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ABSTRACT OF THE THESIS

Detection and Repair of Architectural Inconsistencies in Java

By

Negar Ghorbani

Master of Science in Software Engineering

University of California, Irvine, 2019

Professor Sam Malek, Chair

Java is one of the most widely used programming languages. However, the absence of explicit

support for architectural constructs, such as software components, in the programming lan-

guage itself has prevented software developers from achieving the many benefits that come

with architecture-based development. To address this issue, Java 9 has introduced the Java

Platform Module System (JPMS), resulting in the first instance of encapsulation of modules

with rich software architectural interfaces added to a mainstream programming language.

The primary goal of JPMS is to construct and maintain large applications efficiently—as well

as improve the encapsulation, security, and maintainability of Java applications in general

and the JDK itself. A challenge, however, is that module declarations do not necessarily

reflect actual usage of modules in an application, allowing developers to mistakenly specify

inconsistent dependencies among the modules. In this thesis, we formally define 8 inconsis-

tent modular dependencies that may arise in Java-9 applications. We also present Darcy,

an approach that leverages these definitions and static program analyses to automatically (1)

detect the specified inconsistent dependencies within Java applications and (2) repair those

identified inconsistencies. The results of our experiments, conducted over 38 open-source

Java-9 applications, indicate that architectural inconsistencies are widespread and demon-

strate the benefits of Darcy in automated detection and repair of these inconsistencies.
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Chapter 1

Introduction

A software system’s architecture comprises the principal design decisions employed in the

system’s construction [64]. Although every system has an architecture, the architecture of

many systems is not explicitly documented, for instance in the form of UML models. Ensur-

ing that the architecture as documented or intended, known as the prescriptive architecture,

matches the architecture reflected in the system’s implementation, known as the descriptive

architecture, remains a major challenge [64]. Architecture of a system is often conceptualized

in terms of high-level constructs, such as software components, connectors, and their inter-

faces, while programming languages provide low-level constructs, such as classes, methods,

and variables, making it a non-trivial task to map one to the other.

Inconsistencies between prescriptive and descriptive architectures are of utmost concern in

any software project, since architecture is the primary determinant of a software system’s

key properties. One promising approach for abating the occurrence of architectural incon-

sistencies is to make it easier to bridge the gap between architectural abstractions and their

implementation counterparts. To that end, the software-engineering research community has

previously advocated for architecture-based development, whereby a programming language
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(e.g., ArchJava [12]) or a framework (e.g., C2 [65]) provides the implementation constructs

for realizing the architectural abstractions.

In spite of this prior work in the academic community, until recently, Java—arguably the

most popular programming languages over the past two decades—lacked extensive support

for architecture-based development. This all changed with the introduction of Java Platform

Module Systems (JPMS) in Java 9. Modules are intended to make it easier for developers

to construct large applications, and improve the encapsulation, security, and maintainability

of Java applications in general as well as the JDK itself [3].

Using Java’s module system, the developer explicitly specifies the system’s components

(i.e., modules in Java) as well as the specific nature of their dependencies in a file called

module-info. However, Java 9 does not provide any mechanism to ensure the prescrip-

tive architecture specified in the module-info file is in fact consistent with the descriptive

architecture of the implemented software, i.e., whether the declared dependencies in the

module-info file are accurately reflecting the implemented dependencies among the sys-

tem’s components. Inconsistencies between the prescriptive and descriptive architectures in

Java 9 matter. The Java platform uses the module-info file to determine the level of access

granted to each module, and to determine which modules should be packaged together for

deployment. As a result, inconsistencies between prescriptive and descriptive architecture

in Java have severe security and performance consequences. These inconsistencies also af-

fect the engineers ability to use the prescriptive architecture for understanding the system’s

properties or to make maintenance decisions.

In this thesis, we formally define 8 modular inconsistencies that may occur in Java-9 applica-

tions. We present Darcy, an approach that leverages these definitions and static analyses

to automatically (1) detect the specified inconsistencies within Java applications and (2)

repair them. Darcy is also publicly available [10].
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The results of our experiments, conducted over 38 open-source Java-9 applications, indicate

that architectural inconsistencies are widespread, and demonstrate the benefits of Darcy

in automated detection and repair of these inconsistencies. Darcy found 124 instances of

inconsistencies among 38 Java applications in our data set. By automatically fixing these

inconsistencies, Darcy was able to measurably improve various attributes of the subject ap-

plications’ architectures by reducing the attack surface of applications by 60.33%, improving

their encapsulation by 23.03%, and producing deployable applications that consume 14.02%

less memory.

The remainder of this thesis is organized as follows. Section 2 introduces the module system

of Java 9 and its design goals. Section 3 formally specifies the architectural inconsistencies

in the context of Java 9. Section 4 provides details of our approach and its implementation.

Section 5 presents the experimental evaluation of the research. Section 6 includes the threats

to validity of our approach. The thesis concludes with an outline of related research and

future work.
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Chapter 2

Java Platform Module System

To aid the reader with understanding architectural specification in Java 9, we introduce the

new module system for Java 9, called Java Platform Module System (JPMS). We overview

JPMS’s goals and the architectural risks that arise from its misuse. We then discuss the

details of modules in Java 9—including module declarations and module directives.

2.1 JPMS Goals and Potential Misuse

JPMS enables specification of a prescriptive architecture in terms of key architectural

elements—specifically components in the form of Java-9 modules, architectural interfaces,

and resulting dependencies among components. JPMS aims to enable reliable configuration,

stronger encapsulation, modularity of the Java Development Kit (JDK) and Java Runtime

Environment (JRE) to solve the problems faced by engineers when developing and deploying

Java applications [60].

