
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Benchmarks for Cloud Robotics

Permalink
https://escholarship.org/uc/item/4dq7b3tj

Author
Singh, Arjun Kumar

Publication Date
2016

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4dq7b3tj
https://escholarship.org
http://www.cdlib.org/

Benchmarks for Cloud Robotics

by

Arjun Kumar Singh

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Pieter Abbeel, Chair
Professor Ken Goldberg

Professor Bruno Olshausen

Summer 2016

Benchmarks for Cloud Robotics

Copyright 2016
by

Arjun Kumar Singh

1

Abstract

Benchmarks for Cloud Robotics

by

Arjun Kumar Singh

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Pieter Abbeel, Chair

Several areas of computer science, including computer vision and natural language processing,
have witnessed rapid advances in performance, due in part to shared datasets and benchmarks.
In a robotics setting, benchmarking is challenging due to the amount of variation in common
applications: researchers can use different robots, different objects, different algorithms,
different tasks, and different environments.

Cloud robotics, in which a robot accesses computation and data over a network, may help
address the challenge of benchmarking in robotics. By standardizing the interfaces in which
robotic systems access and store data, we can define a common set of tasks and compare the
performance of various systems.

In this dissertation, we examine two problem settings that are well served by cloud
robotics. We also discuss two datasets that facilitate benchmarking of several problems in
robotics. Finally, we discuss a framework for defining and using cloud-based robotic services.

The first problem setting is object instance recognition. We present an instance recognition
system which uses a library of high-fidelity object models of textured household objects. The
system can handle occlusions, illumination changes, multiple objects, and multiple instances
of the same object.

The next problem setting is clothing recognition and manipulation. We propose a method
that enables a general purpose robot to bring clothing articles into a desired configuration
from an unknown initial configuration. Our method uses a library of simple clothing models
and requires limited perceptual capabilities.

Next, we present BigBIRD (Big Berkeley Instance Recognition Dataset), which has been
used in several areas relevant to cloud robotics, including instance recognition, grasping and
manipulation, and 3D model reconstruction. BigBIRD provides 600 3D point clouds and
600 high-resolution (12 MP) images covering all views of each object, along with generated
meshes for ease of use. We also explain the details of our calibration procedure and data
collection system, which collects all required data for a single object in under five minutes
with minimal human effort.

2

We then discuss the Yale-CMU-Berkeley (YCB) Object and Model Set, which is specifically
designed for benchmarking in manipulation research. For a set of everyday objects, the
dataset provides the same data as BigBIRD, an additional set of high-quality models, and
formats for use with common robotics software packages. Researchers can also obtain a
physical set of the objects, enabling both simulation-based and robotic experiments.

Lastly, we discuss Brass, a preliminary framework for providing robotics and automation
algorithms as easy-to-use cloud services. Brass can yield several benefits to algorithm
developers and end-users, including automatic resource provisioning and load balancing,
benchmarking, and collective robot learning.

i

To my parents, Ashok and Anita Singh.

ii

Contents

Contents ii

List of Figures v

List of Tables viii

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 3
1.3 Related Work . 5

1.3.1 Object Instance Recognition . 5
1.3.2 Clothing Recognition . 6
1.3.3 3D Data Collection . 7
1.3.4 Datasets . 8

1.3.4.1 3D Object Datasets . 8
1.3.4.2 Grasping and Manipulation Datasets 9

1.3.5 Frameworks for Cloud Robotics . 10

2 Instance Recognition 13
2.1 Problem Description . 13
2.2 Method . 14

2.2.1 Overview . 14
2.2.2 Object Model Generation . 15

2.2.2.1 3D Mesh Construction . 16
2.2.3 Feature Extraction . 16
2.2.4 Object Detection . 17

2.2.4.1 Segmentation . 17
2.2.4.2 Pose Estimation . 17
2.2.4.3 Multimodal Blending . 19
2.2.4.4 Recovering from Undersegmentation 23
2.2.4.5 Scene Consistency . 23

2.3 Results . 24

iii

2.3.1 Datasets . 24
2.3.2 Threshold Selection . 26
2.3.3 Single Instance Recognition . 26
2.3.4 Multiple Instance Recognition . 26
2.3.5 Comparison to Using Sparse Keypoints 28
2.3.6 Blending with Keypoints . 29
2.3.7 Timing Results . 29
2.3.8 Discussion . 30

