
UC Irvine
ICS Technical Reports

Title
Dynamic linking of software components

Permalink
https://escholarship.org/uc/item/4ft9023f

Author
Franz, Michael

Publication Date
1996-06-27

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4ft9023f
https://escholarship.org
http://www.cdlib.org/

Notice; This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Dynamic Linking of Software Components

Michael Franz

Technical Report 96-26

Department of Information and Computer Science

University of California, Irvine, CA 92717-3425

27th June 1996

SL

Dynamic Linking of Software Components

Michael Franz

Department ofInformation and Computer Science

University ofCalifornia at Irvine

Abstract

This paper examines different strategies for linking separately-compiled software
modules together at load time. Two of the strategies, load-time code generation and load-

time compilation have only recently become practical on account of faster processors. It

is likely that one of these new techniques will displace the currently popular linking-
loader approach, as it promises the profound additional benefit of cross-platform

portability. As general-purpose operating systems move forward to embrace dynamic

linking and compound-document architectures, the technologies they choose for linking
components will play a pivotal role for their long-term commercial success.

Keywords: dynamic linking, modular systems, on-the-fly code generation, software
portability, compound-document architectures

1 Introduction

In recent years, operating systems have again begun to link software libraries to client

programs dynamically at execution time. The concepts underlying dynamic linking date
back at least to the Multics system [CV65] and have gained new life with their re-
introduction into some of the most popular workstation and personal computer operating
systems. Operating systems based on modular languages, such as Mesa [MMS79],
Modula-2, and Oheron [Wir88a], have offered similar capabilities for well over a decade.
It is in the context of these latter, modular operating systems that the concept of dynamic

linking has reached maturity. In fact, the renewed general popularity of dynamic linking
should probably be attributed to the groundwork laid by these modular systems.

Modular systems are written in programming languages that weaken the distinction

between libraries and application programs. In these languages, all software is composed
of modules that are arranged into a (usually acyclic) dependence hierarchy. The
individual modules in this hierarchy serve as libraries when they are referenced by clients
"higher up" in the module dependence graph, and as clients when they, in turn, reference
other modules "further down". Consequently, the inner nodes of this hierarchy serve
simultaneously as libraries and as clients (Figure 1).

Application

import
Modules

export

Operating
System

Modules

Figure 1: Hierarchical Structure ofa Modular System

In such a modular system, the operating system is itself represented as a collection of

modules at the "bottom" of a hierarchy that is extended "upwards" by application
programs. There is no intrinsic difference between the modules of the operating system
and those that are part of application programs; the boundary between the two is purely

conceptual. The availability of dynamic linking makes it possible to build powerful
systems consuming relatively little storage, as only those parts of the operating system
need to be present in memory at any specific moment that are just then required by
application programs.

Already a powerful tool by itself, the technique of dynamic linking becomes even
more useful when it is combined with a language such as Oberon [Wir88a] that directly
supports extensibility of software systems. An extensible system is one that can evolve at

some later time without requiring changes in any of the original parts. Combining
extensibility with dynamic linking leads to highly flexible systems that often excel in

their economic use of computing resources because they avoid duplication of
functionality. In a recent article, Wirth [Wir95] compellingly presents the case in favor of
such run-time-exlensible software systems.

This paper explores different strategies for implementing dynamic linking in
modular systems. While the central idea behind dynamic linking is in itself quite
straightforward, there is a surprising variety of implementation options. In the following,
we contrast simpler linking schemes, such as adding an indirection to every extemal call,
with much more elaborate strategies, such as load-time code generation. The latter
represents a shift of workload from the compiler to the dynamic linker, just as dynamic
linking in itself represents such a shift that moves the functions of a separate linker into
the loader. On account of faster hardware, it is now becoming practicable to perform
compiler-related tasks at load-time, and this provides numerous benefits.

2 Modules

A module is a collection of constant-, type-, variable-, and procedure declarations that are
encapsulated behind a rigid interface. The designer of a module can control which of its

features appear in the interface, by exporting them selectively. Features that are not
exported cannot be accessed from the outside of the module and are therefore protected
from accidental misuse; in this way, a module can guarantee its invariants. For example,
a module may export an abstract data type and a set of procedures operating on it, while
hiding the type's internal structure and the actual procedure implementations.

The opposite of the export operation is appropriately called import. An intermodule
relationship is established when a client module (at a higher level in the module
hierarchy) imports a feature from the interface of a library module (at a lower level in the
module hierarchy). In principle, every module may serve a dual function, acting as a
library to higher-level clients while being a client of simpler libraries at the same time.
There are no fundamental restrictions to the number of clients that a library can support
simultaneously, or the number of libraries that a client may access.

