
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Efficient Algorithms for High Dimensional Data Mining

Permalink
https://escholarship.org/uc/item/4f03c1mc

Author
Rakthanmanon, Thanawin

Publication Date
2012

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4f03c1mc
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

RIVERSIDE

Efficient Algorithms for High Dimensional Data Mining

A Dissertation submitted in partial satisfaction

of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Thanawin Rakthanmanon

December 2012

Dissertation Committee:

 Dr. Eamonn Keogh, Chairperson

 Dr. Stefano Lonardi

 Dr. Gianfranco Ciardo

Copyright by
Thanawin Rakthanmanon

2012

The Dissertation of Thanawin Rakthanmanon is approved:

 Committee Chairperson

University of California, Riverside

iv

ACKNOWLEDGEMENTS

I would like to this opportunity to express my sincerest gratitude to my advisor, Dr. Eamonn J. Keogh,

for his invaluable guidance, supervision, and generous support during my doctoral study. I am graceful that

four years ago he picked up my application from and gave me an invitation letter for studying at University

of California at Riverside as one of his graduate students. During my research, he encourages me to solve

interesting problems, gives valuable efforts with an insightful advice, and teaches me how to reach the

better level of research. It is very fortunate that I have him as my advisor. Thank you very much.

I also would like to thank Dr. Stefano Lonardi and Dr. Gianfranco Ciardo who are my dissertation

committees for their valuable comments and suggestions, Dr. Christian Shelton and Dr. Marek Chrobak as

my oral-qualification committees and taught me five algorithm classes during my graduate study.

I express my gratitude to my colleagues from our data mining lab, who always help me completing my

research: Dr. Gustavo Batista, Dr. Qiang Zhu, Dr. Abdullah Mueen, Dr. Xiaoyue Wang, Bilson Campana,

Bing Hu, and Yuan Hao. I really appreciate Bing Hu for having many publications together and a nice

memory in Vancouver, Canada, with my family, Dr. Gustavo Batista for deep technical discussion and his

professional vision, Yuan Hao and Yoothana Thanmongkhon for helping me delivering my dissertation. I

also would like to thank Dr. Surachet Charoenkajonchai who helped me a lot when I first arrived at the

United State, Dr. Sira Srinives and Dr. Piyada Juntawong to have some vacations together, and a very long

list of Thai people who always gave me some support both physically and mentally.

Moreover, I cannot finish my doctoral program without financial support. Therefore, I would like to

thank all of sources of the funding I received here: Thai Government Scholarship, UCR Fellowship, NSF

0803410 and NSF 0808770 for covering all of my tuition fee, travel cost, stipend, and all other stuffs.

Finally, I would like to grateful thank my wonderful wife, Pempeeorn Wangchailert, for being here as

my wonderful support and providing constant inspirations, and my 6-month-old daughter, Trin, who is

always keeping me and my wife busy and also making this world a better place to live.

v

ABSTRACT OF THE DISSERTATION

Efficient Algorithms for High Dimensional Data Mining

by

Thanawin Rakthanmanon

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2012

Dr. Eamonn Keogh, Chairperson

Data mining and knowledge discovery has attracted research interest in the last decade. The size and

complexity of real world data is dramatically increasing and although new efficient algorithms to deal with

such data are constantly being proposed, the mining of high dimensional data still presents a challenge. In

this dissertation, several novel algorithms are proposed to handle such datasets. These algorithms are

applied to domains as diverse as electrocardiography (ECG), electroencephalography (EEG), human DNA

sequencing, protein sequencing, stock market data, gesture recognition data, motion capture data,

accelerometer data, audio data, image data, handwritten manuscripts, etc. This dissertation contributes to

the data mining community in three ways:

Firstly, we propose a novel algorithm for searching for the nearest neighbor in time series data by

using multi-level lower bounding techniques and other speed-up techniques. The proposed algorithm,

called UCRSuite, is faster than the previous state-of-the-art by several orders of magnitude. Because search

algorithms are primitive and a bottleneck in complex data mining algorithms, this contribution is likely to

make a significant impact. Secondly, we propose two approximation algorithms to handle the high

dimensional data. A fast shapelet discovery algorithm, called FastShapelet, has been proposed to discover

approximate shapelets, which are as accurate as those found by an exact search. In addition, we show an

unsupervised algorithm, called DocMotif, which can discover similar figures from given manuscripts. The

proposed algorithms are faster than the best known algorithms by two or three orders of magnitude and the

vi

discovered results are not measurably different from the exact algorithm. Moreover, in the second work, a

detailed mathematical analysis for bounding an error is provided.

In my final contribution, we show that in order to create a useful clustering of a single time series, an

algorithm must have the freedom to ignore some data. We propose a Minimum Description Length based

time series clustering algorithm that has this ability. My results demonstrate that not only is the proposed

algorithm parameter-free, but it is also efficient and effective for time series clustering.

vii

Table of Contents

Acknowledgements ... iv

Abstract of the Dissertation ... v

Table of Contents .. vii

List of Figures .. xii

List of Tables .. xviii

Chapter 1: Introduction to High Dimensional Data Mining ... 1

1.1 Types of High Dimensional Data .. 1

1.1.1. Time Series Data .. 1

1.1.2. Streaming Data .. 2

1.1.3. Image Data ... 2

1.1.4. Multimedia Data .. 3

1.1.5. Sequential Data .. 3

1.1.6. Transactional Data ... 3

1.2 Challenge in high dimensional data mining ... 4

1.2.1. Curse of Dimensionality ... 4

1.2.2. Noisy Data .. 4

1.2.3. High Complexity ... 5

1.3 The Proposed Solutions .. 5

1.3.1. Speeding up by Lower Bounding .. 5

1.3.2. Returning Approximate Results ... 6

1.3.3. Trying to Explain Everything Is Wrong ... 6

viii

Chapter 2: Exact Search in Trillions Subsequences .. 8

2.1 Introduction ... 8

2.1.1. A Brief Discussion of a Trillion .. 10

2.1.2. Explicit Statement of our Assumptions .. 10

2.1.3. Related Work ... 14

2.2 Background and Notations ... 14

2.2.1. Definitions and Notations .. 14

2.3 Proposed Algorithms .. 16

2.3.1. Known Optimizations ... 16

2.3.2. Novel Optimizations: The UCR Suite .. 18

2.4 Experimental Results .. 23

2.4.1. Baseline Tests on Random Walk .. 24

2.4.2. Supporting Long Queries: EEG ... 26

2.4.3. Supporting Very Long Queries: DNA .. 27

2.4.4. Realtime Medical and Gesture Data .. 29

2.4.5. Speeding up Existing Mining Algorithms .. 30

2.5 Discussion and conclusions .. 32

Chapter 3: Fast Shapelet Discovery .. 35

3.1 INTRODUCTION .. 35

3.2 Definitions and Notation .. 38

3.3 Related AND BACKGROUND Work ... 40

3.3.1. Brute Force Shapelet Discovery ... 41

3.3.2. Current State-of-the-Art .. 42

3.4 Fast Shapelet Discovery.. 42

3.4.1. Overview of the Algorithm ... 42

ix

3.4.2. Fast Shapelet Algorithm ... 47

3.5 Experimental Results .. 49

3.5.1. UCR Time Series Dataset .. 49

3.5.2. Scalability ... 50

3.5.3. When to use Shapelet or 1NN ... 51

3.5.4. Parameter Effects .. 53

3.6 Case Studies ... 54

3.6.1. Starlight Dataset .. 55

3.6.2. Physical Activity Dataset .. 56

3.6.3. ECG Dataset ... 57

3.7 Conclusions .. 58

Chapter 4: Document Motifs .. 58

4.1 Introduction ... 59

4.2 Background and Notation .. 63

4.2.1. Definitions and Notation .. 63

4.2.2. Generalized Hough Transform ... 68

4.3 Exact Algorithm to find Motifs ... 69

4.3.1. Brute Force Algorithm .. 69

4.4 Our Algorithm ... 70

4.4.1. Intuitions Behind Our Algorithm .. 70

4.4.2. Document Motif Discovery .. 74

4.5 Experimental Results .. 76

4.5.1. Sanity Check for the GHT Measure .. 77

4.5.2. Motifs between Two Manuscripts ... 78

4.5.3. Scalability and Noise Tolerance ... 82

x

4.5.4. Robustness of Parameters ... 85

4.5.5. Data Mining Palm Leaf Manuscripts .. 88

4.6 Theoretical Analysis.. 89

4.7 Conclusions .. 90

Chapter 5: Some Data Must Be Ignored .. 92

5.1 Introduction ... 92

5.1.1. Why Clustering Time Series Streams requires Ignoring some Data 93

5.1.2. How MDL Can Help .. 95

5.2 Related Work .. 97

5.3 Background and Notation .. 99

5.3.1. Definitions and Notation .. 99

5.4 Clustering Algorithm .. 106

5.4.1. The Intuition behind Stream Clustering ... 107

5.4.2. Our algorithm in detail ... 109

5.5 Experimental Results .. 113

5.5.1. Comparison to Ground Truth ... 113

5.5.2. Clustering a Noisy Dataset ... 115

5.5.3. Comparison to other Methods .. 116

5.5.4. Scalability ... 117

5.5.5. Disscusion of the MDL Choice .. 118

5.6 Multi-dimensional clustering ... 120

5.6.1. Notation ... 120

5.6.2. Multi-dimensional Clustering Algorithm .. 121

5.6.3. Experimental Results ... 124

5.7 Conclusions .. 127

xi

Chapter 6: Conclusion .. 128

Bibliography ... 130

Appendix: Mathematical Analysis .. 141

xii

List of Figures

Figure 1: Screen captures from the original video from which the Gun/NoGun data was culled.
The center frame is the original size; the left and right frames have been scaled by
110% and 90% respectively. While these changes are barely perceptible, they
double the error rate if normalization is not used. (Video courtesy of Dr.
Ratanamahatana) ... 11

Figure 2: A long time series T can have a subsequence Ti,k extracted and compared to a query Q
under the Euclidean distance, which is simply the square root of the sum of the
squared hatch line lengths .. 15

Figure 3: left) Two time series which are similar but out of phase. right) To align the sequences
we construct a warping matrix, and search for the optimal warping path (red/solid
squares). Note that Sakoe-Chiba Band with width R is used to constrain the warping
path ... 15

Figure 4: left) The LB_KimFL lower bound is O(1) and uses the distances between the First (Last)
pair of points from C and Q as a lower bound. It is a simplification of the original
LB_Kim [28]. right) The LB_Keogh lower bound is O(n) and uses the Euclidean distance
between the candidate sequence C and the closer of {U,L} as a lower bound 17

Figure 5: An illustration of ED early abandoning. We have a best-so-far value of b. After
incrementally summing the first nine (of thirty-two) individual contributions to the
ED we have exceeded b, thus it is pointless to continue the calculation [27] 17

Figure 6: left) At the top we see a completed LB_Keogh calculation, and below it we are about to
begin a full DTW calculation. right) We can imagine the orange/dashed line moving
from left to right. If we sum the LB_Keogh contribution from the right of dashed line
(top) and the partial (incrementally calculated) DTW contribution from the left side
of the dashed line (bottom), this is will be a lower bound to DTW(Q,C) 18

Figure 7: left) ED early abandoning. We have a best-so-far value of b. After incrementally
summing the first nine individual contributions to the ED, we have exceeded b;
thus, we abandon the calculation. right) A different ordering allows us to abandon
after just five calculations ... 21

Figure 8: left) Normally the LB_Keogh envelope is built around the query (see also Figure 4.right),
and the distance between C and the closer of {U,L} acts as a lower bound. right)
However, we can reverse the roles such that the envelope is built around C and the
distance between Q and the closer of {U,L} is the lower bound .. 22

Figure 9: The mean tightness of selected lower bounds from the literature plotted against the
time taken to compute them .. 22

xiii

Figure 10: The time taken to search random walks of length 20 million with increasingly long
queries, for three variants of DTW. In addition, we include just length 4,096 with
SOTA-ED for reference .. 25

Figure 11: Query Q shown with a match from the 0.3 trillion EEG dataset .. 26

Figure 12: A subsequence of DNA from Human chromosome 2, of length 72,500 beginning at
5,709,500 is clustered using single linkage with its Euclidean distance nearest
neighbors from five other primates .. 28

Figure 13: left) Skulls of horned lizards and turtles. right) the time series representing the
images. The 2D shapes are converted to time series using the technique in [64] 36

Figure 14: left) The shapelet that best distinguishes between skulls of horned lizards and
turtles, shown as the purple/bold subsequence. right) The shapelet projected back
to the original 2D shape space ... 37

Figure 15: The orderline shows the distance between the candidate subsequence and all time
series as positions on the x-axis. The three objects on the left hand side of the line
correspond to horned lizards and the three objects on the right correspond to
turtles.. 40

Figure 16: top.left) The SAX word adbacc created from a subsequence of the time series
corresponding to P. coronatum. bottom) sliding window technique ... 43

Figure 17: left) SAX words of each object. right) SAX words after masking two symbols. Note
that masking positions are randomly picked .. 44

Figure 18: The first (A) and second (B) iterations of the counting process. left) Hashing process
to match all same signatures. Signatures created by removing marked symbols from
SAX words. right) Collision tables showing the number of matched objects by each
words .. 45

Figure 19: A) The collision table of all words after five iterations. Note that counts show the
number of occurrences that an object shares a same signature with the reference
word. B) Grouping counting scores from objects in the same class. C) Complement
of (B) to show that how many times objects in each class that do not share the
same signature with the reference word. D) The distinguishing power of each SAX
word .. 46

Figure 20: Classification accuracy of our algorithm and the state-of-the-art on 32 datasets from
the UCR archive .. 49

Figure 21: Running time comparison between our algorithm and the state-of-the-art on 32
datasets from UCR time series archives ... 50

Figure 22: Scalability of our algorithm and the current state-of-the-art on StarlightCurves
dataset. left) Number of time series in the dataset is varying. right) The length of
time series is varying .. 51

xiv

Figure 23: Accuracy ratio between FastShapelet algorithm and Euclidean-distance-based one
nearest neighbor on 45 datasets from UCR archives ... 53

Figure 24: bottom) The accuracy of the algorithm is not sensitive for both parameters r and k.
top) The running time of the algorithm is approximately linear by either parameter.
Note that when we vary r (k), we fix k (r) to ten, thus we are changing only one
parameter at a time .. 54

Figure 25: Examples of starlight curves in three classes: Eclipsed Binaries, Cepheis, and RR Lyrae
Variables ... 55

Figure 26: left) Decision tree of StarlightCurve dataset created by our algorithm. right) Two
shapelets shown as the red/bold part in time series ... 56

Figure 27: Examples of all outdoor activities from PAMAP dataset. Note that the time series of
each activity are generally different lengths .. 56

Figure 28: top) ECG time series when first recorded. left) Time series from two classes are very
similar even hard to distinguish by eyes. right) the shaplet discovered by our
algorithm shown in red/bold .. 58

Figure 29: Two plates from 19th-century texts on Diatoms. left) Plate 6 of [104] right) Plate 5 of
[109]. Note that in each plate we point to a triangular specimen, Biddulphia
alternans ... 60

Figure 30: left) Two plates in Figure 29. right) A zoom-in of the same species, Biddulphia
alternans appearing in both texts ... 61

Figure 31: left) A figure from page 7 of [91], a 1915 text on peerage. The original text is
monochrome. right) A figure from page 109 of [85], an 1858 text on honors and
decorations ... 61

Figure 32: Examples of texts with “holes” ... 64

Figure 33: The distance measure we use is offset-invariant, so the distance between any pair of
windows, left, center or right above, is exactly zero. This simple fact can be
exploited to greatly reduce the search space of motif discovery. Since a pattern
from another book that matches one of the above with a distance X must match all
with distance X, we only need to include any one of the above in our search 66

Figure 34: An illustration of our notation. Here the document D consists of two pages,
separated by null values. Intuitively we expect the “T” shape in window Wa to
match the shape shown in Wb. However, note that the trivial matching pair of Wc
and Wd (also pair We and Wf) are actually more similar, and need to be excluded to
prevent pathological results ... 66

Figure 35: An illustration of a pathological solution to finding the top two motif pairs between
two century-old texts. top) The desirable solution finds the crescent and label

xv

(rotated “E”). bottom) A redundant and undesirable solution that we must
explicitly exclude is finding one pattern (the label) twice .. 68

Figure 36: A) Two figures from table 16 of a 1907 text on Native American rock art [101] (one
image recolored red for clarity). B) No matter how we shift these two figures, no
more than 16% of their pixels overlap. C) Downsampled versions of the figures
share 87.2% of their pixels as in (D) .. 70

Figure 37: A) If we randomly choose some locations (masks) on the underlying bitmap grid on
which the two figures (B) shown in Figure 36 lie, and then remove those pixels from
the figures, then the distance between the edited figures (C) can only stay the same
or decrease. Several random attempts at removing ¼ of the pixels in the two figures
eventually produced two identical edited figures (D) .. 71

Figure 38: The summation of the number of black pixels in windows. Only windows
corresponding to peaks above the threshold (the red line) need to be tested. The
arrows show the center position of six potential windows .. 73

Figure 39: Samples showing the interclass variability in the hand-drawn datasets. left)
Samples from the music datasets. right) Samples from the architectural dataset 77

Figure 40: left) Two typical pages from Californian petroglyphs [110]. right) Two typical pages
from [101]. Note that the minor artifacts are from the original Google scanning 79

Figure 41:. Five random motif pairs from the top fifty pairs created by joining the two texts
[101] and [110]. Note that these results suggest that our algorithm is robust to line
thickness, solid vs. hollow shapes, and various other distortions .. 79

Figure 42: The top two inter-book motifs discovered when linking a 1921 text, British Heraldry
[89] (left), with a 1909 text, English Heraldic Book-Stamps, Figured and Described
[90] (center), and (right) ... 80

Figure 43: A zoom-in of the motifs discovered in Figure 42. Note that the two helmets differ in
size by about 11%, and our algorithm was invarient to this difference 81

Figure 44: (left) Arms of King George III and his successors from A Manual of Heraldry, Historical
and Popular, 1863 [88]. Two similar arms are explained in Leopards of England,
1913 [92]. (middle) Arm of King George IV and his successor’s King William IV.
(right) Arms of King George III after the constitutional change ... 82

Figure 45: left) The 14-segment template used to create characters. We can turn on/off each
segment independently to generate a vast alphabet. middle) An example of a page
which is generated from the process. right) A page of the book after adding
polynomial distortion (top half), and Gaussian noise with mean 0 and variance 0.10
(bottom half) ... 83

Figure 46: Time to discover motifs in books of increasing size. Our algorithm can find a motif in
512 pages in 5.5 minutes and 2048 pages in 33 minutes. (inset) As a sanity check we

xvi

confirmed that the discovered motifs are plausible, as here (noise removed for
clarity) ... 84

Figure 47: Effect of Gaussian noise. Our algorithm can handle significant amounts of noise. An
example of a page containing noise at var=0.10 is shown in Figure 45.right 84

Figure 48: The total execution time of three search algorithms: an exact motif search, an exact
motif search on just the potential windows, and our algorithm DocMotif 85

Figure 49: The effect of parameters on our algorithm. We test on artificial books with
polynomial distortion and each result is averaged over ten runs. The bold/red line
represents the parameters learned from just the first two pages ... 86

Figure 50: The average distance from top-20 motifs from our algorithm and the exact search
algorithm. The bold/red line shows the default parameters. This shows that the
quality of motifs is not sensitive to different parameter settings and very close to
the result from the exact search algorithm .. 87

Figure 51: An example of a palm leaf manuscript .. 88

Figure 52: Six example motifs from a palm leaf manuscript. The window size is set to 30×100
pixel2 ... 88

Figure 53: The effects of masking ratio (top) and the number of iterations (bottom) parameters
on the spurious collision ratio, Given there is least one motif with a distance d in the
data. The figures for other values of d are at [118]. Here we fixed µ=100 and σ=10 90

Figure 54: Representative partitional clusters from dataset D for two settings of K 95

Figure 55: Classification accuracy on 18 time series datasets as a function of the data
cardinality. Even if we reduce the cardinality of the data from the original
4,294,967,296 to a mere 64 (vertical bar), the accuracy does not decrease 99

Figure 56: Four time series of length 250 and with a cardinality of 256. Naively all require 250
bytes to represent, but they have different description lengths .. 101

Figure 57: Time series B can be represented exactly as the sum of the straight line H and the
difference vector B'... 102

Figure 58: Two interwoven bird calls featuring the Elf Owl, and Pied-billed Grebe are shown in
the original audio space (top), and as a time series extracted by using MFCC
technique (middle) and then clustered by our algorithm (bottom). .. 107

Figure 59: A trace of our algorithm on the bird call data shown in Figure 58.bottom 108

Figure 60: top) 29.8 seconds of an audio snippet, represented by the first coefficient in MFCC
space, and then annotated with colors to reflect the clusters. bottom) A trace of
the steps use to produce the clustering ... 114

xvii

Figure 61: top) Dimension U1 of the Winding dataset. middle) A trace of the clustering steps
produced by our algorithm. bottom) Representative clusters obtained. 115

Figure 62: left) A screen dump of fig.11 from [124]. The original caption read “TF Clustering:
Koski-ECG result”. right) An annotation of the clusters by a USC cardiologist 116

Figure 63: top) The same 2,000 data points from Koski-ECG as used in Figure 62. middle) A
trace of the clustering steps produced by our algorithm. bottom) the single cluster
discovered has five members ... 117

Figure 64: Running time of our algorithm on Koshi data when s = 350 .. 118

Figure 65: The relationship between Euclidean Distance (ED) of pairs of subsequences in a
random walk time series and MDL of their difference. Euclidean distance is
calculated in original continuous space but MDL is calculated in discrete space (64
cardinality) .. 119

Figure 66: Three time series generated from z-accelerometer of sensors at hand, chest and
shoe from PAMAP [145]. The subject performs three activities: descending stairs,
ascending stairs, and descending stairs again .. 125

Figure 67: top) The multi-dimensional time series clustering result. Two clusters are detected in
ascending stair, and three clusters are detected in descending stair. bottom) A trace
of the multi-dimensional clustering steps produced by our algorithm 126

xviii

List of Tables

Table 1: Subsequence search with online Z-normalization ... 20

Table 2: Time taken to search a random walk dataset with |Q| =128 ... 25

Table 3: Time to search 303,523,721,928 EEG data points, |Q| = 7000 ... 26

Table 4: An algorithm to convert DNA to time series ... 27

Table 5: Time taken to search one year of ECG data with |Q| = 421 ... 30

Table 6: Brute Force Algorithm ... 41

Table 7: Fast Shapelet Algorithm .. 47

Table 8: Brute force algorithm .. 69

Table 9: Proposed Algorithm ... 75

Table 10: The accuracy of GHT on 3 hand-drawn symbol problems ... 77

Table 11: Main time series stream clustering algorithm ... 110

Table 12: Create Operator .. 112

Table 13: Add Operator .. 112

Table 14: Merge Operator .. 112

Table 15: The text corresponding to the time series shown in Figure 60, annotated by color/font 114

Table 16: Multidimensional stream clustering algorithm ... 122

Table 17: Multidimensional Create Operator ... 123

Table 18: Multidimensional Add Operator .. 123

Table 19: Multidimensional Merge Operator ... 124

1

Chapter 1: Introduction to High
Dimensional Data Mining

Because data mining has been a hot topic for decades, many algorithms and related applications have

been proposed to handle the various types of data such as transactional data, medical data, biological data,

multimedia data, streaming data, etc. As a result of the dramatic increase in digital data, efficient

algorithms are still needed to handle very large scale and highly complex data. This dissertation proposes

several approaches that can handle high dimensional data efficiently and effectively. We demonstrate their

usefulness on many real world data sets.

Before we explain further what the challenges of high dimensional data mining are, we would like to

point out that high dimensional data is everywhere nowadays and is being created every second.

1.1 Types of High Dimensional Data

We may classify a large portion of high dimensional data as the following.

1.1.1. Time Series Data

Time series data is one of the most well-known types of data. Usually, data is created from multiple

sensors to measure real-world measurements in periods of time. For example, the electrocardiogram

(ECG), which shows the electrical activity of a subject’s heart, is used widely to measure the regularity of

heartbeats, the size of the heart and its chambers, and abnormal rhythms; this data can be used to identify

the damaged area of the heart or the effects of drugs. In recording the ECG time series, multiple sensors are

placed on the subject’s heart, hands, and legs. Other examples of time series data are

electroencephalography (EEG), which is recorded by attaching 40-100 sensors to the subject’s head for

recording brain waves; accelerometer data, which is used widely for recording the movement of subjects,

etc. If multiple time series are recorded simultaneously, it is called a “multidimensional time series.”

2

In time series data mining, knowledge can be found in many aspects such as repeated pattern or motif

discovery, classification, prediction, clustering, data dictionary, data compression, data representation, etc.

According to the largest portion of the real-world data, several works in this dissertation focus on solving

time series data mining problems.

1.1.2. Streaming Data

Streaming data and time series data are visually similar but conceptually different. Specifically,

streaming data may be recorded by multiple sensors at the same as time series data. The main difference is

that streaming data could be theoretically recorded forever or for a very long period of time, and thus not

all of the data can be stored. The limitations for recording and analyzing the streaming data include small

memory/storage and low computational power. Hence, an algorithm for mining streaming data is different

and much more difficult than an algorithm for time series data mining because all data can be read only

once and only a small portion of the data can be used for analysis. In this dissertation, when we mention

streaming data, we mean a stream created from single-dimensional data. However, in general, streaming

data can be any kind of data, such as broadcasting audio, streaming video, online transaction, or stock

market prices.

1.1.3. Image Data

Another large portion of the digital data consists of images. This kind of data includes not only photos

and pictures but also scanned documents and digital books. According to Google 2010, there are more than

130 million books in the world and a portion of them are digitized. Because an image contains a lot of data

points, image data analysis is typically complex; scalability of an algorithm is the main concern here. Later

in Chapter 4, we show an efficient algorithm for finding similar images from books.

3

1.1.4. Multimedia Data

Multimedia data is one of the most complex types of data to analyze. It can contain both audio data and

video data, so an efficient algorithm is required. Although we do not focus on full multimedia data, audio

data is used throughout this dissertation. There are some techniques to convert audio data to a time series.

Later in Chapter 5, the Mel-Frequency Cepstrum Coefficients (MFCC) technique is used to create a time

series from an audio file.

1.1.5. Sequential Data

Sequential data is primitive and similar to time series data. Time series data contains interval data, such

as integers or real numbers. Sequential data can contain any nominal data. The most useful sequences are

strings, including binary strings and ASCII texts, biological data including DNA sequences, the human

genome, or 3D protein sequences. This kind of data may be one of the most important types of data for

mankind and there are more than thousands of algorithms to deal with this kind of data. In this dissertation,

we do not focus on mining this kind of data. Later in the next chapter, we show that with an appropriate

conversion our proposed methods can support this kind of data efficiently.

1.1.6. Transactional Data

This is the most conservative type of data in the data mining community. This data is varied, consisting

of merely single dimensional data, such as items in a shopping cart, or multiple-dimensional data such as

customer data, log files, patient records, etc. Transactional data can simply be kept in a relational database

management system (RDBMS). Most data mining algorithms can handle this kind of data. However, it may

not be appropriate to keep high-dimensional data in an RDBMS because the number of dimensions is

possibly larger than the limitations of RDBMS.

4

1.2 Challenge in high dimensional data mining

The complexity of input data is one of the main challenges in data mining. When data contains more

dimensions, the model representing the data is more complicated, the complexity of corresponding

algorithms is higher, and the usefulness of the results is degraded. In this section, we discuss the well-

known challenges of high dimensional data analysis.

1.2.1. Curse of Dimensionality

When data contains many dimensions such as hundreds or thousands of dimensions, the problem is

that the entire space greatly increases and the data becomes sparse inside this huge space [2]. Thus, it is

hard to measure the distance between any two data in a useful way because most data are equally far apart

from others. Although dissimilar pairs of high dimensional data seem to be useless, the similar pairs are in

fact useful, especially in time series data mining [1][3]. There are many approaches that can be used to

mitigate this problem, such as feature selection and dimension reduction. The latter approach is used in this

dissertation, and we explain more about our methods in Chapters 3 and 4.

1.2.2. Noisy Data

If the data is too noisy, it may be impossible to find a useful pattern inside the data. This depends on

the signal-to-noise ratio [4], the ratio between the desired signal and background noise. If the ratio is too

low, it means that the noise is significant and may dominate the whole combined data, so any model used to

explain the data may be useless because it mainly explains the noise instead of the real or desired

signal/data. This idea can be applied to other domains; for example, noise can consist of spam emails, scam

websites, background sounds, background colors, noisy signals created by a circuit, the natural frequency

of light (50 Hz), etc.

There are several approaches to handling noisy data. The most convenient approaches are smoothing

the data to reduce the noise’s effects, or assuming the pattern of the noise such as Gaussian, or reducing the

cardinality of the data, or converting data into other space, or even learning the noise pattern and removing

5

it from the data. For example, raw audio data recorded at a frequency of 44.1 MHz is one of the noisiest

data and the MFCC technique is a well-known technique used to convert the audio data into simple time

series data with less frequency.

1.2.3. High Complexity

The main challenge in mining high dimensional data is the data complexity itself. For the most

algorithms, their The complexity of most algorithms will be grows dramatically on according to the number

of dimensions. For example, one of the most primitive problems in data mining is to finding the closest

pairs in the given data set. The closest pair problem can be solved effectively in a Euclidean Plane or when

the dimension is 2 [5] in O(nlogn), where n is the number of data. However, the complexity of this problem

is grows exponentially based on the number of dimensions and approximation algorithms that are proposed

to solve this problem with high dimensional data [6]. Hence, to deal with high-dimensional data, efficient

algorithms are necessary; this and it is the main focus of this dissertation. However, most of the algorithms

proposed in this dissertation are efficient, effective, and scalable.

1.3 The Proposed Solutions

In this study, we propose several algorithms to solve some problems associated with high dimensional

data mining. The proposed algorithms can be grouped into three categories. First, the lower bounding

technique can be used to prune some data from further consideration. Second, we propose some

approximation algorithms to solve the high dimensional data mining problems. Last but not least, we

demonstrate that trying to explain everything in high dimensional data is not appropriate. Some data must

be ignored; otherwise, noisy data will be explained or modeled.

1.3.1. Speeding up by Lower Bounding

The lower bounding technique is a well-known technique used to speed up a search algorithm. The

mechanism for using lower bounding is simple, as instead of computing costly distance measures, such as

6

Dynamic Time Warping (DTW), the cheaper lower bound, such as LB_Kim, LB_Yi, or LB_Keogh, can be

calculated first. If the lower bounding distance is still farther than the best current search result, there is no

need to calculate the costly distance for those corresponding pairs, because the real distance must be larger

than its lower bounding. In Chapter 2, we show that our novel search algorithm under DTW distance can be

used to find the nearest neighbor subsequences among a trillion subsequences in less than one and a half

day. Moreover, our exact search is much faster than the previous state-of-the-art algorithms, including the

best approximation algorithms for solving the same problem.

1.3.2. Returning Approximate Results

As mentioned above, some problems such as the closest pair problem cannot be solved in polynomial

time, and approximation algorithms have been introduced [6]. In Chapter 3, we propose an approximation

algorithm to find an approximate time series shapelet. The proposed algorithm is faster than the state-of-

the-art exact algorithm by a few orders of magnitude and the experiment results show that the proposed

algorithm is indifferent in term of accuracy. We tested all of the time series datasets in the UCR Time

Series Archives. To learn more about time series shapelets, please refer to Chapter 3.

In Chapter 4, we do mining on image datasets. We propose an approximation algorithm for finding

repeated patterns from two books, which can be historical manuscripts, hand-written documents, or a set of

images. The proposed algorithm is much faster than the best exact algorithm by many orders of magnitude.

We demonstrate that the results from our algorithm are visually correct, and a mathematical analysis is

provided in the Appendix to show that the error of the proposed algorithm is small and can be bounded.

1.3.3. Trying to Explain Everything Is Wrong

In Chapter 5, we show that it is not appropriate to explain all of the data, especially for time series

data. Because having noise in high dimensional data is unavoidable, explaining everything means

explaining both the desired data and noise. However, noise is unknown, cannot be explained, and must be

7

excluded from the model. We demonstrate the problem using time series subsequence clustering problems.

In 2005, Keogh and Lin [8] first showed that considering all subsequences will create a useless result for

any clustering algorithm. In Chapter 5, we propose a minimum description length (MDL)-based algorithm

to cluster the time series subsequences. Because it is hard even for an expert to understand the nature of the

data, we apply the MDL technique to help us find the results. Moreover, our algorithm is parameter-free.

