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Enhancing Scalability

of a Matrix-Free Eigensolver

for Studying Many-Body Localization

Roel Van Beeumen1,∗, Khaled Z. Ibrahim1,
Gregory D. Kahanamoku–Meyer2, Norman Y. Yao2, and Chao Yang1,

1Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA
2Department of Physics, University of California at Berkeley, Berkeley, CA

Abstract

In [Van Beeumen, et. al, HPC Asia 2020, https://www.doi.org/10.1145/3368474.
3368497] a scalable and matrix-free eigensolver was proposed for studying the many-
body localization (MBL) transition of two-level quantum spin chain models with nearest-
neighbor XX+Y Y interactions plus Z terms. This type of problem is computationally
challenging because the vector space dimension grows exponentially with the physi-
cal system size, and averaging over different configurations of the random disorder is
needed to obtain relevant statistical behavior. For each eigenvalue problem, eigenval-
ues from different regions of the spectrum and their corresponding eigenvectors need
to be computed. Traditionally, the interior eigenstates for a single eigenvalue problem
are computed via the shift-and-invert Lanczos algorithm. Due to the extremely high
memory footprint of the LU factorizations, this technique is not well suited for large
number of spins L, e.g., one needs thousands of compute nodes on modern high per-
formance computing infrastructures to go beyond L = 24. The matrix-free approach
does not suffer from this memory bottleneck, however, its scalability is limited by a
computation and communication imbalance. We present a few strategies to reduce this
imbalance and to significantly enhance the scalability of the matrix-free eigensolver.
To optimize the communication performance, we leverage the consistent space runtime,
CSPACER, and show its efficiency in accelerating the MBL irregular communication
patterns at scale compared to optimized MPI non-blocking two-sided and one-sided
RMA implementation variants. The efficiency and effectiveness of the proposed al-
gorithm is demonstrated by computing eigenstates on a massively parallel many-core
high performance computer.

Keywords: Quantum many-body problem, many-body localization, eigenvalue problem,
matrix-free eigensolver, LOBPCG method, preconditioner, scalability, graph partitioning,
METIS, communication optimization, CSPACER.

∗Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720. Email:
rvanbeeumen@lbl.gov.
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1 Introduction

A fundamental assumption in the traditional theory of statistical mechanics is that an
isolated system will in general reach an equilibrium state, or thermalize. As early as the mid-
20th century, Anderson demonstrated that a single particle moving in a highly disordered
landscape can violate this assumption [2]. While surprising, that result does not readily
extend to many-particle systems that exhibit strong interactions between the constitutent
particles. The question of whether a similar effect could manifest in a strongly-interacting
many-body system remained open for decades. This elusive phenomenon has been termed
“many-body localization” (MBL).

Recently, advances in both high performance computing and experimental control of
individual quantum particles have begun to yield insight into MBL. Both experimental [23,
5, 24, 17, 4, 19] and numerical [18, 13, 6, 3, 21] results have shown evidence of localization in
small strongly-interacting multiparticle systems of 10-20 spins. Unfortunately, extrapolating
results from these small system sizes to the infinitely-large thermodynamic limit has proven
difficult. This lack of clarity has inspired a vigorous debate in the community about precisely
what can be learned from small-size results. For example, it has been proposed that certain
features do not actually exist at infinite system size [7], and even that MBL itself is only a
finite-size effect [26, 1]!

The primary goal of most studies is to identify and characterize a localization transition.
In the thermodynamic limit, as the strength of the system’s disorder increases, theory
predicts a sharp, sudden change from a thermal to a localized state. Unfortunately, in
the small systems available for study, that sharp transition turns into a smooth crossover,
leading to the confusion about what constitutes the transition itself. Numerical evidence
suggests that the transition sharpens rapidly as system size increases, so accessing as large
systems as possible is imperative for investigating MBL.

In pursuit of that goal, Luitz et al. used large-scale numerical linear algebra to show a
localization transition for system sizes up to L = 22 [18], and in a following paper extracted
useful data up to L = 24 [22]. In order to compute interior eigenstates for the MBL problem,
the shift-and-invert Lanczos algorithm was used in combination with sparse direct solvers
for solving the linear systems. One of the major disadvantages of this technique is that
constructing the LU factorizations becomes extremely memory demanding, due to the so
called fill in, for large number of spins L. Table 1 shows that the memory footprint of the
LU factorization computed via STRUMPACK [9] grows rapidly as function of L. See also
[22]. Hence, thousands of nodes on modern high performance computing infrastructures are
needed to go beyond L = 24.

