
UCLA
UCLA Electronic Theses and Dissertations

Title
Improved Partial Instrumentation for Dynamic Taint Analysis in the JVM

Permalink
https://escholarship.org/uc/item/4fm6w24k

Author
Cox, Joseph

Publication Date
2016

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4fm6w24k
https://escholarship.org
http://www.cdlib.org/

University of California

Los Angeles

Improved Partial Instrumentation for Dynamic

Taint Analysis in the JVM

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Science in Computer Science

by

Joseph Cox

2016

c© Copyright by

Joseph Cox

2016

Abstract of the Thesis

Improved Partial Instrumentation for Dynamic

Taint Analysis in the JVM

by

Joseph Cox

Master of Science in Computer Science

University of California, Los Angeles, 2016

Professor Jens Palsberg, Chair

Dynamic taint tracking is an important field of study with many Java-based tools

and systems created to implement it, including Phosphor, a general purpose

taint tracking tool designed for commodity JVMs like Oracle and OpenJDK.

Phosphor works by instrumenting core Java libraries and the entire applica-

tion bytecode with operations to accurately propagate taint information. Prior

work strived to reduce the performance overhead of Phosphor by doing partial

instrumentation. The analysis that determined which parts of the program to

instrument was effective but flawed.

This paper aims to improve that analysis and further reduce the performance

overhead by instrumenting less of the program. We use the Petablox program

analysis tool and custom Datalog rules to perform an information flow analysis

that better models Phosphor’s behavior, including calls across native library

boundaries. We find that we obtain a reduction in the amount of a program that

needs to be instrumented by 79.9%.

ii

The thesis of Joseph Cox is approved.

Miryung Kim

Todd D. Millstein

Jens Palsberg, Committee Chair

University of California, Los Angeles

2016

iii

Table of Contents

1 Introduction . 1

2 Background and Prior Work . 4

2.1 Phosphor . 4

2.2 Petablox . 6

2.3 Phosphor-PI . 8

3 Approach and Implementation . 11

3.1 Tainted and Untainted Objects 12

3.1.1 Taint Predicates . 12

3.1.2 TaintSrc and TaintSink Predicates 13

3.1.3 Assignment Rules . 13

3.1.4 Return Rules . 14

3.1.5 Argument Rules . 15

3.1.6 Constants and New Object Rules 16

3.2 Native Code . 18

3.3 Tracked and Untracked Methods 19

3.4 Code Example . 20

3.5 Instrumented and Uninstrumented Call Sites 23

3.6 Additions to Petablox . 24

3.7 Modifications to Phosphor . 25

4 Results . 26

4.1 Benchmark set . 26

iv

4.2 Method counts . 27

4.3 Benchmarking Phosphor . 29

5 Conclusion . 30

References . 31

v

List of Figures

3.1 Rules for tainting assignment statements 13

3.2 Rules for tainting returns . 14

3.3 Rules for tainting arguments . 16

3.4 Rules for constants and allocations 17

3.5 Rules for tainting across native calls 18

3.6 Rules for tainting across System.arraycopy 19

3.7 Rules for tracking methods . 19

3.8 Java code example . 20

3.9 Domain of methods for code in fig. 3.8 21

3.10 Relevant program fact base for code in fig. 3.8 22

3.11 Sample of computed facts for code in fig. 3.8 23

3.12 Rules for instrumenting call sites 24

vi

List of Tables

4.1 Tracked method counts for [12] and this paper’s analysis 27

vii

Acknowledgments

I would like to profusely thank Dr. Jens Palsberg for the incredible patience,

kindness, and support he has shown me during my time as a Masters student.

Thank you for welcoming me to research as an undergraduate and allowing me

to stay on as a Masters student and enjoy the ride. I have learned more about

program analysis than I ever thought I would and more about life than I did in

my entire undergraduate career.

I would also like to thank Christian, John, and Matt for being such wonderful

lab mates and friends. Thank you for helping me understand the week’s paper,

the day’s lecture, or whatever else I would ask about. Thank you for helping me

navigate through grad school, being such patient teachers, and always fostering a

great environment in lab. Scrubbadoosh!

viii

CHAPTER 1

Introduction

By designing a static information flow analysis to accurately model the dynamic

taint tracking performed by Phosphor, a significant reduction in the instrumen-

tation required by Phosphor is achieved.

Dynamic taint tracking, also called dynamic information flow analysis, is the

technique of automatically tracking the paths of certain pieces of data through a

program during runtime. As such, information about the data can be discovered

as it enters and exits the program, is written to and read from, and affects other

parts of the program. Taint tracking is useful for both determining the origin of

a piece of data as well as knowing information about its state during program

execution. Data is tagged as it enters the program through user input or some

other method, and tags are propagated as data is operated on or combined with

other data. The method of tag propagation may vary but must be done in a way

that the origins of a piece of data are discoverable by inspecting the tag.

Plenty of motivation exists for taint tracking, including the canonical example

of detecting injection attacks such as SQL injections. Tracking data such as user

input can prevent injection of potentially malicious data into critical functions or

SQL command processing methods, which is the focus of some previous works

[9] [11]. Many solutions and systems exist, all with various limitations. Some

systems [8] [9] modify programs at the bytecode level but only track data flow of

String-type objects. Another [7] can track data flow of all Java types but only

targets an incomplete “research JVM” (read: not Oracle or OpenJDK). Most taint

1

tracking systems suffer from bad performance, soundness, precision, portability,

or some combination of the four.

Phosphor [3] is a taint tracking system for the Java Virtual Machine (JVM).