Software designers and developers can achieve strong encapsulation in their Java-9 systems

by modularizing them and allowing explicit specification of interfaces and dependencies.
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Encapsulation in Java 9 is achieved by allowing architects or developers to specify which of a

Java-9 module’s public types are accessible or inaccessible to other modules [55]. A module

must explicitly declare which of its public types are accessible to other modules. A module

cannot access public types in another module unless those modules explicitly make their

public types accessible. As a result, JPMS has added more refined accessibility control—

allowing architects and developers to decrease accessibility to packages, reduce the points

at which a Java application may be susceptible to security attacks, and design more elegant

and logical architectures [22].

Prior to Java 9, the Java platform was a monolith consisting of a massive number of packages,

making it challenging to develop, maintain, and evolve. Software developers could not easily

choose a subset of the JDK as a platform for their applications. This results in software

bloat and more potential points of attack for malicious agents. With the introduction of

JPMS in Java 9, the Java platform is now modularized into 95 modules. Furthermore, many

internal APIs are hidden from apps using the platform [55], potentially reducing problems

involving software bloat and security.

Using JPMS in Java 9, Java developers can now create lightweight custom JREs consisting

of only modules they need for their application or the devices they are targeting. As a

result, the Java platform can more easily scale down to small devices, which is important for

microservices or IoT devices [23]. For example, if a device does not support GUIs, developers

could use JPMS to create a runtime environment that does not include the GUI modules,

significantly reducing the runtime memory size[22].

Although JPMS allows for specification of prescriptive architectures, the descriptive archi-

tecture of a Java application may be inconsistent with the prescriptive architecture. Such

inconsistencies may arise due to architects or developers misunderstanding of a software sys-

tems’ architectures (e.g., an architect mistakenly specifies a more accessible interface than

he intended), or simply due to mistaken implementations (e.g., a developer neglects to use
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a module’s interface, even though the architect intended such a use). This can result in (1)

a poorly encapsulated architecture, making an application harder to understand and main-

tain; (2) bloated software; or (3) insecure software. In terms of security, for instance, one

of the potential problems is the granting of unnecessary access to internal classes and pack-

ages, potentially resulting in security vulnerabilities. In terms of software bloat, inconsistent

dependencies can compromise scalability and performance of Java software (e.g., requiring

many unnecessary modules from the JDK).

2.2 Understanding Java 9 JPMS Modules

In JPMS, a module is a uniquely named, reusable group of related packages, as well

as resources (such as images and XML files)[3]. Each module has a descriptor file,

module-info.java, which contains meta-data, including the declaration of a named mod-

ule. A named module should specify (1) its dependencies on other modules, i.e., the classes

and interfaces that the module needs or expects, and should specify (2) which of its own

packages, classes, and interfaces are exposed to other modules.

A module can be a normal module or an open module. A normal module allows access from

other modules at compile time and run time to only explicitly exported packages; an open

module allows access from other modules (1) at compile time to only explicitly exported

packages and (2) at run time to all its packages [30].

The module declaration file consists of a unique module name and a module body. Any

module body can be empty or contain one or more module directives, which specifies a

module’s exposure to other modules or the modules it needs access to.

Figure 2.1 shows an example of a project with three modules: bar, foo, and service. The

declarations of each module provided in its module-info.java file is described in Figure
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(a) Module declarations and their directives provided in their module-info.java files.

(b) Specified dependencies between modules based on their directives

Figure 2.1: Three example modules with their inter-dependencies
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2.1a. Figure 2.1b is a diagram that depicts the relationship between the same modules

based on dependencies in their declarations.

A module body can utilize combinations of the following five module directives [30], which

specify module interfaces and their usage: the requires directive specifies the packages that a

module needs access to, the exports and opens directives make packages of a module available

to other modules, the provides directive specifies the services a module provides, and the

uses directive specifies the services a package consumes. These directives can be declared as

described below:

• The requires directive with declaration requires m2 of a module m1 specifies the

name of a module m2 that m1 depends on. m2 can be a user-defined module or a

module within the JDK. For example, in Figure 2.1, module bar requires module

java.desktop. The requires declaration of a module m1 may be followed by the

transitive modifier, which ensures that any module m3 that requires m1 also implic-

itly requires module m2. As an example, in Figure 2.1, module foo requires module

bar and any module that requires foo also implicitly requires bar.

• The exports directive with declaration exports p of a module m1 specifies that m1

exposes package p’s public and protected types, and their nested public and protected

types, to all other modules at both runtime and compile time. For example, in Figure

2.1, the module bar exports the package com.example.bar.lang. We can also export

a package specifically to one or more modules by using the exports p to m2,m3, ...,mn

declaration. In this case, the public and protected types of the exported package are

only accessible to the modules specified in the to clause.

As an example, in Figure 2.1, module foo exports com.example.foo.internal to the

module bar.

• The opens directive with declaration opens p specifies that package p’s nested pub-
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lic and protected types, and the public and protected members of those types, are

accessible by other modules at runtime but not compile time. This directive also

grants reflective access to all types in p, including the private types, and all its

members, from other modules. For example, in Figure 2.1, module foo makes pack-

age com.example.foo.network available to other modules only at runtime, including

through reflection. This directive may also be followed by the to modifier, resulting

in the opens p to m2,m3, ...,mn declaration. In this case, the public and protected

types of p are only accessible to the modules specified in the to clause. For instance,

in Figure 2.1, module foo makes package com.example.foo.exnet available only at

runtime, including through reflection, to the module bar. Unlike the other directives

that can only be used in the body of a module’s specification, open can be used in

both the body of a module’s specification and in its header (i.e., before the module’s

name). The latter usage is a shorthand way of denoting all packages in the module are

open.