Table 1: Total memory footprint as a function of the spin chain length L for LU factorizations,
computed via STRUMPACK, and the matrix-free LOBPCG algorithm [27], with block size 64. The
problem size is given by n.

L n STRUMPACK LOBPCG(64)

16 12,870 66 MB 8 MB
18 48,620 691 MB 31 MB
20 184,756 8 GB 118 MB
22 705,432 92 GB 451 MB
24 2,704,156 1 TB 2 GB
26 10,400,600 15 TB 7 GB
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To overcome the memory bottleneck that the shift-and-invert Lanczos algorithm faces,
we recently proposed in [27] a matrix-free locally optimal block preconditioned conjugate
gradient (LOBPCG) algorithm. As shown in Table 1, this approach reduces the memory
footprint by several orders of magnitude, e.g., from 15 TB to only 7 GB for L = 26, and
enables simulating spin chains on even a single node, up to L = 24. In contrast to the shift-
and-invert Lanczos algorithm, where the dominant computational cost is the construction
of the LU factorization, the dominant computational cost of the LOBPCG algorithm is the
(block) matrix-vector (MATVEC) product. As illustrated in [27], the scalability of this
MATVEC is limited at high concurrency which is due to a computation and communication
imbalance. In the current paper, we present different strategies to overcome this imbalance
and to significantly enhance the scalability of the matrix-free eigensolver.

The paper is organized as follows. We first review the Heisenberg spin model and MBL
metrics in Section 2. The multiple levels of concurrency and the matrix-free LOBPCG
eigensolver are discussed in Section 3. Next, we present the balancing of computation and
communication within the MATVEC in Section 4 and the optimization of the communi-
cation performance in Section 5. Then in Section 6, we illustrate the different proposed
strategies for improving the computation and communication imbalance of the matrix-free
LOBPCG eigensolver for L = 24 and L = 26 problems. Finally, the main conclusions are
formulated in Section 7.

2 Problem Formulation

In this section we briefly review the properties of the spin chain model that most frequently
is studied by numerical simulations of MBL.

2.1 Heisenberg Spin Model

We consider the nearest-neighbor interacting Heisenberg spin model with random on-site
fields:

H =
∑
〈i,j〉

~Si · ~Sj +
∑
i

hiS
z
i , (1)

where the angle brackets denote nearest-neighbor i and j, hi is sampled from a uniform
distribution [−w,w] with w ∈ R+

0 , and

~Si · ~Sj = Sxi S
x
j + Syi S

y
j + Szi S

z
j ,

where Sαi = 1
2σ

α
i , with σαi the Pauli matrices operating on lattice site i and α ∈ {x, y, z}.

The parameter w is called the disorder strength, and is responsible for inducing the MBL
transition. The values hi are sampled randomly each time the Hamiltonian is instantiated,
and the relevant physics lies in the statistical behavior of the set of all such Hamiltoni-
ans. The individual Hamiltonians H with independently sampled hi are called disorder
realizations.

Note that in (1) each term of each sum has an implied tensor product with the identity on
all the sites not explicitly written. Consequently, the Hamiltonian for L spins is a symmetric
matrix of dimension N = 2L and exhibits the following tensor product structure

H =

L−1∑
i=1

I ⊗ · · · ⊗ I ⊗Hi,i+1 ⊗ I ⊗ · · · ⊗ I +

L∑
i=1

I ⊗ · · · ⊗ I ⊗ hiSzi ⊗ I ⊗ · · · ⊗ I, (2)
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where Hi,i+1 = Sxi S
x
i+1+Syi S

y
i+1+Szi S

z
i+1 is a 4-by-4 real matrix and I is the 2-by-2 identity

matrix. Remark that by definition, all matrices Hi,i+1 are the same and independent of the
site i. For our experiments, we use open boundary conditions, meaning that the nearest-
neighbor terms do not wrap around at the end of the spin chain. Open boundary conditions
can be considered to yield a larger effective system size because of the reduced connectivity.

The state of each spin is described by a vector in C2, and the configuration of the entire
L-spin system can be described by a vector on the tensor product space (C2)⊗L. In this
specific case, however, the Hamiltonian’s matrix elements happen to all be real, so we do
not include an imaginary part in any of our computations. Furthermore, our Hamiltonian
commutes with the total magnetization in the z direction, Sz =

∑L
i=1 S

z
i . Thus it can be

block-diagonalized in sectors characterized by Sz ∈ [−L/2,−L/2 + 1, . . . , L/2 − 1, L/2]. The
vector space corresponding to each sector has dimension n =

(
L

Sz+L/2

)
such that the largest

sector’s dimension is n = L!
(L/2)!(L/2)! , and this corresponds to the actual dimension of the

matrices on which we operate, see Table 1. While these subspaces are smaller than the full
space, their size still grows exponentially with the number of spins L. Thus, the problem
becomes difficult rapidly as L increases. Furthermore, the density of eigenvalues in the
middle of the spectrum increases exponentially with L. Thus the tolerance used to solve for
these internal eigenvalues must be made tighter rapidly as L increases.