It differs fundamentally from prior work in how it stores and propagates taint

tags and is able to be performant, sound, precise, and portable. Phosphor

achieves taint tracking through instrumenting program bytecode. Unlike previous

approaches, Phosphor stores taint tags as shadow variables, one for each concrete

variable in the program. Runtime operations cause modification and combination

of taint tags. For example, the resulting taint tag of an arithmetic operation

is the bitwise OR of the taint tags of the operands. Aside from its portability,

soundness, and precision achievements, Phosphor introduces, on average, a 53%

performance overhead. Phosphor’s main mode of usage is to provide source and

sink files, which enumerate the methods from which data of interest originates

and methods into which we want to know if tainted data enters.

For simplicity and completeness, Phosphor instruments the entire applica-

tion bytecode and assumes that the instrumented program will be run on a JVM

with fully instrumented Java libraries. Previous work [12], on which this paper’s

author was a participant, explores only partially instrumenting the application

bytecode, doing so with a new tool called Phosphor-PI. The key insight of this

work is that that only a subset of the methods in the program callgraph, and

methods that read or write shared data with those methods, need to be instru-

mented. Except for some special cases, methods that do not lie on any of the paths

from any source to any sink are of no interest and can remain uninstrumented.

This prior work involved producing Phosphorpi by modifying Phosphor to

support partial instrumentation and performing static analysis to generate the

list of methods to be instrumented. This approach is able to save, on average,

11% of performance overhead compared to Phosphor.

However, this prior work has certain limitations. First, it fails to consider

2

some program behaviors, such as calls into native libraries. Second, it is impre-

cise due to a number of special cases which result in more instrumented code. In

this paper, we describe a different taint analysis for partial instrumentation that

more completely and accurately models the taint tracking done by Phosphor,

including calls to native libraries. Our approach also further reduces instrumen-

tation. While Phosphor and Phosphor-PI store taint tags as 32-bit integers,

we reduce them to boolean properties, which allows us to remove instrumentation

on certain methods in which the taintedness of data is unchanged throughout the

method. The analysis described in this paper is designed to integrate with further

modifications made to Phosphor by its original author.

The remainder of the thesis is as follows. Chapter 2 presents background in-

formation on relevant tools and prior work. Chapter 3 presents the high-level

approach taken to achieve partial instrumentation. Chapter 4 describes the im-

plementation details behind achieving partial instrumentation. Chapter 5 shares

results of the implemented approach. Chapter 6 concludes the thesis.

3

CHAPTER 2

Background and Prior Work

This paper builds on a number of existing tools and prior work done by the author

and others. In this chapter we describe the existing tools in greater detail and

how they were modified or supplemented to support the analysis in the paper.

First, we expand on the technical details of Phosphor. Second, we describe

details of Petablox, including its architecture and Datalog fact engine. We also

describe prior work on partial instrumentation in greater detail to help elucidate

the differences between the analysis in that prior work and the analysis in this

paper.

2.1 Phosphor

Phosphor [3] is a general purpose taint tracking tool that is capable of perform-

ing fast, portable, sound, and precise data flow tracking for the JVM. Phosphor

is able to be far more portable than previous methods because it does not require

program source code. Instead, it only requires program bytecode and achieves

taint tracking by instrumenting that bytecode. Under the hood, Phosphor in-

struments bytecode using the ASM byte code manipulation library [6]. Phos-

phor achieves soundness by considering every possible opcode to appear in the

bytecode and adding operations to support taint propagation for each opcode.

Specific behavior for each opcode is detailed at the end of [3].

Phosphor is meant to be used to track data from user-specified source meth-

4

ods to user-specified sink methods. A user can specify files detailing source and

sink methods as inputs to the Phosphor program. The format of a method

description inside those files is:

<java.io.InputStream: int read(byte[],int,int)>

The format includes, sequentially, the enclosing class, return type, name, and

argument types. All types are fully qualified with the package name. This is the

same method description format for all of the analyses presented in this paper.

Phosphor tracks data flow by adding instrumentation to propagate shadow

variables representing taint tags for every local variable, argument, field, class

instance, array element, and more, in the program. Taint tags are represented as

32-bit integers, so in theory, there are up to 232 possible taint tags. For ease of

tag propagation, Phosphor considers there to be 32 possible base taint tags that

can be assigned to data entering the program. Phosphor taints data originating

from source methods with a different taint tag for each source method. Therefore,

there can be up to 32 enumerated source methods for each to have a unique tag.

As data moves through the program, taint tags are often modified and combined

to accurately show the origin of the data. For example, if a variable x originates

from method foo and has taint tag 0x00000001, variable y originates from bar

and has taint tag 0x00000002, and z = x + y;, the taint tags of x and y are

bitwise-ORed, resulting in a tag of 0x00000003. A simple inspection of the taint

tag of z shows that its value originated from both bar and foo.

Phosphor also tracks data across boundaries into native libraries with a few

special cases. For System.arraycopy, the taint array of the source array is simply

copied as a taint array for the destination array. For other native calls with return

values, a bitwise OR of all the taint tags of the arguments is done to generate the

taint tag of the return value.

A fully instrumented program requires fully instrumented Java libraries to run

5

correctly. This contributes to a downside to Phosphor, which is the runtime

performance overhead of, on average, 53%. It is hard to know without a study,

but it is possible that this is still too high an overhead for widespread adoption

in systems.

2.2 Petablox

Petablox [2] is a large-scale program analysis tool developed at Georgia Tech.

Petablox is capable of running analyses such as deadlock analysis, datarace anal-

ysis, and k-cfa object sensitive and insensitive analyses on very large codebases.

Petablox uses Datalog [10] to generate program analysis facts from other pro-

gram facts. Datalog is a logic programming language and a strict subset of Prolog.

Statements in Datalog take on the form x(t) :- y(t), z(t)., where the con-

junction of the predicates on the right hand side implies the left hand side.

Internally, Petablox uses the Soot bytecode optimization framework [13] to

obtain a high level representation (namely Jimple [14]) of the program bytecode.