The intermodule references established by import/export relationships are resolved
in a process separate from compilation, called binding or linking. In modular systems,
linking takes place at the time of loading and is therefore invisible to the user {dynamic
linking). This usually also implies that at most one copy of any library module exists in
memory at any one time, although several client modules may be using it concurrently. In
operating systems that offer static linking only, each application program has to contain a
private copy of every library it uses, with the exception of a special system or kernel
library, the services of which are accessed via supervisor calls and hence are "linked"

already during compilation. Linking is a recursive process; linking ofa library module
entails repetition of the process for all of the modules imported by it.

While the original idea of dynamic linking had been to factor out common functions
so that they could be shared among several application programs, extensible systems take
this idea one step further, allowing the addition offurther modules even at the top ofthe
module hierarchy. Application programs can thereby be augmented by additional
functionality at run-time; the extra modules register their presence to the original
application and are then usable by it without an explicit import relationship. Instead, they
are activated by indirect procedure "up-call" or"call-back" mechanisms. To provide this
capability in a type-safe manner, a language with explicit support for extensibility is
required. An example for this kind ofsupport is the type extension mechanism [Wir88b]
of the programming language Oberon [Wir88a]. Type extension enables the definition of
new data types with extended functionality that are still backward-compatible with the
data types of the original application.

Modular systems keep their constituent modules distinct at all times. First, modules
serve as the units of compilation and are compiled separately from each other. The term
separate compilation [Fos86, Gut86] usually implies that the compiler verifies the

consistency of every use of an imported item with its declaration in the originating
module. This is in contrast to independent compilation , in which type errors that occur
across module boundaries can be detectedonly at link time, if at all.

But even after compilation, the modules out of which modular systems are
composed remain separate until they are dynamically linked together during the loading
process. As a consequence of being kept apart, the various modules can be maintained
individually and the corresponding object files distributed and re-used independently of
each other. Since this enables library modules to be replaced at any time by equivalent
ones providing the same interface, the management of libraries is simplified
considerably.

3 The Linking Process

To bind two modules (hereafter identified as library client) together, the linker needs
to match every imported feature ofthe client with an exported feature ofthe library. If
this matching process fails, then the two modules cannot be used together and the linking
process must be aborted. However, such link-time failures are rare and can happen only if
the library's interface was changed after the compilation of the client. Otherwise, the
checks that occurred during separate compilation have already established that the client
is compatible with all of the libraries it imports.

Hence, rather than again verifying every single import-export relationship, which is

complex and time-consuming, the linker really only needs to verify that nothing imported
from a library has changed since the compilation of the client. The simplest way of

achieving this is by including with every object-file the time-stamps of all imported
libraries, and having the linker compare these time-stamps.

More flexibility is gained by replacing time-stamps ^'\\h fingerprints [Fra93]. A

fingerprint is a hash value computed from a library interface, the idea being that the

probability of two different interfaces yielding the same fingerprint is very small. An
object file importing an interface with a certain fingerprint can then be assumed to be

linkable with any library that has the same fingerprint, no matter when and on what

machine the library was compiled. The idea of fingerprinting can be taken even further

by providing every library item with its own individual fingerprint [Cre95]. Library items
can then be added, removed, or changed individually, without invalidating clients that do

not refer to the affected items directly.

The following discussion is based on the three example modules shown in Figure 2.

We use the syntax of the programming language Oberon [Wir88a], in which every export

of an identifier is denoted by a trailing asterisk. Our sample module C (as in client)
imports the two libraries L and M, and simultaneously exports two procedures S and T for

use in further client modules. One of the libraries exports two procedures, and the other
exports just one procedure.

MODULE C;

IMPORT L. M;

PROCEDURE S*(...):

PROCEDURE T'(...):
BEGIN

L.Q(...);

S(...);
M.R(...);
L.0(...)

END I;

ENDC.

MODULE L;

PROCEDURE P*(...);
PROCEDURE Q*(...);

END L

MODULE M;

PROCEDURE R-(...);

END M.

Figure 2: Example Modules with Jmport/Export Relationships

To enable linking, every object file needs two "directories" that expose the intermodular
references within the compiled code to the linker. The first of these directories is called

the entry table and describes where the various exported features of the module can be

found inside of its object code. The second directory is the link table that describes which

features from other modules are actually accessed by the module. For the example
modules C and L, the corresponding object files might appear as in Figure 3.

