LMNA, SYNE1 and SYNE2) lead to a 

distinct muscular dystrophy syndrome with proximal weakness, joint contractures and 

cardiomyopathy termed Emery-Dreifuss Muscular Dystrophy (EMD)146. EMD muscle 

pathology has both myopathic and dystrophic features. Ultrastructural features include 

altered myonuclear structure with nucleoplasmic extrusion146. The pathophysiology of 

“nuclear envelopopathies” may be multifactorial. Loss or mutations in LINC complex 

proteins affects nuclear migration and myonuclear organization that are essential for a 
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multinucleated cell such as skeletal muscle147. Nuclear lamins anchor chromatin and disease 

mutations alter gene expression via altered epigenetic modifications such as methylation149. 

A surprising consequence of LINC complex dysfunction is a loss of mechanical stiffness 

generally thought to be due to dysfunction at the sarcolemma150. This finding emphasizes 

the necessary connection of the nuclear matrix to the extracellular matrix via the cytoskeletal 

proteins.

Impaired nucleocytoplasmic transport is seen in motor neuron disease and is associated with 

the cytosolic accumulation of RNA granules such as stress granules or protein inclusions151. 

In muscle, a rare form of LGMD, LGMDD2/1F, is due to dominant mutations in the nuclear 

transport receptor transportin-3 (TNPO3)152. TNPO3 is a cargo receptor for SR domain 

containing RNA binding proteins and is essential for HIV infection153. Notably, cells from 

patients with LGMDD2 are immune to HIV infection153.

Therapeutic approaches for disorders linked to myonuclei—Gene replacement 

strategies may be appropriate for diseases such as EMD associated with the loss of 

EMD. However other approaches focus on correcting the epigenetic dysregulation that 

occurs with LMNA mutations. For example, in mice homozygous for the H222P LMNA 
missense mutation associated with a recessive form of EMD, histone methylation and 

more specifically H3K4me1 was reduced at key regulatory regions149. Correction of this 

by inhibiting an H3K4me1 demethylase (LSD1) was demonstrated to improve cardiac 

dysfunction in Lmna mutant mice. Using this same mouse model, inhibition of mTOR 

and subsequent activation of autophagy have been demonstrated to improve cardiac function 

and pathology154. The improvement correlated with a reversal of metabolic deficits such as 

elevated lipolysis and reduced thermogenesis155. These therapeutic approaches highlight the 

complicated pathophysiology seen in these disorders.

Heading: Defective Ca2+ handling

Introduction to excitation contraction coupling and the skeletal muscle triad—
Skeletal muscle is electrically excitable. It is innervated by motor neurons that project from 

the spinal cord and synapse on each muscle fiber at the neuromuscular junction (NMJ). An 

electrical signal, initiated at NMJ following neuronal activation, travels transversely along 

the sarcolemma and subsequently down into the muscle via transverse tubules (T-tubules), 

which are invaginations of the sarcolemma (Figure 4). The T-Tubule interacts with the 

terminal sarcoplasmic reticulum (site of calcium storage) at a specialized junction call the 

triad. The triad facilitates calcium release from the SR and into the sarcoplasm, which 

promotes muscle contraction via relaxation of inhibition of actin-myosin cross bridging. The 

two main proteins of the triad are the skeletal muscle ryanodine receptor (RyR1) and the 

dihydropyridine receptor (DHPR or Cav1.1). Mutations in RYR1 and CACNA1S (which 

encodes a Cav1.1 subunit) are associated with a range of skeletal myopathies, including 

core myopathies, malignant hyperthermia susceptibility, and periodic paralysis91.The triad 

is composed as well of numerous proteins that support its formation, maintenance and 

function, and mutations in several of the genes encoding these proteins results in muscle 

disease156,157.
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RYR1 and RYR1 related myopathies: RYR1 encodes the skeletal muscle ryanodine 

receptor (RyR1), a massive homo-tetrameric calcium release channel located in the terminal 

sarcoplasmic reticulum158. RyR1 is the protein that releases calcium from the SR to the 

sarcoplasm during ECC. Mutations in RYR1 cause a range of myopathies159, which in total 

represent the commonest group of non-dystrophic pediatric muscle diseases, with prevalence 

estimates as high as 1:10000160. Mutations can be broadly classified as resulting in either 

reduced or increased regulated calcium release156. Reduced expression/function mutations 

are generally associated with static muscle weakness and cause myopathies including central 

