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Cortical Communication in the Context of Learning 

Tess L. Veuthey 

Abstract 

The infinite range of human behaviors is made possible by the anatomic and functional 

complexity of our brains. Our brains are arranged as networks of interacting neural 

populations which perform computations both within and across areas. Past research 

has focused on the specific roles of different brain regions, parceling out computational 

steps in sensory, motor, cognitive, and affective processes. However, our 

understanding of how brain regions interact is extremely preliminary, and is 

bottlenecked by limitations in experimental approaches, recording technologies, 

interventional methods, and computational analyses. These limitations impact not only 

our comprehension of the nervous system, but also our ability to design, optimize, and 

implement new therapies for patients with neurological diseases and disorders. 

This thesis first investigates cross-area communication in the motor system in the 

context of natural movement learning and closed-loop brain-machine interface (BMI) 

learning. It then proposes a framework for understanding and manipulating cross-area 

communication in the context of chronic pain, a disorder driven by pathological 

activation and coupling of sensory, cognitive, and affective regions. We find that, during 

natural motor learning, cross-area activity dynamics can (1) be distinguished from local 

dynamics, (2) develop representations of learned movements which predict single-trial 

behavior, (3) become coordinated with local dynamics over the course of learning, and 

(4) causally influence downstream local activity to drive learned behaviors. Preliminary 

results from BMI learning show that tasks requiring only local neural modulation also 
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engage neural populations in partner brain regions, suggesting circuit-wide participation 

in new task learning. This knowledge of the brain’s ability to learn new cross-area 

activity patterns in the context of natural behaviors and external, device-based feedback 

informs our framework for designing closed-loop neuromodulatory therapies for 

refractory chronic pain given the devices currently available for treating nervous system 

disorders.   
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Introduction  

 

The brain is a classic example of a complex system: it is made of relatively simple 

individual agents, neurons, whose diverse and widespread interactions lead to an 

infinite range of behaviors1,2. The neural connections necessary for supporting life are 

set up during development, but neural interactions must continue evolving in adult 

animals in order to support learned behaviors3–5. While the evolution of neural 

interactions within a brain region have been extensively studied, relatively little is known 

about how neural interactions between brain regions change with learning. This dearth 

of knowledge is in part due to the intractable nature of the brain as a system with billions 

of neurons and trillions of neural connections. To reduce the scope of the problem, 

research has focused on the role of individual brain regions in during specific behaviors.  

Early neurological reports of patients with localized brain lesions and specific behavioral 

deficits led to the realization that neurons are functionally organized into distinct brain 

regions 6–9. Brain regions, in turn, are connected into networks supporting sensory, 

motor, cognitive, and affective functions. In order to explicitly study neural functions 

rather than relying on patients’ spontaneously occurring brain damage and ensuing 

deficits, neuroscientists use animal models to probe neural activity underlying carefully 

designed behaviors. Often animals are first extensively trained on tasks designed to 

probe specific behavioral parameters 10; then neural activity from a single brain region is 

either (a) recorded and analyzed to discover correlations with behavioral parameters 

11,12 or (b) disrupted to discover the necessity of its function in that behavior 13,1412. This 

approach has yielded rich knowledge on how activity restricted to single brain regions 
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underlies expert performance in a task. However, it has been difficult to expand this 

approach to understand how brain regions interact in the context of learning, especially 

at the level of neural populations. This is due to (1) the technological limitations for 

obtaining simultaneous data from neural populations in multiple brain regions in a 

behaving animal, (2) a sparsity of established methodologies for relating cross-area 

neural activity, and (3) difficulty in interpreting neural activity related to variable 

behavior. However, recently, multi-site neural population recording technologies 15,16, 

computational dimensionality reduction methods 17–19, and approaches to single-trial 

neural data interpretations 20–25 have emerged as candidates for making analysis of 

cross-area communication during learning a tractable problem. 

Chapter 1 uses (1) simultaneous neural population recordings in premotor (M2) and 

primary (M1) motor cortex, (2) a combination of dimensionality reduction methods 

designed to extract neural signals either local4,26,27 to a brain region or shared28,29 

across two brain regions, and (3) single-trial neural analyses to understand how M1-M2 

cross-area communication evolves to support a learned motor skill. Key to this study 

was the novel use of Canonical Correlation Analysis 28 (CCA) in the investigation of 

simultaneously recorded population activity from two brain regions. As outlined above, 

CCA is a dimensionality reduction method designed to detect and extract maximally 

correlated information across two sets of signals. We compared these cross-area neural 

signals to those extracted using Factor Analysis (FA)26,27, a dimensionality reduction 

method designed to detect variance that is shared within a single population of signals. 

This approach allowed us to track the relationship between neural signals defined 

locally in M1 or M2 (i.e. local dynamics), and signals defined by activity that M1 and M2 
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have in common (i.e. cross-area dynamics). The additional use of single-trial analyses 

allowed us to examine neural activity during variable learning behavior.  

By combining these strategies, we found that emergence of coordination between local 

and cross-area population dynamics drives learned motor behaviors. We tested the 

necessity of coordinated M1-M2 activity by inactivating M2 in well-trained animals. M2 

inactivation resulted in both behavioral deficits and disruption of M1’s ability to encode 

learned movements. Importantly, neither the behavior nor M1’s encoding of movement 

were completely abolished, demonstrating local resilience in M1 to a distant disruption 

within the functional motor network (here M2). These findings and others in this study 

indicate that evolving interactions both within and between nodes of the motor network 

can be probed to understand neural correlates of natural motor learning.  

Chapter 2 addresses a major limitation inherent in the study of natural movements. 

Namely, that many motor area have extensive bi-directional connections to each other 

as well as parallel connections to downstream regions. Consequently, it is often 

impossible to claim that one any region uniquely controls a particular parameter of 

movement, whether it be abstract (e.g. reaction time) or kinematic (e.g. hand shaping 

during grasping). For example, in rodents, forelimb regions in M1 and M2 have dense 

cross-area connections and both send projections to the same segments of spinal cord 

30. Descriptions of M1 and M2’s specific roles are dependent on the task in which they 

are probed, leading to results suggesting that M2 contains more signals related to 

movement context than M1 31; that M2 is more related to distal grasping movements 

than M132; that M2 and M1 have opposite influence on the near versus far reach 

targeting 33; and M1 and M2 have parallel, but nearly identical functions 34,35. These 
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conclusions are not mutually exclusive, and they highlight the limitations to 

understanding directionality of cross-area communication during natural movements.  

To address this limitation, we can use brain-machine interfaces 36 (BMIs) to specifically 

constrain and design the relationship between neural activity and effectors. BMIs allow 

us to directly map activity from selected neurons into signals that control artificial 

effector movements. By design, the activity of all other neurons is not required for the 

artificial effector movements. Consequently, any relationship of those neurons to the 

task is due either to inherent functional neural connectivity, and/or the animal’s inability 

to distinguish which neural signals are necessary for the task. To examine the inherent 

functionally connectivity of M2 and M1, we simultaneously recorded in M2 and M1 

during a M1-driven BMI task. We found that M2 neurons are driven by M1-BMI learning, 

suggesting that M1-M2 cross-area connections are engaged during M1-BMI learning.   

Chapter 3 discusses how inherent cross-cortical communication can become 

pathological, and how neuromodulatory interventions can be used to therapeutically 

decouple cross-cortical communication. Specifically, this chapters frames chronic pain 

as pathological coupling between areas involved in the sensory, cognitive, and affective 

components of pain 37–39, leading to resonant circuit activity and recurrent entry into 

brain states associated with pain (i.e. pain state). We outline how four types of deep 

brain stimulation (DBS) might be used to treat chronic pain by disrupting communication 

between regions. Inherent aspects of the four types of DBS, (1) single-site open-loop 

DBS, (2) patient-triggered on/off DBS, (3) sensor-triggered on/off DBS, and (4) multi-site 

closed-loop DBS lead to very different goals for DBS-based neuromodulation. In short, 

since single-site open-loop DBS cannot monitor the patient’s brain state, the goal of 
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therapy must be to permanently keep the underlying functional network out of the pain 

state, potentially increasing the risk of side effects resulting from decoupling within the 

functional network. In contrast, patient-triggered DBS relies on a patient-detectable level 

of pain, and consequently is designed to abort pain rather than avoid it. Similarly, 

sensor-triggered DBS would be designed to avoid crossing a pre-determined threshold 

in the brain state representation, leading to restrictions in accessibility of brain states. 

Finally, multi-site closed-loop DBS has the potential to titrate area-specific and cross-

area neurostimulation to prevent entry into the global pain state without constraining the 

overall variability of neural activity within each brain region.  

Overall, this thesis (1) provides evidence for the evolution of cross-area interactions 

within a functional network during natural movement learning; (2) highlights that cross-

area communication is intrinsically engaged in task learning, even when it is not 

apparently required for task execution; and (3) proposes a strategy for manipulating 

functional networks when cross-area interactions lead to pathological communication. 
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Abstract 

Mammalian cortex is a complex system with both local and cross-area connections. The 

combination of these two motifs suggests a vital role for interactions between local and 

cross-area neural population dynamics. However, prior work has not distinguished how 

local versus cross-area activity dynamics might differentially drive learning and skilled 

execution. Here we hypothesize that interactions between local population dynamics with 

those that coordinate dynamics across areas are necessary for skilled motor behaviors. 

Using multisite recordings of motor (M1) and premotor (M2) cortex along with 

computational modeling, we analyzed how local and cross-area activity patterns interact 

during reach learning in rats. Strikingly, the emergence of reach-related modulation in 

cross-area activity appeared to drive skill acquisition. Additionally, the single-trial 

modulation in cross-area activity was predictive of both reaction time and reach duration. 

Furthermore, coordination of cross-area dynamics with local dynamics increased 

significantly with skill learning. Consistent with a functional role for cross-area dynamics, 

M2 inhibition disrupted both M1 dynamics and reach behavior. Together, these results 

indicate that coordination of task signals between local and cross-area population 

dynamics is necessary for skilled motor behaviors.  
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Introduction  

The connectivity pattern of mammalian cortex, characterized by both local and cross-area 

connections1, suggests an important role for interactions between population dynamics 

compartmentalized locally with those coordinated between regions. But it is unknown 

whether dynamics coordinated across multiple cortical areas contribute to learning and 

skilled execution. For example, in the motor system, it has been shown that both premotor 

cortex (M2) 2–6 and motor cortex (M1) 7–11 demonstrate changes in local population 

dynamics with motor learning.  However, it remains unclear: (1) how cross-area dynamics 

between M1 and M2 are coordinated and change with learning, and (2) how local 

dynamics in each area might interact with cross-area M1-M2 dynamics to drive learning. 

Previous work on cross-area interactions during motor learning has focused on 

macroscopic population activity, such as local field potentials 12–16 and wide-field calcium 

signals 4,17. However, such measures of aggregate activity inherently collapse signals 

from a heterogeneous population of neurons into a single measure, making it difficult to 

resolve potentially important multiplexed signals within that population 18–20.  

How then can we distinguish and compare local and cross-area population dynamics 

during learning? One approach is to use dimensionality reduction methods 21,22 to capture 

patterns of shared variance within each local population, and then compare those 

simplified local representations 5,18. However, since the purpose of dimensionality 

reduction is to limit the number of signals analyzed, any activity patterns which do not 

dominate local variance are discarded. Thus, this potentially dismisses as ‘noise’ neural 

fluctuations that represent activity coordinated across areas. Instead, cross-area activity 

might be identified by directly detecting covariance which is coordinated across 
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populations. Importantly, recent work in anesthetized animals has shown that 

simultaneous recordings from visual areas can be analyzed to identify a neural 

“communication subspace” defined by activity in each region that is maximally correlated 

with activity in a partner region 23. However, it is unknown whether such a communication 

subspace is relevant for behavior and learning.  

Thus, this study aims to: (1) measure interactions between cross-area population 

dynamics shared by M2 and M1 with local population dynamics compartmentalized to 

either M2 or M1; and (2) assess the behavioral relevance of cross-area population 

dynamics during motor skill learning. We hypothesized that M2-M1 cross-area dynamics 

coordinate information between the regions and contribute to learning complex behaviors. 

We specifically used multisite recordings in M2 and M1, along with dimensionality 

reduction techniques that capture the multiple axes of variance within and across areas. 

To capture local dynamics, we used well-known dimensionality reduction methods, which 

constrain representations of high-dimensional neural activity to axes of maximal local 

variance (i.e. local subspaces) 4,5,11,19,22,24–33. To capture cross-area dynamics, we 

identified communication subspaces between M1 and M2 populations; hereafter, we use 

the term “cross-area” to refer to activity in each area which is maximally correlated with 

activity in the partner region (Fig. 1.1).   We thus aimed to specifically identify cross-area 

dynamics and distinguish them from local population dynamics during both early 

exploratory learning and late learned execution of a skilled movement. 

In each region, we found that local and communication subspaces were distinct 

throughout learning, reflecting separation of local and cross-area population dynamics. 

Strikingly, not only did cross-area dynamics clearly encode single-trial reaching behavior, 
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these dynamics also became coordinated with local dynamics over learning. Consistent 

with this functional role, M2 inhibition in well-trained animals impaired reach behavior and 

disrupted coordination between local and cross-area reach encoding in M1. Together, our 

results indicate that cross-area M2-M1 population dynamics are important for driving 

skilled movements, in part through their interaction and influence on local dynamics.  
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Results 

Our model proposes that population activity consists of multiplexed local and cross-area 

dynamics generated from overlapping sets of neurons (Fig. 1.1a). Thus, each neuron’s 

spiking activity can contribute to both local and cross-area dynamics. To identify 

population dynamics local to either M2 or M1, we used factor analysis (FA) to find linear 

combinations of neural activity that maximized shared variance between neurons within 

the area 7,11,21. In each region’s high-dimensional population activity space, where each 

dimension corresponds to one neuron’s activity, the neuron weights obtained using FA 

define a ‘local subspace’ (Fig. 1.1b), representing dominant local signals. In parallel, to 

identify neural activity coordinated between M2 and M1, we used canonical correlation 

analysis (CCA) to find linear combinations of M2 and of M1 activity that are maximally 

correlated with each other. The neuron weights obtained using CCA define a 

‘communication subspace’ (Fig. 1.1b) 23, representing activity that is shared or 

coordinated between M2 and M1 (see Materials and Methods). Note that M2 and M1 each 

have both a local subspace (defined by FA) and a communication subspace (defined by 

CCA). The projections of high-dimensional neural activity onto the local and 

communication subspace axes provide low-dimensional representations of local and 

cross-area activity (Fig. 1.1c). 

To analyze how functional interactions between local and cross-area M2-M1 neural 

population dynamics contribute to skill learning, we performed simultaneous recordings 

of population neural activity in M2 and M1 (Fig. 1.S1) in rats learning a cue-driven reach-

to-grasp task, a well-established model for motor skill learning (Fig. 1.2a) 30,34,35. 

Importantly, both M2 and M1 are required for learning and performance of reach-to-grasp 
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movements in many model systems, including rodents, non-human primates, and 

humans 36,37. Consistent with past studies, animals learned to successfully retrieve pellets 

with training; there were also concomitant improvements in movement speed and reaction 

time, which was measured as the time of reach onset relative to the sound cue marking 

door opening (Fig. 1.2b-d, Fig. 1.S2, quantification in figure legend).  

 

Distinct local and cross-area covariations within neural population activity 

We first examined whether M2-M1 cross-area population activity is separable from local 

population activity. If cross-area coordination is based on locally-defined covariations 

propagating between brain regions, then we would expect the cross-area activity 

identified by CCA to be identical to the locally-shared activity identified by FA. In other 

words, if there is only a single meaningful pattern of covariation both within and across 

areas, then the subspaces defined by cross-area and local covariations using CCA and 

FA should be similar. In contrast, we hypothesized that local and cross-area population 

activity are distinct and that the two methods would therefore identify different subspaces 

of covariation.  

We verified that local and cross-area population activities were distinct in two ways. First, 

we found that neurons were assigned different weights when constructing local versus 

cross-area activity subspaces, suggesting that neurons have differential contribution to 

local computations versus cross-area communication (Fig. 1.2e). Second, we calculated 

the angle of alignment between local and communication subspaces; we found that local 

and communication subspaces were distinct, but not orthogonal (Fig. 1.2f, quantification 

in figure legend; see Materials and Methods). Similar results were obtained using PCA, 
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which captures the total variance in the population activity, rather than the shared 

variance (Fig. 1.S3). This suggested that some neurons’ activity contributes to both local 

computations and cross-area communication, while other neurons contribute primarily to 

local or cross-area dynamics. 

 

Local and cross-area covariation patterns remain distinct over learning 

We next asked whether the separability of local and cross-area neural activity changed 

with learning. If learning leads to increased communication between M2 and M1, one 

potential mechanism is increased alignment of local and communication subspaces. To 

test this, we calculated the mutual information between neuron weights defining the 

communication and local neural subspaces and found no significant change with learning 

(Fig. 1.2e, quantification in figure legend). In other words, a neuron’s local subspace 

weight was no more informative about its communication subspace weight after learning 

than before (and vice versa). Additionally, the angle between local and communication 

subspaces did not change with learning (Fig. 1.2f). The consistent alignment of these 

subspaces demonstrates that the dominant local covariation patterns remain distinct from 

dominant cross-area covariation patterns. This suggests that activity patterns defining 

cross-area coordination are distinct from local computations throughout learning. 

 

Correlation of cross-area activity across cortical regions  

Since the alignment between local and communication subspaces remains consistent 

over learning, we next asked whether the correlation of cross-area activity patterns 
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changed with learning. One possibility is that M1 and M2 cross-area activity is less 

correlated during exploratory behavior and becomes more correlated during skilled 

behavior, indicating a change in M2 to M1 transmission efficacy. Since CCA finds M1 and 

M2 communication subspaces with maximal correlation, if M2 to M1 transmission efficacy 

increases, we would expect the correlation of M1 and M2 CCA-defined subspaces to be 

higher during skilled behaviors than during early exploratory actions. This would indicate 

that the M1 and M2 cross-area activity generally becomes more correlated with learning.  

To address this, we correlated M1 and M2 cross-area activity during behaviorally relevant 

time windows (i.e. 2 seconds peri-reach for each trial) during three types of behavior: 

spontaneous behavior, exploratory reaches in early learning, and directed reaches in late 

learning (Fig. 1.3a). To our surprise, there was no difference in the mean correlation 

values (R2) of M1 versus M2 cross-area activity during different behaviors (Fig. 1.3b, 

quantification in figure legend). Thus, generally increased coordination between M2 and 

M1 activity by itself seems unlikely to the drive performance gains observed with learning. 

 

Learning drives encoding of reach initiation in cross-area population dynamics 

An intriguing alternative is that learning is due to a change in the task encoding of cross-

area signals. Specifically, signals within the existing range of cross-area activity may be 

remapped to encode information about the task. Thus, while the overall range and 

correlation of M1-M2 coordinated activity may not change (Fig. 1.3a), high amplitude 

cross-area activity may now be associated with a particular behavioral state. As noted 

above, we observed that the door open cue was more rapidly followed by reach initiation 

after learning (Fig. 1.2d). This suggested that the timing of reach initiation might be an 
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important marker of learning. We thus explored whether M1-M2 cross-area activity could 

account for this change. To visualize this possibility, we plotted M1 communication 

subspace activity versus M2 communication subspace activity during the pre-reach 

period and after reach initiation (Fig. 1.4a). The histograms show the probability density 

functions of the respective subspace activity before and during the reach. Interestingly, 

the two behavioral states were significantly more separable after learning (Fig. 1.4b, 

quantification in figure legend), suggesting that the high amplitude activity coordinated 

between M1 and M2 gained task relevance with learning. 

We hypothesized that this increase in task relevancy allows M2 to trigger reach initiation 

in M1 through the communication subspace. Consistent with this, peaks in 

communication subspace activity became associated with reach initiation after learning 

(Fig. 1.4c). We quantified this association across trials by building a logistic regression 

model to distinguish communication subspace activity during 2 seconds before reaching 

versus during reach initiation. Strikingly, detection of reach initiation based on this 

communication subspace activity model improved with learning (Fig. 1.4d). Using the 

logistic regression model, we could then probe the time course of reach initiation 

prediction based on M1-M2 cross-area activity. (Fig. 1.4e, same trials as c). On average, 

while the time of reach initiation was not well predicted during early trials, it became highly 

predictable after learning (Fig. 1.4f). 

 

Learning drives encoding of reach efficiency in cross-area population dynamics 

Does M2 only send an initiation signal to M1, or instead does M2 input also affect other 

aspects of the reach? To address this, we examined whether single-trial M2-M1 cross-
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area population dynamics were informative about single-trial reaching behavior, and 

whether reach-specific content of transmitted signals increased with learning. Visualizing 

single-trial activity is essential for behaviors with high variability since trial-averaging is 

likely to obscure behavior-related signals. To quantify reach modulation in single-trial 

neural activity, we calculated a communication subspace neural modulation metric (CS 

modulation), which compares neural activity during reaching versus an equivalent 

baseline period for each trial (Fig. 1.5a,b). This measure is equivalent to the d’ (‘d-prime’) 

signal sensitivity index used in signal processing (see Materials and Methods). To directly 

test the relationship between behavioral performance and the M1 and M2 CS modulation, 

we correlated neural CS modulation with reach duration on a trial-by-trial basis (Fig. 1.5c, 

quantification in figure legend). Interestingly, we found that CS modulation reliably 

predicted reach duration, indicating that cross-area population dynamics encoded 

additional behaviorally relevant information. Additionally, both M1 and M2 CS modulation 

increased with learning (Fig. 1.5d).  Thus, the process of learning appeared to enhance 

reach-specific neural signals in cross-area population dynamics, providing a mechanism 

for coordinating network-wide activity related to tasks being learned. 

 

Learning drives coordinated encoding of reach efficiency in local and communication 

subspaces  

Cross-area population dynamics may provide a mechanism for coordinating network-

wide task activity. Indeed, our overarching model of learning proposes that reaching 

signals become coordinated between cross-area and local dynamics to drive learning. 

Specifically, we expected local and cross-area neural reach modulation to become 
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coordinated with learning (Fig. 1.6a). This would support a learning model in which M2 

local dynamics develop task-specific activity which is then transmitted through M2-M1 

cross-area dynamics to M1 local dynamics (Fig. 1.6b). We directly measured 

concordance of trial-to-trial reach modulation between local and cross-area signals in 

each region (Fig. 1.6c-f). Strikingly, we found that normalized mutual information between 

the reach modulation of local and cross-area signals in M2 and M1 increased with learning 

(see Materials and Methods; Fig. 1.6d,f, quantification in figure legend). Specifically, trials 

in which the cross-area dynamics were highly modulated by movement also tended to 

have high neural modulation in the local dynamics, indicating increased coordination 

between local computations and transmitted signals related to reaching.  

