
UCLA
UCLA Electronic Theses and Dissertations

Title
On Explicit Depth Robust Graphs

Permalink
https://escholarship.org/uc/item/4fx1m6dh

Author
Li, Aoxuan

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4fx1m6dh
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

On Explicit Depth Robust Graphs

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Science in Computer Science

by

Aoxuan Li

2019

c© Copyright by

Aoxuan Li

2019

ABSTRACT OF THE THESIS

On Explicit Depth Robust Graphs

by

Aoxuan Li

Master of Science in Computer Science

University of California, Los Angeles, 2019

Professor Rafail Ostrovsky, Chair

We study the problem defined by Erdős and Szemerédi in 1975 of constructing sparse depth-

robust graphs. Recall that a directed acyclic graph G is (e, d)-depth-robust if it is guaranteed

to contain a path of length d even after the deletion of any e nodes and all of their incident

edges. The original construction (of nearly optimal depth-robust graphs) of Erdős and

Szemerédi required logarithmic in-degree and subsequent work by Mahmoody, Moran, and

Vadhan made that construction explicit. One of the major open questions left since that 1975

seminal work was to construct depth-robust graphs of constant degree. Our contribution is

the first explicit construction of constant-degree depth-robust graphs. Our construction too

enjoys nearly optimal depth-robustness. We accomplish this via a novel expanding graph

product operator X that takes three input graphs (G,H,X) with special properties and

outputs a new graph. Informally, we show that our operator provides the following guarantee:

if G and H are depth-robust graphs and H is a constant-degree expanding graph [RVW00],

then G∗ = X (G,H,X) is a depth-robust graph of size |G| · |H| whose degree depends only

additively on degrees of H and X. We then show that the recursive application of the

expanding graph product operator yields a simple and explicit iterative construction for

constant-degree depth-robust graphs of arbitrary size. In particular, we show that a graph

of size n will enjoy (Ω(n1−ε),Ω(n1−ε))-depth-robustness for any ε > 0 and give an algorithm

for computing labels of all nodes that have a direct edge to/from a given node labeled i in

time poly(log i). Ours is the first explicitly constructed constant-degree depth robust graph

with guaranteed lower bounds on its depth-robustness (in contrast to only probabilistic

ii

guarantees). Previous explicit constructions were of logarithmic degree or worked only with

probability < 1. Beyond theoretical relevance, our construction has practical implications

including a new data-independent memory-hard function (iMHF), a desirable cryptographic

primitive for crypto-currencies, with guaranteed lower bounds on its memory complexity.

iii

The thesis of Aoxuan Li is approved.

Eliezer M Gafni

Alexander Sherstov

Rafail Ostrovsky, Committee Chair

University of California, Los Angeles

2019

iv

TABLE OF CONTENTS

1 Introduction . 1

1.1 Summary of Known Results . 1

1.2 Our Contributions . 4

1.3 Comparison to Existing Work . 4

1.4 Overview of the Expanding Product . 5

1.5 Overview of the Iterative Construction . 6

1.6 Intuition . 7

1.7 Applications . 8

1.8 Open questions that remain . 9

1.9 Organization of the Paper . 9

2 Preliminaries . 11

2.1 Graph Notions . 11

2.2 Explicitness . 12

2.3 Expanding Graphs . 12

2.4 Depth-Robustness . 13

3 The Expanding Product & The Iterative Construction 15

3.1 The Expanding Product . 15

3.2 The Iteration . 16

4 Analysis . 19

4.1 Basic Analysis . 19

4.2 Proving Depth-Robustness . 20

v

4.3 Explicitness . 29

5 The Base Graphs . 36

5.1 Constructing Expanding Graphs . 37

5.2 Constructing Depth-Robust Graphs . 37

5.3 Satisfying the Recurrence Constraint . 39

6 Applications . 40

6.1 Cumulative Pebbling Complexity & Memory-Hard Functions 40

6.2 Other Applications . 43

References . 45

vi

LIST OF FIGURES

3.1 The base graphs G,H,X. 17

3.2 The expanding product X (G,H,X) of G,H,X 17

4.1 Tree with translated labels for M = 3, m = 2 34

vii

LIST OF TABLES

1.1 Existing constructions of depth-robust graphs and their indegree, associated iMHF

complexity, failure probability, and explicitness. 5

viii

ACKNOWLEDGMENTS

This thesis is the result of a co-authored work with Eli Jaffe and Prof. Rafail Ostrovsky.

I would like to express my gratitute to my supervisor Prof. Ostrovsky for his guidance

trhougout the research and writing of this thesis. I would also like to thank Eli Jaffe for his

collaboration on this exciting research.

ix

CHAPTER 1

Introduction

1.1 Summary of Known Results

Depth-robust graphs of low degree were first studied by Erdös and Szemerédi in [EGS75]

under the name of ”sparse graphs with dense long paths.” Their original motivation involved

bounding the complexity of Boolean functions, but since then the concept of depth-robust

graphs has arisen in various areas of mathematics and computer science. As the name

implies, such graphs are intuitively characterized by having a large number of distinct long

paths. Formally, we say a graph is (e, d)-depth-robust if after removing any subset of e

vertices, a path through at least d vertices still remains. The trivial and optimal example of

such a graph is the complete graph on n vertices Kn. Since every pair of vertices share an

edge, after removing any set of e vertices, a path will still exist through the remaining n− e

vertices. Thus, for every e < n, Kn is (e, n − e)-depth-robust. The question of interest for

Erdös and Szemerédi is how sparse can such a graph be? That is, can we hope to construct

a graph whose depth-robustness is nearly as good as that of Kn but which enjoys a lower

indegree?

Erdös and Szemerédi constructed in [EGS75] a family of graphs {Gε
n} on n vertices which

are (an, bn)-depth-robust for any a + b < 1 − ε. The complete graph Kn is (an, bn) depth

robust for any a + b = 1, so this result is only ε short of optimal. The indegree of Erdös

and Szemerédi construction, however, is O(log n), an exponential upgrade over Kn. Their

construction is centered around the bipartite expanding graph. In such a graph, any two

large enough sets from opposite parts of the graph are guaranteed to have an edge between

them. By overlaying such expanding graphs between various sets of vertices, Erdös and

1

Szemerédi guaranteed the existence of particular edges unless many nodes are removed.

This is the basis of their proof of depth-robustness. Their result, however, provides only a

probabilistic argument showing the existence of such expanding graphs. If one hopes to use

such a graph in any practical way, an explicit construction of such an expanding graph is

necessary. Here, by explicit, we mean the neighbors of a vertex with label i can be computed

in time poly(log i). This definition allows one to compute neighbors in an exponentially-large

graph in polynomial-time, a particularly desirable property in applications.

In 2000, Reingold, Vadhan and Wigderson [RVW00] published seminal paper in which

they define and utilize the novel zig-zag graph product to iteratively and explicitly con-

struct expander graphs of constant degree. Expanders, which are distinct but similar to

expanding graphs, enjoy guaranteed connectivity properties under certain conditions. The

zig-zag product defined there is one type of ”replacement” product operator, in which each

vertex of a graph is replaced by a full copy (or cloud) of another graph. Their result demon-

strates that replacement-style products are useful in maintaining connectivity properties and

increasing graph size exponentially fast without increasing the degree of the graph, an im-

portant insight for future results. In the full version of their [RVW00] paper, they extend

their result using the theory of superconcentrators to explicitly construct expanding graphs

in addition to expanders. After another 10 years, these explicit expanding graphs are applied

by Mahmoody, Moran, and Vadhan [MMV13] to make explicit the family of graphs {Gε
n}

from [EGS75]. Their work utilizes the new explicit depth-robust graphs to build a specific

application, namely a publicly verifiable proof of sequential work (PoSW). More relevant

to our interests, however, is their explicit construction of a family of (an, bn)-depth-robust

graphs of indegree O(log2(n)) for any a+ b < 1− ε.

The natural question is to achieve the same results for a graph of constant indegree? If

not, what is the optimal depth-robustness for a constant-indegree graph? Not only is this

a relevant and interesting theoretical question, explicitly constructed depth-robust graphs

of constant indegree have practical usage in areas like cryptography and network design.

This line of research has been heavily pursued by [AS14, AS15, ABP17, ABH17, ABP18]

in the hopes of constructing optimal data-independent memory-hard functions (iMHFs), an

2

important cryptographic primitive. Of special interest to us is the work of Alwen, Blocki,

and Pietrzak [ABP17], where the authors demonstrate an indegree-reduction method which

transforms an (e, d)-depth-robust graph of arbitrary indegree δ into an (e, dγ)-depth-robust

graph of constant degree 2, where γ ∈ Z+. Their proof also utilizes a type of replacement

product, this time replacing each vertex in the graph with a chain of length δ + γ. The

incoming edges are then spread across the chain to decrease the indegree of any one vertex

to 2. Applying this indegree-reduction to the family {Gε
n} from [EGS75] gives a family of

(c1n
logn

, c2n)-depth-robust graphs of constant indegree 2. The authors state that their result

is only existential and not explicit and leave is as an open question to make an explicit

construction. Moreover, if we wish to create an exponentially-large depth-robust graph with

indegree 2 using their method, the graph we must start with must also be exponentially

large. It would be preferable to start with a constant-size depth-robust graph and enlarge it

to exponential-size without changing the degree or sacrificing depth-robustness.

Other constructions of various iMHFs also claim some type of depth-robustness for their

underlying graph. Examples include Argon2i, winner of the password-hashing competi-

tion, and the DRSample algorithm from [ABH17]. As summarized in Table 1, the depth-

robustness parameters of DRSample are as good as the existential result from [ABP17].

These constructions, however, are probabilistic, and may fail to generate a depth-robust

graph with some small probability. Such an algorithm is useful practically, but fails to rigor-

ously answer the more theoretical problem. That is, the problem of explicitly constructing

a depth-robust graph of constant indegree with optimal parameters has remained open.

In this work, we explicitly construct a family of constant-degree (Ω(N1−ε), (Ω(N1−ε))-

depth-robust graphs, where N is the number of nodes in the graph. Our construction

is iterative and uses a novel graph product following the inspiration of [RVW00] in their

construction of explicit constant-degree expanders. Generally speaking, the product takes

three graphs G,H, and X, and replaces each vertex of G by a copy of H and each edge of

G by a copy of X. This product is then applied repeatedly to increase the size of the graph

exponentially fast without sacrificing depth-robustness nor increasing the degree. We give a

high-level overview of the expanding graph product as well as our iterative construction.

3

1.2 Our Contributions

The Expanding Graph Product: We provide a novel graph product on three input graphs. The

expanding graph product (or expanding product) X (G,H,X) replaces each vertex of G with

a copy of H as in any replacement product. Each copy of H, or ”cloud,” maintains all internal

edges. The connections between clouds (or edges of G) are replaced by expanding graphs.