core disease161,162, mini core myopathy163, congenital fibre type disproportion164, and 

centronuclear myopathy165. These myopathies historically have been named for findings on 

muscle biopsy, but the field is now evolving toward a “gene first” definition, encompassing 

all of these entities as RYR1 related myopathies (RYR1 RM)160. Recessive mutations, 

most typically seen with minicore and centronuclear pathology, tend to result in both 

reduced function and expression, and are associated with more severe clinical phenotypes, 

including the need for ventilator and wheelchair supports166,167. Dominant mutations that 

cause myopathy most typically are missense, reduce function, and result in central core 

pathology166,167. Dominant/missense mutations that increase calcium release in response 

to stimuli predispose to dynamic conditions, particularly malignant hyperthermia168,169, 

though can also include exertional rhabdomyolysis170 and exertional heat illness171. About 

30% of patients manifest both these dynamic “hyper-kinetic” conditions as well as static 

muscle weakness.

At present, there are no effective therapies for RYR1 RM. Aberrant oxidative stress has been 

identified in pre-clinical models and patient cells172,173, associated with both gain and loss 

of function mutations, and is thus an attractive pathway for intervention. The anti-oxidant 

N-acetylcysteine has shown efficacy in zebrafish and mouse models172,173, but unfortunately 

failed to meet the primary endpoint in a randomized, placebo controlled clinical trial174. 

Anti-oxidants with increased muscle penetration are now being examined, as one caveat 

to the trial result was the fact that oxidative stress in treated patients was not significantly 

reduced with NAC. Another disease mechanism that is potentially therapeutically tractable 

relates to mutations that impact RyR1 binding to calstabin, impairment of which causes 

chronic calcium leak from the RyR1 channel. A class of compounds called Rycals stabilize 

this interaction and prevent calcium leak, as has been shown in pre-clinical models including 

ex vivo studies of patient muscle biopsies175. Based on these promising results, Rycals are 

now being considered for testing in the clinical trial arena.

CACNA1S and CACNA1S related myopathies: Cav1.1, also called the dihydropyridine 

receptor (or DHPR) is an oligomeric protein complex composed of 5 subunits176,177. Cav1.1 

is an L-type calcium channel which functions as a voltage sensor during EC coupling. 

Membrane depolarization initiated at the NMJ travels down the T tubule until reaching 

the DHPR, which undergoes a conformation change in response that promotes opening of 

the RyR1 calcium channel. CACNA1S encodes the alpha 1 subunit of DHPR178, which is 

the largest subunit and the one primarily responsible for interaction with, and regulation 

of, RyR1. CACNA1S is the only subunit mutated in skeletal myopathies; mutations are 

associated with a range of phenotypes including malignant hyperthermia179, exertional 
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heat illness180, periodic paralysis181, and myopathy182. CACNA1S mutations account for 

approximately 5% of all cases of MH (as opposed to RYR1 mutations, which cause 70%). 

MH related mutations lie in the domain of CACNA1S that directly interacts with RyR1 

and disrupts the negative regulatory function of CACNA1S on RyR1 calcium release. 

CACNA1S mutations are one of two main causes of hypokalemic periodic paralysis (the 

other being SCN4A), a condition of muscle inexcitability that manifests as prolonged 

episodes of flaccid muscle weakness that can last hours to days. Mutations resulting in 

periodic paralysis reside in the voltage sensing domain, with two alleles accounting for 

the majority of cases. Individual episodes of paralysis can be aborted with potassium 

supplementation and reduced by use of acetazolamide and avoidance of known triggers183. 

However, a progressive myopathy with limb girdle weakness usually emerges in adulthood.

A congenital onset myopathy has recently been described associated with mutations in 

CACNA1S182. This myopathy resembles recessive RYR1 related myopathy and includes 

early onset, severe weakness, and involvement of the muscles of eye movement. 

Histopathology is variable, and may include central nuclei, core or core like lesions, 

myofibrillar disorganization, and fiber type disproportion, plus the unique feature of 

a lobular or “alveolar” appearance with oxidative stains. Both dominant and recessive 

mutations have been identified, with most missense mutations located in regions encoding 

cytoplasmic loops. Recessive patients have either two nonsense mutations or one missense 

and one nonsense, while dominant/de novo patients all have missense variants. Interestingly, 

the majority of patients studied, regardless of mutation type, have reduced CACNA1S 

protein levels, suggesting loss of expression/function as the main disease pathomechanism. 