 

M2 inactivation disrupts skilled reaching 

A prominent model of M2-M1 interactions during learning proposes a strong top-down 

influence from M2 to M13,4. If activity transmitted from M2 to M1 drives M1 reach 

encoding, then disrupting M2 to M1 transmission would impact reaching behavior. To test 

this, we inactivated M2 in well-trained animals using the GABA agonist muscimol (Fig. 

1.7a,b). Unlike control saline infusions (Fig. 1.S4), M2 inactivation caused performance 

deficits, with reaching behavior qualitatively similar to early learning (Fig. 1.7a,c; Fig. 1.8a, 

quantification in figure legend). However, the mechanism of this deficit is unknown. We 

hypothesized that M2 inactivation disrupts M1-M2 cross-area population dynamics, 

thereby removing top-down influence on M1 local dynamics without disrupting local 

connectivity. 
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M2 inactivation disrupts M1 encoding of reach initiation 

We next performed simultaneous recordings in M1 and M2 during baseline performance 

and during M2 inactivation on the same day, in well-trained animals. This approach 

allowed us to track the effect of M2 disruption on M1 cross-area and local dynamics (Fig. 

1.7d). First, we found that M2 inactivation disrupted encoding of reach initiation in the M1 

communication subspace (Fig. 1.7d-f). We quantified this by comparing the difference in 

median activity before reach and at reach initiation (Fig. 1.7e, quantification in figure 

legend), and found that this difference was significantly smaller during M2 inhibition. As 

before, we fit a logistic regression model to predict reach onset from M1 communication 

subspace activity. We quantified the model’s performance and saw that detection of reach 

initiation based on M1 communication subspace activity decreased with M2 inhibition 

(Fig. 1.7f), indicating that M1 cross-area dynamics were less informative about reach 

initiation during M2 inhibition. 

 

M2 inactivation disrupts M1 encoding of reach efficiency 

In addition to disrupting reach initiation signals, we also found that M2 inhibition disrupted 

reach modulation of M1 cross-area and local dynamics (Fig. 1.8d, f, quantification in figure 

legend). This indicated that M2 input is necessary for intact M1 reach modulation and 

implied a M2 to M1 directionality. We additionally examined whether M2 inactivation 

entirely dissociated M1 CS reach modulation from behavioral performance. We found that 

the relationship between reach duration and M1 CS modulation was still significant during 

M2 inactivation (Fig. 1.8e), underscoring the fundamental relationship between M1 and 

behavior. Finally, we tested whether M2 inactivation disrupted coupling between M1 
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cross-area and local dynamics. Interestingly, we found that the mutual information 

between the single-trial reach modulation of M1 local and communication subspaces 

decreased significantly with M2 inactivation (Fig. 1.8g), indicating a decoupling between 

the local and cross-area dynamics. This decoupling may provide a mechanism for 

resilience of local dynamics, which could create robustness in the event of distant network 

damage. Importantly, the changes in M1 cross-area dynamics were not due to changes 

in overall M1 firing rate, which did not change significantly (23.4 Hz ± 4.0 for Baseline; 

18.6 Hz ± 3.3 for M2 Muscimol; mixed effect model, p = 0.157). Furthermore, mean M1 

local covariance did not change, indicating stability in local M1 connectivity (0.24 ± 0.06 

shared variance/total variance for Baseline; 0.19  ± 0.04 shared variance/total variance 

for M2 Muscimol; mixed effect model, p = 0.458, see Materials and Methods). 
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Discussion 

This study outlines a new approach to understanding interactions between two nodes in 

a neural network. We analyzed how dynamics in a cross-area communication subspace 

interact with local population dynamics. First, we showed that computational methods that 

maximize either local or cross-area covariance identify distinct local and communication 

subspaces. This suggests that activity that might have been previously considered ‘noise’ 

by local-only dimensionality reduction methods may actually contain important signals 

transmitted from a partner area. Second, we show that cross-area population dynamics 

become markedly more related to both reach initiation and reach duration with learning. 

Through causal manipulations, we found that local M2 inactivation disrupted M1 cross-

area population dynamics as well as reach execution. The remnant M1 cross-area 

population dynamics were attenuated but still predictive of single-trial behavior, indicating 

maintenance of meaningful activity in M1. However, the attenuation of M2’s influence on 

M1 local population dynamics prevented top-down guidance of learned behavior, i.e. 

slower reaction to environmental cues and less efficient reaches. These results 

demonstrate that communication and local subspaces are distinct, that learning shapes 

the content of their shared information, and that execution of learned skills depends on 

transmission of top-down task information through cross-area population dynamics. 

 

Distinct local and cross-area population dynamics enable flexible communication 

A key result of our study is that methods that maximize local variance, such as FA and 

PCA, find different population dynamics than methods that maximize covariance between 
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regions, such as CCA (used here) or reduced rank regression (used in ref. 23). Although 

activity projected onto local and communication subspaces may look qualitatively similar 

in well-trained animals (Fig. 1.6a), neuron weights remain distinct and the subspaces 

have a consistent ~ 45º angle between them throughout learning (Fig. 1.2e,f), indicating 

that the computations underlying these dynamics remain distinct. Segregation of local 

computations and communication processes could allow for selective information routing 

23. For example, M2 may share a different communication subspace with striatum 38, 

allowing M2 to send different signals to M1 and striatum. A similar separation between 

local and communication subspaces has been found in visual cortex23. As distinct 

subspaces for local and cross-area population dynamics have now been identified in both 

sensory and motor systems, functional compartmentalization may be an important 

general principle of communication between nodes of cortical networks. By showing that 

cross-area population dynamics can explain both learning gains and behavioral deficits 

resulting from M2 inactivation, our work provides evidence that such communication 

subspaces have functional, behavioral relevance. 

The idea that cortical regions may communicate via patterns of coordinated population 

dynamics presents an alternative understanding of functional connectivity to well-known 

theories like communication through coherence 39. While communication through 

coherence relies on gating communication through phase alignment, communication 

through subspaces relies on routing information through functional cross-area dynamics, 

irrespective of downstream activity or the presence of oscillations. The presence of 

neurons with high weights for both local and communication subspaces suggests a 

mechanism for calibrating the strength of information transmission between cross-area 
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and local computations. Namely, modifying the strength of synaptic connections between 

the dominant cross-area neurons and local neurons with weaker cross-area connections 

– in either the upstream or downstream region – could change the strength of signal 

transmission, allowing for bi-directional control over communication. 

 

Cross-area population dynamics explain single-trial behavior 

Using computational methods that specifically identified cross-area population dynamics, 

we found that learning differentially affects the correlation of M2-M1 cross-area activity 

and the mapping of cross-area population dynamics relative to behavior. The maximum 

correlation strength between M2 and M1 cross-area population dynamics did not change 

with behavior (Fig. 1.3), indicating that the connectivity that determines shared variance 

between the two regions is not determined by behavioral states. However, learning did 

strengthen the coordination of task information between local and cross-area population 

dynamics (Fig. 1.6), as well as their link to behavior (Fig. 1.4, 1.5).   Our results suggest 

that the cross-area dynamics are an important mediator of this change.  This is further 

supported by observed lack of a change in the correlations in communication space 

between the two areas with learning. 

Although learning was not associated with changes in the correlation strength of cross-

area population dynamics, it was associated with changes in their mapping to behavior. 

Past work has proposed that the role of M2 is to provide top-down control and contextual 

information to M1 3–5,17,40. Here, we provide insight into what such a signal might look like, 

and how it evolves with learning. In early learning, when behavior was exploratory and 

highly variable, high amplitude cross-area dynamics were less related to specific 
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behavioral timepoints (Fig. 1.4a,c), and modulation of communication subspace activity 

was only weakly related to reaching (Fig. 1.5a,d).  However, even at this early stage, 

reaches with higher communication subspace modulation tended to have shorter 

durations (Fig. 1.5c). After the task was learned, the relationship between communication 

subspace modulation and behavior was amplified (Fig. 1.4, 1.5). Notably, the single-trial 

M2-M1 cross-area dynamics corresponding to similarly efficient, short duration reaches 

in early and late learning were not identical in early and late learning (Fig. 1.5c). This 

argues against the notion that pre-existing representations of efficient movements are 

simply selected for through the process of learning. Instead, our results support the idea 

that learning transforms 41 and amplifies the neural signals for behaviors that are being 

selected. This finding also highlights the feasibility and importance of analyzing single-

trial neural activity and behavior in order to understand highly variable behavioral states 

such as early learning.   

 

“On-manifold” causal manipulation of downstream neural activity 

Finally, the relationship between cross-area population dynamics and behavior appears 

to be causal, since M2 inactivation disrupted both M1 cross-area population dynamics 

and reaching behavior (Fig. 1.7, 1.8) while leaving local properties of M1 intact (i.e. firing 

rates and proportion of variance shared locally). Examining local activity during upstream 

inactivation provides a valuable approach to differentiating between activity dynamics 

generated locally and those propagated from top-down influences. Such analyses are 

impossible in purely correlative studies, and, paired with same-day establishment of 

cross-area dynamics, demonstrate a novel approach to understanding how several axes 
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of variance and information encoding overlap 42 and interact within functional neural 

systems. Furthermore, our simultaneous recording of M1 activity during M2 inactivation 

demonstrates that, when M2 inputs are removed, M1 is still within its native manifold, as 

measured through M1 mean firing rate and local shared variance. This is important 

because there has been increasing concern that acute changes in input to an area can 

perturb behaviorally relevant local population dynamics 43,44.  Importantly, rats do produce 

some successful reaches both during M2 inactivation and in early learning, although they 

are more infrequent and less efficient than during the intact learned state. Together, this 

demonstrates that M1 is independently capable of producing functional reach-to-grasp 

behavior, and that the top-down input from M2 is a learned signal, biasing M1 towards 

more effective behavior. This is concordant with long-standing models of top-down M2-

M1 interactions during learning 3 and reinforces the view that, while M2 and M1 both 

contain representations of movement, M2 is particularly important for learned, complex 

skills 2,4,45,46.  

 

Conclusion 

Our results provide direct evidence that M2-M1 cross-area neural population dynamics, 

that are increasingly modulated by task learning and performance, become coupled to 

local population dynamics in M2 and M1 with learning. Knowledge of this phenomenon 

should help to better understand mechanisms of neural plasticity and functional 

properties of large-scale, hierarchical networks in the context of flexible, learned skilled 

motor behaviors. 
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Materials and Methods 

Animal Care. 

All procedures were in accordance with protocols approved by the Institutional Animal 

Care and Use Committee at the San Francisco Veterans Affairs Medical Center. Adult 

male Long Evans rats (n = 10, 250–400 g; Charles River Laboratories) were housed in a 

12-h/12-h light–dark cycle. All experiments were done during the light cycles. Rats were 

housed in groups of 2 animals prior to surgery and individually after surgery.  

Surgery. 

All surgical procedures were performed using a sterile technique under 2–4% isoflurane. 

Surgery involved cleaning and exposure of the skull, preparation of the skull surface 

(using cyanoacrylate) and then implantation of the skull screws for overall headstage 

stability. Reference screws were implanted posterior to lambda and ipsilateral to the 

neural recordings. For experiments involving physiological recordings, craniotomy and 

durectomy were performed, followed by implantation of the neural probes. For 

experiments involving only infusions, burr holes were drilled in the appropriate locations, 

followed by implantation of the cannulas. Postoperative recovery regimen included the 

administration of 0.02 mg per kg body weight buprenorphine for 2 days, and 0.2 mg per 

kg body weight meloxicam, 0.5 mg per kg body weight dexamethasone and 15 mg per 

kg body weight trimethoprim sulfadiazine for 5 days. All animals were allowed to recover 

for 1 week prior to further behavioral training.  

Electrode array and cannula implants. 

Rats were implanted with two 32-channel tungsten wire probes (TDT or Innovative 
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Neurophysiology), one each in M1 (+0.5 AP, +3.5 ML, -1.5 DV) and M2 (+4.0 AP, +1.5 

ML, -1.5 DV), contralateral to reaching arm. Infusion cannulas were implanted in M2 (+4.0 

AP, +1.5 ML, -1.5 DV) for infusion-only animals. For rats with both M2 electrode arrays 

and cannulas, the cannula was attached to the electrode array prior to surgery.  

Pharmacological infusions. 

Rats were anesthetized with 2% isoflurane before infusions. We injected 0.5 - 1uL (1 

μg/μl) 47 of the GABA receptor agonist muscimol into contralateral M2 (infusion rate: 

1nl/min) through a chronically implanted cannula using a Hamilton infusion syringe. The 

infusion syringe was left in place for at least 5 min post-infusion. Rats were allowed to 

recover in their home cages for 2 hours before starting behavioral testing.  

 

Histology. 

Final placement of the electrodes was monitored online based on implantation depth and 

verified histologically at the end of the experiments. Rats were anesthetized with 

isoflurane and transcardially perfused with 0.9% sodium chloride, followed by 4% 

formaldehyde. The harvested brains were post-fixed for 24 h and immersed in 20% 

sucrose for 2 days. Coronal�cryostat sections (40-μm thickness) were mounted with 

permount solution (Fisher Scientific) on superfrosted coated slides (Fisher Scientific). 

Images of a whole section were taken by a HP scanner, and microscope images were 

taken by a Zeiss microscope.  
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Behavioral training. 

We used an automated behavior paradigm to train rats to perform dexterous reach-to-

grasp movements30,35. Rats learn to reach through a narrow slot to grasp and retrieve a 

45 mg pellet from a shallow dish (i.e. pellet holder) placed ~1.5 cm outside the behavioral 

box 34. Prior to implantation, rats were handled and habituated to the behavioral box for 

at least one day, then manually prompted to reach for a pellet 10-30 times to determine 

handedness. Handedness was determined when rats reached with the same hand for 

>=70% of at least 10 test trials. The start of each trial was signaled with a tone and the 

opening of a door allowing access to the pellet. Trials ended when the door was closed, 

which was triggered either by the pellet being dislodged from the pellet holder, or, if this 

did not occur, ~15s after door opening.  

 

Behavioral training for learning animals. 

Once handedness was determined, rats were implanted with neural probes (see 

Surgery). For two days before behavioral training, rats were food restricted, followed by 

feeding animals a fixed amount during the course of training. During behavioral training, 

rats were placed in an automated reach box and completed 38-300 trials per day. The 

‘early learning’ training day was the first day on which the rat completed at least 30 trials. 

The ‘late learning’ training day was the second consecutive day on which the rat 

performed with at least 45% success rate.  
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Behavioral training for M2 inactivation animals. 

Once handedness was determined, rats were trained until their success rate reached a 

plateau (>2 consecutive days with performance above 45% and > 100 completed 

trials/day), after which they were implanted with infusion cannulas alone (n=3 rats), or 

with infusion cannulas and electrodes (n=3 rats) (see Surgery). Rats were allowed at least 

a week of recovery after surgery before beginning behavioral testing. Rats were re-trained 

until plateau performance (>2 consecutive days with performance above 40%). On M2 

inactivation days, rats performed 100 reach trials before receiving pharmacological 

infusions. After 2 hours of rest post-infusion, rats were re-tested for 100 trials. 

  

Behavioral analysis. 

Rat behavior was video recorded using a side view camera (30 - 100 Hz) positioned 

outside the behavioral box, perpendicular to the main direction of movement. Each rat’s 

reach hand was painted with an orange marker at the start of each day. Reach videos 

were viewed and semi-automatically scored to obtain trial success, hand position, and 

time points for reach onset, and grasp onset. To characterize motor performance, we 

quantified reach duration, distance travelled, maximum movement speed, and pellet 

retrieval success for each trial. Percent reach success is the percent of trials on which the 

pellet was retrieved during a single day of training, excluding trials in which the rat did not 

dislodge the pellet from the holder or displayed abnormal behavior (i.e. licking, reaching 

with the wrong hand). Reach duration for each trial was defined as the time from the start 

of reach to onset of grasping or when the paw first touched the pellet if no grasping 

occurred on that trial. Reach distance was the sum of the path travelled during that time. 
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Electrophysiology data collection. 

We recorded extracellular neural activity using tungsten microwire electrode arrays 

(MEAs, n = 7 rats, TDT or Innovative Neurophysiology). We recorded spike and LFP 

activity using a 128–channel TDT–RZ2 system (TDT). Spike data was sampled at 24,414 

Hz and LFP data at 1,018 Hz. Analog headstages with a unity gain and high impedance 

(~1 GΩ) were used. Snippets of data that crossed a high signal-to noise threshold (4 

standard deviations away from the mean) were time-stamped as events, and waveforms 

for each event were peak aligned. For 2 animals, MEA recordings were sorted offline 

using superparamegnetic clustering program (WaveClus 48). For 5 animals, MEA 

recordings were sorted offline using a density-based clustering algorithm (Mountainsort 

49). Clusters interpreted to be noise were discarded, but multi-units were kept for analysis. 

Trial-related timestamps (i.e., trial onset, trial completion, removal of pellet from pellet 

holder, and timing of video frames) were sent to the RZ2 analog input channel using an 

Arduino digital board and synchronized to neural data. 

 

Neural data analysis: local neural subspace and population dynamics. 

We used Factor Analysis (FA) to define local neural dynamics 50,51. FA models the joint 

distribution of N neurons’ spike counts (rank N) as the sum of a mean rate d for each 

neuron (rank N), private signals with diagonal covariance R (rank N x N), and shared 

signals corresponding to latent factors z (rank k, k < N).  

 

To estimate the number of latent dimensions in each dataset, we performed 5-fold cross-

validated FA on the dataset using k = 1:N factors and estimated the log likelihood from 
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each iteration. We averaged the log-likelihood from the 5 iterations for each candidate 

dimensionality and identified the dimensionality which yielded the highest log likelihood. 

We then fit using this dimensionality and estimated the number of dimensions needed to 

account for 75% of the shared variance, elsewhere referred to as the ‘main shared 

variance’ 7. The mean value across all datasets was 3.7, and we conservatively chose to 

use k = 3 factors for all of our analyses (for all datasets 3 < N).  

 

To visualize the time course of shared variance on each trial, we used FA to create neural 

trajectories of each region’s population firing on each trial. The models were built using 

neural data binned at 100ms, from -1s to +1s surrounding the time of grasp onset, 

concatenated for all trials. Results were not qualitatively different if only data from reach 

onset to grasp onset was included to build the model. For visualization only, data was 

interpolated to 10 ms resolution using a spline fit. 

 

Neural data analysis: cross-area neural subspace and population dynamics. 

Communication subspaces were defined using Canonical Correlation Analysis (CCA), 

which identifies maximally correlated linear combinations between two groups of 

variables 52. Neural data in M2 and M1 was binned at 100ms, and data from -1s to +1s 

surrounding time of grasp onset was concatenated across trials. CCA models were fit 

using the MATLAB function canoncorr. The models’ performance was evaluated using 

the R2 of the top canonical variable (CV) across 10-fold crossvalidation. Significant 

predictive performance was calculated by comparing the R2 of each canonical variable to 

the R2 of the top CV in a trial-shuffled bootstrap distribution. Some datasets had 2 or 3 
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significant CVs, but we worked with the top CV only since the top CV was significant for 

all datasets. Results were not qualitatively different if only data from reach onset to grasp 

onset was included to build the model. For visualization only, data was interpolated to 10 

ms resolution using a spline fit. 

 

Neural data analysis: subspace alignment. 

The alignment between the subspaces defining the local and communication subspaces 

was calculated using the MATLAB function ‘subspace’. Weights for all 3 factors were 

included for the local subspace. Weights for only the top 1 canonical variable were 

included for the communication subspace. 

 

Neural data analysis: reach start signaling 

To calculate the difference in communication subspace (CS) activity before reach 

initiation versus during reach initiation, we defined a ‘pre-reach period’ as -2s to -0.1s 

before reach initiation and a ‘reach initiation’ period from -0.1s to +0.3s surrounding 

reach initiation. CS activity from each of these periods was concatenated across trials to 

then calculate the median CS activity value. The difference between median CS activity 

during pre-reach and reach initiation was calculated for each animal. Statistics were 

calculated using mixed effect modeling across animals.  

 

For reach start prediction, activity from pre-reach and reach initiation was labelled as ‘0’ 

or ‘1’, respectively, which was then used as the response values to train a logistic 

regression model using the MATLAB function ‘fitglm’. The probability that CS activity 
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values corresponded to a timepoint during reach initiation was returned as scores. We 

then used these scores to compute the receiver operating characteristic (ROC) curve of 

the classification results using the MATLAB function ‘perfcurve’. The area under the 

curve (AUC) was returned for each animal, and these values were used in mixed effect 

modeling to detect difference in pre-reach versus reach initiation activity during early 

versus late learning, and baseline versus muscimol behavior. 

 

The logistic regression model was used to calculate the probability of reach initiation 

based on CS activity on single trials. We calculate the single-trial difference in the mean 

predicted probability of reach initiation during the pre-reach versus reach initiation 

periods. We compared this difference using all trials in early versus late learning, and 

baseline versus muscimol behavior. We plotted the median probability of reach initiation 

across trials aligned to reach initiation. 

 

Neural data analysis: neural reach modulation. 

Single-trial neural reach modulation of each factor defined using FA and each canonical 

variate defined using CCA was calculated using the signal processing d’ (d-prime) signal 

sensitivity metric defined by the equation below 53, where ! indicates the mean and 

"	indicates the standard deviation of the signal. For each trial, the ‘reach’ period was 

defined as -0.1 s before reach onset to + 0.1s after grasp onset; the ‘baseline’ period was 

defined as a length of time equal to the reach period, ending 1s before the start of the 

reach period. For each trial, the signal was the absolute value of the difference between 

each datapoint and the mean of the baseline period. The median value from the baseline 
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period was subtracted from both the movement signal and the baseline signal before 

calculating the single-trial modulation value (d’), as below. For Fig. 1.6, the calculation of 

mutual information between local and cross-area signals, both signals were normalized 

to their max values before calculating the single-trial modulation value (d’).  

 

 

$% = 	
!'()*+ − !-).(/01(

1
2 "'()*+ + 	"-).(/01(

 

 

Each factor defined using FA defined activity of one local subspace axis. Activity of all 

factors was included in calculations of overall neural reach modulation. When activity of 

only one factor is visualized, we chose the factor accounting for the largest proportion of 

shared variance (i.e. the top factor). 

 

Neural data analysis: mutual information. 