• The provides with directive with declaration provides c1 with c2, c3, ..., cn of mod-

ule m1 specifies that a class c1 is an abstract class or interface that is provided as

a service by m1. The with clause specifies one or more service provider classes for

use with java.util.ServiceLoader. A service is a well-known set of interfaces and

(usually abstract) classes. A service provider is a specific implementation of a ser-

vice. java.util.ServiceLoader<S> is a simple service-provider loading facility. It

loads a provider implementing the service type S [1]. For instance in Figure 2.1, mod-

ule bar provides the abstract class com.example.service.Srv as a service using the

com.example.bar.impl.ImplService class as the service’s implementation.

• The uses directive with declaration uses c1 of a module m1 specifies that m1 uses

a service object of an abstract class or interface, c1, provided by another module.

For this purpose, the module should discover providers of the specified service via
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java.util.ServiceLoader. As an example from Figure 2.1, module foo uses the

service object of class com.example.service.Srv, which is provided by module bar.

Note that, as depicted in Figure 2.1, both provides with and uses directives need the

module being declared to require the service module as well.
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Chapter 3

Inconsistent Module Dependencies

Based on the module directives described in the previous section, inconsistencies may arise

when using modules. Insufficiently specified dependencies (e.g., a module that attempts to

use a package it does not have a requires directive for) are already checked by the Java

platform. However, excess dependencies, where a module either (1) exposes more of its

internals than are used or (2) requires internals of other modules that it never uses, are not

handled by Java. These inconsistencies can affect various architectural attributes:

A1: Encapsulation and Maintenance—Requiring unneeded functionalities of other

modules increases the complexity of the module unnecessarily, compromises its encapsu-

lation, and decreases its maintainability.

A2: Software Bloat and Scalability—Requiring unneeded modules, especially from JDK,

can result in bloated software, which compromises scalability of the application.

A3: Security—Excessively exposing the internals of a module can result in errors or security

issues arising in the module.

To achieve a systematic and comprehensive coverage of all types of inconsistent module
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Table 3.1: Functions describing dependencies based on module directives of JPMS

Function Description

Req(m1,m2) Module m1 requires module m2

ReqJDK(m1,mjdk) Module m1 requires the JDK module mjdk

ReqTransitive(m1,m2) Module m1 requires transitive module m2

Exp(m, p) Module m exports package p

ExpTo(m1, p1, {m2,m3, . . .}) Module m1 exports package p1 to the set of modules {m2,m3, . . . }

Open(m) Module m is open

Opens(m, p) Module m opens package p

OpensTo(m1, p, {m2,m3, . . .}) Module m1 opens package p to the set of modules {m2, m3, . . . }

Uses(m, s) Module m uses Service s

ProvidesWith(m, s, {c1, c2, . . .}) Module m provides service s with the set of classes {c1, c2, . . . }

LoadsService(c, s) Class c loads Service s via the java.util.ServiceLoader API

Dep(p1, p2) Source code in package p1 uses classes of package p2

ReflDep(p1, p2) Source codes in package p1 uses classes of package p2 via reflection

dependencies, we studied all potential inconsistencies resulting from developers’ misuse of

each type of module directive. In the remainder of this section, we focus on specifying

eight types of inconsistent dependencies that may arise when using JPMS and the functions

needed to specify those dependencies.

Table 3.1 includes 11 functions that directly model different variations of the five module

directives in JPMS. To describe a class loading a service using java.util.ServiceLoader

API, we define the LoadsService function. For actual code usage among packages, as opposed

to those specified through module directives, we define the Dep function.

By leveraging the functions in Table 3.1, we introduce eight types of excess inconsistent

dependencies: requires, JDK requires, requires transitive, exports(to), provides with, uses,

open, and opens(to) modifiers. For each inconsistent dependency type, there is a dependency

explicitly defined in a module-info file which is not actually used in the source code of

the module. Using these formal definitions, Section 4 detects and repairs the following

inconsistent dependencies.
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Inconsistent Requires Dependency: This scenario describes an inconsistent requires

dependency in which (1) module m1 explicitly declares that it requires another module m2

and (2) no class of m1 actually uses any class inside exported packages of m2. As a result,

this inconsistency mostly affects attribute A1. It can also affect attribute A2.

Req(m1 ,m2 ) ∧ (@ p1 ∈ m1, p2 ∈ m2 : Dep (p1, p2)) (3.1)

Inconsistent JDK Requires Dependency: This scenario describes an inconsistent

requires dependency in which module m1 explicitly declares that it requires a module inside

the Java JDK, mjdk. However, none of the classes inside m1 uses any class inside exported

packages of mjdk. Hence, it affects attribute A1, and more importantly A2. We distinguish

this scenario from the previous one because an inconsistency involving JDK modules has a

greater effect on portability than the previous more generic scenario.

Req(m1,mjdk) ∧ (@p1 ∈ m1, p2 ∈ mjdk : Dep(p1, p2)) (3.2)

Inconsistent Requires Transitive Dependency: An excess transitive modifier in a

requires dependency consists of the following (1) a module m1 explicitly declares in its

module-info file that it transitively requires another module m2—which means any module

that requires m1 also implicitly requires m2; and (2) no class of a module that requires m1

actually uses any class in m2. This type of inconsistency mostly affects attribute A1, but

also affects A2.

ReqTransitive(m1,m2) ∧ (∀ m : Req(m,m1),

∀ p ∈ m,∀ p2 ∈ m2 : ¬Dep(p, p2))

(3.3)
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Inconsistent Exports/Exports to Dependency: An inconsistent exports dependency

occurs when a module m1 explicitly exports a package p1 to all other modules, while no

package in those other modules use p1.

Exp(m1, p1) ∧ (∀ p /∈ m1 : ¬Dep(p, p1)) (3.4)

For an exports to directive, this inconsistency occurs when m1 exports the package p1 to a

specific list of modules M , while no class outside m1, or inside module list M , uses any class

inside p1.