Studies of intracellular calcium dynamics support this, as EC coupling is impaired in the 

mutations investigated.

STAC3 myopathy: A third essential component of the EC coupling apparatus is encoded 

by the STAC3 gene. STAC3 is a bridging protein that is required for triad formation (likely 

by chaperoning Cav1.1 to the triad) and for regulation of the Cav1.1/RyR1 interaction184. 

Biallelic mutations in STAC3 were first identified in a rare muscle disorder called 

Native American Myopathy, a condition described in the Lumbee Native Americans of 

North Carolina and featuring facial weakness with prominent ptosis, extremity weakness 

and contractures, and MH susceptibility185. All individuals with NAM are homozygous 

for a recurrent missense variant in STAC3. Additional non-Lumbee individuals with 

recessive STAC3 mutations have been identified with a similar phenotype that includes 

congenital onset weakness, facial involvement, short stature, joint contractures, and MH 

susceptibility186. The same “NAM” mutation has been found in some, and additional 

variants have also been identified.

Centronuclear myopathy due to mutations in MTM1, DNM2, BIN1, and 
SPEG: Centronuclear myopathy is a congenital onset muscle disease united by features 

on muscle biopsy including >25% of fibers with central nuclei, myofiber hypotrophy, and 

organelle disorganization (as seen with oxidative stains). The genes underlying CNM encode 

proteins involved in membrane traffic187. A hallmark feature of CNM is disturbance of 
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the formation and/or maintenance of the structure of the triad188,189, the result of which is 

impaired EC coupling and severe muscle weakness.

Mutations in the X-linked gene MTM1 were the first described cause of CNM190. MTM1 
encodes a ubiquitously expressed phosphoinositide phosphatase that is a component of 

the endolysosome and that is a key regulator of endosomal membrane sorting. Loss 

of expression/function mutations result in X-linked myotubular myopathy, a devastating 

myopathy affecting primarily males that is associated with profound weakness, ventilator 

and feeding tube dependence, and early death in most individuals191–193. The exact 

function(s) of MTM1 in skeletal muscle, and the reasons why mutations impair 

triad structure and function, are incompletely understood. MTM1 has been implicated 

in stabilizing myofiber organization via interaction with desmin and in regulating 

intermediate filament turnover via interaction with the ubiquitination machinery194,195. 

How these molecular interactions may impact the triad is unclear. Despite this lack of 

knowledge, several therapies have been identified that ameliorate pathology and clinical 

phenotypes of animal models of the disease196. These include gene replacement therapy197, 

phosphoinositide rebalancing via PIK3C2B inhibition198, and DNM2 reduction (either 

with antisense oligonucleotide or with tamoxifen)199,200. Building from these targets 

and robust natural history clinical data, the first clinical trials for XLMTM have been 

initiated. Preliminary reporting of gene therapy with AAV8-MTM1 are encouraging, though 

important safety concerns have also emerged201,202.

DNM2 encodes a ubiquitously expressed large GTPase that functions as a molecular 

scissor to promote membrane fission203. DNM2 protein is implicated in myriad cellular 

functions, including clathrin-mediated endocytosis and cytokinesis. Dominant/de novo 

mutations in DNM2 cause a form of autosomal centronuclear myopathy204, similar in 

characteristics to XLMTM but in general milder in severity. Mutations are thought to result 

in hyper-functionality of DNM2, either by releasing auto-inhibition or prolonging protein 

stability205. As with MTM1, the exact mechanism by which DNM2 mutations impact the 

triad is unclear, though data supports a theory where-by mutations lead to premature or 

inappropriate fission of the maturing T tubule. Interestingly, increased levels of DNM2 are 

found in muscle from XLMTM and from BIN1 related CNM206, and overexpression of 

DNM2 in mice leads to a CNM like phenotype207. Therefore, DNM2 overexpression or 

hyper-function may be the key aspect that drives CNM pathology. This concept is the basis 

for the therapeutic strategy of lowering DNM2 levels in the various genetic subtypes of 

CNM208, and an antisense oligonucleotide based approach has shown efficacy in mouse 

models of MTM1, DNM2 and BIN1 CNM200,206,209.