The organization of the rest of this dissertation is as follows. As mentioned above, Chapter 2 explains

the exact search algorithm; we show that if we have a good enough strategy and many lower bounding

techniques, we can speed up the search by many orders of magnitude. In Chapter 3, we show an

approximation algorithm to discover time series shapelets by using symbolic representation and hashing

techniques to avoid costly calculations. In Chapter 4, we explain an approximate algorithm to find repeated

patterns from two digital books. A random projection has been used to achieve a fast approximation

algorithm but can guarantee an error. The mathematical proof of the bound of the error and the running

time is provided in the Appendix. Chapter 5 shows an algorithm to cluster time series subsequences. The

proposed algorithm not only creates meaningful results, but is also parameter-free. The last chapter

concludes all of the results from this study.

8

Chapter 2: Exact Search in Trillions
Subsequences

Most time series data mining algorithms use similarity search as a core subroutine, and thus the time

taken for similarity search is the bottleneck for virtually all time series data mining algorithms. The

difficulty of scaling search to large datasets largely explains why most academic work on time series data

mining has plateaued at considering a few millions of time series objects, while much of industry and

science sits on billions of time series objects waiting to be explored. In this work we show that by using a

combination of four novel ideas we can search and mine truly massive time series for the first time. We

demonstrate the following extremely unintuitive fact; in large datasets we can exactly search under DTW

much more quickly than the current state-of-the-art Euclidean distance search algorithms. We demonstrate

our work on the largest set of time series experiments ever attempted. In particular, the largest dataset we

consider is larger than the combined size of all of the time series datasets considered in all data mining papers

ever published. We show that our ideas allow us to solve higher-level time series data mining problem such as

motif discovery and clustering at scales that would otherwise be untenable. In addition to mining massive

datasets, we will show that our ideas also have implications for real-time monitoring of data streams,

allowing us to handle much faster arrival rates and/or use cheaper and lower powered devices than are

currently possible.

2.1 Introduction

Time series data is pervasive across almost all human endeavors, including medicine, finance, science

and entertainment. As such, it is hardly surprising that time series data mining has attracted significant

attention and research effort. Most time series data mining algorithms require similarity comparisons as a

subroutine, and in spite of the consideration of dozens of alternatives, there is increasing evidence that the

classic Dynamic Time Warping (DTW) measure is the best measure in most domains [13].

9

It is difficult to overstate the ubiquity of DTW. It has been used in robotics, medicine [12], biometrics,

music/speech processing [8][34][48], climatology, aviation, gesture recognition [10][45], user interfaces

[23][29][36][45], industrial processing, cryptanalysis [14], mining of historical manuscripts [22], geology,

astronomy [27][38], space exploration, wildlife monitoring, etc.

As ubiquitous as DTW is, we believe that there are thousands of research efforts that would like to use

DTW, but find it too computationally expensive. For example, consider the following: “Ideally, dynamic

time warping would be used to achieve this, but due to time constraints…” [12]. Likewise, [10] bemoans

DTW is “still too slow for gesture recognition systems”, and [1] notes, even “a 30 fold speed increase may

not be sufficient for scaling DTW methods to truly massive databases.” As we shall show, our subsequence

search suite of four novel ideas (called the UCR suite) removes all of these objections. We can reproduce

all the experiments in all these papers in well under a second.

We make an additional claim for our UCR suite which is almost certainly true, but hard to prove, given

the variability in how search results are presented in the literature. We believe our exact DTW sequential

search is much faster than any current approximate search or exact indexed search. In a handful of papers

the authors are explicit enough with their experiments to see this is true. Consider [35], which says it can

answer queries of length 1,000 under DTW with 95% accuracy, in a random walk dataset of one million

objects in 5.65 seconds. We can exactly search this dataset in 3.8 seconds (on a very similar machine).

Likewise, a recent paper that introduced a novel inner product based DTW lower bound greatly speeds up

exact subsequence search for a wordspotting task in speech. The authors state: “the new DTW-KNN

method takes approximately 2 minutes” [48]; however, we can reproduce their results in less than a second.

An influential paper on gesture recognition on multi-touch screens laments that “DTW took 128.26 minutes

to run the 14,400 tests for a given subject’s 160 gestures” [45]. However, we can reproduce these results in

under 3 seconds.

10

2.1.1. A Brief Discussion of a Trillion

Since we use the word “trillion” in this work and to our knowledge, it has never appeared in a data

mining/database paper; we will take the time to briefly discuss this number. By a trillion, we mean the short

scale version of the word [21], one million million, or 1012, or 1,000,000,000,000.

If we have a single time series T of length one trillion, and we assume it takes eight bytes to store each

value, it will require 7.2 terabytes to store. If we sample a electrocardiogram at 256 Hz, a trillion data

points would allow us to record 123 years of data, every single heartbeat of the longest lived human [44].

A time series of length one trillion is a very large data object. In fact, it is more than all of the time

series data considered in all papers ever published in all data mining conferences combined. This is easy to

see with a quick back-of-the-envelope calculation. Up to 2011 there have been 1,709 KDD/SIGKDD

papers (including industrial papers, posters, tutorial/keynote abstracts, etc. [16]). If every such paper was on

time series, and each had looked at five hundred million objects, this would still not add up to the size of

the data we consider here). However, the largest time series data considered in a SIGKDD paper was a

“mere” one hundred million objects [42].

As large as a trillion is, there are thousands of research labs and commercial enterprises that have this

much data. For example, many research hospitals have trillions of data points of EEG data, NASA Ames has

tens of trillions of data points of telemetry of domestic flights, the Tennessee Valley Authority (a power

company) records a trillion data points every four months, etc.

2.1.2. Explicit Statement of our Assumptions

Our work is predicated on several assumptions that we will now enumerate and justify.

A. Time Series Subsequences must be Normalized

In order to make meaningful comparisons between two time series, both must be normalized. While

this may seem intuitive, and was explicitly empirically demonstrated a decade ago in a widely cited paper

[26], many research efforts do not seem to realize this. This is critical because some speedup techniques

11

only work on the un-normalized data; thus, the contributions of these research efforts may be largely

nullified [15][35].

To make this clearer, let us consider the classic Gun/NoGun classification problem which has been in

the public domain for nearly a decade. The data, which as shown in Figure 1.center is extracted from a

video sequence, was Z-normalized. The problem has a 50/150 train/test split and a DTW one-nearest-

neighbor classifier achieves an error rate of 0.087.

Suppose the data had not been normalized. As shown in Figure 1.left and Figure 1.right, we can

simulate this by adding a tiny amount of scaling/offset to the original video. In the first case we randomly

change the offset of each time series by ± 10%, and in the second case we randomly change the scale

(amplitude) by ± 10%. The new one-nearest-neighbor classifier error rates, averaged over 1,000 runs, are

0.326 and 0.193, respectively, significantly worse than the normalized case.

Figure 1: Screen captures from the original video from which the Gun/NoGun data was culled.
The center frame is the original size; the left and right frames have been scaled by 110% and 90%
respectively. While these changes are barely perceptible, they double the error rate if
normalization is not used. (Video courtesy of Dr. Ratanamahatana)

It is important to recognize that these tiny changes we made are completely dwarfed by changes we

might expect to see in a real world deployment. The apparent scale can be changed by the camera zooming,

by the actor standing a little closer to the camera, or by an actor of a different height. The apparent offset

can be changed by this much by the camera tilt angle, or even by the actor wearing different shoes.

While we did this experiment on a visually intuitive example, all forty-five datasets in the UCR

archive increase their error rate by at least 50% if we vary the offset and scale by just ± 5%.

It is critical to avoid a common misunderstanding. We must normalize each subsequence before

making a comparison, it is not sufficient to normalize the entire dataset.

12

B. Dynamic Time Warping Is the Best Measure

It has been suggested many times in the literature that the problem of time series data mining

scalability is only due to DTW’s oft-touted lethargy, and that we could solve this problem by using some

other distance measure. As we shall later show, this is not the case. In fact, as we shall demonstrate, our

optimized DTW search is much faster than all current Euclidean distance searches. Nevertheless, the

question remains, is DTW the right measure to speed up? Dozens of alternative measures have been

suggested. However, recent empirical evidence strongly suggests that none of these alternatives routinely

beats DTW. When put to the test on a collection of forty datasets, the very best of these measures are

sometimes a little better than DTW and sometimes a little worse [13]. In general, the results are consistent

with these measures being minor variants or “flavors” of DTW (although they are not typically presented

this way). In summary, after an exhaustive literature search of more than 800 papers [13], we are not aware

of any distance measure that has been shown to outperform DTW by a statistically significant amount on

reproducible experiments [13][26]. Thus, DTW is the measure to optimize (recall that DTW subsumes

Euclidean distance as a special case).

C. Arbitrary Query Lengths Cannot Be Indexed

If we know the length of queries ahead of time we can mitigate at least some of the intractability of

search by indexing the data [9][18][42]. Although to our knowledge no one has built an index for a trillion

real-valued objects (Google only indexed a trillion webpages as recently as 2008), perhaps this could be

done.

However, what if we do not know the length of the queries in advance? At least two groups have

suggested techniques to index arbitrary length queries [25][30]. Both methods essentially build multiple

indexes of various lengths, and at query time search the shorter and longer indexes, “interpolating” the

results to produce the nearest neighbor produced by a virtual index of the correct length. This is an

interesting idea, but it is hard to imagine it is the answer to our problem. Suppose we want to support

13

queries in the range of, say, 16 to 4096. We must build indexes that are not too different in size, say

MULTINDEX-LENGTHS = {16, 32, 64, .., 1024, 2048, 4096}1. However, for time series data the index is

typically about one-tenth the size of the data [13][25]. Thus, we have doubled the amount of disk space we

need. Moreover, if we are interested in tackling a trillion data objects we clearly cannot fit any index in the

main memory, much less all of them, or any two of them.

There is an underappreciated reason why this problem is so hard; it is an implication of the need for

normalization discussed above. Suppose we have a query Q of length 65, and an index that supports queries

of length 64. We search the index for Q[1:64] and find that the best match for it has a distance of, say, 5.17.

What can we say about the best match for the full Q? The answer is surprisingly little: 5.17 is neither an upper

bound nor a lower bound to the best match for Q. This is because we must renormalize the subsequence

when moving from Q[1:64] to the full Q. If we do not normalize any data, the results are meaningless (cf.

Section 2.1.2.C.), and the idea might be faster than sequential search. However, if we normalize the data

we get so little information from indexes of the wrong length that we are no better off than sequential

search.

In summary, there are no known techniques to support similarity search of arbitrary lengths once we

have datasets in the billions.

D. There Exists Data Mining Problems That We are Willing to Wait Some Hours to
Answer

This point is almost self-evident. If a team of entomologists has spent three years gathering 0.2 trillion

data points [42], or astronomers have spent billions dollars to launch a satellite to collect one trillion data

points of star-light curve data per day [27], or a hospital charges $34,000 for a daylong EEG session to

collect 0.3 trillion data points (cf. Section 2.4.2) [33], then it is not unreasonable to expect that these groups

would be willing to spend hours of CPU time to glean knowledge from their data.

1 This collection of sizes is very optimistic. The step size should be at most 100, creating two orders of
magnitude space overhead.

14

2.1.3. Related Work

Our review of related work on time series indexing is necessarily superficial, given the vast amount of

work on the topic and page limits. Instead, we refer the interested reader to two recent papers [13][35],

which have comprehensive reviews of existing work. It has now become common (although not yet

routine) to see papers indexing/mining datasets with millions of objects. For example, Jegou et al. have

demonstrated very fast approximate main memory search of 10 million images [24]. However, this work

and much of the current work that addresses multi-million object datasets focus on approximate search,

whereas we are only considering exact search here. Moreover, we are interested in datasets, which are five

to six orders of magnitude larger than anything else considered in the literature [13]. Thus, comparisons to

related work are very difficult to do meaningfully.

2.2 Background and Notations

2.2.1. Definitions and Notations

We begin by defining the data type of interest, time series:

Definition 1 A Time Series T is an ordered list: T = t1,t2,...,tm.

While the source data is one long time series, we ultimately wish to compare it to shorter regions

called subsequences:

Definition 2 A subsequence Ti,k of a time series T is a shorter time series of length k which starts

from position i. Formally, Ti,k = ti,ti+1,..,ti+k-1 , 1≤ i ≤ m-k+1.

Where there is no ambiguity, we may refer to subsequence Ti,k as C, as in a Candidate match to a query

Q . We denote |Q| as n.

Definition 3 The Euclidean distance (ED) between Q and C, where |Q| =|C|, is defined as:

,ܳ)ܦܧ (ܥ = ඨ෍ ௜ݍ) − ܿ௜)ଶ௡௜ୀଵ

We illustrate these definitions in Figure 2.

15

Figure 2: A long time series T can have a subsequence Ti,k extracted and compared to a query Q
under the Euclidean distance, which is simply the square root of the sum of the squared hatch line
lengths

The Euclidean distance, which is a one-to-one mapping of the two sequences, can be seen as a special

case of DTW, which allows a one-to-many alignment, as illustrated in Figure 3.

Figure 3: left) Two time series which are similar but out of phase. right) To align the sequences we
construct a warping matrix, and search for the optimal warping path (red/solid squares). Note that
Sakoe-Chiba Band with width R is used to constrain the warping path

To align two sequences using DTW, an n-by-n matrix is constructed, with the (ith, jth) element of the

matrix being the Euclidean distance d(qi, cj) between the points qi and cj. A warping path P is a contiguous

set of matrix elements that defines a mapping between Q and C. The tth element of P is defined as pt = (i, j)t

so we have:

P = p1, p2, …, pt, …, pT n ≤ T ≤ 2n-1
The warping path that defines the alignment between the two time series is subject to several

constraints. For example, the warping path must start and finish in diagonally opposite corner cells of the

matrix, the steps in the warping path are restricted to adjacent cells, and the points in the warping path must

be monotonically spaced in time. In addition, virtually all practitioners using DTW also constrain the

C= Ti,k
Q

T

C

Q

R

Similar, but out of phase peaks …

… produce a large Euclidean distance.

However this can be corrected by DTWs
nonlinear alignment.

CQ

CQ

16

warping path in a global sense by limiting how far it may stray from the diagonal [13][35]. A typical

constraint is the Sakoe-Chiba Band which states that the warping path cannot deviate more than R cells

from the diagonal [13][35][39].

2.3 Proposed Algorithms

2.3.1. Known Optimizations

We begin by discussing previously known optimizations of sequential search under ED and/or DTW.

A. Using the Squared Distance

Both DTW and ED have a square root calculation. However, if we omit this step, it does not change

the relative rankings of nearest neighbors, since both functions are monotonic and concave. Moreover, the

absence of the square root function will make later optimizations possible and easier to explain. Note that

this is only an internal change in the code; the user can still issue range queries with the original units, as

the code simply internally squares the desired value, does the search, and after finding the qualifying

objects, takes the square root of the distances for the qualifying objects and presents the answers to the

user.

Where there is no ambiguity below, we will still use ‘DTW’ and ‘ED’; however, the reader may

assume we mean the squared versions of them.

B. Lower Bounding

A classic trick to speed up sequential search with an expensive distance measure such as DTW is to

use a cheap-to-compute lower bound to prune off unpromising candidates [13][27]. Figure 4 shows two

such lower bounds, one of which we have modified.

The original definition of LB_Kim also uses the distances between the maximum values from both time

series and the minimum values between both time series in the lower bound, making it O(n). However, for

normalized time series these two extra values tend to be tiny and it does not pay to compute them, and

17

CU

L
CQ

CQ

We can early abandon at this point

ignoring them allows the bound to be O(1), a fact we will exploit below. The LB_Keogh bound is well-

documented elsewhere, for brevity we ask the unfamiliar reader to refer to [18][27][13] for a review.

Figure 4: left) The LB_KimFL lower bound is O(1) and uses the distances between the First (Last)
pair of points from C and Q as a lower bound. It is a simplification of the original LB_Kim [28].
right) The LB_Keogh lower bound is O(n) and uses the Euclidean distance between the candidate
sequence C and the closer of {U,L} as a lower bound

C. Early Abandoning of ED and LB_Keogh

During the computation of the Euclidean distance or the LB_Keogh lower bound, if we note that the

current sum of the squared differences between each pair of corresponding data points exceeds the best-so-

far, then we can stop the calculation, secure in the knowledge that the exact distance or lower bound, had we

calculated it, would have exceeded the best-so-far, as in Figure 5.

Figure 5: An illustration of ED early abandoning. We have a best-so-far value of b. After
incrementally summing the first nine (of thirty-two) individual contributions to the ED we have
exceeded b, thus it is pointless to continue the calculation [27]

D. Early Abandoning of DTW

If we have computed a full LB_Keogh lower bound, but we find that we must calculate the full DTW,

there is still one trick left up our sleeves. We can incrementally compute the DTW from left to right, and as

we incrementally calculate from 1 to K, we can sum the partial DTW accumulation with the LB_Keogh

contribution from K+1 to n. Figure 6 illustrates this idea.

18

CQ

CU

L

Fully calculated LBKeogh

About to begin calculation of DTW

Partial
calculation of
DTW

Partial truncation of
LBKeogh

K = 0 K = 11

Figure 6: left) At the top we see a completed LB_Keogh calculation, and below it we are about to
begin a full DTW calculation. right) We can imagine the orange/dashed line moving from left to
right. If we sum the LB_Keogh contribution from the right of dashed line (top) and the partial
(incrementally calculated) DTW contribution from the left side of the dashed line (bottom), this is
will be a lower bound to DTW(Q,C)

This sum of DTW(Q1:K,C1:K) + LB_Keogh(QK+1:n,CK+1:n) is a lower bound to the true DTW distance (i.e.,

DTW(Q1:n,C1:n)). Moreover, with careful implementation the overhead costs are negligible. If at any time

this lower bound exceeds the best-so-far distance, we can admissibly stop the calculation and prune this C.

E. Exploiting Multicores

It is important to note that while we can get essentially linear speedup using multicores, the software

improvements we will present in the next section completely dwarf the improvements gained by

multicores. As a concrete example, a recent paper shows that a search of a time series of length 421,322

under DTW takes “3 hours and 2 minutes on a single core. The (8-core version) was able to complete the

computation in 23 minutes” [41]. However, using our ideas, we can search a dataset of this size in just

under one second on a single core. Nevertheless, as it is simple to port to the now ubiquitous multicores, we

consider them below.

2.3.2. Novel Optimizations: The UCR Suite

We are finally in a position to introduce our four original optimizations of search under ED and/or

DTW.

19

A. Early Abandoning Z-Normalization

To the best of our knowledge, no one has ever considered optimizing the normalization step. This is

surprising, since it takes slightly longer than computing the Euclidean distance itself. Our insight here is

that we can interleave the early abandoning calculations of Euclidean distance (or LB_Keogh) with the online

Z-normalization. In other words, as we are incrementally computing the Z-normalization, we can also

incrementally compute the Euclidean distance (or LB_Keogh) of the same data point. Thus, if we can early

abandon, we are pruning not just distance calculation steps as in Section 2.3.1.C. , but also normalization

steps.

Recall that the mean and standard deviation of a sample can be computed from the sums of the values

and their squares. Therefore, it takes only one scan through the sample to compute the mean and standard

deviation, using the equations below.

= im x1μ

2212 μσ −=  im x

In similarity search, every subsequence needs to be normalized before it is compared to the query (cf.

Section 2.1.2.A.). The mean of the subsequence can be obtained by keeping two running sums of the long

time series, which have a lag of exactly m values. The sum of squares of the subsequence can be similarly

computed. The formulas are given below for clarity.








 −= 
−

==

mk

i
i

k

i
im xx

11

1μ

2

1

2

1

212 μσ −






 −= 
−

==

mk

i
i

k

i
im xx

The high-level outline of the algorithm is presented in Table 1. In the algorithm, we use a circular

buffer (X) to store the current subsequence being compared with the query Q. Note the online

normalization in line 11 of the algorithm, which allows the early abandoning of the distance computation in

addition to the normalization.

20

Table 1: Subsequence search with online Z-normalization

Algorithm Similarity Search
Procedure [nn] = SimilaritySearch (T,Q)
1 best-so-far ←∞, count← 0
2 Q ← z-normalize(Q)
3 while !next(T)
4 i← mod(count,m)
5 X[i] ←next(T)
6 ex← ex+X[i], ex2← ex2+X[i]2

7 if count ≥ m-1
8 µ← ex/m, σ← sqrt(ex2/m - µ 2)
9 j← 0, dist← 0

10 while j < m and dist < best-so-far
11 dist← dist + (Q[j]-(X[mod(i+1+j,m)]-µ)/σ)2
12 j← j+1
13 if dist < best-so-far
14 best-so-far ←dist, nn← count
15 ex← ex-X[mod(i+1,m)]
16 ex2← ex2-X[mod(i+1,m)]2

17 count ← count+1

One potential problem of this method of maintaining the statistics is the accumulation of the floating-

point error [20]. The effect of such error accumulation is more profound if all of the numbers are positive,

as in our case with sum of squares. With the “mere” millions of data points the rest of the community has

dealt with this effect is negligible, however when dealing with billions of data points it will affect the

answer. Our simple solution is that once every one million subsequences, we force a complete Z-

normalization to “flush out” any accumulated error.

B. Reordering Early Abandoning

In the previous section, we saw that the idea of early abandoning discussed in Section 2.3.1.C. can be

generalized to the Z-normalization step. In both cases, we assumed that we incrementally compute the

distance/normalization from left to right. Is there a better ordering?

Consider Figure 7.left, which shows the normal left-to-right ordering in which the early abandoning

calculation proceeds. In this case nine of the thirty-two calculations were performed before the accumulated

distance exceeded b and we could abandon. In contrast, Figure 7.right uses a different ordering and was able

to abandon earlier, with just five of the thirty-two calculations.

21

CC

Q Q
1

32 4

6
5

7

98
3

5
1 42

Standard early abandon ordering Optimized early abandon ordering

Figure 7: left) ED early abandoning. We have a best-so-far value of b. After incrementally
summing the first nine individual contributions to the ED, we have exceeded b; thus, we abandon
the calculation. right) A different ordering allows us to abandon after just five calculations

This example shows what is obvious: on a query-by-query basis, different orderings produce different

speedups. However, we want to know if there is a universal optimal ordering that we can compute in

advance. This seems like a difficult question because there are n! possible orderings to consider.

We conjecture that the universal optimal ordering is to sort the indices based on the absolute values of

the Z-normalized Q. The intuition behind this idea is that the value at Qi will be compared to many Ci’s

during a search. However, for subsequence search, with Z-normalized candidates, the distribution of many

Ci’s will be Gaussian, with a mean of zero. Thus, the sections of the query that are farthest from the mean,

zero, will on average have the largest contributions to the distance measure.

To see if our conjecture is true we took the heartbeat discussed in Section 2.4.4 and computed its full

Euclidean distance to a million other randomly chosen ECG sequences. With the conceit of hindsight we

computed what the best ordering would have been. For this we simply take each Ci and sort them, largest

first, by their sum of their contributions to the Euclidean distance. We compared this empirically optimal

ordering with our predicted ordering (sorting the indices on the absolute values of Q) and found the rank

correlation is 0.999. Note that we can use this trick for both ED and LB_Keogh, and we can use it in

conjunction with the early abandoning Z-normalization technique (Section A.).

C. Reversing the Query/Data Role in LB_Keogh

Normally the LB_Keogh lower bound discussed in Section 2.3.1.B. builds the envelope around the

query, a situation we denote LB_KeoghEQ for concreteness, and illustrate in Figure 8.left. This only needs to

be done once, and thus saves the time and space overhead that we would need if we built the envelope

around each candidate instead, a situation we denote LB_KeoghEC.

22

CU

L

UQ

L

0

1

O(1) O(n) O(nR)

LB_KimFL LB_KeoghEQ

max(LB_KeoghEQ, LB_KeoghEC)
Early_abandoning_DTW

LB_Kim
LB_YiT

ig
h

tn
es

s
of

lo

w
er

 b
o

u
nd

LB_Ecorner
LB_FTW DTW

LB_PAA

Figure 8: left) Normally the LB_Keogh envelope is built around the query (see also Figure 4.right),
and the distance between C and the closer of {U,L} acts as a lower bound. right) However, we can
reverse the roles such that the envelope is built around C and the distance between Q and the
closer of {U,L} is the lower bound

However, as we show in the next section, we can selectively calculate LB_KeoghEC in a “just-in-time”

fashion, only if all other lower bounds fail to prune. This removes space overhead, and as we will see, the

time overhead pays for itself by pruning more full DTW calculations. Note that in general, LB_KeoghEQ ≠

LB_KeoghEC and that on average each one is larger about half the time.

D. Cascading Lower Bounds

One of the most useful ways to speed up time series similarity search is the use of lower bounds to

admissibly prune off unpromising candidates [13][18]. This has led to a flurry of research on lower bounds,

with at least eighteen proposed for DTW [1][13][27][28][40][47][48][49]. In general, it is difficult to state

definitively which is the best bound to use, since there is a tradeoff between the tightness of the lower

bound and how fast it is to compute. Moreover, different datasets and even different queries can produce

slightly different results. However, as a starting point, we implemented all published lower bounds and

tested them on fifty different datasets from the UCR archive, plotting the (slightly idealized for visual

clarity) results in Figure 9. Following the literature [27], we measured the tightness of each lower bound as

LB(A,B)/DTW(A,B) over 100,000 randomly sampled subsequences A and B of length 256.

Figure 9: The mean tightness of selected lower bounds from the literature plotted against the time
taken to compute them

23

The reader will appreciate that a necessary condition for a lower bound to be useful is for it to appear

on the “skyline” shown with a dashed line; otherwise there exists a faster-to-compute bound that is at least

as tight, and we should use that instead. Note that the early abandoning DTW discussed in Section 2.3.1.D.

is a special case in that it produces a spectrum of bounds, as at every stage of computation it is

incrementally computing the DTW until the last computation gives the final true DTW distance.

Which of the lower bounds on the skyline should we use? Our insight is that we should use all of them

in a cascade. We first use the O(1) LB_KimFL, which while a very weak lower bound prunes many objects.

If a candidate is not pruned at this stage we compute the LB_KeoghEQ. Note that as discussed in Sections

2.3.1.C. , 2.3.2.A. and 2.3.2.B. , we can incrementally compute this; thus, we may be able to abandon

anywhere between O(1) and O(n) time. If we complete this lower bound without exceeding the best-so-far,

we reverse the query/data role and compute LB_KeoghEC (cf. Section C.). If this bound does not allow us to

prune, we then start the early abandoning calculation of DTW (cf. Section 2.3.1.D.).

Space limits preclude detailed analysis of which lower bounds prune how many candidates. Moreover,

the ratios depend on the query, data and size of the dataset. However, we note the following: Detailed

analysis is available at [50], lesion studies tell us that all bounds do contribute to speedup; removing any

lower bound makes search at least twice as slow; and finally, using this technique we can prune more than

99.9999% of DTW calculations for a large-scale search.

2.4 Experimental Results

We begin by noting that we have taken extraordinary measures to ensure our experiments are

reproducible. In particular, all data and code will be available in perpetuity, archived at [50]. Moreover, the

site contains several videos, which visualize some of the experiments in real time. We consider the

following methods:

• Naive: Each subsequence is Z-normalized from scratch. The full Euclidean distance or the DTW is

used at each step. Approximately 2/3 of the papers in the literature do (some minor variant of) this.

24

• State-of-the-art (SOTA): Each sequence is Z-normalized from scratch, early abandoning is used, and

the LB_Keogh lower bound is used for DTW. Approximately 1/3 of the papers in the literature do (some

minor variant of) this.

• UCR Suite: We use all of our applicable speedup techniques.

DTW uses R = 5% unless otherwise noted. For experiments where Naive or SOTA takes more than 24

hours to finish, we terminate the experiments and present the interpolated values, shown in gray. Where

appropriate we also compare to an oracle algorithm:

• GOd’s ALgorithm (GOAL): An algorithm only maintains the mean and standard deviation using the

online O(1) incremental calculations.

It is easy to see that, short of an algorithm that precomputes and stores a massive amount of data

(quadratic in m), GOAL is a lower bound on the fastest possible algorithm for either ED or DTW

subsequence search with unconstrained and unknown length queries. The acronym reminds us that we

would like to be as close to this goal value as possible.

It is critical to note that our implementations of Naive, SOTA and GOAL are incredibly efficient and

tightly optimized, and they are not “crippled” in any way. For example, had we wanted to claim spurious

speedup, we could implement SOTA recursively rather than iteratively, and that would make SOTA at least

an order of magnitude slower. In particular, the code for Naive, SOTA and GOAL is exactly the same code

as the UCR suite, except the relevant speedup techniques have been commented out.

While very detailed spreadsheets of all of our results are archived in perpetuity at [50], we present

subsets of our results below. We consider wall clock time on a 2 Intel Xeon Quad-Core E5620 2.40 GHz

with 12GB 1333MHz DDR3 ECC Unbuffered RAM (using just one core unless otherwise explicitly

stated).

2.4.1. Baseline Tests on Random Walk

We begin with experiments on random walk data. Random walks model financial data very well and

are often used to test similarity search schemes. More importantly for us, they allow us to do reproducible

25

experiments on massive datasets without the need to ship large hard drives to interested parties. We have

simply archived the random number generator and the seeds used. We have made sure to use a very high

quality random number generator that has a period longer than the longest dataset we consider. In Table 2,

we show the length of time it takes to search increasingly large datasets with queries of length 128. The

numbers are averaged over 1000, 100 and 10 queries, respectively.

Table 2: Time taken to search a random walk dataset with |Q| =128

 Million (Seconds) Billion (Minutes) Trillion (Hours)
UCR-ED 0.034 0.22 3.16

SOTA-ED 0.243 2.40 39.80
UCR-DTW 0.159 1.83 34.09

SOTA-DTW 2.447 38.14 472.80

These results show a significant difference between SOTA and UCR suite. However, this is for a very

short query; what happens if we consider longer queries? As we show in Figure 10, the ratio of SOTA-

DTW over UCR-DTW improves for longer queries.

To reduce visual clutter we have only placed one Euclidean distance value on the figure, for queries of

length 4,096. Remarkably, UCR-DTW is even faster than SOTA Euclidean distance. As we shall see in our

EEG and DNA examples below, even though 4,096 is longer than any published query lengths in the

literature, there is a need for even longer queries.

Figure 10: The time taken to search random walks of length 20 million with increasingly long
queries, for three variants of DTW. In addition, we include just length 4,096 with SOTA-ED for
reference

Naïve DTW

100

1000

10000

seconds

SOTA DTW

OPT DTW

(SOTA ED)

For query lengths of 4,096
(rightmost part of this graph)
The times are:
Naïve DTW : 24,286
SOTA DTW : 5,078
SOTA ED : 1,850
OPT DTW : 567

Query Length

UCR DTW
UCR DTW

26

It is also interesting to consider the results of the 128-length DTW queries as a ratio over GOAL.

Recall that the cost for GOAL is independent of query length, and this experiment is just 23.57 seconds.

The ratios for Naive, SOTA and UCR suite are 5.27, 2.74 and 1.41, respectively. This suggests that we are

asymptomatically closing in on the fastest possible subsequence search algorithm for DTW. Another

interesting ratio to consider is the time for UCR-DTW over UCR-ED, which is just 1.18. Thus, the time for

DTW is not significantly different from that for ED, an idea which contradicts an assumption made by

almost all papers on time series in the last decade (including papers by the current authors).

2.4.2. Supporting Long Queries: EEG

The previous section shows that we gain the greatest speedup for long queries, and here we show that

such long queries are really needed. The first user of the UCR suite was Dr. Sydney Cash, who together

with Brandon Westover wants to search massive archives of EEG data for examples of epileptic spikes, as

shown Figure 11.

Figure 11: Query Q shown with a match from the 0.3 trillion EEG dataset

From a single patient S.C. gathered 0.3 trillion data points and asked us to search for a prototypical

epileptic spike Q he created by averaging spikes from other patients. The query length was 7,000 points

(0.23 seconds). Table 3 shows the results.

Table 3: Time to search 303,523,721,928 EEG data points, |Q| = 7000

Note that only ED is considered here because DTW
may produce false positives caused by eye blinks

 UCR-ED SOTA-ED

EEG 3.4 hours 494.3 hours

This data took multiple sessions over seven days to collect, at a cost of approximately $34,000 [50], so

the few hours of CPU time we required to search the data are dwarfed in comparison.

0 1000 2000 3000 4000 5000 6000 7000

Recorded with platinum-tipped silicon
micro-electrode probes inserted 1.0 mm
into the cerebral cortex

Recordings made from 96 active
electrodes, with data sampled at
30kHz per electrode

Continuous Intracranial EEG

Q

27

2.4.3. Supporting Very Long Queries: DNA

Most work on time series similarity search (and all work on time series indexing) has focused on

relatively short queries, less than or equal to 1,024 data points in length. Here we show that we can

efficiently support queries that are two orders of magnitude longer.