2.2 Many-Body Localization

With the problem’s matrix clearly defined, we now review ways for quantifying localization
from the eigenvalues and eigenvectors. There are multiple quantities that can be used for
identifying localization.

One of the commonly used quantities is the adjacent gap ratio [20, 26, 13, 6]. This
approach is based on the statistical distribution of the eigenvalues of different disorder
realizations, hence, only eigenvalues need to be computed. Random matrix theory informs us
that the statistical distribution of eigenvalues will differ between localizing and thermalizing
Hamiltonians [20]. In particular, we expect eigenvalues of a thermal Hamiltonian to repel
each other, i.e., hybridization of eigenvectors prevents them from generally coming too
close to one another. The eigenvalues of a localized Hamiltonian should not display this
behavior: we expect them to be Poisson distributed. Therefore, we can measure localization
by comparing the relative size of gaps between the eigenvalues. Thermal Hamiltonians will
generally have more consistently sized gaps due to level repulsion. However, this technique
suffers from large statistical noise and thus requires many samples to be usable.

Another quantity for measuring localization is the eigenstate entanglement entropy [27]
which is based on the eigenvectors of the Hamiltonians. In a thermal system, we expect
quantum entanglement to be widespread, while in a localized system, the entanglement is
not expected to be extensive. This idea can be quantified by choosing a cut which divides
the spin chain into two pieces, and measuring the entanglement across it. Not only the
value of the entropy changes during the localization transition: the statistics change as well.
When compared across disorder realizations, the thermal entanglement entropy has small
variance. During the transition, however, the entanglement entropy depends strongly on the
specific disorder realization and thus the statistic will have a large variance. Empirically,
examining the variance of the entanglement entropy is one of the best ways to identify the
localization transition and requires fewer samples than the adjacent gap ratio approach.
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3 Massively Parallel Simulation

In order to maximally reduce the finite size effects on the determination of the MBL tran-
sition point, we need to study spin models with as many spins as possible. Consequently,
this problem is computationally demanding and requires lots of resources.

3.1 Multiple Levels of Concurrency

The MBL study allows for at least 4 levels of concurrency. The first level corresponds to the
need of averaging over (many) different and independently sampled disorder realizations in
order to obtain relevant statistical behavior. Since the disorder strength is responsible for
inducing the MBL transition, we also have to vary the disorder strength, giving rise to the
second level of concurrency. The third level corresponds to the eigenvalue chunks, i.e., for
each (large) eigenvalue problem, originating from one disorder realization and a particular
disorder strength, we have to compute eigenvalues from different regions of the spectrum
and their corresponding eigenvectors.

All previous levels of concurrency are completely independent and can be implemented
in a massively parallel fashion by making use of iterative eigensolvers. In this paper, we
therefore only focus on the forth level of parallelism taking place within these eigensolvers.
Although most iterative eigensolvers follow a rather sequential procedure, each of the dif-
ferent steps within one iteration can be implemented in parallel.

3.2 Matrix-Free LOBPCG Eigensolver

The Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) algorithm [16, 8]
is a widely used eigensolver for computing the smallest or largest eigenvalues and correspond-
ing eigenvectors of large-scale symmetric matrices. Key features of the LOBPCG algorithm
are: (i) It is matrix-free, i.e., the solver does not require storing the coefficient matrix ex-
plicitly and it access the matrix by only evaluating matrix-vector products; (ii) It is a block
method, which allows for efficient matrix-matrix operations on modern computing architec-
tures; (iii) It can take advantage of preconditioning, in contrast to, for example, the Lanczos
algorithm.