Petablox then translates that representation into Datalog program facts. Petablox

maintains a number of program entity domains, including domains of methods,

local variables, fields, and more. These domains are populated with all of the

relevant entities generated by Soot. Domains are typically labeled with a single

letter in Petablox. For example, domain M represents the domain of all methods

in the program.

Petablox also computes a number of relations on top of the domains. These

relations come in two basic types:

• Relations which add a level of specificity to a domain and create a subset of

the domain. An example would be a relation consisting of all fields that are

declared final.

6

• Relations which relate two or more different domains.

The second kind of relation is the most common. An example would be the

MmethArg relation, which relates methods, the local variables which represent the

arguments to the method, and the position of those variables in the argument

list. This relation allows one to query if a local variable is the same variable as

a positional argument. The components of the relation are restricted to certain

predefined domains. The method must be in the method domain, the local variable

must be in the domain of local variables, and the position must appear in the

domain of integer argument positions. This gives Petablox relations a certain

aspect of typing and prevents the addition of any facts that do not have the

correct type or do not appear in the associated domain. The existence of facts in

domains cannot be modified by relations, as domains are populated once and are

constant thereafter.

Some relations are defined using Java and some are defined directly in Dat-

alog. The relations defined in Java are typically those that are easier to create

with access to Soot types and utilities. Relations defined directly in Datalog

are typically those that are logically abstract and are components of an analysis.

Predicates defined in Java are computed simply by running the definition code

after the program domains have been populated. However, computing predicates

defined in Datalog requires a Datalog engine to run the Datalog code. Petablox

offers compatibility with two such engines: bddbddb [15] and the proprietary Log-

icblox database [1]. Logicblox runs on a modified form of Datalog called LogiQL,

so Petablox includes tools to convert Datalog code to LogiQL code for use with

Logicblox.

Unlike other program analysis tools, the scope of what Petablox analyzes is

tightly related to the reachability of the analyzed program. Petablox will compute

method reachability, either statically or dynamically based on configuration, and

only analyze program entities residing within reachable methods. This makes

7

many analyses much easier because they often are only concerned with behavior

of reachable program points, and Petablox gives this for free.

Originally, Petablox used a different Datalog schema to represent programs.

Petablox used the Doop pointer analysis framework [5], which came with its own

set of Datalog predicates to represent a Java program. During the development

effort for this paper, Petablox switched to the new Datalog schema which has

been discussed up to this point. This posed a significant hurdle, given that the

two schema were built upon completely different architectures. Doop did not

have any concept of domains and did not consider reachability, instead including

all entities in a program.

However, the new schema certainly has limitations compared to Doop. First,

the new schema does not include primitive-typed variables in the domain of local

variables. As such, none of the relations using local variables include any primi-

tives. There is also no domain of constant values, so those program entities are

not represented. The new schema also does not have a relation listing native

methods in the program. Instead, they choose a select few native methods and

simulate the bodies of those methods so that analyses can model the behavior

of calls to native code. However, all other native methods are anonymized and

simply become stubbed methods without any concrete body.

2.3 Phosphor-PI

A key insight of the previous work with partial instrumentation, Phosphor-PI

[12], is that some methods of the target program do not have to be instrumented

if they do not interact with any data of interest. The data of interest is data that

is originally returned from sink methods and eventually enters source methods.

There is some subset of all the methods in the program that must be instrumented.

To discover this subset, Phosphor-PI first looks at the methods which reside on

8

the callgraph from source to sink and then add some special cases.

The analysis for Phosphor-PI begins with a callgraph in which nodes rep-

resent methods and edges represent calls from callers to callees. The callgraph is

generated by Petablox. The analysis marks nodes that represent source and sink

methods with a special label. Then, it generates the forward callgraph from the

source methods. That is, it first marks nodes that call the source nodes, then

recursively marks all the nodes that are callees of other marked nodes. Then,

it generates the backwards callgraph to the sink methods. That is, it starts

with a fresh graph, marks the sink nodes, and then recursively marks nodes that

are callers of marked nodes. After computing the intersection of these two sets,

Phosphor-PI has all the methods that reside on all the possible paths from any

of the source methods to any of the sink methods.

There are a number of special cases in which extra methods have to be added to

the set of methods to be instrumented, for reasons related to analysis correctness

and bytecode correctness. As an example of analysis correctness, some methods

not in the intersection set may store data originating from a source method into

an instance field. The taint tag of the field must be updated else the tag will

be incorrect when the data reaches a sink. Phosphor-PI solves this case very

imprecisely by adding any method which stores to an instance field to the in-

strumentation set. The entire method gets instrumented by Phosphor and the

field’s taint tag is updated correctly.

Another type of special case is concerned with bytecode correctness. As an

example of such as special case, Phosphor boxes certain types, including mul-

tidimensional arrays, with a new boxed type that contains both the underlying

values and taint tags. For example, the type int[][] becomes TaintedIntArr[],

where each TaintedIntArr contains both the integer array value and its associ-

ated array of taint tags. In cases where instrumented code calls uninstrumented

code, the uninstrumented code may have a multidimensional array as a return

9

type. The instrumented caller code will expect a boxed value as a return but

the uninstrumented callee code will return an unboxed value. To solve this, the

uninstrumented callee is simply added to the intersection set and instrumented,

which changes its return type to the boxed type. There are additional special

cases of both kinds.

This prior work did have a number of limitations. First, it did not consider

calls into native libraries as part of its analysis. Second, the special cases tended

to add a large number of extra methods and could have been done more precisely.

The approach to be presented in this paper attempts to solve these issues.