Table 4: An algorithm to convert DNA to time series

T1 = 0, for i = 1 to |DNAstring|
 if DNAstringi = A, then Ti+1 = Ti + 2
 if DNAstringi = G, then Ti+1 = Ti + 1
 if DNAstringi = C, then Ti+1 = Ti - 1
 if DNAstringi = T, then Ti+1 = Ti - 2

We consider experiments with DNA that has been converted to time series. However, it is important to

note that we are not claiming any particular bioinformatics utility for our work; it is simply the case that

DNA data is massive, and the ground truth can be obtained through other means. As in [42], we use the

algorithm in Table 4 to convert DNA to time series2.

We chose a section of Human chromosome 2 (H2) to experiment with. We took a subsequence

beginning at 5,709,500 and found its nearest neighbor in the genomes of five other primates, clustering the

six sequences with single linkage to produce the dendrogram shown in Figure 12.

Pleasingly, the clustering is the correct grouping for these primates [31]. Moreover, because Human

chromosome 2 is widely accepted to be a result of an end-to-end fusion of two progenitor ancestral

chromosomes 2 and 3 [31], we should expect that the nearest neighbors for the non-human apes come from

one of these two chromosomes, and that is exactly what we found.

Our query is of length 72,500, and the genome chimp is 2,900,629,179 base pairs in length. The single-

core nearest neighbor search in the entire chimp genome took 38.7 days using Naive, 34.6 days using

SOTA, but only 14.6 hours using the UCR suite. As impressive as this is, as we shall show in the next

section, we can do even better.

2 To preserve the reversible one-to-one mapping between time series and DNA we normalize the offset by
subtracting round(mean) and we do not divide by the STD.

28

Figure 12: A subsequence of DNA from Human chromosome 2, of length 72,500 beginning at
5,709,500 is clustered using single linkage with its Euclidean distance nearest neighbors from five
other primates

A. Can we do better than UCR Suite?

We claim that for the problem of exact similarity search with arbitrary length queries, our UCR suite is

close to optimal. However, it is instructive to consider an apparent counterexample and its simple “patch”.

Consider the search for a query of length 64 considered in Section 2.4.1. Using GOAL took 9.18 seconds,

but UCR suite took only a little longer, just 10.64 seconds. Assume that the original query was:

 Q = [2.34, 2.01, 1.99, ...]

But we make it three times longer by padding it like this:

 QP = [2.34, 2.34, 2.34, 2.01, 2.01, 2.01, 1.99, 1.99, 1.99, ...]

Further assume that we do the same to database T, to get TP, which is three times longer. What can we

now say about the time taken for the algorithms? GOAL will take exactly three times longer, and Naive

takes exactly nine times longer, because each ED calculation takes three times longer and there are three

times as many calculations to do. Our UCR suite does not take nine times longer, as it can partly exploit the

“smoothness” of the data; however, its overhead is greater than three. Clearly, if we had known that the

data was contrived in this manner, we could have simply made a one-in-three downsampled version of the

Chromosome 2: BP 5709500:5782000

Human

Chimp

Gorilla

Orangutan

Gibbon

Rhesus
macaque

Catarrhines

Hominidae

Homininae

Hominini

Hominoidea

29

data and query, done the search on this data, and reported the location and distance back in the TP space by

multiplying each by three.

Of course, this type of pathological contrived data does not occur in nature. However, some datasets

are richly oversampled, and this has a very similar effect. For example, a decade ago, most ECGs were

sampled at 256 Hz, and that seems to be adequate for virtually all data analysis applications [11]. However,

current machines typically sample at 2,048 Hz which, given the above reasoning, would take up to sixty-

four times longer to search ((2,048/256)2) with almost certainly identical results.

We believe that oversampled data can be searched more quickly by exploiting a provisional search in a

downsampled version of the data that can quickly provide a low best-so-far, which, when projected back

into the original space can be used to “prime” the search by setting a low best-so-far at the beginning of the

search, thus allowing the early abandoning techniques to be more efficient.

To test this idea, we repeated the experiment in the previous section, with a one-in-ten downsampled

version of the chimp genome / human query. The search took just 475 seconds. We denoted the best

matching subsequence distance rD. We reran the full resolution search after initializing the best-so-far to

rD*10. This time the search fell from 14.64 hours to 4.17 hours, and we found the same answer, as we

logically must.

Similar ideas have been proposed under the name of Iterative Deepening DTW [1] or Multi Scale

DTW [34][49]; thus, we will not further develop this idea here. We simply caution the reader that

oversampled (i.e., “smooth”) data may allow more speedup than a direct application of the UCR suite may

initially suggest.

2.4.4. Realtime Medical and Gesture Data

The proliferation of inexpensive low-powered sensors has produced an explosion of interest in

monitoring real time streams of medical telemetry and/or Body Area Network (BAN) data [29].

There are dozens of research efforts in this domain that explicitly state that while monitoring under

DTW is desirable, it is impossible [45]. Thus, approximations of, or alternatives to DTW are used. Dozens

30

of suggested workarounds have been suggested. For example, [23] resorts to only “dealing with shorter test

and class templates, as this is more efficient”; many research efforts including [43] resort to a low

cardinality version of DTW using integers, or DTW approximations that operate on piecewise linear

approximations of the signals [27][36], or drastically downsampled versions of the data [19][37]. In spite of

some progress from existing ideas such as lower bounding, [10] bemoans DTW is “still too slow for

gesture recognition systems”, [36] laments that the “problem of searching with DTW (is) intractable”, [19]

says “Clearly (DTW) is unusable for real-time recognition purposes” and [41] notes “Processing of one

hour of speech using DTW takes a few hours.”

We believe that the UCR suite makes all of these objections moot. DTW can be used to spot

gestures/brainwaves/musical patterns/anomalous heartbeats in real-time, even on low-powered devices,

even with multiple channels of data, and even with multiple simultaneous queries.

To see this, we created a dataset of one year of electrocardiograms (ECGs) sampled at 256Hz. We

created this data by concatenating the ECGs of more than two hundred people, and thus we have a highly

diverse dataset, with 8,518,554,188 data points. We created a query by asking USC cardiologist Dr. Helga

Van Herle to produce a query she searches for on a regular basis, she created an idealized Premature

Ventricular Contraction (PVC). The results are shown in Table 5. While this was on our multi-core desktop

machine, the fact that our results are 29,219 times faster than real-time (256Hz) suggests that real-time

DTW is tenable even on low-power devices.

Table 5: Time taken to search one year of ECG data with |Q| = 421

 UCR-ED SOTA-ED UCR-DTW SOTA-DTW

ECG 4.1 minutes 66.6 minutes 18.0 minutes 49.2 hours

2.4.5. Speeding up Existing Mining Algorithms

In this section, we demonstrate that we can speed up much of the code in the time series data mining

literature with minimal effort, simply by replacing their distance calculation subroutines with the UCR

suite. In many cases, the difference is small, because the algorithms in question already typically try to

prune as many distance calculations as possible. As an aside, in at least some cases we believe that the

31

authors could benefit from redesigning the code in light of the drastically reduced cost for similarity search

that UCR suite offers. Nevertheless, even though the speedups are relatively small (1.5X to 16X), they are

“free”, requiring just minutes of cut-and-paste code editing.

Time Series Shapelets have garnered significant interest since their introduction in 2009 [46]. We

obtained the original code and tested it on the Face (four) dataset, finding it took 18.9 minutes to finish.

After replacing the similarity search routine with UCR suite, it took 12.5 minutes to finish.

Online Time Series Motifs generalize the idea of mining repeated patterns in a batch time series to the

streaming case [32]. We obtained the original code and tested it on the EEG dataset used in the original

paper. The fastest running time for the code assuming linear space is 436 seconds. After replacing the

distance function with UCR suite, it took just 156 seconds.

Classification of Historical Musical Scores [17]. This dataset has 4,027 images of musical notes

converted to time series. We used the UCR suite to compute the rotation-invariant DTW leave-one-out

classification. It took 720.6 minutes. SOTA takes 142.4 hours. Thus, we have a speedup factor of 11.8.

Classification of Ancient Coins [22]. 2,400 irregularly shaped coins are converted to time series of

length 256, and rotation-invariant DTW is used to search the database, taking 12.8 seconds per query.

Using the UCR suite, this takes 0.8 seconds per query.

Clustering of Star Light Curves is an important problem in astronomy [27], as it can be a

preprocessing step in outlier detection [38]. We consider a dataset with 1,000 (purportedly) phase-aligned

light curves of length 1,024, whose class has been determined by an expert [38]. Doing spectral clustering on

this data with DTW (R = 5%) takes about 23 minutes for all algorithms, and averaged over 100 runs we find

the Rand-Index is 0.62. While this time may seem slow, recall that we must do 499,500 DTW calculations

with relatively long sequences. As we do not trust the original claim of phase alignment, we further do

rotation-invariant DTW that dramatically increases Rand-Index to 0.76. Using SOTA, this takes 16.57 days,

but if we use the UCR suite, this time falls by an order of magnitude, to just 1.47 days on a single core.

32

2.5 Discussion and conclusions

While our work has focused on fast sequential search, we believe that for DTW, our work is faster

than all known indexing efforts. Consider [9], which indexes a random walk time series of length 250,000

to support queries of length 256. They built various indexes to support DTW queries, noting that the fastest

of the four carefully tuned approaches requires approximately 15,000 pages accesses to answer a query.

These disk accesses are necessarily random accesses. While they did not give wall clock time, if we assume

an HDD spindle speed of 7,200 rpm (average rotational latency = 4.17ms), then just the disk I/O time to

answer this query must be at least 62.55 seconds. However, as we have shown, we can load all of the data

into the main memory with more efficient sequential disk accesses and answer these queries in 0.4 seconds,

including disk I/O time, on a single core machine.

Note that all experiments in this paper include the time taken to read the data from disk. However, for

more than a few million objects this time is inconsequential thus we did not report it separately.

We have made a strong and unintuitive claim in the abstract. We said that our UCR-DTW is faster than

all current Euclidean distance searches. In Table 5, for example, we show that DTW can be three times

faster than state-of-the-art ED searching. How is this possible? Recall that all Euclidean searches in the

literature require an O(n) data normalizing step to be performed for each subsequence. Thus, no matter how

effective the pruning/search strategy used, the amortized time for a single sequence must be at least O(n).

In contrast, using the ideas developed in this work, the vast majority of potential DTW calculations are

pruned with O(1) work, while some require up to O(n) work, and only a vanishingly small fraction require

O(nR) work. The weighted average of these possibilities is less than O(n).

To put our results in perspective, we compare them with a very recent state-of-the art embedding-based

DTW search technique, called EBSM (including the variant called BSE) [35]. This is an excellent paper to

use as a benchmark, as it exhaustively compares to almost all other methods in the literature, and it tests its

contributions over different datasets, query lengths, warping widths, etc. In contrast to EBSM:

33

• Our method is exact; EBSM is approximate.

• EBSM requires setting some parameters (number of reference sequences, dimensionality, number of

split points, etc.). Our method requires zero parameters.

• EBSM requires offline preprocessing that takes over 3 hours for just 1 million objects. We have zero

preprocessing time.

• The EBSM method does not, and cannot, Z-normalize. As noted in Section 2.1.2.A. , we believe that

Z-normalizing is critical, and we have shown that failure to do it hurts on 45 out of 45 of the UCR time

series classification datasets.

• EBSM can support queries in a predetermined range, which must be predetermined and limited for

efficiently. In contrast, we have no minimum/maximum query length.

• We can also handle exact queries under uniform scaling [18].

• Finally, we are simply much faster! (cf. Section 1)

Note, however, that there can be great utility in fast approximate search. There exist data mining

algorithms that can use a combination of (hopefully few) exact distance measures and (hopefully much

faster) approximate searches to produce overall exact results [42]. However an approximate search method

being faster than our approach is a very high threshold to meet.

We have shown our suite of ideas is 2 to 164 times faster than the true state-of-the-art, depending on

the query/data. However, based on the quotes from papers that we have sprinkled throughout this work, we

are sometimes more than 100,000 times faster than recent papers; how is this possible? The answer seems

to be that it is possible to produce very naive implementations of DTW. For example, the recursive version

of DTW can be one to three orders of magnitude slower than the iterative version, depending on the

computer language and query length. Thus, the contributions of this chapter are twofold. First, we have

shown that much of the recent pessimism about using DTW for real-time problems was simply

unwarranted [13]. Existing techniques, especially lower bounding, if carefully implemented can make

DTW tractable for many problems. Our second contribution is the introduction of the UCR suite of

34

techniques that make DTW and Euclidean distance subsequence search significantly faster than current

state-of-the-art techniques.

We regret that the page limitations preclude full pseudo-code; however, full pseudo-code (and source-

code) is available at [50].

In future work we plan to revisit algorithms for time series motif discovery [32][33], anomaly

detection [42][38], time series summarization, shapelet extraction [46], clustering, and classification [13] in

light of the results presented in this work.

35

Chapter 3: Fast Shapelet Discovery

Time series shapelets are a recent promising concept in time series data mining. Shapelets are time

series snippets that can be used to classify unlabeled time series. Shapelets not only provide interpretable

results, which are useful for both domain experts and developers alike, but shapelet-based classifiers have

been shown by several independent research groups to have superior accuracy on many datasets. Moreover,

shapelets can be seen as generalizing the lazy nearest neighbor classifier to an eager classifier. Thus, as a

deployed classification tool, shapelets can be many orders of magnitude faster than any rival with

comparable accuracy.

Although shapelets are a useful concept, the current literature bemoans the fact that shapelet discovery

is a time consuming task. In spite of several efforts to speed up shapelet discovery algorithms, including the

use of specialist hardware, the current state-of-the-art algorithms are still intractable on large datasets. In

this work, we propose a fast shapelet discovery algorithm that outperforms the current state-of-the-art by

two or three orders of magnitude, while producing models with accuracy that is not perceptibly different.

3.1 INTRODUCTION

Shapelets are a recently introduced concept in time series data mining. In essence, shapelets are

prototypical time series “snippets” that can be used to classify unlabeled time series that contain an

occurrence of the shapelet within some previously learned distance threshold. The utility of shapelets has

been confirmed and extended by many independent groups of researchers

[51][56][59][60][63][65][66][79][80]. The exploding interest in shapelets can be attributed to the following

factors. First, they generalize the lazy nearest neighbor algorithm, widely understood to be the state-of-the-

art technique for time series [77], to an eager decision-tree like classifier, allowing orders of magnitude

improvement in classification time. Second, they are interpretable, and can give insights as to what defines

the differences between two classes [80]. Finally, on some problems, shapelets can be simply more

accurate than any known rival method [69][80].

36

0 200 400 600 800 1000 1200 1400

Given these advantages, we have recently seen shapelets (and very similar ideas) applied to creating

classifiers in various domains such as gesture recognition [52][67], sensor networks [62], motion capture

[76], cardiology, climatology [68], robotics [76], electrical power demand [51][59] and health care [72]. In

addition, we have begun to see several generalizations of shapelets, such as logical shapelets [69], which

classify objects based on conjunctions/disjunctions of shapelets, and local shapelets [79], which impose

constraints on where valid shapelets may appear within an object.

Before continuing further, we will take the time to develop the reader’s intuition for shapelets. Figure

13 shows six examples of reptile skulls [53], and their time series representations. Three of them are horned

lizards, (Phrynosoma coronatum, P. braconnieri and P. mcallii), and the other three are turtles, (Elseya

dentate, Glyptemys muhlenbergii, and Annemys sp).

Figure 13: left) Skulls of horned lizards and turtles. right) the time series representing the images.
The 2D shapes are converted to time series using the technique in [64]

For more details on how shapes are converted to time series, we refer the reader to [64][75]; however,

Figure 13.top.right visually hints at how a shape can be “unwound” into a time series.

As we can see from Figure 13, the two classes here have a lot of intraclass variability, something that

does not bode well for traditional classifiers that consider the entire time series [77]. Suppose instead we

run the shapelet discovery algorithm on this small dataset [80]. Doing so, we find the shapelet that can best

distinguish the two types of reptiles. This shapelet is presented in Figure 14 in both the time series space,

and “brushed” back onto the original shape space.

37

Figure 14: left) The shapelet that best distinguishes between skulls of horned lizards and turtles,
shown as the purple/bold subsequence. right) The shapelet projected back to the original 2D shape
space

The discovered shapelet corresponds to two horns of the horned lizard, an intuitive and interpretable

result.

This toy example demonstrates the great strength of shapelets. With zero parameters to tweak, we

obtained a shapelet that is visually intuitive and allows perfect classification accuracy in this (admittedly

contrived) domain. However, this example also exhibits the current weakness of shapelets; it took several

seconds to find the shapelet in this tiny dataset.

The best-known running time for the shapelet discovery algorithm is O(n2m3) where n is the number of

objects or time series in the dataset, and m is the length of the longest time series. Recently [69] proposed

an approach to admissibly prune some candidates and remove redundant calculations to make their

algorithm faster than the original approach by a constant factor (of about ten to twenty). To the best of our

knowledge, this algorithm is the current state-of-the-art on convention hardware (some speedup attempts

exploit exotic hardware [51]).

In this work, we propose an O(nm2) algorithm for finding shapelets. Our algorithm is heuristic, it is not

guaranteed to find the same shapelet as [69][80]. We exploit a random projection technique [74][71] on the

SAX representation [64][78] to find potential shapelet candidates. However, our experimental results in

Section 3.5 demonstrate that the classification accuracy of the proposed algorithm is not significantly

different from the accuracy obtained by exact brute-force algorithms [69][80].

The rest of this chapter is organized as follows. In Section 3.2, we introduce definitions and notations.

The basic shapelet algorithm is discussed in [80] and the current state-of-the-art algorithm [69] is reviewed

in Section 3.3. In Section 3.4, we explain our algorithm in detail. Section 3.5 demonstrates the performance

38

and accuracy of our algorithm. Case studies to show the advantage of our proposed algorithm are described

in Section 3.6 and we offer conclusions in Section 3.7.

3.2 Definitions and Notation

We begin by introducing all necessary notation and definitions. First, we define a time series:

Definition 4 A time series T is an ordered list of numbers, T = t1, t2 ,...,tm. Each value ti can be

any finite number and m is the length of time series T.

A local subsection of a time series is called a time series subsequence:

Definition 5 A time series subsequence S is a contiguous sequence of a time series. Subsequence

S of length l of time series T starting at position i can be written by S = ௜ܶ௟= ti, ti+1 , ..., ti+l-1.

For the classification task, many time series are grouped together with their corresponding class labels

in a container called a dataset:

Definition 6 A dataset D is a set of pairs of time series, Ti, and its class label, ci. Formally, D =

<T1,c1>, <T2,c2>, <T3,c3>, ... , <Tn,cn>. For the rest of the chapter, we use n as the number of time

series inside the dataset D. Note that the lengths for each time series are not necessarily equal.

To measure the similarity of subsequences, we define the distance between two subsequences:

Definition 7 The distance between subsequence S and Ŝ of the same length is the length-

normalized of Euclidean distance between subsequences S and Ŝ. If both subsequences are Z-

normalized with mean=0 and std=1, the distance is defined as:

,ܵ)ݐݏ݅݀ መܵ) = ඨ1݈ ෍ ݅ݏ) − ෝ݅)2݈݅=1ݏ

Shapelets can be of any length up to m. In order to allow meaningful comparisons candidate shapelets

of different length, length-normalization must be used.

We therefore define the distance between a time series and a given subsequence:

39

Definition 8 The distance between subsequence S of length l and time series T is defined as the

minimum distance between subsequence S and any subsequence of T of the same length as

subsequence S. Formally, dist(S, T) = ݉݅݊௜ ݀݅ݐݏ(ܵ, ௜ܶ௟).

Suppose that dataset D contains n time series from c different classes. The number of time series in

class i is ni and we define class probability pi = ni / n. Hence, we defined the entropy of the dataset as:

Definition 9 An entropy of the dataset D is defined as E(D) = ∑ ௜௖௜ୀଵ݌)݃݋௜݈݌).

To divide the dataset into two smaller datasets, we define a split:

Definition 10 A split is a tuple <s,d> of a subsequence s and distance threshold d which can

separate the dataset into two smaller dataset DL and DR are the number of time series in DL and DR is

nL and nR, respectively.

We next define the information gain of the given split:

Definition 11 The information gain of a split sp is:

(݌ݏ)ܫ = (ܦ)ܧ − ݊௅݊ (௅ܦ)ܧ − ݊ோ݊ (ோܦ)ܧ

The distance between two different sides of the given split is a separation gap:

Definition 12 A separation gap of a split sp is:

(݌ݏ)݌ܽ݃ = 1݊௅ ෍ ,ݏ)ݐݏ݅݀ ௅)௧ಽ∈஽ಽݐ − 1݊ோ ෍ ,ݏ)ݐݏ݅݀ ோ)௧ೃ∈஽ೃݐ

The definition of shapelet will be explained briefly here; however, for a more complete definition of

shapelet, please refer to [80].

Definition 13 A shapelet is a split that separates the dataset into two smaller datasets with

maximum information gain; ties are broken by maximizing the separation gap.

We visually summarize the concept of shapelets with our toy example as shown in Figure 15. A

candidate (e.g., the highlighted subsequence from Figure 14.left) is shown in the box for reference. The

distances between the candidate subsequence (i.e., tentative shapelet) and all time series are calculated; all

corresponding objects are placed on the orderline according to the calculated distance. In Figure 15, three

40

Orderline0 ∞

split

candidate

skulls from horned lizard, whose distances to the shapelet are small, are shown as red rectangles on the left

hand side of the orderline. In contrast, the distance between three time series of turtle skulls and the

candidate subsequence shown as green triangles on the right hand side of the orderline, because their

distances to the candidate shapelet are larger. Note that, in this example, the candidate shapelet

corresponds to the horns of a lizard (cf. Figure 14).

Figure 15: The orderline shows the distance between the candidate subsequence and all time series
as positions on the x-axis. The three objects on the left hand side of the line correspond to horned
lizards and the three objects on the right correspond to turtles

After the orderline is created, we can calculate the split point, the separation gap, and the information

gain of the candidate shapelet. When all candidates have been processed in this manner, the best one will

be reported as the final shapelet [69][80].

3.3 Related AND BACKGROUND Work

Our work extends the original work by Ye which introduced the concept of shapelets and showed an

algorithm to allow their discovery [80]. However the general intuition behind shapelets, the idea of using

small sub-patterns to identify the class of a larger object, is known in other domains (esp. bioinformatics)

including class prototypes [56], discriminative patterns [52][55][58], and predictive motifs [68], etc.

In the next section, we take a short time to consider the current state-of-the-art shapelet discovery

algorithm.

41

3.3.1. Brute Force Shapelet Discovery

The brute force shapelet discovery algorithm as shown in Table 6 is a simple algorithm that generates

and tests all possible candidates and returns the best one.

Table 6: Brute Force Algorithm

Algorithm: BruteForceShapelet
Input: D : Dataset contain time series and class labels
Output: shapelet: the final shapelet
1
2
3
4
5
6
7
8
9
10
11
12
13

[TS,Label] = ReadData(D)
bsf_gain = 0
for len = 1 to m
 Candidates=GenerateAllCandidates(TS,len)
 for each cand in Candidates
 create a split sp from cand
 gain = ComputeInfoGain(D,sp)
 if (gain > bsf_gain)
 bsf_gain = gain
 shapelet = s
 end if
 end for
end for

The dataset D is a list of pairs of time series with their labels, thus in line 1, we extract the time series

and label from D. Because the final shapelet can be of any length, all subsequences of every length in the

dataset will be generated as candidates in line 4.

Thereafter in line 6, each candidate will be used to compute a split sp as explained at Figure 15 in

previous section. Finally, the information gain is computed in line 7. The returned shapelet is the candidate

with maximum information gain.

If n is the number of time series in the dataset and m is length of the longest time series in the dataset,

the number of candidates of a time series is O(m2) and the total number of all candidates in the dataset is

O(nm2). A distance computation from one candidate to all time series takes time O(nm2) to compute.

Hence, the total running time of the brute force algorithm is O(n2m4).

42

3.3.2. Current State-of-the-Art

The first improvement of the brute force algorithm was introduced in [80]. They proposed a technique

to calculate a cheap-to-compute upper bound of information gain and use it to admissibly prune some

candidates.

The current state-of-the-art algorithm is given at [69]. The algorithm can also find the exact shapelet

[80], but does so more quickly. The speed-up comes from using a classic pruning technique — triangular

inequality — to prune some candidates, and from some caching tricks. The latter idea trades speedup for

memory, and may run into space problems for large datasets.

Using the same notation as about, the worst-case running time of the current state-of-the-art is O(n2m3)

and the algorithm requires a memory footprint as large as O(nm2).

To concretely ground this analysis, on the Wafer dataset [61], with n=1000 and m=152, the state-of-the-

art takes more than 12 hours to find the shapelet. However, the algorithm we will introduce in the next

section can find essentially the same shapelet in just 23 seconds.

3.4 Fast Shapelet Discovery

We are finally in a position to explain our algorithm in detail. First, we describe the key ideas using

our reptile toy example; then, we give formal details in Section 3.4.2.

3.4.1. Overview of the Algorithm

We propose to solve the shapelet discovery problem with a change of representation. In particular we

will transform the raw real-valued and high-dimensional data into a discrete and low-dimensional

representation. Searching over a smaller representation is obviously more efficient; however, more

importantly having a discrete representation will allow us to hash our data, and use the collision history to

inform our search.

43

-0.67
0

0.67
a a

d

b
c

c

A. Generating SAX Words

For each object in the dataset, we transform the time series into a symbolic representation using

Symbolic Aggregate approXimation (SAX) [64][78]. For brevity, we assume the reader is familiar with

SAX, and refer the interested reader to [64] for additional details.

From our toy example in Section 3.1, a time series from P.coronatum is shown once again in Figure

16. The top part of the figure shows an example of a SAX word adbacc, created by the first subsequence.

Multiple SAX words will be generated for a given time series using the sliding window technique [64].

SAX has two parameters, which are desired (reduced) dimensionality, d, and cardinality, c. Although some

techniques (e.g., [57]) could be applied for setting these parameters, for simplicity, in our implementation,

we set cardinality to 4 and word length to 16 so we can represent a SAX word with a simple 4-byte integer.

Figure 16: top.left) The SAX word adbacc created from a subsequence of the time series
corresponding to P. coronatum. bottom) sliding window technique

B. Random Masking

It is very important to recall that a single time series creates multiple SAX words, corresponding to the

multiple subsequences we can obtain as we slide the shorter subsequence length across the longer time

series. This is hinted at in Figure 16, and shown explicitly in Figure 17.left, where each time series (derived

from a skull) creates two or three SAX words of length five.

Having created the SAX representation of our data, we have an apparent solution to the shapelet

discovery problem. We could conduct a brute force search for the shapelets in the SAX space. This would

require only slight modifications of the algorithm shown in Table 6, and because of the reduced

dimensionality of SAX it would be faster than working with the raw data. There are two problems with this

44

Obj 1

Obj 2

Obj 3

SAX Words 1st Random Mask 2nd Random Mask

idea. The search would be faster, but still quadratic in the number of SAX words. However, more

importantly, we have the problem of false dismissals.

Figure 17: left) SAX words of each object. right) SAX words after masking two symbols. Note
that masking positions are randomly picked

The problem of false dismissals is caused by the fact that two time series that differ only by a tiny

epsilon could produce two different SAX words3. Thus, it is possible that the best shapelet in the raw data

spaces maps to slightly different SAX words, such as the SAX words adbac and acbac, created by the

lizard skulls in Figure 17.left.

The solution to this problem is to exploit random projection, a mature idea from bioinformatics [74].

The idea is to project all SAX words of high dimensionality to smaller dimensionality. This is illustrated in

Figure 17.right, where all SAX words of dimensionality five have been randomly masked at two positions,

reducing the dimensionally to three. Note that the first such random projection does take our two different

SAX words, words adbac and acbac, and makes them identical, adbac and acbac.

The reader will appreciate two potential problems with the idea of random projection. In our toy

example we contrived our “random” choice of a mask, we cannot be generally sure that a single projection

helps us. The second problem is that if we mask too many locations, our decease in the likelihood of false

dismissals comes at the cost of an explosion of false positives, all of which must be checked. Again we can

turn to the bioinformatics literature for the answer [74]. As hinted at by the multiple masks in Figure

3 This is of course true for any discretization method.

45

SignaturesID

Obj 1

Obj 2

Obj 3

1

Object List

2

1 3

2

2

3

1 a d b a c
2 a c a a c
3 a c b a c
4 b c c c d
5 b d c d d
6 b b a c d
7 d c a a c

1 1 1
2 1 1
3 1 1
4 1
5 1
6 1
7 1 1

1 a d b a c
2 a c a a c
3 a c b a c
4 b c c c d
5 b d c d d
6 b b a c d
7 d c a a c

1

Object List

2

2 3

2

3

SignaturesID

Obj 1

Obj 2

Obj 3

1 2 2
2 2 1 1
3 2 2
4 2 1
5 2
6 1 2
7 1 2

A)

B)

17.right, if we mask conservatively, but do multiple random masks, we can make the probability of false

dismissals arbitrarily low while not incurring a measurable increase in false positives [74]. The remainder

of Section 4 makes these ideas more concrete.

C. Counting Similar Objects

To avoid all-to-all distance computations, we apply hashing (i.e., random masking) on all our data

objects. The intuition is that two objects that are similar in the original space have a very high probability

of collisions, even if they happen to have been mapped to slightly different SAX words.

Figure 18.A shows that, after hashing, the SAX words adbac and acbac, share the same signature,

**bac. All SAX words that have signature bac have their counters incremented in the relevant table

shown in Figure 18.A.right. Similarly, in the second iteration the words adbac and acbac, once again

randomly hash to the same word, this time a**ac.

Figure 18: The first (A) and second (B) iterations of the counting process. left) Hashing process to
match all same signatures. Signatures created by removing marked symbols from SAX words.
right) Collision tables showing the number of matched objects by each words

46

1 5 5
2 5 1 1 1
3 5 3
4 5 1 1
5 5 5
6 1 5 3
7 3 5 2

1 10 0
2 6 2
3 8 0
4 5 2
5 5 5
6 1 8
7 3 7

Close to Ref Far from RefClass1 Class2

1 0 10
2 4 8
3 2 10
4 5 8
5 5 5
6 9 2
7 7 3

Distinguishing
Power

A) B) C) D)

(10-0)+(10-0) = 20
(6-4)+(8-2)=8
(8-2)+(10-0)=16
(5-5)+(8-2)=6
(5-5)+(5-5)=0
(9-1)+(8-2)=14
(7-3)+(7-3)=8

Thus, after r iterations of random projection, we expect the collision table shown in Figure 18.A.right

to remain mostly sparse, but to contain some locations that have values that are a significant fraction of r.

As we shall show in the next section, this information can guide our shapelet search.

D. Finding the Best Candidates

Continuing with our toy example, let us assume that we have done random projections for five

iterations and the collision table is shown as in Figure 19.A.

As shown in Figure 19.B we can condense the collision table by summing all the object-based counts

to the class-based counts, and creating the complementary data structure in Figure 19.C. From these two

tables we can calculate the distinguishing power of each SAX word using the simple equation shown in

Figure 19.D. Note that distinguishing power is high if the reference words appear frequently in one class

but rarely in another class.

Figure 19: A) The collision table of all words after five iterations. Note that counts show the
number of occurrences that an object shares a same signature with the reference word. B)
Grouping counting scores from objects in the same class. C) Complement of (B) to show that how
many times objects in each class that do not share the same signature with the reference word. D)
The distinguishing power of each SAX word

In this example, the highest score is from word1 because it is close to objects in class1 10 times (obj1

5 times and obj2 5 times) and far from objects in class2 10 times; hence, its distinguishing power is 10+10

= 20. In contrast, SAX word5 receives power score of zero because this reference word is similar to objects

from class1 5 times but also far from objects in class1 5 times, and has the same distribution in class2;

47

hence, the score is (5-5)+(5-5) = 0. This suggests a pattern that is equally frequent in both classes, rather

like a “stop-word” in text classification.

This list of SAX words with high distinguishing power is almost a solution to our problem, as it very

highly correlated with the quality of the corresponding shapelets (i.e., their information gain) in the original

raw data space. Empirically we can be certain that the best shapelet is near the top of this list. However, we

do need to spend some time searching the top candidates in the original space to confirm we have a high-

quality shapelet.

This is the complete intuition behind our algorithm. In the next section, we formalize these ideas.

3.4.2. Fast Shapelet Algorithm

Our shapelet discovery algorithm is shown in Table 7. In line 1, we extract all time series with their
class labels from the current dataset D. Note that the dataset D will be iteratively made smaller as we
descend deeper into the decision tree.