Object Module C

Entries

entryO: S@lbl-a

entryt: T<a>lbl-b

Object Module L

Entries

entryO: P@lbl-u

entryl: Q@lbl-v

Object Code

code for the procedure S:
Ibl-a: ...

code forthe procedure T:
Ibl-b; ...

Ibk:: indirect call via linkO

relative branch to Ibl-a

IbW: indirect call via//n/c7

Ibl-e: Indirect call via linkO

Object Code

code forthe procedure P:
Ibl-u: ...

code forthe procedure Q:
Ibl-v:

Figure 3: Object Files with Link Information

Links

llnkO; L.Q

llnki: M.R

Links

To link the module C from our example to the two library modules it imports, the linker
merely needs to replace the symbolic references found in the link table of C by the actual
positions in memory at which the corresponding procedures are located. For example, the
link-table entry at linkO would be replaced by the run-time position of lbl~v. Since all
external calls contained within the object code are indirect ones that go through the link
table, all modules remain freely relocatable in memory under this linking scheme. If a
module were to be moved to another address later, only the link-table entries of its clients

and its own entry table would need to be updated. (If the programming language provides
indirect procedure activation via procedure variables, matters get more complicated).

Of even greater appeal to the software developer is the ability to change a module's
implementation without necessitating a recompilation of its clients. All of the linking

schemes discussed in this paper provide this capability. Changing the implementation of

a certain procedure in a module might alter its length and thereby affect the starting
addresses of procedures that follow it in the object code. With dynamic linking, this has

no effect on client modules as they refer only to entry numbers, while the actual starting
addresses are obtained from the entry tables of libraries.

3.1 Load-Time Code Modification

The simple linking process described above requires an extra memory indirection for

every external procedure call to obtain the final destination address from the link table.

Unless specific hardware support is provided, as in the National Semiconductor 32x32
series of microprocessors, programmers usually want to avoid this cost. As a

consequence, many linkers modify the object code at the call site, resulting in direct calls
to external routines.

To modify external references embedded within the object code, the linker needs to
know where in the code such references occur. This extra information can be added to the

link table, increasing its size considerably. Instead of an entry for every unique external
item as before, the link table now needs a separate entry for every external access.
Fortunately, most of this extra information can be conveniently stored within the object
code itself, making good use of the code locations that will later be overwritten by the
linker.

Object Module C

Entries

entryO: S@lbl-a

entryl: T@lbl-b

Object Code

code for the procedure S
lbl-a*

code for the procedure T:
Ibl-b: ...

Ibl-c: <endoflist>

relative branch to Ibl-a

Ibl-d: <endoflist>

Ibl-e: <next = Ibl-o

Links

linkO: LQ@lbl-e

linki: M.R@)bl-d

Figure 4: Object File with Code-Fix-UpInformationfor a LinkingLoader

Figure 4 shows the object file from the previous example, adapted for use with a linker
that updates the object code directly. All external references within the object code

remain unresolved; we use these "place-holder" locations to join all references to the
same external item in a linear list that runs backwards through the code. The start of

every such list is recorded in the link table.

Linking then proceeds as follows: After reading a module into memory, the linking

loader traverses the elements of its link table. For each imported item, the corresponding

entry in the originating module is inspected to obtain the target address. Then, the linear

list of references to this item is traversed, starting at the position mentioned in the link

table, and the correct opcode/address combination is inserted at every location in the list.

In our example, the linker obtains the final address jinadr of the procedure Q from

the entry table of module L. The link-table states that fix-up for this external address

needs to commence at Ibl-e. The linker retrieves the location of the next fix-up, Ibl-c.
from the object code at location Ibl-e and then inserts a "call finadr" instruction in its
place. This is iterated until a special marker is found in the next-fix-up-location chain.

3.2 Run-Time Code Modification

Instead of replacing all external references of a module immediately at the time of

loading, one may also defer this action until the need arises {demand linking ox lazy

linking). The idea is simple: in the original object file, every code-location that forms a

part of an external reference is replaced by a special supervisor call instruction, followed

by information for the linker. At run-time, execution of the special supervisor call passes

control to the linker, which determines the actual address of the external reference and

then overwrites the <supervisor instruction, linker information> sequence in the object

code by an actual call (or a load or store instruction in the case of a variable reference).