Each cloud is partitioned according to the labels of the vertices so that one expanding graph

touches each part of the cloud. Ours is the first replacement product which incorporates

the expanding graphs underlying Erdös’ original construction. If G and H are depth-robust,

regular graphs and X is a regular expanding graph, the product G′ = X (G,H,X) is a depth-

robust, regular graph of size |H| · |G|. The degree of G′ depends only on the degree of H

and the degree of X, which enables a successful iterative process.

Explicit Constant-Degree Depth-Robust Graphs: Similarly to the explicit construction of

expanders in [RVW00], we utilize our graph product to iteratively construct a family of

explicit depth-robust graphs. Since G′ := X (G,H,X) enjoys virtually every property that

G does, we can iteratively produce larger and larger depth-robust graphs by replacing G

with G′ in the next iteration. That is, we set G0 = G and compute Gk = X (Gk−1, H,X)

for k > 0. As we will show, this produces a family of graphs {Gn} where Gn (consisting of

N vertices) is (Ω(N1−ε),Ω(N1−ε))-depth-robust. Since the degree of Gk depends only on H,

and X, which are held constant in each step, we achieve constant degree (and hence constant

indegree). We prove explicitness of our construction by providing an efficient (poly(log i))

algorithm for computing the neighbors of vertex i in Gn given (n, i).

1.3 Comparison to Existing Work

As mentioned above, all previous constructions of depth-robust graphs are either non-explicit,

probabilistically generated, or have non-constant indegree. A summary of these results can

be found in Table 1.1. With the proper choice of base graphs, our construction achieves

higher depth-robustness than all other constant-degree constructions except for DRSample.

4

Our construction guarantees a path of length Ω(n1−ε) even after the deletion of n1−ε nodes,

whereas the Argon2i-A and Argon2i-B graphs (except with negligible probability) guarantee

paths of only length Ω̃(n2ε) and Ω̃(n3ε) respectively.

Construction
Depth-

Robustness
Reference Indegree Complexity Pr[fail] Expl.?

Graph by

Erdös et al.
(an, bn) [EGS75] O(log n) N/A 0 No

Erdös &

Mahmoody et al.
(an, bn) [MMV13] O(log2 n) N/A 0 Yes

Argon2i-A (e, Ω̃(n2/e2)) [ABP17] O(1)
Ω(n1.6)

O(n1.708)
negl(n) Yes

Argon2i-B (e, Ω̃(n3/e3)) [BZ17] O(1)
Ω(n1.75)

O(n1.767)
negl(n) Yes

Indegree Reduction
(Ω(n

logn
),

Ω(n))
[ABP17] O(1) Ω(n2

logn
) 0 No

DRSample
(Ω(n

logn
),

Ω(n))
[ABH17] O(1) Ω(n2

logn
) negl(n) Yes

Our Result
(Ω(N1−ε)),

(Ω(N1−ε)))
Here O(1) Ω(N2−ε) 0 Yes

Table 1.1: Existing constructions of depth-robust graphs and their indegree, associated iMHF

complexity, failure probability, and explicitness.

1.4 Overview of the Expanding Product

Here we provide a high-level overview of our new graph product which we call the expanding

graph product. Ours is a variant on replacement product as established in [RVW00]. The

5

defining property of such a product is the replacement of each node in one graph with a

whole copy (or ”cloud”) of another graph. Such products are designed to maintain various

connectivity properties of the individual graphs while shedding some less-desirable properties

such as large degree. The expanding graph product is the first to extend this concept to the

replacement of edges by a third graph.

Our product is particularly novel in its utilization of the constant-degree expanding graph

to ensure strong connectivity between clouds. As mentioned, the expanding graph is a key

component in Erdös’ original construction of logarithmic-degree depth-robust graphs. We

combine the concepts from [EGS75] and [RVW00] in hopes of achieving depth-robustness

(as in [EGS75]) as well as explicitness and constant degree (as in [RVW00]).

The product X (G,H,X) is abstractly constructed as follows. A figure depicting this

process can be found in Section 3. We assume that G is a D-regular graph on M vertices,

H is a d-regular graph on m vertices, and m is a multiple of D. X is a bipartite graph with

parts of size m/D.

1. Every vertex v in G is replaced by a copy of H (edges included) which we call a ”cloud”

and denote by Cv.

2. We partition each cloud Cv (according to the order of the labels) into D disjoint equal

parts denoted {L(v, k)}Dk=1, each of size m/D.

3. For each edge e going from u toward v in G, we overlay a copy of X from Cu to Cv. In

particular, if e is the ith edge of u and the jth edge of v, a copy of X is overlaid from

L(u, i) to L(v, j).

The resulting graph X (G,H,X) is of size |G| · |H| = M ·m.

1.5 Overview of the Iterative Construction

The construction is an iteration based on some base graphs which we presume to have some

initial properties. Particularly, for some ε > 0, we begin with graphs G, H, and X. G is a D-

6

regular (AM,BM)-depth-robust graph on M vertices for any A,B satisfying A+B < 1− ε.

Similarly, H is a d-regular (am, bm)-depth-robust graph on m vertices for any a+ b < 1− ε.

X is a c-regular bipartite (1/ε)-expanding graph with parts of size m/D. For our expanding

product to work, we also require that D divides m. It is necessary that every vertex of

G has some pre-defined ordering on its D neighbors. This can easily be established by

lexicographically ordering the labels. We assume a similar ordering on the neighbors of

vertices in H and X. For simplicity, we will use labels from [M] and [m] for vertices in G

and H respectively. Precise definitions for these graphs are given in Section 2 and methods

for constructing such graphs appear in Section 5.

The construction can be defined simply in terms of the expanding product and the base

graphs. The family of graphs {Gn} is defined as follows.

• G0 = G

• Gk = X (Gk−1, H,X)

That is, we repeatedly apply the expanding product using the same graphs H and X for

each iteration. The result of this construction is the family of graphs {Gn} where Gn has

size N = Mmn. The main result of this paper proves that this family is (Ω(N1−ε, (Ω(N1−ε)-

depth-robust. We also show that it is explicit and has indegree at most d+ c = O(1). Since

this is an iterative process, the crux of the argument boils down to proving that the depth-

robustness of G and H is carried over after being composed with X. The remainder of the

argument consists of counting arguments and basic induction. Next, we provide some light

intuition as to why the expanding product is well-fitted for maintaining depth-robustness.

1.6 Intuition

Here we provide some basic intuition into the efficacy of the expanding product. The hope is

that if G and H have some depth-robustness guarantees and X is a proper expanding graph

then the product X (G,H,X) will itself be depth-robust. Recall the definition of (e, d)-depth-

7

robustness: for any subset of vertices S ⊆ V of size |S| ≤ e, a path remains in G/S of length

at least d. Why should we expect G′ := X (G,H,X) to achieve this property?

We can argue this by using the depth-robustness of G and H. The product G′ has a

very particular structure; it is composed of M identical ”clouds” (copies of H) and the

connections between these clouds mirror the structure of G. If G is depth-robust, unless we

destroy a lot of clouds, a long ”cloud path” of clouds connected by expanding graphs will

remain. Each cloud is made up of D equal parts which (as we shall prove) are independently

depth-robust. Since these parts are where expanding graphs attach, one can ”destroy” a

cloud by destroying one of these D parts. To destroy a lot of clouds, one must destroy a lot

of these small parts by deleting a lot of vertices. If one does not destroy a lot of clouds, we

can show that this long intact ”cloud path” (along with properties of the expanding graph

connecting each pair of clouds) implies the existence of a long path through these clouds. A

more precise version of this argument gives rise to the depth-robustness bounds claimed in

the previous section.

1.7 Applications

The main application of this work is in the construction of more complex data-independent

memory-hard functions (iMHFs). Such functions are used in various proof-of-work protocols

and provide many desirable security guarantees. In particular, such functions enjoy a high

”cumulative memory complexity.” This is a measure of the total memory required to compute

a function, computed by summing memory at each time step over all time steps. Many

recent works ([AS14, AS15, ABP17, ABH17, ABP18]) have aimed at constructing iMHFs

with cumulative memory complexity (cmc) as close to optimal as possible. It turns out that

such a problem can be reduced to a problem of constructing constant-indegree graphs of

optimal depth-robustness.

The memory access pattern of an iMHF can be represented by a directed acyclic graph

(DAG). The label lv of each node v represents a value stored in memory. If values l1, . . . , lk are

necessary to retrieve value lv, the corresponding graph would have {v1, . . . , vk} ⊆ parents(v).

8

A unifying result from [ABP17] shows that if G is (e, d)-depth-robust, the iMHF correspond-

ing to G has cumulative memory complexity at least e ·d. Thus, constructions of new explicit

depth-robust graphs imply constructions of new iMHFs. As mentioned earlier, all construc-

tions of constant-indegree are probabilistic in nature and feature a small error probability.

Our construction implies the existence of an iMHF with a cumulative memory complexity

of at least Ω(n2−ε) with zero error probability for any ε > 0. This beats the complexity of

the Argon-2i function but falls short of that achieved by DRSample.

Other applications of improved depth-robust graphs include proofs of sequential work

(PoSW) and fault-tolerant distributed storage networks (DSNs). Further details are dis-

cussed in Section 6.

1.8 Open questions that remain

The following are open problems of interest relating to this work.

1. Ideally we wish to close the gap in depth-robustness between this result and that of

DRSample in [ABH17]. That is, can we construct a (Ω(n
logn

),Ω(n))-depth-robust graph

with zero probability of failure?

2. Further analysis is necessary to determine what base graphs can be chosen to ideally

tune the constants in front of our depth-robustness parameters. Specifically, what

values of a, b, A,B,D give optimal depth-robustness?

3. Thoughm is constant, it must be quite high in order to achieve strong depth-robustness.

Does a modification to the construction exist which reduces the necessary size of m?

1.9 Organization of the Paper

In Chapter 2, we establish preliminary definitions necessary to describe our graph product

and the construction, including the definitions of depth-robust and expanding graphs. We

also define the notion of explicitness. In Chapter 3, we define formalize the expanding graph

9

product and the iterative construction of the family {Gn}. Chapter 4 includes the majority

of our main results and establishes both the explicitness and depth-robustness of {Gn}. In

Chapter 5, we prove the existence of the depth-robust graphs and the expanding graph

which form the base of the iterative construction. Finally, Chapter 6 discusses potential

applications of this work in more detail.

10

CHAPTER 2

Preliminaries

This chapter defines the graph-theoretic notions underlying our construction. We first discuss

basic graph notions and the definition of explicitness. Following that we define expanding

graphs and depth-robust graphs.