The standard LOBPCG algorithm allows for computing either the lower or upper part of
the spectrum. In order to compute interior eigenvalues and their corresponding eigenvectors,
we make use of the so called spectral fold transformation [28]

(H − σI)2,

where σ ∈ R is the shift around which we want to compute eigenvalues. This spectral
transformation maps all eigenvalues to the positive real axis and the ones closest to the
shift σ to the lower edge close to 0. Hence, after applying this transformation, we can also
use the LOBPCG eigensolver for computing interior eigenvalues. Because the transformed
eigenvalue problem

(H − σI)2x = λx

is symmetric positive definite, we use a diagonal (Jacobi) preconditioned conjugate gradi-
ent (PCG) method as preconditioner for the LOBPCG eigensolver. For more details on
the matrix-free LOBPCG eigensolver used in the particular case of studying many-body
localization, we refer to [27].
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In contrast to the shift-and-invert Lanczos algorithm, where the dominant computational
cost is the construction of the LU factorization, the dominant computational cost of the
LOBPCG and PCG algorithms is the (block) MATVEC. In the remainder of the paper, we
therefore will mainly focus on enhancing the scalability of the MATVEC.

4 Balancing Computation and Communication

In this section we have a closer look at the MBL (block) matrix-vector product and focus on
how to enhance its scalability by reducing the computation and communication imbalance.

4.1 Matrix-Free Matrix-Vector Product

As a starting point, we take the hybrid MPI–OpenMP MATVEC introduced in [27]. This
matrix-free MATVEC uses one MPI rank per node and OpenMP for on-node parallelism.
The block of vectors to be multiplied by the Hamiltonian matrix is partitioned by rows and
distributed among different MPI ranks (and nodes). Within each MPI rank, a local sparse
MATVEC is performed. A subset of the rows in the local vector block need to be sent to
other MPI ranks to be multiplied and accumulated on the target MPI ranks. Each MPI
rank also receives vector block contributions from other MPI ranks to be combined with the
local product. It has been illustrated in [27] that the parallel MATVEC implementation
using non-blocking MPI communication, in combination with overlapping communication
and local computation, results in the best performance.

Figure 1 shows the average wall clock time as a function of the rank for 100 samples of

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
0

0.01

0.02

0.03

0.04

0.05

0.06

mpi rank

ti
m
e
[s
]

computation waitany other barrier

Figure 1: Average wall clock time as a function of the MPI rank for the different components of
the L = 26 non-blocking MPI–OpenMP MATVEC with block size 64.
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the L = 26 non-blocking MPI-OpenMP MATVEC. The different amounts of time spend in
the MPI barrier shows clearly the high computation and communication imbalance of this
MATVEC. Note that the local computation time can be fully overlapped with the commu-
nication and that the computation time shown only corresponds to the remote computation
time which can only start once the incoming data has arrived. Figure 1 also illustrates that
this MATVEC is communication dominated. The difference between computation and com-
munication time further increases for higher concurrency. Therefore, in the remainder of this
paper, we will focus on different strategies for reducing and optimizing the communication
time.

4.2 Graph Partitioning

The row partition of the vectors among different MPI ranks corresponds to a partition of
the adjacency graph induced by the many-body Hamiltonian, with vertices mapped rows or
columns, and edges mapped to nonzero elements of the Hamiltonian. Within each partition,
vertices that are not connected with vertices in other partitions by edges are strictly local.
The corresponding rows do not need to be sent to other MPI ranks. The vertices that are
connected to vertices in other partitions are called shared rows. They need to be sent to
other MPI ranks in a parallel MATVEC implementation.

The state ordering for the hybrid MPI–OpenMP MATVEC in [27] leads to a simple
communication pattern where, up to ∼50 ranks, only communication with neighboring
ranks in a linear topology is required. The ordering of the states also allows for efficiently
computing the off-diagonal element indices on the fly for applying the matrix-free MATVEC.
However, as shown in Figure 1, the communication is largely imbalanced and far from
optimal. In particular, the graph for the Hamiltonian is quite nonuniform, and vertices in
the middle are much more densely interconnected than vertices on the edge.

One of the properties of the Heisenberg spin model with random on-site fields is that the
sparsity pattern of (2) does not change for different disorder realizations, neither does the
corresponding matrix graph. Therefore, we can apply graph partition techniques in order
to reduce the communication volume and better balance the communication time among
the different MPI ranks. A comparison of the communication volume, as a function of the
total number of MPI ranks, between the hybrid MPI–OpenMP state ordering used in [27]
and the METIS k-way graph partitioning [15] reordering of the states is shown in Table 2.
For the METIS graph partitioning we used the objective function for total communication
volume minimization [14].