ExpTo(m1, p1,M) ∧ (∀ p ∈M : ¬Dep(p, p1)) (3.5)

These inconsistencies mostly affect attribute A3 by granting unnecessary access to classes

and packages. They also affect attribute A1 due to complicating the architecture.

Inconsistent Provides With Dependency: An inconsistent provides with dependency

has two key parts: (1) a module m explicitly declares that it provides a service s, which

is an abstract class or interface that is extended or implemented by a set of classes E =

{c1, c2, ..., ck} inside m; and (2) none of the classes inside other modules uses service s

via the java.util.ServiceLoader API. Consequently, this inconsistency type—similar to

inconsistent requires dependency—affects attribute A1 and A2 because the provides with

dependency necessitates a requires directive as well. Additionally, this inconsistency type

grants unnecessary access to a subset of the application’s classes via the ServiceLoader API

which affects attribute A3.

ProvidesWith(m, s,E) ∧ (∀m′ 6= m : ¬Uses(m′, s)) (3.6)

Inconsistent Uses Dependency: An inconsistent uses dependency occurs when (1) a

module m explicitly declares in its module-info.java file that it uses a service s and (2)
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none of the classes inside m actually use the service s via the java.util.ServiceLoader

API. This inconsistency type, similar to the previous type, will affect attribute A1 and A2,

due to adding an additional requires directive.

Uses(m, s) ∧ (∀ c ∈ m : ¬ LoadsService(c, s)) (3.7)

Inconsistent Open Modifier: An excess open modifier occurs in the following scenario:

(1) a module m declares that it opens all its packages to all other modules—recall from

Section 2.2 that unlike the other directives, open can be used in the header of a module’s

specification to denote all its packages are open; and (2) there is at least one package p inside

m that no class outside m reflectively accesses. As a result, any such package p is potentially

open to misuse through reflection, e.g., external access to private members of a class that

should not be allowed by any other class. This inconsistency type will affect attribute A3—

and make the architecture inaccurate and more complicated, affecting attribute A1.

Open(m) ∧ (∃p ∈ m : ∀p′ /∈ m : ¬ReflDep(p′, p) (3.8)

Inconsistent Opens/Opens To: An inconsistent opens dependency occurs when a module

m declares that it opens a package p to all other modules via reflection, while none of the

classes outside m reflectively accesses any classes of package p.

Opens (m, p) ∧ ∀ p′ /∈ m : ¬ReflDep(p′, p) (3.9)

Similarly, for opens to, the to modifier specifies a list of modules M for which module m

opens a package p to access via reflection, while no package of m reflectively accesses p.

OpensTo(m, p,M) ∧ ∀ p′ ∈M : ¬ReflDep(p′, p) (3.10)
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For these inconsistency types, private members of p are open to dangerous misuse through

undesired access and reflection, affecting attribute A3, and can also affect attribute A1 due

to unnecessarily complicating the architecture.
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Chapter 4

Darcy

In the previous section, we introduced various types of inconsistent dependencies. This

section describes how we leverage these definitions to design and implement Darcy. Figure

4.1 depicts a high-level overview of Darcy comprised of two phases, Detection and Repair.

Darcy is implemented in Java and Python.

Figure 4.1: A high-level overview of Darcy
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4.1 Detection

The detection phase takes a Java application as input and identifies any instance of the eight

inconsistent dependencies described in Section 3.

To identify actual dependencies of an input Java application, Darcy relies on static analysis,

represented as Class Dependency Analysis in Figure 4.1. In the implementation of Darcy,

we leveraged Classycle [26] for Class Dependency Analysis. More precisely, the information

about actual dependencies in the source code of the input application is collected by run-

ning Classycle, which provides a complete report of all dependencies in source code of a

Java application at both the class and package levels. We only need the extracted depen-

dencies among packages since the dependencies defined in modules are at the package level.

Class Dependency Analysis’s results are stored in Actual Dependencies, which is a database

component.

A Java application may contain multiple modules, each with a module-info file describing

the module’s dependencies. For extracting a prescriptive architecture, we developed Module-

Info Scanner which examines all module-info.java files within the input Java application

and extracts all specified dependencies which are defined at the package level. The collected

information of specified dependencies are stored in another database component, Specified

Dependencies.

Java Reflection Analysis leverages a custom static analysis [27], which we have implemented

using the Soot framework [68], to identify usage of reflection in the input application. The

traces of any actual usage of reflection in the Java application is then stored in Actual

Dependencies.

Java Reflection Analysis extracts reflective invocations that occur in cases where non-

constant strings, or inputs, are used as target methods of a reflective call. Reflective in-
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vocation of a method, for both constructor and non-constructor methods, occurs in three

stages: (1) class procurement (i.e., a class with the method of interest is obtained) (2) method

procurement (i.e., the method of interest to be invoked is identified), and (3) the method

of interest is actually invoked. Java Reflection Analysis attempts to identify information at

each stage.

Figure 4.2: Reflective method invocation example

A simple example, based on those found in real-world apps, of reflective method invocation,

not involving constructors, is depicted in Figure 4.2. In this example, a ClassLoader for

MyClass is obtained (line 1), which is responsible for loading classes. The NetClass class is

loaded using that ClassLoader (line 2). The getAddress method of NetClass (line 4)—

which performs network operations—is retrieved and eventually invoked using reflection (line

6).

Our analysis identifies reflectively invoked methods using a backwards analysis. That anal-

ysis begins by identifying all reflective invocations (e.g., line 6 in Figure 4.2). Next, the

analysis follows the use-def chain of the invoked java.lang.reflect.Method instance (e.g.,

m on line 6) to identify all possible definitions of the Method instance (e.g., line 4). Our

analysis considers various methods that return Method instances, i.e., using getMethod or

getDeclaredMethod of java.lang.Class. The analysis then records each identified method

name. If the analysis cannot resolve the name, this information is also recorded. In this case,

the analysis conservatively indicates that any method of the package opened for reflection
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can be accessed.