10

CHAPTER 3

Approach and Implementation

In this chapter we describe the approach taken for our analysis. We show how the

analysis propagates taint through the program and how this more accurately mod-

els the behavior of Phosphor than previous work. The analysis is constructed

as a series of Datalog rules. Each rule is implied by a logical conjunction of one or

more rules. The rules are composed of base program facts generated by Petablox,

which are facts that describe the structure of the program, such as the type of a

local variable. We begin with the facts that describe taintedness in local variables

and fields. We then describe facts that are concerned with how taint is propa-

gated through native library calls. We then describe facts that determine which

methods need to be tracked. We finally describe facts about which call sites of

tracked methods will call instrumented versions of the callee and which will call

uninstrumented versions. We also detail additions and modifications to Petablox

that were required to enable the analysis.

To elucidate the how the Datalog rules apply to a Java program and how data

flow facts are deduced, a code example is provided in section 3.4, along with a

program fact base, relevant rules from the following sections, and a solution to

the rules.

Underscore characters in the Datalog rules represent arguments which may

resolve to any entity in the relevant entity domain. For example, an under-

score character given as an argument for a type domain can resolve to int,

java.lang.String, or any other type.

11

3.1 Tainted and Untainted Objects

3.1.1 Taint Predicates

We begin by describing the predicates that represent tainted and untainted val-

ues. taintedX and untaintedX represent tainted and untainted local variables,

respectively. The local variables can be of primitive or reference type. If a local

variable appears in taintedX, then the variable contained tainted data at some

point. The same is true of a variable appearing in untaintedX. We are not inter-

ested in whether a variable ever contains tainted or untainted data, but rather if

it always contains tainted or untainted data. If the latter is true, then we do not

have to track the data through a method, since we know that it will be tainted at

the end if it is tainted at the beginning.

For this insight to work, we must make a fundamental simplification of how

taint is tagged and tracked through the program. Originally, Phosphor main-

tained a 32-bit taint tag which described exactly how a variable had been tainted

and the origin of its taint. If we do not plan to track taint propagation through

some methods in which a variable is always tainted or always untainted, we must

simplify the taint tag to be only a boolean value. The reason for this is that a

variable may be always tainted in a method, but the exact details of its taint may

change through that method. The 32-bit taint tag may change from one non-zero

taint tag to another. Without tracking taint propagation through that method,

we are not able to track that change. The most we can know is if a variable is

tainted at the beginning of a method and it is always tainted during the method,

it will be tainted at the end of the method.

The predicates taintedF and untaintedF represent tainted and untainted

fields in the same manner as local variables.

12

3.1.2 TaintSrc and TaintSink Predicates

The predicates taintSrc and taintSink represent the methods that appear in

the source and sink files passed to Phosphor. These are the methods that

Phosphor tracks data from and to.

The predicates are implemented in Java as an addition the Petablox tool. The

source and sink files can be passed to Petablox with a new configuration option

and are read and filled into the taintSrc and taintSink predicates.

3.1.3 Assignment Rules

The following are the Datalog rules to handle propagation of taint by way of

assignment:

taintedX(x) : - taintedX(y), MXVarAsgnInst(_, x, y). (3.1)

untaintedX(x) : - untaintedX(y), MXVarAsgnInst(_, x, y). (3.2)

taintedF(f) : - MputFldInstX(f, x), taintedX(x). (3.3)

untaintedF(f) : - MputFldInstX(f, x), untaintedX(x). (3.4)

taintedX(x) : - MgetFldInstX(x, f), taintedF(f). (3.5)

untaintedX(x) : - MgetFldInstX(x, f), untaintedF(f). (3.6)

Figure 3.1: Rules for tainting assignment statements

The MXVarAsgnInst predicate is part of Petablox’s program representation

schema. MXVarAsgnInst(m,x,y) represents a statement of the form x = y within

the scope of method m. Rules 3.1 and 3.2 represent the propagation of taint from

a local variable into another by way of assignment. Rule 3.1 states that if the right

hand side is tainted, the left hand side will be tainted as well. Rule 3.2 states the

same for untainted propagation.

13

Rules 3.3 and 3.4 represent taint propagation of local variables being as-

signed to fields. The MputFldInstX predicate is an abstraction over both instance

and static field stores and represents statements of either the form b.x = y or

ClassName.x = y. Rule 3.3 states that if the right hand side is tainted, the field

will be tainted as well. Rule 3.4 states the same but for untainted propagation.

Rules 3.5 and 3.6 represent taint propagation of fields being assigned to local

variables. The MgetFldInstX predicate is an abstraction over instance and static

field loads, similar to MputFldInstX from before, and represents statements of

either the form x = b.y or x = ClassName.y. Rule 3.5 states that if the field is

tainted, the local variable will also be tainted. Rule 3.6 states the same but for

untainted propagation.

Statements of the form b.x = c.y where a field is loaded and then stored into a

field do not need to be explicitly modeled, since under the covers the field is first

loaded into a local variable, which is handled by Rules 3.5 and 3.6, and then the

local variable is stored into the left hand side field, which is handled by Rules 3.3

and 3.4.

3.1.4 Return Rules

The following are the Datalog rules to handle propagation of taint through returns.

taintedX(x) : - IinvkXRet(i, z, x), IM(i, m), MmethXRet(m, z, y), taintedX(y).

(3.7)

untaintedX(x) : - IinvkXRet(i, z, x), IM(i, m), MmethXRet(m, z, y),

untaintedX(y), !taintSrc(m).
(3.8)

taintedX(x) : - taintSrc(m), IinvkXRet(i,_, x), IM(i, m). (3.9)

Figure 3.2: Rules for tainting returns

14

Rules 3.7 and 3.8 model the taint propagation of the return of local variables

in callee methods into local variables of caller methods.

The IinvkXRet predicate relates invocation sites to local variables the invo-

cation returns into. IinvkXRet(i,z,x) means that the zth return variable of

call site i is stored into local variable x. The IM relation relates invocations to

their resolved methods. IM(i,m) means that method m is the resolved method of

call site i. The MmethXRet predicate relates methods and their return variables.

MmethXRet(m,z,x) means that local variable x is the zth return of method m.