2.1 Graph Notions

A directed graph G = (V,E) is a set of vertices and a set of directed edges. We say (u, v) ∈ E

if an edge points from vertex u ∈ V to vertex v ∈ V . The object of interest in this paper is

a directed acyclic graph (DAG). Although one may consider depth-robustness in the more

general case where cycles are allowed, it is easy enough to avoid cycles in our construction

which enables many more applications for our result. We will often use the letters m and M

to refer to the number of vertices in particular graphs; do not mistake m or M to mean the

number of edges in a graph. We shall not reference the number of edges in the graph.

The indegree of a vertex v is the number of incoming edges incident to v. Similarly, the

outdegree is the number of outgoing edges incident to v. The indegree and outdegree of a

vertex v are denoted by deg−(v) and deg+(v) respectively. The degree of a vertex is simply

the sum of the indegree and outdegree, deg(v) = deg−(v) + deg+(v). A directed graph G is

D-regular if for every vertex v ∈ G, deg(v) = D.

11

2.2 Explicitness

Intuitively, we wish to say that a representation of a graph is explicit if one can compute the

neighbors of a particular vertex in a reasonable amount of time. The necessary question to ask

is then what is a reasonable amount of time? Suppose given a label i we are able to compute

its neighbors in time poly(i). As long as i is bounded by some polynomial, our algorithm will

run in polynomial-time. However, if the number of labels is exponentially-large, the time

necessary to compute neighbors becomes implausible. For practical applications, access to

objects of exponential-size is ideal, so this definition of explicitness will not work. Instead, we

require that the neighbors of i be computable in time poly(log i). This is the well-accepted

definition of explicitness used in works such as [RVW00]. We give a formal definition below.

Definition 2.1. Let {Gn} be a family of graphs of size |Gn| = N vertices. Suppose the

vertices of Gn are labeled {1, . . . , N}. We say that {Gn} is explicit if there exists an

algorithm neighbors satisfying the following:

1. neighbors takes as input (n, i). n is the index (and any necessary additional info) which

completely specifies a particular Gn ∈ {Gn}. i ∈ {0, 1}logn is the label of some vertex

in Gn.

2. For k ≤ n, if vertex i has k total neighbors labeled l1, . . . , lk, then neighbors(Gn, i)

returns the list (l1, . . . , lk).

3. neighbors(n, i) runs in time at most poly(log i).

We will also say that a particular graph G is explicit as a shorthand meaning that G

comes from some explicit family. We will eventually show that our construction satisfies this

definition of explicitness.

2.3 Expanding Graphs

As mentioned in the introduction, [RVW00] provided the first explicit construction of constant-

degree expander graphs. Though expanders are interesting in their own right, we will be

12

applying a supplementary result from their paper which constructs the slightly different ex-

panding graph. Intuitively, a graph is an expanding graph if any two sufficiently large vertex

subsets admit at least one edge between the two sets. Expanding graphs form the basis of

various switching and sorting networks and can be used to establish time-space tradeoffs

for many computational problems. As discussed in [Kla84], the existence of constant-degree

expanding graphs was proven probabilistically in many independent cases but no efficient

explicit construction was known until [RVW00]. Many works such as [Pip87, EGS75] can be

and have been made explicit by the construction of explicit expanding graphs. The formal

definition we shall use (for bipartite expanding graphs) from [MMV13] can be found below.

Definition 2.2 (Expanding Graphs [MMV13]). Let G = (V1, V2, E) be a bipartite graph

with parts of size |V1| = |V2| = M . G is A-expanding if for every pair of subsets S1 ⊆ V1

and S2 ⊆ V2 satisfying |S1| = |S2| = dM/Ae there exists an edge between S1 and S2.

As we will discuss later, these can be constructed efficiently for any constant degree by

the methods in [RVW00]. As suggested in the introduction, expanding graphs will be a

crucial component in our construction.

2.4 Depth-Robustness

Depth-robustness measures the density of long paths within a graph. We first give the formal

definition and then discuss its intuition and relevance.

Definition 2.3 (Depth-Robust Graph). Let G = (V,E) be a graph on n vertices (|V | = n).

For e, d ∈ {1, . . . , n}, G is (e, d)-depth-robust if for every subset of vertices S ⊆ V satisfying

|S| ≤ e, depth(G− S) ≥ d. That is, a path through at least d vertices exists in G/S.

It is intuitively helpful to contextualize the definition in terms of an adversary whose goal

is to reduce the depth of the graph to some value below d. This adversary is only allowed

a budget of at most e node deletions to accomplish this. If no such adversary can remove

all paths of length d or more using a budget of at most e deletions, then we say the graph

13

is (e, d)-depth-robust. Essentially, depth-robustness is a measure of how well a graph resists

such depth-reducing attacks.

As mentioned in the introduction, the (directed) complete graph Kn is a trivial example

of a (e, n−e)-depth-robust graph for every e ≤ n but has a prohibitively high indegree O(n).

Erdös achieved (e, n− e− ε)-depth-robustness for every e ≤ n and reduced the indegree to

O(log n). This eventually increased to O(log2(n)) with the inclusion of explicit expanding

graphs from [RVW00].

The following result from [ABP18] establishes that with one slight modification, the

family of graphs from [EGS75] achieves a better form of depth-robustness which is desirable

for our purposes. Their additional analysis establishes that one can characterize the depth-

robustness of the (modified) family {Gε
n} from [EGS75] by a single parameter ε rather than

by two parameters e and d. The graph Gε
n is, as it turns out, (αn, βn)-depth-robust for

any α, β whose sum is at most 1 − ε (in this case Gε
n has n vertices). We will informally

refer to this property as ”scaling depth-robustness”: as the adversary’s budget for corruption

increases, the length of the guaranteed path decreases. We state this formally below.

[[ABP18] Theorem 3] Fix ε > 0. Then there exists a family of DAGs {Gε
n}∞n=0 with indeg

Gε
n = O(log n) that is (αn, βn)-depth-robust for any constants α, β such that α+β < 1−ε.

We will informally refer to such a graph for fixed ε > 0 as ε-scaling-depth-robust. As

we will show in Chapter 5, any such graph can be made regular (as is necessary for our

construction) without sacrificing depth-robustness.

For constant-indegree graphs, no provably depth-robust explicit construction has yet

been given, but an existential result exists via the indegree-reduction method from [ABP17].

In the next chapter, we describe our construction of explicit constant-degree depth-robust

graphs by introducing the novel expanding graph product.

14

CHAPTER 3

The Expanding Product & The Iterative Construction

In this chapter, we first define a novel graph product designed to maintain depth-robustness

and increasing the size of the graph while holding the degree to a constant. Afterward,

we use the product to define an iterative process which constructs an explicit family of

constant-degree (Ω(N1−ε),Ω(N1−ε))-depth-robust graphs.

3.1 The Expanding Product

The product utilizes the explicit constant-degree expanding graph which was successfully

constructed in [RVW00]. The product is designed to take as input two regular scaling-

depth-robust graphs G,H (that is, from the family in Theorem 2.4) as well as a regular

constant-degree expanding graph X. Intuitively, to compute the product of G, H, and X,

we first replace each node in G with a copy of H which we call a ”cloud”. Then, instead of

connecting clouds by a single edge, we replace each edge with a copy of X. That is, for each

edge (u, v) in G, we use a copy of X to connect clouds Cu and Cv in the new graph. Each

cloud is partitioned so that the expanders do not overlap one another. The formal definition

follows.

Definition 3.1 (Expanding Graph Product). Let G be a D-regular graph on vertex set [M]

and let H be a d-regular graph on vertex set [m]. Assume some pre-defined ordering on

the neighbors of each vertex in G and H (for example, lexicographically by label). Assume

further that D|m so that the vertices of H can be split evenly into D groups. Partition the

vertices of H into D sets of equal size via the labeling. That is, the first part consists of the

m/D vertices of smallest label, and so on. Let X be a bipartite graph with m/D vertices

15

in each part. The expanding graph product X (G,H,X) is a (d + O(1))-regular graph on

vertex set [M]× [m] constructed as follows:

• Replace each vertex of v ∈ G with the cloud Cv ∼= H consisting of m vertices with all

edges included. Mathematically, a vertex (v, u) ∈ X (G,H,X) is the vertex in cloud Cv

corresponding to vertex u ∈ H. The edge ((v, u1), (v, u2)) ∈ X (G,H,X) if and only if

the edge (u1, u2) ∈ H. Cv is partitioned exactly as H is; for v ∈ G and index i ∈ [D],

let P (v, i) denote the ith part of Cv.

• For each edge (u, v) ∈ G, do the following: suppose v is the ith neighbor of u and u

is the jth neighbor of v for i, j ∈ [D]. Overlay a copy of X going from P (u, i) toward

P (v, j). Mathematically, let u1, u2 ∈ G and v1, v2 ∈ H. For L and R ordered sets of

size m/D, let X(L,R) be a copy of X with its left part relabeled as L and its right

part relabeled as R. Then ((u1, v1), (u2, v2)) ∈ X (G,H,X) if and only if the following

hold:

– (u1, u2) ∈ G

– For i, j ∈ [D], u1 is the neighbor of u2 with ith largest label and u2 is the neighbor

of u1 with jth largest label.

– v1 ∈ L(u1, i) and v2 ∈ L(u2, j).

– The edge (v1, v2) ∈ X(P (u1, i), P (u2, j)).

3.2 The Iteration

We state our simple iterative process for constructing the family of depth-robust graphs

{Gn} below. In the next chapter we will analyze this family and prove our claims of depth-

robustness.

Definition 3.2. Fix ε > 0. Let G be a D-regular ε-scaling-depth-robust graph on vertex

set [M] and let H be a d-regular ε-scaling-depth-robust graph on vertex set [m] where D|m.

16

HG X

Figure 3.1: The base graphs G,H,X.

Figure 3.2: The expanding product X (G,H,X) of G,H,X

17

Assume some ordering on the neighbors of every vertex. Let X be a bipartite (1/ε)-expanding

graph of constant degree c with each part of size m/D. We define Gn recursively as follows:

G0 = G

Gk+1 = X (Gk, H,X)

Since the size of Gn is not n, we will denote the size of Gk by N(k) or simply N when

the index is clear by context. Note that in the definition of X (G,H,X), we require that

G be D-regular for some D|m so that H can be properly partitioned. This means that in

order for Gk+1 = X (Gk, H,X) to be defined, Gk must be qm-regular for some integer q. In

the following chapter, we analyze this construction and establish that Gk is in fact a regular

graph and that m and D can be chosen to satisfy this constraint.

18

CHAPTER 4

Analysis

Having defined our construction, we will now analyze the depth-robustness and explicitness

of {Gn}. To accomplish this, we first provide some basic analysis on the size and degree

of Gn. We then prove the main theorem of this paper which states that the expanding

product of two depth-robust graphs and an expanding graph is a new graph with strong

depth robustness. This will imply the depth-robustness of our iteratively constructed {Gn}.