2.3.8.1 Pose Estimation Failures . 31
2.3.8.2 Failures Due to Imposters 31

3 Clothing Recognition 32
3.1 Problem Definition . 33
3.2 Method . 33

3.2.1 Outline . 33
3.2.2 Hidden Markov Model . 34

3.2.2.1 Transition Model . 36
3.2.2.2 Height Observation . 37
3.2.2.3 Contour Observation . 37

3.2.3 Cloth Simulator . 39
3.2.4 Planning Algorithm . 41

3.3 Results . 42
3.3.1 Setup . 42
3.3.2 Disambiguation Experiments . 44
3.3.3 End-to-End Task . 46

4 BigBIRD Object Dataset 47
4.1 System Description . 47

4.1.1 System Overview . 47
4.1.2 System Details . 49

4.2 Camera Calibration . 50
4.2.1 Joint Optimization . 51

4.3 3D Model Generation . 53
4.3.1 Depth Discontinuity Filtering . 54
4.3.2 Plane Equalization . 54
4.3.3 Object Segmentation . 55
4.3.4 Accuracy . 55
4.3.5 Limitations . 57

4.4 Dataset Usage . 57
4.4.1 Obtaining the Dataset . 58

5 YCB Object and Model Set 60

iv

5.1 Objects . 60
5.1.1 Object Selection Criteria . 60

5.1.1.1 Variety . 61
5.1.1.2 Use Cases . 62
5.1.1.3 Durability . 63
5.1.1.4 Cost . 63
5.1.1.5 Portability . 64

5.1.2 Selected Objects . 64
5.2 Model Generation . 66
5.3 Data Structure and Usage . 70

5.3.1 Data Structure Details . 70
5.4 Protocols . 71

5.4.1 Guidelines . 71
5.4.1.1 Task Description . 72
5.4.1.2 Setup Description . 72
5.4.1.3 Robot / Hardware / Subject Description 72
5.4.1.4 Procedure . 72
5.4.1.5 Execution Constraints . 72

5.4.2 Available Protocols . 72

6 Brass: Berkeley RAaaS Software 74
6.1 Background . 74

6.1.1 Cloud Computing . 74
6.1.2 Robotics and Automation as a Service 76

6.2 Brass Framework . 77
6.2.1 Goals . 77

6.3 Design . 79
6.3.1 Pipelines . 80

6.4 Example . 80
6.4.1 Algorithm Implementer . 80
6.4.2 Software End-User . 81

7 Conclusion 82
7.1 Instance Recognition . 82
7.2 Clothing Recognition . 83
7.3 BigBIRD . 83
7.4 YCB Object and Model Set . 84
7.5 Brass . 84

Bibliography 85

v

List of Figures

1.1 Examples of image classification, localization, and semantic segmentation on an
image from the PASCAL VOC dataset. 12

2.1 An overview of our system. The top row shows the training pipeline, and the
bottom row shows the test pipeline. 14

2.2 Example of a case where our multimodal approach helps with an untextured test
object view. 20

2.3 Example of a test scene where the color component helps avoid detection of
imposter objects. 21

2.4 Illustration of the computation of all pairs of products. The sd values represent
verification scores. The mi values represent metafeatures. Note that for each test
cluster, there will be Nobj such feature vectors—one per training object. 22

2.5 The thirty-five textured household objects from the Willow and Challenge dataset. 24
2.6 Sample test data for the Willow dataset. 25
2.7 Histograms of pose errors on Challenge dataset. Ground truth poses are unavailable

for the Willow dataset. 28

3.1 The PR2 starts with a pair of pants in a crumpled initial configuration, and then
manipulates the pants into the desired configuration. 32

3.2 Block diagram outlining our procedure. The t-shirt starts out in a crumpled state.
We manipulate it with the lowest-hanging point procedure and take observations.
We choose the most likely configuration and article and plan a sequence of
manipulations to the desired configuration. The robot executes the sequence and
grasps the t-shirt by the shoulders. 34

3.3 Graphical representation of the hidden Markov model. 35
3.4 The simulated contour (pink) is overlaid on the actual cloth image. 37
3.5 An example of a challenging alignment where a simple overlap metric would

perform poorly. The dynamic time warping algorithm successfully matches the
salient features of the simulated contour (yellow) to the actual contour (blue). . 38