Rule 3.7 states that when the zth return variable of the method m is tainted,

the local variable x receiving the zth return of invocation site i will be tainted.

Rule 3.8 states the same as 3.7 but for the propagation of untainted data, with

one exception. If m is a source method, then the return variable should be tainted

regardless of the content of m. Therefore we add an extra check to Rule 3.8 that

m is not a source method.

Rule 3.9 represents the flow of tainted data from source methods into local

variables. It states that if method m is a source method, and invocation site i

resolves to m, then any local variable being assigned a return value from m is

tainted.

3.1.5 Argument Rules

The following are the Datalog rules to handle propagation of taint through vari-

ables passed as arguments.

15

taintedX(x) : - MmethXArg(m, z, x), IM(i, m), IinvkXArg(i, z, y), taintedX(y).

(3.10)

untaintedX(x) : - MmethXArg(m, z, x), IM(i, m), IinvkXArg(i, z, y),

untaintedX(y).
(3.11)

Figure 3.3: Rules for tainting arguments

Rules 3.10 and 3.11 model the taint propagation of arguments passed into

invocation sites to the local variables representing the parameters of a method.

The MmethXArg predicate relates methods and their parameters.

MmethXArg(m,z,x) means that local variable x is the zth parameter of method m.

The IinvkXArg predicate relates local variable arguments and method invocation

sites. IinvkXArg(i,z,x) means that local variable x is the zth argument passed

into the method represented by invocation i at invocation site i.

Rule 3.10 states that when the zth argument is tainted, the zth parameter of

method m will be tainted. Rule 3.11 states the same but for the propagation of

untainted data.

3.1.6 Constants and New Object Rules

Constants and new object allocation statements are untainted by definition, given

that they did not originate from source methods. The following are the Datalog

rules to ensure that local variables and fields that have been assigned constant

values and newly allocated objects are marked as untainted.

16

untaintedX(x) : - MXAsgnConst(_, x,_). (3.12)

untaintedF(f) : - MputFldInstConst(f,_). (3.13)

untaintedX(x) : - XV(x, v), MobjValAsgnInst(_, v,_). (3.14)

untaintedX(x) : - MmethXArg(m, z, x), IM(i, m), IinvkConstArg(i, z,_). (3.15)

Figure 3.4: Rules for constants and allocations

Rule 3.12 marks local variables on the left hand sides of statements like

x = 5 as untainted. The MXAsgnConst predicate represents those statements.

MXAsgnConst(m,x,c) means that constant c is assigned to local variable x in

method m. We want these local variables to be marked as untainted regardless

of the constant or method, so we use underscores as the method and constant

arguments.

Rule 3.13 does the same as 3.12 but for fields. The MputFldInstConst predi-

cate models stores of constants into fields, such as statements of the form b.x = 5.

Again we mark the field f as untainted regardless of the constant.

Rule 3.14 marks local variables that are assigned objects from object allocation

statements such as the form x = newA() as untainted. The MobjValAsgnInst

predicate represents such object allocation statements. MobjValAsgnInst(m,v,h)

means that object allocation statement h assigns to local variable v inside method

m. In this predicate, the local variable belongs to a different entity domain that

previous local variables. Petablox includes a domain V which represents all local

variables of reference type. Because all object allocation statements create objects

of reference type, the predicate uses domain V. To add the correct local variable

in the domain of all local variables to the untaintedX predicate, we use the XV

predicate, which relates identical objects between the reference type variable and

all variable domains.

17

Rule 3.15 marks local variable parameters of methods as untainted if a constant

was passed into the invocation. The predicate IinvkConstArg represents any

constant passed into a method invocation.

No rule is required to model the passing of an object allocation statement into a

method invocation. The object allocation is first placed into a local variable, which

is modeled by Rule 3.14, and then passes the local variable into the invocation,

which is modeled by Rules 3.10 and 3.11.

3.2 Native Code

The following are the Datalog rules to model taint propagation of taint across

native call boundaries.

taintedX(x) : - MmethXRet(m, z, x), nativeM(m), IM(i, m),

IinvkXArg(i, z, y), taintedX(y).
(3.16)

untaintedX(x) : - MmethXRet(m,_, x), nativeM(m), !taintedX(x). (3.17)

Figure 3.5: Rules for tainting across native calls

Rules 3.16 and 3.17 represent the taint propagation across native call bound-

aries for native calls which return a value. The nativeM predicate is a subset of the

method domain and represents all methods that have the native modifier. Rule

3.16 states that the return of a native method is tainted if there exists any argu-

ment passed to the method that is tainted. Rule 3.17 states that any returns from

native methods that have not been marked tainted are untainted. This captures

the situations where none of the arguments to a native method are tainted.

18

taintedX(x) : - arraycopyM(m), IM(i, m), IinvkXArg(i, 1, y),

IinvkXArg(i, 3, x), taintedX(y).
(3.18)

untaintedX(x) : - arraycopyM(m), IM(i, m), IinvkXArg(i, 1, y),

IinvkXArg(i, 3, x), untaintedX(y).
(3.19)

Figure 3.6: Rules for tainting across System.arraycopy

Rules 3.18 and 3.19 represent the taint propagation across native call bound-

aries specifically for System.arraycopy. This is a void native method that per-

forms a shallow copy of its src argument into the object provided as the dest argu-

ment. The arraycopyM predicate represents only one method, System.arraycopy.

Rule 3.18 states that if the argument at index 1 (the this object is at index 0),

which is the source array, is tainted, then the argument at index 3, which is the

destination array, is also tainted. Rule 3.19 states the same but for propagation

of untainted data.