For constant strings, the analysis attempts to identify the class name that is being in-

voked. Similar to the resolution of method names, the analysis follows the use-def chain

of the java.lang.Class instance from which a java.lang.Class is retrieved (e.g., fol-

lowing the use-def chain of c on line 4). We model various means of obtaining a

java.lang.Class instance. For example, the class may be loaded by name using a

ClassLoader’s loadClass(...) method (e.g., line 2), using java.lang.Class’s forName

method, or through a class constant (e.g., using NetClass.class). The analysis then

records the class name it can find statically, or stores that it could not resolve that

name. Note that our analysis considers any subclass of ClassLoader. Our reflection

analysis involving constructors works in a similar manner by analyzing invocations of

java.lang.reflect.Constructor and invocations of its newInstance method.

Similar to our analyses for reflectively invoked methods, We perform analyses for any set*

methods of java.lang.reflect.Field (e.g., setInt(...)) or get*Field* methods of

java.lang.Class (e.g., getDeclaredField(String)).

For extracting the actual dependencies of type uses we implemented ServiceLoader Usage

Analysis which leverages a custom static analysis using the Soot framework to identify usage

of java.util.ServiceLoader in the input application. The traces of any actual usage of a

service is then stored in Actual Dependencies.

An application obtains a service loader for a given service by invoking the static load method

of ServiceLoader API. A service loader can locate and instantiate providers of the given

service using the iterator or stream method [6], through which an instance of each of the

located service providers can be created. As an example, Figure 4.3 depicts the code that

obtains a ServiceLoader for MyService (line 1). The ServiceLoader loads providers of

MyService (line 2) and can instantiate any of the located providers of this service using its
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iterator—created by the for loop in line 3. In this example, the service provider with the

getService method is desired (line 4).

Figure 4.3: Service loader example

Our analysis identifies the usage of the ServiceLoader API using a backward analysis by fol-

lowing the use-def chain of ServiceLoader instances (e.g., s on line 4) to identify all possible

definitions of a ServiceLoader (e.g, line 2 in Figure 4.3). The results of the ServiceLoader

API usage is then stored in Actual Dependencies.

Java Inconsistency Analysis ’s main goal is to identify all types of inconsistency scenarios

described in Section 3. For each directive in a module-info.java file, Java Inconsistency

Analysis explores actual and specified dependencies, stored in their respective database

components, to identify any occurrence of an inconsistent dependency defined in Section 3. If

a matching instance is found, Java Inconsistency Analysis reports the identified architectural

inconsistency, the module affected, and the specific directive involved. The component then

stores the identified inconsistencies in Inconsistent Dependencies, which are then used in the

repair phase.

4.2 Repair

To repair inconsistent dependencies, Module-Info Transformer deletes or modifies the explicit

dependencies defined in the module-info files. Inconsistencies found in the previous phase

are all unnecessarily defined dependencies among an application’s modules and packages.
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Therefore, Module-Info Transformer needs to omit those inconsistent dependencies specified

in the module-info files.

The result of the detection phase includes the type and details of identified inconsistencies.

For instance, in the case of an inconsistent exports dependency, one result stored in Incon-

sistent Dependencies includes the module in which this dependency is specified, the type

of the inconsistent dependency (exports in this case), and the package that is unnecessarily

exported. The repair phase takes the results of the detection phase as input. For each mod-

ule, the repair phase finds the related records of inconsistent dependencies defined in that

module and modifies the affected lines in module-info.

For this purpose, we leveraged ANTLR [4] to transform the module-info.java files to

repair the inconsistent dependencies. ANTLR is a parser generator for reading, processing,

executing, or translating a structured text. Hence, we generated a customized parser using

Java-9 grammar so that we can modify it to check the records of inconsistent dependencies

found in the detection phase of Darcy.

More precisely, we have implemented the generated parser so that, if it finds any match be-

tween the tokens of module-info files and the inconsistent dependencies, it skips or modifies

the specific token with respect to the type of the inconsistency. As a result, depending on the

type of dependency, the corresponding line in the module-info file is omitted or modified.

Module-Info Transformer repairs each type of inconsistent dependency. In most cases,

Module-Info Transformer deletes the entire statement. However, for requires transitive,

Module-Info Transformer only removes the token transitive.

In case of inconsistencies involving open module m (Equation 3.8 in Section 3), the open

modifier is removed from the header of the module declaration. However, there may be some

packages in m that other modules reflectively access. For each of these packages, Module-

Info Transformer adds an opens to statement thats make private members of the package
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accessible to the modules that reflectively access the package. If there is no package in m

that is reflectively accessed by other modules, no statement will be added to the module’s

body.

In certain situations, the Darcy user may disagree with the way it repairs and modifies

the specified dependencies because Darcy is not aware of the architect’s or developer’s

intentions. For example, this situation may occur if the user wants to develop a library and

export some packages for further needs or even allow other modules to reflectively access the

internals of some classes and packages. Darcy warns the developers and architects about

potential threats caused by architectural inconsistencies in their Java application, and allows

them to override Darcy prior to application of repairs.
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Chapter 5

Evaluation

To assess the effectiveness of Darcy, we study the following research questions:

RQ1: How pervasive are inconsistent, architectural dependencies in practice?

RQ2: How accurate is Darcy at detecting inconsistent, architectural dependencies and

repairing them?

RQ3: To what extent does Darcy reduce the attack surface of Java modules?

RQ4: To what extent does Darcy enhance encapsulation of Java modules?

RQ5: To what extent does Darcy reduce the size of runtime memory?

RQ6: What is Darcy’s runtime efficiency in terms of execution time?