3.6 Our probability distribution over DTW costs for the correct grasp state and article. 39
3.7 The grasp points, shown in pink, are identified by following the alignment from

the simulated contour (yellow) to the actual contour (blue). 43

vi

3.8 Our test set of clothing articles. 44
3.9 A cloth configuration in which the article is flipped over itself and therefore not

in the minimum-energy configuration predicted by our simulator. 45

4.1 Carmine mounted to Canon T3 using RGBDToolkit mount. 48
4.2 Side view of all Carmines mounted to respective Canon T3s, pointed at the Ortery

PhotoBench. The dimensions of the PhotoBench are 31” D x 26”H x 26” W. . . 49
4.3 Comparison of hardware and software registration. The left image shows a

hardware-registered point cloud. Note the bleeding of the cardboard in the
background onto the Pringles can and the low resolution of the color data. The
right image shows a software-registered point cloud using our calibration. Most
of the bleeding of the cardboard onto the can has been fixed, and we can use
higher-resolution color data. 53

4.4 Applying depth discontinuity filtering. Pixels marked in red are considered unreli-
able due to either a discontinuity or neighboring pixels that were not measured
by the Carmine depth sensor. Before proceeding, we discard depth measurements
associated with the red pixels. 54

4.5 The chessboard poses for each turntable location are shown in the frame of the
reference camera. In the top image, the chessboard poses are determined by
solvePnP. In the bottom image, we refine these pose estimates using the plane
equalization method described in Section 4.3.2. The refined board poses are
significantly cleaner. 56

4.6 Constructed point clouds for one object. On the left, the cloud is constructed
using the raw solvePnP poses; the cloud has multiple shifted copies of the object
due to misalignment. On the right, the cloud is constructed with the output of
the plane equalization procedure; the cloud is much cleaner and better aligned. . 57

4.7 The 3D mesh is projected onto one of the Canon images. 58
4.8 An example object for which Kinect-style RGB-D sensors yield poor-quality point

clouds. 59

5.1 Food items included in the YCB Object Set. Back: chips can, coffee can, cracker
box, sugar box, tomato soup can. Middle: mustard container, tuna fish can,
chocolate pudding box, gelatin box, potted meat can. Front: plastic fruits (lemon,
apple, pear, orange, banana, peach, strawberries, plum). 61

5.2 Kitchen items included in the YCB Object Set. Back: pitcher, bleach cleanser,
glass cleaner. Middle: plastic wine glass, enamel-coated metal bowl, metal mug,
abrasive sponge. Front: cooking skillet with glass lid, metal plate, eating utensils
(knife, spoon, fork), spatula, white table cloth. 62

5.3 Tool items included in the YCB Object Set. Back: power drill, wood block. Middle:
scissors, padlock and keys, markers (two sizes), adjustable wrench, Phillips and
flathead screwdrivers, wood screws, nails (two sizes), plastic bolt and nut, hammer.
Front: spring clamps (four sizes). 63

vii

5.4 Shape items included the YCB Object Set. Back: mini soccer ball, softball,
baseball, tennis ball, racquetball, golf ball. Front: plastic chain, washers (seven
sizes), foam brick, dice, marbles, rope, stacking blocks (set of 10), blank credit card. 64

5.5 Objects for two widely used tasks in rehabilitation benchmarking. 65
5.6 Objects used for a complex toy airplane assembly task. 65
5.7 Lego Duplo blocks, which can be used as a simple assembly task. 66

6.1 Example Robotics and Automation as a Service (RAaaS) application. In this
example, a robot arm with an RGBD sensor must pick up and inspect parts on
an assembly line. The robot sends point clouds into the Cloud, and receives back
detailed object models, grasps, and motion plans. Following the execution of these
grasps and motion plans, outcomes are sent back into the Cloud to improve future
performance. Multiple robots use the service. 75

6.2 PaaS and Brass flowcharts. The top figure shows the usage of PaaS frameworks:
algorithm implementers share their algorithms such that software end-users can
download, build, and install them. Then, the software end-users must integrate
the algorithms with their own code, and deploy this code into the PaaS cloud.
The bottom figure shows the usage of Brass: algorithm implementers deploy their
code, in the form of services, directly into the cloud using Brass. This code is
then immediately available for software end-users to access. 76

viii

List of Tables

2.1 Summary of Notation . 15
2.2 Metafeatures used for model blending. 23
2.3 Single object instance recognition. “No blending” declares the object with the

highest RANSAC inlier count score, while “blending” uses the highest score (as
output by the ranking SVM) with no metafeatures. 26