Table 7: Fast Shapelet Algorithm

Algorithm: FastShapelet
Input: D : Dataset contain time series and class labels
 r : number of random iterations
 k : number of SAX to be candidates
Output: shapelet: the final shapelet
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

[TS,Label] = ReadData(D)
for len = 1 to m
 SAXList = CreateSAXList(TS,len)
 Score = {}
 for i = 1 to r
 Count = RandProjection(SAXList,TS)
 Score = UpdateScore(Score,Count)
 end for
 SAXCand = FindTopKSAX(SList,Score,k,r)
 TSCand = Remap(SAXCand,TS)

 max_gain=inf, min_gap=0
 for i = 1 to |TSCand|
 cand = TSCand[i]
 DList = NearestNeighbor(TS,cand)
 [gain,gap] = CalInfoGain(DList)
 if (gain>max_gain) ||
 ((gain==max_gain)&&(gap>min_gap))
 max_gain = gain
 min_gap = gap
 shapelet = cand
 end if
 end for
end for

48

The process is split into two phases. In the first phase (line 3-10), we will select potential subsequences

after a search in the SAX space (line 12-23), this is the process we informally discussed in detail in the

previous section. In the second phase, we will measure the quality of those potential candidates in the raw

data space and return the best candidate as the final shapelet.

To select the candidates, all subsequences of length len from all time series are created using sliding

window technique, and we create their corresponding SAX word and keep them in SAXList (line

3/Figure 17.left). After the list of SAX words has been created, we will use these discrete representations to

do hashing with RandProjection(), by creating a hash signature of each SAX word and give one

count for each SAX words based on its signature. Then, we update the total score from multiple iterations

(line 7/Figure 18).

Next each SAX word is given a score to show that how many times each word occurs in each object.

We then calculate a distinguishing power for each SAX word, and pick top k subsequences that have

highest score (line 9/Figure 19). We remapped these SAX words back to their original raw data

subsequences (line 10).

Note that we have two parameters r and k here. However, according to our experiments in Section 3.5,

our algorithm is not sensitive to them, thus we simply fixed r = 10 and k= 10 below.

We are now ready for the second phase (line 12-23); we will calculate the information gain for each

candidate in the top k list and pick the best one as the shapelet. In detail, each candidate is considered one

at a time (line 13). The body of the loop calculates the distance between the candidate subsequences and

each time series using the equation in Definition 5. After these calculations, (line 17-21) we will pick the

subsequence which has the highest information gain, as the final shapelet, breaking ties (if any) by

maximum gap.

This explanation is necessarily terse. We refer the interested reader to [81] for a more detailed line-by-

line explanation, and the original (annotated) source code.

49

C
ur

re
nt

 s
ta

te
-o

f
th

e-
ar

t

Our algorithm

Classification Accuracy Comparison

In this area,
our algorithm
is better

In this area,
SOTA is
better

0 1

0

1

3.5 Experimental Results

We begin by noting that all the code and data used in this work are available at supporting webpage

[81], in addition to numerous additional experiments.

3.5.1. UCR Time Series Dataset

We compared our algorithm with the current state-of-the-art [69]. For fairness, we used the code

provided by original authors and set the parameters as they had recommended on their supporting webpage.

We begin by considering the accuracy on 32 datasets from UCR Time Series archives [61] in Figure

20. Note that we attempted tests on all 45 datasets from UCR achieves, however we abandoned the 13

experiments where the state-of-the-art algorithm [69], had not finished after 24 hours.

Figure 20: Classification accuracy of our algorithm and the state-of-the-art on 32 datasets from the
UCR archive

Visually it is difficult to say which algorithm is better, and counting wins-ties-losses produces

similarly ambivalent results. However, the results are strongly consistent with our claim that our method is

no worse that the state-of-the-art. The only real difference between our algorithms is scalability, as the time

comparison shown in Figure 21 illustrates.

50

Execution Time Comparison

10
0

10
1

10
2

10
3

10
4

10
5

Current state-of-the-art

10
-1

10
0

10
1

10
2

10
3

O
ur

 a
lg

or
ith

m

sec

sec

Figure 21: Running time comparison between our algorithm and the state-of-the-art on 32 datasets
from UCR time series archives

The greatest speedup we achieve on these 32 datasets is 2,030X, and we gain a speedup exceeding

100X for at least 12 other datasets. On Wafer dataset, although we gain the most speed up with 2,030X, our

method still gets very high accuracy at 99.64%, which appears to be the best known result on this dataset

[61][77]. In the next section we explore the issues effecting scalability in more detail.

3.5.2. Scalability

To compare the scalability of our algorithm and the current state-of-the-art in more detail, we tested on

the largest time series dataset in UCR time series archives, the StarlightCurves dataset. For all shapelet

discovery algorithms, there are two factors that strongly determine the difficulty of the search, the number

of time series in the dataset and the length the time series; below we varied each one independently.

Figure 22.left shows the result when the number of time series, n, is varied from 50 to 800 and the

length of all time series, m, is fixed at 100. Figure 22.right shows the result when n is fixed at 100 and m is

varying from 50 to 800. Note that the maximum size of the experiments we consider here are constrained

by implementation of the state-of-the-art algorithm that we received from the original authors. For any

experiments larger than the below we get an out-of-memory error.

51

200 400 600 800

number of time sereis

se
cc

on
d

Scalability on Number of Time Series

1

2

3
x104

50
0

state-of-the-art

our algorithm

length of time sereis

Scalability on Time Series Length

200 400 600 80050

2

4

6

8

x103

0

se
cc

on
d

our algorithm

state-of-the-art

Figure 22: Scalability of our algorithm and the current state-of-the-art on StarlightCurves dataset.
left) Number of time series in the dataset is varying. right) The length of time series is varying

The running time of the current state-of-the-art in Figure 22.left is increases from 16 seconds to 8.7

hours from n=50 to n=800 (m is fixed at 100). However, our algorithm is significantly faster; the running

time is 0.76 seconds at the beginning and less than 16 seconds when n=800. Thus the speedup factor when

n=800 is 1,970X. Figure 22.right shows that our algorithm achieves similar speedups when m is increased.

This empirical results are not surprising given the time complexity analyses of the algorithms. Recall

that the worst case running time of the current-state-of-the-art is O(n2m3) and, in the best case if the triangle

inequality can prune all candidates, the running time can be as low as O(n2m2). However, our algorithm is

just O(nm2).

We omit a detailed space complexity analysis for brevity, except to note that here we are better by an

even greater margin.

3.5.3. When to use Shapelet or 1NN

One of the classic questions faced by all data miners is which algorithm to use for a given task. It is

well documented in the literature that the classification performance of shapelets are highly variable in the

sense that that can be significantly better, or significantly worse that the only other high performing time

series classification method, the nearest neighbor algorithm [59][60][65][80][80].

52

Many research papers “solve” this problem, or at least bypass it, by reporting just holdout error.

However, this ignores the question of would we have known ahead of time which algorithm to use? We

answer this question below.

To answer this question, we tested on all 45 datasets from UCR archives using a method recommended

by Salzberg [73]. From the training data of all 45 datasets in [61], we split the train data to two equal parts,

called A and B; the test data from archives will be preserved as it is and used as unseen data; we call this

test data C.

For both algorithms, first, A is used as the train data for creating a classification model and, then, B is

used as the test data for measuring the accuracy of the model, which created from A. Then, we swap the

role of A and B (i.e., 2-cross validation). The expected accuracy is an average between these two models.

To compare two classifiers: shapelet and the Euclidean distance one-nearest-neighbor (1NN), we

define an expected ratio by:

= ݋݅ݐܴܽ ݀݁ݐܿ݁݌ݔܧ 1NN ݂݋ ݕܿܽݎݑܿܿܣ ݀݁ݐܿ݁݌ݔܧݐ݈݁݁݌ℎܽܵ ݂݋ ݕܿܽݎݑܿܿܣ ݀݁ݐܿ݁݌ݔܧ

The actual accuracy is measured by the accuracy of the model created by the combination of A and B

(original train data) on the test data C (original test data). Similar to the expected ratio, the actual ratio is

defined by:

= ݋݅ݐܴܽ ݈ܽݑݐܿܣ 1NN ݂݋ ݕܿܽݎݑܿܿܣ ݈ܽݑݐܿܣݐ݈݁݁݌ℎܽܵ ݂݋ ݕܿܽݎݑܿܿܣ ݈ܽݑݐܿܣ

If a ratio is larger than one, the accuracy of shapelet is higher than the accuracy of 1NN. The plot in

Figure 23 shows the comparison between expected ratios and actual ratios of shapelets and 1NN algorithm.

The TP (True Positive) area contains the datasets in which we expected that the shapelet algorithm

would be better, and it was better. Likewise the TN (True Negative) area contains the datasets in which we

expected that the shapelet algorithm would be worse, and it was worse. Gratifyingly, most datasets fall into

either TP or TN, and even remain close to the diagonal. In other words we can generally correctly predict

when shapelets are going to be useful for a particular problem.

53

0.5 1 1.5
0.5

1

1.5

Expected Ratio

A
ct

ua
l R

at
io

FP

TPFN

TN

Figure 23: Accuracy ratio between FastShapelet algorithm and Euclidean-distance-based one
nearest neighbor on 45 datasets from UCR archives

For the handful of other datasets, the eight points in the area labeled FN (False Negative) represent a

lost opportunity. We would have been slightly better off using shapelets over 1NN, but our cross validation

did not realize that. The single point (just barely) inside FP (False Positive) represents a sole occasion

where we expected shapelets to do well, but found we would have been (a tiny bit) better off with 1NN.

3.5.4. Parameter Effects

Our algorithm has two parameters that must be set by the user. They are r, the number of iterations of

random projections, and k, the size of the set of potential candidates that are “promoted” from the SAX

space back to the raw data space to be tested (lines 13 to 23 of Table 7).

Intuitively, when the number of iterations of random projections is increased, the process should make

the set of potential candidates more tolerant to noise and reduce over-fitting. Likewise, when the set of

potential candidates is larger, the quality of final shapelet should be better because we pick from a larger

set. These two parameters also (approximately) linearly affect the running time of our algorithm.

As we can show empirically, these two parameters are not sensitive in terms of accuracy produced.

54

Vary KVary R

1 10 20 30 40 50
0

20

40

60

80

100

1 10 20 30 40 50

0

20

40

60

80

100

A
c
c
u

ra
c
y
 (
%

)

1 10 20 30 40 50
0

100

200

300

400

1 10 20 30 40 50
0

100

200

300

400

T
im

e
 (
s
e

c
)

Vary KVary R

On the StarlightCurves dataset, when r is varied from 1 to 50 and k is fixed to 10, the running time

increases from 1,600 to 2,100 second and the accuracy changes only in a narrow range of between 93.29%

to 94.37%. When r is fixed to 10 and k is varied from 1 to 50, the running time is increased from 380 to

4,900 seconds and, however, once again the accuracy of the shapelet model only range between 93.35% to

94.30%.

The effect of parameter r and k on all datasets from UCR archives are shown in Figure 24. In this

experiment, we vary one of the two parameters r and k from 1 to 50 and fix another one to 10; and we ran

the experiments 30 times on all 45 datasets. Although the running is increasing linearly by both parameters,

the accuracy is not sensitive to the value of parameters as shown in Figure 24.top.

Figure 24: bottom) The accuracy of the algorithm is not sensitive for both parameters r and k. top)
The running time of the algorithm is approximately linear by either parameter. Note that when we
vary r (k), we fix k (r) to ten, thus we are changing only one parameter at a time

3.6 Case Studies

This section will demonstrate that shapelets are useful in several real world applications.

55

10240

Eclipsed Binaries

10240

Cepheids
RR Lyrae
Variables

10240

3.6.1. Starlight Dataset

The StarlightCurve dataset is the largest dataset in UCR time series archive. It contains 9,236 starlight

curve time series of length 1,024. Three types of star objects that are Eclipsed Binaries (EB) 2,580 objects,

Cepheids (Cep) 1,329 objects, and RR Lyrae Variables (RR) 5,236 objects are present. The dataset is

divided to train data and test data of size 1,000 and 8,236 objects, respectively. Examples of starlight curves

in each class are shown in Figure 25.

Figure 25: Examples of starlight curves in three classes: Eclipsed Binaries, Cepheis, and RR Lyrae
Variables

Because the objects in Cep and RR are globally similar, these objects are difficult to separate. The

accuracy of the one nearest neighbor algorithm using the Euclidean distance and DTW is 84.9% and

90.5%, respectively. However, using a shapelet decision-tree for classification, our FastShapelet get an

average accuracy at 93.68% from 30 runs. Figure 26 shows a decision tree with three leaf nodes.

To the best of our knowledge this is the highest accuracy every reported on this dataset [54][61].

Moreover, of the hundred-plus papers that cited the UCR archive in the last 3 years (when this particular

dataset was added to the Archive) a significant fraction of them do not report any results for this dataset,

because their algorithm ran out of memory or time.

By interpolation, the current state-of-the-art is expected to take 4.5 months; however, our fast shapelet

algorithm can create the decision tree in Figure 26 in 3,150 seconds (just under an hour). Thus the speedup

is more than 3,000X on this dataset.

56

EB

RRCep

II

I

200 400 600 800 10240
-2

-1

0

1

2

-2

-1

0

1

2

200 400 600 800 10240

Shapelet I

Shapelet II

dist thres = 15.58

dist thres = 5.79

object from RR

object from Cep

200 4000 600 800 1000 1100

-3
0
3

Slow Walk

Normal Walk

Nordic Walk

Run

Cycle

Soccer

Rope
Jump

Outdoor Activities from PAMAP Dataset

Figure 26: left) Decision tree of StarlightCurve dataset created by our algorithm. right) Two
shapelets shown as the red/bold part in time series

3.6.2. Physical Activity Dataset

This section demonstrates that shapelet also can use as a high accuracy classification for activity

recognition, an area drawing increasing attention due the increasing availably of inexpensive sensors. The

dataset considered is from Physical Activity Monitoring for Aging People (PAMAP) [70].

Figure 27: Examples of all outdoor activities from PAMAP dataset. Note that the time series of
each activity are generally different lengths

The entire dataset contains 43 time series, which are collected from multiple sensors (e.g.,

accelerometer, gyroscope, magnetometer, etc.) in various places of body (i.e., hand, chest, and shoe). The

57

data consists of eight subjects (seven males, one female) taking part in various sporting activities. For

simplicity we choose to use only one sensor among all 43 sensors of the original dataset to perform activity

classification. Examples of time series generated by a z-accelerometer at hand position of all seven outdoor

activities: Slow Walk, Normal Walk, Nordic Walk, Run, Cycle, Soccer, and Rope Jump, are shown in Figure

27.

In the original PAMAP dataset, all subjects perform all activities in one long performance so the data

is a long time series that contains all (annotated) activities in sequence. We preprocessed the data using a

by sliding window technique as a recommended the original authors [72].

The accuracy of one nearest neighbor classifiers on this dataset using the Euclidean distance, DTW

with 5% band size, and DTW with 10% band size are 61.16%, 81.73% and 82.03%, respectively.

However, in the same task, using our shapelet algorithm we achieve an accuracy at 88.70%, which is

outperforms the one nearest neighbor using either the Euclidean distance or DTW.

The original authors of the dataset also created classifiers by using multiple time series [72] from all

43 sensors. Beyond the fact that they use all 43 sensors and we only use one, we cannot direct reproduce

their experiments because of a lack of explicitness in how the data is processed. Nevertheless, they report

that their specialist algorithms can obtain highest accuracy around 80% to 90%. Thus domain-agnostic

shapelets using a single time series can be at least competitive with highly tuned, domain-informed

specialist methods using all 43 time series.

3.6.3. ECG Dataset

The ECG Five Days dataset from PhysioNet.Org [70] is long ECG time series recorded on two

different days with the same patient, a copy of this dataset can also be found at [61]. The dataset contains

890 objects, with 23 objects as train data and the 861 as test data. Example of the time series are shown in

Figure 28. The main challenge in classifying this dataset is that the data exhibits linear drift (in medical

domains this is called wandering baseline) as shown in Figure 28.top and the fact that the time series from

two different classes are very similar, at least globally.

58

-8

-4

0

4

20 40 60 80 100 1200 136
-8

-4

0

4

20 40 60 80 100 1200 136

Time series of class1 and class 2

Original long time series when recorded

Shapelet shown in red/bold

dish threshold = 2.446

Figure 28: top) ECG time series when first recorded. left) Time series from two classes are very
similar even hard to distinguish by eyes. right) the shaplet discovered by our algorithm shown in
red/bold

Using one nearest neighbor classification with either Euclidean distance or DTW on this dataset, the

accuracy is only 79.7%. However, the shapelet discovered by our proposed algorithm shown in Figure

28.right is able to obtain 99.4% accuracy from this dataset. This is, by a large margin, the best result ever

reported for this dataset [54][61].

Moreover, the results are quite intuitive according to USC cardiologist Helga Van Herle, focusing our

attention on the delayed t-wave which is the only medically significant difference between the two classes.

3.7 Conclusions

We proposed an algorithm for shapelet discovery that is up to three orders of magnitudes faster than the

current state-of-the-art and yet has accuracy that does not significantly differ. We have made all our code

freely available at [81], and as such hope to expand the scope of problems to which shapelets can be applied.

Chapter 4: Document Motifs

The increasing interest in archiving all of humankind’s cultural artifacts has resulted in the digitization

of millions of books, and soon a significant fraction of the world’s books will be online. Most of the data in

historical manuscripts is text, but there is also a significant fraction devoted to images. This fact has driven

much of the recent increase in interest in query-by-content systems for images. While querying/indexing

59

systems can undoubtedly be useful, we believe that the historical manuscript domain is finally ripe for true

unsupervised discovery of patterns and regularities. To this end, we introduce an efficient and scalable

system that can detect approximately repeated occurrences of shape patterns both within and between

historical texts. We show that this ability to find repeated shapes allows automatic annotation of

manuscripts, and allows users to trace the evolution of ideas. We demonstrate our ideas on datasets of

scientific and cultural manuscripts dating back to the fourteenth century.

4.1 Introduction

The world’s books and manuscripts are being digitized at an increasing rate, and within a few years,

the majority of the world’s books will be online. Much of the data will be text, most of which is more or

less amiable to optical character recognition. However, in addition, there will be perhaps hundreds of

millions of pages that contain one or more images. It is clear that these images will be very difficult to

process. Indeed, data mining of modern photograph images is challenging, and in the case of images from

historical manuscripts the challenges are compounded by the problems of fading, staining, wear, insect

damage, abrasions, foxing, pencil annotations, and distortion artifacts from the digitization process, etc.

[105][106].

In spite of these challenges, it is clear that the wealth of figures from historical manuscripts offer

unique possibilities for data mining of important cultural artifacts. While the completely automated

extraction of data from these texts will remain a significant challenge for some time to come, in this work,

we introduce a specialized sub-routine that is achievable and useful. This sub-routine is the automatic

discovery of approximately duplicated figures, both within and between texts.

Our ideas can best be explained with a simple motivating example. In the early part of the 19th

century, relatively inexpensive high-powered microscopes became available for the first time. This initiated

an explosion of interest in Diatoms, a major group of eukaryotic algae, whose extraordinary shapes

delighted and puzzled Victorian naturalists. Consider the two plates shown in Figure 29. They are typical

60

examples from the perhaps hundreds of books on Diatoms published during the Victorian era

[104][109][113].

Figure 29: Two plates from 19th-century texts on Diatoms. left) Plate 6 of [104] right) Plate 5 of
[109]. Note that in each plate we point to a triangular specimen, Biddulphia alternans

Thanks to efforts by digital archivists, hundreds of these works, representing over one million

individual shapes, have been digitized and placed online. Some of them are scholarly classics, such as W.

& G.S. West: A Monograph of the British Desmidiaceae [113], which is still referenced in modern

scientific texts, and some of them are vanity publications by “gentlemen scholars”. Figure 30 shows a

zoom-in detail from each of the plates in Figure 29.

If we were hosting archives of Diatom images, we might wish to add mutual hyperlinks between each

occurrence of Biddulphi aalternans, since any researcher with an interest in one, will surely have an

interest in the other. Here we show just one pair of shapes deserving of a mutual hyperlink; however, in the

domain of Diatoms, there are at least a thousand species defined by a unique shape, which could have all

their occurrences linked together.

61

Figure 30: left) Two plates in Figure 29. right) A zoom-in of the same species, Biddulphia
alternans appearing in both texts

Figure 31 shows another example where linking between two manuscripts is helpful (figure best

viewed in color). The 1915 text (left) has much greater information and annotations about a medal, but the

image is B/W. In contrast, the older text (right) clearly shows that the circular ring is blue. In this case, the

combination of these two figures contains more information than either one on its own.

Figure 31: left) A figure from page 7 of [91], a 1915 text on peerage. The original text is
monochrome. right) A figure from page 109 of [85], an 1858 text on honors and decorations

62

There are many other examples that demonstrate that linking two shapes within or between books can

be of help to historians, genealogists or scientists. However, to the best of our knowledge, this problem has

never been addressed. In this work, we demonstrate a technique to allow automatic discovery of repeated

shapes in historical manuscripts. Beyond the obvious image processing challenges, and the problem of

defining an appropriately robust distance measure, the biggest challenge is clearly scalability. Even if we

have only 100,000 shapes in a collection, a brute force “all-to-all” algorithm would require approximately

five billion distance calculations, an untenable proposition. Our algorithm is inspired by motif-discovery in

bioinformatics [112], as DNA motifs can be considered as near-duplicate strings. As we shall show, it can

(significantly) adapt bioinformatics algorithms to discover duplicated shapes in time linear to the number

of “black” pixels in the text.

While there is a significant amount of related work in detection of near-duplicate images, we believe

that none of it addresses the task at hand. The vast majority of such work is focused on matching whole

images, after one of them has been distorted by cropping, resizing, color normalization etc. However, none

of these works can locate near-duplicate sub-images inside the documents. For example, Chum et al.

introduced an efficient method based on the technique of min-Hash to detect near-duplicate images with

respect to the query image [87]. Locality-sensitive hashing is one of the best-known techniques to use in

near-duplicate image detection [86][99], and we were inspired by this idea to develop our technique

(Section 4.4). However, most of literature on near-duplicate detection is aimed at locating the nearest

neighbor of the given queries. However, for our task we are not given a query, instead we want to

automatically discovery similar pairs of figures.

By analogy the relationship between these two problems is similar to the much better studied problems

in time series data mining [103], of finding the nearest neighbors of the query subsequences vs. finding the

time series motif or the most two similar subsequences. In 2007, Xi et al.[115] proposed a method to find

image motifs or the most similar pair of images in the image database. They transformed shapes into time

series, which is robust, scale invariance and rotation invariance. However, all images are must fully pre-

processed including background removing and image segmentation. In contrast, we make no such

assumptions.

63

Image preprocessing such as image binarization [95][98] and image segmentation[84][96] is an

important step in document analysis. Images segmentation can distinguish images and text in documents. In

2011, Grana et al. [96] proposed a novel technique to segment the images using directional histogram

generated by the value of autocorrelation matrix, which is a summation of the relevant directions of the

texture inside the block inside the documents. By the way, the quality of the result of our work could be

improved by using these image segmentation techniques; however, the longer pre-processing time will be

required.

The rest of this chapter is organized as follows. In Section 4.2 we introduce all necessary notations and

definitions. We introduce an exact, but untenably slow algorithm in Section 4.3. Then, in Section 4.4 we

show a very fast approximate algorithm that exploits novel observations and ideas from bioinformatics and

image processing. Section 4.5 sees a detailed empirical study on real data. The theoretical analysis is

introduced in Section 4.6. We offer conclusions and directions for future work in Section 4.7.

4.2 Background and Notation

We begin by introducing all necessary notations and definitions. These notations are illustrated in

Figure 34.

4.2.1. Definitions and Notation

Whether we are mining archives of postcards, books, maps, etc., we can see our data source as bitmap

documents:

Definition 1 A document, D, is a matrix with ternary values which are 1, 0, and -1. For any pixel

in the given document that is black or white, we will set the corresponding point to be 1 or 0,

respectively. The value -1 is reserved for the null or the area outside the original document. A

document size n pixel by m pixel will be kept by using a matrix of ternary values size n×m.

The historical documents may originally be B/W or color. For our purposes, we are only interested in

shape, so as Definition 1 hints, we binarize all images. The binarization of images in the context of

64

historical manuscripts is a well-studied problem (see [95][98] and references therein) and a relatively easy

task for most documents. Nevertheless, we clearly cannot guarantee perfect automatic binarization of large

unstructured collections of manuscripts. As we shall show in Section 4.5, our solution to this problem is to

use a distance measure and an algorithm that is robust to large amounts of noise and distortions.

Historical documents are often represented by a single surviving instance and many of them have

imperfections. As shown in Figure 32, the corners may be burned or worn, or they may have holes due to

insect damage [106]. We can support such documents by using null values for the area outside of the

document but within the minimum rectangular boundary of document. Most professional scanners of

historical manuscripts use a background color or texture that makes the occurrence of “holes” obvious.

Figure 32: Examples of texts with “holes”

From the definition above, we regard documents as containing only a single “page”. To apply our

algorithm to many pages of a book or many books, we can simply concatenate each page into a long logical

document and use a line of null values to separate one page from the others.

We do not expect (or want) to find globally repeated pages, so we confine our attention to small

regions of interest within a page; these we call windows:

Definition 2 A window is a rectangular area inside a document whose size is specified by the

user. It is defined by

௫ܹ,௬ = {݀௜,௝ ∈ ݅ | ܦ ∈ ,ݔ] ݔ + ݆ ݀݊ܽ (௫ݏ ∈ ,ݕ] ݕ + ܵ௬)}

where sx and sy are a user-defined width and height.

The data inside the window is a ternary value just like the data in the document. While a document

may contain many pages, no window is allowed to span two pages. For the rest of this chapter, we use the

65

term Wa interchangeably with the term Wx,y if the starting position of window Wa is (x,y), i.e., in Figure 34,

Wa=W3,2.

There are many ways to measure the similarity between given images. However, most techniques

make assumptions about the data. For example, geometric hashing [114] assumes the figures have well-

defined points of interest, such as intersections, end-points, areas of maximum curvature, etc. However,

even if these assumptions are true, this leads to the non-trivial sub-problem of locating the points of

interest. This may be very difficult in our domain of interest. Other distance measures assume that the

shapes are fully connected [82], or form closed contours [100]. However, as we shall see, neither

assumption generally holds in our domain of interest. SIFT and it’s variants (G-RIFT, SURF) make less

assumptions, but even after tweaking their many parameters, they did not perform well on the problems in

Section 4.5.1(to be fair, they are not designed for this domain), so we omit them from further consideration

in this work.

Given the above, we need to use a distance measure which is robust to the inevitable noise/distortions

we will encounter, and which is general enough to work without any explicit assumptions about the data.

Furthermore, as we shall see later, our basic idea to speed up the discovery of repeated figures is to use a

“hashing-like” idea from bioinformatics; thus, we need a distance measure that is amenable to hashing.

The recently introduced GHT distance [83][116] is just such a measure. We will explain this in more

detail in Section 4.2.4.2.2 and Section 4.5.1. In the meantime, we use it to define the distance between any

pair of windows as the following:

Definition 3 The distance between window Wa and Wb is defined as dist(Wa,Wb). We use the

GHT distance as a similarity distance between two windows. Thus, the distance is

dist(Wa,Wb) = GHT(Wa,Wb).

As we can see in Figure 33, our distance measure is offset-invariant. As we shall see, this simple fact

allows us to greatly speed up our search algorithm (especially for texts with a lot of “white space”) by

significantly reducing the number of distance comparisons needed. We will expand on this idea in Section

4.4.1.

66

D

Wa

=W3,2

Wb

=W20,3

Wc Wd We Wf

1

0

-1

Figure 33: The distance measure we use is offset-invariant, so the distance between any pair of
windows, left, center or right above, is exactly zero. This simple fact can be exploited to greatly
reduce the search space of motif discovery. Since a pattern from another book that matches one of
the above with a distance X must match all with distance X, we only need to include any one of the
above in our search

Recall that our task can be reduced to finding the most similar pair of windows in the document.

However, a pathological solution to this would be to have two windows with high overlap, as in the

windows Wc and Wd, shown in Figure 34.

Figure 34: An illustration of our notation. Here the document D consists of two pages, separated
by null values. Intuitively we expect the “T” shape in window Wa to match the shape shown in Wb.
However, note that the trivial matching pair of Wc and Wd (also pair We and Wf) are actually more
similar, and need to be excluded to prevent pathological results

We call a pair of windows a trivial match if its windows have a high degree of overlap.

Definition 4 A pair of windows {Wa,Wb} of size sx×sy is a trivial match if its windows are

overlapped more than α times the total area of a window (0 ≤ α< 1), formally,

(sx-|bx-ax|)*(sy-|by-ay|) ≥ α*sx*sy and (sx-|bx-ax|) ≥ 0

67

where (ax,ay) and (bx,by) are the starting positions of windows Wa and Wb, respectively. If {Wa,Wb}

is not a trivial match, we call it a non-trivial match.

For the special case when α=0, no overlap between two windows of motifs is allowed; in this case, if

windows Wa and Wb are share one pixels or more, {Wp,Wq} will be a trivial match by the definition. In

Figure 34, if we set α=0.5, both {We,Wf} and {Wc,Wd} are trivial matches but {Wa,Wb} is a non-trivial

match.

Among all possible pairs of windows, we want to find the pair that has the smallest distance between

each other and is a non-trivial match. We call this pair the motif window:

Definition 5 A motif window (or just motif) is a non-trivial pair of windows {Wa,Wb} such that

the distance between windows Wa and Wb is the smallest of all other possible pairs.

motif = {{Wa,Wb} | minWa,Wb dist(Wa,Wb)}

The definitions above assume that we are looking for exactly one near-duplicated figure. However, we

can easily generalize this to allow the discovery of multiple motifs. In order to do so we must eliminate

some pathological solutions, as shown in Figure 35.

To avoid redundant solutions in discovering multiple motifs, we will explicitly exclude insignificant

motifs from our solution. We define an insignificant motif as the following:

Definition 6 A motif {Wa,Wb} is insignificant if another motif {Wc,Wd} exists such that

• dist(Wa,Wb) ≥ dist(Wc,Wd)

• {Wa,Wc} and/or {Wb,Wd} are trivial matches.

The motif windows are insignificant if at least one of their windows shares a large part with other

motifs. However, different motifs can share small parts with each other. Next, we define a top-k motif

window as the following:

Definition 7 A top-k motif window is the set of k most similar pairs of windows, none of which is

insignificant.

In Figure 35.bottom, only one true motif window is discovered, and the other one is insignificant.

68

Figure 35: An illustration of a pathological solution to finding the top two motif pairs between two
century-old texts. top) The desirable solution finds the crescent and label (rotated “E”). bottom) A
redundant and undesirable solution that we must explicitly exclude is finding one pattern (the
label) twice

4.2.2. Generalized Hough Transform

The Hough Transform [97] was introduced by Hough as a tool for finding well-defined geometric

shapes (lines, curves, rectangles, etc.) in images [93]. The idea was generalized by many others, including

Ballard, who introduced the Generalized Hough Transform to detect arbitrary shapes in images [83].

Computing the GHT distance between pairs of windows is relatively expensive. In particular, the time

complexity for each GHT calculation is O(nb
2), where nb is the number of black pixels in the window.

However, a recent paper by Zhu et al. [116] shows some computational tricks to reduce the amortized

time for a single comparison, when a higher level algorithm requires multiple comparisons (i.e. clustering

or query-by-content). In this work we use the ideas presented by Zhu, but as we shall see, they alone are not

sufficient to provide the scalability we require in this domain.

There are two reasons why we chose to use the GHT distance for the problem at hand. Firstly, as

shown by Zhu et al. and confirmed by our experiments, the measure is very robust and accurate [116].

Secondly, as we shall see, the method lends itself to being adapted to the random projection framework,

which is used to solve the motif discovery problem in bioinformatics [112].

69

4.3 Exact Algorithm to find Motifs

Given a document D and (user defined) window size s, we want to find the top-k motifs in a given

document. For simplicity, in the rest of this chapter we will explain only how to find the top-1 motif

because the extension to top-k is trivial.

4.3.1. Brute Force Algorithm

We can easily find the top-1 window motif by comparing the distances from all pairs of windows, as

shown in Table 8.

This simple algorithm uses nested loops (lines 3 and 4) to test all possible pairings of motif windows,

checking whether or not two particular windows are trivial (cf. Definition 4), recording the one with the

smallest distance. Unfortunately, this algorithm has an obvious flaw which makes it untenable for real

problems: it will simply take a great deal of time even for a small document.

Table 8: Brute force algorithm

Algorithm: Brute force algorithm to find the top-1 window motif
Input: D : document
 sx sy : window size
Output: motif : window motif
1
2
3
4
5
6
7
8
9
10

W = set of all windows of size sx×sy in D
bsf = ∞
for a = 1 to |W|
 for b = a+1 to |W|
 if(~IsTrivial(Wa,Wb))&&(dist(Wa,Wb)<bsf)
 bsf = dist(Wa,Wb)
 motif = (Wa,Wb)
 end
 end
end

Assume that the document is size n×n and the user-defined window is size s×s. The brute force

algorithm must consider every pair of windows, requiring it to compute GHT distances O(n4) times. Each

GHT calculation takes time O(nb
2), and nb, the number of black pixels in a window, can be as large as s2; it

is usually larger than s. Hence, the total running time for the brute force is O(s2n4).