BIN1, or amphiphysin 2, is a membrane deforming protein critical for the formation of the T 

tubule210. It also interacts directly with DNM2211. Recessive mutations, associated primarily 

with loss of expression, cause CNM211. SPEG encodes a large protein kinase in the obscurin 

and myosin light chain kinase family. Recessive mutations cause a lethal subtype of CNM 

also associated with cardiomyopathy212. SPEG interacts directly with MTM1, and loss 

of SPEG secondarily impacts MTM1 expression212. SPEG also likely phosphorylates key 

target proteins at the triad (as demonstrated in cardiac myocytes, and including SERCA 
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and potentially RyR1)213,214. Its function, and the consequences of mutation, thus may be a 

combination of interplay with MTM1 and its role as protein kinase.

SELENON related myopathies—The SELENON gene encodes a cytoplasmic protein 

(SePN) in the selenocysteine family of proteins215. SEPN appears to function as a critical 

regulator of cellular stress. Recessive mutations in SELENON are described in patients 

with a consistent clinical picture (severe and progressive axial weakness, rigid spine 

with scoliosis, and disproportionately mild extremity weakness) and a range of histotypes 

(minicore myopathy, congenital fiber type disproportion, Mallory body myopathy, and 

rigid spine muscular dystrophy)215–219. There is likely an important interplay between 

SEPN, calcium homeostasis, and regulated calcium release from the triad. As with RYR1 
mutations, aberrant oxidative stress has been uncovered in models of SELENON related 

myopathy, and anti-oxidants such as N-acetylcysteine ameliorate these changes220. Clinical 

translation of this strategy is in progress.

Store operated calcium entry (SOCE)—While not essential for EC coupling, store 

operated calcium entry (or SOCE) is critical for maintaining calcium homeostasis in the 

myofiber221. The main components of the SOCE machinery are the calcium channel ORAI1 

and its activator STIM1. Depletion of calcium from the sarcoplasmic reticulum induces a 

conformational change in STIM1, which, in turn, activates ORAI1, leading to extracellular 

calcium entry into the sarcoplasm. Mutations in both ORAI1 and STIM cause disease that 

impacts multiple organ systems222. Dominant, gain of function mutations lead to excessive 

calcium entry and are most relevant to skeletal muscle, as they are associated with tubular 

aggregate myopathy and Storkmorken Syndrome223.

Impaired sarcomere remodeling due to impaired Ca2+ handling—Healthy muscle 

can remodel and change its contractile and metabolic properties to meet the physiological 

demands placed upon it. This process involves Ca2+ mediated signaling that alters gene 

expression of slow/oxidative and fast/glycolytic (FG) gene expression programs. During 

muscle deconditioning (i.e. bed rest), muscle shifts to a more FG phenotype, while during 

muscle conditioning, it shifts towards the SO type. Studies in the mouse model of LGMD 

R1 (Capn3 knock out)224 have revealed a role for calpain 3 (Capn3) in Ca2+ handling, 

muscle remodeling and adaptation224–226. Capn3 is the muscle specific member of a family 

of cysteine proteases, collectively referred to as calpains227. Like other Capns, the active 

site aligns through changes in Capn3’s secondary structure, induced by Ca2+-calmodulin 

binding and autolytic cleavages228,229. Capn3 homodimerizes through its C terminal PEF 

domains230 and anchors on the giant protein titin231,232. LGMD R1 mutations have been 

shown to interfere with either Capn3 activity, anchorage to titin or homodimerization233,234. 

Capn3 proteolytically cleaves titin as well as other sarcomeric proteins such as filamin 

C (FLNC)235 and myosin light chain 2 (MLC2)236 and these cleavages target sarcomeric 

proteins to the proteasome.237

Capn3 at the triad—In addition to Capn3’s anchorage on the N2 line of titin (the site 

where the T tubule enters the myofibril), Capn3 also binds to RyR1 and stabilizes the triad 

protein complex238. Reductions in RyR1 levels226 are observed in both Capn3 knock out 
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and LGMD R1 patient biopsies and reduced Ca2+ transients are observed in Capn3 KO 

mice239. Other proteins that are known to be enriched at the triad, such as aldolase238 and 

calcium calmodulin kinase (CaMKII),226 are also greatly reduced in Capn3 knock out mice. 

Thus, in addition to its proteolytic role, Capn3 plays a structural role in maintenance of triad 

complex integrity.

Loss of triad integrity leads to severe reductions in CaMKII levels and activation225,226. 