To answer these research questions, we selected a set of Java applications from GitHub

[5], a large and widely used open-source repository of software projects, all of which are

implemented in Java 9. For this purpose, we searched through Java applications in GitHub

and selected projects that contain a module-info.java file. Our search covered about a

hundred pages of search results in the GitHub repository. To assess module dependencies,

projects needed to have more than one module in their respective module-info.java files.

Our final evaluation dataset resulted in 38 Java-9 applications, avoiding any selection bias
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Table 5.1: Identified Inconsistencies and Robustness Results
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toward our approach.

5.1 RQ1: Pervasiveness

Table 5.1 shows, for each application, the total number of inconsistent dependencies Darcy

found, modules, module directives used, and inconsistent dependencies by type. 74% of

applications in our dataset (28 out of 38) have inconsistent dependencies. Recall that even

one existing inconsistent dependency could cause undesired behaviors, or issues with encap-

sulation, security, or memory utilization (see Section 3).

As depicted in Table 5.1, most of the inconsistent dependencies are of types exports or

requires because these two types of directives are used more frequently than others. The high

frequency of inconsistent exports dependencies indicates that granting unnecessary access

to internal packages are quite common in Java-9 applications, which could cause security

vulnerabilities. Among the inconsistent requires dependencies, the requires JDK dependency

occurred more than others, which increases the risk of loading unnecessary JDK modules

and compromising portability.

Table 5.1 indicates that a few applications have inconsistent dependencies of type provides

with, and only one application has an inconsistent uses dependency. In fact, these directives

are rare compared to other directives. For provides with and uses, Java checks most of the

requirements for avoiding inconsistent dependencies at compile time. Therefore, the possibil-

ity of defining an inconsistent provides with and uses dependencies decreases. Nevertheless,

Darcy covers the inconsistent dependencies corresponding to these two directives because

they are risky and may appear more frequently in future usage of Java 9.
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5.2 RQ2: Correctness

To answer RQ2 for Darcy’s detection capability, we ran the detection phase for each of the

Java-9 applications in our evaluation dataset to assess whether Darcy can accurately detect

inconsistent dependencies. To that end, we manually checked the inconsistent dependencies

found by Darcy to ensure their correctness. More precisely, we compared the corresponding

record in both Actual Dependencies and Specified Dependencies to verify the correctness of

the inconsistencies discovered by the detection phase. The result, as described in Table 5.1,

shows that all inconsistent dependencies found by Darcy are correct.

To evaluate Darcy’s ability to correctly repair inconsistencies, we ran the repair phase of

Darcy for each of the Java-9 applications in our evaluation dataset to assess whether Darcy

repairs the detected inconsistencies without introducing any unexpected behavior. To assess

correctness of a repair, we (1) check if each application compiles successfully after running

the repair phase and (2) if the application contains a test suite, determine if the application

obtains the same test passing rate, i.e., the ratio of the number of passing test cases to the

total number of test cases, both before and after repairs. We also ran the detection phase

after the repair actions. The result showed zero inconsistencies within the transformed Java

applications.

The results for compilation after repair are shown in Table 5.1, indicating that all the appli-

cations compiled successfully. This confirms that the inconsistent dependencies have been

repaired robustly in a way that does not prevent compilation of the applications. Addi-

tionally, three applications in our study contain a test suite. The passing rate for each of

these test suites remains the same both before and after Darcy repairs, demonstrating that

Darcy does not negatively affect expected behavior of repaired applications.
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5.3 RQ3: Security

To assess Darcy’s ability to enhance security, we consider the attack surface of Java-9

applications. The attack surface of a system is the collection of points at which the system’s

resources are externally visible or accessible to users or external agents. Manadhata et al.

introduced an attack-surface metric to measure the security of a system in a systematic

manner [44, 45, 46]. Every externally accessible system resource can potentially be part of

an attack and, hence, contributes to a system’s attack surface. This contribution reflects

the likelihood of each resource being used in security attacks. Intuitively, the more actions

available to a user or the more resources that are accessible through these actions, the more

exposed an application is to security attacks [44, 45, 46].

For a Java-9 application, the main resource under consideration is a Java module. As a

result, we define the attack surface of an application as the number of packages that are

accessible from outside its modules. To measure the attack surface of Java-9 applications,

we count the number of packages exposed by exports (to) and open(s to) directives. These

directives make internals of packages accessible to other modules.

As shown in Table 5.2, 25 out of 29 applications had an average attack-surface reduction

of about 60%. Darcy was able to totally eliminate the attack surface in 5 applications.1

Although eliminating the module-based attack surface does not result in perfect security,

Darcy can maximize protection to the asset (i.e., Java packages) through a module’s inter-

faces by eliminating all unnecessary exports and opens directives of the module—other attack

vectors (e.g., IPC over network sockets) still remain but are out of scope for Darcy. The

relatively large reduction of the attack surface in applications achieved by Darcy indicates

that it can significantly curtail security risks in Java-9 applications.

1These applications are essentially software utilities or libraries including different modules that provide
functionalities for different situations, but do not have any dependency on one another.
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Table 5.2: Result for Attack-Surface Reduction

Application # exposed # exposed Attack Surface
Name pckg (before) pckg (after) Reduction (%)

sense-nine 6 1 83.33
number-to-text 4 3 25.00
jigsaw-resources 2 1 50.00
JavaUtils 7 1 85.71
BunnyHop 16 2 87.50
java9-modules 2 1 50.00
jwtgen 1 0 100
project-constantin 4 0 100
java-spi-example 6 3 50.00
codersonbeer-app 4 1 75.00
rahmnathan-utils 6 0 100
auto-sort 2 1 50.00
java9-demo 2 1 50.00
java9-modules-tlb 5 4 20.00
java-9-lab 3 2 33.33
meetup-16 4 1 75.00
springuni-java9 1 0 100
java-9-spring-mvn 6 0 100
music-ui-start 5 2 60.00
java9-labs 5 1 80.00
practical-security 4 3 25.00
java9-junit 4 3 25.00
the-message 10 9 10.00
jigsaw-tst 3 2 33.33
TRPZ 5 3 40.00

Avg. Attack Surface Reduction 60.33%

5.4 RQ4: Encapsulation

To evaluate the ability of Darcy to enhance the encapsulation of Java-9 applications, we

leveraged two metrics selected from an extensive investigation by Bouwers et al. [15] about

the quantification of encapsulation for implemented software architectures. We selected met-

rics that involve architectural dependencies and are appropriate for the context of modules

in JPMS and Java-9 applications.