The call (or load or store) is then carried out. Upon the next execution, the destination

address will be reached directly, without intermittent activation of the linker.
Figure 5 shows our example module again, with appropriate modifications for lazy

linking. As in the previous example, all references to the same external item are joined

together, except that now the list is circular, as we cannot know which of the references

will be encountered first during program execution. Linking the different uses of the

same item together in this manner enables us to save some supervisor-call and table-

lookup overhead.

For example, execution of the procedure T proceeds to the supervisor instruction at

Ibl-c. The linker is called and determines that this is an external call to L.Q, and that a

further call to the same procedure occurs at Ibl-e. It obtains the final addressJinadr from

the entry table of module L and then overwrites the supervisor call instructions at Ibl-c

and Ibl-e by a direct call to finadr.

Object Module C

Entries

entryO; S@lbl-a

entryl: T@lbl-b

Object Code

code for the procedure S:

code forthe procedure T:

SVC<L.Q, next = lbl-e>
relative branch to Ibl-a

SVC<M.R. next = lbl-d>
SVC<L.Q, next = Ibl-o

Figure 5: Object File with Code-Fix-Up Informationfor a Lazy Linker

Lazy linking seems attractive, as it minimizes the work of the linker: only those external
references are linked that are actually encountered at least once during execution. One
can even delay the physical loading of an imported module until it is referenced for the
first time. Unfortunately, however, every linking step requires an explicit synchronization
of the processor's instruction cache, which on many processors invalidates not only the
overwritten supervisor instruction, but a whole region of cache entries close to it. Since

the costs associated with cache-misses are constantly rising as processors evolve, this is
diminishing the attraction of lazy linking.

3.3 Load-Time Code Generation

Although the actions of compiling, linking, and loading have traditionally been
performed by independent entities, they are really only different aspects of a single
problem. All three activities need to be performed, in a fixed sequence, on source code,
before it can be executed on a computer. There is, however, no rule that prescribes that
these actions cannot immediately follow each other, or cannot be executed by fewer than
three separate programs.

Dynamic linkers combine the linking and loading phases into a single integrated
step, leading to enhanced flexibility. On the downside, more work is required at a time-
critical moment, i.e., while an interactive user is waiting. However, hardware has become
so powerful that the cost of dynamic linking is no longer significant.

In fact, processors are now fast enough that further functionality can be migrated
"downstream" from the compiler towards the point of execution. Forexample, compilers
often consist of two parts, afront-end that processes the source program, and a hack-end

or code generator that creates executable code. If the back-end of a compiler can be
integrated into the loader, there is no longer a need to perform fix-up operations on
"unfinished" code, but all final addresses can be inserted directly.

Unfortunately, it is a well-known fact that code generation is not a trivial task. The
very existence of compilers often seems justified only because most programs are
compiled far less frequently than they are executed. Hence, it is worthwhile to invest

effort into compilation, because the benefit will be repeated. Until quite recently, it has
been universally accepted that the effort required for compilation is so great that it needs
to be performed off-line.

-Relative CPU Performance

-Relative Disk Performance

Quadra 700

8500/120!

8100/100

eioo/eoj

Quadra 840AV

Quadra 800

Jan-88 Jan-89 Jan-90 Jan-91 Jan-92 Jan-93 Jan-94 Jan-95

Figure 6: Different Growth Rates ofProcessor Power V5. I/O Speedfor Different Models
ofthe AppleMacintosh Computer Family (as Measured by the ToolSpeedometer 4.02)

An experimental systemproviding load-time "on-the-fly" code generation [Fra94, FK96]
has demonstrated that this assumption no longer holds. The success of this project is
founded on the insight that raw processor power is growing much more rapidly than the
speed of input and output operations (Figure 6). The experimental system makes load-
time code generation practicable by decreasing the amount of data that needs to be

transferred from external storage. The use of a highly compact intermediate program

representation ("slim binaries") instead of native object files speeds up the 1/0
component of loading dramatically. The time saved is then spent on code generation.

Any computer application that reduces its input/output overhead at the expense of

additional computations can benefit from the effect illustrated in Figure 6. even if the
immediate performance gain doesn't seem to reward an increased algorithm complexity.

Code generation is a particularly good example because processor instruction sets are not

optimized for information density, but have other constraints such as regularity and ease

of decoding. Hence, object files are usually much larger than they need to be.

The slim binary representation described in [Fra94, FK96] is typically 2.5 - 3 times

more compact than object code for common microprocessors. Even when compared to

popular data-compression schemes applied to object code, density is over 30% higher. On
modem hardware, the resulting speed-up of file input is sufficient to counterbalance

much of the additional effort of on-the-fly code generation, bringing load-time code
generation within the performance range of ordinary dynamic loading.