Because CaMKII promotes the slow oxidative gene expression program, loss of Capn3/

CaMKII leads to impaired expression of slow/oxidative genes and failed skeletal 

muscle remodelling. The phenotypic features of mitochondrial abnormalities241,242 growth 

failure224, sarcomere disorganization224,237, and abnormal fat metabolism225 in Capn3 

deficient muscles can be explained by reductions in the slow-oxidative gene expression 

program.

The identification of CAPN3 as the defective gene in LGMD R1 was the first discovery 

of a gene mutation linked to a LGMD243,244. Pathogenic mutations occur along the entire 

molecule and approximately 60% are missense mutations. Some missense mutations impact 

proteolytic activity while others likely impact either secondary structure, titin binding or 

calmodulin binding229,234,245. Genotype/phenotype correlations have been hindered by the 

fact that most patients are compound heterozygotes. Additional studies are needed to unravel 

the relationship between Capn3, titin and CaMKII signalling and the impact of these 

biochemical changes on disease features.

Skeletal muscle channelopathies—Skeletal muscle is an electrically active tissue, and 

charge balance between the sarcoplasm, the SR, and the extracellular milieu is critical for 

maintenance of muscle tone and to ensure proper cycling between the relaxed and contracted 

state. This balance is regulated by several important ion channels, including the sodium 

channel SCN4A and the chloride conductor CLCN1. Mutations in these genes, as well as 

several others, cause a group of muscle disorders collectively referred to a skeletal muscle 

channelopathies. Phenotypes include periodic paralysis (mentioned above in reference to 

CACNA1S) and myotonia (prolonged muscle stiffness), as well as some forms of congenital 

myopathy. An in-depth examination of these important ion channels and the disorders 

associated with them is presented in these reviews246,247

Heading: Defects of membrane repair

Introduction to skeletal muscle membrane repair and lipid trafficking—The 

muscle sarcolemma experiences high forces during muscle contraction, and these forces 

can lead to small sarcolemmal ruptures. These membrane tears cause increased local 

calcium entry and a change in phosphatidyl serine from the inner leaflet to the outer 

leaflet of the membrane. Annexin proteins A6, A1 and A2 sense the high calcium and 

phospholipid breakdown and they traffic to the injury site where they oligomerize and form 

a “repair cap”248,249. Annexin A6 spreads more broadly across the repair cap than the 

other annexins250 and it likely contributes to the membrane curvature needed for the cap to 

form251. The increase in local calcium also activates calcium-dependent proteases (calpains I 

and II, but not calpain 3252), which have been shown to proteolytically cleave dysferlin, and 
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release a C terminal fragment) that has been referred to as “mini-dysferlin”10. Dysferlin may 

be a synaptotagmin-like molecule253, functioning to recruit lysosomal vesicles to the injury 

site250, likely through a process that is similar to mechanisms of neurotransmitter release254. 

Trim72 (AKA MG53) participates in vesicle trafficking to the injury site, although it 

is not clear if mini-dysferlin and Trim72 work cooperatively in the repair process.255 

Membrane lipids are also recruited from the membrane, lateral to the injury site.248 At 

the site of repair, mini-dysferlin concentrates at the base or “shoulder” of the repair cap 

along with Trim72248, EHD proteins, and BIN1248. Annexins, Trim72 and dysferlin have 

all been shown to associate with phosphatidyl serine, which may be part of the repair 

signaling.255,256 After the membrane is repaired, the repair cap and excess Ca2+ are shed 

via exocytosis mediated by Trim72.257,248 The repair process involves microtubules, actin 

filaments and dynamin248,258–260

Disorders linked to defective membrane repair—Loss-of-function mutations in the 

DYSF gene, which encodes dysferlin, underlie LGMD2B (LGMD R2) or the allelic distal 

myopathy called Myoshi Myopathy261,262. Studies in the Dysf knock out mouse have 

revealed an essential role for dysferlin in skeletal muscle membrane repair263. Defective 

membrane repair may also underlie LGMD2L due to mutations in ANO5264, which encodes 

Anoctomin 5 protein. Ano5 knock-out mice show impaired membrane repair, although it is 

not clear whether Anoctomin 5 directly participates in the repair process.

Treatment of membrane repair disorders—Gene replacement therapies for 

LGMD2B/Myoshi myopathy are in pre-clinical development, but the large size of the 

DYSF gene (6.5 kb) prevents its packaging into a single AAV vector. Thus, strategies that 

utilize two, overlapping vectors have been tested in murine models and have shown some 

success265. Gene replacement therapies are also in development for LGMD2I (FKRP) and 

LGMD2L (ANO5).