To give concrete numbers, suppose the original document is a B/W image of size 1 megabyte, or

1000×1000 pixel2. The set of all windows, W, is approximately 106 (line 1). To find a motif using the brute

70

A B DC

force algorithm, we need to compute the GHT distances about 5×1011 times (line 3-4). This would take

approximately 108 seconds, or 3 years. Because the brute force algorithm cannot find motifs even in a

small document in an acceptable amount of time, we will introduce a fast approximate algorithm for this

task.

4.4 Our Algorithm

In this section, we introduce a sub-linear time motif discovery algorithm. We begin by giving the

intuition behind three ideas that we will exploit to make our algorithm scalable. Later we will show a

concrete algorithm that exploits these ideas.

4.4.1. Intuitions Behind Our Algorithm

A. Downsampling Helps Scalability

Our first observation was originally made to help improve scalability, but as a happy side effect, it also

greatly improves accuracy. Figure 36 shows the effect of downsampling on our data of interest.

Figure 36: A) Two figures from table 16 of a 1907 text on Native American rock art [101] (one
image recolored red for clarity). B) No matter how we shift these two figures, no more than 16%
of their pixels overlap. C) Downsampled versions of the figures share 87.2% of their pixels as in
(D)

Because downsampling will greatly decrease the number of windows that must be examined, it will

clearly improve efficiency. It is natural to ask if this reduction in resolution will reduce the accuracy. The

surprising answer is that the opposite is true; downsampling (except when taken to the extreme) actually

improves accuracy by eliminating spurious precision and reducing the shape to its bare minimum. We note

that we are not claiming this observation as an original contribution; Zhu et al. pointed this out and

71

A C

D
Mask template

B

demonstrated it with detailed experiments [116]. However, the next two ideas are original and unique to

our domain.

B. Random Projection Further Reveals Similarities

While the downsampling idea introduced in the last section reduces both the time for a single distance

calculation and the number of distance calculations that must be performed, the number of distance

calculations required by the brute force algorithm is still on the order of O(n4). We have just drastically

reduced the value of “n”. In order to make significant progress on this problem, we need a much faster way

to identify (potentially) very similar shapes. Figure 37 shows the intuition as to how we might achieve this.

Assume we have a pair of windows {Wa,Wb} of size 17×14, containing two similar, but not identical

figures, whose distance is equal to nineteen (i.e., dist(Wa,Wb)=19). For example, in Figure 37 we have two

anthropomorphic examples of rock art with this property. Suppose that we randomly choose a single

location, x=randint(1:17) and y=randint(1:14), and set that pixel to white in both figures. What

effect would this have on the distance? There are only two possibilities:

Figure 37: A) If we randomly choose some locations (masks) on the underlying bitmap grid on
which the two figures (B) shown in Figure 36 lie, and then remove those pixels from the figures,
then the distance between the edited figures (C) can only stay the same or decrease. Several
random attempts at removing ¼ of the pixels in the two figures eventually produced two identical
edited figures (D)

72

First, the corresponding pixels in the two windows are already either white or both black. In either

case, the distance does not change. Second, exactly one of the corresponding pixels was black, and

changing it to white must decrease the distance.

From this analysis, we can see that “deleting” black pixels (randomly projecting windows to a lower

dimensional space [112]) must decrease or hold steady the distance between two objects. This is important,

because if we manage to decrease the distance to zero, we can find such zero distance pairs in only linear

(in the number of windows) time using hashing. This idea is inspired from the well-known hashing

technique, min-Hash [87].

In the example shown in Figure 37, ignoring one pixel is clearly not enough to make the two figures

identical; we actually need to remove at least 19. Furthermore, we need to remove the correct set of 19. A

simple combinatorial calculation will convince the reader that this is very unlikely to happen if we choose

19 pixels at random. The obvious solution, to ignore more than 19 pixels, say 100, contains a problem. If

we ignore too many pixels we will also allow two very different figures to hash together.

To some extent, this is a problem we can live with. Even if two very different figures are projected

onto a very low dimensional space where they hash together as a false positive, we can later check their

distance in the original space. The only danger is that if we have too many false positives, then checking

them all may not be much faster than a brute force search.

At first blush the problem may seem insurmountable, because we have the extremely delicate task of

making all similar things identical, without making (too many) different things identical. Fortunately, there

is a solution to a nearly identical problem in DNA motif discovery in bioinformatics, which we can

leverage off [112]. The idea (informally stated) is to be conservative in the number of pixels we remove,

but to do multiple independent rounds of projection (hashing). This increases the number of true positives,

while also reducing the number of false positives.

C. Numerosity Reduction Improves Scalability

The final observation we will make has already been hinted at in Figure 33. Even after downsampling,

there are many windows that must be explored in order to find a motif (or top-k motifs). The number of

73

windows of size sx×sy in a document of size n×m is quadratic in terms of the document size, or more

precisely, is (n-sx+1)(m-sy+1), which is O(n2) when n=m. Naturally, all of these windows have a great deal

of redundancy with their neighbors, and many windows may be totally blank or contain only a handful of

pixels. Based on this observation, we can reduce the number of windows in the document dramatically by

filtering out all but one representative example of a set of redundant windows, and also filter out windows

that do not have enough black pixels to form any meaningful shape. We call the remaining windows in the

document after this process, potential windows:

Definition 8 A potential window is a window whose number of black pixels is at least a

threshold t and not less than other adjacent windows. Let sum(·) be the total number of black pixels

in the particular window: sum(Wx,y) . In the case of a null value, we can set di,j to either 0 or 1. Then,

the set of potential windows P is defined as

ܲ = ൛ ௫ܹ,௬ ห ∀ܽ, ܾ ∈ ൫݉ݑݏ {1,0,1−} ௫ܹ,௬൯ ≥)݉ݑݏ ௫ܹା௔,௬ା௕) ≥ {ݐ

Figure 38: The summation of the number of black pixels in windows. Only windows
corresponding to peaks above the threshold (the red line) need to be tested. The arrows show the
center position of six potential windows

74

This idea can be visualized in Figure 38, where potential windows are centered on the peaks of a 3D

heatmap. In the equation, we simply set the parameter t to an average number of black pixels in a specific

window size, and the results show that our algorithm works well on this default value. Ties can be resolved

by selecting just one potential window, changing the definition from “≥” to “>”.

 We note that this step also has an analogue in bioinformatics algorithms [22]. Many motif discovery

algorithms do a preprocessing step of removing regions of low complexity DNA (for example, a long run

of a single amino acid) to both speed up search and eliminate pathological solutions.

4.4.2. Document Motif Discovery

We are finally in a position to explain our algorithm and how it exploits the three ideas from the last

section. In essence, we downsample the original book, extract all potential windows and hash them with

random projection. All pairs that collide are inspected in the original space to see if they are true motifs.

Our algorithm is described in Table 9.

Our algorithm uses four more inputs than the brute force algorithm. The first is the downsampling

scale, ds, and the other three parameters are used in random projection.

In line 1, we downsample the original document D into the smaller version, DD, with the scale ds.

While there are many algorithms for rescaling images, we simply downsample by majority voting the

values inside ds×ds pixels in the original document to create a new pixel in the new document, DD. Hence,

DD will be smaller than D by a factor of ds2.

The next step is to locate all windows in the new document in line 2. Note that the total search space is

reduced from O(n4) to O(n4/ds4). Further note that in our implementation, we do not set W explicitly. We

still need to further reduce the search space, so in line 3 we apply the third idea from the last section. In

order to locate the potential windows (cf. Definition 8), for all windows we calculate the total number of

black pixels inside that window. We can do this in linear time with respect to the number of pixels in the

document. We then locate all potential windows which are at the local maxima of the summation plot, as

75

visualized in Figure 38. Now our search space is massively reduced; for example, in Figure 38, there are

less than 30 potential windows among 22,000 original windows.

Table 9: Proposed Algorithm

Algorithm: DocMotif

Input: D : document sx sy : window size
 ds : downsampling scale it : number of iteration
 hds : hash downsampling scale mask : masking ratio
Output: motif : window motif
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

DD = DownSamplingDoc(D,ds)
W = set of all windows of size sx×sy in DD
P = LocatePeaks(W)
P = AlignCenter(P)
HSig = Ø
for i = 1 to it
 hsig = HashSignature(P, hds, mask)
 HSig = HSig ∪ hsig
end
cand = CollidedWindow(HSig)
best-so-far = ∞
for all pair of windows (wa,wb) in cand
 if(IsTrivial(wa, wb))
 continue;
 end
 if(lb_dist(wa,wb) < best-so-far)
 if(dist(wa,wb) < best-so-far)
 best-so-far = dist(wa,wb)
 motif = (wa,wb)
 end
 end
end

The number of peaks or potential windows is data dependent. It is possible that there are a lot of small

peaks in the document. For example, as in Figure 38, there are 3 potential windows on the right which are

created from the same symbol. We solve this problem in line 4 with a simple solution. We align every

potential window by moving its center of mass to the center of the window. As a result of this process,

potential windows may slightly change their position, so if several windows are aligned to the same

position, we pick only one window at the position.

After all potential windows have been enumerated, we hash them using random projection (line 5-9).

This idea is essentially the same as the one shown in Figure 37; we create a hash signature from each figure

by randomly removing some pixels from them (line 7). Then, we find all pairs of windows that “collide”;

that is, they share the same signature (line 10). To create the hash signature in line 7, we do two steps. First,

76

we further downsample all potential windows to a smaller size. The parameter controlling this is called hds,

or hash downsampling scale. Then, we randomly remove some pixels, the number of which is controlled by

the parameter mask. We do this random projection it times to increase the probability that two similar items

will collide at least once. Note that only one collision is required to ensure we discover the motif.

In the last step, we create a set of all candidate pairs, cand (line 10). We can now calculate the true

GHT distance of each pair, and the motif is a pair of windows that has the smallest distance, ignoring as

always the trivial pairs (line 13). Lines 12 to 22 are essentially the brute force, but over a relatively tiny

subset of the original possibilities. Because the GHT calculation is expensive, we avail of a recently

published speed-up trick [116]. We calculate the GHT’s lower bound first (line 16). If the lower bound is

bigger than the best-so-far, we do not calculate the expensive GHT distance. Otherwise, we update the

best-so-far using the GHT distance (line 18-19).

There is one trivial but very useful modification we can make to the algorithm. We can input two

books instead of one, and insist (by adding an extra test on line 13) that the motif's two occurrences have

one representative from each book. This is an idea hinted at in the first three figures in this work. We may

see this as a motif join between two texts.

4.5 Experimental Results

We have designed all experiments such that they are reproducible, and as such, all data and code are

freely available at [118].

In this section we wish to empirically demonstrate the following: that the GHT distance measure,

operating on downsampled data, is appropriate for our domain; that our algorithm can find meaningful

motifs in real data, and that this information is useful to domain experts; and that our algorithm is scalable

enough to allow mining of large texts. Finally, we wish to show that although our algorithm has several

parameters, these are easy to set, and their exact value is not critical to efficiency or effectiveness.

77

4.5.1. Sanity Check for the GHT Measure

While our experimental case studies (cf. Section 4.5.4.5.2) offer compelling anecdotal evidence that

our method finds truly similar figures, it would be useful to see objective tests. To our knowledge, there is

no benchmark dataset to test on; however, we can show the suitability of our ideas for objective tests in

very similar domains/problems.

We would like the tests to demonstrate two things: that our choice of the GHT as a similarity measure

in this domain is warranted, and that the extreme downsampling we perform to improve scalability does not

hurt accuracy. We achieve these aims by testing on datasets of hand-drawn figures. Two of the datasets are

from a collection of old music scores (17th-19th centuries) [94][107], and thus are very representative of our

domain of interest, and the third one is a modern architectural symbol dataset [102], in which various users

hand copied symbols, and is thus also very similar to the task at hand. As Figure 39 shows, these are non-

trivial problems. In particular, the symbols in the first two datasets come from degraded texts, written by

individuals who may have lived centuries apart and in different countries.

Figure 39: Samples showing the interclass variability in the hand-drawn datasets. left)
Samples from the music datasets. right) Samples from the architectural dataset

Rather than fine-tune our method, we simply hard coded the downsampling to 20×20 for all datasets.

Table 10 shows the one-nearest-neighbor leaving-one-out accuracy.

Table 10: The accuracy of GHT on 3 hand-drawn symbol problems

Dataset # instances # classes Accuracy
Clefs 2,128 3 99.58%

Accidentals & Clefs 4,098 7 98.49%
Architectural 7,414 50 99.29%

While others have worked on these datasets, we did not directly compare our results to theirs. The

published approaches on these datasets are so slow (an O(n3) warping method for the music symbols

78

[94][107], and an O(n3) adjacency grammar method for the architectural symbols [102]), that in both cases

the authors abandoned any attempt at a full leaving-one-out on the entire dataset, and instead created

various smaller subsets (hand crafted and thus difficult to meaningfully compare to). However, our

accuracies are so close to perfect in every case that our claim is clearly demonstrated: the GHT on

downsampled images is an effective distance measure for these kinds of images.

4.5.2. Motifs between Two Manuscripts

While there is undeniable utility in discovering motifs within a single text, the real power of motif

discovery will undoubtedly come from the linking of two motifs between two or more apparently disparate

texts.

Taryn Rampley, a Ph.D. student in anthropology at the University of California-Riverside, is interested

in correlating DNA studies of peoples from the Americas with studies of cultural artifacts [108]. In

particular, she is looking for evidence of cultural transmission from North America to South America prior

to contact with Europeans. While this evidence might be found through jewelry, textiles, weapons or

language, this researcher is focusing on petroglyphs (rock art), of which there are several million

documented examples in the Americas.

This student gave us a classic reference text on Californian petroglyphs [110], which includes a 104

page petroglyph catalog, containing about 2,852 individual examples of petroglyphs. We scanned this text

with an off-the-shelf scanner. Figure 40.left shows two representative pages.

Thanks to the Google Book Project, the web is replete with possible texts with which to compare. One

such text that caught our attention is a 1907 text by the German ethnologist and explorer Theodor Koch-

Grünberg (1872–1924) which discusses the origin and significance of rock art in South America [101].

This text contains 233 images of petroglyphs hand-traced by the author. Figure 40.right shows two

representative pages.

79

Figure 40: left) Two typical pages from Californian petroglyphs [110]. right) Two typical pages
from [101]. Note that the minor artifacts are from the original Google scanning

We ran our motif join algorithm on these two texts; Figure 41 below shows a selection of the top fifty

results.

Figure 41:. Five random motif pairs from the top fifty pairs created by joining the two texts [101]
and [110]. Note that these results suggest that our algorithm is robust to line thickness, solid vs.
hollow shapes, and various other distortions

While the figure pairs are clearly somewhat similar, the anthropologist does not feel that this provides

evidence of cultural transmission. If we repeat the experiment by comparing the reference text to

petroglyphs from Arizona or Utah, the joins are much more similar. Currently, these conclusions are

subjective and tentative; in ongoing work we are working with anthropologists to produce a principled

theoretical framework for drawing such conclusions. While we defer detailed scalability results to the next

section, we note that this join took approximately one minute.

Before moving on, it is worth re-examining Figure 41 to note the invariances that our algorithm has

achieved. For example, in the Figure 41.middle our algorithm discovered a pair of anthropomorphic figures

in spite of the fact that one has a solid head and antenna. To appreciate why we can achieve such

80

invariances we invite the reader to review Figure 36 and Figure 37, whose examples we drew from one of

these texts [101].

Such robustness is critical if we are to investigate hand drawn texts in addition to the printed texts we

consider next. As part of another project on mining cultural artifacts we are also interested in mining the

vast literature on genealogy and heraldry that dates back to the 12th century [89][90]. Figure 42 shows a

typical result in this domain.

Figure 42: The top two inter-book motifs discovered when linking a 1921 text, British Heraldry
[89] (left), with a 1909 text, English Heraldic Book-Stamps, Figured and Described [90] (center),
and (right)

In order to make a point about some invariances our distance measure achieved in this domain, Figure

43 shows a zoom-in of the two pairs of discovered motifs shown in Figure 42. Note that in both cases the

two members of each motif differ slightly in scale. This is presumably due to differences in the scanning

process, since it is likely that the images were produced by the intaglio process, and printed from the same

plate. In any case, our method is robust to such minor scale changes.

Note also that the figures are not identical; for example, the helmet in the later text has additional

shading on the right side of the dome and under the chin. Again, our method is robust to this issue.

81

Figure 43: A zoom-in of the motifs discovered in Figure 42. Note that the two helmets differ in
size by about 11%, and our algorithm was invarient to this difference

However, the most interesting point about this example is the (relative) invariance to the user-specified

size parameter. Note that as shown in Figure 43, we set a window size and aspect ratio that happens to be

perfect to enclose the crown. To enclose the helmet, we really need a window size that is about twice as

large and with a more vertical aspect ratio. Nevertheless, in spite of a suboptimal window size we still

found the helmet motif. This is not a one-off fortuitous occurrence, but generally true (see additional

examples at [118]). So long as the user-supplied size is within a factor of two or so of the motif size, we

will robustly find it. If the uncertainty in size is greater than a factor of two, our algorithm is efficient

enough to allow range-doubling search.

Because our algorithm can discover motifs between different books, it is of utility in locating similar

patterns in different books, and combining the information between those books such as shape, texture,

color, etc., and filling in missing details.

The following example demonstrates that motifs can help us to flesh out some missing data. In 1863, A

Manual of Heraldry, Historical and Popular [88] showed the heraldic shield of King George III of England

after year 1801 and his successors, George IV and William IV, as in Figure 44.left. However, later in 1913,

Leopards of England explained that King George IV and King William had changed the arms a little as

shown in Figure 44.middle, “Fourteen years later the Congress of Vienna erected the electorate of Hanover

into a kingdom, whereupon the elector’s hat was changed into a royal crown, … until the death of the last

English king of the house of Brunswick in 1837”[92].

82

motif between two books

motif inside one book

Figure 44: (left) Arms of King George III and his successors from A Manual of Heraldry,
Historical and Popular, 1863 [88]. Two similar arms are explained in Leopards of England, 1913
[92]. (middle) Arm of King George IV and his successor’s King William IV. (right) Arms of King
George III after the constitutional change

Thus by finding motifs within one text [88], and between two texts [88] and [92], we can automatically

interpolate the missing color information in an monochromic figure.

In the next section, we show that the efficiency and accuracy of our algorithm are largely invariant to

parameter choice.

4.5.3. Scalability and Noise Tolerance

Testing the scalability of our approach on real data provides us with significant challenges, since the

running time of our algorithm depends on the data. For example, suppose a book has a perfect motif on

pages 1 and 51, but otherwise there are no significant repeated patterns. The time to search a subset

consisting of the first 50 pages would be much greater than the time taken to search the first 100 pages,

since the latter would encounter a high quality best-so-far early on. Given this, we test the scalability on an

83

artificial book over which we have perfect control. We made every effort to make a realistic book, but

when in doubt we made choices designed to strain our algorithm.

We generated an artificial book using the idea of a 14-segment display that be used to create any

English alphabetical character or digit. Figure 45.left shows some samples. In our artificial book, each page

contains a random selection of 100 characters and the size of each page is 1330x1220 pixels, as shown in

Figure 45.middle. While it is very unlikely that any random character would be created twice, such an

occurrence would greatly favor our algorithm. We therefore further distort the book by two methods:

adding a random polynomial warping (modeling a distortion caused by non-contact scanning) to the pages

and adding some Gaussian noise, as shown in Figure 45.right.

Figure 45: left) The 14-segment template used to create characters. We can turn on/off each
segment independently to generate a vast alphabet. middle) An example of a page which is
generated from the process. right) A page of the book after adding polynomial distortion (top
half), and Gaussian noise with mean 0 and variance 0.10 (bottom half)

In order to set the parameters for our experiments, we did the following: we created a two-page “book”

and spent less than five minutes “playing” with it to find reasonable parameter values. Once we had found

these values, we fixed them for all data sizes up to 2,048 pages.

As we can see in Figure 46, our algorithm can find the top motif in a 128-page book in a minute and in

a 2,048-page book in half an hour. Note that these times are close to the time taken to scan (at least

valuable) books of this size, so they are not unreasonable.

84

Scalability

0

500

1000

1500

2000

E
xe

cu
tio

n
T

im
e

(s
ec

)
Polynomial
distortion

No distortion

1 2 4 8 16 32 64 128 256 512 1024 2048

Number of Pages

Sample Motifs

E
xe

cu
tio

n
T

im
e

(s
ec

)

Number of Pages
1 2 4 8 16 32 64 128 256

0

1

10

100
250

Effect of Gaussian Noise
Var = 0.20

No noise
Var = 0.01
Var = 0.05
Var = 0.10
Var = 0.15

Figure 46: Time to discover motifs in books of increasing size. Our algorithm can find a motif in
512 pages in 5.5 minutes and 2048 pages in 33 minutes. (inset) As a sanity check we confirmed
that the discovered motifs are plausible, as here (noise removed for clarity)

Note that in this figure and some figures to follow, some lines are difficult to tell apart; however, this is

the point of these experiments: to show that our algorithm is not sensitive to distortions/noise/parameter

choices.

We also test the noise tolerance of our algorithm by generating an artificial book with Gaussian noise

added. The mean of the Gaussian noise is set to 0 and its variance is varied from 0 to 0.20. The results in

Figure 47 show that our algorithm can tolerate significant noise (var=0.15).

When the book contains too much noise (var=0.20), the number of potential windows will increase

because it is difficult to align all potential windows from a figure into the same position. Hence, the

running time increases. However, this case corresponds to a very heavily degraded image.

Figure 47: Effect of Gaussian noise. Our algorithm can handle significant amounts of noise. An
example of a page containing noise at var=0.10 is shown in Figure 45.right

85

0

0.5

1.0

1.5

2.0

2.5

3.0
x 104

Ex
ec

ut
io

n
Ti

m
e

(s
ec

)

Number of Pages

Brute Force (All Windows)

Brute Force (Potential Windows)
Our Algorithm

1 2 4 8 16 32 64 128 256 512

To concretely ground the amount of speed-up our algorithm can achieve we did the following

experiment. On a 512-page book, we compared the running times of:

1. Exact motif search over the entire document by applying motif discovery technique in [103]

2. Exact motif search over just the potential windows

3. Our proposed algorithm, DocMotif.

The results are shown in Figure 48. We can see that the running time of heuristic search from [103],

which is much faster than brute force search, rapidly becomes untenable, taking, for example, more than a

day for just 8 pages and (an estimated) six months to finish all 512 pages. Our simple trick of only

searching over potential windows reduces the search time to just 6.9 hours for the full 512 pages; however,

our proposed algorithms take a mere 342.4 seconds.

Figure 48: The total execution time of three search algorithms: an exact motif search, an exact
motif search on just the potential windows, and our algorithm DocMotif

4.5.4. Robustness of Parameters

We have an obligation to explain how the choice of parameters affects the speed of motif discovery

and the quality of motifs. As we shall see, our algorithm is not particularly sensitive to parameter choice.

Recall that in the previous sections we have set the parameters based on a few minutes’ experience with a

two-page sample. Our simple test for parameter sensitivity is to hold three parameters firm, and adjust the

other parameters to higher and lower values, to see what effect this has. Figure 49 tells us that for the most

part, the algorithm’s performance does not rely critically on parameter choices. Of course, this dramatic

86

Downsampling

DS=3
DS=4

DS=5

1 2 4 8 16 32 64 128 256 512

0

100

200

300

400

E
xe

cu
tio

n
T

im
e

(s
ec

)

D

1 2 4 8 16 32 64 128 256 512
0

100

200

300

400

E
xe

cu
tio

n
T

im
e

(s
ec

)

HDS = 3

HDS = 2

HDS = 1

Hash Downsampling
B

Number of Pages

10 iterations
9 iterations

1 2 4 8 16 32 64 128 256 512
0

100

200

300

400

E
xe

cu
tio

n
T

im
e

(s
ec

)

Number of Iterations
11 iterations

C

Masking Ratio

20%
30%

40%

50%

60%

0

100

200

300

400

500

600
E

xe
cu

tio
n

T
im

e
(s

ec
)

1 2 4 8 16 32 64 128 256 512

A

speed-up would be worthless if the faster algorithms produced inferior results. However, as we shall show

empirically in Section 4.5.4.5.2, the results of all algorithms are virtually identical.

Figure 49: The effect of parameters on our algorithm. We test on artificial books with polynomial
distortion and each result is averaged over ten runs. The bold/red line represents the parameters
learned from just the first two pages

In the random projection process, the length of the hash signature is affected by two parameters, which

are the hash downsampling scale hds and masking ratio mask. When the signature is shorter, the probability

of collisions increases (including false positives that must be checked and dismissed). Thus, when we

remove more pixels from a window by increasing mask, the running time will increase, as shown in Figure

49.A. As we can easily see in Figure 37, if we continuously remove pixels, eventually all windows will

collide to the same shape (with pure white or no content left).

Similar to mask which has a linear effect, hds has a quadratic effect on the length of the hash signature,

so if we change it, the running time may change significantly as shown in Figure 49.B. Recall that hds=2,

87

meaning that we condense 4 pixels to just one. The number of iterations has very little effect (Figure 49.C),

which is also true for the bioinformatics algorithm that inspired us [112].

The downsampling scale ds parameter (cf. Figure 36) can reduce the search space and increases the

quality of the motifs by allowing a greater invariance to noise. Figure 49.D shows that if we fix all other

parameters and vary this parameter, the total running time will increase as ds increases. When ds increases,

the downsampled document, DD (cf. Table 10), contains fewer pixels and also less information to represent

any figure; so after random projection there will be more spurious collisions, increasing the number of false

positives that must be checked and thus increasing the running time.

As with any approximate algorithm, the quality of the result is important. Hence, we calculate the

quality of top-20 motifs by using their total distance. Figure 50 shows the average distance for different

parameters values, compared to the exact search algorithm.

Figure 50: The average distance from top-20 motifs from our algorithm and the exact search
algorithm. The bold/red line shows the default parameters. This shows that the quality of motifs is
not sensitive to different parameter settings and very close to the result from the exact search
algorithm

2 4 8 16 32 64 128 256 512
0

5

10

15

20

25

30
Mask 60%
Mask 50%
Mask 40%
Mask 30%
Mask 20%
BruteForce

A
ve

ra
g

e
D

is
ta

nc
e

Masking Ratio

A

2 4 8 16 32 64 128 256 512
0

5

10

15

20

25

30

A
ve

ra
g

e
D

is
ta

nc
e

i teration=5
iteration=9
iteration=10
iteration=11
iteration=20
BruteForce

Number of Iterations

C

Number of pages

2 4 8 16 32 64 128 256 512
0

5

10

15

20

25

30

A
ve

ra
g

e
D

is
ta

nc
e

HDS=2 (4:1)
HDS=3 (9:1)
BruteForce

Hash Downsampling

B

88

Here the quality of the top twenty motifs is simply the sum of all twenty distances of each motif pair

(i.e., Definition 3). As Figure 50 shows, the quality of DocMotif is very good under any parameter setting,

even for small books, but as the size of the book increases, the results are essentially indistinguishable from

the exact search, which takes about 67,500 times longer.

4.5.5. Data Mining Palm Leaf Manuscripts

We conclude by noting that our algorithm is currently being evaluated for mining massive (four

million leafs) archives of palm leaf manuscripts such as the one shown in Figure 51, for medical

knowledge.

Figure 51: An example of a palm leaf manuscript

Figure 52 shows six motifs discovered from a 52-page palm leaf manuscript. In addition to discover

similar figures from manuscripts, these examples demonstrate that our algorithm also work well on

discovering motifs in handwritten documents. Note that we did not do much on image processing such as

text line detection or text segmentation, except image binarization. However, the high quality motifs in a

handwritten document are achieved as shown in Figure 52.

Figure 52: Six example motifs from a palm leaf manuscript. The window size is set to 30×100
pixel2

89

Because it is an interesting and visual example, we present this example as a one-minute long

YouTube video [117]. The video demonstrates the speed, robustness and accuracy of our algorithm, even in

the face of complex and degraded texts.

4.6 Theoretical Analysis

In this section we briefly introduce some results that make much of the discussion of parameter setting

in the previous section moot. In essence, we show that, given some very mild assumptions, we can simply

derive the best parameters to use, given just the user-required confidence in finding the true motif.

Concretely, if an end-user wishes to find the true best motif in a text, with a confidence conf (conf is the

probability that the returned motif is the one the brute force search would have returned), she can use the

following results to find the appropriate parameters to use.

In this analysis, we assume that there is only one motif in the document with distance d and mean and

standard deviation distribution of the distance between each pair of windows µ and σ, respectively. The

window size is N=sx×sy. Note that if there is more than one motif in the given dataset, we still get the same

result because the content (or location of black pixels) in each non-related window are independent.

Theorem: If two windows of the motif collide with confidence at least conf, the probability that any

pair of windows will collide at most:

ݐ݅ ∗ ௨ିଵ + 2݇ݏܽ݉ ∗ ݐ݅ ∗ ఓାଵ∑௜ୀ଴ଶௗ݇ݏଶ݉ܽߪ (௜݅ଷ݇ݏܽ݉)/1

where the masking ratio mask can be defined by:

mask ≥
ଵே ቂ൫1 − (1 − ଵ/௜௧൯ଵ/ௗ(݂݊݋ܿ ∗ (ܰ − ݀ + 1) + ݀ − 1ቃ

The detail of mathematical proof is provided in Appendix. We can use these results to find the optimal

set of parameters in a four dimensional space. To give the visual intuition of this in one dimensional space,

we can hold 3 parameters fixed at reasonable values, and use the above theorems to plot the number of

false positives created (hence, the time taken) vs. the value of the free parameter. In Figure 53.top we allow

the masking ratio to vary, and in Figure 53.bottom we allow the number of iterations to vary.

90

Figure 53: The effects of masking ratio (top) and the number of iterations (bottom) parameters on
the spurious collision ratio, Given there is least one motif with a distance d in the data. The figures
for other values of d are at [118]. Here we fixed µ=100 and σ=10

These results bode very well for our algorithm. In the first case, they tell us that if the masking ratio is

anywhere from about 60% to 90%, our algorithm will produce very few false positives that need to be

eliminated, thus giving our algorithm essentially sub-linear time performance.

Note that in the latter case, the minimum value is at 4. After that, the cost very slowly rises, because

we have found (with very high probability) the true motif, and the additional iterations have a small

overhead while contributing nothing to the speedup.

We have tested these theoretical results with experiments, and found that our theoretical model is

accurate, but slightly conservative. In other words, setting the parameters is even easier than predicted here.

4.7 Conclusions

We have said little about related work thus far because there is little that does exactly what we

propose. Xi et al. do consider “Finding Motifs in a Database of Shapes” [115]. However, they make two

critical assumptions that are not true in our case (or in general): that the individual shapes can be perfectly

Number of Iterations
1 2 4 6 8 10 12 14 16 18 20

0

0.1

0.2

0.3

0.4

0.5

P
ro

ba
bi

lit
y

of
 C

ol
lis

io
n Masking Ratio (%)

10 20 30 40 50 60 70 80 90 100

0

0.2

0.4

0.6

0.8

1

P
ro

ba
bi

lit
y

of
 C

ol
lis

io
n

d = 4

Sample motif with d = 4

d = 4

Time taken
equivalent to

brute force search

Time taken
equivalent to

constant search

Time taken
equivalent to

constant search

91

extracted, and that all shapes can be represented by a closed contour. Of course, our work does borrow

heavily from the huge literature on motif discovery in bioinformatics; see [112] and the references thereof.

Likewise, we have exploited both the classic ideas of the GHT [83], and the recent extensions by [116].

There is an active community working on computerized historical document analyses [95][98][105]:

however, while great many papers address query-by-content, including [94][102][107] the task of motif

discovery in this domain has not been addressed thus far.

We have shown the first general technique for the unsupervised discovery of repeated patterns both

within and between texts. We have demonstrated that our algorithm is scalable, it can produce meaningful

results that are useful to domain experts, and its parameters are easy to set. In future work we plan to

integrate our ideas with (OCRed) text mining algorithms, and leverage off very recent theoretical results in

bioinformatics to remove the need to set any parameters in our algorithm.

92

Chapter 5: Some Data Must Be Ignored

Time series data is pervasive across all human endeavors, and clustering is arguably the most

fundamental data mining application. Given this, it is somewhat surprising that the problem of time series

clustering from a single stream remains largely unsolved. Most work on time series clustering considers the

clustering of individual time series that have been carefully extracted from their original context, e.g., gene

expression profiles, individual heartbeats or individual gait cycles. The few attempts at clustering time

series streams have been shown to be objectively incorrect in some cases, and in other cases shown to work

only on the most contrived synthetic datasets by carefully adjusting a large set of parameters. In this work,

we make two fundamental contributions that allow for the first time, the meaningful clustering of

subsequences from a time series stream. First, we show that the problem definition for time series

clustering from streams currently used is inherently flawed, and a new definition is necessary. Second, we

show that the Minimum Description Length (MDL) framework offers an efficient, effective and essentially

parameter-free method for time series clustering. We show that our method produces objectively correct

results on a wide variety of datasets from medicine, speech recognition, zoology, gesture recognition, and

industrial process analyses.