To calculate the concordance in neural reach modulation in trial-to-trial local and cross-

area neural reach modulation, we used the mutual information equation below. X and Y 

are the set of single-trial neural reach modulation values from local and communication 

subspace activity.  

 

5 6; 8 = 	 9 :, < ∗ >?@
9 :, <
9 : 9 <

$:	$<
A∈CD∈E

 

 

To obtain the normalized mutual information, this value was divided by 9 : 9 < . 
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Neural data analysis: mean local covariance. 

Each neuron’s shared over total variance was calculated as in Athalye et al., 2017 7. 

Briefly, the subspace of shared variance is represented as the matrix of factor weights U 

(N x z), where each column contains the weight of each neuron’s firing rate for that factor. 

The covariance matrix is calculated as U*UT. Each neuron’s variance can be broken down 

into private variance (the diagonal of R) and shared variance (the diagonal of the 

covariance matrix). Each neuron’s shared over total variance is calculated as shared / 

(shared + private variance). 

 

Statistical analysis. 

Unless stated otherwise, all statistical tests were done using hierarchical mixed-effect 

models using the MATLAB function ‘fitlme’ and are written as mean ± SEM. Rat identity 

was always considered a random effect. When calculating changes in neural reach 

modulation between early and late learning, we included reach duration as a covariate to 

control for changes in reach duration between early and late learning. When calculating 

the relationship between neural reach modulation and reach duration, we included 

learning stage (early vs. late) as a covariate.  



	 40	

Acknowledgements 

We thank C. Campillo Rodriguez for assistance with histology; S.J. Won for assistance 

with perfusions and imaging; N. Hoglen, L. Tian, P. Khanna, and P. Shirvalkar for 

providing comments on the manuscript. Funding: This work was supported by fellowship 

awards from the National Defense Science and Engineering Graduate Fellowship 

(NDSEG, https://ndseg.asee.org/) the UCSF Discovery Fellows Program, and the 

Markowski-Leach Fellowship, the UCSF Medical Scientist Training Program (to T.L.V.), 

and the UCSF Neuroscience Graduate Program (to T.L.V. and K.D.). Additional funds 

come from the Department of Veterans Affairs, Veterans Health Administration (VA Merit: 

1I01RX001640 to K.G) and National Institute of Mental Health, NIH (5R01MH111871 to 

K.G.); and start-up funds from the UCSF Department of Neurology to K.G.. K.G. also 

holds a Career Award for Medical Scientists from the Burroughs Wellcome Fund 

(1009855) and an Independent Scientist Award (1K02NS093014) from the National 

Institute of Neurological Disorders and Stroke, NIH. The funders had no role in study 

design, data collection and analysis, decision to publish, or preparation of the manuscript. 

Author contributions: T.L.V., K.D. and K.G. designed the study. T.L.V. and K.D. 

conducted all experiments and analyses. T.L.V., K.D., and K.G. wrote the manuscript. 

Competing interests: The authors declare no competing interests. Data and materials 

availability: The data sets generated and analyzed in the current study (and the 

associated custom code created in MATLAB) are available from the corresponding author 

on reasonable request. 

  



	 41	

Figures 

  



	 42	

 
  



	 43	

Figure. 1.1. Parsing local and cross-area neural signals.  
(a) Local and cross-area inputs drive neural population activity. (Top) Illustration of neural 
data being recorded simultaneously in M2 and M1. (Bottom) Activity from each neuron 
was binned at 100ms. (b) Population activity has local and communication subspaces. 
(Left) A multi-dimensional neural space can be defined using the activity of each M2 
neuron as one dimension. Neural population activity was decomposed into local and 
cross-area signals (dotted lines represent axes in the high-dimensional space). Factor 
analysis (FA, shown in blue for M2 and red for M1 throughout) was used to uncover 
signals that were local within M2 or M1. Canonical correlation analysis (CCA, shown in 
gold throughout) was used to uncover signals that were maximally correlated between 
M2 and M1. ϴ represents the angle between the M2 local subspace defined using FA 
and the M2 communication subspace defined using CCA. (Right). Same as left, but for 
M1. Φ represents the angle between the M1 local subspace and the M1 communication 
subspace. (c) Subspace activity represents neural population dynamics. (Left) 
Projections of high-dimensional neural activity on local subspace axes provides low-
dimensional readouts of local population dynamics. (Right) Same as left, but for M2-M1 
cross-area dynamics.  
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Figure. 1.2. Motor behavior engages distinct local and cross-area activity patterns.  
(a) (Top) Rats were trained to perform the reach-to-grasp task. (Bottom) Single-trial 
experimental paradigm. (b) Example reaches in early learning. (Top) Paw trajectories. 
(Bottom) Example consecutive single-trial representations of reaction time and reach 
duration. Right border of plot shows accuracy, with success in gray and failure in black. 
(c) As in (b) but for late learning. (d) With learning, reaction times decreased (mixed effect 
model, 3.61s Hz ± 0.36 for Early; 0.73s ± 0.12 for Late, p = 1.68 x 10-105), reach durations 
decreased (mixed effect model, 1.55s Hz ± 0.12 for Early; 0.43s ± 0.07 for Late, p = 2.17 
x 10-60), and success rates increased (mixed effect model, 27.3% ± 1.7 for Early; 57.6% 
± 2.1 for Late, p = 2.75 x 10-42). (e) Length of stems indicate weights for each neuron’s 
contribution to local or cross-area activity, derived using FA and CCA respectively. 
Neuron weights were normalized by the maximum value for any neuron for that subspace. 
FA and CCA weights are shown offset and opposing for visual clarity; for each subspace, 
most neurons had positive weights. M2 and M1 neuron weights in (Left) early learning 
and (Right) late learning. Mutual information between FA and CCA weights did not 
change with learning (mixed effect model, M2: 0.9 ± 0.1 for Early; 0.9 ± 0.1 for Late, p = 
0.99, M1: 0.9 ± 0.0 for Early; 0.8 ± 0.1 for Late, p = 0.36). (f) Angle in multi-dimensional 
space between local and cross-area subspaces. Black arrow is the mean angle across 
animals, dashed lines show values for each animal. In order, M2 (ϴ) and M1 (Φ) 
subspace angles in (Left) early learning and (Right) late learning. In each region, the 
angles between local and cross-area activity axes were significantly different from zero 
(mixed effect model, M2: p = 6.11 x 10-5, M1: p = 6.34 x 10-5), and are not significantly 
different between early and late learning (mixed effect model, M2: 44.21 deg ± 4.46 for 
Early; 45.00 deg ± 6.04 for Late, p = 0.90, M1: 43.51 deg ± 4.75 for Early; 47.69 ± 6.33 
for Late, p = 0.54).  
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Figure. 1.3. Correlation of M2-M1 cross-area population activity does not change with 
learning.  

(a) Correlation between M2 and M1 components of the M2-M1 cross-area population 
activity during (Left) spontaneous behavior, (Middle) early exploratory reaches, and 
(Right) late directed reaches. Spontaneous behavior was during the late learning day. 
Each data point is M2 and M1 data from a single 100ms bin (n = 4 rats). (b) Quantification 
of (A) as correlation R2 values. Correlation is not significantly different during spontaneous 
behavior, early reaches, and late reaches (mixed effect model, r = 4 rats; 0.31 ± 0.04 for 
Spontaneous, 0.34 ± 0.10 for Early, 0.30 ± 0.08 for Early; Spontaneous vs. Early: p = 
0.66; Spontaneous vs. Late: p = 0.89; Early vs. Late: p = 0.49).  
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Figure. 1.4. Learning drives communication subspace encoding of reach initiation.  

(a) M2-M1 communication subspace activity before reach and during reach initiation for 
example animal. Probability density functions of M1 (top) and M2 (right). (b) Quantification 
of (a) as the difference between pre-reach and reach median activity during early and late 
learning for (left) M2 and (right) M1 communication subspace activity (mixed effect model, 
r = 4 rats. M2: 0.31 ± 0.15 for Early; 1.29 ± 0.18 for Late, p = 0.0017; M1: 0.27 ± 0.14 for 
Early; 1.09 ± 0.12 for Late, p = 0.00053). (c) Example single-trial activity of M2 and M1 
communication subspace activity before and during reach initiation. (Left) Early learning. 
(Right) Late learning. (d) ROC analysis of detection of reach initiation from M2 and M1 
communication subspace activity using logistic regression (example animal). (Inset) 
Difference in reach detection with learning quantified as the area under the curve (AUC) 
for all animals. (mixed effect model, r = 4 rats. 0.66 ± 0.03 for Early; 0.87 ± 0.02 for Late, 
p = 6.63 x 10-5). (e) Example single-trial prediction of reach initiation using the model built 
in (d). (Left) Early learning. (Right) Late learning. (f) Comparison of mean prediction of 
reach initiation during early (grey) and late (gold) learning as in (e). Mean of all trials for 
example animal. Quantified as difference between single-trial mean of pre-reach window 
and mean of reach start window signal. (mixed effect model; 0.02 ± 0.04 for Early; 0.33 ± 
0.01 for Late, p < 0.0001). 
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Figure. 1.5. Learning drives communication subspace encoding of reach duration.  

(a) Example single trial M2 and M1 communication subspace activity in (left) early and 
(right) late learning. Reach duration is indicated by triangles marking reach start (open 
triangle) and reach end (filled triangle). (b) Equation for calculating reach modulation (see 
Methods). (c) Neural reach modulation predicts reach duration. Single-trial neural reach 
modulation for M2 (left) and M1 (right) communication subspace activity is plotted against 
single trial reach duration. Points show randomly subselected trials, with ellipses fitted to 
2 standard deviations of the full dataset. All trials were used for quantification. Single-trial 
neural reach modulation and reach duration are significantly linearly related (mixed-effect 
model, M2: log slope = -0.27, p = 2.36 x 10-44, M1: log slope = -0.23, p = 2.05 x 10-41). (d) 
Reach modulation increases in both M1 and M2 communication subspace activity with 
learning (mixed effect model; M2: 0.53 ± 0.40 for Early; 2.60 ± 0.15 for Late, p = 2.48 x 
10-43, M1: 0.59 ± 0.29 for Early; 2.01 ± 0.10 for Late, p = 1.10 x 10-42). 
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Figure. 1.6. Learning increases information sharing between local and cross-area 
dynamics.  
(a) Example single-trial activity from one animal’s M2 local subspace, M2 and M1 
communication subspaces, and M1 local subspace from (Left) early and (Right) late 
learning. (b) Model diagram of information flow from M2 local dynamics to M2-M1 cross-
area dynamics, to M1 local dynamics. (c) Neural reach modulation (d’) of single-trial 
neural activity in local versus communication subspace in M2 during (Left) early and 
(Right) late reach learning. Neural trajectories were first normalized to their maximum 
values as in (a) before calculating neural reach modulation. (d) Quantification of (c). 
Mutual information between single-trial modulation of local and cross-area dynamics 
increases with learning in M2 (mixed effect model; M2: 0.42 ± 0.08 for Early; 0.84 ± 0.11 
for Late, p = 0.01). (e) As in (c) but for M1. (f) As in (d) but for M1. Mutual information 
between single-trial modulation of local and cross-area dynamics increases with learning 
in M1 (mixed effect model; M1: 0.39 ± 0.07 for Early; 0.64 ± 0.02 for Late, p = 3.22 x 10-

5).  
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Figure. 1.7. M2 inhibition disrupts learned reach behavior and encoding of reach initiation 
in M1 cross-area activity.  

(a) (Top left) Rats previously trained on the reach-to-grasp task were infused with 
muscimol in M2. (Top right) M2 inactivation increased reaction time (mixed effect model, 
1.09 ± 0.48 for Baseline; 2.63 ± 0.12 for M2 Muscimol, p = 4.17 x 10-34), increased reach 
duration (mixed effect model, 0.46 ± 0.10 for Baseline; 0.89 ± 0.06 for M2 Muscimol, p = 
3.02 x 10-13), and decreased success rate (mixed effect model, 56.78% ± 4.60 for 
Baseline; 37.43% ± 2.89 for M2 Muscimol, p = 3.62 x 10-11). (b) Experimental paradigm 
for evaluation of reach behavior during M2 inactivation. (see Materials and Methods). (c) 
Example consecutive single-trial representations of reaction time and reach duration for 
baseline (left) and muscimol inactivation (right). Right border of plot shows accuracy, with 
success in gray and failure in black. (d) (Left) Neural activity from M1 communication 
subspace before (black) and during (yellow) reach initiation during baseline trials. M1 
communication subspace neural weights were defined during baseline period and used 
to calculate neural activity during both baseline and M2 inactivation trials. (Right) As in 
Left, but during M2 inactivation trials. Activity during reach initiation is shown in grey. (e) 
Quantification of (d) as the difference between median pre-reach and reach activity during 
baseline and M2 inactivation trials in M1 communication subspace (mixed effect model, r 
= 3 rats. 0.35 ± 0.06 for Baseline; 0.03 ± 0.09 for M2 Muscimol, p = 0.02). (f) Detection of 
reach initiation from M1 communication subspace activity using ROC analysis (example 
animal). (Inset) Difference in reach detection quantified as the area under the curve 
(AOC) for all animals. (mixed effect model, r = 3 rats. 0.64 ± 0.03 for Baseline; 0.52 ± 0.04 
for M2 Muscimol, p = 0.02). 
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Figure. 1.8. M2 inhibition disrupts M1 encoding of reach duration.  
(a) Example reach trajectories during (Left) Baseline trials and (Right) M2 Muscimol 
Inhibition trials. (b) Explanatory diagram showing hypothesis that M2 inactivation disrupts 
activity transmission between M1 cross-area and M1 local dynamics. (c) Mean M1 cross-
area neural dynamics during baseline (yellow) M2 inactivation (grey) trials. M1 
communication subspace neural weights were defined during baseline period and used 
to calculate communication subspace activity during both baseline and M2 inactivation 
trials. Shaded areas are 2 x standard error across trials. (d) M1 Communication Subspace 
(CS) neural modulation decreases significantly with M2 inactivation (mixed effect model, 
0.78 ± 0.14 for Baseline; 0.27 ± 0.10 for M2 Muscimol, p = 1.31 x 10-6). (e) Single-trial M1 
CS modulation predicts single-trial reach duration even during M2 inactivation (mixed 
effect model, log slope = -0.26, p = 9.99 x 10-8). Plot shows random subsampling of trials 
across animals, all trials were used in quantification. (f) M1 Local Subspace modulation 
decreases significantly with M2 inactivation (mixed effect model, 1.47 ± 0.59 for Baseline; 
0.85 ± 0.14 for M2 Muscimol, p = 1.64 x 10-5). (g) Mutual Information between M1 local 
and communication subspace modulation decreases with M2 inactivation (mixed effect 
model, 0.67 ± 0.03 for Baseline; 0.56 ± 0.03 for M2 Muscimol, p = 0.01).  
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Figure. 1.S1. M1 and M2 electrode localization.  

(a) Electrolytic lesion sites marking M1 electrode locations for three learning animals. (b) 
As in (a), but for M2.  
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Figure. 1.S2. Elaboration of reach-to-grasp learning behavior.  

(a) Speed profile for example trials in (Left) early exploratory reaches and (Right) late 
directed reached. Single-trial reach duration is driven by efficiency of reach targeting 
rather than maximal reaching speed. (b) Probability distribution of reaction times in (Left) 
early exploratory reaches and (Right) late directed reaches for all animals. (c) Probability 
distribution of reach durations in (Left) early exploratory reaches and (Right) late directed 
reaches for all animals.  
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Figure. 1.S3. Motor behavior engages separable local and cross-area dynamics.  

(a) Length of stems indicate weights for each neuron’s contribution to local or cross-area 
activity, derived using PCA and CCA respectively. Neuron weights were normalized by 
the maximum value for any neuron in that subspace. PCA and CCA weights are shown 
offset and opposing for visual clarity; for all subspaces, most neurons had positive 
weights. M2 and M1 subspace neuron weights in (Left) early learning and (Right) late 
learning. Mutual information between PCA and CCA weights did not change with learning 
(mixed effect model, M2: 0.89 ± 0.07 for Early; 0.78 ± 0.10 for Late, p = 0.29, M1: 0.79 ± 
0.05 for Early; 0.77 ± 0.07 for Late, p = 0.88).  (b) Angle in multi-dimensional space 
between local and communication subspaces. Black arrow is the mean angle across 
animals (n = 4), dashed lines show values for each animal. In order, M2 (ϴ) and M1 (Φ) 
subspaces angles in (Left) early learning and (Right) late learning. In each region, the 
angles between local and cross-area activity axes are significantly different from zero 
(mixed effect model, M2: p = 7.92 x 10-5, M1: p = 6.75 x 10-5), are not significantly different 
between early and late learning (mixed effect model, M2: 66.15 deg ± 6.99 for Early; 69.10 
± 6.26 for Late, p = 0.23, M1: 63.65 ± 6.54 for Early; 75.72 ± 9.25 for Late, p = 0.65). 



	 58	

 
  



	 59	

Figure. 1.S4. M2 saline infusions do not affect learned reach behavior.  

(a) (Top left) Rats previously trained on the reach-to-grasp task were infused with saline 
in M2. (Top right) M2 saline did not change reaction time (mixed effect model, 1.40s ± 
0.38 for Baseline; 1.91s ± 1.12 for M2 Saline, p = 2.10 x 10-5), reach duration (mixed 
effect model, 0.44s ± 0.11 for Baseline; 0.42s ± 0.02 for M2 Saline, p = 0.25), or success 
rate (mixed effect model, 54.95% ± 4.32 for Baseline; 58.13% ± 2.83 for M2 Saline, p = 
0.26). (b) Experimental paradigm for evaluation of reach behavior during M2 saline 
infusion. (c) Example reach from a single animal during (Left) baseline and (Right) M2 
saline infusion. (c) Example consecutive single-trial representations of reaction time and 
reach duration. Right border of plot shows accuracy, with success in gray and failure in 
black. 
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Abstract 

Skilled movements are the foundation of our ability to interact with the environment. 

Learning skilled movements requires multiple cortical regions, such as the primary motor 

(M1) and premotor cortices (M2). While M2 is hypothesized to provide top-down guidance 

to M1, the functional relationship between these regions is still unclear. M1 and M2 are 

often studied in well-trained animals performing motor skills, but in this context, it is 

difficult to discern whether M2 activity is shaping M1 activity or sending signals directly to 

muscles. BMIs offer a way to disambiguate these alternatives. By using just M1 to control 

the BMI, we can effectively select M1 as the sole output of the cortical motor system. 

Unlike natural motor learning, where M2 may be necessary because of its direct motor 

output, in M1 neuroprosthetic learning, M2 can only be necessary via its influence on M1. 

Using a M1-BMI learning task during which we simultaneously recorded in M1 and M2, 

we show that M2 neurons are modulated during M1-BMI learning. Additionally, the 

proportions of M2 neurons modulated are not significantly different that of M1-indirect 

neurons, which also do not contribute to direct BMI control. These results suggest that 

BMI learning engages plasticity similarly in top-down regions in the functional motor 

network as in local neural population.  
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Introduction 

The functional motor network is made of many interconnected cortical and sub-cortical 

regions1. However, the complexity of these connections makes it difficult to assign 

causality between specific neural activity and natural behaviors. Brain-machine 

interfaces (BMIs) provide a tractable approach to understanding the role of populations 

of neurons in behavior. Using BMIs, we can create a causal link between specific 

patterns of population neural activity and the behavior of an external actuator 2. Many 

BMI studies have focused on understanding how different aspects of neural activity 

within single brain regions affect learning3–10, specifically probing the role of intrinsic 

connectivity patterns9–11 (i.e. ‘manifolds’), sleep7,12, and cognitive strategies in BMI 

learning8. While understanding parameters of neural activity within single brain regions 

is critical, this approach cannot tell us how activity coordinated across different brain 

regions contributes to learning and behavior. To address this, it is necessary to analyze 

simultaneous activity from many interacting regions during learning3,13. 

 

In the motor system, cross-area interactions are hypothesized to play an important role 

in learning1,14. However, studies about interactions between regions during learning are 

rare15–17. Findings from these studies are also confounded by the known redundancies 

in motor network projection patterns; for example, forelimb regions in premotor (M2) and 

motor cortex (M1) both send projections to the same segments in the spinal cords18. 

Therefore, it becomes difficult to dissociate the roles of M1 and M2 activity during 

forelimb movements19,20. The prominent anatomic connections between M1 and M2 18,21 

also make lesion and inactivation studies difficult to interpret, as chronic and acute 
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interventions can lead to disruptions beyond the inhibited region22,23 as well as motor 

map changes and functional compensation within intact regions24,25. Some studies of 

M1 and M2 during motor skill learning point to top-down guidance of M1 by M215,21, but 

other studies suggest that the two areas function in parallel26,27. Brain-machine 

interfaces (BMIs) have the potential to clarify this relationship by simplifying the link 

between neural activity and behavioral output (Fig. 2.1). By using a BMI task, we can 

probe the connection between M1 and M2 during M1-driven BMI learning. We 

hypothesize that, although M2 neurons do not contribute directly to M1-BMI 

performance, M2 provides top-down guidance for M1-BMI learning. 

 

This hypothesis predicts several specific findings. First, M2 neurons must be task-

modulated during M1-BMI learning. Without task-specific activity, it is difficult to imagine 

how M2 neurons would contribute to M1-BMI control. Second, M2 neural activity must 

predict M1 activity in order to have a causal influence. Third, disruption of M2 during 

M1-BMI learning must impair learning. Here we provide preliminary evidence for the first 

prediction, and outline an approach for future analyses and M2 manipulations during 

M1-BMI learning.  
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Results 

Four rats were implanted with grids of microelectrodes in M2 and M1 and then trained to 

use M1 neural signals to directly control the angular velocity of a mechanical actuator 

that delivered water rewards 7 (Fig. 2.2a). A linear decoder converted the firing rates of 

two sets of neurons (hereafter referred to as direct unit pools) into the angular velocity 

of the actuator (see Materials and Methods). In three of the four rats, the decoder 

additionally provided visual feedback in the form of a grey circular disk whose location 

on a diagonal line indicated neural state (Fig. 2.2a). We also recorded activity of M1 and 

M2 neurons whose activity was not linked to actuator movements (hereafter referred to 

as M1 indirect units and M2 units, respectively). The decoder was fixed during each 

daily session; consequently, improvements in task performance were exclusively due to 

neural learning mechanisms.  