3.3 Tracked and Untracked Methods

The following are the Datalog rules that govern which methods are tracked and

which are untracked.

tracked(m) : - MM(m, n), taintSink(n). (3.20)

tracked(m) : - MX(m, x), taintedX(x), untaintedX(x). (3.21)

untracked(m) : - !tracked(m). (3.22)

Figure 3.7: Rules for tracking methods

19

Rules 3.20 and 3.21 model which methods should be tracked and Rule 3.22

models which methods should be untracked. Rule 3.20 states that any method

m which calls a method n should be tracked if n is a sink method. Rule 3.21

states that if there is any local variable in method m which is both tainted and

untainted at some point in m, then m should be tracked. Rule 3.22 states that

all methods not tracked should be in the untracked predicate.

3.4 Code Example

public class TaintTest {

public int f;

public static void main(String[] args) {

TaintTest t = new TaintTest();

t.run();

}

public void run() {

String s = taintedString();

foo(s);

}

public void foo(String s) {

System.out.println(s);

}

public String taintedString() {

return new String();

}

public void unreachable() {

String s = taintedString();

System.out.println(s);

}

}

Figure 3.8: Java code example

20

The Java program in 3.8 demonstrates how some of the aforementioned Datalog

rules apply to compute tainted data and tracked methods. We will show the

domain of methods filled by Petablox, a relevant set of program facts generated

by Petablox, and relevant facts deduced by our rules.

"<java.io.PrintStream: void println(java.lang.String)>"

"<TaintTest: java.lang.String taintedString()>"

"<TaintTest: void main(java.lang.String[])>"

"<TaintTest: void <init>()>"

"<TaintTest: void run()>"

"<TaintTest: void foo(java.lang.String)>"

Figure 3.9: Domain of methods for code in fig. 3.8

Figure 3.9 shows the domain of methods created by Petablox. This domain

contains all the methods reachable from the program’s main method. As such,

the unreachable method is absent from this domain and will not appear in any

base program facts or deduced facts. Petablox can be configured to compute

reachability either statically or dynamically.

21

taintSink("<java.io.PrintStream: void println(java.lang.String)>").

taintSrc("<TaintTest: java.lang.String taintedString()>").

IM("!0<TaintTest: void run()>",

"<TaintTest: java.lang.String taintedString()>").

IM("!1<TaintTest: void run()>",

"<TaintTest: void foo(java.lang.String)>").

IinvkXRet("!0<TaintTest: void run()>", 0,

"java.lang.String s in <TaintTest: void run()>").

IinvkXArg("!1<TaintTest: void run()>", 1,

"java.lang.String s in <TaintTest: void run()>").

MmethXArg("<TaintTest: void foo(java.lang.String)>", 1,

"java.lang.String s in <TaintTest: void

foo(java.lang.String)>").

MM("<TaintTest: void foo(java.lang.String()>",

"<java.io.PrintStream: void println(java.lang.String)>").

Figure 3.10: Relevant program fact base for code in fig. 3.8

Figure 3.10 shows relevant program facts for the code in figure 3.8. The

taintSink and taintSrc facts show that specific methods are sink and source

methods, respectively. The IM facts show that the 0th and 1st call sites in the

run method resolve to the methods taintedString and foo, respectively. The

IinvkXRet and IinvkXArg facts show that the return variable of the 0th call site

and the argument passed to the 1st call site, respectively, are both the same local

variable s in the run method. The MmethXArg fact shows that the parameter of

the foo method is the local variable in foo named s. Finally, the MM fact shows

that the foo method calls the println method.

Now we will show certain computed facts and explain how they were computed.

22

taintedX("java.lang.String s in <TaintTest: void run()>").

taintedX("java.lang.String s in <TaintTest: void foo()>").

tracked("<TaintTest: void foo(java.lang.String)>").

untracked("<TaintTest: void run()>").

Figure 3.11: Sample of computed facts for code in fig. 3.8

The first computed fact states that the local variable named s in the run

method is tainted. This results from applying Rule 3.9. The taintSrc, IinvkXRet,

and IM facts from figure 3.10 imply that the variable is tainted. The second com-

puted fact is computed similarly, applying Rule 3.10.

The tracked fact is computed by applying Rule 3.20. The method foo is

tracked because it calls a sink method, namely println. The method run is

untracked due to the application of Rule 3.22. Rule 3.21 does not apply to run

because its only local variable is only tainted and never untainted.

3.5 Instrumented and Uninstrumented Call Sites

In addition to considering some methods to be tracked and some untracked, some-

times invocations to tracked methods do not pass in any tainted data and do not

need to call instrumented code. As such, we can maintain an instrumented and

an uninstrumented version of each tracked method. When no arguments passed

to an invocation are tainted (that is, all of the arguments belong only to the

taintedX predicate and not the untaintedX predicate), the called method can

be the uninstrumented version.

The following are the Datalog rules that determine which method call sites will

call the instrumented version of a method and which will call the uninstrumented

version.

23

inst(m, n) : - MI(m, i), IM(i, n), IinvkXArg(i,_, x), taintedX(x), tracked(n).

(3.23)

inst(m, n) : - MgetInstFldInstX(n,_,_, f), taintedF(f),

MI(m, i), IM(i, n), tracked(n).
(3.24)

inst(m, n) : - MgetStatFldInstX(n,_, f), taintedF(f),

MI(m, i), IM(i, n), tracked(n).
(3.25)

uninst(m, n) : - !inst(m, n). (3.26)

Figure 3.12: Rules for instrumenting call sites

Rule 3.23 states that the invocation entity i corresponding to the call of method

n inside method m will be the instrumented version if any of the arguments passed

to the invocation are tainted at any point. Rule 3.24 states that the call site of n

in m is instrumented if n loads from a tainted instance field. Rule 3.25 states the

same as 3.24 but for static fields.

Rule 3.26 states that any invocation not instrumented should be uninstru-

mented.

3.6 Additions to Petablox

Many modifications and additions to Petablox were necessary to enable the above

analysis. These modifications came in the form of new entity domains and new

relations, both written in Java. Some new relations were created by using an

existing relation as a template and modifying necessary types.