5.1 Introduction

Time series data is pervasive across almost all human endeavors, including medicine, finance, science,

and entertainment. As such it is hardly surprising that it has attracted significant attention in the research

community [119][122][143][150]. Given the ubiquity of clustering both as a data mining application in its

own right and as a subroutine in other higher-level data mining applications (i.e., summarization, outlier

discovery, rule-finding, preprocessing for some classification algorithms etc.), it is surprising that the

problem of time series clustering from a single time series stream remains largely unsolved, in spite of

significant efforts by the community [119][122][150]. Most work on time series clustering considers the

clustering of individual time series that have been carefully extracted from their original context, say, gene

93

expressions or extracted signals such as individual heartbeats. The few attempts at clustering the contents

of a single time series stream have been shown to be objectively incorrect in some cases [136], and in other

cases shown to work only on the most contrived datasets by carefully adjusting a large set of parameters. In

this work, we make two fundamental contributions. First, we show that the problem definition for time

series clustering from streams currently used is inherently flawed. Any meaningful algorithm must avoid

trying to cluster all the data. In other words, the subsequences of a time series should only be clustered if

they are clusterable. This seems to open up a “chicken and egg” paradox. However, our second contribution

is to show that the Minimum Description Length (MDL) framework offers an efficient, effective and

essentially parameter-free solution to this problem. MDL has had a significant impact in bioinformatics and

data mining of discrete objects such as natural language [133], but has yet failed to have a significant

impact on real-valued data mining [132][140][146].

We begin by giving the intuition behind the fundamental observation that motivates and informs our

work, that clustering of time series from a single stream of data requires ignoring some of the data.

5.1.1. Why Clustering Time Series Streams requires Ignoring some Data

The observation motivating our efforts to cluster time series is that any attempt that insists on trying to

explain all the data is doomed to failure. To see this consider one of the most obviously “clusterable” time

series data sources: motion-captured sign language, such as American Sign Language (ASL). There has

been much recent work on nearest-neighbor classification of such data, with accuracies greater than 90%

frequently reported [119]. This suggests that a long data stream of ASL might be amenable to clustering,

where each cluster maps to a distinct “word” or “phrase.”

However, all such data contains Movement Epenthesis (ME) [126][150]. During the production of a

sign language sentence, it is often the case that a movement segment needs to be inserted between two

consecutive signs to move the hands from the end of one sign to the beginning of the next. These ME

segments can be as long as—or even longer than—the true signs, and are typically not performed with the

precision or repeatability of the actual words, since they have no meaning. Recent sophisticated sign

94

language recognition systems for continuous streams have begun to recognize that “automated sign

recognition systems need a way to ignore or identify and remove the movement epenthesis frames prior to

translation of the true signs” [150].

What we observed about ASL as a concrete and intuitive example matches our experience with dozens

of other datasets, and indicates that this is a pervasive phenomenon. We believe that almost all datasets

have sections of data that do not represent a discrete underlying behavior, but simply a transition between

behaviors or random drifts where no behavior is taking place. In most datasets that we have examined, such

sections constitute the majority of the data. If we are forced to try to model these in our clusters, they will

swamp the true significant clusters. We can best demonstrate this effect, and hint at our proposed solution

by an experiment on a discrete analogue of ASL time series, in this case English text.

We emphasis that this is just a expository example, and if we were really assigned to cluster such text

data we could do better than the attempt shown below.

Consider the following string D, which from left to right mentions three versions of the name David

(English, Persian, Yiddish) and three versions of the name Peter (English, Croatian, Danish). Note that all

names have five letters each, making this problem apparently simple.

David enjoined Peter who identified Davud son of Petar friend to Dovid and Peder, to do what...

Here the words between the names are exactly the epenthesis previously referred to. To make it more

like our time series problem, we can strip out the punctuation and spacing, leaving us:

davidenjoinedpeterwhoidentifieddavudsonofpetarfriendtodovidandpedertodowhat

The discrete analogue of the time series clustering algorithm in [128] would begin by extracting all the

subsequences of a given fixed length. Let us assume for simplicity the length five is used, and thus the data

is transformed into:

david
avide
viden
idenj
...
owhat

95

In Figure 54 we show representative clusters for two values of K, if we perform partitional clustering

as in [128] on this extracted data.

Figure 54: Representative partitional clusters from dataset D for two settings of K

Note that while the cluster of the name variants of David is discovered, we find that under any setting

of K there are equally significant meaningless clusters, for example {nofpe, nedpe, andpe}. This is in spite

of the fact that this can be considered a particularly easy task. Exactly 40% of the signal consists of data we

hope to recover, and we deliberately avoided name variants of different lengths (i.e., pieter, pere). In more

realistic settings we expect much less of the data to contain meaningful signals. Note also that the problem

is not mitigated by using other clustering variants. The problem is inherent in the false assumption that a

clustering of a single stream that must explain all such data could ever produce meaningful results [136].

5.1.2. How MDL Can Help

In contrast to the previous section, it is instructive to see what our proposed algorithm will do in this

case. While the details of our algorithm are not introduced until Section 5.4, we can still outline the basic

intuition here.

The original string D has a bit-level representation whose length we denote as DL(D). Our algorithm

can be imagined as attempting to losslessly compress the data by finding repeated structure in it. As there is

little exactly repeated structure, we must find approximately repeated structure and encode the differences.

For example, if we find the approximately repeated versions of the name “david”, we can think of one

version as being a model or hypotheses for the data, and encode only the difference between the other

occurrences:

Three clusters of equal diameter when K = 20

{whoid, davud, njoin, dovid, david}
{ified, frien, oined, oiden, viden, vidan}
{todow, todov, sonof}

Three clusters of equal diameter when K = 40
{avuds, ovida, avide}
{davud, dovid, david}
{nofpe, nedpe, andpe}

96

 H1 = {1:david}

 1____enjoinedpeterwhoidentified1___u_sonofpetarfriendto1_o___andpedertodowhat

In terms of MDL we can see david as a partial hypothesis H1 or description of the data. This model has

some size, which is simply the length in bits of the word DL(H1) = DL(david). In addition, the size of the

remaining data was both reduced by factoring out the common structure and (slightly) increased by the

overhead of the pointers to the dictionary, etc4. When encoded with the hypothesis, the length (in bits) of

the description of the data is given as DL(D│H1). The total cost of both the hypothesis and the data

encoded using the hypothesis is just DL(H1) + DL(D│H1).

Because this sum is less than the length of the original data DL(D), we feel that we are making

progress. Perhaps, however, there is more structure we can exploit. A brief inspection of the data suggests

another model, H2, that exploits both repeated names:

 H2 = {1:david 2:peter}

 1___enjoined2___whoidentified1___u_sonof2___a_friendto1_o___and2__d__todowhat

Because DL(H2) + DL(D│H2) < DL(H1) + DL(D│H1), we prefer this new hypothesis as a model of the

data.

Are we now done? We can try other hypotheses. For example, we could consider the hypothesis H3 =

{1:david 2:peter 3:ono}, attempting to exploit the two occurrences of a pattern “o*o” (i.e.,..sonof.. and ..to

do..). However, because this pattern is short, and only has two occurrences, we cannot break even with the

cost of the overhead:

DL(H2) + DL(D│H2) < DL(H3) + DL(D│H3)

Because we cannot find any other hypotheses that produce a smaller model, we invoke the MDL

principle to claim that H2 = {1:david 2:peter} is the best model of the data D. Here best means something

4 In this toy example, we are deliberately glossing over the concrete details of how the pointers are
represented and how the amount compression achieved is measured, etc. [139]. We will formalize these
details in Section 5.3.

97

beyond simply achieving the greatest compression. We can claim that MDL approach has achieved the

most parsimonious explanation of the data, recovering the true underlying structure

[127][131][134][133][139]. In at least this case, where the sentence was contrived as an excuse to use two

names trice, MDL did recover the true underlying structure.

Note that while our informally stated algorithm does manage to recover the two embedded clusters, it

does not attempt to explain all of the data. This is a critical observation, in order to cluster a single stream

of data, be it discrete or real-valued, we must be able to represent and rank solutions that ignore some of the

data.

5.2 Related Work

The tasks of clustering multiple time series streams, or many individual time series (i.e., gene

expressions) have received significant attention, but the solutions do not inform the problem we consider

here, the task of clustering a single time series stream. The most commonly referenced technique for

clustering a single time series stream is presented in [128] as a subroutine for rule discovery in time series.

In essence the method slides a fixed length window across the stream, extracting all subsequences which

are then clustered with K-Means. The reader may have already spotted a flaw here; the algorithm tries to

explain all the data. In [136] (and follow-up works by more than twenty other authors [123][124][129]), it

was shown that this method can only produce cluster centers that are sine waves, and the output of the

algorithm is essentially independent of the input. Note that even if the algorithm did not have these fatal

flaws, it assumes the cluster all have equal length, and that we know the correct value of K. As we shall

show, our method requires neither assumption.

Since the problem with [128] was pointed out in 2005 [136], at least a dozen solutions have been

proposed. In Section 5.5.3 we show that the most referenced of these works [124] does not produce

objectively correct results, even after extensive parameter tuning by the original authors on a relatively

simple problem.

98

While there have been some efforts to use MDL with time series [144][147], they all operate on a

quantized representation of the data. This has the disadvantage of requiring three parameters (cardinality,

dimensionality and window size), eliminating the greatest advantage of MDL, its intrinsically parameter-

free nature.

While MDL has had surprisingly little impact in data mining, it is a tool of choice for many

bioinformatics problems. For example, working with RNA data, Evans et. al. have proposed a method

using data compression and the MDL principle that is capable of identifying motif sequences, some of

which were discovered to be miRNA target sites implicated in breast cancer [131]. Moreover, the authors

showed the generality of their ideas by applying them, unmodified, to the problem of network traffic

anomalies [132]. There is also a significant work on using MDL to mine graphs [134][143], dating back to

classic work by Cook et al. [127].

Finally, we note that the task was informed by, and may have implications for many other time series

problems, including time series segmentation5 [122]. To see why, let us revisit the technique of text

analogy. It is not obvious how one should segment the three concatenated words “hisabasiais”. Perhaps the

best we could do is to exploit the known frequencies of bigrams and trigrams, etc. In fact, most time series

segmentation algorithms essentially do the real-valued equivalent of this [122]. However, if we see another

such triplet of three concatenated words from later in the same stream, for example “withoutabasiais”, we

can immediately see that “abasia” must be a word6.

5 The phrase “time series segmentation” is unfortunately overloaded. It can mean approximating the data
with the smallest number of piecewise polynomial segments for a given error threshold, or as here;
extracting small, discrete, semantically meaningful segments of data [122].

6 Abasia is the inability to walk due to impaired muscle coordination.

99

5.3 Background and Notation

5.3.1. Definitions and Notation

We begin by defining the data type of interest, time series:

Definition 1 A time series T is an ordered list of numbers. T = t1, t2 ,...,tm. Each value ti can be

any finite number (e.g., for two-byte values they could be integers in range [-32,768, 32,767]) and m

is the length of time series T.

Before continuing, we must make and justify a choice. The MDL technique that is at the heart of our

algorithm requires discrete data, but most time series datasets use four or eight bytes per value, and are thus

real-valued [141]. Our solution is simply to cast the real-valued numbers into a reduced cardinality version.

Does such a reduction lose meaningful information? To test this, we did one nearest-neighbor classification

on eighteen public time series datasets, for cardinalities from the original four bytes down to a single bit.

Figure 55 shows the results. As we can see, we can drastically reduce cardinality without reducing

accuracy. The original four-byte cardinality is typically a by-product of file format convention or hardware

specification, and not a claim as to the intrinsic cardinality of the data.

Figure 55: Classification accuracy on 18 time series datasets as a function of the data cardinality.

Even if we reduce the cardinality of the data from the original 4,294,967,296 to a mere 64 (vertical

bar), the accuracy does not decrease

We note that there may be other things we could have done. For example, the MML framework [149]

which is closely related to MDL would allows us to work in original continuous space. However, we

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Deceasing Cardinality

C
lassification

 A
ccuracy

100

choose MDL because it is more familiar and it allows for a more intuitive explanation of our algorithms.

Likewise, we have at least a dozen choices of how to discretize the time series (adaptive binning, uniform

binning, SAX etc.); however, after testing all published algorithms and finding it made little or no

difference, we settled on the simple idea shown below in Definition 3.

Based on the observations in Figure 55, we will simply use 64-value (6-bit) cardinality in the rest of

this work.

While the source data is one long time series, we ultimately wish to cluster it into sets of shorter

subsequences:

Definition 2 A subsequence Ti,k of a time series T is a short time series of length k which starts

from position i. Formally, Ti,k = ti,ti+1,..,ti+k-1, 1 ≤ i ≤ m-k+1.

As we previously noted, we are working in a space of reduced cardinality. Because comparing time

series with different offsets and amplitudes is meaningless [136], we must (slightly) adapt the

normalization process for our discrete representation:

Definition 3 A discrete normalization function DNorm is a function to normalize a real-valued

subsequence T into b-bit discrete value of range [1,2b]. It is defined as followings:

(ܶ)݉ݎ݋ܰܦ = ݀݊ݑ݋ݎ ቆ൬ ܶ − ݔܽ݉݊݅݉ − ݉݅݊൰ ∗ (2௕ − 1)ቇ + 1

where min and max are the minimum and maximum value in T, respectively.

Based on the results in Figure 55, b is fixed at 6 for all experiments. We need to define a distance

measure; we use the ubiquitous Euclidean distance measure:

Definition 4 The distance between two subsequences Ti,k and Tj,k is the Euclidean distance (ED)

between Ti,k and Tj,k. Both subsequences must be in the same length. Hence, it is:

)ݐݏ݅ܦ ௜ܶ,௞, ௝ܶ,௞) = ඨ෍ ൫ݐ௜ା௟ − ௝ା௟൯ଶ௞ିଵ௟ୀ଴ݐ

101

As we shall see later, the Euclidean distance is not general enough to support clustering from time

series streams; nevertheless, it is still a useful subroutine to speed up our more general measures. As

generally noted [121][137][148][151], the Euclidean distance is a fast and robust distance measure.

For both the full time series T and any subsequences derived from it, we are interested in knowing how

many bits are necessary to represent it. Normally the number of bits depends solely on the data format,

which is typically a reflection of some arbitrary choices of hardware and software. In contrast, we are

interested in knowing the minimum number of bits to exactly represent the data. In the general case, this

number is not calculable, as it is the Kolmogorov complexity of the time series [140]. However, there are

numerous ways to approximate this, using Huffman coding, Shanon-Fano coding, etc. Because entropy is a

lower bound on the average code length from any such encoding, we can use the entropy of the time series

as its description length:

Definition 5 The entropy of a time series T is defined as following. For special case when P = 0, ܲ logଶ ܲ is defined as 0. ܪ(ܶ) = − ෍ ܲ(ܶ = (ݐ logଶ ܲ(ܶ = ௧(ݐ

We can now define the description length of a time series.

Definition 6 A description length DL of a time series T of length m is the total number of bits

required to represent it, that is DL(T)= m*H(T).

The DL of a time series using entropy clearly depends on the data itself, not just arbitrary

representational choices. Figure 56 shows four time series, which all require 250 bytes to characterize in

the original representation, but which have differing entropies and thus different description lengths.

Figure 56: Four time series of length 250 and with a cardinality of 256. Naively all require 250

bytes to represent, but they have different description lengths

0 50 100 150 200 250

A

0

250
B

C

D

102

The reader may have anticipated the following observation. While the (slightly noisy) straight line B

has high entropy, we would subjectively consider it a simple shape. It is simple given our belief

(hypothesis) that it is a slightly corrupt version of a straight line. If H is this hypothesis, then we can

consider instead the entropy of a time series B', which as shown in Figure 57, is simply B encoded using H,

and written as B' = (B│H). As a practical matter, to use H to encode B, we simply subtract H from B to get

a difference vector B', and encode this simpler vector B'.

Figure 57: Time series B can be represented exactly as the sum of the straight line H and the
difference vector B'

While the vector B' is also of length 250, it has only 10 unique values, all of which are small in

magnitude, thus its entropy rate is only 2.51 bits. In contrast, B has 172 unique values and an entropy rate

of 7.29. Note that if we are given only B', we cannot reconstruct B; we also need to know the slope and

mean of the line. Thus, when reporting the overall number of bits for B', we must also consider the number

of bits it takes to encode the hypothesis (the line H). We can encode the line simply by recording the

heights’ two locations, the first and last points7, each of which requires a single byte. Thus, the number of

bits required to represent B using our hypothesis is:

DL(B) = DL(H) + DL(B│H) = (2*8) + (250*2.51) = 643.5 bits

which is significantly less than the 1,822 bits required for the naive encoding of B without any

hypothesis.

7 If we know the time series is z-normalized, we only need one byte to record the line.

0 50 100 150 200 250

0

250

B H

B’ which is B-H, denoted as B’ is B given H
B’ = (B|H)

103

Note the straight line would not help in reducing the number of bits required to represent time series C,

but using a sine wave as the hypothesis would significantly help. This observation inspired one of the

principle uses of MDL, model section [146]. Statisticians use this principle to decide if some noisy

observations suggest an underlying physical model is produced by, say, a piecewise linear model as

opposed to a sinusoidal model. However, our work leverages off a simple but unexploited observation. The

hypotheses are not limited to well-defined functions such as sine waves, wavelet basis functions,

polynomial models, etc. The hypothesis model can be any arbitrary time series. We will see how this

observation can be exploited in detail later, but in brief: if k subsequences of a stream truly form a cluster,

then it should be possible to store them in less space by encoding them as a set of difference vectors to the

mean of all of them. Thus, we have a potential test to guide our search for clusters.

Having seen this intuition, we can now formalize the notion of hypothesis as it pertains to our problem:

Definition 7 A hypothesis H is a subsequence used to encode one or more other subsequences of

the same length.

As a practical matter, the encoding we use is the one visualized Figure 57, we simply subtract

hypothesis H from the target subsequence(s) and encoded the difference vector(s). We could encode the

difference vector(s) with, say, Huffman encoding, but as we noted in Definition 5, we really only care

about the size of the encoding, so we simply measure the entropy of the difference vector(s) to get a lower

bound of the size of encoding.

A necessary (but not sufficient) condition to place two subsequences H and B into the same cluster is:

DL(B) > DL(B│H)

This inequality requires that the subsequence B takes fewer bits to represent when H is used as a basis

to encode it, encoding the intuition that the two subsequences are related or similar.

We can hint at the utility of thinking about our data in terms of hypothesis encoding by revisiting our

text example. When a clustering text stream, would it be better to merge A or B?

A = {david, dovid}, B = {petersmith, petersmidt}

104

The first case allows a tight cluster of two short words, is that better than a looser but longer cluster B?

The problem is exacerbated when we consider the possibility of clusters with more than two members: how

would we rank the relative utility of the tentative cluster C = {bob, rob, hob}?

Normally, clustering decisions are made by considering Euclidean distance (or its text counterpart,

Hamming distance); however, Euclidean distance only allows meaningful comparisons when all the

subsequences are the same length. The solution for text, to use the length-normalized Hamming distance,

cannot be generalized here. The reason is subtle and underappreciated, suppose we have two subsequences

of length k that are distance d apart. If we truncate the end points and measure the distance again, we might

find it has increased! This is because we should only compare z-normalized time series when using

Euclidean distance8, and after (re)z-normalizing the slightly shorter subsequences, we may find they have

grown further apart. Thus, the z-normalized Euclidean distance function is not linear in length and is not

even monotonic.

We have already hinted at the fact that the DL function can use extra information, by using “given”,

i.e., DL(B'│H) is the DL of B' given H. We can now formalize this notion:

Definition 8 A conditional description length of a subsequence A when a hypothesis H is given

is (ܪ|ܣ)ܮܦ = ܣ)ܮܦ − (ܪ

Recall from Figure 56 and Figure 57 that the DL of a subsequence depends on the structure of the data.

For example, a constant line has a very low DL, whereas a random vector has a very high DL. If A and H

are very similar, their difference (A-H) will be close to a constant line and thus have a tiny DL. In essence

then, the DL function gives us a parameter-free test to see if two subsequences should be clustered together.

8 The solution of not normalizing the time series would mitigate this problem, but measuring the Euclidean
distance between two time series with different offsets or amplitudes produces meaningless results [136].

105

We generalize the notion of DL to multiple sequences next. We can apply the same spirit by using a

hypothesis to calculate the minimum number of bits required to keep a cluster. We call this description

length of a cluster:

Definition 9 A Description Length of a Cluster (DLC) C is the number of bits needed to

represent all subsequences in C. In this special case, H is the center of the cluster. Hence, the

description length of cluster C is defined as:

(۱)ܥܮܦ = (ܪ)ܮܦ − (ܪ|ܣ)ܮܦ୅∈େݔܽ݉ + ෍ ஺∈۱(ܪ|ܣ)ܮܦ

The above DLC gives us a primitive to measure the reduction in bits achieved by encoding data with a

hypothesis. The two right terms in the equation record the number of bits needed to represent the cluster C.

Concretely, if the cluster C contains n subsequences, we need to keep at most n subsequences for

reconstructing C. We choose to keep the hypothesis H and the n-1 smallest differences. Therefore, the

description length of the cluster C is the combination of the description length of the hypothesis H and the

minimum of any n-1 conditional description lengths with respect to H.

Our clustering algorithm is essentially a search algorithm. Three operators avail of the DLC definition

to test how many bits a particular choice can save. Thus, these three operators fall under the umbrella

definition of bitsave:

Definition 10 A bitsave is the total number of bits saved after applying an operator that creates a

new cluster, adds a subsequence to an existing cluster, or merges two existing clusters together. It is

the difference in the number of bits before and after applying a given action:

bitsave = DL(Before) - DL(After)

In detail, the bitsave for each operator is defined as following:

1) Creating a new cluster C' from subsequences A and B

 bitsave = DL(A) + DL(B) - DLC(C')

2) Adding a subsequence A to an existing cluster C

 bitsave = DL(A) + DLC(C) - DLC(C')

106

 where C' is the cluster C after including subsequence A.

3) Merging cluster C1 and C2 to a new cluster C'.

 bitsave = DLC(C1) + DLC(C2) - DLC(C')

Note that, as we discussed earlier, we do not use Euclidean distance to make decisions about which

subsequences to place into which clusters. We use only use Euclidean distance in two subroutines: motif

discovery and finding the closest subsequence from a given cluster center. Next, we will define closest

subsequence or the nearest neighbor:

Definition 11 A nearest neighbor of the given subsequence A is the subsequence B such that

Dist(A,B) ≤ Dist(A,X) for any subsequences X

Another definition, which we borrow from the literature [103], are time series motifs.

Definition 12 A time series motif is pair of subsequence A and B such that

Dist(A,B) ≤ Dist(X,Y) for any subsequences X≠Y, A≠B

Similar to the nearest neighbor, the time series motif contains two most similar subsequences in the

given time series. We use the simple-but-robust Euclidean distance as dist function (cf. Definition 4) for

finding both time series motif and the nearest neighbor of the given subsequence. Note that if subsequence

X and Y are overlapped, it may lead to the discovery of trivial matches. For more details about the time

series motif, we refer the reader to [103]. In next section, we will explain our algorithm in detail.

5.4 Clustering Algorithm

Having introduced the necessary notation, we are finally in a position to introduce our algorithm. We

begin by giving a simple text and visual intuition in the next section, and follow by giving detailed and

annotated pseudo code in Section 5.4.2.

107

0.5 1 1.5 2 2.5 3 x 10 50

50 100 150 200 250 3000

50 100 150 200 250 3000

5.4.1. The Intuition behind Stream Clustering

Recall that our input is a single time series like the one shown in Figure 58.bottom and our required

output is a set of clusters -- possibly of different lengths and sizes. Recall that the union of all the

subsequences in this set of clusters may only cover a fraction of the input time series. Indeed, for

pathological cases we are given a pure noise time series, we want our algorithm to return a null set of

clusters. In Figure 5 we show our running example. It contains the interwoven calls of two very different

species of birds.

Figure 58: Two interwoven bird calls featuring the Elf Owl, and Pied-billed Grebe are shown in

the original audio space (top), and as a time series extracted by using MFCC technique (middle)

and then clustered by our algorithm (bottom).

Our proposed clustering algorithm is a bottom-up greedy search over the space of clusters. For the

moment, we will ignore the computational effort that it requires and simply explain what is done, leaving

the how it is (efficiently) done for the next section.

Our algorithm is an iterative merging algorithm similar in spirit to an agglomerative clustering

algorithm [135]. However, the differences are telling and worth enumerating:

• Our algorithm typically stops merging before explaining all the data, thus producing a partitioning a

subset of the data, not producing a hierarchy of all the data.

108

• Agglomerative clustering algorithms are typically implemented such that they require quadratic space;

our algorithm has only linear space requirements9.

• Most critically, agglomerative clustering algorithms assume the K items of a fixed dimensionally

(subsequence length) to be clustered are inputs to the algorithm. However, we do not know how many

items will ultimately be clustered, or even how long the items will be.

Similar to agglomerative clustering, we have a search problem that uses operators, in our case, create,

add, and merge (Definition 10). When the algorithm begins, only create is available to us.

We begin by finding the best initial pair of subsequences to combine so that we may create a cluster of

two items. To find this best pair, we treat one as a hypothesis and see how well it encodes the other

(Definition 8). The pair that reduces the bit cost the most is the pair of choice. This is shown in Figure 59 as

Step 1.

Figure 59: A trace of our algorithm on the bird call data shown in Figure 58.bottom

9 Linear space agglomerative clustering algorithms do exist, but require highly multiply redundant
calculations to be performed, and are thus rarely used due to their lethargy.

Step 1: Create a cluster
from top-1 motif

Step 2: Create another cluster
from next motif

Step 3: Add subsequence to
an existing cluster

Step 4: Merge 2 clusters
(rejected)

Subsequences Center/Hypothesis

1 2 3 4
-4
-2
0
2

Step of the clustering processb
it

sa
ve

p
er

 u
n

it

Clustering stops here

Create
Add
Merge

109

There is a potential problem here. Even if we fix the length of subsequences to consider to a constant s,

the number of candidate pairs to consider is quadratic in the length of the time series, approximately O((m-

s)2/2). Furthermore, there are no known shortcuts that let us search this space in sub-quadratic time.

The solution to this problem is to note that Euclidean distance and conditional description length are

highly correlated where either of them is small. We can leverage off this fact because there exist very fast

algorithms to find the closest pair of subsequences (which are known as time series motifs [103]) under

Euclidean distance. So rather than a brute force search using the conditional description length, we do a fast

motif search and then test the motif pair’s conditional description length.

In the next stage of the algorithm, there are two operators available to us. We can either add a third

item to our existing cluster of size two, or we can create a new cluster, possibly of a different length. In

Figure 59 in Step 2, we can see that in this case our scoring functions suggest creating a new cluster is the

better option in.

In the subsequent phase of the algorithm, it happens that all operators are available to us: we could try

to create a new cluster, we could merge our two existing clusters, or we could add a subsequence to one of

our two clusters. As we can see in Figure 59, Step 3, the last option is chosen.

In the next iteration, the cheapest operator was to merge our two existing clusters as shown in Step 4.

However, doing this does not decrease the size of the representation—it increases it. As such, our

algorithm terminates after returning the two clusters it had created up to Step 3. The only other way that

our algorithm can terminate is if it simply runs out of data to cluster.

5.4.2. Our algorithm in detail

As we noted in the last section, our algorithm is a bottom-up search algorithm. The input is a single

time series, and the output is a set of clusters of subsequences. Our algorithm can cluster subsequences of

different lengths, and it does not require the number of clusters to be specified.

There are three operators in our search algorithm: create, add, and merge. In each step, we do all

(legal) operations and choose the operator which maximizes the number of bits saved as measure by bitsave

110

(Definition 10). The current clusters are updated with respect to that choice. The algorithm can terminate in

just two ways; either the best possible choice cannot save any bits, or all data is used up.

Most attempts to cluster time series [124][128][129] suffer from a surfeit of parameters. Our algorithm

allows essentially none. However, if we allow subsequences that are too short, we can get pathological

results in some cases. For example, there are only two possible z-normalized subsequences of length two.

Moreover, a user may wish to bias the algorithm towards certain clustering. For example, for electrical

power demand load we may be interested in weekly or daily patterns. Thus, as shown in Table 11, we

allow the user the option of suggesting an approximate length s.

Table 11: Main time series stream clustering algorithm

Input: ts : time series,
 s : approximate length
Output: cluster : final cluster of subsequences
1
2
3

4
5
6
7
8
9

10
11
12
13
14
15

16
17
18
19
20
21
22

23
24
25

cluster = {}
while bitsave>0
 bitsave=-∞, i=0
 // create new cluster
 for len = s to 2s
 (A,B) = MotifDiscovery(ts,len)
 C' = CreateCluster(A,B)
 bs.append(ComputeBitsave(C',A,B))
 cluster'.append(cluster ∪{C'})
 end for
 // add subsequence to an existing cluster
 for C ∈ cluster
 A = NearestNeighbor(ts,C)
 C' = AddToCluster(C,A)
 bs.append(ComputeBitsave(C',C,A))
 cluster'.append(cluster ∪{C'}-{C})
 end for
 // merge 2 clusters
 for C1 ∈ cluster
 for C2 ∈ cluster and C1~=C2
 C' = MergeClusters(C1,C2)
 bs.append(ComputeBitsave(C',C1,C2))
 cluster'.append(cluster ∪{C'}-{C1}-{C2})
 end for
 end for
 // update the result
 [bitsave index] = max(bs);
 cluster = cluster'(index);
end while

The algorithm begins by initializing the cluster set to empty, then it enters a loop until no more bits can

be saved (line 2) or it runs out of data. Within each iteration the loop, we perform three operators create

111

(line 4-9), add (line10-15), and merge (line16-22), and we keep the results of the most parsimonious

operator.

For the create process, we call a subroutine to find time series motifs under Euclidean distance using

the fastest currently known technique [103]. Because we do not know how long the subsequences in the

cluster should be, the algorithm runs MotifDiscovery multiple times on different lengths of motif (line

5). If the new cluster is created, then the number of bits saved is calculated (line 7). The temporary version

of updated clusters are kept (line 8) and used if the algorithm eventually chooses to create this cluster (line

24). Recall that the details of function ComputeBitsave are provided in Definition 9 and 10.

It is possible to add a subsequence into an existing cluster (line 10-15). We first find the most similar

subsequence in the input time series with respect to the center of a given cluster (line 11); we can achieve

this task by using any nearest-neighbor search algorithm [130], including brute force search. After the

search, the cluster is updated to include that nearest subsequence (line 12), the number of bits saved is

calculated, and the temporary clusters are recorded (line 13-14).

For our last operator, any pair of clusters is allowed to merge (line 18); we then compute the number of

bits saved for each pair, and record the temporary cluster.

After the algorithm measures the number of bits saved from all possible choices, the final cluster is

updated with respect to the choice that maximizes the number of bits saved (line 23-24).

We have glossed over an important detail: the two items being combined by the merge/add operators

may be of different lengths. To allow this critical flexibility, we use a simple data structure to record a

cluster. For any given cluster C, C.size records the number of subsequences in the cluster, C.cen is the

center of the cluster, C.seq is a set of subsequences in the cluster, and C.shift is a set of shift positions

(i.e., offsets) of each subsequence in C when it aligned to the C.cen. Note that to compute the conditional

description length (Definition 8), a subsequence and its hypothesis must be of the same length.

Table 12 shows how a new cluster can be created from two subsequences of the same size. Because

those two subsequences are from motif discovery under Euclidean distance, their align position is set to 0

(line 4). The center of new cluster is the average of those two subsequences. In Table 13, when we want to

112

add a subsequence A to an existing cluster C, the new center is created by the weighted average of the

current center and the subsequence (line 1). Because A is the nearest neighbor of C.cen, no offset

alignment is needed for A.