 

Each trial started with an auditory cue coinciding with the opening of a door allowing 

access to the water spout. If rats achieved the neural firing rate target, success was 

indicated with an auditory cue, and water reward was delivered via a metal spout 

through the slot. If rats failed to achieve the target in the set time, failure was indicated 

with an auditory cue and the closing of the gate, followed by a timeout period. Task 

performance was monitored through two complementary metrics: success rate and trial 

duration. While success rate is a binary measure of the rats’ ability to achieve the target 

neural activity sometime during each attempt, trial duration provides a continuous 

measure of rats’ ability to modulate their neural activity quickly on reaction to trial 
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cueing. Over the course of a typical 2-h robust learning session, rats’ performance 

improved in accordance with both measures (Fig. 2.2b). 

 

M2 neurons are engaged by M1-BMI learning 

Preliminary neural data (n = 2) confirms past studies6,7,12 showing that as rats learn the 

task, both direct and indirect M1 neurons are modulated (Fig. 2.3a). Importantly, many 

M2 units also become task-modulated (Fig. 2.3b), suggesting that, even though no 

muscle movement is required, intrinsic M2-M1 communication drives M2 cortical 

engagement during M1-BMI learning. We quantified each neuron’s task modulation by 

comparing deviations in the peri-event time histogram (PETH) of each neuron to those of 

10,000 artificially-created PETHs in which activity of each trial was circularly shuffled to 

eliminate task-based activity alignment28 (see Materials and Methods). Using this 

approach, we found that 44% of M1-indirect neurons (28 of 63) and 54% of M2 neurons 

(35 of 65) were modulated at the end of trials, which is the timepoint at which neural 

activity determined trial success. These proportions are not significantly different (ΧH test, 

t(1) = 1.13, p = 0.28), suggesting that BMI learning engages plasticity similarly in both 

local and distant populations of neurons. 
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Discussion 

This study uses brain-machine interfaces as a novel approach to understanding 

interactions between two regions in a functional neural system. We analyzed 

engagement of M2 neurons during an M1-driven BMI learning task, and compared M2 

modulation to that of M1 indirect neurons, neither of which are required for BMI control. 

Surprisingly, we found that similar proportions of M2 neurons and M1 indirect neurons 

are engaged by M1-BMI learning, suggesting that task-based cross-area M2-M1 

communication and M1-M1 local communication are comparable, despite much higher 

local anatomic connectivity.  

 

BMI as a tool for circuit dissection 

Although brain machine interfaces are often thought of in terms of therapeutic 

neuroprosthetics, there is also a long history of using BMIs to better understand neural 

circuits and learning. The ability of the brain to adapt and learn to control a fixed 

decoder BMI has been shown in multiple brain regions and in both rodents and primates 

2,4,6,12,13,29–31. As with natural movement, proficient BMI control is associated with 

stereotyped patterns of activity4,6. BMI learning is also sleep-dependent 12 and requires 

corticostriatal plasticity 13. These concordances between natural movement and BMI 

learning suggest that BMI can be used as a tool to understand principles and 

mechanisms of learning which are not unique to the BMI control. However, BMI decoder 

design allows experimenters to determine which neurons are directly causal, opening 

up new avenues for analysis of mechanisms of plasticity which drive task performance. 
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Do M2 neurons directly contribute to M1-BMI control? 

Prior work has shown that, while modulation of M1-direct units increase with learning, 

modulation of M1-indirect neurons decreases with learning6 in a sleep-dependent 

manner 12. As of yet, it is unclear whether M2 neuron modulation increases or 

decreases with multi-session learning and sleep. This dissociation may allow us to 

better understand whether M2 neurons directly contribute to M1-BMI control. An 

increase in modulation (similar to M1-direct neurons) would suggest a causal influence 

on M1-direct neurons, while a decrease in modulation (similar to M1-indirect neurons) 

would suggest that initial M2 neural modulation reflects exploratory strategies during 

early learning which are then culled as learning progresses.  

 

Do M2 neurons contribute to M1-BMI learning? 

While M2 is required for skilled motor learning 32, in natural learning it is impossible to 

dissociate M2’s role in direct control of muscles from its role in top-down guidance of M1 

and other regions in the motor network during learning. BMI experiments provide an 

approach for testing whether M2 activity during early exploration is necessary for M1-

BMI learning. Using retrograde viral vectors containing inhibitory opsins 33, it is possible 

to infect cells from distant regions which specifically project axons to the injection site. 

Injecting such viruses in M1 would allow optogenetic access to M2 cells which project to 

M1. Subsequently inhibiting either the M2 cell bodies or synaptic terminals allows for 

specific manipulation of M2 to M1 signals. As BMI tasks require experimenters to 

choose the neurons which drive the task, it would be possible to select M1-direct 

neurons whose firing rates are affected by manipulation of M2 neural activity. By 
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manipulating M2 neural activity during M1-BMI learning, we would then be able to 

interpret changes in M1-BMI learning as stemming from disrupted M2 inputs. This 

approach is only viable because, unlike many natural motor tasks, rats are able to learn 

a new BMI decoder within a single day 7, permitting both same-day tracking of neurons 

throughout the learning process and the potential for many days of repeated learning 

experiments using the same task.  

 

How are M2 and M1 population interactions coordinated? 

Chapter 1 used computational analysis methods to understand the coordination of local 

and cross-area M1-M2 population dynamics during learning of a skilled motor behavior, 

the reach-to-grasp task. We found that local and cross-area population representations 

of skilled reaching became more similar with learning, suggesting that cross-area 

dynamics participate in coordination and transformation of activity between nodes of the 

motor network. We propose that this transformation of activity takes place in a 

distributed manner across many neurons in both M1 and M2. However, we did not 

touch on how the signals in both regions become temporally synced. To do this, we 

must employ analytic methods which can take into account the temporal relationships in 

population activity, rather than assuming that streams of binned activity are independent 

samples. Studies in non-human primates and rodents indicate that M2 is particularly 

important for sequence learning but not learned sequence execution 34, suggesting a 

dynamic relationship between M2 and M1 during sequence learning. One hypothesis is 

that M2 temporally binds and organizes 15,35 motor network neural activity, and that M1 

activity represents motor primitives whose expression drives submovements 36,37. In 
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contrast, studies in songbirds have found that multiple adult neural sequences 

corresponding to song syllables emerge from the growth and splitting of a common 

precursor neural sequence38. Consequently, both binding and splitting of neural 

sequences seem like viable mechanisms for developing new motor skills. By tracking 

the relative timing and stability of neural sequences in M1 and M2 during M1-BMI 

learning, future experiments may provide a less effector-dependent view on how 

learning drives robust temporal relationships in neural activity (i.e. the 'tiling’ of activity) 

to produce skilled behaviors. Being able to track the functional interactions of causally 

defined M1-direct neurons with both M1-indirect and M2 neurons may also suggest a 

parameters space for inter-neuron activity coordination to use in biologically plausible in 

silico modeling of interacting neural networks.  

 

Conclusions 

Many functions of M2 have been proposed, including preparation of upcoming actions39, 

orchestration of sequential movements1, and new learning of skilled actions 32. These 

different functions can be united in the context of the dynamical systems model of motor 

cortex. There is a growing body of work suggesting that M1 can be understood as a 

dynamical system 29,30,40,41, meaning that it has an internal drive 30 governing how future 

neural states evolve from past neural states. In this view, the role of M2 input might be 

to push the neural state in a different direction, against the established internal 

dynamics of M1. Movement preparation, unfamiliar movements, and transitions 

between sequence elements might all require M2 input because they are times when 

producing the correct behavior requires pushing against ongoing default dynamics of 



	 77	

M1. BMI tasks provide a unique opportunity for training M1 to produce specific 

dynamics and analyze how interactions between M1 and M2 contribute to that process.  
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Materials and Methods 

Animal Care 

All procedures were in accordance with protocols approved by the Institutional Animal 

Care and Use Committee at the San Francisco Veterans Affairs Medical Center. Adult 

male Long Evans rats (n = 4, 250–400 g; Charles River Laboratories) were housed in a 

12-h/12-h light–dark cycle. All experiments were done during the light cycles. Rats were 

housed in groups of 2 animals prior to surgery and individually after surgery.  

 

Surgery 

All surgical procedures were performed using a sterile technique under 2–4% 

isoflurane. Surgery involved cleaning and exposure of the skull, preparation of the skull 

surface (using cyanoacrylate) and then implantation of the skull screws for overall 

headstage stability. Reference screws were implanted posterior to lambda and 

ipsilateral to the neural recordings. For experiments involving physiological recordings, 

craniotomy and durectomy were performed, followed by implantation of the neural 

probes. For experiments involving only infusions, burr holes were drilled in the 

appropriate locations, followed by implantation of the cannulas. Postoperative recovery 

regimen included the administration of 0.02 mg per kg body weight buprenorphine for 2 

days, and 0.2 mg per kg body weight meloxicam, 0.5 mg per kg body weight 

dexamethasone and 15 mg per kg body weight trimethoprim sulfadiazine for 5 days. All 

animals were allowed to recover for 1 week prior to further behavioral training.  
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Electrode array implants 

Rats were implanted with two 32-channel tungsten wire probes (TDT or Innovative 

Neurophysiology), one each in M1 (+0.5 AP, +3.5 ML, -1.5 DV) and M2 (+4.0 AP, +1.5 

ML, -1.5 DV), contralateral to reaching arm. Infusion cannulas were implanted in M2 

(+4.0 AP, +1.5 ML, -1.5 DV) for infusion-only animals. For rats with both M2 electrode 

arrays and cannulas, the cannula was attached to the electrode array prior to surgery.  

 

Histology 

Final placement of the electrodes was monitored online based on implantation depth 

and verified histologically at the end of the experiments. Rats were anesthetized with 

isoflurane and transcardially perfused with 0.9% sodium chloride, followed by 4% 

formaldehyde. The harvested brains were post-fixed for 24 h and immersed in 20% 

sucrose for 2 days. Coronal�cryostat sections (40-μm thickness) were mounted with 

permount solution (Fisher Scientific) on superfrosted coated slides (Fisher Scientific). 

Images of a whole section were taken by a HP scanner, and microscope images were 

taken by a Zeiss microscope.  

 

Electrophysiology data collection 

We recorded extracellular neural activity using tungsten microwire electrode arrays 

(MEAs, n = 7 rats, TDT or Innovative Neurophysiology). We recorded spike and LFP 

activity using a 128–channel TDT–RZ2 system (TDT). Spike data was sampled at 24,414 

Hz and LFP data at 1,018 Hz. Analog headstages with a unity gain and high impedance 

(~1 GΩ) were used. Snippets of data that crossed a high signal-to noise threshold (4 
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standard deviations away from the mean) were time-stamped as events, and waveforms 

for each event were peak aligned. MEA recordings were sorted offline using a density-

based clustering algorithm (Mountainsort42). Clusters interpreted to be noise were 

discarded, but multi-units were kept for analysis. Trial-related timestamps (i.e., trial onset, 

trial completion, removal of pellet from pellet holder, and timing of video frames) were 

sent to the RZ2 analog input channel using an Arduino digital board and synchronized to 

neural data. 

 

General brain-machine interface paradigm 

Rats were trained using an automated behavior box, with components controlled by 

Matlab R2015a and an Arduino running the Adafruit Motor Library V1. Within the box, rats 

were unrestrained. Neural data was recorded and sorted online using software from 

Tucker Davis Technologies: for spout BMI, the software used was OpenEx; for visual 

BMI, it was Synapse. Spike counts from online sorting were imported into Matlab and 

used to control the feedback stimuli (see “Spout BMI” and “Visual BMI” for details). Trials 

started with an auditory cue and the opening of the plastic gate covering a slot in the back 

of the behavior box. When rats achieved the neural firing rate target, success was 

indicated with an auditory cue, and water reward was delivered via a metal spout through 

the slot. If rats failed to achieve the target in the set time, failure was indicated with an 

auditory cue and the closing of the gate, followed by a timeout period. The maximum trial 

length and the timeout period following failures were both manipulated over the course of 

the experiments to encourage learning, and ranged from 10-20s and 5-10s respectively. 

 



	 81	

Spout BMI 

The spout BMI paradigm was used to train n = 1 rat. In this paradigm, feedback about 

progress to the firing rate target was given via the movement of the water spout used for 

reward. Eight “direct” units were chosen based on having good signal-to-noise and neither 

unusually high nor unusually low firing rates. Of the direct units, 4 units were arbitrarily 

assigned to the “positive pool”, and 4 units were arbitrarily assigned to the “negative pool”. 

The same channels were used for all sessions, but we did not directly test for unit 

similarity across days. At the beginning of each session, a 30 minute baseline recording 

was taken and used to fit mean firing rates for each unit. During the task, for every 100ms 

bin, direct unit firing rates were computed, mean subtracted, and summed within pools. 

The “neural state” was computed as s = g * (p - n), where p is the firing rate of the positive 

pool, n is the firing rate of the negative pool, and g is an experimenter-controlled gain 

parameter. The neural state was smoothed by averaging it with its previous value, and 

then used to control the position of the water spout, such that increasing the difference 

between p and n moved the spout towards the rat. Once the spout crossed a threshold 

value, the trial was considered a success. 

 

Visual BMI 

The visual BMI paradigm was used to train n = 3 rats. In this paradigm, feedback about 

progress to the firing rate target was given via the movement of both a visual cue on a 

computer monitor placed outside the behavior box and of the water spout used for reward. 

4-8 “direct” units were chosen based on having good signal-to-noise and neither 

unusually high nor unusually low firing rates. Of the direct units, 2-4 units were arbitrarily 
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assigned to the “positive pool”, and 2-4 units were arbitrarily assigned to the “negative 

pool”. The same channels were used for all sessions, but we did not directly test for unit 

similarity across days. At the beginning of each session, a 5-10 minute baseline recording 

was taken. The baseline data was divided into overlapping 100ms bins. For every bin, 

firing rates were summed within the positive and negative pools, and the difference 

between the two pools was computed. Gamma distributions were fitted to the histogram 

of firing rate differences using the Matlab function fitdist. During the task, for every 100ms 

bin, firing rates were summed within the positive and negative pools, and the difference 

between the two pools was computed. This difference was fed into the cumulative 

distribution function of the baseline distribution to obtain the “neural state”. When the 

neural state crossed an experimenter-defined threshold, the trial was considered a 

success. Typical threshold values were 0.85 - 0.95.  

The neural state was smoothed by averaging it with its previous value, and then used to 

give rats feedback in two ways. First, a computer monitor outside the behavior box 

displayed a circular “cursor” that moved along a line towards a stationary “target” circle. 

The position of the cursor along the line was a direct readout of neural state, moving from 

the top left to the bottom right of the screen (i.e. closer to the rat) as neural state increased. 

Second, the neural state was also used to control the position of the water spout. The 

angular speed of the water spout was limited to 1 degree/s, but otherwise the position of 

the spout was proportional to the neural state such that as neural state increased, the 

spout moved closer to the rat. 
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Neural Analysis: Single-Unit Task Modulation 

We will calculate task-relevant modulation using a bootstrap circular shuffle test28. Prior 

work in our lab on shows that M2 units may be positively, negatively, or multiphasically 

modulated during a natural reaching task, so it is important to use a quantification method 

that accounts for all of these possibilities. The circular shuffle test creates a set of 

surrogate peri-event time histograms (PETHs) by adding random time jitter to each trial 

in a spike raster matrix. If the true PETH lies outside of the distribution of shuffled 

histograms, then that unit is significantly modulated by the trial events. In our preliminary 

analyses, we binned spikes at 10ms, smoothed using a 70ms Gaussian kernel, and used 

10000 bootstrap samples. 
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Figures 

 

 
 
Figure 2.1. BMI Model.  
(a) In natural movement, motor (M1) and premotor (M2) cortex both have subcortical 
output. (b) In BMI learning, M2 can only affect the output via its influence on M1. 
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Figure 2.2. BMI task. 
(a) The rat uses the BMI to bring the water spout to the reward position. In some 
animals, concurrent visual feedback was provided reflecting neural state. The grey 
circle represents the baseline state. The white circle represents the current brain state. 
Movement of the white circle is constrained to the diagonal line. (b) Example single-day 
learning curve for a robust learning session in one rat. The black line reflects a 30-trial 
average of trial duration. The green line reflects a 30-trial average of success rate. 
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Figure 2.3. M2 is modulated by M1-BMI Learning 
(a) Example z-score normalized peri-event time histograms (PETHs) of M1 neural 
activity aligned to trial end for a single learning session in one rat. Units in the top 
section are positively-modulated M1 direct units (pool 1). Units in the middle section are 
negatively-modulated M1 direct units (pool 2). Units in the lower section are M1 indirect 
units. (b) Same as (a) but for M2 neurons. No M2 neurons participate in the BMI 
decoder.  
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Abstract 

Pain is a subjective experience that alerts an individual to actual or potential tissue 

damage. Through mechanisms that are still unclear, normal physiological pain can lose 

its adaptive value and evolve into pathological chronic neuropathic pain. Chronic pain is 

a multifaceted experience that can be understood in terms of somatosensory, affective, 

and cognitive dimensions, each with associated symptoms and neural signals. While 

there have been many attempts to treat chronic pain, in this article we will argue that 

closed-loop deep brain stimulation (DBS) offers an urgent and promising route for 

treatment. Contemporary DBS trials for chronic pain use ‘open-loop’ approaches in 

which tonic stimulation is delivered with fixed parameters to a single brain region. The 

impact of key variables such as the target brain region and the stimulation waveform is 

unclear, and long-term efficacy has mixed results. We hypothesize that chronic pain is 

due to abnormal synchronization between brain networks encoding the somatosensory, 

affective and cognitive dimensions of pain, and that multisite, closed-loop DBS provides 

an intuitive mechanism for disrupting that synchrony. By (1) identifying biomarkers of 

the subjective pain experience and (2) integrating these signals into a state-space 

representation of pain, we can create a predictive model of each patient’s pain 

experience. Then, by establishing how stimulation in different brain regions influences 

individual neural signals, we can design real-time, closed-loop therapies tailored to each 

patient. While chronic pain is a complex disorder that has eluded modern therapies, rich 

historical data and state-of-the-art technology can now be used to develop a promising 

treatment.  
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Introduction 

Chronic pain is a major healthcare problem, and estimates by the CDC suggest that it 

affects more people in the US than heart disease, diabetes and cancer combined 1. 

Central neuropathic pain, defined by the International Association for the Study of Pain 

as pain originating from a lesion of the brain or spinal cord, is often refractory to 

treatments 2. Common pharmacological therapies have marginal analgesic benefit, and 

so far, modern neuromodulation therapies such as spinal cord or deep brain stimulation 

have had limited efficacy over time. Currently, these therapies offer a one-size-fits-all 

approach that is not optimized for individual neural signatures of pain. However, we 

believe that central pain syndromes are particularly good candidate conditions for 

personalized medicine. Each patient’s pain is a multifaceted experience that can be 

understood in terms of somatosensory, affective, and cognitive dimensions, each 

correlated with activity in different brain regions 3,4(Figure 3.1). We hypothesize that 

providing enduring analgesia will be best achieved by identifying patients’ unique 

neurophysiological biomarkers of pain perception across multiple brain regions and 

providing tailored, feedback-controlled deep brain stimulation across those target 

regions. Importantly, we acknowledge that we seek not to abolish all pain perception per 

se, as pain may serve an adaptive role to averting tissue injury. In this article, we outline 

prior approaches to DBS for chronic pain, an approach to identifying neural biomarkers 

of pain, and propose strategies to develop a framework for closed-loop DBS based on 

control theory and state-space paradigms.  
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Hypothesis 

A brief history of DBS for pain 

Chronic pain has been conceptualized as a multidimensional process for many 

decades. Opioids, one of the most common therapies for chronic pain, incidentally 

provide relief for somatosensory, affective, and cognitive aspects of pain and target top 

down modulation of pain sensation 5–7. However, most neuromodulatory therapies such 

as transcranial magnetic stimulation (TMS) and DBS still focus on a single facet of pain, 

originally targeting either somatosensory networks or more recently targeting affective 

regions. These therapies and their outcomes provide insight into the potential and 

limitation of addressing centralized pain syndromes as a single-modality pathology. 

 

DBS for Somatosensory Pain Symptoms  

Early efforts at targeting DBS for pain focused on modulating signals in somatosensory 

networks. Initial inspiration to target these brain regions was inspired by Dejérine and 

Roussy’s descriptions of post-stroke pain syndrome in patients with thalamic infarcts 

involving the spinothalamic pathway 8. In an attempt to silence aberrant activity in 

somatosensory pathways, patients underwent ablations of various segments along the 

spinothalamic tract and the dorsal thalamus 9,10. Eventually, direct electrical stimulation 

of the dorsal column 11, internal capsule 12 and sensory thalamus 13 provided a 

reversible alternative to ablation. 

 

Based on results from intraoperative microstimulation in humans, several groups 

designed studies to disrupt neural signals of different nodes in the 
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somatosensory/nociceptive network. Since 1969, small case series targeting DBS to the 

ventral (or caudal) thalamus (vT), internal capsule, and periventricular / periaqueductal 

grey (PVG/PAG) were conducted with efficacy rates ranging from 23-59% 13–15. To 

extend these case series, Medtronic conducted two large, multicenter, randomized 

controlled trials in the early 1990s for a heterogeneous group of chronic pain conditions 

16. All patients were implanted with bilateral electrodes targeted the vT and PAG. These 

trials established the primary endpoint still used by most modern chronic pain trials: 

>50% reduction of the pain visual analog score (VAS) at one year. However, they were 

aborted in the 1990s, largely due to poor enrollment and participant attrition. Around the 

same time, the FDA granted Medtronic approval of DBS for Parkinson’s Disease (PD) 

and essential tremor and Medtronic never sought market approval for pain indications. 

Common criticisms of Medtronic’s DBS trials for chronic pain include 1) poor patient 

selection due to wide heterogeneity of pain etiologies (i.e. nociceptive pain, neuropathic 

pain, thalamic pain, visceral pain, brachial plexus avulsion, unspecified etc.), 2) a 

minority of purely neuropathic pain syndromes (~30%) and 3) lack of appropriate patient 

follow up. This study used fixed, tonic stimulation parameters ranging from 100-130 Hz 

which were manually optimized at the start of the study for each patient.  It remained 

unclear exactly how electrical stimulation affected targeted regions, but long-term pain 

relief waned likely due to adaptation of the nervous system to continuous stimulation 

and the development of tolerance. Despite this lack of mechanistic clarity, DBS became 

a compelling experimental therapy because it is still preferable to permanent ablation or 

resection of brain tissue which has low analgesic efficacy. 
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Early attempts to stimulate the somatosensory cortex directly failed to provide pain relief 

17. Instead, stimulation of the adjacent motor cortex with arrays of electrodes has been 

successfully used to treat pain syndromes such as pelvic pain 18, trigeminal neuralgia 19 

and phantom limb pain 20, presumably by providing feedback inhibition of S1 inputs 17. 