The first large addition was a new domain for local variables that included

primitive typed locals. The existing domain for local variables, domain V, only

included reference type local variables. We decided to add a domain that included

24

primitive local variables instead of modifying domain V to include primitives due

to issues with backwards compatibility. In addition to adding this new entity

domain, many existing relations had to be copied and modified to use the new

domain instead of the old reference-only domain. Many of the predicates in the

above rules that contain the character X as part of the name are examples of these

new relations.

Also, Petablox previously handled native methods in an unexpected way.

Petablox first removed the native modifier from all native methods and turned

them into abstract methods without bodies, indistinguishable from other abstract

methods. Then Petablox took a few specifically enumerated native methods, in-

cluding System.arraycopy and added fake bodies to simulate the behavior of

these methods. Phosphor did not model taint propagation across native call

boundaries in the same way the simulated bodies created by Petablox did. There-

fore we had to modify how Petablox looked at native methods to accurately model

Phosphor’s behavior. Petablox was made to not remove the native modifier from

native methods and native methods were added to a new nativeM predicate.

3.7 Modifications to Phosphor

Modifications to Phosphor were required to allow it to make use of the infor-

mation generated by the analysis in this paper. We coordinated with the original

author of Phosphor to implement these modifications. A feedback loop was

established where the original author would make changes to Phosphor and we

would generate analysis results or modify the analysis if necessary and send those

results back. The details of modifications made to Phosphor are not described

in this paper.

25

CHAPTER 4

Results

We evaluate our approach by comparing the number of instrumented methods

produced by the analysis of Phosphor-PI to the number of tracked methods

produced by the analysis in this paper.

4.1 Benchmark set

While Phosphor was evaluated on performance using all 14 benchmarks of the

DaCapo benchmark suite [4] included in the 9.12-bach release, Phosphor-PI

was evaluated on performance using only 7 of the 14 benchmarks: avrora, batik,

h2, pmd, sunflow, tomcat, and xalan, due to numerous problems with bytecode

verification for the remaining 7. For Phosphor-PI, lists of tracked methods

were generated for all 14 of the benchmarks except for tradesoap, so we can com-

pare tracked method counts between that project and this paper. The lists of

tracked methods produced for Phosphor-PI are probably not completely accu-

rate because more code may have had to be instrumented to solve the bytecode

verification issues. However, the comparison can still be made because, if any-

thing, the method lists for Phosphor-PI would only have been larger. If the

tracked method counts from this paper’s analysis are favorable compared to those

for Phosphor-PI, then they would only be more favorable if the method lists for

Phosphor-PI were larger.

Tracked method counts for our approach could only be generated on 10 of the

26

14 Dacapo benchmarks. For the remaining four, eclipse, tomcat, tradebeans, and

tradesoap, Petablox raised errors when trying to compute method reachability as

described in section 3.4.

4.2 Method counts

Benchmark [12] tracked tracked/[12] reachable reachable/[12] tracked/reachable

avrora 46948 6724 14.3 % 16384 34.9 % 41.0 %

batik 50625 8643 17.1 % 19066 37.7 % 45.3 %

fop 52183 8253 15.8 % 23568 45.2 % 35.0 %

h2 49765 15232 30.6 % 42455 83.5 % 35.9 %

jython 55125 11512 20.9 % 32653 59.2 % 35.3 %

luindex 21397 4135 19.3 % 11287 52.7 % 36.6 %

lusearch 21524 5135 23.9 % 12256 56.9 % 41.9 %

pmd 47148 14124 30.0 % 31277 66.3 % 45.2 %

sunflow 45700 9251 20.2 % 21077 46.1 % 43.9 %

xalan 48437 5352 11.1 % 14476 29.9 % 37.0 %

Table 4.1: Tracked method counts for [12] and this paper’s analysis

Column 2 of Table 4.1 shows the tracked method counts produced by the

previous analysis for Phosphor-PI for each of the Dacapo benchmarks. Column

3 shows the tracked method counts produced by the analysis in this paper. The

tracked methods are the methods that will become instrumented by Phosphor to

track taint propagation through the method. Remaining untracked methods only

contain local variables which remain always tainted or untainted for the duration

of the method and as such we do not need to track taint. Because instrumentation

of methods is the primary contributer to the performance overhead of Phosphor

and Phosphor-PI, comparing the tracked method counts of the previous analysis

and the analysis in this paper is a good proxy for comparing performance overhead.

27

On average, our approach reduces the number of tracked methods by 79.9%. The

individual benchmark percentages are shown in Column 4.

However, this number is somewhat misleading. Phosphor-PI analyzed all

of the methods appearing in the code for each benchmark and computed tracked

methods from that set. For our approach, Petablox gives us reachability for free -

Petablox only adds methods to the method entity domain that are reachable from

the main method of the program. Our Datalog analysis is then applied to only

those methods in the entity domain. Because the Dacapo benchmarks contain

reflective calls, we configure Petablox to use its built-in dynamic reachability tool

to compute reachable methods.

Because the Dacapo benchmarks are designed to be performance benchmarks,

each benchmark has three or four execution sizes: small, default, large, and

sometimes huge. When running the benchmark, the size is selected by passing

it as a parameter to the benchmark. This parameter determines what code the

benchmark runs and how much it stresses the system. Because we have config-

ured Petablox to compute reachability dynamically, we must provide Petablox

with inputs to run the benchmarks. We have configured Petablox to compute

reachability by running the benchmarks at their default sizes, which is provided

as an input to each benchmark. It is likely that if we had ran the benchmarks

on their large size, more methods would be reachable and our approach would

produce more tracked methods than for the default benchmark size.

Column 5 reports the total number of reachable methods as computed by

Petablox for each benchmark to show how much of the reduction in tracked meth-

ods can be attributed to Petablox’s reachability analysis. On average, the reach-

ability analysis reduces the number of tracked methods by 48.8%. The individual

percentages are shown in Column 6.