Table 2 shows that for the L = 24 MATVEC beyond 4 MPI ranks both the total commu-
nication volume as well as the maximum communication volume per rank can significantly
be reduced by using the METIS reordering. Note that this reordering will have an effect
on both the computation and communication within the MATVEC. First, although the
communication volume is reduced, the METIS reordering of the states results in a more
complicated communication pattern compared to the original MPI–OpenMP one in [27].
Hence, each rank needs, in general, to communicate with more than 2 other ranks. Second,
the METIS reordering of the states is also less structured and therefore the remote MATVEC
computation will require more complicated lookup tables. However, since the MATVEC is
communication dominant and we maximally overlap computation with communication, the
extra overhead from a slightly slower computational portion will be marginal.
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Table 2: Communication volume as a function of the total number of MPI ranks for the L = 26
MPI–OpenMP MATVEC with the state ordering in [27] and the METIS reordering.

(a) Total communication volume

ranks 4 8 16 32

[27] 1,097,358 2,552,781 4,788,256 9,620,799
METIS 1,406,736 2,350,508 4,082,179 5,893,137

gain −28 % 8% 15% 39%

(b) Maximum communication volume per rank

ranks 4 8 16 32

[27] 376,007 408,962 416,484 419,402
METIS 481,086 389,561 348,559 277,669

gain −28 % 5% 16% 34%

5 Communication Performance Optimization

The load balancing of computation using METIS affects the communication pattern—
specifically, the number of messages per rank from being constant to being a function of the
rank count.

Figure 2 shows the distribution of the neighbor count a rank needs to communicate the
vector with, as we increase the job size. With METIS partitioning, depending on the rank
position within a job, a different number of neighbors are involved in the vector exchange.
With each of these neighbors, a rank needs to communicate a portion of their assigned
vector. As shown in Figure 2, for the L = 26 problem, the number of neighbors increases
super-linearly with respect to log(r), where r is the rank count.

Figure 3 shows the number of rows, of the partitioned block vector, each rank exchanges
with their neighbors as a function of the sharing level, i.e., the number of neighbors a row
block is sent to. From this figure, we see that the number of row blocks not involved in
data exchange decreases as we strong scale the computation, hence, making it necessary to
communicate an increasing fraction of rows. Moreover, the sharing level increase as well,
making it necessary to exchange the same row with multiple ranks. Such sharing makes the
volume of communicated data to decrease sub-linearly with the rank count. Overall, the
total volume of communicated data increases as we scale the job, roughly proportional to
the
√
r.

Fortunately, the sparsity pattern that influences the communication pattern remains
unchanged across iterations. As such, one could classify this communication pattern as a
static irregular one, and we can construct all needed information about the communication
pattern before the communication starts. Although the algorithm relies on other communi-
cation primitives, such as allreduce, they do not significantly contribute to the execution
time.

The discussed attributes show the challenge in strong-scaling the computation, which
could be summarized by the need for processing an increasingly large number of small
messages.
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Figure 2: The distribution of neighbor count for vector data exchange as we scale the job size due
to load balancing the L = 26 MATVEC. Not only the number of communication messages increases,
but also the variability increases significantly while scaling.
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Figure 3: The amount of data to be communicate (or “shared”) among different ranks in the
L = 26 MATVEC communication phase as we scale the computation. The sharing level increases
as the number of ranks increases, making the scaling communication bound.
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5.1 Structuring Communication using MPI

MPI provides multiple techniques to implement a communication pattern. While not claim-
ing that we exhausted all possible methods, we explored a few widely used techniques that
are likely to serve our communication pattern.

The most natural way to implement our matrix-vector communication pattern is to use
non-blocking point-to-point transfers. We overlapped local computation with some of the
communication cost by assigning a thread to progress communication in the background
while performing local computations.

In addition to using point-to-point communication primitives, we explored the use of
MPI-3 non-blocking alltoallv collective primitives [10], and MPI-3 RMA [11]. The collective-
based implementation matches more or less the non-blocking point-to-point and is omitted
for brevity. We found the MPI one-sided implementation efficient at small scale, but the
scaling behavior is inefficient in our experience on the Cray XC40 system.

5.2 Structuring Communication using CSPACER

In this study, we explored the use of CSPACER [25], Consistent SPACE Runtime, which
provides a low overhead communication abstraction for irregular communication patterns.
The runtime extends the support of the consistency space abstraction [12] to Cray systems.
The runtime could interoperate with the MPI runtime, allowing for incremental integration
and tackling communication hotspots while retaining the bulk of MPI’s communication
code.