Efficacy rates of motor cortex stimulation range from 40-60% but significant long-term 

studies are lacking.  

 

DBS for Affective Pain Symptoms 

Based on animal studies implicating limbic system structures in emotional experience 

and expression 21,22, early brain surgery for chronic pain involved anterior cingulotomy 

to alleviate pain. Case studies of these patients described individuals with intact 

somatosensation, but who seemed to lack “emotional tension” 23,24 and lacked 

“emotional reactivity” to pain stimuli 25 without being emotionally blunted.  

 

The earliest reports of DBS induced analgesia were actually serendipitous findings from 

stimulation of septal nuclei in patients with psychiatric disorders in the 1950’s 15. These 

findings were not followed up until the 1960’s, when Lewin and Whitty performed 

intraoperative stimulation of the cingulate cortex which produced transient analgesia. 

 

Modulating the affective component of pain has reflected a paradigm shift for DBS in the 

21st century. Recent studies measuring cerebral blood flow with positron emission 

tomography (PET) or functional magnetic resonance imaging (fMRI) have specifically 

identified the dorsal anterior cingulate (dACC), insula, and dorsolateral prefrontal cortex 
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(DLPFC) as key substrates underlying subjective pain experience 26,27 of which the ACC 

may be specific to the affective component of pain 28. Animal studies have further 

corroborated this evidence by demonstrating a causal role for ACC neurons in 

mediating the ‘aversiveness’ of nociceptive stimuli. Fields and colleagues demonstrated 

that destructive lesions of the rostral ACC reduce learned conditioned pain preference 

in a rat pain assay 29. Injecting an excitatory amino acid into the ACC, even in the 

absence of a noxious pain stimulus, actually increases conditioned place preference, 

suggesting that the ACC is both necessary and sufficient for learning the 

‘unpleasantness’ associated with pain stimuli 30. 

 

Two cases of ACC stimulation for spinal cord injury have shown therapeutic promise 31, 

and another recent study demonstrated that stimulation of the anterior midcingulate 

cortex produced an attitude of resilience and ‘will to persevere 32.’ The first  human 

clinical trial using open-loop DBS in ACC for chronic pain showed a significant decrease 

in pain ratings (Visual Analog Score) at one year with enduring relief at a two year time 

point 33,34. A recent attempt to modulate the affective dimension of pain with DBS 

targeting the ventral striatum / anterior limb of the internal capsule for post stroke pain 

did not show improvement in pain scores, but did enhance measures of mood further 

implicating basal forebrain regions in distributed pain circuits 35. 
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Limitations to Current Approaches 

Current clinical paradigms for DBS are all ‘open-loop’ systems, in which tonic 

stimulation is continuously applied to a single brain region. Constraints on electrode 

location and stimulation parameters limit the efficacy of open-loop DBS.  

 

Anatomical limitations  

By restricting stimulation to one brain region, traditional DBS fails to account for the fact 

that the hallmark of pain is not based on strong signals in any single one of the three 

components of pain (somatosensory, affective, and cognitive), but a confluence of 

signals in all three (Figure 3.1). We hypothesize that chronic pain is due to abnormal 

synchronization between brain networks encoding these three dimensions of pain. 

Consequently, effective pain relief is unlikely to be achieved by blunting a single 

component; instead, it will be more effective to decouple and modulate each of them 

through multisite stimulation. Below, we propose the following candidate brain regions 

as appropriate targets to test our hypothesis: primary somatosensory cortex (S1, 

somatosensory), dorsal anterior cingulate cortex (dACC, affective), and orbitofrontal 

cortex (OFC, affective and cognitive) (Figure 3.3). 

 

Stimulation limitations  

By restricting stimulation to fixed parameters, an open-loop strategy cannot take into 

account the fact that pain for a single patient comes in many forms. While some 

instances of pain are evoked by sensory stimuli, spontaneous and constant pain states 

are also influenced by mood and attention 6,36. Based on personal pain symptoms, 
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abnormal somatosensory signals will need to be modulated to different degrees than 

affective and cognitive signals in a time varying manner. Currently, stimulation 

parameters are tediously optimized by a healthcare provider by systematically changing 

variables such as pulse width, frequency and amplitude to find the settings that best 

provide a desired effect. Changes are made on the timescale of patient visits. Ideally, 

adaptive stimulation would change in real-time to match the dynamic changes in a 

patient’s pain state.  

 

Temporal limitations  

Tonic, open-loop stimulation also does not account for the dynamic nature of pain or 

adaptation of the brain over time. Loss of therapy often occurs over months to years 

due to changing impedance of electrodes and development of scar tissue around 

contact sites. A feedback driven stimulation paradigm would ideally account for such 

changes and adjust the contact site or parameters of stimulation appropriately. Closed-

loop DBS provides flexible solutions to limitations of open-loop approaches. Below, we 

describe a theoretical framework for design of a feedback controlled (closed-loop) DBS 

system to address the multiple dimensions of chronic pain using state-space control 

theory.  
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Applying control theory to DBS for pain 

Pain can be studied, understood, and treated through different levels of abstraction. 

Prescribing opioids inherently addresses pain as a chemical process. Here we will 

address pain as a network process. Through this lens we will analogize pain to a 

dysfunctional signal within an electrical network, which itself is limited to a few 

components within the central nervous system. In this analogy, managing pain can be 

addressed as a control systems problem, in which the brain is the component we are 

trying to regulate, and the DBS device is the control box. The availability of different 

control systems, particularly open-loop versus closed-loop devices, leads to different 

goals and approaches. However, no artificial system will be a full substitute for a healthy 

human pain system, which relies on access to widespread brain regions to provide pain 

control that is influenced by mood, social context, physical modality, emotional valence, 

attention and temporal structure. We suggest that both open-loop and closed-loop 

strategies should set realistic goals, such as identifying and preventing both constant 

and spontaneous pain states and/or giving patients more control over their pain 

treatment.  

 

Mapping DBS onto a control framework 

We would like to clearly map out the analogy between classic control schemas and pain 

control through external devices. Figure 3.2A shows the classic layout of a feedback 

driven control system, and Figure 3.2B shows how different components of DBS as a 

medical intervention map onto each role. The system in question is the brain itself, 

specifically the pain-related regions with pathological pain signals. The system output is 
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an observable biomarker which we hypothesize as giving an accurate, relevant, and 

temporally appropriate view into the patient’s pain state. The sensor is any implanted 

recording electrodes (e.g.: microwire arrays, ECoG grids, EEG leads), which records 

neural signals. The reference signal is the desired version (pain-free) of the neural 

signal. A closed-loop device would compare the sensed neural signals to the reference 

signal (measured difference) and trigger the DBS device (controller) to appropriate 

corrective stimulation, with the assumption that stimulation can control the internal state 

of the patient.   

 

An open-loop system would be limited to the components in the red box (Figure 3.2B). 

Since there is no sensor, the output of this system is the patient’s self-report of pain. 

The healthcare provider compares this self-report to a reference, pain-free state and 

can adjust DBS stimulation parameters as needed. The timescale of updates is clinic 

visits, and there is no view into underlying neural signals related to pain. A closed-loop 

system (minimally defined as any system with in which stimulation is based on a sensor 

readout) gives access to neural signals that are interpreted as real-time proxies for the 

patient’s internal pain state. This readout is fed back and compared to a reference 

neural signal. Based on the difference between these signals, a controller makes 

responsive, real-time adjustments to stimulation parameters. It is the hope that closed-

loop paradigms will improve outcomes and reduce side-effects compared to open-loop 

paradigms. 
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State Space Models  

State-space representations are used in control engineering to model systems with 

multiple inputs, multiple outputs and latent state variables which can be used to 

represent dynamic sequences of brain states 37,38. Neural state spaces representations 

can consist of a number of time dependent input variables, such as firing rates from 

neurons or local field potential (LFP) power time series from multiple recording 

channels. If the number of variables (i.e. neurons or electrode contacts) is very large, it 

is useful to first reduce the dimensionality of the data to a set of orthogonal dimensions 

that describes the phenomena of interest with fewer variables 39. This dimensionality 

reduction is commonly done with tools such as principal components or factor analysis 

which can help to identify latent variables that define a new coordinate system. 

Temporal evolution of the neural signal through this coordinate system can be 

interpreted as ‘neural trajectories.’ 

 

Recently, state-space representations have been used to understand the evolution of 

neural signals from motor cortex during reaching tasks 40,41. The relationships between 

external triggers (visual reach target onset, go cue), internal state (movement 

preparation), conscious experience (anticipation), and behavior (movement onset) are 

intuitive for motor processes, and we argue that applying state-space analysis to pain 

dynamics may be similarly useful. While dynamical systems analysis of movement has 

so far mostly relied on single-neuron signals, there are also ample reports of using LFP 

from motor cortex to decode movements and screen cursor location 42–45. Because 

shifts in pain state are slow, multiregional neural phenomena, we predict that LFP 
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changes across multiple brain regions will provide a temporally appropriate neural 

report of pain state fluctuations. Multivariate data such as LFPs from multiple brain 

regions can be represented in a ‘state-space’ for pain (Figure 3.4). These are 

particularly appropriate for analyzing multidimensional phenomena like dimensions of 

pain. In the next section, we will outline the specific nature of the neural signals which 

can be interpreted as biomarkers of internal pain states.  

 

Local Field Potentials Are the Most Tractable Signal for Identifying Biomarkers for 

Closed-Loop DBS 

Candidate neurophysiological biomarkers for chronic pain can be derived from three 

types of signal: single action potentials, local field potentials (LFP) within specific 

frequency bands, and blood oxygen level dependent (BOLD) signals.  

 

Single action potentials are the neural signal with the highest temporal and spatial 

resolution. However, action potentials collected from chronically implanted tungsten or 

silicone probes are unstable due to probe drift and sensitivity to behavioral context (i.e.: 

sensory stimulation, arousal state, etc). Single action potentials from S1 and ACC were 

used in a rodent model of acute thermal pain to decode a pain state defined through 

use of a Hidden Markov Model 46. In this experiment, signals from the population of 

single neurons used to computed baseline and pain states were not stable over even a 

few trials, making the chronic computation of a pain state untenable. Assuming that 

recorded action potentials from human patients would experience similar instability, 

chronic biomarkers based on these signals are not tractable. A potential work-around 
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would be to calculate biomarkers based on dynamics from population neural firing 

combined with high frequency local field potential, a promising strategy used in human 

brain-machine interfaces 47. 

 

Local field potentials represent aggregate population subthreshold activity among a 

spatially localized population of neurons 48. While the term LFP usually refers to signals 

captured by implanted depth electrodes or cortical electrodes, LFP is thought to reflect 

brain oscillations similar to those captured by intracranial electroencephalography 

(iEEG) and magnetoencephalography (MEG). Previous attempts at decoding subjective 

pain intensity with resting state EEG 49 or MEG 50 have used time-frequency 

representations of brain oscillations with high accuracy, supporting the feasibility of 

using LFP to define a pain state. Additionally, LFP signals are 1) easier to record than 

spikes or evoked potentials over single trials 2) often highly reproducible within an 

individual and 3) can be examined by well-developed signal analysis tools 51. Previous 

studies of Parkinson’s disease have successfully used LFP from depth electrodes and 

cortical strips to define biomarkers for tremor and dyskinesia over many days/months, 

providing support for the stability and longevity of this signal type 52. In a closed-loop 

DBS trial for chronic pain, the healthcare team could record from multiple brain regions 

simultaneously to track changes in the multiple parallel dimensions of pain: 

somatosensory (S1, vT, insula), affective (ACC, medial thalamus, and striatum) and 

cognitive (PFC, OFC, insula).  

 



	 107	

Finally, several studies have used blood-oxygen-level dependent contrast imaging 

(BOLD signals) to detect and define pain states in fMRI research 27,53,54. BOLD signal 

can reflect brain activity at a spatial resolution under 1 mm and at a temporal resolution 

of a few seconds 55, providing excellent whole-brain localization and temporal tracking 

of neural activity correlating with pain states. Unfortunately, these signals are not 

available in the ambulatory setting, prohibiting their use in chronic patient therapy. Also, 

current closed-loop DBS probes are not MRI compatible, and it is unclear whether these 

probes would cause signal artifacts once they are implanted. However, asking patients 

to complete a pre-implantation fMRI study to capture neural signals correlated with 

spontaneous and evoked pain would be extremely useful to direct patient-tailored 

anatomic targeting of the probe implant. Ideally, the healthcare team would capture 

simultaneous fMRI and EEG signals, which could also inform the initial search for LFP-

based biomarkers (assuming that LFP signals provide a local view of neural signals 

more grossly captured in EEG) 56. 
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Computing a pain state from regional biomarkers 

Pain is a multi-faceted process that can be broken down into somatosensory, affective, 

and cognitive components 4. Each component can be associated with distinct symptoms 

and brain regions. Importantly, information processing for each component is not fully 

segregated, but instead involves activity in overlapping neural pathways. Currently, 

constellations of somatosensory, affective, and cognitive signs and symptoms are 

integrated by healthcare providers to characterize each patient’s pain state. For 

example, two patients with back pain might have different locations and intensities of 

pain and might also be more or less bothered and distracted by that pain. Ideally, a 

complete description of a patient’s pain state contains all of these components.  

 

Similarly, neural recordings from different brain regions could be integrated to provide a 

multidimensional neural signature of a patient’s pain state (Figure 3.3). Through this 

neural report, closed-loop brain stimulation becomes a tractable strategy for addressing 

dynamic pathological brain states. Based on real-time representations of a patient’s 

pain within a neural state space, a closed-loop system can stimulate different brain 

regions to normalize different components of pain. Such a real-time representation of 

pain requires accurate and reliable detection of neural biomarkers for somatosensory, 

affective, and cognitive components of pain. Like patient-reported symptoms of pain, 

these biomarkers can be thought of as the observable markers of the pain state.  

 

We argue that using LFP signals from three brain regions – S1, dACC, and OFC— 

could be used to calculate multidimensional, patient-specific pain states (Figure 3.3). 
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(While we believe these brain regions are critical sites for detecting pain signals there 

are other valuable regions that have been omitted for clarity in Figure 3.3). Each 

patient’s biomarkers will need to be determined empirically, but based on prior literature 

(elaborated below), we suggest using high gamma power in S1, high gamma and low 

alpha power in dACC, and low alpha power in OFC as starting points.  Patients’ pain 

states endogenously fluctuate through the day, with higher pain experienced at some 

time points (i.e. Mornings, evenings) and lower pain states expected during periods of 

rest, sleep or after medication. To identify biomarkers of pain-states, we suggest 

sampling neural recordings and coincident pain scores during a wide range of naturally 

fluctuating chronic pain states in the ambulatory setting. Once neural data are collected, 

they can be transformed to a time-frequency representation to calculate power spectral 

density. Then, spectral density values within bands of interest (theta, alpha, gamma, 

etc.) should be used as independent variables to predict pain scores (dependent 

variables) (see section 6.1). The most predictive variables or combination thereof would 

serve as optimal biomarkers from each brain region.  

 

Somatosensory Signals 

The somatosensory-discriminatory component of pain encompasses the intensity, 

location and duration of a noxious stimulus (‘what’, ‘where’ and ‘when’). This component 

of pain has been the most widely studied and is often modeled with transient acute 

painful stimuli such as electric shock or a phasic thermal or laser pain stimulus lasting a 

few seconds. As a first step towards decoding chronic pain states, it may be helpful to 

study decoding of acute pain stimuli, though it is critical to distinguish biomarkers of pain 
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perception from mere pre-perceptual stimulus processing. Human functional imaging 

data point to a widely distributed neural network that is activated by acute experimental 

pain perception including the primary and secondary somatosensory cortex (S1 and 

S2), insula, ACC, PFC and thalamus 26,27,57. However, not all signals can strictly be 

interpreted to represent somatosensory perception.  

 

A recent study using magnetoencephalography (MEG) to identify neural correlates of 

cutaneous laser evoked pain in healthy human subjects showed an increase in gamma 

band amplitude (65-90 Hz) in the contralateral S1 at 200-400 msec post stimulus onset 

58. This gamma increase was predictive of subjective pain intensity and persisted when 

controlling for stimulus salience or attentional (cognitive) effects by presenting a 

stimulus repeatedly 59.  Therefore, gamma activity may represent pain perception and 

not just stimulus processing. However, many of these studies lack non-painful control 

stimuli, making it possible that gamma activity reflects somatosensation more 

generally.   

 

Baseline EEG recordings of patients with chronic neuropathic pain show increased 

theta (4-10 Hz), alpha (12-20 Hz) and beta (20-30 Hz) band power in the insula, frontal 

cortices, and anterior cingulate 60,61 which may reflect multiple pain dimensions. There is 

a further trend towards global slowing with lower peak alpha and theta frequencies in 

patients with neuropathic or thermal pain 62 which is not seen in nociceptive pain 63. 

Further, suppression of alpha band oscillations is commonly reported after acute pain 

stimuli (further discussion below,64). Together these data point to band-limited power 
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changes in S1, insula and thalamus as candidate biomarkers for somatosensory- 

discriminative pain perception.  

 

Given the pragmatic need to select a single somatosensory region from which to derive 

pain signals, we suggest recording in S1 rather than vT because cortical regions have 

higher amplitude signals and may be more reliable over time. While optimal 

somatosensory biomarkers are best determined empirically for each patient, filtered 

high gamma power has been a consistent marker in several studies and provides a 

reasonable starting point as a feedback-control signal for closed-loop DBS. After 

correlating the relationship of gamma power to patient-reported pain scores, values for 

gamma power that reliably distinguish high pain states from low pain states can be used 

to define a high pain-state detection threshold. Then, threshold crossing of real-time 

gamma power, in combination with other regional biomarkers, can be used to 

automatically activate analgesic stimulation as needed (see section 6.1 for details). 

 

Affective Signals 

The affective dimension involves the ‘unpleasantness’ of a stimulus, and is tied to 

motivation to rid the pain, changes in mood and anxiety and the degree of suffering 36. 

Brain regions underlying affective encoding were identified using positron emission 

tomography (PET) in subjects undergoing hypnosis to selectively reduce the 

‘unpleasantness’ of acutely painful stimuli 28. While individuals still felt similar intensity of 

pain stimuli under hypnotic suggestion, they were not bothered by these stimuli; they 

showed reduced activation of the ACC (but not S1) which was linearly related to pain 
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unpleasantness. The role of the rostral ACC in the affective dimension of pain is also 

corroborated by a recent large meta-analysis of over 10,000 functional MRI datasets 53 

and animal studies that support the role of the medial ACC in transition from acute to 

chronic pain which has a larger affective component 65.  

 

Tonic pain stimuli lasting longer than 10 minutes are likely closer to modeling chronic 

pain states, and engage distinct brain regions from acute pain stimuli 66. EEG 

recordings in humans point to increased amplitude of gamma band oscillations in the 

cingulate and medial prefrontal cortex after tonic pain stimuli 67,68.  

 

Animal studies also help to identify brain regions and candidate signals that may serve 

as affective biomarkers of pain perception. In a study recording single spikes from S1 

and ACC of rats, a state space model was used to identify neuronal codes underlying 

acute painful thermal stimuli that produce a paw withdrawal reflex 46. One key insight 

from this study was that population spiking activity from S1 provides better sensitivity for 

acute pain prediction, while activity from ACC provides better specificity suggesting that 

a subset of neurons in ACC encode pain information. Simultaneous single neuron 

recordings in mice in S1, vT, ACC and mediodorsal thalamus (MD) show temporal and 

lateralized segregation of encoding of noxious stimuli 69. While S1 and vT cells 

predominantly fired early and contralateral to the pain stimulus, MD and ACC cells had 

long lasting firing which correlates with the longer time course of pain related anxiety or 

mood. These data further support the role of the MD thalamus or ACC in affective pain 
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processing. Because cortical signals provide easier surgical access and higher 

amplitude LFP signals, ACC would be a reasonable initial brain target.  

 

Cognitive Signals 

Cognitive aspects of the pain experience involve implementing successful coping 

strategies, pain anticipation/ expectations and behaviors related to attention and 

distraction 36. Increased attention to a painful stimulus will increase the perceived 

intensity of pain without altering its unpleasantness; distraction from pain can be 

analgesic. Further, pain itself often interferes with attentional processes, making causal 

inference of the role of attention difficult. Cognitive strategies that reduce pain 

perception such as distraction increase the amplitude of EEG activity in the DLPFC, 

orbitofrontal cortex (OFC) and caudal ACC shortly after a pain stimulus 70. Modulation of 

the alpha rhythm is widely associated with the cognitive component of pain.  Intracranial 

recordings in epilepsy patients suggests that increased attention towards a painful 

stimulus is correlated with alpha and beta band activity in the medial PFC and 

parasylvian regions that exert a causal influence over S1; this relationship is the 

opposite with distraction 71. Similar alpha coherence between PFC and S1 is seen in 

ECoGs during pain anticipation 72. Further, the amplitude of frontocentral alpha 

correlates with subjective expectation of pain relief induced by placebo 73. These 

observations support the role of perisylvian regions such as PFC and OFC, and alpha 

band oscillations in the cognitive dimension of pain. 
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Oscillations before the onset of pain can shape the experience of pain and may serve 

as a context dependent biomarker of cognitive control over pain. Two recent studies 

show that the amplitude of pre-stimulus alpha oscillations (12-20 Hz) over 

somatosensory cortex is inversely correlated with pain perception 74,75. However, 

multiple other studies report changes in alpha power of the PFC with attention and 

perception of non-painful stimuli, confounding general interpretation of this effect. 

Functional imaging and EEG studies further point to functional connectivity between the 

PFC, anterior insula and temporoparietal junction that form a ‘salience network’ that 

underlies cognitive control over pain 76. 

 

Based on the available literature, OFC would be a reasonable initial target to identify 

putative pain biomarkers of the cognitive-evaluative dimension.   

 

Multidimensional biomarkers for chronic pain 

By simultaneously recording intracranial LFPs in multiple brain regions, it may be 

possible to identify biomarkers for unique pain states (spontaneous pain flare, evoked 

pain, baseline pain) that are more sensitive and specific than any single brain region 

can provide. Further, frequency band-limited activity between these brain regions is 

interpreted to reflect the flow of information 66,72,77, more accurate prediction of pain 

states may result from calculating phase coherence or amplitude co-modulation 

between each region’s signal. Recent evidence suggests phase or amplitude 

relationships between different frequency oscillations within a brain region may also be 
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informative about information flow 60,78,79 as in a model of closed-loop DBS for 

Parkinson’s Disease 52. 