Finally, we prove that our construction is in fact explicit by giving an efficient algorithm for

computing neighbors.

4.1 Basic Analysis

Our first theorem establishes that the expanding product X (Gk, H,X) outputs a constant-

degree, regular graph whose degree depends only on the degrees of H and X. Since H and

X are kept constant throughout the iteration, this implies that the degree of Gn is constant.

Later, we show this degree is a multiple of m (with the proper base graphs), satisfying the

necessary constraint for iteration mentioned in the previous chapter.

Theorem 4.1. Let {Gn} be the family of graphs defined in Definition 3.2. Let d denote the

degree of H and c denote the degree of X. Then for k > 0, Gk is a (d+ c)-regular graph on

Mmk vertices.

Proof. We prove the theorem by induction. In the base case, G1 has Mm vertices by the

definition of the expanding product. To see G1 is (d+ c)-regular, let v be an arbitrary vertex

in G1. Since v is part of some d-regular cloud (copy of H), v has d internal neighbors inside

the same cloud. Since each part of H is overlaid with a single copy of X, v also has precisely

19

c external neighbors in some other cloud due to the degree of X. Thus, every v ∈ G1 has

precisely d+ c neighbors, as desired. For the inductive step, fix k > 0, and assume that Gk−1

is a (d+ c) regular graph on Mmk−1 vertices. Gk has m ·Mmk−1 = Mmk vertices since each

of the Mmk−1 vertices in Gk−1 corresponds to m vertices in Gk. Our previous argument for

the degree of G1 depends only on H and X, so an identical argument establishes that Gk

is (d + c)-regular. In particular, each vertex in Gk has precisely d internal neighbors and c

external neighbors by the same logic as above.

We have now established that the degree of Gk remains constant throughout the iteration.

We have also found an explicit formula for N(k) = Mmk. It remains to show that the degree

d+c is in fact a multiple of m, our necessary constraint for iteration. It is intuitive, however,

that satisfying this constraint is possible because the parameters m and c are up to our

choosing. The parameter d depends on m and in our case we will have d = O(logm). A

detailed discussion of this constraint satisfaction can be found in Chapter 5.

4.2 Proving Depth-Robustness

The primary goal of this section is to prove the following theorem.

Theorem 4.2. Fix ε > 0. There exist base graphs G,H,X such that Gn ∈ {Gn} defined

according to Definition 3.2 is (Ω(N1−ε),Ω(N1−ε))-depth-robust.

Technically our proof will not be complete until Chapter 5 where we establish the exis-

tence of regular ε-scaling depth-robust graphs of the correct parameters. What we can ac-

complish here is to prove that such parameters exist which give the desired depth-robustness

of {Gn}. Then, in the next chapter, we show how to find base graphs matching these

parameters.

Theorem 4.2 follows essentially by arithmetic from the following theorem.

Theorem 4.3. Fix ε > 0 and let the family {Gn} be defined as in Definition 3.2. Then for

any a+b < 1−ε and A+B < 1−ε, Gn ∈ {Gn} is
(

(am
D

)nAM, (((b−Dε)m)
D

)nBM
)

-depth-robust.

20

With the proper constants a, b,m,M,D, ε, which are up to our choosing, the bases am
D

and (b−Dε)m
D

in the above parameters exceed 1. This forces both terms to be almost linear,

Ω(N1−ε) for arbitrarily small ε > 0. This gives the desired conclusion of Theorem 4.2.

Proof of 4.3 =⇒ 4.2. Assuming that Theorem 4.3 holds, proving the corollary is a matter

of arithmetic and algebra. Let G = Gi ∈ {Gn}. We will use |G| = N for the size of G.

By Theorem 4.3, G is ((am
D

)iAM, (((b−Dε)m)
D

)iBM)-depth-robust. For ease of notation, let

Ca = a
D

, CA = AM , Cb = b−Dε
D

, and CB = BM . Since N = miM , solving for i we get

i = logm(N
M

). We will substitute this into the depth-robustness parameters from above in

order to write them in terms of N , the number of vertices in G. We get the following:

((am
D

)i
AM,

(((b−Dε)m)

D

)i
BM

)
=
(

(Cam)logm(N
M

)CA, (Cbm)logm(N
M

)CB

)
=
((N

M

)logm(Cam)

CA,
(N
M

)logm(Cbm)

CB

)
=
((N

M

)logm(Ca)+logm(m)

CA,
(N
M

)logm(Cb)+logm(m)

CB

)
=
((N

M

)1+logm(Ca)

CA,
(N
M

)1+logm(Cb)

CB

)
=
((
CAM

−(1+logm(Ca))
)
N1+logm(Ca),

(
CBM

−(1+logm(Cb))
)
N1+logm(Cb)

)

The third equality comes from the fact that xlog y = ylog x in general. This fact is easily

seen by taking the logarithm of both sides of the equation. The leading coefficient of N is

constant in both parameters, and the values − logm(Ca) and − logm(Cb) can be forced below

any ε > 0 with the appropriate choices of m, a, b, and D. This completes the proof.

We now know that Theorem 4.3 (and an argument for the existence of proper base graphs)

implies the desired depth-robustness bounds of Theorem 4.2. We will prove Theorem 4.3 via

a simple induction on the result of the following, more substantial theorem.

Theorem 4.4. Fix ε > 0. Let G be a D-regular ε-scaling-depth-robust graph on M vertices

and H be a d-regular ε-scaling-depth-robust graph on m vertices. Assume some ordering on

21

the neighbors of each vertex. Let X be a (1/ε)-expanding graph, and define G′ = X (G,H,X).

Then, for any a+ b < 1− ε and any A+B < 1− ε, G′ is (amAM
D

, (b−Dε)mBM
D

) depth-robust.

Once these theorems are proven, all that remains in our proof of existence is to show that

there is some choice of base graphs G,H,X such that the recurrence constraint (d + c)|m

is satisfied and such that the depth-robustness of {Gn} exceeds (N1−ε, N1−ε). Existence of

these base graphs, along with the above results, complete the proof that {Gn} exists and

is indeed depth-robust. Proving its explicitness requires an additional argument which we

provide in the following section.

The strategy for proving Theorem 4.4 will be as follows: we first prove in Lemma 4.5 that

two ”clouds”, partitioned and overlaid with an expanding graph (as in the expanding graph

product), maintain some form of depth-robustness. More precisely, as long as neither of the

two clouds is ”corrupted” by a large number of deleted nodes, a long path remains whose

intersection with each cloud is large. This means a long path will remain through two clouds

unless the adversary commits a large number of deletions to corrupting one of them. This

lemma is proven using 4.6 and 4.7 as auxiliary lemmas. After this, we use Lemmas 4.8 and

4.9 to establish a correspondence between long paths in G and long paths in X (G,H,X).

Since the structure of clouds mirrors the structure of G, the depth-robustness of G tells us

exactly how many clouds must be corrupted in order to destroy long paths in X (G,H,X).

Similarly, since each cloud has the structure of H, the depth-robustness of H tells us exactly

how many nodes must be deleted to corrupt a particular cloud. Thus, an adversary must

commit a large number of deletions to corrupt many clouds if they wish to destroy all of

the long paths in X (G,H,X). More precise calculations yield the desired depth-robustness

bounds.

As outlined above, we begin our proof of 4.4 with the following lemma. Intuitively, this

says that overlaying an expanding graph between depth-robust graphs produces a graph

with ”balanced” depth-robustness; if one deletes sufficiently few vertices from each side of

the resulting graph, a path remains which has a long intersection with each part of the graph.

Lemma 4.5. Let ε > 0 be arbitrarily small, and consider G1 and G2 be ε-scaling-depth-

22

robust graphs on m vertices with some pre-defined ordering on their vertex labels. Let a, b be

any constants satisfying a + b < 1 − ε. For some D dividing m, partition each graph into

D subgraphs of equal size according to the order of labels. Denote the ith subgraph in G1 as

L1
i and the jth subgraph in G2 as L2

j . For arbitrary i, j ∈ [D], overlay a |L1
i | × |L2

j | bipartite

1/ε-expanding graph from L1
i to L2

j and call the resulting graph G. Then:

For any subset of vertices S ⊆ G whose intersection with G1 is at most |S ∩G1| < am
D

and whose intersection with G2 is at most |S ∩ G2| < am
D

, there exists some path

P ⊂ (G/S) such that |P ∩G1| > (b−Dε)m
D

and |P ∩G2| > (b−Dε)m
D

.

We prove Lemma 4.5 using two auxiliary lemmas. Lemma 4.6 establishes that for any

depth-robust graph G, such as those from [EGS75, ABP18], sub-graphs of G are also depth-

robust. Lemma 4.7 will show that overlaying a bipartite expanding graph between two

depth-robust graphs results in a new graph with the “balanced” depth-robustness property of

Lemma 4.5. Together, these show that given two depth-robust graphs H and H ′, partitioning

each graph and overlaying an expanding graph from a part in H to a part in H ′ produces a

graph satisfying the balanced depth-robustness we seek in Lemma 4.5.

Lemma 4.6. Fix ε > 0. Let H ∈ {Gε
n} be some ε-scaling-depth-robust graph on vertex

set [m]. Partition H into D equal subgraphs denoted {Li}Di=1, were Lk consists of vertices

{ (k−1)m
D

, . . . , km
D
− 1}. Then for any a+ b < 1− ε, each Li is (am

D
, (b−(D−1)ε)m

D
)-depth-robust.

Proof. Fix ε > 0 and a and b such that a+ b < 1− ε, and let H be as above. For arbitrary

Li, select a subset Sbad ⊂ Li of at most am
D

nodes from Li.

Delete Sbad ∪ (H/Li) (everything but the good vertices in Li) from H, and call what

remains Sgood. |Sbad ∪ (H/Li)| < am
D

+ (D−1)m
D

= a+D−1
D

m. We now use the ε-scaling-depth-

robustness of H. That is, since H ∈ {Gε
n}, 2.4 tells us that the number of nodes deleted is

inversely related to the length of the guaranteed path (as long as the deletions do not exceed

(1 − ε)m). That is, for any p < 1 − ε, if at most pm nodes are deleted from H, a path of

length at least (1− p− ε)m will remain. Thus, since a+D−1
D

m < (1− ε)m nodes were deleted

23

from H, we can find a path P ⊂ Sgood of length

|P | > (1− a+D − 1

D
− ε)m = (

1− a
D
− ε)m >

(b− (D − 1)ε)m

D

as desired. The last inequality comes from the fact that a+b < 1−ε and thus b+ε < 1−a.