Dysferlin deficiency is associated with high levels of intramuscular inflammation, consisting 

mainly of T cells and macrophages266–270. Given the inflammatory state of dysferlin-

deficient muscles, one would expect steroids (an effective therapy for DMD) to be beneficial 

for LGMD2B, but this is not the case with daily steroid treatment. Weekly treatment may 

prove to be more beneficial, because the positive effects of steroids on membrane repair 

outweigh the negative effects on muscle wasting and metabolic reprogramming observed 

with daily steroids271,272. On the other hand, human biopsies have shown high levels of 

the complement-associated membrane attack complex (MAC) on the surface of skeletal 

muscle fibers of LGMD2B pateints273, and studies in the murine model of LGMD2B have 

demonstrated benefit from interference with the complement pathway274. A small study that 

used Rituximab (B cell depletion) led to increased muscle strength in two patients who were 

tested275. Systemic administration of recombinant A6 protein showed benefit in reducing 

membrane injury in the mouse model of LGMD2C (SGCG knock out mice)248.

Heading: Failure of protein quality control

Introduction to cellular systems that regulate protein quality in muscle—All 

cells maintain a balance between protein synthesis and protein degradation. However, 
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skeletal muscle in particular utilizes this balance to increase muscle mass via enhanced 

protein synthesis (hypertrophy) or to decrease muscle mass via enhanced proteolysis 

(atrophy) under conditions of exercise and inactivity. Moreover, the physiologic stress and 

strain placed on myofibers and long-lived structural proteins within myofibrils results in 

their repeated unfolding and refolding that is necessary to prevent protein degradation or 

aggregation. Additionally, skeletal muscle is exquisitely sensitive to changes in organismal 

nutrient state and serves as the largest reservoir of free amino acids under conditions of 

starvation. The protein degradation in skeletal muscle that occurs with disuse, denervation, 

anorexia or chronic illness is mediated through two principal proteolytic pathways, the 

ubiquitin proteasome system (UPS) and autophago-lysosomal pathway (ALP).

Myopathies associated with ALP dysfunction—Autophagy and more specifically 

macroautophagy is the selective sequestration and subsequent engulfment of proteins, 

organelles and cytoplasm by an expanding phagophore that becomes an autophagosome. 

Cargo filled autophagosomes are then trafficked to the late endosome/lysosome enabling 

proteolysis within an acidic milieu. Mutations in both autophagic and lysosomal 

proteins lead to myopathies with distinctive pathologic features that include autophagic 

and lysosomal vacuoles. Specifically, inactivating mutations in proteins necessary for 

autophagosome lysosome fusion such as EPG5 and LAMP2 cause Vici Syndrome and 

Danon’s disease respectively276,277. These myopathies have the characteristic accumulation 

of autophagic and lysosomal vacuoles as evidenced by the accumulation of autophagic 

and lysosomal proteins such as SQSTM1, LC3 and acid phosphatase with associated 

multisystem involvement including both cardiac and CNS manifestations276,277. Inactivating 

mutations in proteins necessary for normal lysosomal function can also lead to a vacuolar 

myopathy. For example, loss of the acidic hydrolase, GAA or a reduction in VMA21, 

the chaperone necessary for the assembly of the vacuolar-type ATPase both lead to 

lysosomes with reduced degradative capacity278,279. The pathology in these myopathies 

termed Pompe’s disease and X-linked myopathy with excessive autophagy (XMEA) is 

distinctive with the sarcoplasmic accumulation of vacuoles surrounded by sarcolemmal 

proteins such dystrophin and caveolin-3280.

Myopathies associated with UPS dysfunction—Under conditions of muscle atrophy, 

the UPS is activated leading to the rapid degradation of myofibrillar proteins and reduction 

in muscle mass. Proteins are selectively targeted and degraded via the UPS. The selectivity 

of this process is dictated by a large family of ubiquitin ligases or E3 ligases. During muscle 

atrophy expression of the E3 ligases muscle RING-finger 1 (MuRF1) and Atrogin1/MAFbx 

ubiquitinate thick filament proteins such as myosin281. The E3 ligase Trim32 was originally 

thought to ubiquitinate thin filament proteins282; however, its role is more likely to be 

control of muscle stem cell283,284 possibly through regulation of Piasy285, an E3 SUMO 

ligase or NDRG2286. Consistent with this critical role in muscle proteostasis, homozygous 

loss of function mutations in MURF1 lead to myopathies with vacuoles and sarcoplasmic 

inclusions. Mutations in TRIM32 underlie LGMD2H, sarcotubular myopathy and the allelic 

disorder Bardet Beadle Syndrome. The substrate specificity of some E3 ligases require 

adaptor proteins necessary for efficient ubiquitination. Loss of function mutations in three 
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related Kelch proteins, KLHL40, KLHL41 and KBTBD13 lead to nemaline rod myopathies 

suggesting their importance in the proteasomal degradation of thin filament proteins287.