The first metric we selected is Ratio of Coupling (RoC) [16], which measures coupling among
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an application’s modules. For Java-9 modules, RoC is the ratio of the number of existing

dependencies among modules to the number of all possible dependencies among modules.

Ideally, the value of RoC would be low, meaning that only a small part of all possible

dependencies among modules is actually utilized—making it less likely that faults, failures,

or errors introduced by changes or additions to modules will propagate across modules.

The second metric we selected is a variant of Cumulative Component Dependency (CCD)

[38] which is the sum of all outgoing dependencies for a component. For Java-9 modules,

outgoing dependencies are requires and uses dependencies of each module. The specific

variant we used is Normalized CCD (NCD), which is the ratio of CCD for each module to

the total number of modules. Ideally, the value of CCD, or NCD, is low, indicating lower

coupling and better encapsulation.

Table 5.3 presents the amount of RoC and NCD change in 28 Java-9 applications with

inconsistent dependencies. Across all 28 applications, the amount of RoC is reduced by an

average of 25.34%, and up to 80.56%. The amount of NCD is also reduced in 15 applications

by an average of 20.73%, and up to 79%. These results indicate that Darcy can successfully

enhance the encapsulation of Java-9 applications by a significant amount.

5.5 RQ5: Software Bloat

To answer this research question, we measured the runtime memory needed by each appli-

cation before and after Darcy’s repair phase. Recall the fact that in Java 9, with the JDK

being modularized, we are able to create a lightweight custom Java Runtime Environment

(JRE), reducing software bloat. More specifically, the size of a custom JRE may be reduced

after a repair if the application has inconsistent dependencies of type requires JDK (Equation

3.2 of Section 3).
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Table 5.4 shows reduction of software bloat in terms of runtime memory size of affected ap-

plications after removing inconsistent requires JDK dependencies. According to the results,

the reduction is about 14% in 6 applications, and up to 55%. Such results are particularly

substantial for deployment and scalability goals in microservices or IoT devices that contain

very little memory.

5.6 RQ6: Performance

As described in Section 4, Darcy builds on three tools, Classycle[26], Soot [68], and ANTLR

[4]. As a result, to assess Darcy’s performance we answer RQ5 in terms of these three

underlying tools’ execution time.

Table 5.5 describes the average execution times for Darcy. Results for Classycle are shown

separately from results for other components since the execution time is dominated by Classy-

cle. On average, Darcy takes under 9 seconds for any system to execute, which is highly

time efficient for both detection and repair.
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Table 5.3: Results for Encapsulation Improvement

Application # Directives RoC NCD
Name (before) % Change % Change

sense-nine 31 29.03 16.00
number-to-text 11 9.09 -
vstreamer 25 16.00 20.00
jigsaw-resources 5 20.00 -
JavaUtils 36 80.56 79.31
BunnyHop 28 60.71 25.00
java9-modules 5 20.00 -
jwtgen 13 15.38 8.33
project-constantin 9 55.56 20.00
java-spi-example 27 15.38 5.56
codersonbeer-app 13 30.77 12.50
rahmnathan-utils 14 50.00 12.50
auto-sort 13 7.69 -
java9-demo 10 10.00 -
java9-modules-tlb 12 8.33 -
java-9-lab 15 6.67 -
meetup-16 14 42.86 -
java-9-bookstore 17 17.65 16.67
springuni-java9 6 50.00 40.00
java-9-modularity 11 9.09 12.50
java-9-spring-mvn 18 44.44 16.67
music-ui-start 15 26.67 10.00
java9-labs 10 40.00 -
practical-security 20 10.00 7.69
java9-junit 13 7.69 -
the-message 16 6.25 -
jigsaw-tst 11 9.09 -
TRPZ 19 10.53 -

Total # of Affected Systems (RoC) 28
RoC Reduction Avg. 25.34%

Total # of Affected Systems (NCD) 15
NCD Reduction Avg. 20.73%
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Table 5.4: Results for Software-Bloat Reduction

Application JRE Size (MB) Runtime Memory
Name (before) (after) Reduction (%)

sense-nine 19.11 18.99 0.63
JavaUtils 39.24 30.66 21.87
BunnyHop 46.23 20.93 54.72
java-spi-example 41.40 38.9 6.04
rahmnathan-utils 15.61 15.60 0.12
practical-security 15.72 15.60 0.76

Avg. Memory Reduction 14.02%

Table 5.5: Results for Execution Time

Component Avg. Execution Time (ms)

Class Dependency Analyzer (Classycle) 7428
Java Reflection Analysis 328
ServiceLoader Usage Analysis 315
Java Inconsistency Analysis 250
Repair 453

Total 8774
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Chapter 6

Threats to Validity

In terms of accuracy, the main threat to internal validity is the risk of false positives or neg-

atives of the static analysis tools used in the implementation. False positives or negatives in

the results of the static analysis tools may cause Darcy to miss some inconsistencies in the

detection phase or report false inconsistencies, which may lead to compilation errors or harm-

ing functionality of the application after the repair phase. Since Darcy takes Classycle’s

results as an input for the Java inconsistency analysis, it inherits all of Classycle’s limitations.