2.4 Results on the Challenge dataset. 27
2.5 Results on the Willow dataset. 27
2.6 Performance using sparse vs. densely computed (then downsampled) SIFT models

and query features. Only RANSAC scores and the ratio test are used for these
results. 28

2.7 Results when using keypoints at test time with blending. 29
2.8 Timing breakdown for the training stage. 30
2.9 Timing breakdown for the test stage. 31

3.1 Results for the disambiguation experiments, in which the identity and grasp state
of the clothing articles are estimated. See Section 3.3.2 for details. 46

3.2 Results for the full end-to-end task. Note that the majority of failures were due
to the robot not being able to reach a target grasp point in the planned sequence. 46

4.1 Timing information for the data-collection process. Note that the three image
capture threads all run in parallel, which means that the image capture step takes
as long as the longest process. 50

5.1 The objects included in the YCB Object and Model set. Note that the object
IDs are consistent with [13]. Some objects have multiple parts; these parts are
indicated by the letters next to their ID numbers. 69

ix

Acknowledgments

My advisor, Pieter Abbeel, has opened up so many opportunities for me, most of which I
could have never imagined. He is the hardest working person I have ever met, and is also
consistently positive, friendly, and fun to work with. He is an inspiring mentor, and I’m glad
that I don’t have to give up the brainstorming sessions even though I’m graduating.

I have been fortunate to have excellent mentorship in all aspects of my education. Ken
Goldberg has always given me practical advice and feedback – I have especially appreciated
the presentation tips. I’m also very grateful for the feedback provided by Trevor Darrell and
Bruno Olshausen during my qualifying exam. I learned so much about teaching from Dan
Klein.

I’m grateful to have gotten to know and work with such talented and interesting people: Berk
Calli, Marco Cusumano-Towner, Rocky Duan, Ryan Goy, Woody Hoburg, Ben Kehoe, Alex
Lee, Jeremy Maitin-Shepard, Stephen Miller, Karthik Narayan, James Sha, Jie Tang, Justin
Uang, Ziang Xie, and many more.

I’m thankful for the support I’ve had from the NDSEG Fellowship and the Andrew T. Yang
Fellowship for Entrepreneurship.

There are many people that I’d like to acknowledge for many reasons, and I won’t be able to
fit everything here. Thanks to all of my friends and family for all of the support over the last
6 years.

Cam, Dan, Julian, Kevin, Sid, and Suraj – thanks for all of the basketball games and
everything else that helped keep me sane.

Alex, Marc, Chris, Shane, Justin, Sean, Jimmy, Irene, Brian, Ryan, Chase, Kyle, Akshay,
and Bobby – thanks for being such great friends for so long.

Maggie, Joules, Munchkin and Leo – thanks for always cheering me up, and for reminding
me that work isn’t always the most important thing.

Didi and Sujay, thanks for the room. But really, thanks to both of you for always being there
for whatever I needed and dealing with all of the random injuries and illnesses.

Sarah, thanks for being my best friend for the last nine years and for many more to come.

Mama and Papa – thank you for everything.

1

Chapter 1

Introduction

1.1 Motivation
The last decade has witnessed rapid advances in computer vision, largely due to fundamental
image datasets and benchmarks such as MNIST, Caltech-101, PASCAL, Labeled Faces in
the Wild, ImageNet, and COCO [24, 29, 31, 49, 77, 81]. In addition to the data itself, the
community has established a set of computer vision tasks on which performance and results
can easily be compared. In a robotics setting, benchmarking is challenging due to the amount
of variation in common tasks: researchers can use different robots, different objects, different
algorithms, different tasks, and different environments. Most research groups end up choosing
a particular robot, the environment in their lab, and a set of objects and tasks that represent
the application they are working towards. This makes it difficult to compare experimental
results against a common basis, or to quantitatively compare the performance of a described
approach versus alternatives.

Cloud robotics, in which a robot accesses computation and data over a network, may
help address the challenge of benchmarking in robotics. In a recent survey of research on
cloud robotics and automation, Kehoe et al. [60] describe several significant potential benefits:
(1) Cloud Computing: robots can access additional computational resources that may not
fit onboard the robot due to space or power constraints, (2) Big Data: robots can access
more data than can be locally stored or collected, (3) Collective Learning: robots can share
trajectories, control policies, and outcomes, and (4) Human Computation: robots can tap
human skills for analyzing images and video, classification, learning, and error recovery. By
standardizing the interfaces in which robotic systems access and store data, we can define a
common set of robotic tasks on which performance can be compared.