Myopathies associated with chaperone dysfunction.—Chaperones are proteins 

necessary for protein quality control or “proteostasis.” In lower organisms, this group of 

proteins is critical for cell survival following environmental insults that destabilize proteins 

such as heat shock and are thus termed heat shock proteins (HSPs). HSPs are a multi-tiered 

network of proteins that include HSP70s/HSPAs, HSP40s/DNAJs, HSP20s/HSPBs and BAG 

family proteins. A disruption in the HSP network leads to the accumulation of misfolded and 

aggregated proteins that can further disrupt protein degradation pathways such as autophagy. 

Dominant missense mutations in the co-chaperones DNAJB6 (LGMDD1) or BAG3 
(MFM6) lead to myopathies with Z-disc disorganization and desmin inclusions288–290. The 

dominant effect may relate to the mutant proteins’ avidity and sequestration of other HSP 

proteins (e.g. HSPA1) in aggregates. Mutations in the small HSPs, HSPB5 and HSPB8 also 

lead to myopathies with prominent myofibrillar disorganization and rimmed vacuole291,292. 

Finally, disruption of chaperone proteins within the secretory pathway result in myopathies 

with aggregates and vacuoles. For example, loss of function mutations in Sil1 (Marinesco-

sjogren syndrome) a co-chaperone for HSPB5/Bip lead to a congenital myopathy with 

rimmed vacuoles293,294. Notably therapies aimed at restoring protein homeostasis such as 

HSP activators may be effective in chaperonopathies.

- Conclusions and perspectives:

Mutations that perturb normal processes in skeletal muscle result in myopathies or muscular 

dystrophies. Over the past three decades, hundreds of such mutations have been identified. 

In-depth study of these disease-causing proteins has led to an immense amount of 

new information regarding the cellular processes necessary to maintain healthy muscle. 

Understanding the normal function of these proteins has provided valuable insights on why 

mutations cause disease and will be necessary for development of efficacious therapies. 

The availability of the underlying genetic causes of these diseases provides a facile path to 

develop therapies targeting the underlying cause of disease such as gene replacement, gene 

editing and antisense oligonucleotide-based exon skipping.
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Figure 1: Schematic of the costamere and proteins linked to the dystrophin glycoprotein complex 
(DGC)
a| The terminal Z disc of the skeletal muscle sarcomere attaches to the membrane at 

the costamere, where it links to a large protein complex called the DGC. b| On the 

intracellular side of the membrane, the DGC links to the actin cytoskeleton, microtubules 

and intermediate filaments via dystrophin protein (aqua). Dystropin is a 427kDa protein 

comprised of an N-terminal actin binding domain (ABD), 4 hinges, 24 spectrin repeats, a 

cysteine rich (CR) region that attaches to beta dystroglycan, and a C terminus. Dystrophin 

is a scaffold for several other molecules including neuronal nitric oxide synthase (nNOS), 

which attaches vis syntrophin (SYN), as well as ankyrin and dystrobrevin. c| The DGC 

is made of two membrane-associated subcomplexes, the dystroglycan (DAG) complex and 

the sarcoglycan complex (consisting of α, β, γ, and δ sarcoglycans), linked together by 

sarcospan (SSPN). d| Alpha dystroglycan (α-DAG) is the extracellular-facing DGC member 

in the basal lamina of the ECM. It is an ECM receptor that interacts with laminin, primarily 

through O-linked glycans on its mucin domain. e| α-DAG also associates with other matrix 

molecules such as nidogen and perlecan that along with collagens IV and VI, connect the 

basal lamina to collagens I and III in the reticular lamina.
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Figure 2 |. Schematic of a muscle cell and the proteins linked to the sarcomere Figure 2. 
Sarcomere structure in skeletal muscle.
a. Transmission electron micrograph of a longitudinal section of the sarcomere of zebrafish 