 

We argue that using LFP signals from three brain regions – S1, dACC, and OFC— 

could be used to calculate multidimensional, patient-specific pain states. While each 

patient’s biomarkers will need to be determined empirically, based on prior literature 

(elaborated below), we suggest using high gamma power in S1, high gamma and low 

alpha power in dACC, and low alpha power in OFC as starting points.  Patients’ pain 

states endogenously fluctuate through the day, with higher pain experienced at some 

time points (i.e. Mornings, evenings) and lower pain states expected during periods of 

rest, sleep or after medication. To identify biomarkers of pain-states, we suggest a 

protocol that involves sampling neural recordings and coincident pain scores during a 

wide range of naturally fluctuating chronic pain states in the ambulatory setting. Once 

neural data are collected, they can be transformed to a time-frequency representation to 

calculate power spectral density. Then, spectral density values within bands of interest 

(theta, alpha, gamma, etc.) should be used as independent variables to predict pain 

scores (dependent variables) (see section 6.1). The most predictive variables or 

combination thereof would serve as optimal biomarkers from each brain region.  

 

Ideally, a multidimensional biomarker (based in regions relevant to dimensions of pain) 

will define a pain ‘landscape’ that will distinguish pain states to be avoided from pain-

free states that are desired (see Figure 3.4). In this theoretical framework, the next 

challenge is characterizing the dynamics of how brain activity in the above regions 
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naturally enters and exits this pain state. As such, the boundaries of a pain state 

biomarker can be established by setting an appropriate threshold. The ideal goal of a 

closed-loop DBS paradigm is to prevent the onset of a pain state, rather than simply 

aborting it once it has commenced. By characterizing the causal consequences of 

different patterns of brain stimulation, we can determine the optimal stimulation 

parameters needed to avoid pain states, at multiple points in the landscape. Neural 

activity is adaptive, however, and this pain landscape may evolve over time making it 

difficult to define stable boundaries of pain-free states. 

 

Computing a reference state 

We can define a pain-free reference state with the same protocol (Section 4.4) used to 

define the boundaries of a high pain-state (Figure 3.4). The role of a reference state is 

to define the range of biomarker values which in turn will guide selection of a threshold 

to trigger stimulation. In practice, a ‘reference’ state would reflect any value of the 

biomarker below a defined threshold for high-pain (i.e. NRS> 7). In this view reference 

can simply be interpreted to mean ‘non-high pain state.’ Empirical data from chronic 

human recordings is needed to understand the stability of pain-state detection 

thresholds. Higher instability would require more frequent re-calculation in order to 

provide a meaningful contrast between the reference and pain states. Ideally, such a 

signal would be usefully stable on the order of months, but, but it may be reasonable to 

perform automated re-calibration monthly or weekly. Potential lapses in therapeutic 

stimulation can be identified by the patient who can trigger recalibration to update the 
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model. This updating will entail definition of new pain-state thresholds and the selection 

of new stimulation parameters. 

 

Alternatively, a reference state can be interpreted to mean a ‘low pain-state’ where 

numerical pain scores would be <3, for example.  The possible utility of separately 

defining such a reference state has been suggested by a computational model for 

closed-loop control for to treat essential tremor in non-human primates 80. In this model, 

investigators developed a closed-loop control system that automatically adjusted DBS 

stimulation amplitude based on the spectral content of simulated LFPs from a cohort of 

100 neurons in the Vim thalamus. Optimal DBS output to suppress tremor replaced the 

tremor-related pathological 

LFP spectrum with LFP patterns similar to those simulated in a ‘reference’ tremor-free 

state. Similar approaches may help control stimulation amplitude in multiple brain 

regions based on expected ‘pain-free’ regional LFP spectra.  
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Modulating a pain state with different stimulation paradigms 

Analogous to how biomarkers are selected to best delimit a pain state, stimulation 

parameters must be optimized to best control the pain state-space trajectory (Figure 

3.4A). The pre-defined goals for stimulation control are to either abort or avoid pain 

states. The stimulation goal and parameter selection will depend on the control 

paradigm: open-loop, patient-triggered, sensor-triggered (on/off), or true closed-loop. 

 

Open-Loop Stimulation 

In an open-loop paradigm, the goal must be to avoid pain states because there is no 

sensor available to detect them (which would be necessary to abort them). Therefore, 

the stimulation parameters must be chosen to maintain the neural state in the pain-free 

zone (see Figure 3.4B). We hypothesize that this is best accomplished by consistently 

de-coupling the neural signals in each pain-related region. For example, leads in S1 and 

ACC could be alternately pulsed at high gamma frequencies to disrupt the ability of the 

two regions to develop pathological coherence. If only one stimulation site is available, 

we suggest targeting ACC rather than S1 or OFC, given recent promise in clinical trials 

34. Decoupling ACC from other regions might be accomplished by tonically inputting 

local entrainment signals that would block information flow about inappropriate pain. 

Similarly, local decoupling has been proposed as a hypothesized target for the 

treatment of hyperkinetic states in DBS for Parkinson’s Disease 81. 

 

Once the stimulation is turned on, the goal is indefinite avoidance of a pain state. 

However, onset of the therapeutic effect may take a few days, as continuous pain states 
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fluctuate on the time course of days, and we expect the pain dynamics to have some 

‘inertia’. In a recent trial of open-loop ACC stimulation for chronic pain 33, there was a 

wash-in period of many days for any therapeutic effect. 

 

Patient-Triggered Stimulation 

In a patient-triggered paradigm, the goal is to abort pain states detected by the patient. 

Effective stimulation must be able to halt pain quickly, making the therapy more suitable 

to modulation of transient, breakthrough pain. Somatosensory signals are the best 

candidates for interruption in a single-region stimulation paradigm because we assume 

they have faster dynamics and often begins ‘upstream’ in the pain triggering process. 

We suggest targeting ventral thalamus or motor cortex (adjacent to S1) for single-

region, patient-controlled gamma-frequency stimulation, based on previous partial 

success of these therapies 82,83. Long-term tolerance to stimulation seen in previous vT 

trials might be prevented by limiting stimulation to brief, patient-triggered periods. 

However, because chronic pain can be also triggered by affective and cognitive events, 

such as stress and rumination, a somatosensory-only detection paradigm leaves 

patients vulnerable to breakthrough pain. Multi-region stimulation in S1 and ACC (or 

OFC) would aim to de-couple these regions, but the insidious time course of pain 

dynamics in ACC and OFC may belie optimal control of breakthrough pain. Prior work 

with ‘preventative’ devices for epilepsy had a 40% failure rate in preventing seizures, 

highlighting the limitations of an abortive strategy for neuromodulation 84. Altogether 

avoiding entry into pain states requires online tracking of the pain state’s ongoing 

dynamics.  
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Sensor-Triggered Stimulation 

Instead of relying on external input, a fixed stimulation protocol can be triggered based 

on the detected position and/or trajectory of the state within in the neural manifold 

(Figure 3.4B). To make this possible, the device must include sensors that can detect 

relevant biomarkers and an algorithm to decode the pain state with a latency short 

enough to allow intervention. This is commonly referred to as adaptive DBS (aDBS). As 

we hypothesize that continuous pain states arise from maladaptive coherence between 

regions involved in in pain processing, multi-area coherence may be an ideal signal to 

track the underlying neural state. We propose tracking gamma coherence between S1, 

ACC and OFC. Preliminary recordings from pain elicited by somatosensory and 

cognitive events (i.e. touch, asking the patient to attend to their pain) would allow 

investigators to determine a threshold of gamma coherence to characterize the pain 

state. Thereafter, coherence values close to that threshold would trigger de-

synchronized stimulation in each region in order to prevent further evolution of inter-

regional coherence. Side-effects of S1-OFC stimulation are unknown, however. It is 

possible that pain dynamics may evolve too rapidly to be interrupted before a noticeable 

pain threshold is breached, leading to breakthrough pain. Decreasing the threshold for 

allowable coherence may address this shortfall. Overall, sensor-triggered stimulation is 

a reasonable staring point in the quest to develop new feedback-controlled paradigms. 

A promising alternative is to implement a closed-loop paradigm with the possibility to 

continuously manipulate underlying neural states.  
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Closed-Loop Stimulation 

In a truly closed-loop system (as we define it), unique stimulation patterns are delivered 

based on the real-time predicted course of the pain trajectory. This is distinguished from 

sensor-triggered stimulation in that in a closed-loop protocol, the same coordinate 

location in a state space may trigger different stimulation patterns or update stimulation 

parameters (pulse width, frequency, amplitude) dependent on the history and context of 

the neural trajectory. For this to be possible, we must create a predictive model of the 

multidimensional pain state such that the future path of each trajectory can be 

determined based on history and the current state 40,85  (Figure 3.4A). There are several 

methods for producing such a model, including (1) modeling the state as a three 

dimensional flow field 86,87, or (2) creating a map outlining the probability of transitioning 

from any point in the field to every other point (i.e. Hidden Markov Models, 88).  

 

Based on the assumption that stimulation can control or influence neural trajectories 

related to pain, the model must additionally contain predictions about the effect of 

stimulation on the pain trajectory (Figure 3.4B). Typically, characterizing the input-output 

(IO) relationship between stimulation and neural state in DBS is a painstaking manual 

process whereby a clinician systematically varies stimulation parameters (pulse width, 

amplitude, frequency) and records consequent changes in the neural state 89,90. A 

promising method to automate stimulation parameter optimization involves the use of a 

‘binary noise’ modulated stimulation pattern whereby a range of parameters are 

stochastically sampled and used for stimulation 91. With simultaneous neural recordings, 

one may use binary noise to define IO dynamics of a closed-loop DBS system more 
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efficiently.  However, both of these methods risk producing uninterpretable IO 

relationships if the timescale of stimulation parameter changes does not match the 

timescale of state space changes (e.g. long wash-in latency for therapeutic effect).  

 

There are many pragmatic barriers to implementing a truly closed-loop system. First, 

only few devices with dual sensing and stimulating functions are approved for chronic 

implant in humans: NeuroPace RNS, while other devices are investigational only: 

Braingate system and Medtronic Activa PC+S device 92–94. Because there are no 

chronic, invasive cortical recordings from candidate stimulation regions in patients with 

chronic pain, it is unclear whether the hypothesized biomarkers will provide sufficient 

observability of the internal pain state. Second, while computing multi-dimensional state 

spaces from neural data is routinely done to visualize offline data, implantable devices 

have not been optimized to perform these computations online. It is unclear what 

amount of computation will be viable to perform for continuous pain monitoring. Third, 

because there have been few long-term successes from small-scale trials of DBS for 

pain, it is unclear whether chronic pain states will be controllable via stimulation. 

Resolving this uncertainty will require a chronic, multi-site, sensing and stimulating 

device that allows for rapid exploration of a large range of stimulation parameters. 

Finally, one of the hopes for closed-loop stimulation is that it will allow for a reduction of 

current dosage (relative to continuous stimulation in open-loop paradigms), thereby 

increasing the device’s battery life and reducing the side effects of unnecessary 

stimulation. However, optimizing stimulation based on battery life will require additional 

trade-offs, such as deciding on a pain threshold at which stimulation will be initiated, 
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limiting duration of stimulation bouts to the minimum required for pain relief, and 

potentially sacrificing benefits of long-term stimulation, such as learned 

desynchronization of pain-related regions.  
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Conclusions 

Pragmatic Considerations for a Closed-Loop DBS Protocol 

Above we provide evidence that spectral power of oscillations within specific frequency 

bands (e.g. theta, alpha, gamma) shows changes in relevant brain regions that may 

predict low or high pain states.  By recording theta, alpha and gamma oscillations from 

the LFP signal in S1, ACC and OFC during natural fluctuations in a patient’s chronic 

pain state, we can compute spectral power density during periods of high pain states 

and so define a neural state space model for predicting chronic pain. For this purpose, 

the low pain state can be interpreted as a ‘baseline’ or reference state.  

 

To compute a time-frequency representation of the raw LFP signal, we use a variant of 

the discrete Fourier Transform (DFT). There are multiple methods to implement a DFT- 

we suggest using the multitaper DFT implemented in the Chronux Toolbox for MATLAB, 

which reduces broadband bias 51.  To adequately sample pain states, we propose to 

use at-home, patient-triggered recordings be collected. Two data collection schemes 

can be used as needed 1) 60-second recordings can be scheduled at pre-set time 

points throughout the day (i.e. 8 am, 12 noon, 4 pm, 8 pm) or 2) activated by patients by 

pressing a button on their DBS programmer. Self-reporting of pain numerical rating 

scores can be done via an automated text-messaging system. For convenience, 

patients can be prompted up to 4 times per day to report pain scores and trigger 

recordings if pre-scheduled recordings are not set. Once a series of Pain scores 

spanning a wide range (at least 5 different values on the numerical rating score) are 
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collected, putative biomarker features can be used (as independent variables) to predict 

high (>7/10) or low (<4/10) pain score (dependent variable). 

 

One possible solution to predicting low vs high pain states is to use multivariate logistic 

regression using biomarker features as independent variables, and low / high pain state 

as the dichotomous independent variable to be predicted. For example, if the ACC 

signal shows increased gamma power, and OFC shows decreased theta power during 

high pain states compared to baseline in an individual patient, predictive value of ACC 

gamma and OFC theta would be established through a multivariate logistic regression 

to predict pain state. A classification table would be used to calculate the probability of 

false positives and negatives, and overall prediction accuracy. In depth methods for 

developing multivariate classifiers based on logistic regression have been presented 

previously 95, as has their personalized application to closed-loop DBS systems based 

on brain-state 96. Using Receiver operating characteristic (ROC) curves, one could then 

calculate optimal threshold values for each biomarker such that real-time crossing of 

ACC gamma or OFC theta power above/below this threshold would activate stimulation. 

This scheme represents a sensor-triggered protocol which is a good first-step 

approximation to building a fully closed-loop system that would adjust stimulation 

amplitude or other parameters based on ongoing neural activity.  

 

Solutions to developing fully-closed loop algorithms and optimizing stimulation based on 

biomarkers have been suggested by computational studies. Recent models have used 

LFP spectra (beta and gamma power) as feedback-control signals to provide efficient 
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and selective target stimulation in Parkinson’s Disease 97 and essential tremor 80. Using 

finite element modelling, anatomical models from imaging data can be combined with 

electrical models to optimize how current is delivered from the DBS electrode 98. 

Further, stimulation patterns derived from computational evolution models may provide 

more battery-efficient stimulation protocols that can augment energy savings afforded 

by closed-loop DBS 99. While explicit models have not been reported for closed-loop 

control in chronic pain states, future studies will need to incorporate multiregional brain 

recording and stimulation in relevant areas to provide analgesic closed-loop DBS.  

 

As of the writing of this paper, our group is currently enrolling patients for participation in 

a feasibility study to develop closed-loop DBS algorithms for chronic neuropathic pain 

(ClinicalTrials.gov ID# NCT03029884). This trial seeks to enroll 10 patients with 

refractory neuropathic pain syndromes over 2 years and aims to develop a personalized 

treatment for multiple pain disorders using the Medtronic Activa PC+S device. 
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Discussion 

The current article makes several important assumptions to create a simple theoretical 

framework for implementing closed-loop DBS for chronic pain syndromes. First, to 

disentangle biomarkers related to the somatosensory, affective, and cognitive 

components of pain, we impose artificial distinctions between brain regions that underlie 

each dimension of pain. We do not actually believe that chronic pain can be divided into 

three segregated, independent components with corresponding brain regions Rather, 

coalitions of cells in specific brain regions provide overlapping and complementary 

information about pain states.  

Second, we would like to acknowledge that DBS provides an artificial input that may 

drive neural signals into unnatural regions of the pain based state space 100. We 

hypothesize that such an induced discrepancy with natural states leads to reduced 

efficacy and increased side-effects. One of the main potential benefits of closed-loop 

stimulation would be to modulate neural signals to stay within natural bounds of 

information processing as seen in endogenous pain-free epochs. 

Finally, the proposed framework assumes that optimal biomarkers come from neural 

signals. However, there are many other correlates of pain that provide useful signals. 

For example, the RESTORE trial matches different spinal cord stimulation parameters 

with different patient body positions, determined from an implanted 3D accelerometer 

101. Adapting stimulation to time of day, medication timing, sleep metrics, and other 

external variables would also improve intervention efficacy. Broadly speaking, we 

acknowledge that open-loop paradigms still incorporate a form of feedback, but on the 

timescale of clinic visits. Ultimately, all stimulation protocols for pain including 



	 128	

personalized closed-loop models are designed based on offline analysis by the 

healthcare team. The most important ‘biomarker’ relevant for determining efficacy will 

always be the patients’ self-report of pain. 
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Figures 

 
 

 
 
Figure 3.1. The Kanizsa triangle can be used to represent a multidimensional framework 
for pain.  
Pain is an underlying state made apparent by three types of observable symptoms 
(somatosensory, affective, and cognitive). Therapies which selectively address a single 
facet of pain risk misinterpreting aspects of symptoms (the “shape” of the symptoms) 
outside of the context of the larger pathology. The optimal way to “break” the pain state 
might lie in modulation (or “re-orienting”) the facets of pain rather than trying to suppress 
them (adapted from https://commons.wikimedia.org/wiki/File:Kanizsa_triangle.svg; 
Accessed on March 14, 2018).  
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Figure 3.2. Block Diagram schematics of closed-loop control systems.  
(A) Classical block diagram of a single-input, single-output negative feedback control 
system, where the measured output of the system is compared to a reference signal via 
a closed-loop, to modify the system output and minimize error (adapted from 102). (B) 
Example block diagram of a multi-input, multi-output closed-loop DBS system where a 
pain signal derived from biomarkers is compared to a reference signal via a feedback 
loop. Multi-regional stimulation is triggered to bring the system closer into the reference 
state. The red box highlights elements of an open-loop paradigm. aAvailable online at: 
https://upload.wikimedia.org/wikipedia/commons/2/24/Feedback_loop_with_descriptions
.svg (Accessed Nov 30, 2017). 
  



	 132	

 
 
Figure 3.3. Pain related brain regions  
(A) Key brain regions related to somatosensory (blue), affective (green) and cognitive 
(orange) pain processing. (Only regions of interest have been included for clarity).   
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Figure 3.4. A multidimensional state space framework can be used to characterize pain 
states, reference states, and goals of DBS paradigms.  
(A) A state space representing neural activity can be defined along the multiple 
dimensions of pain: somatosensory, affective and cognitive. For simplicity, a pain state 
is represented as a single red zone in the upper right corner, with defined threshold 
boundaries (dashed red line). The reference (pain-free) state is any region outside the 
red zone. The dynamics of neural activity that underlie transition from a pain-free state 
towards a pain state are shown as neural trajectories (black arrows). During constant 
baseline pain, there is a self-sustaining neural trajectory confined to the pain state 
(spiral arrow). (B) Different paradigms of DBS accomplish different goals. Tonic, open-
loop DBS aims to maintain neural activity in a constant pain-free state (blue 
arrow).  Abortive, patient-triggered or sensor-triggered DBS aims to push neural 
representations out of the pain state into the reference state (purple arrows). Closed-
loop DBS will ideally deflect neural activity well before entering a pain-state (green 
arrows). 
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Abstract 

This dissertation was dedicated to understanding cross-area cortical communication in 

the context of learning. Specifically, it (1) examined cross-area communication in motor 

cortices during natural movement and BMI learning, and (2) hypothesized that 

pathological cross-area communication can lead to disorders such as chronic pain, and 

that disrupting that coordination provides potential for treatment.   

 

This work is significant for its experimental methodological advances, scientific 

conclusions, and proposed hypotheses. Methodologically, it used a novel strategy to 

understand activity coordinated across two areas in a functional network; it 

demonstrated a viable approach to analyzing single-trial neural activity during variable 

learning behavior; and it directly addressed and analyzed off-target effects during local 

neural interventions. Scientifically, some important contributions of this work are 

updates to our understanding of the effect of learning on cross-area communication. 

Specifically, this work led to surprising conclusions about the differential impact of 

learning on the correlation versus the task-relevance of cross-area activity; introduced 

analyses of coordination between cross-area and local dynamics; and demonstrated the 

causality of local interventions on task encoding in distant brain regions. Finally, this 

work proposed a pragmatic and tractable translational framework for understanding and 

treating diseases that arise from pathological cross-area coordination, notably chronic 

pain. 
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Of course, there are still many limitations to this work, including the use of static 

dimensionality reduction methods which do not integrate important temporal information 

about neural activity; the narrow range of brain regions recorded, the limited number of 

both natural and BMI tasks explored, and the inherent constraints of proposing invasive 

neuromodulation as a therapeutic solution given the current functional limits of DBS 

devices approved for human use. Future work may remedy these limitations and 

expand results in new directions enabled by recent advances in recording and 

intervention technologies, new task paradigms for complex behaviors, and 

computational approaches designed to extract temporal dynamics in population activity. 

 

This chapter expands on each of the above topics, namely (1) the significance of this 

dissertation, and (2) the limitations to the work and consequent future directions.  
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Significance 

Methodological advances  

Use of CCA to understand cross-area neural activity 

Chapter 1 introduced the use of Canonical Correlation Analysis (CCA)1 to extract and 

analyze neural dynamics shared between two brain regions, premotor (M2) and primary 

motor (M1) cortex, during motor skill learning. This approach departs from the traditional 

approach to understanding coordination of dynamics between brain regions, in which 

local, single-area signals are first reduced using dimensionality reduction techniques 

such as PCA or FA, and then compared 2–4. While the traditional approach assumes 

that communicated signals are derived from locally aggregated activity, the approach 

we used instead leaves room for cross-area signals to be distinctly different from locally-

dominant dynamics. The use of a similar method, Reduced Rank Regression (RRR) 

was previously used to analyze neural activity from V1 and V2 in anesthetized non-

human primates and V1 and V4 in awake, behaving non-human primates 5. However, in 

that study neural signals were first stripped of ‘task-activity’ by subtracting out trial-

averaged stimulus-dependent signals. That strategy cannot be used to study neural 

signals during motor learning, as behavior is very variable, making trial-averaging 

particularly inappropriate. Additionally, as neural signals in the brain are neither trial-

averaged or trial-mean subtracted, use of the raw neural signals seemed most 

biologically relevant to understanding mechanisms of plasticity during learning.  
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Analysis of single-trial neural signals during learning 

Chapter 1 demonstrated an approach to understanding single-trial neural activity during 

variable learning behavior. Most studies relating neural activity to motor behavior rely on 

trial-averaging to produce de-noised versions of the neural activity 2,6. To begin 

understanding behavioral variability some motor studies first group trials into tiers based 

on behavior (eg: slow, medium, fast movements) and then trial-average 7. The use of 

modeling as a method for approximating de-noised single-trial neural signals has 

allowed for more fine-grained analysis of single-trial variable behavior 8–13. Here we 

establish the tractability of combining dimensionality reduction methods with single-trial 

analysis to understand a dataset in which the overall variability of behavior is large.  