One example application where cloud robotics may play an important role is robotic
perception. The specific problem of perception for robotics has a number of unique features
which differentiate it from other problems in computer vision. A general object recognition
system must deal with a vast number of different objects. Generalizing from a few examples
to an entire category of objects remains difficult, and numerous benchmarks and challenge

CHAPTER 1. INTRODUCTION 2

problems like Caltech 256 [41] and PASCAL VOC [29] exist to help drive progress in this
area. However, for a specific robot in a specific environment, the number of unique objects is
often relatively small (generally under a few thousand). This makes it possible to treat it as
an instance recognition problem, gathering a large amount of training data for each object.
In addition, a robot can take advantage of data from multiple sensing modalities such as
cameras and depth sensors. Perception for robotics also presents additional challenges which
are not present in category-level object recognition benchmarks. Real world environments
are highly cluttered, contain many occlusions, and frequently contain 5 to 10 different objects
in the same scene. Robots must often avoid or manipulate objects in their environment. This
means that a robotic perception system needs to accurately localize and estimate the pose
of objects after detecting them. Furthermore, for a robot to react quickly to changes in its
environment, a robotic perception system must operate in near real time.

Another potential application of cloud robotics is the handling of non-rigid objects, such
as clothing. In highly structured settings, modern-day robots can be scripted to perform a
wide variety of tasks with astounding precision and repeatability. Clothing tends to have
significantly higher dimensional configuration spaces than these structured environments.
Perhaps the biggest challenge in the manipulation of deformable objects for tasks such as
laundry is bringing a clothing article into a known configuration from an arbitrary initial
configuration.

In both the instance recognition work and the clothing work, we employ a model-based
approach in which we store processed data about object instances or different types of clothing
articles. Cloud robotics yields a natural avenue for scaling these approaches up to hundreds
or thousands of objects without significantly increasing latency.

Although the aforementioned datasets have led to significant advances in computer vision,
the solution to most of these datasets would not constitute a solution to instance recognition,
as these datasets currently target image retrieval tasks from arbitrary images drawn from
the web. In particular, while most of these tasks emphasize detection, they do not directly
address the problem of pose estimation, a component crucial to attaining high performance
in instance recognition and robotic tasks. Although several 3D vision datasets exist, most
either (1) include few objects, (2) have low-quality objects, (3) provide only single views
of objects or scenes, (4) do not contain calibration and pose information, or (5) provide
low-resolution RGB data [21, 54, 75, 120, 125, 142]. While addressing all five aspects would
improve the quality of instance recognition systems, addressing aspect (5) would also provide
a venue to explore synergies and comparisons between Kinect-style and multi-view stereo
approaches to 3D model construction [34, 35, 42]. Additionally, most of these datasets
do not include enough data to train deep-learning-based architectures, which have shown
state-of-the-art performance on several tasks over the past few years. In order to bring these
same performance gains to robotic perception, dataset sizes need to increase accordingly.

Benchmarking for robotic manipulation is more difficult than benchmarking for perception.
Object and model sets are generally the fundamental elements involved in benchmarks for
manipulation. There have been few instances of proposed object/task sets for which the
physical objects are available to researchers. Access to the objects is crucial to performance

CHAPTER 1. INTRODUCTION 3

benchmarking as many aspects of the manipulation process cannot be modeled, thereby
requiring physical experiments to demonstrate success or examine failure modes. Furthermore,
task protocols are necessary in order to meaningfully compare performance for different
methods applied to the same tasks.

An additional benefit of cloud robotics is that it can significantly streamline algorithm
usage and distribution. Another aspect that complicates benchmarking is the fact that setting
up the required software environment for many robotic software packages is often a very time
consuming task in itself. This limits the ability of researchers to try out several approaches
to a task, and report results for each approach. Furthermore, it is often quite difficult to
even release one’s own software to share with the research community. By adopting a cloud
robotics approach to software usage and distribution, we can standardize how researchers use
different algorithms for the same task, enabling them easily to swap different approaches in
and out.