Lemma 4.7. Fix ε > 0 and choose arbitrary a + b < 1 − ε. Let L and R each be ε-scaling

depth-robust graphs from {Gε
n} each on m vertices (they need not be distinct). Let G be the

result of overlaying a (1/ε)-expanding graph from L to R. Then,

For any subset of vertices S ⊂ G whose intersection with L is at most |S∩L| < am and

whose intersection with R is at most |S ∩ R| < am, there remains a path P ⊆ (G/S)

of length at least |P | > 2(b− ε)m such that |P ∩L| > (b− ε)m, and |P ∩R| > (b− ε)m.

Proof. Select a subset S of at most 2am vertexes from G such that |S ∩ R| and |S ∩ L|

are each at most am and call nodes in this set ”bad”. Let SL = S ∩ L and SR = S ∩ R.

Let σm = |SL| be the number of bad nodes in SL (where σ is the fraction of bad nodes).

Then, since |S| < 2am, we must have |SR| < (2a − σ)m. Since both subsets are of size

at most am by assumption, we can invoke the depth-robustness of L and R. We again

utilize the fact that L and R are ε-scaling depth-robust by Theorem 2.4 to conclude that

there exists a path PL in L of length |PL| > (1 − σ − ε)m. Similarly, there exists a path

PR in R of length |PR| > (1 − (2a − σ) − ε)m. We wish to find a path P in G of length

|P | > 2(1− a− 2ε)m = 2(b− ε)m. We also want this path to have an intersection of size at

least (b− ε)m with both PL and PR.

Let P̂L ⊆ PL be the εm-tail of PL consisting of the last [εm] nodes and let P̂R ⊆ PR be

the εm-head of PR consisting of the first [εm] nodes (as determined by the direction of edges

in the path). Then, since L and R are connected by a (1/ε)-expanding graph, and P̂L and

P̂R are of size εm, we are guaranteed the existence of an edge from P̂L to P̂R by Definition

2.2. We can create the path P by connecting PL and PR with this extra edge, potentially

24

losing the εm head and tail in the process. The length of the path is at least

|P | = |PR| − |P̂R|+ |PL| − |P̂L|

≥ |PR| − (dεme − 1) + |PL| − (dεme − 1)

> (1− σ − ε)m+ (1− (2a− σ)− ε)m− 2εm

= 2− 2a− 4εm

= 2(1− a− 2ε)m

> 2(b− ε)m

The last inequality comes from the fact that a+b < 1−ε. It remains to show that |P∩PR|

and |P ∩PL| are both at least (b− ε)m. This can be seen by observing that P ∩PR = PR/P̂R

and thus

|P ∩ PR| = |PR| − |P̂R| = (1− σ − ε)m− εm

Since σ < a, we have that

(1− σ − ε)m− εm > ((1− a− ε)− ε)m > (b− ε)m

using the fact that 1 − a − ε > b. An identical argument shows that |P ∩ PL| > (b − ε)m,

and this completes the proof.

We are now in position to prove Lemma 4.5 using Lemmas 4.6 and 4.7 as building blocks.

The proof is a relatively straightforward application of Lemma 4.7 to the partitions of H in

Lemma 4.6.

Proof of Lemma 4.5. Let G be constructed as in the hypotheses of the lemma. By Lemma

4.6, G1’s subgraph L1
i and G2’s subgraph L2

j are each (am
D
, (b−(D−1)ε)m

D
)-depth-robust. Apply-

ing Lemma 4.7 with the same value of ε, we conclude that if a “balanced“ set S is deleted

whose intersections with G1 and with G2 are each at most am
D

, a path remains in G/S with

length |P ∩G1| > (b−Dε)m
D

in G1 and with length |P ∩G2| > (b−Dε)m
D

in G2. Thus, the lemma

is proven.

25

We have now established that two partitioned depth-robust graphs overlaid with an

expanding graph will contain a long, balanced path so long as neither graph corrupted by

removing too many nodes. Our next lemma applies this to the clouds in our expanding

product X (G,H,X). The conclusion is that two adjacent clouds which are not corrupted

contain a long, balanced path. The following lemma extends this inductively to say that

a sequence of adjacent clouds, none of which are corrupted, implies the existence of a long

path throughout these clouds. Once these two lemmas are proven, we are in position to

prove Theorem 4.4, the basis of our main Theorem 4.3. Once we have established the direct

correspondence between paths in G and paths in X (G,H,X), the depth-robustness of G

tells us how many clouds one must corrupt to destroy long paths, and the depth-robustness

of H tells us the price (in deletions) of corrupting a single cloud.

Before we state and prove our lemmas, we must formalize what it means to ”corrupt”

a cloud. Suppose we select a subset S ⊂ V (X (G,H,X)) and call them bad nodes. If a

particular cloud contains more than am
D

bad nodes, we call it a bad cloud; otherwise, we call

it a good cloud.

Lemma 4.8. Fix ε > 0. Let G (and H) be D-regular (d-regular) ε-scaling depth-robust

graphs as in Theorem 4.4. Suppose some subset of vertices in X (G,H,X) is selected as bad

nodes. For any vertices u, v ∈ G, if Cu, Cv are good clouds and edge (u, v) ∈ G, then there

exists a path P in X (G,H,X) of length |P | > 2(b−Dε)m
D

such that |P ∩ Cu| > (b−Dε)m
D

and

|P ∩ Cv| > (b−Dε)m
D

Proof. By the construction of X (G,H,X), Ci and Cj satisfy the hypotheses of Lemma 4.5.

Since Ci and Cj are good clouds by assumption, each has had at most am
D

nodes deleted.

Thus, by the conclusion of Lemma 4.5, a path exists in X (G,H,X) whose intersection with

each cloud exceeds (b−Dε)m
D

, as desired. The total length comes from summing the lengths of

these two disjoint halves.

Lemma 4.9. Fix ε > 0 and suppose G and H are regular and ε-scaling depth-robust as before.

Suppose some subset of vertices in X (G,H,X) is bad. Suppose clouds Cv1, Cv2,. . . ,Cvk are

all good clouds, where Cvi is the cloud corresponding to vertex vi ∈ G. If there exists a

26

path (v1, v2, . . . , vk) in G, then there exists a corresponding path P in X (G,H,X) of length

|P | > k(b−Dε)n
D

such that for each i ∈ [k], |P ∩ Cv1| >
(b−Dε)n

D
.

Proof. We prove by induction. When k = 2, Lemma 4.8 applied to Cv1 and Cv2 proves

the statement. For the inductive step, fix k > 2. Suppose Cv1 , . . . , Cvk are good clouds in

X (G,H,X) and further suppose that there exists a path (v1, . . . , vk) in G. For our inductive

hypothesis, we assume there exists a path Pk−1 in X (G,H,X) of length |Pk−1| > (k−1)(b−Dε)m
D

which satisfies |Pk−1 ∩ Cvi | >
(b−Dε)m

D
for every i ∈ [k − 1]. Now, we apply Lemma 4.8 to

clouds Cvk−1
and Cvk . Since both are good clouds, there exists a path Pk in X (G,H,X) of

length |Pk| > 2(b−Dε)m
D

such that |Pk ∩ Cvk−1
| > (b−Dε)m

D
and |Pk ∩ Cvk | >

(b−Dε)m
D

. Now we

will join Pk−1 with Pk inside Cvk−1
to create the path P that we want. Let P̂k−1 denote the

part of Pk−1 intersecting Cvk−1
(of size |P̂k−1| > (b−Dε)m

D
), and let P̂k denote the part of Pk

intersecting Cvk−1
(of size |P̂k| > (b−Dε)m

D
). We wish to claim that there exists a path P̂ in

Cvk−1
connecting P̂k−1 to P̂k. Since Cvk−1

is a copy of H, it is ε-scaling depth-robust. Only

am
D

nodes have been deleted from Cvk , so by Theorem 2.4, there exists a path P̂ in Cvk−1
of

length at least |P̂ | > (1− a
D
− ε)m. Since am

D
nodes are bad, this is equivalent to saying that

there are at most εm good nodes in Cvk−1
which do not lie on the path. Since both partial

paths P̂k and P̂k−1 inside Cvk−1
are of size greater than εm, the pigeonhole principle tells

us that both partial paths intersect P̂ . We then construct our desired path by connecting

P̂k−1 to P̂k via P̂ . In the worst case, all εm good nodes in Cvk−1
/P̂ lie in either P̂k−1 or P̂k

and those nodes are lost from the total length. This connects Pk−1 to Pk, and we call the

resulting path P . As a rough lower bound on the length, we have

|P | > |Pk|+ |Pk−1|+ |P̂ /(P̂k−1 ∪ P̂k)| − εm

=
k(b−Dε)m

D
+ (b−Dε)m− 2(b−Dε)m

D
− εm

=
k(b−Dε)m

D
+

((D + 2)(b−Dε)−Dε)m
D

>
k(b−Dε)m

D

The last inequality comes from the fact that D > 0, b > 0, and ε is arbitrarily small. This

27

completes the proof by induction.

We are now in position to prove our main theorems. We restate them here for convenience.

Recall, we have already established that Theorem 4.3 =⇒ Theorem4.2.

Theorem 4.4. Fix ε > 0. Let G be a D-regular ε-scaling-depth-robust graph on M vertices

and H be a d-regular ε-scaling-depth-robust graph on m vertices. Assume some ordering on

the neighbors of each vertex. Let X be a (1/ε)-expanding graph, and define G′ = X (G,H,X).

Then, for any a+ b < 1− ε and any A+B < 1− ε, G′ is (amAM
D

, (b−Dε)mBM
D

) depth-robust.

Theorem 4.3. Fix ε > 0 and let the family {Gn} be defined as in Definition 3.2. Then for

any a+b < 1−ε and A+B < 1−ε, Gn ∈ {Gn} is
(

(am
D

)nAM, (((b−Dε)m)
D

)nBM
)

-depth-robust.

Theorem 4.2. Fix ε > 0. There exist base graphs G,H,X such that Gn ∈ {Gn} defined

according to Definition 3.2 is (Ω(N1−ε),Ω(N1−ε))-depth-robust.

Proof of Theorem 4.4. Fix ε > 0. Let G ∈ {Gε
n} be a D-regular graph on M vertices and

H ∈ {Gε
n} be a d-regular graph on m vertices. Fix arbitrary a, b, A,B such that a+b < 1− ε

and A + B < 1 − ε. Select a set S of bad vertices of size at most amAM
D

. Since it requires

at least am
D

bad vertices to corrupt any single cloud, there are at most AM bad clouds. Call

this set of bad clouds C, where |C| < AM . Recall that clouds in X (G,H,X) correspond to

vertices in G and consider the set of vertices VC ⊆ G corresponding to the set C. Note, we

must have |VC | < AM since we have a bijection between the sets. G is (AM,BM)-depth-

robust (since A + B < 1 − ε), which implies that there exists a path PG of length at least

BM in G/VC . Observe that every vertex in PG corresponds to a good cloud in X (G,H,X).