 

Monitoring of off-target effects during local neural interventions  

Chapters 1 and 2 use different strategies to directly inactivate and engage activity in a 

single node of the motor network while monitoring off-target effects in a partner region. 

In Chapter 1, we use muscimol to inactivate M2 and monitor the off-target effects on M1 

activity and skilled reaching behavior. By recording activity before and during the 

intervention (i.e. baseline and inactivation sessions), we are able to first build models of 

cross-area activity during the baseline sessions, and then use those models to 

understand the effect of M2 inactivation on M1 neural activity. This is important because 

some studies without off-target monitoring have interpreted interventions as self-

contained to the regions being inactivated 14. However, other studies demonstrating off-

target remodeling after chronic lesions as well as off-target disruptions during acute 

inactivation caution against the idea of purely ‘local’ interventions 15,16. This more 
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nuanced interpretation of local interventions also applies to the deliberate engagement 

of a specific brain region during tasks. In Chapter 2, we use BMI to train animals to 

modulate neural signals contained to M1. Several studies have examined how BMI 

learning affects both the neurons directly controlling the effector (i.e. direct units) as well 

as the other local neurons (i.e. indirect units) 17–19. Here we additionally demonstrate 

that neurons in a distant brain region are engaged in task learning despite purportedly 

non-mandatory functional connectivity with local direct units. 

 

Scientific advances 

Learning differentially impacts correlation versus task-relevance of cross-area activity 

Prior studies of learning-driven changes in cross-area communication have shown that 

learning increases the correlation of activity between partner regions. However, this 

work was mostly based on bulk local signals such as Local Field Potentials 20–23 (LFPs), 

in which fluctuations may be driven more by local dynamics than specific cross-area 

dynamics. Consequently, in those analyses, increases in coordinated task-modulation 

may confound (a) changes in cross-area coordination with (b) changes in local task-

related modulation. In Chapter 1 we explicitly attempt to separate analyses quantifying 

the correlation of cross-area activity from analyses of the task-modulation of cross-area 

activity. We find that cross-area correlation does not change with learning, while task-

modulation of cross-area activity increases. These findings suggest that correlation of 

activity across regions is not significantly driven by learning state, perhaps explaining 

animal’s abilities to learn new movements quickly. Instead, learning may increase 
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neural signaling corresponding to task-related movements within pre-existing 

connections already subserving other functions 24.  

 

Learning increases coordination between local and cross-area dynamics 

Our analyses of populations of neurons rather than bulk activity allowed us to 

distinguish local versus cross-area subspaces within each region’s population activity. 

This approach had already been applied in a study of communication between visual 

cortex regions 5, which also found distinct local and cross-area subspaces (there 

referred to it as the ‘communication subspace’). In that study, the authors hypothesized 

that changing the angle between the local and cross-area subspaces within the high-

dimensional population neural space may drive cross-area coordination during learning. 

We directly tested this idea and found that the angle between local and cross-area 

subspaces did not change with learning. Instead, we found that task-modulation of local 

and cross-area dynamics became more similar with learning. This argues against the 

idea that communication between regions relies on assimilation of raw neural activity in 

those regions. Instead, communication between regions relies on coordinating the 

magnitude of relevant signals while still allowing the signals themselves to be distinct. 

The cross-area signals, as we identified them, serve as ‘middlemen’ for cross-area 

signaling by creating intermediate transforms between two distinct local signals.  

 

The two above findings are reminiscent of Hebb’s theories on adult learning 24. In his 

seminal 1949 text, “The Organization of Behavior”, Hebb distinguishes infant learning, in 

which many new connections are formed (i.e. neurons that fire together wire together), 



	 154	

from adult learning, in which restructuring takes place within preexisting neural circuits. 

Specifically, he predicts that “The prompt learning of maturity is not an establishing of 

new connections but a selective reinforcement of connections already capable of 

functioning”. In his model (Fig. 4.1), adult learning does not dramatically change inter-

area connectivity, but instead restructures patterns of activity between local systems (A 

and B) and a ‘transmission’ subsystem (C). Until now, there has been little evidence 

supporting this theory. Even in adults, most studies report increased functional 

connectivity between regions with learning 20–23,25, and to our knowledge, no studies 

have attempted to distinguish ‘subsystems’ within ensemble representations during 

learning.  

 

Local interventions affect task-encoding in distributed motor regions 

Systems neuroscience concerns itself with the interactions of components within the 

nervous system. Despite this, studies using local inactivation 14 and chronic lesions 

have sometimes interpreted consequent behavior changes as resulting from 

circumscribed local damage and been unable to address the possibility of larger 

systemic dysfunction 26. However, many studies of recovery after chronic lesions have 

shown extensive cortical remodeling 27,28, and recent studies have even compared 

these effects to acute inactivation 15. Unfortunately, monitoring off-target effects of local 

interventions is rarely done 16. Here we monitored off-target changes driven by two 

interventions: M2 local muscimol inactivation (Chapter 1) and M1-BMI learning (Chapter 

2). We loosely consider BMI learning a ‘local intervention’ because we explicitly trained 

subjects to modulate neurons in a M1, without requiring changes in activity in M2. We 
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found that M2 inactivation suppressed and disrupted M1 encoding of skilled reaching 

without affecting M1 mean firing or local shared variance; and M1-BMI learning drove 

task-modulation of neural activity in M2. These findings provide rare evidence that local 

interventions affect task-encoding in connected cortical regions. 

 

Translational advances 

The methods and findings included in this dissertation provide a framework for 

translational work geared at diagnosing neurological disorders and developing 

neuromodulatory therapies. From Chapter 1, similar analyses of cross-area cortical 

activity using CCA could improve diagnosis and management of disorders in patients 

with neural communication dysfunctions. For example, in Chapter 3 we outline how 

chronic pain can be framed as stemming from pathological coupling between sensory, 

affective, and cognitive regions engaged during pain, leading to inappropriate 

concordant activation of all three regions when any of them is engaged. To help 

distinguish chronic pain due to multi-area coupling with normal sensation from pain due 

to heightened responses to noxious stimuli, physicians could monitor activity in sensory, 

affective, and cognitive regions during pain experiences. Abnormal baseline coupling 

between regions might indicate the multi-area etiology, while abnormally elevated 

somatosensory activity without abnormal baseline multi-area coupling might indicate a 

more specific sensory etiology. If patients are diagnosed as having pathological multi-

area coupling, a possible therapy would be to pair non-invasive stimulation of one 

region with non-invasive suppression of another region to promote de-coupling. A 
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similar effect might be obtained through training by creating neurofeedback tasks 

designed to encourage patients to decrease or control cross-area coordination. 

 

These approaches could potentially be applied to other neurological and psychiatric 

disorders hypothesized to affect specific functional networks. For example, one study of 

motor network function after unilateral subcortical strokes found that ipsilateral motor 

cortex became more interconnected with other nodes, while ipsilateral cerebellum 

became less connected 29. Importantly, these measures were correlated with clinical 

measures of behavioral deficits. According to our model, paired stimulation of ipsilateral 

cerebellum with other nodes might aid in restoring function. Similarly, one study of 

brain-wide functional connectivity in patients with schizophrenia found global decreases 

in connectivity strength, along with increased diversity of functional connections 30. 

Again, these measures were correlated with behavioral metrics. Based on those 

findings and the framework proposed in Chapter 3 for designing interventions, clinicians 

and neural engineers may be able to design new interventions using closed-loop multi-

site neuromodulation. 
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Limitations and future directions 

While the work in this dissertation made significant advances to common experimental 

and analytic methodologies, models of cross-area communication during learning, and 

frameworks for therapeutic neuromodulation, there are still many limitations to be 

addressed in future studies. 

 

Limitations and future directions based on recording technologies 

Chapters 1 and 2 use tungsten microwire probes to record simultaneous neural activity 

in M2 and M1 of rats during motor and BMI learning. The probes are each made of a 4 x 

8 grid of wires covering approximately 1mm x 1.2 mm of cortex, allowing for relatively 

large spatial coverage of each brain region. However, there is an inherent tradeoff 

between using probes with large versus dense spatial coverage, such as those used in 

other recent studies of population recordings 31–33. Due to the large spacing of wires, we 

do not obtain multiple views of neurons being recorded, limiting the ability to clearly sort 

single-neurons. Consequently, neuron activity or ‘unit’ activity referred to in this work 

often comes from several nearby units. However, this practice is common in studies of 

motor cortex in rodents 20,34–38, non-human primates 17,39–43, and humans19,44. 

Additionally, recent work in motor cortex of non-human primates has shown that latent 

signals in population activity can still be robustly extracted even from unsorted threshold 

crossings 45. In addition to the limited spatial resolution of the neural activity, we did not 

track changes in single neurons over time, as is sometimes possible with optical 

recordings (though optical recordings have significantly lower temporal sampling) 

3,7,25,32,46. Future work would benefit from more dense recordings across a larger set of 
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brain regions 32, with consistent tracking of neurons across learning. Of particular 

interest would be the evolution of cross-area activity between motor cortices and more 

cognitive regions, such as the prefrontal cortex; as well as with sub-cortical structures, 

such as the striatum47. Expanding the diversity of brain regions recorded would also 

allow for more extensive monitoring of off-target effects during interventions. 

Additionally, monitoring muscle activity during movements17,48 may also contribute to 

understanding the role of cortical activity in movement execution, especially as several 

subcortical regions47,49 and have been implicated in reach-to-grasp execution. 

 

Limitations and future directions based on interventional methods 

Chapter 1 used infusions of the GABA agonist muscimol to locally inactivate M2. This is 

an effective, widely-used method for dampening local activity47,50. However, the kinetics 

of muscimol spread lead to inactivation lasting at least several hours. Overall 

inactivation of M2 cell bodies also prevents isolation of neural signals transmitted 

specifically within M2 to M1 axon projections. More temporally and genetically precise 

activation and silencing of M2 cell bodies and/or terminals of cells that project to M1 

may be possible with optogenetic methods51. Finally, Chapter 3 proposes a general 

framework for analyzing and treating chronic pain as a disorder of cross-area 

communication, but DBS, the main neuromodulatory method discussed, is invasive, 

expensive, and rarely accessible to patients. Alternatives strategies could include non-

invasive stimulation, such as transcranial direct current stimulation (tDCS) or 

transcranial magnetic stimulation (TMS), both of which have been shown to have 

therapeutic effects in other systems disorders (eg: stroke rehabilitation52 and 
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depression53, respectively). Focally targeted non-invasive neurostimulation is also 

actively being developed and have been shown to modulate local neural activity in 

rodent models 54. However, non-invasive methods will need to be refined in order to be 

closed-loop, continuous, and portable in order to best treat intractable chronic disorders.  

 

Limitations and future directions based on task paradigms 

Chapters 1 and 2 analyzed neural data collected during learning of the reach-to-grasp 

task55,56 (an example of skilled motor behavior), and a 1-dimensional BMI task. The 

reach-to-grasp behavior was chosen because it is kinematically similar to important 

grasping behaviors in humans and dependent on many cortical areas57. The BMI task36, 

on the other hand, was designed be behaviorally simple and require learned modulation 

of very few, explicitly chosen neurons58. Examining neural activity during a range of 

tasks is important for the generalizability of our overarching interpretations. To continue 

testing generalizability, future work could examine cross-area interactions during types 

of learning which are instead dependent on sensory functional networks (eg: sensory 

discrimination tasks), cognitive networks (eg: memory-based decision-making tasks), 

affective networks (eg: fear conditioning), or a combination therein (eg: set-shifting). 

 

While use of animal models allows for greater availability of subjects and flexibility of 

experimental paradigms, it is also important to compare findings from human subjects 

who can provide introspective reports of their learning and behavioral strategies. For 

example, a recent study of BMI learning in a human patient asked the subject to try 

different cognitive strategies to control a cursor (eg: imagining moving her wrist towards 
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or away from the target location). By comparing the patient’s neural activity with her 

verbal reports of her strategy, the study was able to corroborate the theory that local 

covariance structures in motor cortex (i.e. intrinsic variables) correspond to explicit and 

accessible cognitive strategies for movement control 19. Similarly, future work on cross-

area coordination during learning in humans may demonstrate that the “feeling” of being 

triggered to perform certain skilled movements in specific contexts (e.g. getting “in the 

zone” to swim when you get to the pool) depends on widespread coordinated cross-

area activity in sensory, cognitive, affective, and motor regions.  

 

Limitations and future directions based on computational methods 

Our results are bound by the assumptions and limitations in our analysis methods and 

our approaches for modeling task-relevant activity. In Chapter 2, task-related activity is 

modeled as the trial-averaged mean of activity aligned to the end of the trials, which 

reflects modulation used to perform the BMI task. In contrast, in Chapter 1, task-related 

activity is modeled using static dimensionality reduction methods which extract 

relationships in the variance shared between either local and cross-area populations of 

neurons (using FA and CCA, respectively). While trial-averaging emphasizes the 

important of activity relative to specific moment in time, FA and CCA emphasize 

population covariances in a manner agnostic to timing.  

 

To be able to jointly examine temporal and covariance relationships in populations, it is 

necessary to use methods which take into account temporal relationships of activity 

within a population (i.e. sequences, or ‘tiling’ of information). Recent development of two 
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methods, Gaussian-Process Factor Analysis (GPFA) 9, and seqNMF 59, offer such 

opportunities. GPFA can capture shared population variance even when neurons are 

not co-active (unlike FA), and it returns the timescales over which the activity is 

distributed. This information could in turn be used to optimize parameter selection in 

analyses using seqNMF, which captures repeated sequences in population activity, 

given an expectation for sequence duration. Together, analyses using these 

computational methods may allow for a better understanding of structured information 

across interacting cortical regions, such as M1 and M2. In particular, future work could 

examine whether co-activating, sequentially binding, or even interleaving task-based 

sequences across areas correlates with task learning.  

 

Multi-area neural data from BMI tasks seem particularly appropriate for such analyses. 

Other approaches to understanding emergence of structured activity could include 

comparison of population dynamics within and across regions in early versus late 

learning within single days, during which it is more feasible to maintain the same set of 

neurons. Finally, analyses in this dissertation are centered on understanding 

experimentally collected neural data. However, modeling interactions between artificial 

populations 60–62 of interconnected neurons (i.e. in silico modeling) could help elucidate 

guiding principles of cross-area interactions during learning.  

 

Understanding cross-area neural dynamics on a single-trial basis in experiments is 

critical to later designing closed-looped, multi-area neuromodulatory therapies which will 

rely on real-time evaluation of complex, multi-faceted brain states.  



	 162	

Figures 

 
 
 
 
 
 
 

 
 
Figure 4.1. Hebb’s model for two-system learning. 
(Reproduced from Hebb, 1949) 24. “To illustrate the possibility that a subsystem, C, may 
act as a link between two systems (conceptual complexes). One concept is represented 
by A1, A2, and C, the second by B1, B2, and C. The two systems have a subsystem, C, 
in common, to provide a basis of prompt association. “ 
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This year, for the first time, the UCSF School of Medicine is including on its secondary 

application optional questions about sexual orientation and gender identity. The change 

was the result of a multi-year collaboration between the School of Medicine’s Office of 

Admissions and students from the Lesbian, Gay, Bisexual, Transgender, and Queer 

Student Alliance (LGBTQSA). It arose from a shared desire to make the admissions 

experience more welcoming to students who identify with the LGBTQ community. 

Allowing applicants to self-identify as LGBTQ enables the school to collect critical data 

and to send an important message about UCSF’s commitment to an inclusive campus 

climate. 

Within its mandatory primary application, the American Medical College Application 

Service (AMCAS), routinely collects information on many aspects of an applicant’s 

background, including sex (as male, female, or decline to state), age, race, national and 

ethnic origin, citizenship, place of legal residence, and socioeconomic status. However, 

information on sexual orientation and non-traditional gender identity is not captured. 

UCSF School of Medicine is now presenting an opportunity for applicants to voluntarily 

provide that information on its secondary application. Data on LGBTQ identity will allow 

UCSF to better understand the needs of its applicant population. Currently, this 

information is restricted to the Office of Admissions; however, if students could opt to 

make their information available to the Office of Diversity, targeted outreach efforts 

could be developed. LGBTQ-identified applicants could be connected with current 

student mentors, and incoming students could be introduced to the wealth of resources 

available on campus to support the LGBTQ community. Ultimately, such programs 
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would better enable UCSF to attract the most talented and diverse students, including 

those who identify as LGBTQ. 

Applications are an opportunity for students to present how their experiences can 

contribute to a campus climate. LGBTQ-identified people should feel safe in discussing 

their backgrounds on admissions applications, including how identity informs their 

perspectives and professional ambitions. However, for many LGBTQ people, 

experiences with stigma and discrimination have taught them not to discuss their 

identity openly. For others, LGBTQ-identified or not, sexual orientation and gender 

identity may not seem relevant to their application. Applicants will choose for 

themselves what information they will provide. No matter how an individual responds, 

the application is now more reflective of the diversity and inclusiveness at the core of 

the UCSF experience.  

In 2007, the University of California Board of Regents released a Diversity Statement 

that highlighted “the acute need to remove barriers to the recruitment, retention, and 

advancement of talented students, faculty, and staff from historically excluded 

populations.” LGBTQ-identified people have been, are, and will continue to be an 

important part of the fabric of UCSF. However, there was previously no systematic way 

of collecting information about sexual orientation and gender identity as incoming 

students entered into our community. With these new questions, the School of Medicine 

is better able to understand its applicants and is better able to communicate that 

applicants’ identities and past experiences matter here. By asking optional questions 

inclusive of LGBTQ identity, the UCSF School of Medicine can communicate that 



	 175	

differences in sexual orientation and gender identity are a part of the diversity that 

makes UCSF such a vibrant place. 

The new questions on sexual orientation and gender identity, like all questions on the 

UCSF secondary application, are works in progress. If you are interested in contributing 

to the discussion around these questions, or are interested in getting more involved in 

LGBTQ student life at UCSF, get in touch with the LGBTQSA and consider attending 

the opening meeting of the organization this coming fall. 
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Appendix B: Tiptoeing around it: Inference from absence in potentially offensive 

speech  
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Abstract  

Language that describes people in a concise manner may conflict with social norms 

(e.g., referring to people by their race), presenting a conflict between transferring 

information efficiently and avoiding offensive language. When a speaker is describing 

others, we propose that listeners consider the speaker’s use or absence of potentially 

offensive language to reason about the speaker’s goals. We formalize this hypothesis in 

a probabilistic model of polite pragmatic language understanding, and use it to generate 

predictions about interpretations of utterances in ambiguous contexts, which we test 

empirically. We find that participants are sensitive to potentially offensive language 

when resolving ambiguity in reference. These results support the idea that listeners 

represent conflicts in speakers’ goals and use that uncertainty to interpret otherwise 

underspecified utterances.  
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Introduction  

Referring to strangers can be challenging. Without knowing their name, you could 

describe them by their physical appearance, but not all attributes are equally 

informative. One problem for speakers is that highly diagnostic attributes can be 

potentially offensive (e.g., an overweight person’s weight).  

Grice (1975, p. 46)1 was aware of this problem: “There are, of course, all sorts of other 

maxims (aesthetic, social, or moral in character), such as ‘Be polite’, that are also 

normally observed by participants in talk exchanges.” In a politeness framework, the 

avoidance of potentially offensive words illustrates how speakers balance being 

informative with social goals 2. Specifically, Brown and Levinson (1987) outline 

ambiguous speech as a form of indirect or “off-record” politeness. We draw inspiration 

from these ideas and hypothesize that the use or avoidance of words that carry social 

meaning prompts listeners to reason about the speaker’s social goals. Do listeners 

hypothesize that speakers are constrained to use inoffensive language, and use this 

understanding to infer a speaker’s intended meaning from an ambiguous utterance?  

We developed a model in the Rational Speech Act (RSA) tradition 3,4 to capture the 

social and epistemic inferences elicited by words with social meaning, specifically 

potentially offensive descriptors. Vanilla RSA models predict pragmatic inferences 

listeners make for literally ambiguous statements by considering the alternative 

statements the speaker could have said. Recent work has modeled inferences about 

speakers’ social goals, specifically the desire to be kind to the listener (Polite RSA5,6). 

The polite RSA model defines the social utility of an utterance as the quality of the world 
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it makes the listener believe they are in. We extend this work by having potentially 

offensive utterances incur a social cost to the speaker. A listener who is aware of these 

social costs can resolve otherwise ambiguous utterances to infer a speaker’s intended 

referent.  

In our experiments, participants were introduced to a world where the words “blue” or 

“green” were potentially offensive. With their new social understanding, they played 

reference games in which they were asked to interpret a speaker’s utterance (e.g., 

“person with the hat”) in terms of which character in a scene the speaker was trying to 

refer to (see Figure A.1).  

We hypothesize that listeners reason about the social cost of producing potentially 

offensive speech a) to contextually understand ambiguous utterances, and b) to 

evaluate speakers. Experiment 1 tests participants’ inferences about who an ambiguous 

utterance refers to. Experiment 2 measured participants’ inferences about the speaker’s 

goals. Across these two experiments, we find that our model accounts for the fine-

grained inferences listeners draw when reasoning about potentially offensive speech.  
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Computational Model  

We built a rational model of communication within the Rational Speech Act framework 

3,4. Our model belongs to the class of “uncertain RSA” models, which involve reasoning 

about aspects of the speaker beyond just their intended meaning7. We used this 

framework to understand the phenomenon wherein a speaker is underinformative so as 

to not use potentially offensive speech, but listeners are nevertheless able to infer who 

speakers are referring to. In other words, when listeners are aware of a speaker’s 

alternative utterances and the associated social costs, they can reason backwards to 

infer the speaker’s intended referent.  

Specifically, this work builds on an RSA model for polite language use (Polite RSA6). 

The listener in Polite RSA reasons about whether the speaker was trying to be 

epistemically informative (à la Vanilla RSA) or considerate to the listener’s feelings (a 

social goal). The Polite RSA model operationalizes the social utility of an utterance u in 

terms of the subjective value of the world state that the listener would believe 

themselves to be in upon hearing u. For example, positive social utility is incurred by 

making the listener believe they are in a good state (e.g., that the cookies they baked 

were delicious). The model predicts that speakers who try to balance being informative 

and kind will choose to produce more indirect speech (e.g., saying “it wasn’t amazing” 

as opposed to “it was terrible”), and this prediction was borne out empirically6.  