The space consistency abstraction [12] is a generalization of full-empty synchronization
for distributed computing, where each memory region is associated with a counter that de-
termines its consistency. A memory space becomes consistent, i.e., ready for consumption,
when the counter matches a specific consistency tag. To construct a consistent state, a
space typically receives one or multiple transfers from one or more producers. The run-
time provides APIs to facilitate checking the consistency of a space for consumers, but it
does not provide the functionality of tracking the completions for individual data transfers.
The runtime relies on symmetric space allocations across a team of ranks, and supports
communication primitives such as one-sided put, various collectives that are implemented
as patterns of multiple underlying primitives. Due to its simple design, the CSPACER
runtime enjoys a low injection overhead, in the range of 0.4 µs on KNL architectures, and
provides good scalability, especially for irregular communication patterns.

The space consistency adopts a memory-centric approach while orchestrating communi-
cation across ranks, rather than relying on transfer-centric strategies. It supports multiple
mechanisms for issuing transfer operations that help achieving a consistent state, includ-
ing concurrent threaded injection from an OpenMP parallel region, pipelined injection and
progress, etc. The runtime implements these operations without significant injection over-
head or serialization between concurrent threads. Moreover, successfully injected transfers
progress in the background without requiring the runtime polling for progress, or assigning
the progress to a thread. While transfer injection is non-blocking by default, a transfer injec-
tion could be blocked until resources are available. This back-pressure mechanism provides
some throttling mechanism to avoid congesting the interconnect.

By not providing a mechanism of tracking completion of individual transfers or ordering
constraints between transfers, the runtime could handle a large number of transfers with
minimal overhead. We structured the communication such that a single space per rank
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receives the contribution of all producer ranks. Therefore, involving more ranks in the
communication does not result in an increase of the overhead of checking the data readiness
for consumption. The advantage of such approach manifests at scale.

6 Numerical Experiments

All numerical experiments were performed on the NERSC super computer called Cori, a
Cray XC40 system powered by Intel Xeon Phi “Knights Landing” (KNL) compute nodes
@1.4 GHz, 68 cores and each with 4 hyper-threads, 96 GB DDR4 RAM, 16 GB MCDRAM.
The Cray XC40 nodes are connected using a Dragonfly Aries interconnect.

Throughout the numerical experiments we use a fixed block size of 64 for the MATVECs
and the LOBPCG eigensolver. We also use 1 MPI rank per node and OpenMP for on-node
parallelism.

6.1 MPI–OpenMP MATVEC

In a first experiment, we compare the different implementations of the MATVEC. Figure 4
shows the strong scaling results for the L = 24 and L = 26 MATVECs. In this figure, the
dashed lines correspond to the state ordering of [27] with non-blocking MPI communication
and the dotted and solid lines correspond to the proposed METIS state reordering with
non-blocking MPI and CSPACER communication, respectively.

Due to the large computation and communication imbalance, as shown in Figure 1,
the dashed lines in Figure 4 show that the scalability of the MATVEC implementation
using the original ordering of the states stops at 16 ranks. On the other hand, this figure
clearly shows that using the proposed METIS reordering of the states yields the MATVEC
to continue scaling for higher concurrency. Although the METIS reordering reduces both
the total communication volume and the maximum communication volume per rank, just

4 8 16 32 64 128 256

0.01

0.1

mpi ranks

ti
m
e
[s
]

L = 24
L = 26

Figure 4: Strong scaling of 1 MATVEC with block size 64. The dashed lines correspond to the
state ordering used in [27], the dotted lines to the METIS ordering, and the solid lines to the METIS
ordering + CSPACER.
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changing the ordering of the states itself does not lead to an improvement of the wall
clock time for low concurrency. This is because the METIS reordering leads to a more
complicated communication pattern, which could explain the higher overall wall clock time
of the dotted lines in Figure 4. As shown by the solid lines, the extra cost originating from
a more complicated communication pattern can be mitigated with an optimized runtime,
for instance using CSPACER.

The quality of the load-balancing of the matrix partitions influences the scaling behavior
because the slowest rank dictates the overall performance. The graph partitioning is an NP-
hard problem and grows in complexity with the problem size and the number of partitions
(rank count). Later results show that the work distribution, despite being significantly
improved, is not perfectly balanced. A such, we conjecture that an improved load-balancing
will result in a better scaling behavior for the studied problem.

6.2 Matrix-Free LOBPCG Eigensolver

As discussed in Section 3.1, the MBL problem exhibits multiple levels of concurrency and re-
quires computing eigenvalues/eigenvectors from different spectral regions. Since computing
eigenvalues in the middle of the spectrum are the hardest, we focus on computing eigenvalues
around the shift σ = 0.