Lemma 4.9 then tells us that there exists a path P in X (G,H,X) of length |P | > (b−Dε)mBM
D

.

Thus, X (G,H,X) is (amAM
D

, (b−Dε)mBM
D

)-depth-robust, as desired.

Note that this bound holds for any a, b, A,B satisfying a+ b < 1− ε and A+B < 1− ε,

justifying our freedom of choice over these parameters in earlier proofs. We are now in

position to prove Theorem 4.3 by induction.

28

Proof of Theorem 4.3. We can see from Theorem 4.4 that if Gk−1 is (e, d)-depth-robust, then

Gk is (am
D
·e, (b−Dε)m

D
·d)-depth-robust. With this observation, we prove the theorem by induc-

tion. In the base case, when k = 0, we already have that G0 = G is (AM,BM)-depth-robust

by assumption. In the inductive step, suppose Gk−1 is ((am
D

)k−1AM, ((b−Dε)m
D

)k−1BM)-depth-

robust. Then by our observation, Gk is ((am
D

)kAM, ((b−Dε)m
D

)kBM)-depth-robust, as de-

sired.

Once we prove the existence of regular, ε-scaling depth-robust graphs satisfying the re-

currence constraint, we will have established explicit lower bounds on the depth-robustness

of our family of graphs {Gn}∞n=0. We establish this in Chapter 5. Before we do this, we es-

tablish the explicitness of {Gn}, as this distinguishes our result from other existential results

like that of [ABP17].

4.3 Explicitness

In order to show explicitness, we must give some efficient algorithm for computing the

neighbors of vertex i in the graph Gn given only the label i and a description of Gn (in this

case, simply the index n). In particular, the algorithm must run in time poly(log |i|). That

is, polynomial in terms of the length of the label i. Since Gn is of size |Gn| = M ·mn, the

largest index we must encode is of size i = m ·mn. Thus log i = logM + n logm bits suffice.

Our algorithm must then run in time poly(logM + n logm) which is precisely poly(n). We

begin by offering an intuitive description of our algorithm and then afterward provide details

as well as proofs of correctness and efficiency.

We leverage the fact that our construction is iterative and construct the algorithm re-

cursively. By the nature of our construction, vertices are naturally arranged in groups and

subgroups. An analogy would be a universe composed of galaxies, each composed of solar

systems, planets, continents, and so on. This structure arises due to the recursive usage

of a replacement product, where at each stage every node is blown up into a larger group

of nodes. If we already have an explicit description of Gn−1, this allows us to efficiently

29

compute the neighboring clouds to any particular cloud in Gn. If we can use the label i to

determine which cloud we are in, we can use this information and the explicitness of the

expanding graph X to determine any and all neighbors in other clouds. To find neighbors

in the same cloud, we can simply use the explicitness of H, since every cloud is a copy of H.

Thus, the explicitness of G,H,X, and Gn−1 are sufficient for an explicit construction of Gn.

This is the essence of our inductive argument. The depth of the recursive stack is precisely

n, so to achieve a running time of poly(n) we must show that each execution on the stack

takes time poly(n).

The task then is how to use the label i to determine which cloud contains vertex i.

When explicitly defining other exponentially large objects (e.g. pseudorandom functions),

a common visualization is to consider a tree with exponentially-many leaves. Instead of

actually storing all of these values, which requires too many resources, one would rather

create an efficient algorithm for computing any one particular value on the fly. Starting at

the root, the algorithm navigates the tree to the correct index i using the bits of i essentially

as turn-by-turn navigation. Once the leaf at index i is reached, the value stored there is

returned by the algorithm. Our construction implies a tree with a branching factor of m

(except the very first level, which has a branching factor of M). Thus, each chunk of logm

bits (or logM in the first step) from our index i tells us which edge from this tree to follow.

In our graph, this corresponds to deciding which one of the m subgroups (or M groups in the

first step) contains vertex i and ”zooming in” on that subgroup. With this view, level n+ 1

of the tree represents the nodes of Gn. To avoid dealing with any trees of infinite height, we

use the initial value n to ”chop” our tree at the (n + 1)st level, since this is as much as we

will need.

Recall that we assumed some ordering on the labels of the M nodes of G and the m nodes

of H. For simplicity, assume these labels to be simply the integers [M] and [m] respectively,

and assume without loss of generality that M > m. By intelligently labeling vertices, we

can make navigation of our tree extraordinarily simple. When a node with label i is blown

up into the cloud Ci, we simply use label i as the prefix for every node in the cloud. As a

suffix, each node appends a single integer in [m] representing their ordered labeling within

30

the cloud. Now, the first logM bits of i will represent the original vertex of G = G0 that

was blown up to eventually contain vertex i. The next logm bits will tell us the vertex of

G1 containing i, and so on. Each chunk of bits tells us exactly which edge in our tree to

follow so that we end up at the leaf with label i. This reasoning also tells us that the label

of a vertex in Gn will be a string i of precisely |i| = logM + n logm bits.

We are now in position to prove the explicitness of our construction.

Theorem 4.10. Consider the family of graphs {Gn} from Theorem 4.3. There exists an

algorithm for computing the neighbors of vertex i in Gn in time poly(log i) =poly(n).

Proof. The base case of the induction is trivial since G = G0 is assumed to be explicit. Fix

n > 0. We will define our algorithm neighbors(n, i) as a sequence of 7 steps. We will show that

each step takes time at most poly(n) =poly(log i). Since they are performed sequentially,

taking the sum will show that a single level of the recursive stack takes time poly(n). Since

the depth of the stack is n total calls, we will conclude that the total computation is poly(n).

The high-level steps for computing neighbors(n, i) are as follows:

1. Parse i as an element of [M]× [m]n.

2. Compute internal neighbors of i (within the same cloud).

3. Determine which part of its own cloud i lies within.

4. Compute which clouds neighbor the cloud containing i.

5. Determine which neighboring cloud connects to the part containing i.

6. Determine which part of that neighboring cloud connects to the part containing i.

7. Compute external neighbors of i (which all lie within that part of that neighboring

cloud).

We elaborate on each of the six steps and give upper bounds on the complexity of each

task. We assume that each vertex in G is labeled by an integer in [M], and each vertex in

H by an integer in [m].

31

1. Parse i as a string in [M]×[m]n. We perform a linear scan of the label i. After scanning

the first logM bits, we interpret them as an binary integer p0 ∈ [M]. Analogously,

interpret the following n contiguous sequences of logm bits as binary integers q1, . . . , qn

from the set [m]. Our ”translated” label is the list L = {p0, q1 . . . , qn}. Since all

conversions can be done in constant time via a lookup table of constant size, this

requires O(n) total work.

2. Compute internal neighbors of i. Our vertex i exists within some cloud Ci, and each

cloud is a copy of H. Intuitively, we should be able to use the explicitness of H to

determine internal neighbors. By construction, All translated labels of vertices in Ci

share the same prefix P = {p0, q1 . . . , qn−1}. This is precisely the label of the vertex in

Gn−1 which was blown up into Ci. The suffix (final element) of each vertex’s translated

label determines the ordering of vertices within this cloud. The suffix of vertex i is the

symbol qn ∈ [m]. We use the explicit description of H to compute the neighbors of

vertex qn ∈ H and simply append each result to the prefix P . This requires time at

most poly(logm) +O(1) = O(1) computation by the definition of explicitness.

3. Determine which part of its own cloud i lies within. This requires only arithmetic.

Again viewing i’s cloud Ci as a copy of H, the suffix qn determines relative ordering

within the cloud and the cloud is partitioned according to this ordering. Thus, we need

only look at the intervals {[km
D
, (k+1)m

D
) : k < D} and choose the one which contains the

integer qn. This follows how H was initially partitioned: into subsets of m/D vertices

by lexicographical order. This requires at most D = O(1) computation.

4. Compute which clouds neighbor the cloud containing i. If we view each cloud as a

vertex, then our graph Gn shrinks back into Gn−1. This means computing which the

neighboring clouds of Ci reduces to computing which vertices in Gn neighbor the vertex

in Gn−1 which expands into Ci. The label of that vertex is precisely the prefix P . We

can then compute the neighboring clouds via a single recursive call to neighbors(n −

1, P ∗), where P ∗ is the prefix P interpreted as a binary string. This takes at most

poly(n− 1) by the inductive hypothesis.

32

5. Determine which neighboring cloud connects to the part containing i. For n > 1, Gn is

(d + c)-regular where d and c are the degrees of H and X respectively. We partition

each cloud into d + c parts so that each part houses a single external edge (which

will soon be replaced by an expanding graph). We know which part houses vertex i

from (3) and we know all possible clouds it might connect to from (4). Now we must

determine which one. Fortunately in our construction there is a pre-defined ordering

on the neighbors (or equivalently, edges) of a vertex which is the ordering of the labels.

We have free choice over which part to assign each external edge, so we use the same

ordering to reduce computation. That is, the edge leading to the kth largest external

neighbor (according to label) is housed by part k of the cloud. In step (3), we already

determined which part of Ci vertex i is in. We also have a list of the d + c internal

neighbors from (2) which we can sort in constant time. We can then retrieve the

correct neighboring cloud Cj by taking the kth largest label from the list of neighbors

computed by (4). This takes O(1) time.

6. Determine which part of that neighboring cloud connects to the part containing i. Now

that we know the cloud Cj connecting to the part of Ci containing i, we must zoom in

on Cj and determine which specific part connects with Ci. If we can get the neighboring

clouds of Cj in order, we can determine where Ci lies in that ranking. Since the kth

neighbor is connected to the kth part, that ranking and some arithmetic will tells us

exactly which part of Cj connects with Ci at the part containing i. We can get that

list by recursively calling neighbors(n−1, l) at a cost of poly(n−1), where l is the label

of Cj computed in (5). We can then sort the list in O(1) time, since it is of constant

size d+ c. Finally, we can linearly scan for the string P ∗, the label of Ci, and compute

the index k of that label in the list. This takes at most O(d+ c) = O(1) time and we

conclude that the correct part of Cj has suffixes in the set [km
d+c

, (k+1)m
d+c

). The labels of

the part are obtained by appending these suffixes to the label l of Cj. The total work

in this step is then at most poly(n).

7. Compute external neighbors of i. We are now in position to compute all neighbors

33

outside of i’s own cloud. We know for a fact that the only external edges are from the

copy of X overlaid between the part containing i and the neighboring part from (6).

This means that all possible external neighbors are in the list from (6). We can use

the explicitness of X to compute exactly which of the vertices from (6) are adjacent

to vertex i. This takes at most poly(log |X|) = O(1) by the definition of explicitness.