For example, Franz and Kistler [FK96] report of a comprehensive package of

networking tools, comprising a WWW browser, a Telnet application with VTIOO
emulation, POP/SMPT-Mail, News, Finger, FTP, and Gopher applications. The size of
this package compiled into PowerPC binary code is 603 Kilobytes, while the slim binary
version of the identical program suite requires only 191 Kilobytes. Loading the complete
program suite from PowerPC binaries on a Macintosh 8100/100 requires about 1.1
seconds, while it requires about 2.1 seconds to load from slim binaries - including the
time required for code generation.

This extra second that an interactive user has to wait before his applications (all 7 of
them) start may still seem substantial, although the additional cost of dynamic code-

generation promises to come down as the gap between processor power and storage
speed widens. But slim binaries have an additional advantage besides taking up less
space: they are target-machine independent. The implementation described in [FK96]
currently supports the i80x86, MC680x0 and PowerPC architectures, using the identical
"object file" format. Once compiled into the slim binary representation, modules can be
used transparently on any of these three architectures, as if they had been compiled into

the appropriate native code.

Target-machine independence is an important advantage. It simplifies the
maintenance of module libraries and thereby lowers the cost of software production.

Further, load-time code generation enables the executable code to be truly optimized for
the specific processor and operating system on which it will run, and not just for an
architecture in general. This is a welcome innovation at a time in which the appeal of
traditional binary compatibility is waning as each implementation of a processor
architecture requires a distinct instruction schedule to realize its full performance
potential.

It is also easier to generate good object code for modular programs when this is done
at load time. A code-generating linker can perform intermodule optimizations, such as
register and cache coordination and procedure inlining, effectively constructing a large
monolithic application in memory, but without the usual drawbacks of monolithic
programs. Furthermore, since the object code can be re-created from the intermediate
representation at any time, it is possible to constantly re-optimize the code ofall loaded
modules during idle cycles, guided by run-time profiling data.

3.4 Full Load-Time Compilation

The line of thought that started with a simple table-based linking mechanism, and then
led us through a series of successively more complex linking schemes, logically
culminates in the idea offull compilation from source code at load time. A practical
implementation would ofcourse be based on some form ofcompressed source code, in
which keywords and identifiers had been replaced by tokens, to reduce input/output
overhead.

Unfortunately, however, there are several drawbacks associated with full load-time
compilation, making it a less attractive approach than load-time code generation. First
and foremost, most software developers would frown at the idea of baring their
intellectual property so openly. While it is true that in principle any algorithm
comprehensible to some machine can be reverse-engineered, the idea that compilation is
a one-way transformation (along with the legal protection afforded by copyright law)
seems to provide an important feeling ofsecurity to most programmers. Any method of
program distribution that is openly based on source code does not stand a chance in
today's marketplace.

But there are also technical arguments that make full dynamic compilation appear
less practical. First of all, code generation accounts for only part of the cost of
compilation. Similar effort is spent in the source text scanner and parser, and in the
symbol table handler. While tokenization would eradicate the need for a scanner, the
added cost ofa full programming language parser seems inappropriate when on the other
hand an easily decodable format can be chosen to drive a load-time code generator. For
example, the slim binary format used in [FK96] has been designed specifically to be
well-suited as an input to code generation, and permits interspersing ofdecoding and
code generation.

Last but not least, the use ofsource text as an input to the loader might lead to the
occurrence ofcompilation errors at load time, placing users in truly awkward situations.
The only way to avoid this would be to check every program at tokenization time.
Effectively, every program would then be parsed twice, once during tokenization, and a
second time during loading.

4 Comparison and Outlook

Most current systems that support dynamic linking employ a linking loader that modifies

the object code at load time prior to execution. Among the two other "lightweight"
approaches that we have presented, using indirect calls is disliked because it has a run

time overhead associated with it, and run-time code modification is unpopular because it

leads to frequent invalidation of the instruction cache. The promising "heavyweight"
strategies of load-time code generation andfull load-time compilation have not yet been

studied extensively, since the computing power that makes them feasible is only just
becoming available. Figure 7 summarizes the characteristic costs of all five schemes.