We took inspiration from the Polite RSA model, but parametrized the reasoning slightly 

differently. We modeled a listener who reasons about a potential social cost to an 

utterance. That is, words could be costlier to produce by the speaker by virtue of their 
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social stigma of use. We assumed, for example, that a socially-minded speaker would 

incur a cost by referring to an overweight person as “fat”. Rather be on the word form 

itself, this kind of cost can likely be derived out of a more basic mechanism analogous 

to that used by Yoon et al. (2017)6, a point we return to in the Discussion.  

Model details  

The RSA framework models utterances and inferences as deriving from recursive social 

reasoning: a speaker S1 produces an utterance u reasoning about how a literal listener 

L0 would interpret it. A pragmatic listener L1 interprets the utterance u reasoning about 

what speaker S1 would say.  

We start with the literal listener L0, who literally interprets the meaning of any utterance 

u to determine the intended referent r within the context C:  

Equation (1): PL0 (r | u, C) � [[ f (u)]] (r) · P(r)  

[[u]] (r) is u’s literal meaning, mapping to 1 if u matches referent r and 0 otherwise given 

context C. f (u) expresses the noisy semantics model: with probability γ the listener 

doesn’t condition on the utterance heard and instead samples a referent from the 

prior8,9. Mathematically, P
 
f (uw−1)| f (u)

 
= 1 − γ, � w � u, where each w represents a 

word in the utterance u. P(r) is a uniform distribution over possible referents given the 

context C.  

Speaker S1 produces an utterance based on a utility function U, which has two parts. 

The first part represents an epistemic utility which we define as the literal listener L0 
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uncertainty about the referent r after hearing the utterance u: ln
 
PL0(r | u, C)

 
. This 

uncertainty is weighted by an utterance prior P(u) that assigns more probability to 

utterances with fewer words (uttering words is effortful). If ∑w is the utterance’s word 

count, W is the maximum number of words possible in an utterance, and ξ 

parameterizes, then P(u) = [exp(−ξ·∑w)]] /[∑w=0:W exp(−ξ·∑w)]. We introduce a 

weighting parameter βepi which captures how much the speaker cares about reducing 

the listener’s uncertainty about the true referent.  

The second part of speaker S1’s utility function represents a social utility. In our 

experiments and model, color terms are potentially offensive. The speaker is aware of a 

specific color word which is considered potentially offensive and designated as 

badWord. The speaker’s social utility is V (u) = 0 if badWord � u, and 1 otherwise. We 

introduce another weighting parameter βsoc which captures how much the speaker 

cares about avoiding potentially offensive language. By combining both epistemic and 

social utility, we get S1’s utility function as follows:  

U(u, r, C, βˆβ) = βepi ·ln
 
PL0(r | u,C)·P(u)

 
+βsoc ·V(u)  

Overall, the speaker chooses an utterance softmax-optimally, where λ1 represents S1 ’s 

optimality:  

Equation (2): PS1(u|r, C, β) � exp λ1·U(u, r, C, β)  

The pragmatic listener L1 then reasons about the speaker S1, jointly inferring the 

referent r and how much weight the speaker S1 places on the epistemic βepi and social 
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βsoc utility10. P(r) is uniform over possible referents given context C, and P(β) is a 

uniform distribution across the set {0.1, 0.3, 0.5, 0.7, 0.9}.  

Equation (3): PL1(r, β |u, C) � PS1(u|r, C, β)·P(r)·P(β) 

We implemented the model in WebPPL, a probabilistic programming language11. The 

model has three free parameters: a parameter for the noisy semantics (i.e., the overall 

extent to which utterances are not truth-functional) γ, a cost to producing more words ξ, 

and the speaker optimality parameter λ1. In parameter fitting, γ was fixed at .1, and the 

other parameters were fit to the data, but restricted to the following ranges (consistent 

with models of the same model class): ξ fell between 0-1 and λ1 fell between 1-20 5,6. 

The best-fitting parameter settings were: ξ = 0.5, and λ1 = 20, determined through 

minimizing the least-squared error between model predictions and behavioral results.  

In our experiments, utterances u could be any combination of the following: n/a (in the 

experiment, we added “person” to all utterances, so participants saw “the person” 

instead), one color term (“blue”, “green”, or “orange”), “scarf”, and “hat”. So, for 

example, an utterance could be “the person” or “the orange person with the scarf”. The 

intended referent r could be any of the two or three possible referents that appeared 

within a context C. The potentially offensive color term badWord was either “blue” or 

“green”, counterbalanced across participants.  

We tested our model against human behavior in two experiments. In Expt. 1, listeners 

inferred the intended referent r given an utterance u and context C. In Expt. 2, listeners 

inferred β given a referent r, utterance u, and context C.  
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General Experiment Methods  

Participants  

We recruited participants from Amazon Mechanical Turk, with U.S. IP addresses and no 

reported color blindness. In Experiment 1, 45 participants were recruited, and three 

were removed (two for later reporting colorblindness, and one for failing a catch-trial). In 

Experiment 2, 46 participants were recruited, and one removed for later reporting 

colorblindness.  

Stimuli and Procedure  

Training: Participants began by viewing training scenes. Training scenes were designed 

to inform participants that using a particular color (badWord: either “blue” or “green”) 

was potentially offensive. Participants first read and were tested on an explicit 

description of the manipulation: “In a parallel world, some people are different colors. In 

this world, calling someone a ‘[color] person’ is potentially offensive,” where [color] was 

badWord. Participants then viewed several counterbalanced scenes, in which 

characters were selectively scolded by other characters for saying badWord.  

Main Experiment: Following the training scenes, participants viewed reference game 

contexts in the main experiment. Within each context, two or three people were aligned 

left to right, were colored blue, green, or orange, and possibly wore hats and scarves. In 

the accompanying text, participants were observing the possible referents with a 

speaker named [Name]. [Name]s were selected by random selection with replacement 

from a list of 172 names for each context. The order of the possible referents in the 
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context was randomly sampled at the beginning of the experiment and was fixed for all 

participants. The order of trials was randomized.  

Context selection: Contexts were selected to test the inference that if a speaker did not 

explicitly refer to a person by their color, then perhaps that color was a badWord and 

potentially offensive. We sought examples that produced a range of model predictions. 

Contexts were selected to be roughly consistent across the experiments, so that the 

different methods of probing potential offensiveness could be compared. Finally, 

contexts were chosen to have built-in controls, such that if an image was presented 

where the referent color was badWord, the same image type was presented in a 

different context where the colors were switched so that the referent was now not 

badWord. In the rest of this paper, we describe the analysis with respect to the 

badWord being “blue”.  

  



	 186	

Experiment 1: Inferring the referent  

Experiment-Specific Methods  

This experiment contained 35 contexts. In each context, a speaker presented an 

utterance and the participant was asked to select which of the 2-3 referents the speaker 

was likely referring to (simple multiple-choice task, see Figure A.1).  

Results and Discussion  

In calculating statistics, because probabilities for the last referent of each context were 

entirely determined by probabilities assigned to the other referent(s), values from a 

randomly chosen referent were removed from further statistical analyses in order to 

meet assumptions of independence.  

Participants’ social inferences closely mirrored the inferences predicted by the model. 

Specifically, if the speaker’s statement was ambiguous, participants selected the person 

with the potentially offensive color as being the referent, as predicted by the model (e.g. 

see contexts 1A, 1G in Table 1). When no referents of potentially-offensive colors were 

available, participants and the model were approximately ambivalent between the 

referents (e.g. see context 1B). In “positive control” contexts, in which the referent was 

unambiguously indicated by an utterance describing the intended referent’s color (“the 

blue person”), participants selected the designated referent, as predicted by the model 

(e.g. see context 1F).  

The left plot in Figure A.2 shows a scatterplot with model predictions and participants’ 

inferences across all contexts. Our model explained participants’ inferences to a high 
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degree of quantitative accuracy with bootstrapped 95% confidence intervals for adjusted 

R2 of [0.86, 0.96] and for Spearman’s ρ of [0.88, 0.97]. The model’s incorporation of 

social utility was critical to fit participants’ inferences: when social utility was removed in 

a lesioned version of the model, bootstrapped confidence intervals for adjusted R2 

dropped to [0.27, 0.60], and for Spearman’s ρ to [0.62, 0.89] (Figure A.2, right). 

Moreover, the moderately high correlations from the lesioned model were mostly driven 

by the presence of the positive control contexts in Expt. 1, which did not require social 

knowledge. When the eight positive control contexts were removed, the lesioned 

model’s bootstrapped confidence intervals for adjusted R2 dropped to [0.06,0.43], and 

for Spearman’s ρ to [0.37, 0.83].) 10000 samples were drawn in all cases.  

While the model generally captured participants’ inferences well, there was a subset of 

contexts for which the model’s predictions did not match participants’ inferences. In 

these contexts, the model was reluctant to make the inference that the speaker was 

referring to the person with the potentially-offensive color when that person wore an 

item which was not specified in the utterance. Specifically, first consider the normal 

case: in context 1D, the only way to pick out the blue person would be to refer to their 

color. Given this fact, upon hearing “the person” instead, the model correctly predicted 

that people would choose the blue person as the intended referent. However, in context 

1C, the blue person could also be unambiguously identified by referring to their scarf. 

Upon hearing the utterance “the person” in this context, the model was unsure who the 

intended referent was, whereas people considered the blue person with the scarf to be 

most likely. A similar phenomenon occurred in context 1E. One possible explanation for 

the deviation between model predictions and people’s judgments here is that 
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participants may have learned to associate the utterance “the person” with a blue 

person based on inferences drawn in previous contexts.  
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Experiment 2: Inferring speaker goals  

We placed participants in a world where certain words were potentially offensive in 

Expt. 1. Given this knowledge, we found that listeners could infer a speaker’s intended 

referent even if the speaker was ambiguous, as predicted by the model. In Expt. 2, we 

tested whether listeners could infer a speaker’s goals (informational or social) based on 

how the speaker referred to someone.  

Experiment-Specific Methods  

After viewing the same training scenes that participants had seen Experiment 1, 

participants saw additional training scenes that clarified that the dimension of 

“offensiveness” corresponded to the use of badWord, and that the dimension of 

“ambiguity” referred to how much the utterance specifically identified the intended 

referent. Participants answered a comprehension check question, and then saw 40 

different contexts in the test phase. Figure A.3 shows a screenshot of the test phase. In 

each context, an intended referent (out of two or three possible referents) was circled, 

and two possible utterances the speaker could say were shown on the left and right 

sides of the screen. Participants moved two separate sliders ranging from 0 to 100 to 

indicate which of the two utterances they considered to be more offensive, and which to 

be more ambiguous. The sliders were initially set at 50, which represented 

ambivalence.  
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Results and Discussion  

Similarities between model predictions and judgments: Overall, the model again 

provided an accurate account of participants’ inferences. If one utterance better 

distinguished the referent, participants rated that utterance as less ambiguous, as 

predicted by the model. This rating of lower ambiguity appeared over relatively subtle 

distinctions, like when the utterance reduced the number of valid possible intended 

referents from 3 to 2 (see for example context 2G in Table 2) or from 2 to 1 (e.g. 

contexts 2D, 2E). If utterances were both equally informative, participants roughly rated 

them as equally informative (e.g. context 2B) though behavioral exceptions exist.  

With respect to offensiveness, if a single utterance contained the word “blue”, then that 

utterance was rated as more offensive (e.g. context 2F). If neither utterance contained 

“blue”, those utterances were rated as equally (un)offensive (e.g. context 2G). If both 

utterances contained the word “blue”, then those utterances were roughly rated as 

equally offensive (e.g. context 2D), but see minor trends below.  

Overall, model predictions and participants’ judgments were highly correlated (Figure 

A.4). Bootstrapped confidence intervals (alpha = .025, adjusted for multiple 

comparisons, 104 samples) for adjusted R2 were [.72,.90] for ambiguity and [.90,.98] for 

offensiveness; for Spearman’s ρ intervals were [.85,.96] for ambiguity and [.66,.90] for 

offensiveness.  

Differences between model predictions and judgments: The behavioral responses did, 

however, differ from the model in a few systematic ways. An important trend that 

occurred in behavior was that people found utterances to be much less informative if 
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redundant traits were not listed (e.g. context 2H). While the model predicted that saying 

“the person with the hat” and “the person” would be equally informative if all possible 

referents were wearing hats, participants found “the person” to be much more 

ambiguous. While this desire for “redundant overinformativity” is not captured in our 

model, it is often observed in referent games8.  

However, some preference for information redundancy was indeed captured by the 

model through the noisy semantics assumption. In context 2C, the model predicted that 

an utterance with two informative words is less ambiguous than an utterance with one 

informative word — because a listener with “noisy hearing” might miss one.  

Another systematic divergence between model predictions and participants’ judgments 

was that when asked about ambiguity, the model engaged in social inference more than 

participants did (e.g. contexts 2A, 2F). For example, if an utterance was “the person” 

when one possible referent was blue and the other green, the model made the social 

inference that the speaker was trying to refer to the blue person and predicted the 

utterance “the person” to be less ambiguous than it would have been without the social 

inference. However, in this setup, participants rarely appeared to make this inference. 

Instead, participants seemed to treat the ambiguity question as separate from the 

knowledge they were demonstrating in the offensiveness question (in which they were 

indicating that the term “blue” was potentially offensive.)  

The results comparing the full model to the lesioned model (social utility set to 0) 

support the above hypothesis. When the social considerations were removed, the 

model predictions for ambiguity became closer to the behavioral results (e.g. context 
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2A). Numerically, for ambiguity ratings, bootstrapped confidence intervals (alpha = .025, 

104 samples) for adjusted R2 were [0.78, 0.95] for the lesioned model (compared to 

[0.72, 0.90] for the full model) and for Spearman’s ρ were [0.91, 0.98] for the lesioned 

model (compared to [0.85, 0.96] for the full model). (The equivalent comparison with the 

lesioned model for offensiveness ratings was trivial by design, as the lesioned model 

was always ambivalent over utterances.)  

The finding that participants did not engage social reasoning when asked about 

ambiguity may be due to question framing. “Offensiveness” and “ambiguity” ratings 

were clearly delineated in Experiment 2, and the focus on answering each separately (in 

addition to the extra training scenes that differentiated them) may have discouraged 

social reasoning to crossover into inferences about ambiguity.  

On the offensiveness question, the differences between model predictions and 

participants’ judgments were relatively small. Interestingly, participants considered any 

mention of color as slightly more offensive than model predictions, even if that color was 

non-offensive (e.g. contexts 2B, 2C). Participants also considered it slightly more 

offensive to say a color term if no other features were mentioned (e.g. contexts 2D, 2E), 

or to say “the person” alone (e.g. context 2H). These results are intuitive: if a feature like 

“blue” is offensive, it suggests that the general category of color might be avoided; and it 

feels rude to not say anything when referencing someone. Future work will probe how to 

add these intuitions into a richer, hierarchical model that draws generalizations (“don’t 

refer to color”) from specific instances (“don’t say blue”).  
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Conclusion  

Some words are potentially offensive. This means that in some situations, the most 

efficient way of referring to someone may incur a social cost, creating a tension 

between efficiency and social adeptness of speech. We hypothesized that when 

listeners and speakers have shared knowledge of this tension, speakers can avoid 

using offensive speech and listeners can resolve otherwise ambiguous utterances to 

correctly infer the speaker’s intended referent.  

To make these ideas precise, we built on an existing model of polite language 

understanding by introducing a social cost that a speaker incurs for producing 

potentially offensive language. The model captures the inference that people make in 

determining a speaker’s intended referent given an utterance that is ambiguous but 

constrained by social cost (Experiment 1), and also captures the explicit access that 

participants have to a speaker’s epistemic and social goals given their utterance and 

context (Experiment 2). This work shows how the general mechanism of reasoning 

about the social function of language employed by the speaker5,6 can begin to explain 

how listeners reason from the absence of potentially offensive language to resolve 

reference in context. While the model overall provides a very good fit to participants’ 

inferences and judgments in both experiments, there were also some discrepancies 

which motivate future extensions of the model.  

In our model, we directly mark potentially offensive words with a social utterance cost, 

but the same word might be offensive in one context and not another, or if said by one 

speaker but not another. One possibility is that it is a derivative property of subjective 
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values associated with world states, in the style of Yoon et al. (2016)5, perhaps by 

speakers putting themselves in the listener’s shoes and imagining themselves being 

referred to in a particular way. Another possibility is that these costs arise from social 

signaling: the speaker does not want the listener to infer that they are the type of person 

that calls people “blue”. In future work we hope to investigate how the social cost of 

potentially offensive speech is grounded in the complex social inferences that listeners 

and speakers draw about each other.  
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Figures 

  
Figure A.1. Example context from Experiment 1.  
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Figure A.2. Behavioral and model comparison for Expt. 1. 
Participants saw an utterance and inferred which of the 2-3 referents the speaker was 
referring to for 35 contexts. Referents were orange, green, or blue. Results were 
collapsed across conditions so that “blue” was the potentially offensive word in all 
contexts. Behavioral results show the proportion of participants selecting each referent; 
model predictions show the proportions that the model allocated to each referent. Left: 
Full model. Right: Lesioned model (social utility set to 0).  
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Figure A.3: Example context from Experiment 2.  
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Figure A.4. Behavioral and model comparison for Experiment 2.  
Participants rated which of two utterances describing a scene was more ambiguous 
(left), and which was more offensive (right) in 40 contexts. Behavioral results are the 
mean and standard error of participants’ ratings of utterances, ranging from 0 (the 
utterance to the left of the screen was rated most ambiguous/offensive) to 100 (the 
utterance to the right was rated most ambiguous/offensive). Thus, lower scores indicate 
that the left utterance was rated more highly (more ambiguous / offensive) than the right 
utterance, and higher scores indicate that the right utterance was rated more highly than 
the left utterance. Model responses are the rescaled difference between βepis / βsoc for 
the left and right utterances. Adjusted R2 values are reported. Top: Full model. Bottom: 
Lesioned model (social utility set to 0).  
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Tables 

 

Table 1. Example Expt. 1 contexts.  
For each context, the 2-3 referents are separated by “/” and can be blue (“Bl”), green 
(“Gr”), or orange (“Or”). Results were collapsed across conditions so that “blue” was the 
potentially offensive word in all contexts. In the “Utterance” column, “n/a” stands in for 
“the person”, and “blue hat scarf” for “the blue person with the hat and the scarf”. The 
behavioral, model, and lesioned model (without social inference) proportions allocated 
to each referent are shown.  

  



	 200	

 

Table 2. Example Experiment 2 contexts.  
For each context, referents are separated by slashes (the intended referent is in bold) 
and could be blue (“Bl”), green (“Gr”), or orange (“Or”). Results were collapsed across 
conditions so that “blue” was the potentially offensive word in all contexts. Each context 
had two utterances: “Utt. 1” was positioned on the left of the screen at score 0, and “Utt. 
2” was positioned on the right at score 100. Thus, lower scores indicate that Utt. 1 was 
rated higher (more ambiguous / offensive) than Utt. 2, and higher scores indicate Utt. 2 
was rated higher (more ambiguous / offensive) than Utt. 1. In the experiment, these 
utterances were longer than the abbreviations shown here: “the person” was shown 
rather than “n/a”, and “the blue person with the scarf” rather than “blue scarf”. In the 
results columns, “Amb” indicates ambiguity ratings: behavioral mean and italicized 
standard errors are shown (“Amb”), as are model predictions (“AmbM”) and lesioned 
model predictions without social inference (“AmbL”). “Off” indicates offensiveness 
ratings.  
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Appendix C: Why you need an agenda for meetings with your principal investigator 
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As PhD students, we often find ourselves discussing our interactions with our principal 

investigators (PIs) and swapping advice for improving our mentoring meetings. We have 

found three practices to be consistently helpful: asking our PIs about all aspects of their 

job; preparing an agenda for each meeting; and negotiating new experiments without 

explicitly saying ‘no’. 

We both see our PhD programmes as academic apprenticeships. One crucial goal is to 

flesh out our understanding of life as a PI. By collaborating with our PIs and observing 

how they work, we learn how to plan experiments and how to write papers. But we don’t 

get to practise other skills, such as interacting with journal editors and recruiting lab 

members. To learn these, we ask our PIs about how they plan when running the lab. 

For example, when people leave Samuel’s lab, he asks his PI about her plans for 

reallocating shared lab responsibilities. 

Face-to-face time with our PIs must be focused, so we use agendas to organize the 

conversation. We habitually start with, “I made a list of topics I wanted to talk to you 

about.” Tess often starts her agendas with an update on her efforts to develop new 

research equipment so that her PI can evaluate their importance to her project. When 

Tess was designing new probes for electrophysiological recordings, her PI helped her to 

balance testing new research hardware against continuing data collection with older 

technology. Preparing an agenda also helps us to learn our PIs’ priorities. Before 

Samuel discusses new data or his progress on experiments, he always asks his PI, “Is 

there anything else you wanted to talk about?” 
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Setting an agenda helps us to introduce uncomfortable topics. For example, including 

‘summer course funding’ in her agenda helped Tess to request funding for a course on 

computational neuroscience — something she had been avoiding doing for weeks. It 

turned out that Tess’s PI was happy to provide support. 

We and our PIs see our projects from different perspectives. Whereas they focus on the 

big picture, we wrestle with implementation. Because of this disconnect, we can 

discount their advice as being out of touch. Conversely, if we shoot down all their 

suggestions for ambitious experiments, our PIs grow frustrated. 

When we realize we’re saying ‘no’, we try to engage with our PI’s idea by asking 

specific questions. These moments of potential conflict can turn into opportunities to 

hash out experimental strategies. We might say, “I think that would be an exciting 

direction, and it would be helpful for me if we could discuss specific metrics for 

measuring that result.” Instead of searching for flaws, we try to discuss a realistic road 

map for an optimistic outcome. 

We are never going to be perfect mentees. We remind each other to take an active role 

in our mentoring relationships and to seek mentorship from multiple sources. Tess has 

great conversations with her physician–scientist PI about her clinical interests as an 

MD–PhD student. But she also has female mentors for advice about working within a 

male-dominated field. Samuel routinely discusses personal career goals with his PI, but 

relies on collaborators for advice on experimental techniques outside his PI’s expertise. 
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Discussions on mentorship often place the onus solely on the mentor. But, as mentees, 

we also need to ask ourselves, “What’s working and not working in this interaction? 

Where can I try something new? What would be ideal?” No template can solve all PI–

student concerns. But simple steps can go a long way in helping these relationships to 

thrive. 
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