In all remaining experiments, we use the matrix-free LOBPCG eigensolver with the
METIS reordering for the MATVEC. The allreduce operations in the LOBPCG and PCG
solver use MPI, in contrast to the MATVEC for which we compare different communication
strategies. Because most of the MATVECs take place in the preconditioner, we also perform
all PCG iterations in single precision and only the LOBPCG iterations in double precision.
This mixed precision approach for the MBL problem turns out to have no effect on the overall
eigenvalue accuracy or the total number of LOBPCG iterations, however, it significantly
reduces the wall clock time.

The L = 24 strong scaling behavior of the different communication strategies within
the MATVEC are presented in Figure 5. Note that we only report the timings for 1 L =
24 LOBPCG iteration with 5,000 PCG iterations. In order to converge the eigensolver
one needs a few tens of iterations. From Figure 5, we notice that the CSPACER-variant
outperforms the non-blocking MPI variant and that the difference grows for increasing
concurrency. On the other hand, one-sided remote memory access (rma) communication
only performs well at low concurrency and is even in that case not competitive with the
CSPACER-variant. Therefore, due to the poor scalability of the rma MPI-variant, we will
not further consider this type of communication.

The upper part of Figure 6 presents the strong scaling behavior for the L = 24 problem,
while using different thread counts per node. We notice that the need for full thread concur-
rency diminishes as we scale, to the extent we start seeing performance degradation at high
node concurrency. This behavior could be attributed to an increased overhead for managing
thread pools, e.g., barrier synchronization for the amount of work assigned to the threads.
We notice that the CSPACER-variant suffers less from performance degradation compared
to the MPI-variant. We attribute that to the former using threading more efficiently in
injecting and progressing multiple transfer lanes in the interconnect. The corresponding
speedup factors for the CSPACER-variant compared to MPI-variant are presented in Ta-
ble 3. We notice that in almost all situations the CSPACER-variant results in a significant
speedup and, as also shown in Figures 5 and 6, the speedup factors increase, in general, for
increasing concurrency.
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Figure 5: Strong scaling of 1 L = 24 LOBPCG iteration with 5,000 PCG iterations in single
precision.

The lower part of Figure 6 shows the decomposition of the execution time for the best
performing threading configuration for both the MPI- and CSPACER-variants. As shown,
the MATVEC, blue box, exhibits a significant fraction of the execution time, especially at
low concurrency. As we strong scale the computation, the allreduce operations, red box,
start contributing significantly to the execution time. Because the number of elements in
the reduction remains constant, we expect the overhead of the reduction to increase with
the number of nodes. Instead, we noticed a strong correlation between the variability of the
MATVEC and the allreduce phases. Given that these two phases are executed consecu-
tively, we conducted an experiment with an extra barrier between them and found that the
barrier captured most of the variability. We omitted this extra barrier synchronization due
to its unnecessary overheads in the presented results.

In general, we note that there are multiple sources of performance variability across
nodes in our code. The first is due to the computational load imbalance originating from
the imperfect partitioning; The second is due to the system noise through the shared in-
terconnect; The third is due to the communication runtime. The MATVEC overlap of

Table 3: L = 24 speedups for the CSPACER-variant compared to non-blocking MPI communica-
tion.

ranks 256 threads 128 threads 64 threads

16 11.0 % 10.8 % 9.9 %
32 15.3 % 3.3 % −9.5 %
64 20.3 % 12.1 % 0.0 %
128 24.6 % 18.0 % 5.4 %
256 28.0 % 24.7 % 14.4 %
512 39.2 % 39.8 % 26.6 %
1024 47.0 % 54.5 % 45.4 %
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Figure 6: Strong scaling of 1 L = 24 LOBPCG iteration with 5,000 PCG iterations in single
precision.

computation with communication makes it difficult to isolate the impact of communication
from computation imbalance. Having two runtime implementations allow for classifying
sources of variability better. For instance, the lower variability of the CSPACER-variant
compared to the MPI-variant shed some light on the minimum variability due to the MPI
runtime. In our experiments, we found the inter-quartile range for the MATVEC variability
for MPI compared to CSPACER to be 1.5× at low concurrency and reaching 2.7× at 1024
nodes. We also consider the variability of the CSPACER-variant as an upper limit on the
computation load imbalance.

Figure 7 shows the time decomposition and scaling behavior with various thread con-
currency for the L = 26 problem. The corresponding speedup factors are given in Table 4.
While for L = 24, we noticed performance advantage for the CSPACER-variant across all
concurrency levels, for L = 26, the performance advantage starts at 128 nodes. This behav-
ior is somewhat expected because the L = 26 problem is associated with a larger volume of
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Figure 7: Strong scaling of 1 L = 26 LOBPCG iteration with 20,000 PCG iterations in single
precision.