Append this list to the list of internal neighbors from (2) and return the result.

The correctness of this algorithm is apparent by the construction of Gn. All neighbors

that lie within the same cloud and must be included in the list of internal neighbors from

(2), otherwise contradicting the explicitness of H. Similarly, any external neighbors being

excluded from the list in (7) contradicts the explicitness of X.

To complete the proof, we simply show that our inductive hypothesis implies neighbors(n, i)

runs in time at most poly(log i) =poly(log i). Since all seven steps are performed se-

quentially, we need only sum the running times of each. This gives an upper bound of

O(n) + 4O(1) + 2poly(n− 1) = poly(n) total work, as desired.

{}

1

11

...

111 . . . 1

...

12

...
...

2

21

...
...

22

...
...

3

31

...
...

32

...
...

322 . . . 2

Figure 4.1: Tree with translated labels for M = 3, m = 2

Corollary 4.11. The family of graphs {Gn} is explicit.

34

Proof. The conclusion comes from simply applying the definition of explicitness to the result

of the previous theorem.

35

CHAPTER 5

The Base Graphs

Our iterative construction is based on three graphs: G, H, and X. G and H are both regular,

ε-scaling depth-robust graphs of some fixed constant sizes and X is a regular expanding graph

of some fixed constant size. In this chapter we describe how to construct such graphs. We

refer to previous work in this field, as such problems have been studied thoroughly. We then

show that such graphs can be constructed to additionally satisfy the recurrence constraint

necessary for our iteration. Namely, we will have that d+ c divides m, where d is the degree

of each vertex in H, c is the degree of each vertex in X, and m is the number of vertices

in H. This allows us to evenly divide H into d + c copies (one for each outgoing edge in

X (G,H,X)) and continue the iteration.

To construct X, our constant degree expanding graph, we refer to work by Reingold,

Vadhan, and Wigderson [RVW00]. As an addendum to their main result, they give an explicit

construction for A-expanding graphs. To construct G and H, we could perform a brute-

force search since it is only over a constant-size domain. However, since degree poly(log n)

is sufficiently low for our purposes, an explicit construction exists due to Erdös, Graham,

and Szemerédi. Improved analysis on this graph family and minor modifications by Alwen,

Blocki, and Pietrzak gives the scaling property we require, and with minor modification one

can achieve regularity also. All of these modifications can easily be included in any explicit

construction, as they require only a constant number of neighbors to be added. We describe

these constructions in detail below.

36

5.1 Constructing Expanding Graphs

As described in [RVW00], one can explicitly construct an A-expanding graph using extrac-

tors. We will restate their result without proof as we use expanding graphs in a black-box

manner throughout this paper. For more details, see the proof of Corollary 7.6 in [RVW00].

Lemma 5.1 (Corollary 7.6 [RVW00]). For every N and A there is a (regular) A-expanding

graph GN,A of size N with degree O(A · log4A) such that the rotation map of GN,A can be

computed in time poly(logN, 2A).

For A = 1/ε, the only relevant term is poly(log n). Thus, by definition, we have explicitly

constructed A-expanding graphs of any size for any value of A.

5.2 Constructing Depth-Robust Graphs

This family of graphs was first constructed by Erdös, Graham, and Szemerédi in [EGS75].

In [ABP18], Alwen, Blocki, and Pietrzak improve on the analysis of depth robustness to

establish a stronger form of depth-robustness which we informally call the scaling property.

We describe the construction from [EGS75] below.

Let n = 2k for some large k ∈ N and let Gn = (V,E) be a graph on vertex set V =

[n]. For any positive integers v and m (not necessarily in [n]), let Dv(m) denote the set

V ∩ {v, v + 1, ..., v +m− 1}. Fix an arbitrarily small constant ε1 > 0. We form the edge set

E of Gn as follows:

1. For each v ∈ V , the edges {(v, x)|x ∈ Dv+1(4 log n)} are in E.

2. For each t dividing n in the range (log(n) − 1) ≤ t < n and for each i as specified

below, a 1/ε1-expanding graph is formed between the vertex sets A = Dm·t(t) and

A′ = D(m+i)·t(t), 0 ≤ m < (n/t), where i = 1, 2, ..., 10 (or if i cannot assume value 10

because (m + 10) · t > n, then it ranges from 1 to n/t − m). All edges are directed

from x to y with x < y.

37

In this original construction, Claim 1 of [EGS75] establishes that for n sufficiently large,

Gn is a so-called ”local expander”. That is, small subsets of Gn maintain the expanding

property. Further analysis in [ABP18] establishes that with the addition of constantly many

edges, this can be achieved for every value of n > 0. With this modification, for some

fixed ε > 0, the resulting Gn has indegree O(log n) and is (an, bn)-depth-robust for every

a + b < 1 − ε. Introducing explicit expanding graphs as in [MMV13] gives an explicit

construction of ε-scaling depth-robust graphs with indegree O(log2(n)).

By minor modifications to this construction, which will not reduce depth-robustness nor

increase the degree, we can obtain a regular graph. The irregular vertices in Gn are the

last few; when the set Dv(m) would end up overshooting the last vertex n, we decide not

to include those edges. This is what makes the construction a DAG, as these last edges

would create cycles and remove the sink. We simply choose to include these edges but in the

reverse orientation. This pads the degree of the vertices to be equal to all others without

creating any cycles. Let D′v(m) denote the set {v mod n, (v + 1) mod n, ..., (v + m − 1)

mod n}. Then we replace Dv(m) with D′v(m) in the previous construction, change the range

of i to be i = 1, 2, ...,min(10, n/t), and keep all other notions the same. All edges are still

directed from x to y for x < y. Since we are adding edges to Gn, this cannot possibly

decrease its depth robustness. After step (1) of this modified construction, each vertex

touches precisely 2 × 4 log n = 8 log n linked edges. During step (2), for each proper value

of t, the number of expanding graphs overlaid on each vertex is 2 × min(10, n/t). As we

will show in section 5.1, one can explicitly construct regular expanding graphs of degree

c. Using such a graph in step (2), for each value of t, the degree of each vertex increases

by 2 × min(10, n/t) × c, where c is the degree of a expanding graph. This proves that the

modified Gn is regular. Let T denote the set of all possible value of t, and let |T| denote

the size of T. Notice that the number of iterations is |T|. Since n is divisible by t and

n = 2k, T = {2k−1, 2k−2, . . . , 2k−a|a ∈ N, 2k−a ≥ log n − 1}; therefore |T| ≤ k = O(log n).

The number of iterations is also at most O(log n). Thus, after step (2), each vertex in Gn

has degree at most (8 + 20× c) log n = O(log n). We conclude that Gn is regular, has degree

at most O(log n), and is (an, bn)-depth-robust for every a+ b < 1− ε.

38

5.3 Satisfying the Recurrence Constraint

The final piece of the puzzle is to show that we can find H and X as described above which

satisfy the following constraint: d+ c divides m, where d is the degree of H, c is the degree

of X, and m is the size of H. To accomplish this, first fix G and H of the desired size with

desired degree. According to our construction, if H is of size m it has degree d = O(log2(m)).

Now all we need to do is find some value of c such that d + c divides m and construct a

regular X with that degree. Finding all possible values of c is simple arithmetic. Corollary

7.6 from [RVW00] allows us to construct an A-expanding graph of degree O(A · log4A). We

can then pad extra edges to each vertex to achieve the desired degree. This padding of edges

cannot possibly reduce the expansion properties of the graph. A more formal statement of

this follows.

Construct H using the modified construction from section 5.2. Suppose H has size m

and degree d = O(logm). Consider the set of potential c values S = {c : d + c divides m}.

S is certainly nonempty, as the value m− d ∈ S. Now, construct X for the desired value of

ε. X will have degree c′ = O(1
ε

log4(1
ε
). For large enough m, this is certainly below m − d.

Thus there exists some c∗ ∈ S such that c∗ ≥ c′. Consider the smallest such c∗ and call it c.

Evenly pad each vertex of X with c− deg(X) edges so that the new degree of each vertex is

c and call the new graph X ′. c ∈ S so we can conclude that d + c divides m as desired. X ′

still maintains all expansion properties of X as edges have only been added to any crossing

set, none removed. Thus, graphs H and X can indeed be chosen to satisfy the recurrence

constraint. This removes all assumptions from our construction and establishes our iterative

construction indeed produces a family {Gn} satisfying Theorem 4.3.

39

CHAPTER 6

Applications

The depth-robust graph is a main component in many cryptographic primitives e.g. proofs

of sequential work [MMV13] and memory-hard functions [AS14, AS15, ABP17, ABP18]. We

now give an overview of the potential applications of our result in these areas.

6.1 Cumulative Pebbling Complexity & Memory-Hard Functions

Many new technologies, such as spam filters and Bitcoin, utilize proof-of-work style proto-

cols. Such protocols utilize some kind of ”hard” function (such as an inverse hash function)

and require participants to evaluate this hard function in order to solve some kind of puzzle

and gain a reward. In spam filtering, this reward is the ability to successfully send a message.

In Bitcoin, it’s the authority to certify the next block in the chain and to claim the newly

mined currency. Regardless, all such protocols are based on the existence of some underlying

function which is hard to compute. Unfortunately, depending on one’s definition of hard-

ness, most functions will be easier for some than others. In particular, functions which are

only computationally hard (requiring many time steps) are more susceptible to attacks by

specialized hardware. This has become particularly apparent in the realm of cryptocurrency.

Some developers have tried to forcibly expel miners using ASICs from their chains using hard

forks and software updates but have had little success, as most reports claim that mining

on these networks is dominated by specialized hardware. The effect that this has is that the

protocol is no longer equitable: those with access to specialized hardware reap most of the

rewards, while ”regular” users are left to sit on the sidelines.

One solution which has been explored in [AS14, AS15, BCS16, ABP17, ABP18] is to

40

define a new notion of hardness which resists the advantage of specialized circuits. Their key

insight is that to compute a function which requires access to a large amounts of memory over

long time periods require specialized chips with much larger size and many more outgoing

wires. That is, functions with high ”cumulative memory complexity,” or ”memory-hard

functions,” diminish the advantage of users with specialized hardware.

These works also establish how one can construct such a memory-hard function based

on a hash function h and an underlying DAG G representing the structure of the function.

Intuitively, each node v has a hidden label lv which is computed by evaluating h on the

labels of all of v’s parent nodes. That is, if parents(v) = v1, . . . , vD, then lv = h(lv1 , . . . , lvD).

Each node must then have a bounded indegree so that one can choose a hash function h

with the proper domain size. The hash function h, the graph G, and the label(s) of the

source node(s) are the input to the function. The output is a valid label for every sink node.