skeletal muscle. Z-disks are visible as electron-dense zig-zag vertical lines, M-band as a 

smooth dark line in the middle of the sarcomere, and the horizontal striations represent 

thick and thin filaments. The vacuolated areas are the triads, where excitation contraction 

coupling takes place. b. Schematic of the major protein components of the sarcomere. Thin 

filaments are composed of actin, nebulin, tropomyosin and the troponin complex with the 

following subunits: troponin T (TNNT, binds tropomyosin), troponin I (TNNI, binds actin), 

and troponin C (TNNC, binds the calcium ions). Thick filaments are composed of myosin 

and titin. Myosin consists of several domains: a head [two identical myosin heavy chains 

(MyHC), which bind actin], a neck [one pair of essential light chains (MyELC) and one pair 

of regulatory light chains (MyRLC)], and a tail. c. Schematic of a sarcomere in a relaxed 

state. d. Schematic of a sarcomere in contracted state. e. Schematic of a sarcomere during 
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a defective contraction, which is a hallmark of thin-filament related nemaline myopathies. 

Mutations in nebulin (NEB) and actin (ACTA1) can lead to shorter thin filaments, defective 

actin assembly and dynamics, reduced force during muscle contraction, and lower sensitivity 

to calcium ions.
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Figure 3: Schematic of a muscle cell and the proteins linked to the nuclear envelope.
A) Nuclear import and export through nuclear pore complexes requires transport receptors 

such as importins, exportins and transportins. These proteins shuttle cargo through the NPC 

along using a GTP gradient generated by RAN GTPase. B) The LINC complex connects 

lamins that compose the nuclear matrix on the inside of the nuclear envelope with via a 

family of proteins termed SUN1/2 and the outer nuclear envelope via a family proteins 

with a KASH domain (Nesprins) that then connect to the actin, intermediate filament and 

microtubule network.
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Figure 4 |. The triad is a muscle-specific substructure that is critical for mediating excitation 
contraction coupling
The triad represents the apposition of a Transverse (T)-tubule with two terminal cisternae 

of the sarcoplasmic reticulum (SR). While many types of proteins and regulatory structures 

located in or around the triad have been identified, the mechanisms of T-tubule biogenesis 

and triad formation are still incompletely understood. a | A muscle fiber is excited by 

the motor neuron at the neuromuscular junction, inducing membrane depolarization, which 

travels along the sarcolemma and into the t-tubule. The dihydropyridine receptor (DHPR) 

senses membrane depolarization, and undergoes a conformation change which activates the 

ryanodine receptor (RYR1), releasing Ca2+ from the SR into the sarcoplasm. Sarcoplasmic 

Ca2+ then binds to the troponin complex, releasing inhibition and initiating a muscle 
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contraction. Several other proteins are critical for the formation and maintenance of the 

triad. MTM1 potentially regulates transport of muscle-specific proteins to the triad. BIN1 is 

involved in membrane remodelling, and in concert with caveole, initiates T tubule formation. 

DNM2 is speculated to function in parallel (and potentially opposed) to BIN1, via its 

membrane fission activity, to modulate T-tubule formation and maintenance. Two examples 

of mutations and their consequences on the triad: b | DNM2 hyperactivity leads to aberrant/

premature membrane fission and abnormal t-tubule formation; b’ | RYR1 mutations lead to 

impaired calcium release and reduced muscle contraction.
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Figure 5 |. Skeletal Muscle Membrane Repair.
Skeletal muscle sustains small tears from normal muscle use, which are quickly repaired by 

cell repair machinery. a | Following a tear, calcium flows down its concentration gradient 

from outside the cell to inside. Cholesterol is oxidized and phosphatidyl serine changes 

its conformation from intracellular-facing to extracellular facing. b | Calcium, oxidized 

cholesterol and phospholipids activate the cellular repair machinery. Annexin proteins bind 

to calcium and phosphatidyl serine and form a cap that seals the are of the tear.
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Figure 6 |. Schematic of a muscle cell and the proteins linked to protein turnover and quality 
control.
b | Skeletal muscle mass is maintained by the balance of protein synthesis and protein 

degradation. b | Disruptions in chaperone surveillance, the ubiquitin proteasome system and 

the autophago-lysosomal pathway lead to pathologic changes in skeletal muscle that include 

myofibrillar disruption, inclusion bodies, protein aggregates and vacuolation.
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