Table 12: Create Operator

Function C = CreateCluster(A,B)
1
2
3
4

C.size = 2;
C.cen = (A+B)/2
C.seq = [A; B]
C.shift= [0; 0]

Table 13: Add Operator

Function C = AddToCluster(C,A)
1
2
3
4

C.cen = (C.cen*C.size+A*1)/(C.size+1)
C.size = C.size+1
C.seq = [C.seq; A]
C.shift = [C.shift; 0]

Table 14: Merge Operator

Function C' = MergeClusters(C1,C2)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

C'.seq = [C1.seq; C2.seq]
C'.size = C1.size+C2.size
n1=C1.size, m1=length(C1.cen)
n2=C2.size, m2=length(C2.cen)
i=0
for off = 0 to m2
 cen1 = [C2.cen(1,off), C1.cen]
 cen2 = [C2.cen, C1.cen(1,m1+off-m2)]
 C'.cen = (cen1*n1+cen2*n2)/(n1+n2)
 C'.shift = [C1.shift+off; C2.shift]
 bs.append(ComputeBitsave(C',C1,C2))
 Ctmp.append(C')
end for
for off = 1 to m1
 cen1 = [C1.cen, C2.cen(1,m2+off-m1)]
 cen2 = [C1.cen(1,off), C2.cen]
 C'.cen = (cen1*n1+cen2*n2)/(n1+n2)
 C'.shift = [C1.shift; C2.shift+off]
 bs.append(ComputeBitsave(C',C1,C2))
 Ctmp.append(C')
end for
[bitsave index] = max(bs);
C' = Ctmp(index);

Table 14 shows how two clusters of different lengths can be merged into the same cluster. The new

cluster contains all subsequences from both clusters (line 1-2). Because two clusters may be different

lengths, we need to align them before finding the new center. As the Figure 59 example shows, Step 4

113

merges two clusters from Step 1 and Step 3. The red center in Step 1 is longer than the green center in

Step 3. We align the red center at all possible offsets (line 6), and then create a new center by averaging

two current centers. Parts of the new centers are created by weighted averaging from all (one or two)

centers that cover that part (line 7-9). To make a decision among all possible offsets, MDL plays an

important role again; at each offset, bitsave is calculated (line 11), and we choose the offset which can save

the maximum number of bits (line 22-23). Similar to the code in line 6-13, which evaluates all offsets when

C1.cen moves into C2.cen, the code in line 14-21 evaluates the inverse when C1.cen moves out of

C2.cen.

To summarize, our algorithm contains three operators (create, add, and merge), which all use MDL to

decide the best choice at each step of the clustering. As there are no known indexing/motif discovery

algorithms for MDL, we avail ourselves of two fast external modules that use Euclidean distance for motif

discovery [103] and nearest neighbor search [138]. Using Euclidean distance as a fast proxy for MDL is

possible because they are highly correlated when both are small.

5.5 Experimental Results

We begin by stating our experimental philosophy. To ensure our experiments are reproducible, all

codes/data are available at [152]. In addition, the site contains many more experiments omitted due to space

limitations. Furthermore, the website contains video animations of the clustering process for each dataset.

5.5.1. Comparison to Ground Truth

We begin by considering a time series for which we have access to the ground truth (albeit indirectly).

Consider the time series shown in Figure 60.top. A visual inspection gives a hint of some structure, but

even on this tiny example, it is not clear exactly what the clustering should be -- or even what is the natural

length for potential clusters. This dataset was obtained by taking an audio snippet of a recording of Edgar

Allen Poe’s poem “The Bells” and transforming it in to the Mel-Frequency Cepstral Coefficients (MFCC)

retaining only the first coefficient.

114

Figure 60: top) 29.8 seconds of an audio snippet, represented by the first coefficient in MFCC
space, and then annotated with colors to reflect the clusters. bottom) A trace of the steps use to
produce the clustering

The clustering we obtained looks subjectively intuitive; however, because of the original source

material we are in a unique position to do a more objective test. Table 15 shows the original source text

brushed with the colors reflecting the clustering obtained.

Table 15: The text corresponding to the time series shown in Figure 60, annotated by color/font

Original Order Grouped by Clusters

In a sort of Runic rhyme,
To the throbbing of the bells--
Of the bells, bells, bells,
To the sobbing of the bells;
Keeping time, time, time,
As he knells, knells, knells,
In a happy Runic rhyme,
To the rolling of the bells,--
Of the bells, bells, bells--
To the tolling of the bells,
Of the bells, bells, bells, bells,
Bells, bells, bells,--
To the moaning and the groan-
ing of the bells.

 bells,bells, bells
 Bells, bells, bells
Of the bells, bells, bells
Of the bells, bells, bells

 the throbbing of the bells
 the sobbing of the bells
 the tolling of the bells

To the rolling of the bells
To the moaning and the
 time, time, time
 knells, knells, knells

sort of Runic rhyme
groaning of the bells.

The results are not perfect with reference to the text version. Recall that we are only considering one of

the MFCC coefficients, instead of the ten plus typically used in speech processing. This allows some

collisions, such as “time” and “knells”. However, the structure recovered by our algorithm is significant.

Note that our clusters are of different sizes (three items, and two items) and of different lengths (from 55

points to 70 points). Also, note that we could have had a single cluster of eighteen occurrences of the word

200 400 600 800 1000 12000

1 2 3 4 5 6 7 8 9 10
Step of the clustering process

b
it

sa
ve

pe
r u

ni
t

-1

0

1

2

Clustering stops here

Create
Add
Merge

115

“bells.” However, that would have obfuscated the information that this word tends to be repeated in this

work, as in “bells, bells, bells.” These longer clusters are arguably more parsimonious.

5.5.2. Clustering a Noisy Dataset

In Figure 61, we show the results of clustering a noisy industrial dataset. The data comes from an

industrial wire winding process. The original data consists of seven dimensions; here we show only the

results of clustering the noisiest channel, labeled U1 (the results on the other channels are at [152]). Note

that the data has significant non-uniform noise, including spikes and dropouts. While we do not have access

to the ground truth here, the clusters, which have different sizes and length, clearly have the property of

being similar within a cluster and dissimilar between clusters. Note that approximately 26% of the data

remains unclustered.

Figure 61: top) Dimension U1 of the Winding dataset. middle) A trace of the clustering steps

produced by our algorithm. bottom) Representative clusters obtained.

0 200 400 600

500 1000 1500 2000 25000

dropouts

spikes

1 2 3 4 5 6 7 8 9 10 11 12 13 14

-2

0

2

Step in clustering process

b
it

sa
ve

p
er

 u
ni

t

Clustering stops here

Create
Add
Merge

116

5.5.3. Comparison to other Methods

As we noted above there are few candidate strawmen to compare our work to. Here we compare our

work to the most referenced work in the literature. In a sequence of papers, Chen proposes a series of fixes

for the stream clustering problem [123][124][125]. He demonstrates his ideas mostly on synthetic data;

however, as shown in Figure 62.right, he also tests on short section of the Koski heartbeat dataset.

Figure 62: left) A screen dump of fig.11 from [124]. The original caption read “TF Clustering:
Koski-ECG result”. right) An annotation of the clusters by a USC cardiologist

While the results are perhaps reasonable, it is not clear why we should have two clusters here since

there is clearly just one heartbeat. In addition, there is a subtle artifact noticed by cardiologist, Dr. Helga

Van Herle, whom we asked to examine this. The slight slope on the light-gray cluster show in Figure 62.left

is not in the data; it comes from the fact that the input data is not an integer multiple of beats, instead being

roughly 5.2 beats. Since the algorithm is trying to explain all the data, it must explain the extra P-wave by

averaging it into a place where it does not belong. Furthermore, as acknowledged in the original paper, the

algorithm requires the setting of several parameters and “magic numbers” (i.e., “we chose p as the number

of points in the time series divided by 15..”). Finally, we note in passing that the algorithm requires multiple

calls to a quadratic space and time (in the length of the time series) algorithm, which would make it

impractical for many real data mining problems. Our algorithm requires linear space.

In Figure 63, we show the clustering we achieved on exactly the same dataset. We believe the results

here are intuitively correct, discovering a complete single heartbeat as the cluster. Note that our algorithm

PR

S

Q
Artifact of
clustering
algorithm

117

500 1000 1500 20000

1 2 3 4
Step of the clustering process

B
its

av
e

pe
r

un
it

0
1
2
3 Clustering stops

here, because there
is essentially no
data left to cluster

Cluster
plotted

Stacked,
Dithered

explains 87.5% of the data; it does not try to explain the extra P-wave “bump” caused by the fact that we do

not have an integer number of heartbeats.

Figure 63: top) The same 2,000 data points from Koski-ECG as used in Figure 62. middle) A
trace of the clustering steps produced by our algorithm. bottom) the single cluster discovered has
five members

5.5.4. Scalability

From our algorithm in Section 5.4.2, assume that MotifDiscovery takes time O(T). In each

create step, MotifDiscovery is called multiple times to find motifs of different length; we run it at

most O(s) times. Because each subsequence is of length at least s, there are at most O(m/s) new clusters to

be created. This is why the running time for creating new clusters is O(T*s*m/s) = O(mT).

Assume that NearestNeighbor can be finished in time O(ms). The maximum number of

clusters we can have is O(m/s), and the original time series can be updated only when a new motif is

discovered, so the number of clustering steps (cf. line 2 in Table 11) is at most O(m/s). Thus, for add steps

we have O(ms * m/s * m/s) = O(m3/s).

For merge steps, if a cluster is created by merging k clusters so far, the number of subsequences in that

cluster is at most O(k). The length of its center is at most O(ks); therefore, the number of possible offsets is

O(ks), and bitsave calculation is finished in time O(k2s2). The maximum number of clusters we can have is

at most O(m/s), so we can have cluster of size k at most O(m/sk) clusters, and there are at most O(m/s) steps

118

5000 10000 15000 20000 25000 300001000

0

4000

8000

12000

T
im

e
(s

ec
)

Size of time series

Scalability16000

in our algorithm. This means that the running of merge steps is at most O(m/s*(m/sk)2*k2s2) = O(m3/s).

Hence, the total running time of our algorithm is at most O(mT+m3/s) where T is a running time for a motif

discovery. The empirical behavior is shown in Figure 64.

Figure 64: Running time of our algorithm on Koshi data when s = 350

To put these results in perspective, the ornithology lab we are working with has spent months

collecting data in the field (cf. Figure 58), so they are willing to wait the hour we require to cluster several

minutes of audio. Nevertheless, we believe that a 100X speedup will soon be possible simply by caching

some near redundant motifs calculations.

5.5.5. Disscusion of the MDL Choice

Now that the reader has gleaned some intuition for our algorithm and its utility for clustering data, we

will briefly revisit a discussion of why MDL on a discretized time series is our choice of measure to steer

the clustering search.

We cannot use Euclidean distance (or the related correlation or Dynamic Time Warping etc.

[130][138]) directly because it does not allow us to compare the relative merits of clusters of different

lengths or different sizes. In contrast, MDL does allow such meaningful comparisons. Moreover, in the

limited case when MDL and Euclidean distance can be compared (when time series lengths are the same),

we find that the two measures are highly correlated so long as they are small (if both are destined to be

large, it does not really matter how correlated they are). The relationship between Euclidean distance and

MDL is shown in Figure 65.

119

min max
min

max
ED vs MDL

ED

M
D

L

We work in the discrete space rather than the original continuous space because MDL requires it, and

because working with the discretized time series makes no perceptible difference in classification (as

shown in Figure 55) or in similarity search, indexing, motif discovery or outlier discovery.

Because of their relationship especially when the distance is small, to make an intractable problem

solvable (in term of acceptable running time), we can apply ED-based techniques to speed up the algorithm

in some modules. For example, instead of finding the pair of subsequences whose difference has the

smallest MDL, we can use the fast motif discovery algorithm from [103] to find the most similar pair using

Euclidean distance. We also can apply some techniques, such as early abandoning and lower bounding, in

searching a nearest subsequence of the existing clusters.

Figure 65: The relationship between Euclidean Distance (ED) of pairs of subsequences in a
random walk time series and MDL of their difference. Euclidean distance is calculated in original
continuous space but MDL is calculated in discrete space (64 cardinality)

Although Euclidean distance can dramatically speed up the running time of algorithm, sometimes the

most similar subsequences using Euclidean distance and MDL are not the same. This makes our final score,

bitsave, non-monotonically decreasing as the readers may have noticed in Figure 60.bottom and in Figure

61.middle.

120

5.6 Multi-dimensional clustering

In additional to a single dimensional time series clustering, our algorithm can be extended to cluster

multi-dimensional time series data. In many applications that contain more than one feature, the quality of

the clustering can be better if we can do clustering across different features or dimensions. For example, in

motion capture, some activities have key features only in the upper parts of the body, but lower parts are

keys in some activities.

5.6.1. Notation

For the sake of clarity, this section will define some necessary notations related to multi-dimensional

time series clustering; however, we not that many of these definitions are obvious analogs of the single-

dimensional case discussed in Section 3. We begin by defining multi-dimensional time series:

Definition 13 A d-dimensional time series T is a d-dimensional ordered list of numbers. T =

<T1,T2,…,Td> where a time series in dimension i, Ti = ti,1, ti,2 ,..., ti,m. Each value tj can be any finite

number and m is the length of the time series, which is equal for all dimensions.

When the original time series contain multiple dimensions, its subsequence is called a d-dimensional

subsequence:

Definition 14 A d-dimensional subsequence Ti,j,k of a d-dimensional time series T is a short time

series of length k of dimension i which starts from position j. Formally, Ti,j,k = ti,j, ti,j+1, .., ti,j+k where

1 ≤ i ≤ d and 1 ≤ j ≤ m-k.

As we mentioned before in previous sections, Euclidean distance and MDL are highly correlated when

the distances are small. As in the single version algorithm, many techniques using the Euclidean distance

are used for speeding up our algorithm. Hence, we define the Euclidean distance for two d-dimensional

subsequences as following:

Definition 15 The Euclidean distance between two d-dimensional subsequences A and B of the

same length, k, is:

121

,ܣ)ݐݏ݅ܦ (ܤ = ඨ෍ ෍ ൫ܣ௜,௝ − ௜,௝൯ଶ௞௝ୀଵௗ௜ୀଵܤ

The description length for a multi-dimensional time series is calculated based on the entropy of the

given time series. We define entropy for d-dimensional time series as:

Definition 16 The entropy of a d-dimensional time series T is defined as following equation. For

special case when P = 0, ܲ logଶ ܲ is defined as 0.

(ܶ)ܪ = − ෍ ෍ ܲ(௜ܶ =)logଶܲ(ݐ ௜ܶ = ୲୧ୢୀଵ(ݐ

For simplicity, we define the entropy of d-dimensional time series as the simple summation of the

entropy from each dimension. This means we treat each dimension independent from others. While we do

not preclude other methods for calculating d-dimensional entropy, this method works very well

empirically.

However, there may be some room here to improve the quality of the clustering if we can exploit use

the relationship between different dimensions. We leave this as the future improvement.

Similar as in Definition 6 in Section 5.3.1, the description length of a multi-dimensional time series T

is defined as m*H(T) where m is the length of the time series T. We can reuse Definition 8, 9 and 10 in our

multi-dimensional clustering algorithm.

We invite the readers to revise some definitions in Section 5.3.1 before we move forward to the

algorithm in next section.

5.6.2. Multi-dimensional Clustering Algorithm

In general, the idea of clustering multi-dimensional time series is similar to the idea of clustering a

single dimensional time series in Section 5.4.2.

The algorithm composes of three operations – create, add, and merge. The general idea is the same as

in the previous algorithm. All possible operators will be considered and their bitsave will be computed.

Then, the choice whose bitsave is maximum will be selected and the algorithm performs the operation

122

corresponding to that choice. The algorithm for clustering multi-dimensional time series is shown in Table

16.

We allow user to set the approximate length of subsequences, contained inside the final clusters. The

set of the final clusters is initialed to an empty set (line 1). The algorithm will be terminated on only two

conditions, first, when no possible choices can reduce the number of bits for representing the clusters and,

second, when there is no data left and all clusters have been merged.

Table 16: Multidimensional stream clustering algorithm

Input: ts : multidimensional time series,
 s : approximate length
Output: cluster : final cluster of subsequences

1
2
3

4
5
6
7
8
9
10

11
12
13
14
15
16
17

18
19
20
21
22
23
24
25

26
27
28
29

cluster = {}
while bitsave>0
 bitsave=-∞, i=0

 // create new cluster
 for len = s to 2s
 (A,B) = MultiDimMotifDiscovery(ts,len)
 C' = CreateMultiDimCluster(A,B)
 bs.append(ComputeBitsave(C',A,B))
 cluster'.append(cluster U {C'})
 end for

 // add subsequence to an existing cluster
 for C ∈ cluster
 A = MultiDimNearestNeighbor(ts,C)
 C' = AddToMultiDimCluster(C,A)
 bs.append(ComputeBitsave(C',C,A))
 cluster'.append(cluster U {C'}-{C})
 end for

 // merge 2 clusters
 for C1 ∈ cluster
 for C2 ∈ cluster and C1~=C2
 C' = MergeMultiDimClusters(C1,C2)
 bs.append(ComputeBitsave(C',C1,C2))
 cluster'.append(cluster U {C'}-{C1}-{C2})
 end for
 end for

 // update the result
 [bitsave index] = max(bs)
 cluster = cluster'(index)
end while

In the create operation (line 4-10), we find a most similar pair of subsequences. The Euclidean

distance is used here instead of MDL for speeding up the process and makes this process much faster. A

123

trivial extension of the motif discovery algorithm from [103] using multi-dimensional Euclidean distance

(cf. Definition 15) is used here to find the most similar subsequences in multi-dimensional time series (line

6). Then, a new cluster is created and its bitsave is calculated (line 7-8). For convenience, the temporary

cluster is collected (line 9).

In add process (line 11-17), the nearest neighbor of each existing cluster is discovered (line 13). The

rest of the algorithm, including merge process (line 18-25), is the same as in the algorithm in Section 5.4.2.

After all choices are calculated, the choice, which maximizes bitsave, will be selected to perform (line 27-

28).

Because each subsequence contains multi-dimensional data, the cluster representative or the cluster’s

center also contains multi-dimensional data. Table 17 explained how to create the cluster. The new cluster

is always created from two subsequences so it will contain only two multi-dimensional subsequences.

Table 17: Multidimensional Create Operator

Function C = CreateMultiDimCluster(A,B)
1
2
3
4
5
6

C.size = 2
for all dimension d
 C.cend = (Ad+Bd)/2
 C.seqd = {Ad, Bd}
 C.shiftd = {0 0}
end for

Similarly, how to add a multi-dimension subsequence to an existing cluster is explained in Table 18.

The idea of all three operators is same as in the single-dimension clustering algorithm.

Table 18: Multidimensional Add Operator

Function C = AddToMultiDimCluster(C,A)

1
2
3
4
5
6

C.size = C.size+1
for all dimension d
 C.cend = (C.cend*(C.size-1)+Ad*1)/C.size
 C.seqd.append(Ad)
 C.shiftd.append(0)
end for

Table 19 explains in detail how to merge two clusters. As in the single dimension version, when two

clusters are being merged, we have to align their center to find the best position, whose bitsave is

maximized, after merging. We can align the center of the first cluster’s center when it moves into the

center of another cluster (line 10-21), and also when it moves out of another center (line 22-33). Each

124

position in alignment is kept as a local variable inside the corresponding cluster (line 20). However, only the

cluster which maximum bitsave is return (line 34-35).

Table 19: Multidimensional Merge Operator

Function C' = MergeMultiDimClusters(C1,C2)
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

22
23
24
25
26
27
28
29
30
31
32
33
34
35

n1=C1.size, m1=length(C1.cen)
n2=C2.size, m2=length(C2.cen)
C'.size = n1+n2
bs = {}
Ctmp = {}
for all dimension d
 // add all sequences from C1 and C2 to C’
 C'.seqd = [C1.seqd ; C2.seqd]
end for

// align C1.cen by moving to all positions
for off = 0 to m2
 for all dimension d
 // create centers of the same length
 cen1 = [C2.cend(1,off), C1.cend]
 cen2 = [C2.cend, C1.cend(1,m1+off-m2)]
 C'.cend = (cen1*n1+cen2*n2)/(n1+n2)
 C'.shiftd = [C1.shiftd+off; C2.shiftd]
 end for
 bs.append(ComputeBitsave(C',C1,C2))
 Ctmp.append(C')
end for

// move C1.cend to opposite direction
for off = 1 to m1
 for all dimension d
 // create centers of the same length
 cen1 = [C1.cend, C2.cend(1,m2+off-m1)]
 cen2 = [C1.cend(1,off), C2.cend]
 C'.cend = (cen1*n1+cen2*n2)/(n1+n2)
 C'.shift = [C1.shiftd; C2.shiftd+off]
 end for
 bs.append(ComputeBitsave(C',C1,C2))
 Ctmp.append(C')
end for
[bitsave index] = max(bs);
C' = Ctmp(index);

In next section, we will demonstrate that our algorithm can handle the time series which contains more

than one dimension.

5.6.3. Experimental Results

We demonstrate our multi-dimensional clustering algorithm on a people activity dataset, Physical

Activity Monitoring for Aging People (PAMAP) from [145]. In this dataset, eight subjects (people) perform

125

both indoor and outdoor activities such as normal walk, Nordic walk, cycle, run, ascend stairs, and descend

stairs. Each subject has sensors placed on three locations on their bodies, which are hand, chest and ankle.

We pick one time series from each position; we choose to use only three time series generated by z-

accelerometers instead of using all data from all 45 sensors because experience from indexing ASL [119]

and motion capture data suggest that three or four time series is enough to represent most

activities/behaviors.

A snippet of a three dimensional time series showing an individual walking up and down stairs is

shown in Figure 66. Each time series are generated from a z-accelerometer. The data is from subject

number 1 of indoor activities in PAMAP dataset [145]. In this example, the subject performed the

sequence, walking up stair, walking down stair, and walking up stair.

Figure 66: Three time series generated from z-accelerometer of sensors at hand, chest and shoe
from PAMAP [145]. The subject performs three activities: descending stairs, ascending stairs, and
descending stairs again

The multidimensional clustering result is shown in Figure 67. Each color represents a cluster; hence,

the subsequences of the same color are clustered into the same cluster. The result demonstrates that our

algorithm can capture the similar actions inside the same activities. For example, three clusters appeared in

both side of the time series, which are in the same action, i.e., walking down stair. Some data in the time

series has been ignored as we can see in black color. From this example, we conjecture that the subject may

200 400 600 800 1000 1200 1400 1600 1800 20000

Hand

Chest

Ankle

Descend Stair Descend StairAscend Stair

126

200 400 600 800 1000 1200 1400 1600 1800 20000

Hand

Chest

Ankle

Descend Stair Descend StairAscend Stair

occasionally have a special behavior because it looks like there are patterns inside the clusters. For

example, it appear that she initially starts to climb stairs briskly (red), but begins to slow down as she was

tired out after a few flights (blue). Likewise, the sequence of three clusters in the same order (pink, cyan,

yellow) in both descending stairs sections is suggested.

Figure 67: top) The multi-dimensional time series clustering result. Two clusters are detected in
ascending stair, and three clusters are detected in descending stair. bottom) A trace of the multi-
dimensional clustering steps produced by our algorithm

We also ran our single dimensional clustering algorithm on each dimension separately. The result

shows that there are incorrect clusters across the different activities in the final clusters and, in some

dimension, the algorithm is terminated very early and covers less than 25% of the data. Hence, in this

example, the clustering result from a single dimension is worse than the result form the multi-dimensional

clustering algorithm. We believe that the multi-dimensional time series can create the better clusters than

1 2 3 4 5 6 7 8 9 10 11 12 13 14

-2

0

2

Step in clustering process

bi
ts

av
e

pe
r

un
it Clustering stops here Create

Add
Merge

127

the clusters created from just one dimension, especially when the dataset contains many related features

such as motion capture.

We can speed up the algorithm using Euclidean distance and make the problem solvable in an

acceptable time, but we have to trade of the quality of the clustering somehow. Our parameter-lite

algorithm can be extended to cluster multi-dimensional time series and it works quite well; however, some

readers may notice that the bitsave score (in Figure 67.bottom) is not much stable as the result of a single-

dimensional clustering algorithm in Section 5.5. This is because the Euclidean distance is used instead of

MDL in many core modules. By the curse of dimensionality, when the number of dimensionality is

increase, the Euclidean distance performs worse and the difference between MDL and Euclidean distance is

increase. We believe that if the multi-dimensional time series clustering using MDL has been well study in

the future, some researchers will provide the distance which is fast enough and very close to MDL to get

the better result.

5.7 Conclusions

In this work, we have shown that any attempt to cluster a single time series stream that insists on

explaining all the data is almost certainly doomed to failure. We introduced a clustering representation that

has the expressive power to ignore some of the data, and can have clusters with different length

subsequences. We further showed an efficient and parameter-lite MDL based algorithm to perform the

clustering. We have shown on our algorithm is effective on a wide variety of datasets, for both single and

multi-dimensional problems.

Currently our algorithm only works on batch time series. In ongoing work, we are attempting to

generalize it to the online case.

128

Chapter 6: Conclusion

This dissertation discusses several interesting issues in high dimensional time series data mining. We

show that the time complexity of high dimensional data mining is high and that it is not appropriate to

apply the traditional data mining algorithm to solve the high dimensional data mining problem; even the

state-of-the-art algorithm cannot obtain the results in an acceptable amount of time. For example, the

experimental result in Chapter 4 shows that the state-of-the-art algorithm spends a whole day finding the

repeated patterns (near duplicated figures) of the first 8 pages of a book, but our proposed algorithm can

finish them in a few seconds.

We believe that this study contributes to the data mining community. From the algorithm perspective,

we include many efficient algorithms to mine high dimensional data such as in nearest neighbor searches,

motif discovery, shapelet discovery, classification and clustering. We show the drawbacks of the best

known algorithms on high dimensional data, and propose new algorithms which are much more efficient

than the previous ones. We give some mathematical proofs and demonstrate the usefulness of our

algorithms for various kinds of data, such as time series data, streaming data, medical data, biological data,

astronomy data, activity data, image data, historical manuscript data, hand-written manuscript data, gesture

recognition data, etc. We hope that this study can show the variety of high dimensional data mining in

different kinds of datasets.

To deal with high dimensional data, we demonstrate two effective approaches: using lower bounding

techniques to prune some data, and solving the problem with approximate algorithms. In Chapter 2, we

propose a fast nearest neighbor search algorithm which is on the order of magnitudes faster than the

previous state-of-the-art algorithm and can return the exact same results. In Chapter 3, we propose an

approximate algorithm for finding time series shapelets which overcome the limitations of both the running

time and space of the best known algorithm; this makes the time series shapelet discovery tractable and

more useful to the data mining community. In Chapter 4, the approximation algorithm for finding repeated

129

figures inside manuscripts is proposed. The algorithm returns the approximate results in a very short

amount of time. The bound of the error and running of our algorithm is explained in the Appendix.

Moreover, we emphasize to the data mining community that we cannot explain all data; otherwise, we

risk explaining some unexplainable data, such as noise. We propose an MDL-based clustering algorithm,

which is a parameter-free algorithm. Having the capability to ignore some data is important; otherwise, in

many situations the clustering algorithm cannot generate the correct answer.

I would like to share some useful things which I have learned during this dissertation process:

• Lower bounding is a well-known technique which can make algorithms faster. Lower bounding is a

basis in heuristic search algorithms. However, in Chapter 2, we have to cleverly choose some lower

bounds. Some lower bounds are more useful than others in terms of the running time and pruning ratio.

Not only one but also many lower bounds can be applied if they can save some computational power.

• The order of the search is also important. Many problems can be solved by carefully ordering the

search space such as in A* search or Dijkstra’s algorithm. However, such ordering can be applied to

any level of search; as we show in Chapter 2, we can order the calculation and prune further

calculations if possible.

• Different datasets have different characteristics and, for learning how good and bad of the proposed

algorithms, we have to test them on many datasets. However, honesty is most important, so “test all

and report all!” Moreover, one useful dataset can be very important and it can make a good

contribution to your papers.

• A fast algorithm is good but not good enough for publication, especially when proposing an

approximate algorithm. The usefulness of an approximate algorithm is dependent on both speed and

accuracy. At least two orders of magnitude for an approximation algorithm or one order of magnitude

for an exact algorithm is needed for publication.

• Parameters can kill the usefulness of an algorithm and reduce the number of citations. To avoid over-

fitting, an algorithm should have no parameters or the smallest number of parameters.

• Knowledge from other fields such as bioinformatics can provide some interesting ideas.

• Last but not least, trust and respect your advisor; he is always the best person for you ;-)

130

Bibliography

Chapter 1

[1] T. Bernecker, M. Houle, H. P. Kriegel, P. Kröger, M. Renz, E. Schubert, and A. Zimek, A.
2011. Quality of similarity rankings in time series. Advances in Spatial and Temporal
Databases, 422-440.

[2] R. E. Bellman. 1957. Dynamic programming. Princeton University Press.

[3] E. J. Keogh, A. Mueen. 2010. Curse of Dimensionality. Encyclopedia of Machine Learning.
257-258

[4] E. T. Jaynes .1957. Information theory and statistical mechanics. Physical review, 106(4), 620.

[5] M. I. Shamos, and D. Hoey. 1975. Closest-point problems. In Foundations of Computer
Science, 151-162.

[6] J. M. Kleinberg, 1997. Two algorithms for nearest-neighbor search in high dimensions. In
Proceedings of the twenty-ninth annual ACM symposium on Theory of computing, 599-608.

[7] E. J. Keogh and J. Lin, “Clustering of time-series subsequences is meaningless: implications for
previous and future research,” Knowl. Inf. Syst., vol. 8, no. 2, 2005, pp. 154-177.

Chapter 2

[8] N. Adams, D. Marquez, and G. Wakefield. 2005. Iterative deepening for melody alignment and
retrieval. ISMIR, 199-206.

[9] I. Assent, R. Krieger, F. Afschari, and T. Seidl. 2008. The TS-Tree: efficient time series search
and retrieval. EDBT, 252-63.

[10] J. Alon, V. Athitsos, Q. Yuan, and S. Sclaroff. 2009. A unified framework for gesture
recognition and spatiotemporal gesture segmentation. IEEE PAMI 31, 9, 1685-1699.

[11] T. Bragge, M.P. Tarvainen, and P. A. Karjalainen. 2004. High-Resolution QRS Detection
Algorithm for Sparsely Sampled ECG Recordings. Univ. of Kuopio, Dept. of Applied Physics
Report.

[12] N. Chadwick, D. McMeekin, and T. Tan. 2011. Classifying eye and head movement artifacts in
EEG Signals. DEST.

131

[13] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. J. Keogh. 2008. Querying and
mining of time series data: experimental comparison of representations and distance measures.
PVLDB 1, 2, 1542-52.

[14] B. Dupasquier and S. Burschka. 2011. Data mining for hackers – encrypted traffic mining. The
28th Chaos Comm’ Congress.

[15] Y. Chen, G. Chen, K. Chen, and B. C. Ooi. 2009. Efficient processing of warping time series
join of motion capture data. ICDE, 1048-1059.

[16] Faceted DBLP. 2011. http://dblp.l3s.de

[17] A. Fornés, J. Lladós, and G. Sanchez. 2007. Old handwritten musical symbol classification by a
dynamic time warping based method. Graphics Recognition 5046, 51-60.

[18] A. Fu, E. Keogh, L. Lau, C. Ratanamahatana, and R. Wong. 2008. Scaling and time warping in
time series querying. VLDB J. 17, 4, 899-921.

[19] N. Gillian, R. Knapp, and S. O’Modhrain. 2011. Recognition of multivariate temporal musical
gestures using n-dimensional dynamic time warping. Proc of the 11th Int'l conference on New
Interfaces for Musical Expression.

[20] D. Goldberg. 1991. What every computer scientist should know about floating-point arithmetic.
ACM Computing Surveys 23, 1.

[21] G. Guitel. 1975. Histoire comparée des numérations écrites. Chapter: “Les grands nombres en
numération parlée,” Paris: Flammarion, 566–574.

[22] R. Huber-Mörk, S. Zambanini, M. Zaharieva, and M. Kampel. 2011. Identification of ancient
coins based on fusion of shape and local features. Mach. Vis. Appl. 22, 6, 983-994.

[23] M. Hsiao, K. West, and G. Vedatesh. 2005. Online context recognition in multisensor system
using dynamic time warping. ISSNIP, 283-288.

[24] H. Jegou, M. Douze, C. Schmid, and P. Perez. 2010. Aggregating local descriptors into a
compact image representation. IEEE CVPR, San Francisco, CA, USA.

[25] T. Kahveci and A. K. Singh. 2004. Optimizing similarity search for arbitrary length time series
queries. IEEE Trans. Knowl. Data Eng. 16, 4, 418-433.

[26] E. Keogh and S. Kasetty. 2003. On the need for time series data mining benchmarks: a survey
and empirical demonstration. Data Mining and Knowledge. Discovery 7, 4, 349-371.

[27] E. Keogh, L. Wei, X. Xi, M. Vlachos, S.H. Lee, and P. Protopapas. 2009. Supporting exact
indexing of arbitrarily rotated shapes and periodic time series under Euclidean and warping
distance measures. VLDB J. 18, 3, 611-630.

132

[28] S. Kim, S Park, and W. Chu. 2001. An index-based approach for similarity search supporting
time warping in large sequence databases. ICDE, 607–61.

[29] K. Laerhoven, E. Berlin, and B. Schiele. 2009. Enabling efficient time series analysis for
wearable activity data. ICMLA, 392-397.

[30] S. H. Lim, H. Park, and S. W. Kim. 2007. Using multiple indexes for efficient subsequence
matching in time-series databases. Inf. Sci. 177, 24, 5691-5706.