That is, a set of labels which can be produced via legally evaluating h on various nodes

according to the specified rules. By constructing the function in this way, the problem of

calculating how much memory must be stored over how much time can be reduced to a

cleanly stated problem in the language of graph theory. Alwen and Serbinkenko show that

the depth-robustness of the underlying graph G provides a lower bound on the complexity

of the associated function. We restate their theorem here as a lemma.

Lemma 6.1 ([ABP17],Theorem 4). Let G be an (e, d)-depth-robust DAG. Then Π
||
cc(G) > ed.

Because our construction achieves stronger depth-robustness guarantees than previous

constructions, it consequently implies a family of memory-hard functions with higher memory-

complexity. We will give this proof once we formally define the model and our notion of

complexity.

We normally model this process of computing new labels from labels stored in memory as

a type of ”pebbling” game. Such games have been used in many areas of theoretical computer

science, particularly in analyzing time/space tradeoffs as in [Coo74]. In this model, to pebble

a node represents computing its label via the labels of its parents. To remove a pebble from

a node represents deleting that label from memory. The game of interest for our purposes

41

is the parallel black pebbling game. We summarize here the description given in [ABP17].

The game is played on a graph G = (V,E) in rounds. The goal is to pebble all sink nodes

of G (not necessarily simultaneously). A particular round i ≥ 1 is fully characterized by

the set of currently pebbled nodes in that round. We call this the ith pebbling configuration

Pi ⊆ V . The initial pebbling configuration is empty, P0 = ∅, to represent all labels being

unknown. A configuration Pi can be legally derived from the previous configuration Pi−1 via

two rules:

(1) A node v may be pebbled (added to Pi) if all of its parents were pebbled in the previous

configuration, i.e. parents(v) ⊆ Pi−1.

(2) A pebble can always be removed from Pi.

This pebbling game is called parallel if rule (1) can be applied more than once per round.

We are interested in this version because real-life adversaries will attempt to parallelize the

work and compute multiple hashes at once. A sequence of configurations P = (P0, P1, . . .)

is a legal pebbling of G if it adheres to these rules and each sink node of G is contained in

at least one configuration Pi.

We are now able to define the cumulative memory complexity of a graph G. As described

above, this quantity should represent the memory over time required to compute the ”label-

ing” function fG associated with G. Let P ||G denote the set of all valid parallel pebblings of

G.

Definition 6.1. The parallel cumulative pebbling complexity of a DAG G is

Π||cc(G) = min
(P1,...,Pt)∈P||G)

t∑
i=1

|Pi|

Remembering a pebble for a single round represents a single ”unit” of cumulative memory-

complexity. In this sense, summing the size of each pebbling configuration over a particular

strategy is a great representation of the total memory over time required for this strategy.

By taking the minimum over all possible strategies, the notion of parallel cumulative mem-

ory complexity precisely matches the total memory over time required by the best possible

strategy to compute fG.

42

It is worth mentioning here that for any such function to be realizable, the family of

graphs from which G is sampled must have indegree bounded by some constant. Otherwise,

for large enough G, any hash function h would not have a sufficient domain size for the

number of parents in the graph. Since our construction is (d+ c) regular for constants d, c,

it meets this requirement.

We now state our claim about the cumulative memory complexity of our newly con-

structed family of graphs {Gn}. The proof comes directly from applying Lemma 6.1 to the

conclusion of Theorem 4.2.

Theorem 6.2. For any arbitrary small constant ε > 0, there exist a family of DAGs {Gn}

with Π
||
cc(Gn) = Ω(N2−ε), N = |Gn| = mnM .

Proof of Theorem 6.2. Fix ε > 0, and let ε0 > 0 satisfy ε0 < ε/2. By Theorem 4.2, the family

{Gn} with proper base graphs G,H,X is (Ω(N1−ε0),Ω(N1−ε0))-depth-robust. By Lemma

6.1, this implies Π
||
cc(Gn) = Ω(N2−2ε0) = Ω(N2−ε) as desired.

In particular, if we wish to beat the complexity of Argon2i, we can choose a = b ≈ 0.5,

m > 260, and D = O(log2(m)). That is, choose a base graph H with more than 260 vertices.

We can conclude that

Π||cc(Gn) = Ω(N2+logm(Ca)+logm(Cb)) = Ω(N1.78)

which exceeds the upper bound on the complexity of Argon2i. Notice that if we choose a

larger m, the complexity of the memory hardness could be arbitrary close to Ω(N2). For

example, if the base graph H is has more than 2200 vertex, Π
||
cc(Gn) = Ω(N1.9).

6.2 Other Applications

Proof of Sequential Work (PoSW): A PoSW is closely related to a proof-of-work (PoW),

with an additional caveat. In a PoSW, a prover wishes to prove that he has computed a

hash chain of length n in a way that does not require the verifier to recompute the chain.

Mahmoody et al.[MMV13] use a depth-robust graph to construct a PoSW. Instead of just a

43

chain, a depth-robust graph is constructed by adding additional edges to the chain. Then,

the prover sends a commitment to some labeling to the verifier via the root of a Merkle tree.

Because of the guarantees of depth-robustness, any adversary who outputs a correct label-

ing of the last node in the chain cannot have avoided performing the necessary sequential

work. Alwen et al.[ABP18] argue that the in-degree of underlying graph is crucial to the

protocol’s efficiency. This is because to open a Merkle tree commitment, one must perform

work directly proportional to the indegree. The depth-robust graph in their improved result

has indegree O(log n) while our construction has indegree O(1). Thus by replacing their Gn

with ours one can improve efficiency by a factor of O(log n).

Distributed Storage Network (DSN): In a distributed storage network, data is stored

in a peer-to-peer system without central servers. Such a network is intuitively robust if any

file F stored on the network has copies stored at many nodes and F is recoverable even if

some such copies are corrupted. A common technical challenge for DSN is then proving that

data is stored robustly and quantifying sucha notion. Cecchetti et al. [CFM18] constructed a

public verifiable DSN in which the server can prove file replication efficiently. Their construc-

tion utilizes a new graph called the Dagwood Sandwich Graph which combines depth-robust

graphs and superconcentrators. At a high level, a Dagwood Sandwich Graph is a graph con-

sisting of multiple depth-robust layers in which layers are connected by superconcentrators.

Their construction, however, is probabilistic and relies on unproven assumptions about the

randomly produced graphs. One can replace such graphs with our new construction from

Theorem 4.3 and reduce the failure probability of the produced DSN to zero.

44

REFERENCES

[ABH17] Joël Alwen, Jeremiah Blocki, and Ben Harsha. “Practical graphs for optimal
side-channel resistant memory-hard functions.” In Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security, pp. 1001–1017.
ACM, 2017.

[ABP17] Joël Alwen, Jeremiah Blocki, and Krzysztof Pietrzak. “Depth-Robust Graphs
and Their Cumulative Memory Complexity.” In Jean-Sébastien Coron and Jes-
per Buus Nielsen, editors, Advances in Cryptology – EUROCRYPT 2017, pp.
3–32, Cham, 2017. Springer International Publishing.

[ABP18] Joël Alwen, Jeremiah Blocki, and Krzysztof Pietrzak. “Sustained Space Complex-
ity.” In Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology
– EUROCRYPT 2018, pp. 99–130, Cham, 2018. Springer International Publish-
ing.

[AS14] Joël Alwen and Vladimir Serbinenko. “High Parallel Complexity Graphs and
Memory-Hard Functions.” Cryptology ePrint Archive, Report 2014/238, 2014.
https://eprint.iacr.org/2014/238.

[AS15] Joël Alwen and Vladimir Serbinenko. “High Parallel Complexity Graphs and
Memory-Hard Functions.” In Proceedings of the Forty-seventh Annual ACM Sym-
posium on Theory of Computing, STOC ’15, pp. 595–603, New York, NY, USA,
2015. ACM.

[BCS16] Dan Boneh, Henry Corrigan-Gibbs, and Stuart Schechter. “Balloon Hashing:
A Memory-Hard Function Providing Provable Protection Against Sequential At-
tacks.” In Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology
– ASIACRYPT 2016, pp. 220–248, Berlin, Heidelberg, 2016. Springer Berlin Hei-
delberg.

[BZ17] Jeremiah Blocki and Samson Zhou. “On the depth-robustness and cumulative
pebbling cost of Argon2i.” In Theory of Cryptography Conference, pp. 445–465.
Springer, 2017.

[CFM18] Ethan Cecchetti, Ben Fisch, Ian Miers, and Ari Juels. “PIEs: Public Incompress-
ible Encodings for Decentralized Storage.” Cryptology ePrint Archive, Report
2018/684, 2018. https://eprint.iacr.org/2018/684.

[Coo74] Stephen A. Cook. “An observation on time-storage trade off.” Journal of Com-
puter and System Sciences, 9(3):308 – 316, 1974.

[EGS75] Paul Erdoes, Ronald L Graham, and Endre Szemeredi. On sparse graphs with
dense long paths. Stanford University. Computer Science Department, 1975.

[Kla84] Maria Klawe. “Limitations on explicit constructions of expanding graphs.” SIAM
Journal on Computing, 13(1):156–166, 1984.

45

https://eprint.iacr.org/2014/238
https://eprint.iacr.org/2018/684

[MMV13] Mohammad Mahmoody, Tal Moran, and Salil Vadhan. “Publicly Verifiable Proofs
of Sequential Work.” In Proceedings of the 4th Conference on Innovations in
Theoretical Computer Science, ITCS ’13, pp. 373–388, New York, NY, USA, 2013.
ACM.

[Pip87] Nicholas Pippenger. “Sorting and selecting in rounds.” SIAM Journal on Com-
puting, 16(6):1032–1038, 1987.

[RVW00] Omer Reingold, Salil P. Vadhan, and Avi Wigderson. “Entropy Waves, the Zig-
Zag Graph Product, and New Constant-Degree Expanders and Extractors.” Elec-
tronic Colloquium on Computational Complexity (ECCC), 8, 2000.

46

	Introduction
	Summary of Known Results
	Our Contributions
	Comparison to Existing Work
	Overview of the Expanding Product
	Overview of the Iterative Construction
	Intuition
	Applications
	Open questions that remain
	Organization of the Paper

	Preliminaries
	Graph Notions
	Explicitness
	Expanding Graphs
	Depth-Robustness

	The Expanding Product & The Iterative Construction
	The Expanding Product
	The Iteration

	Analysis
	Basic Analysis
	Proving Depth-Robustness
	Explicitness

	The Base Graphs
	Constructing Expanding Graphs
	Constructing Depth-Robust Graphs
	Satisfying the Recurrence Constraint

	Applications
	Cumulative Pebbling Complexity & Memory-Hard Functions
	Other Applications

	References