Strategy

Indirect Calls

Load-Time Code Modification

Run-Time Code Modification

Load-Time Code-Generation

Full Load-Time Compilation

Load-Time Overhead

constant

0(#extemal references)

©(program length)

0(source length)

Run-Time Overhead

0(#encountered references)

eventually none

Figure 7: Comparison ofDynamic Linking Mechanismsfor Modular Systems

Of these schemes, run-time code modification ("lazy linking") has the most interesting
characteristics. It requires no load-time overhead, and after an initial startup period
generates no run-time overhead. As mentioned before, the main problem of this technique
is that the processor's instruction cache needs to be flushed when code has been modified.

When the control flow in a program reaches a previously untouched region, there may
suddenly occur a formidable amount of link activity, associated with numerous re-loads

of the instruction cache, causing disruptive delays for interactive users at unexpected
points in time.

Interestingly, a related scheme has recently been proposed to accelerate the
execution of the Java Virtual Machine [LYJ96]. Named just-in-time compilation^ it
effectively combines lazy linking with on-the-fly code generation on a procedure-by-
procedure basis. Encountering a reference to a previously unseen procedure under this
scheme not only modifies the calling site to point to the callee directly, but also initiates a
compilation of the called procedure.

In contrast, load-time code generators such as the one implemented by Franz and
Kistler [FK96] translate complete modules into native code at once, and at points in time
at which users are already expecting delays. Once a module has been loaded, its code

executes with the full speed of compiled code and incurs no further overhead. Modules

are also better suited than procedures as the unit of code generation if code optimization
is anticipated.

Load-time code generation is approaching the speed of traditional loading. Although
this may at first seem surprising, since conventional compilers and off-line linkers have
not accelerated by so much, the reasons are again rooted in a much lower input/output
overhead. Unlike a code-generating loader, traditional compilers and linkers need to
generate output files, which consumes a lot of time. They also need to consult interface
files describing imported libraries. In a dynamic code-generation system, on the other
hand, every portable object file needs to be read only once. Loading is recursive, so that
library modules are always loaded before their clients. Interface information about

libraries can then be retained in memory and used in the compilation of clients, so that no
additional file accesses are required.

Modular systems are currently staging a come-back, in the form of extensible

architectures based on the "compound-document" metaphor. A compound document is a
container that seamlessly integrates various forms of user data, such as text, graphics, and
multimedia. These various kinds of content are supported by independent, dynamically-
loadable content editors ("applets") that cooperate in such a way that they appear to the
end-user as a single unified application. Load-time code generation allows us to make

these applets portable without the performance penalties of interpreted execution, and to
run them at full speed without unexpected interruptions.

Acknowledgement

The author's work on load-time code generation continues earlier research begun at
Institut fur Computersysteme, ETH Zurich, Switzerland. Thanks are due to Niklaus

Wirth, for being a competent advisor to the earlier work, and an enlightened mentor ever
since.

References

[Cre96] R. Crelier; "Extending Module Interfaces without Invalidating Clients";
Structured Programming, 16:1,49-62; 1996.

iC I'

F. J. Corbato and V. A. Vyssotsky; Introduction and Overview of the

Multics System; in Proceedings of the AFJPS Fall Joint Computer

Conference, 185-196; 1965.

D. G. Foster; "Separate Compilation in a Modula-2 Compiler"; Software-
Practice and Experience, 16:2. 101-106; 1986.

M. Franz; "The Case for Universal Symbol Files"; Structured
Programming, 14:3, 136-147; 1993.

M. Franz; Code-Generation On-the-Fly: A Key to Portable Software
(Doctoral Dissertation, ETH Zurich); Verlag der Fachvereine, Zurich;
1994.

M. Franz and T. Kistler; Slim Binaries', Technical Report No. 96-24,

Department of Information and Computer Science, University of

California, Irvine; 1996.

J. Gutknecht; "Separate Compilation in Modula-2: An Approach to

Efficient Symbol Files"; IEEE Software, 3:6, 29-38; 1986.

T. Lindholm, F. Yellin, B. Joy, and K. Walrath; The Java Virtual Machine

Specification', Addison-Wesley; 1996.

J. G. Mitchell, W. Maybury, and R. Sweet; Mesa Language Manual,

Version 5.0; Report No. CSL-79-3, Xerox Corporation, Palo Alto

Research Center, Systems Development Department, Palo Alto,

California; 1979.

N. Wirth; "The Programming Language Oberon"; Software-Practice and
Experience, 18:7, 671-690; 1988.

N. Wirth; "Type Extensions"; ACM Transactions on Programming
Languages and Systems, 10:2, 204-214; 1988.

N. Wirth; "A Plea for Lean Software"; IEEE Computer, 28:2, 64-68;
1995.