The accuracy of detecting the inconsistent dependencies is affected by the accuracy of the

static analysis tool we use. However, Classycle has been used and in development for over 11

years and leveraged by other state-of-the-art tools for software architecture and antipattern

analysis [59, 72, 20, 41, 28, 42, 19]. A similar threat to internal validity exists for our use

of Soot; however, Soot is a widely used[33, 39] and actively maintained framework [7] for

static analysis of Java programs. We further manually determine whether every identified

inconsistency is correct to ensure that any unforeseen issues with underlying static analyses

do not compromise Darcy’s accuracy.

One of the main threats to external validity is the selection and number of Java applications
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in the evaluation dataset. To mitigate this threat, we selected open source Java-9 applications

from many developers and about a hundred pages of search results on GitHub, one of the

largest and most widely used open-source repositories online. Another threat to external

validity is whether the types of inconsistencies we identify comprehensively cover those that

may exist. To alleviate this threat, we considered the architectural inconsistencies based on

all types of module directives defined in Java 9.

Darcy’s evaluation on only one programming language, i.e., Java, is another threat to

external validity. This threat is alleviated by the fact that Java is one of the most widely

used languages in the world [9, 8]. Furthermore, the general idea behind Darcy can be

extended to any other languages with modular programming constructs that utilize provides

and requires interfaces advocated by software architecture-based development and design

[70, 49, 40].

35



Chapter 7

Related Work

The most closely related literature to Darcy bridges the gap between software architecture

and implementation. There are a variety of different types of strategies to address this

issue: focusing only on the descriptive architecture by reverse engineering it; obtaining

the descriptive architecture and the prescriptive architecture, followed by checking their

conformance; ensuring that early in the software lifecycle that the descriptive and prescriptive

architectures conform by providing architectural constructs in code; and approaches that

ensure conformance of the descriptive and prescriptive architecture from the beginning and

into maintenance.

Many approaches address the architecture-implementation mapping issue by ignoring the

prescriptive architecture and simply trying to obtain the most accurate descriptive architec-

tures possible [25, 35, 42, 34, 29, 28, 50, 58, 21, 53]. A large number of these approaches rely

on software clustering to determine components from implementations [62, 47, 25, 35, 14].

A series of approaches detect inconsistencies between architecture and implementation by

reverse engineering the descriptive architecture from the code and comparing it with the

prescriptive architecture[51, 48, 69, 52, 66, 11, 71, 56, 24, 57, 37, 18, 36, 32]. Murphy et al.
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introduced the software reflexion method which helps an engineer compare prescriptive and

descriptive architectures in a manual manner [51]. A number of these approaches extend the

reflexion method with automated architecture recovery techniques [37, 18, 36].

Other approaches provide implementation-level constructs that represent architectural ele-

ments (e.g., customizable programming-language classes representing components) that help

ensure architectural conformance from a forward-engineering perspective [12, 17, 31, 43, 13,

54, 61, 67]. Many of these approaches support various notions of software architectural

connectors or interfaces, rather than just components.

Certain approaches achieve architecture-implementation mapping from both a forward-

engineering (e.g., code generation) and reverse-engineering perspective, i.e., round-trip engi-

neering [74, 73, 63]. 1.x-way mapping [74] allows manual changes to be initiated in the archi-

tecture and a separated portion of the code, with architecture-prescribed code updated solely

through code generation. 1.x-line mapping [73] extends 1.x-way mapping to product-line de-

velopment. Song et al. [63] introduce a runtime approach for architecture-implementation

mapping from a roundtrip-engineering perspective.

Darcy is the first approach that supports architectural-implementation conformance check-

ing in a mainstream programming language using architectural constructs built directly into

the programming language by its creators. Furthermore, our approach includes repair of

non-conforming architectures, rather than just determining inconsistencies. Darcy is the

only approach for architecture-implementation mapping that focuses on software bloat and

attack-surface reduction.

The module system has been recently introduced in Java, and the only existing framework

similar to JPMS is OSGI [2]. The major differences between OSGI and JPMS are as fol-

lows. OSGI was not able to modularize the JDK, preventing the construction of customized

runtime images with a minimized JDK, which JPMS enables. Additionally, OSGI cannot
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handle reflective access to modules’ internal packages. Similar dependency-analysis facilities

for OSGI are limited to removing unused dependencies of type import, which represents the

require dependency, and cannot cover the other 7 types of inconsistencies in JPMS applica-

tions previously introduced in section 3. Therefore, there is no similar facility for OSGI that

repairs all types of inconsistent dependencies as Darcy does.
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Chapter 8

Conclusion

This paper formally defines 8 types of architectural inconsistencies in Java-9 applications

and introduces Darcy, an approach for automatic detection and repair of these types of

inconsistencies. Darcy leverages custom static analysis, state-of-the art static analysis tools,

and a custom parser generator in its implementation to effectively detect and robustly repair

architectural inconsistencies. The results of our evaluation indicates a pervasive existence

of architectural inconsistencies among open source Java-9 applications. According to our

experiment, Darcy’s automatic repair results in a significant reduction of the attack surface,

enhancement of encapsulation, and reduction of memory usage for Java-9 applications. In

the future, we aim to expand Darcy to other programming languages and improve it to

(1) provide architectural visualization and (2) be used as a plug-in for Java Integrated

Development Environments (IDE) which helps developers avoid architectural inconsistencies

when developing Java applications.
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Appendix A

Artifacts

The artifacts are available for download from the following link:

https://github.com/negarq/darcy-artifact

A.1 Publication

This thesis has been published in 41st International Conference on Software Engineering

(ICSE 2019)

• Negar Ghorbani, Joshua Garcia, Sam Malek, ”Detection and Repair of Architec-

tural Inconsistencies in Java”, International Conference on Software Engineering

(ICSE), Montreal, QC, Canada, May 2019. (21% acceptance rate)
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