Column 7 shows the ratio of tracked methods in our approach to the number

of reachable methods computed by Petablox. This ratio shows how much further

28

reduction in instrumentation our analysis produced past Petablox’s reachability

analysis. Our approach was responsible for a 60.6% reduction from the number

of reachable methods to the number of tracked methods, and 31% out of the total

79.9% reduction in instrumentation in Phosphor-PI Therefore, the reachability

analysis contributes to the reduction in tracked methods more strongly than our

analysis, though our analysis does result in a significant level of reduction.

4.3 Benchmarking Phosphor

While the above measurements of tracked method counts are good proxies for

comparing performance, they do not directly measure real-world performance of

the modified Phosphor tool described in section 3.6. Additional evaluation of the

analysis approach in this paper can be done by measuring runtime performance of

Phosphor on the Dacapo benchmarks given the information on which methods

to track and which call sites to instrument. These performance results were not

obtained due to time restrictions and other confounding factors.

29

CHAPTER 5

Conclusion

We were able to write an improved information flow analysis, which compared fa-

vorably to previous work. It enabled us to reduce the amount of instrumentation

required to track data with Phosphor by an average of 79.9%. This improve-

ment came with a trade-off in functionality, in which we restricted Phosphor to

only track taint as a boolean property instead of with a 32-bit integer as it origi-

nally did. We believe the trade-off is worthwhile given the potentially significant

reduction in performance overhead.

We were not successful in completely evaluating our approach, as we were not

able to measure performance overhead by directly running the updated version

of Phosphor on the Dacapo benchmarks. Also, our analysis was not alone in

contributing to the reduction in instrumentation. The built-in reachability analy-

sis performed by Petablox alone produced a 48.8% reduction in instrumentation.

However, our analysis also made a significant contribution, being responsible for

about 31% out of the total 79.9% of the overall reduction. We think that there is

great potential for future work in dynamic taint analysis by partial instrumenta-

tion, both to further reduce performance overhead and to relax the taint tracking

restriction we placed on Phosphor without sacrificing performance.

30

References

[1] Logicblox. http://www.logicblox.com. Accessed May 2016.

[2] Petablox: Large-scale software analysis and analytics using Datalog. http:

//www.cc.gatech.edu/~naik/petablox.html. Accessed May 2016.

[3] Bell, J. and Kaiser, G. E. Phosphor: Illuminating Dynamic Data Flow
in Commododity JVMs. In OOPSLA ’14: Proceedings of the 2014 ACM
International Conference on Object Oriented Programming Languages and
Systems Languages & Applications, pp. 83–101, New York, NY, USA, 2014.
ACM.

[4] Blackburn, S. M., Garner, R., Hoffman, C., Khan, A. M., McKin-

ley, K. S., Bentzur, R., Diwan, A., Feinberg, D., Frampton, D.,

Guyer, S. Z., Hirzel, M., Hosking, A., Jump, M., Lee, H., Moss,

J. E. B., Phansalkar, A., Stefanović, D., VanDrunen, T., von

Dincklage, D., and Wiedermann, B. The DaCapo Benchmarks: Java
Benchmarking Development and Analysis. In OOPSLA ’06: Proceedings of
the 21st annual ACM SIGPLAN conference on Object-Oriented Programing,
Systems, Languages, and Applications, pp. 169–190, New York, NY, USA,
October 2006. ACM Press.

[5] Bravenboer, M. and Smaragdakis, Y. Strictly Declarative Specification
of Sophisticated Points-to Analyses. In OOPSLA ’09: 24th annual ACM
SIGPLAN conference on Object Oriented Programming, Systems, Languages,
and Applications, New York, NY, USA, Oct 2009. ACM.

[6] Bruneton, E., Lenglet, R., and Coupaye, T. ASM: a code manipula-
tion tool to implement adaptable systems. Adaptable and extensible compo-
nent systems, 30:19, 2002.

[7] Chandra, D. and Franz, M. Fine-grained information flow analysis and
enforcement in a java virtual machine. In Computer Security Applications
Conference, 2007. ACSAC 2007. Twenty-Third Annual, pp. 463–475, Dec
2007.

[8] Chin, E. and Wagner, D. Efficient character-level taint tracking for java.
In Proceedings of the 2009 ACM Workshop on Secure Web Services. ACM,
2009.

[9] Halfond, W. G. J., Orso, A., and Manolios, P. Using positive tainting
and syntax-aware evaluation to counter sql injection attacks. In SIGSOFT
’06/FSE-14, pp. 175–185, New York, NY, USA, 2006. ACM.

31

[10] Stefano, C., Georg, G., and Letizia, T. What you always wanted
to know about Datalog (and never dared to ask). IEEE Transactions on
Knowledge and Data Engineering, 1(1):146–166, 1989.

[11] Suh, G. E., Lee, J. W., Zhang, D., and Devadas, S. Secure program
execution via dynamic information flow tracking. In ASPLOS XI, pp. 85–96,
New York, NY, USA, 2004. ACM.

[12] Thakur, M. Dynamic Taint Tracking using Partial Instrumentation for
Java Applications. Master’s project, University of California, Los Angeles,
Los Angeles, CA, USA, 2015.

[13] Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., and Sun-

daresan, V. Soot - a Java bytecode optimization framework. In Proceedings
of the 1999 conference of the Centre for Advanced Studies on Collaborative
research, p. 13. IBM Press, 1999.

[14] Vallee-Rai, R. and Hendren, L. J. Jimple: Simplifying Java bytecode
for analyses and transformations. 1998.

[15] Whaley, J. and Lam, M. S. Cloning-based context-sensitive pointer alias
analysis using binary decision diagrams. In ACM SIGPLAN Notices, vol-
ume 39, pp. 131–144. ACM, 2004.

32