[31] D. P. Locke, L. W. Hillier, W. C. Warren, et al. 2011. Comparative and demographic analysis of
orangutan genomes. Nature 469, 529-533.

[32] A. Mueen and E. Keogh. 2010. Online discovery and maintenance of time series motifs. KDD,
1089-1098.

[33] A. Mueen, E. Keogh, Q. Zhu, S. Cash, M. B. Westover, and N. Shamlo. 2011. A disk-aware
algorithm for time series motif discovery. Data Min. Knowl. Discov. 22, 1-2, 73-105.

[34] M. Muller. 2009. Analysis and retrieval techniques for motion and music data.
EUROGRAPHICS tutorial.

[35] P. Papapetrou, V. Athitsos, M. Potamias, G. Kollios, and D. Gunopulos. 2011. Embedding-
based subsequence matching in time-series databases. ACM TODS 36, 3, 17*.

[36] W. Pressly. 2008. TSPad: a Tablet-PC based application for annotation and collaboration on
time series data. ACM Southeast Regional Conference, 527-52.

[37] B. Raghavendra, D. Bera, A. Bopardikar, and R. Narayanan. 2011. Cardiac arrhythmia
detection using dynamic time warping of ECG beats in e-healthcare systems. WOWMOM, 1-6.

[38] U. Rebbapragada, P. Protopapas, C. Brodley, and C. Alcock. 2009. Finding anomalous periodic
time series. Machine Learning 74, 3, 281-313.

[39] Y. Sakurai, C. Faloutsos, and M. Yamamuro. 2007. Stream monitoring under the time warping
distance. ICDE, 1046-55.

[40] Y. Sakurai, M. Yoshikawa, and C. Faloutsos. 2005. FTW: fast similarity search under the time
warping distance. PODS’05.

[41] S. Srikanthan, A.Kumar, and R. Gupta. 2011. Implementing the dynamic time warping
algorithm in multithreaded environments for real time and unsupervised pattern discovery. IEEE
ICCCT, 394-398.

[42] J. Shieh and E. J. Keogh. 2008. iSAX: indexing and mining terabyte sized time series. KDD,
623-631.

133

[43] T. Stiefmeier, D. Roggen, and G. Tröster. 2007. Gestures are strings: efficient online gesture
spotting and classification using string matching. Proceedings of the ICST 2nd international
conference on Body area networks.

[44] C. R. Whitney. 1997. Jeanne Calment, World's elder, dies at 122. New York Times (August 5th,
1997).

[45] J. O. Wobbrock, A. D. Wilson, and Y. Li. 2007. Gestures without libraries, toolkits or training:
a $1 recognizer for user interface prototypes. ACM UIST, 159-168.

[46] L. Ye and E. Keogh. 2009. Time series shapelets: a new primitive for data mining. KDD, 947-
956.

[47] B. Yi, H. Jagadish, and C. Faloutsos. 1998. Efficient retrieval of similar time sequences under
time warping. ICDE, 201-208.

[48] Y. Zhang and J. Glass. 2011. An inner-product lower-bound estimate for dynamic time warping.
ICASSP, 5660-5663.

[49] A. Zinke and D. Mayer. 2006. Iterative Multi Scale Dynamic Time Warping. Universität Bonn,
Tech Report # CG-2006-1.

[50] Supporting Website: www.cs.ucr.edu/~eamonn/UCRsuite.html

Chapter 3

[51] K.W. Chang, B. Deka, W. M. H. Hwu, and D. Roth. Efficient Pattern-Based Time Series
Classification on GPU ICDM. 2012.

[52] H. Cheng, X. Yan, J. Han and P. S. Yu. Direct Discriminative Pattern Mining for Effective
Classification. Data Engineering, ICDE, 2008, 169-178.

[53] Digital Morphology 2012: http://www.digimorph.org/

[54] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. J. Keogh. 2008. Querying and mining
of time series data: experimental comparison of representations and distance measures. PVLDB
1, 2, 1542-52.

[55] G. D. Fatta, S. Leue, and E. Stegantova. Discriminative pattern mining in software fault
detection, ACM SOQUA, 2006, 62-6.

[56] B. Hartmann, Ingo Schwab, Norbert Link: Prototype Optimization for Temporarily and
Spatially Distorted Time Series. AAAI Spring Symposium: It's All in the Timing, 2010.

[57] B. Hu, T. Rakthanmanon, Y. Hao, S. Evans, S. Lonardi, and E. Keogh: Discovering the Intrinsic
Cardinality and Dimensionality of Time Series using MDL. ICDM, 2011.

134

[58] P. Geurts. Pattern Extraction for Time Series Classification. In Proc of the 5th PKDD, 2001,
115–127.

[59] D. Gordon, D. Hendler, and L. Rokach. Fast Randomized Model Generation for Shapelet-
Based Time Series Classification. arXiv:1209.5038. 23 Sep 2012

[60] Q. He, Z. Dong, F. Zhuang, and Z. Shi. Fast Time Series Classification Based on Infrequent
Shapelets. ICMLA. 2012.

[61] E. Keogh, Q. Zhu, B. Hu, Y. Hao, X. Xi, L. Wei, C. Ratanamahatana, The UCR Time Series
Classification/ Clustering Homepage 2012: www.cs.ucr.edu/~eamonn/ time_series_data

[62] M. H. Ko, G. West, S. Venkatesh, and M. Kumar. Online context recognition in multisensor
systems using dynamic time warping. In Intelligent Sensors, Sensor Networks and Information
Processing Conference, 2005, 283 – 288.

[63] Z. Li, C. X. Lin, B. Ding, J. Han. Mining Significant Time Intervals for Relationship Detection.
SSTD, 2011, 386-403.

[64] J. Lin, Eamonn J. Keogh, Li Wei, Stefano Lonardi: Experiencing SAX: a novel symbolic
representation of time series. DMKD, 15, 2, 2007, 107-144.

[65] J. Lines and A. Bagnall. Alternative Quality Measures for Time Series Shapelets, IDEAL,
2012, 475-483.

[66] J. Lines, L. M. Davis, J. Hills, and A. Bagnall. A shapelet transform for time series
classification, KDD, 2012, 289-297.

[67] J. Liu, L. Zhong, J. Wickramasuriya, and V. Vasudevan. uWave: Accelerometer-based
personalized gesture recognition and its applications. Pervasive and Mobile Computing, 2009.

[68] A. McGovern, D. Rosendahl, R. Brown, and K. Droegemeier. Identifying predictive multi-
dimensional time series motifs: an application to severe weather prediction. DMKD, 22, 2011.

[69] A. Mueen, Eamonn J. Keogh, Neal Young: Logical-shapelets: an expressive primitive for time
series classification. KDD, 2011, 1154-1162.

[70] Physical Activity Monitoring for Aging People: http://www.pamap.org

[71] T. Rakthanmanon, Q. Zhu, and E. Keogh: Mining Historical Archives for Near-Duplicate
Figures. ICDM, 2011, 557-566.

[72] A. Reiss, M. Weber and D. Stricker. Exploring and Extending the Boundaries of Physical
Activity Recognition. IEEE SMC Workshop on Robust Machine Learning Techniques for
Human Activity Recognition, 2011.

135

[73] S. L. Salzberg, On comparing classifiers: Pitfalls to avoid and a recommended approach.
DMKD, 1, 1997, 317–328.

[74] M. Tompa. & J Buhler (2001). Finding motifs using random projections. In proceedings of the
5th Int’l Conference on Computational Molecular Biology. pp 67-74.

[75] P. J. Van Otterloo. A contour-oriented approach to shape analysis. Prentice-Hall NJ, 1991, 90-
108.

[76] D. Vail and M. Veloso. Learning from accelerometer data on a legged robot. In Proc of the 5th
IFAC/EURON Symposium on Intelligent Autonomous Vehicles, 2004.

[77] X. Wang, A. Mueen, H. Ding, G. Trajcevski, P.Scheuermann, and E. Keogh, Experimental
comparison of representation methods and distance measures for time series data. to appear in
DMDK. 2012. (Online preview)

[78] L. Wei, Eamonn J. Keogh, Xiaopeng Xi: SAXually Explicit Images: Finding Unusual Shapes.
ICDM, 2006, 711-720.

[79] Z. Xing, J. Pei, P. S. Yu, K. Wang. Extracting Interpretable Features for Early Classification on
Time Series. SDM. 2011, 247-258.

[80] L. Ye, Eamonn J. Keogh: Time series shapelets: a novel technique that allows accurate,
interpretable and fast classification. DMKD, 22, 1-2, 2011, 149-182.

[81] Supporting Website: www.cs.ucr.edu/~rakthant/FastShapelet

Chapter 4

[82] X. Bai, X. Yang, L. Latecki, and W. Liu, “Learning context sensitive shape similarity by graph
transduction,” IEEE TPAMI, 2009.

[83] D. H. Ballard, “Generalizing the Hough transform to detect arbitrary shapes,” Pattern
Recognition, vol. 13, 1981, pp. 111-22.

[84] S. S. Bukhari, F. Shafait, and T. M. Breuel, “Improved document image segmentation algorithm
using multiresolution morphology,” Document Recognition and Retrieval, 2011, pp. 1-10.

[85] B. J. Burke, Book of Orders of Knighthood and Decorations of Honour of all Nations, London:
Hurst and Blackett, 1858.

[86] O. Chum, J. Philbin, M. Isard, and A. Zisserman, “Scalable near identical image and shot
detection,” CIVR, 2007, pp. 549-556.

[87] O. Chum, J. Philbin, and A. Zisserman,“Near Duplicate Image Detection: min-Hash and tf-idf
Weighting,” BMVC, 2008.

136

[88] C. Boutell, A Manual of Heraldry, Historical and Popular, Winsor and Newton, 1863.

[89] C. Davenport, British Heraldry, Methuen, London, 1921.

[90] C. Davenport, English heraldic book-stamps, figured and described, London: Archibald
Constable. ltd, 1909.

[91] C. R. Dod, and R. P. Dod, Dod’s Peerage, Baronetage and Knightage of Great Britain and
Ireland for 1915, London: Simpkin, Marshall, Hamilton, Kent. ltd, 1915.

[92] E. E. Dorling, Leopards of England, and other papers on heraldry, Constable & Company
limited, London, 1913.

[93] R. Duda, and P. Hart, “Use of the Hough transform to detect lines and curves in pictures,”
Comm. ACM, vol. 15, 1, 1972, pp. 11-15.

[94] A. Fornés, J. Lladós, and G. Sanchez, “Old Handwritten Musical Symbol Classification by a
Dynamic Time Warping Based Method,” Graphics Recognition, 2007.

[95] B. Gatos, I. Pratikakis, and S. J. Perantonis, “An adaptive binarisation technique for low quality
historical documents,” Workshop on Document Analysis Systems, 2004.

[96] C. Grana, D. Borghesani, and R. Cucchiara. “Automatic segmentation of digitalized historical
manuscripts,” Multimedia Tools Applications, vol. 55, 3, 2011, pp. 483-506.

[97] P. V. C. Hough, Method and mean for recognizing complex pattern. USA patent 3069654, 1996.

[98] E. Kavallieratou and E. Stamatatos, “Adaptive binarization of historical document images,”
ICPR, 2006, pp.742–745.

[99] Y. Ke, R. Sukthankar, L. Huston, “An efficient parts-based near-duplicate and sub-image
retrieval system,” ACM Multimedia, 2004, pp. 869-876.

[100] E. Keogh, L. Wei, X. Xi, M. Vlachos, S. Lee, and P. Protopapas, “Supporting exact indexing of
arbitrarily rotated shapes and periodic time series under Euclidean and warping distance
measures,” VLDB Journal, vol. 18, 3, 2009, pp. 611-30.

[101] T. Koch-Grünberg, Südamerikanische Felszeichnungen (South American petroglyphs), Berlin,
E. Wasmuth A-G, 1907.

[102] J. Mas, G. Sanchez, and J. Llados, “An Incremental Parser to Recognize Diagram Symbols and
Gestures represented by Adjacency Grammars,” Graphics Recognition, 2006, pp. 252-263.

[103] A. Mueen, E. Keogh, and N. Shamlo, “Finding Time Series Motifs in Disk-Resident Data,”
ICDM, 2009, pp. 367-376.

137

[104] A. Pritchard, A history of Infusoria, including Desmidiaceae and Diatomaceae, British and
foreign. Ed. IV. 968. London, 1861.

[105] G. Ramponi, F. Stanco, W. D. Russo, S. Pelusi, and P. Mauro, Digital automated restoration of
manuscripts and antique printed books, 2005, EVA.

[106] J. V. Richardson Jr., Bookworms: The Most Common Insect Pests of Paper in Archives,
Libraries, and Museums.

[107] G. Sanchez, et al., “A platform to extract knowledge from graphic documents. application to an
architectural sketch understanding scenario,” DAS, 2004, pp. 389-400.

[108] K. B. Schroeder, et al. “Haplotypic Background of a Private Allele at High Frequency in the
Americas,” Molecular Biology and Evolution, 2009, pp. 995-1016.

[109] W. Smith, A synopsis of the British Diatomaceae: with remarks on their structure, function and
distribution, pp. [V]-XXXIII, pp. 1-89, 31 pls. London, 1853.

[110] Smith, G. A. and Turner, W. G. Indian Rock Art of Southern California with Selected
Petroglyph Catalog, San Bernardino County, 1975.

[111] T. Rakthanmanon, Q. Zhu, and E. J. Keogh. “Mining Historical Documents for Near-Duplicate
Figures,” ICDM, 2011, pp. 557-566.

[112] M. Tompa and J. Buhler, “Finding motifs using random projections,” Computational Molecular
Biology, 2001, pp. 67-74.

[113] W. West and G. S. West, A Monograph of the British Desmidiaceae, vols. I–V, Ray Soc,
London, 1904.

[114] H. J. Wolfson and I. Rigoutsos, “Geometric Hashing: An Overview,” IEEE Computer Science,
vol. 4, 4, 1997.

[115] X. Xi, E. Keogh,L. Wei, and A. Mafra-Neto, “Finding Motifs in a Database of Shapes,” SIAM
Conference on Data Mining, 2007.

[116] Q. Zhu, X. Wang, E. Keogh, and S. H. Lee, “Augmenting the Generalized Hough Transform to
Enable the Mining of Petroglyphs,” SIGKDD, 2009.

[117] Mining Historical Archives for Near-Duplicate Figures 2011 http://www.youtube.com/watch?
v=QYY8A6CwS-A

[118] Supporting Website: http://www.cs.ucr.edu/~rakthant/DocMotif

138

Chapter 5

[119] V. Athitsos, H. Wang, and A. Stefan, “A database-based framework for gesture recognition,”
Personal and Ubiquitous Computing, vol. 14, no. 6, 2010, pp. 511-526.

[120] T. Bastogne, H. Noura, A. Richard, and J. M. Hittinger, “Application of subspace methods to
the identification of a winding process,” Proc. of the 4th European Control Conference,
Brussels, Belgium, 1997.

[121] G. E. A. P. A. Batista, X. Wang, E. J. Keogh, “A Complexity-Invariant Distance Measure for
Time Series,” SDM, 2011, pp. 699-710.

[122] D. Bouchard and N. I. Badler, “Semantic Segmentation of Motion Capture Using Laban
Movement Analysis,” IVA, 2007, pp 37-44 .

[123] J. R. Chen. “Making Subsequence Time Series Clustering Meaningful,” ICDM, 2005, pp. 114-
121.

[124] J. R. Chen., “Useful Clustering Outcomes from Meaningful Time Series Clustering,” The
Australasian Data Mining Conference. 2007.

[125] J. R. Chen., Making clustering in delay-vector space meaningful. Knowl. Inf. Syst. 11, 3 (2007),
369-385.

[126] Z. J. Chuang, C. H. Wu, and W. S. Chen, “Movement Epenthesis Generation Using NURBS-
Based Spatial Interpolation,” IEEE Trans. Circuit and Systems for Video Technology, vol. 16,
no. 11, Nov. 2006, pp. 1313-1323.

[127] D. J. Cook and L. B. Holder, “Substructure Discovery Using Minimum Description Length and
Background Knowledge,” J. Artificial Intelligence Research, vol. 1 , 1994, pp. 231-255.

[128] G. Das, K. Lin, H. Mannila, G. Renganathan, and P. Smyth, “Rule Discovery from Time
Series,” Proc. of the 3rd KDD, 1998, pp. 16-22.

[129] A. M. Denton, C. A. Basemann, and D. H. Dorr, “Pattern-based time-series subsequence
clustering using radial distribution functions,” Knowledge and Information Systems journal, vol.
18, No. 1, Jan. 2009, pp. 1-27.

[130] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. J. Keogh, “Querying and mining of
time series data: experimental comparison of representations and distance measures,” PVLDB,
vol. 1, no. 2, 2008, pp. 1542-1552.

[131] S. C. Evans et. al. “MicroRNA target detection and analysis for genes related to breast cancer
using MDLcompress,” EURASIP J. Bioinform. Syst. Biol., 2007, pp. 1-16.

[132] S. C. Evans, E. Eiland, T. S. Markham, J. Impson, and A. Laczo, “MDLcompress for Intrusion
Detection: Signature Inference and Masquerade Attack,” MILCOM, Orlando, Florida, 2007.

139

[133] P.D. Grünwald, I.J. Myung, and M.A. Pitt, Advances in Minimum Description Length: Theory
and Applications, MIT Press, 2005.

[134] I. Jonyer, L. B. Holder, and D. J. Cook, “MDL-based context-free graph grammar induction and
applications,” Journal on Artificial Intelligence Tools, vol. 13, no. 1, 2004, pp. 65-79.

[135] S. D. Kamvar, D. Klein, and C. D. Manning, “Interpreting and Extending Classical
Agglomerative Clustering Algorithms using a Model-Based approach,” ICML, 2002, pp. 283-
290.

[136] E. J. Keogh and J. Lin, “Clustering of time-series subsequences is meaningless: implications for
previous and future research,” Knowl. Inf. Syst., vol. 8, no. 2, 2005, pp. 154-177.

[137] E. J. Keogh, J. Lin, S. H. Lee, and H V. Herle, “Finding the most unusual time series
subsequence: algorithms and applications,” Knowl. Inf. Syst., vol 11, no. 1, 2007, pp. 1-27.

[138] E. J. Keogh and S. Kasetty, “On the Need for Time Series Data Mining Benchmarks: A Survey
and Empirical Demonstration,” Data Mining and Knowledge Discovery, vol. 7, no. 4, 2003, pp.
349-371.

[139] H. Li and N. Abe, “Clustering Words with the MDL Principle,” Proc. of the 16th Int’ Conf’ on
Computational Linguistics, 1996, pp. 5-9.

[140] M. Li and P. Vitanyi, An Introduction to Kolmogorov Complexity and Its Applications, 2nd ed.,
Springer Verlag, 1997.

[141] Y.I. Molkov, D. N. Mukhin, E. M. Loskutov, and A. M. Feigin, Using the minimum description
length principle for global reconstruction of dynamic systems from noisy time series. Phys. Rev.
E 80, 046207, 2009.

[142] A. Mueen, E. J. Keogh, and N. B. Shamlo, “Finding Time Series Motifs in Disk-Resident Data,”
ICDM, 2009, pp. 367-376.

[143] S. Papadimitriou, J. Sun, C. Faloutsos, and P. S. Yu, “Hierarchical, Parameter-Free Community
Discovery,” PKDD 2008, pp. 170-187.

[144] E. Pednault, “Some Experiments in Applying Inductive Inference Principles to Surface
Reconstruction,” IJCAI, 1998, pp. 1603-09.

[145] A. Reiss, M. Weber and D. Stricker, “Exploring and Extending the Boundaries of Physical
Activity Recognition,” IEEE SMC Workshop on Robust Machine Learning Techniques for
Human Activity Recognition, 2011.

[146] R. A. Stine, “Model Selection Using Information Theory and the MDL Principle,” Sociological
Methods and Research, vol. 33, no. 2, Nov. 2004, pp. 230-260.

140

[147] Y. Tanaka, K. Iwamoto, and K. Uehara, K. “Discovery of time-series motif from multi-
dimensional data based on MDL principle,” Machine Learning, vol. 58, no. 2, 2005.

[148] K. Ueno, X. Xi, E. J. Keogh, D. J. Lee, “Anytime Classification Using the Nearest Neighbor
Algorithm with Applications to Stream Mining,” ICDM, 2006, pp. 623-632

[149] C. S. Wallace and D. M. Boulton, 1968. An information measure for classification. Computer
Journal vol. 11, no. 2, Aug. 1968, pp. 185-194.

[150] R. Yang, S. Sarkar, and B. L. Loeding, “Handling Movement Epenthesis and Hand
Segmentation Ambiguities in Continuous Sign Language Recognition Using Nested Dynamic
Programming,” IEEE PAMI, vol. 32, no. 3, 2010, pp. 462-477.

[151] D. Yankov, E. J. Keogh, U. Rebbapragada, “Disk aware discord discovery: finding unusual time
series in terabyte sized datasets,” Knowl. Inf. Syst., vol 17, no. 2, 2008, pp. 241-262.

[152] Supporting Website. http://www.cs.ucr.edu/~rakthant/TSEpenthesis

141

Appendix: Mathematical Analysis

According to our document motif discovery algorithm in Chapter 3, there are three main steps make

our algorithm ultra fast by reducing the number expensive real distance calculations. Firstly, we locate the

potential windows among all windows inside the books. With a good preprocessing, potential windows are

not hard to locate as we describe in Section 4.4, and the number of potential windows are, expectedly, in

the same order of magnitude as the number of figures inside the books which is depended on window size.

Secondly, we apply our hashing technique and then calculate the distances between every window pairs,

which share same signatures. While a motif collides, some of other pairs may also collide by coincidence;

we call this kind of windows, non-motif. It is non-trivial to calculate the expected number of false

collisions, which is at the heart of this section. Thirdly, instead of calculating all expansive real distances,

we apply the lower bound first introduced by Zhu et al. [116] to reduce the number of real distance

calculations.

In this section, we will guarantee the maximum number of false collisions occurred in our random

projection process.

Assumptions:

In order to give the number of false collision, our assumptions are:

1. In each image, black pixels are appeared randomly and uniformly.

2. The motif is the pair of windows which has the smallest distance. Thus, in this proof, all

other pairs are considered as non-motifs and can only increase the number of false collisions.

Note that in real situation, there are many motifs or similar figures, and the number of false

collision will be smaller than the one shown in this section.

3. We know in advance the mean µ and standard deviation σ of the distribution of the distances

of all window pairs.

142

Note that we do not assume that all windows have the same number of black pixels or, even,

the distance distribution is Gaussian.

Notations:

For simplicity, we use some new nicknames for some parameters introduced in Section 4.4.

N: user-defined size of image. (N=sx*sy)

s : masking ratio (0 ≤ s ≤ 1) or mask.

t : number of iteration or it.

µ: mean of distance distribution from all window pairs.

σ : standard derivation of the distance distribution.

conf : user-defined confidence which is the probability that at least one iteration the

motif will appear in the same bucket.

Lemma1: Given windows Wa and Wb, if d=dist(Wa,Wb), the probability that Wa and Wb will

collide in 1 iteration of random projection is:

ௗݏ > P[Wa and Wb collide in 1 iteration] > ቀ௦ேିௗାଵேିௗାଵ ቁௗ

Proof:

Because the distance between Wa and Wb is d, if the removed pixels cover all of these d pixels, Wa

and Wb will have the same signature, the remaining pixels. In our hashing process, we randomly

remove sN pixels from N-pixel windows.

Then, the probability of distance d will collide is :

143

Pd = P[Wa and Wb collide in 1 iteration]

 = P[Wa and Wb has same hash signature]

 =
୭୤ ୵ୟ୷ୱ ୲୦ୟ୲ ୟ୪୪ ௗ ୮୧୶ୣ୪ୱ ୟ୰ୣ ୰ୣ୫୭୴ୣୢ ୵୦ୣ୬ ୵ୣ ୰ୣ୫୭୴ୣ ௦ே ୮୧୶ୣ୪ୱ# ୭୤ ୟ୪୪ ୮୭ୱୱ୧ୠ୪ୣ ୵ୟ୷ୱ ୲୭ ୰ୣ୫୭୴ୣ ௦ே ୮୧୶ୣ୪ୱ

 =
ቀ ேିௗ௦ேିௗቁቀ ே௦ேቁ =

(ேିௗ)!(௦ேିௗ)! (ேି௦ே)! (௦ே)! (ேି௦ே)!ே!

 =
௦ே(௦ேିଵ)(௦ேିଶ).…(௦ேିௗାଵ)ே (ேିଵ) (ேିଶ) … (ேିௗାଵ)

Because of 1 ≥ s ≥ 0, then

< ܰܰݏ ܰݏ − 1ܰ − 1 > ܰݏ − 2ܰ − 2 > ⋯ > ܰݏ − ݀ + 1ܰ − ݀ + 1
Note that P0 =

௦ேே = s and ∀݀ > 1, Pd = Pd-1* ቀ௦ேିௗାଵேିௗାଵ ቁ. Then, Pd-1 > Pd. Hence, Pd is monotonic

decreasing.

ௗݏ = ቀ௦ேே ቁௗ
>

௦ே(௦ேିଵ)(௦ேିଶ).…(௦ேିௗାଵ)ே (ேିଵ) (ேିଶ) … (ேିௗାଵ) > ቀ௦ேିௗାଵேିௗାଵ ቁௗ

Therefore, ݏௗ > P[Wa and Wb collide] > ቀ௦ேିௗାଵேିௗାଵ ቁௗ
 □

Lemma2: For given windows Wa and Wb, if d=dist(Wa,Wb), the probability that they will collide

in t iteration is:

P[Wa and Wb collide in t iterations] > 1 − ൬ 1 − ቀ௦ேିௗାଵேିௗାଵ ቁௗ൰௧

Proof:

Let p=P[Wa and Wb collide in 1 iteration]. From Lemma 1, p > ቀ௦ேିௗାଵேିௗାଵ ቁௗ
.

144

Then, P[Wa and Wb collide in t iterations]=1- (1- p)t. □

Corollary1: If the motif whose distance is d collides with probability at least user-defined

confidence, conf, and the value of the number of iteration t is given, then, the

masking ratio s which satisfy that the motif will be collide with confidence conf is:

s ≥
ଵே ቂ൫1 − (1 − ଵ/௧൯ଵ/ௗ(݂݊݋ܿ ∗ (ܰ − ݀ + 1) + ݀ − 1ቃ

Proof:

By Lemma2, P[the motif collides in t iterations], s ≥ 1 − ൬ 1 − ቀ௦ேିௗାଵேିௗାଵ ቁௗ൰௧
≥ conf □

Corollary2: If the motif whose distance is d collides with probability at least user-defined

confidence, conf, and the value of the masking ratio s is given, then, the number of

iterations t which satisfy that the motif will be collide with confidence conf is:

t ≥ ݈1) ݃݋ − ቀ1 ݃݋݈ / (݂݊݋ܿ − (௦ேିௗାଵேିௗାଵ)ௗቁ

Proof:

By Lemma2, P[the motif collides in t iterations], t ≥ 1 − ൬ 1 − ቀ௦ேିௗାଵேିௗାଵ ቁௗ൰௧
≥ conf □

Now we can guarantee the minimum probability that the motif will collide (share same signature) in at

least one iteration by Corollary1. For the rest of this section, we assume that the user want to find the motif

with probability at least conf, i.e., 99%. Thus, we will find the upper bound of the probability that other pairs

of windows, non-motifs, will collide after removing some black pixels. Contrary to the motif, increasing

number of iterations can increase the number of non-motif collisions.

145

Chebyshev’s Inequality:

Given a distribution X with mean µ and standard deviation σ and k ≥0, then, P[|x - µ| ≥ kσ] ≤
ଵ௞మ

Then,
ଵ௞మ ≥ P[|x - µ| ≥ kσ] ≥ P[µ - x ≥ kσ] = P[µ - kσ ≥ x]

Substitute variable by ݇ = ఓିௗఙ ; hence, P[x ≤ d] ≤
ఙమ(ఓିௗ)మ

Lemma3: In one iteration, any pair of windows will collide at most

ఓିଵݏଶߪ2 ∑ ఓିଵ௜ୀଵ(௜݅ଷݏ)/1 + .௨ିଵݏ

Proof:

For any given windows Wc and Wd, by Lemma1, we know that

 P[Wc and Wd collide | dist(Wc ,Wd)=d] = Pd < sd

P[any pair of windows collides in 1 iteration]

= ∫଴∞P[dist(Wc ,Wd)=x]*P[Wc,Wd collide | dist(Wc ,Wd)=x]dx

= ∑ௗୀ଴∞ ∫ௗௗାଵ
P[dist(Wc ,Wd)=x]*P[Wc ,Wd collide | dist(im1,im2)=x]dx

From the definition Pd in Lemma1,

= ∑ௗୀ଴∞ ∫ௗௗାଵ
P[dist(Wc ,Wd)=x]*Px dx

Because Pd is monotonic decreasing,

≤ ∑ௗୀ଴∞ ∫ௗௗାଵ
P[dist(Wc ,Wd)=x]*Pd dx

= ∑ௗୀ଴∞ ௗܲ∫ௗௗାଵ
P[dist(Wc ,Wd)=x]dx

146

From Lemma1,

≤ ∑ௗୀ଴∞ ௗ∫ௗௗାଵݏ
P[dist(Wc ,Wd)=x]dx

≤ ∑ௗୀ଴∞ ௗP[d ≤ dist(Wc ,Wd) < d+1]ݏ

= ∑ௗୀ଴ఓିଶݏௗP[d ≤ dist(Wc ,Wd) < d+1] + ∑ௗୀ௨ିଵ∞ ௗP[d ≤ dist(Wc ,Wd) < d+1]ݏ

≤ ∑ௗୀ଴ఓିଶݏௗP[d ≤ dist(Wc ,Wd) < d+1] + ݏ௨ିଵ∑ௗୀ௨ିଵ∞ P[d ≤ dist(Wc ,Wd) < d+1]

≤ ∑ௗୀ଴ఓିଶݏௗP[d ≤ dist(Wc ,Wd) < d+1] + ݏ௨ିଵ(1 −P[µ-1 ≤ dist(Wc ,Wd)])

≤ ∑ௗୀ଴ఓିଶݏௗP[d ≤ dist(Wc ,Wd) < d+1] + ݏ௨ିଵ

The maximum is obtained when all Chebyshev’s inequalities are tight.

When the inequalities are tight, we have

P[d ≤ dist(im1,im2) ≤ d+1]

= P[dist(im1,im2) ≤ d+1] - P[dist(im1,im2) ≤ d]

= ఙమ(ఓିௗିଵ)మ − ఙమ(ఓିௗ)మ

P[any pair of windows collides in 1 iteration]

≤ ∑ௗୀ଴∞ ௗP[d ≤ dist(Wc ,Wd) < d+1]ݏ

= ∑ௗୀ଴ఓିଶݏௗP[d ≤ dist(Wc ,Wd) < d+1] + ∑ௗୀ௨ିଵ∞ ௗP[d ≤ dist(Wc ,Wd) < d+1]ݏ

= ∑ௗୀ଴∞ ௗݏ ቀ ఙమ(ఓିௗିଵ)మ − ఙమ(ఓିௗ)మቁ + ݏ௨ିଵ

147

Substitute variable by d=µ-x

= ∑ௗୀ଴∞ ଶߪఓି௫ݏ ቀ ଵ(௫ିଵ)మ − ଵ௫మቁ + ݏ௨ିଵ

= ∑ௗୀ଴∞ ଶߪఓି௫ݏ ቀ ଶ௫ିଵ(௫ିଵ)మ௫మቁ + ݏ௨ିଵ

≤ ∑ௗୀ଴∞ ଶߪఓି௫ݏ ቀ ଶ௫(௫ିଵ)మ௫మቁ + ݏ௨ିଵ

≤ ∑ௗୀ଴∞ ଶߪఓି௫ݏ ቀ ଶ(௫ିଵ)యቁ + ݏ௨ିଵ

Substitute variable by x=i+1

= ∑ௗୀ଴∞ ଶߪఓି௜ାଵݏ ቀ ଶ௜యቁ + ݏ௨ିଵ

∞ఓାଵ∑ௗୀ଴ݏଶߪ2 = □ ௨ିଵݏ + (௜݅ଷݏ)/1

Corollary3: In t iterations, any pair of windows will collide at most

1-(1-Q)t where Q = 2ߪଶݏఓାଵ∑ௗୀ଴∞ .௨ିଵݏ + (௜݅ଷݏ)/1

Proof: Obvious by Lemma3. □

Theorem1: In t iterations, any pair of windows will collide at most

௨ିଵݏݐ + ∞ఓାଵ∑ௗୀ଴ݏଶߪݐ2 (௜݅ଷݏ)/1

Proof: 1 − (1 − ܳ)௧ = ܳݐ − ቀ2ݐቁ ܳଶ + − ቀ3ݐቁ ܳଷ − □ .Then, follow by Corollary 3 .ܳݐ ≥ (⋯

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