Table 4: L = 26 speedups for the CSPACER-variant compared to non-blocking MPI communica-
tion.

ranks 256 threads 128 threads 64 threads

32 −3.7 % −2.9 % −0.1 %
64 6.4 % 0.2 % −2.4 %
128 16.2 % 8.5 % −7.4 %
256 21.0 % 15.8 % 5.4 %
512 27.2 % 24.7 % 14.9 %
1024 38.0 % 35.6 % 15.1 %
2048 48.2 % 44.5 % 28.7 %
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data movement, making the performance less dependent on the runtime efficiency. In gen-
eral, we notice similar trends for the two cases regarding the need to switch to lower thread
concurrency as we scale and the correlation of the MATVEC and allreduce variabilities.

We notice that the optimal threading is problem dependent and is likely to change with
the underlying systems. For L = 24, the advantage for reducing the thread concurrency
manifests at 512 nodes, for L = 26, we need to change the thread-level at 1024 nodes.
Currently, we rely on empirical measurement to identify the best configuration. Leveraging
the iterative nature of the algorithm, we could dedicate few iterations for finding the optimal
configuration. Ideally, we need to do such change automatically. We also notice that the
optimal thread choice is dependent on the communication runtime. For both presented
problem configurations, MPI tends to require switching to lower thread concurrency at
lower node count compared to the CSPACER-variant. The implementation of the latter
leverages threads to accelerate the communication progress, which is more advantageous
when the number of neighboring ranks increase.

Finally, we compare the overall wall clock time for the L = 26 problems reported in
[27, Table 3]. Using the combination of (i) graph partitioning for reducing the communi-
cation volume; (ii) runtime optimization via CSPACER; (iii) performing the MATVECs in
the preconditioner only in single precision, we have been able to significantly increase the
scalability of the matrix-free LOBPCG eigensolver to 1024 nodes. All these techniques to-
gether resulted in a speedup factor of 10× so that the overall wall clock time for computing
eigenvalues/eigenvectors in the middle of the spectrum (30 LOBPCG iterations with 20,000
PCG iterations as preconditioner) got reduced from more than 1 day to only 2.5 hours.

7 Conclusions

We have presented several strategies to significantly reduce the computation and communica-
tion imbalance within the matrix-free LOBPCG eigensolver for computing many eigenvalues
and corresponding eigenvectors of large spin Hamiltonians. Using graph partitioning for re-
ordering the states, both the total communication volume and the maximum communication
volume per rank reduces and enhances the scalability of the matrix-free eigensolver. Com-
bining it with communication performance optimization by using CSPACER, Consistent
SPACE Runtime, we have been able to scale the LOBPCG eigensolver up to 512 and 1024
nodes for L = 24 and 26 spins, respectively. The numerical experiments have illustrated
that the proposed techniques of graph partitioning, runtime optimization, and using mixed
precision arithmetic, reduce the overall wall clock time for the L = 26 problem, reported
in [27], by a factor of 10. Because the MBL study requires solving eigenvalue problems for
many instances of Hamiltonians with random disorder terms, and computing eigenvalues
from different regions of the spectrum, the overall computation can scale to hundreds of
thousands of computational cores.

Acknowledgements

This work is partially supported by the U.S. Department of Energy, Office of Science, Office
of Advanced Scientific Computing Research, Scientific Discovery through Advanced Com-
puting (SciDAC) program and Center for Novel Pathways to Quantum Coherence in materi-
als, an Energy Frontier Research Center funded by the US Department of Energy, Director,
Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC0205CH11231.

16



GDKM was supported by the Department of Defense (DoD) through the National Defense
Science & Engineering Graduate (NDSEG) Fellowship Program.

This research used resources of the National Energy Research Scientific Computing Cen-
ter (NERSC), which is supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC02-05CH11231.

References

[1] D. A. Abanin, J. H. Bardarson, G. De Tomasi, S. Gopalakrishnan, V. Khe-
mani, S. A. Parameswaran, F. Pollmann, A. C. Potter, M. Serbyn, and
R. Vasseur, Distinguishing localization from chaos: challenges in finite-size systems,
2019, https://arxiv.org/abs/1911.04501.

[2] P. W. Anderson, Absence of diffusion in certain random lattices, Phys. Rev., 109
(1958), pp. 1492–1505, https://doi.org/10.1103/PhysRev.109.1492.

[3] B. Bauer and C. Nayak, Area laws in a many-body localized state and its implications
for topological order, J. Stat. Mech. Theory Exp., 2013 (2013), p. P09005, https:

//doi.org/10.1088/1742-5468/2013/09/p09005.
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