1.2 Contributions
The work presented in this dissertation was done in collaboration with several colleagues.
For each body of work, I cite the relevant papers and list the venue in which the work was
originally presented. In all cases, I contributed substantially to the research.

In Chapter 2, we describe a system demonstrating the benefits of simultaneous segmen-
tation, object detection, and 3D pose recovery. We present experiments on a Kinect-based
textured object dataset. An early version of our system placed first in the inaugural Solutions
in Perception Challenge, held by Willow Garage at ICRA 2011 [142]. This initial work was
presented at ICRA 2012 [128]. We describe several improvements to this original system.
First, we show that dense feature extraction (with moderate downsampling) results in signif-
icantly higher recall than feature extraction at keypoint-based interest points. This holds
at training time, when building feature models, and at test time, when extracting features
from the test images. Next, we illustrate how a discriminative extension of feature-weighted
linear stacking [121] can be used to generate object hypotheses using a learned combination
of scores derived from texture, color, and shape-based features, leading to another significant
boost in performance. These additions yield significant improvements in performance. On the
Challenge test set, we obtain near perfect results (1.000 precision and 0.9977 recall). On the
Willow test set, we present a significant leap over the previous state of the art, with 0.9828
precision and 0.8778 recall, corresponding to an increase in F-score from 0.8092 to 0.9273. De-
tailed results are given in Section 2.3. This work was originally presented at IROS 2013 [144].
An interactive visualization of results is available at http://rll.berkeley.edu/odp/.

In Chapter 3, we describe an implementation of an end-to-end system for bringing clothing
articles into a desired configuration from an unknown initial configuration. We propose a
convex simplification of standard (non-convex) finite element models for cloth simulation to
simulate the cloth’s behavior when held at particular points. While an approximation, we
found it provides sufficiently accurate predictions for the regimes our manipulation primitives

http://rll.berkeley.edu/odp/

CHAPTER 1. INTRODUCTION 4

make the cloth go through. We show that when repeatedly executing the primitive of “holding
up a clothing article with one gripper and grasping the lowest-hanging point,” the robot
converges to grasping a small set of attractor regions on the clothing article. We propose a
probabilistic observation model for when the robot holds up the clothing article. The model
uses our convex simulation model and dynamic time warping at its core. It only requires
simple perceptual processing: extraction of the contour of the clothing article held up. We
describe how to fuse these ideas in our hidden Markov model, including estimation of some of
the parameters from data. Our experiments demonstrate that probabilistic inference in our
model results in reliable estimates of how the cloth is held. We describe our implementation of
an end-to-end system on the Willow Garage PR2 which starts with crumpled clothing articles
and arranges them into a spread out configuration. We successfully tested our implementation
on pants, shirts, sweaters, and towels. Detailed results are given in Section 3.3. This work
was originally presented at ICRA 2011 [22].

In Chapter 4, we present the BigBIRD dataset. The contributions of this work consist of:
(1) a dataset of objects composed of 600 3D point clouds and 600 high-resolution (12 MP)
images spanning all views for each object, (2) a method for jointly calibrating a multi-camera
system, (3) details of our data collection system, which collects all required data for a single
object in under five minutes with minimal human effort, and (4) multiple software components
(made available in open source), used to automate multi-sensor calibration and the data
collection process. This work was originally presented at ICRA 2014 [123]. Code and data
are available at http://rll.eecs.berkeley.edu/bigbird.

In Chapter 5, we discuss the YCB dataset. The contributions of this work consist of: (1) a
set of everyday physical objects useful in a variety of robotic manipulation tasks, (2) raw image
data, meshes, and models for each of the objects, (3) a community portal for protocols and
benchmarks for working with these objects and models. This work was originally presented
at ICAR 2015 [14]. Code and data are available at http://www.ycbbenchmarks.org/.

In Chapter 6, we discuss Brass (Berkeley RAaaS Software), a preliminary framework for
Robotics and Automation as a Service (RAaaS). Brass allows developers to write services in
any programming language on a Linux operating system, with a small amount of Python
wrapper code. Brass also enables developers to maintain confidentiality regarding details of
their algorithm, if desired, while permitting end-users to use these algorithms. End-users can
consume algorithms as web services, allowing use from any robot hardware with any operating
system with minimal local software requirements. The architecture can transparently handle
load balancing and scaling. With defined service and data formats, Brass can also enable
easier benchmarking between algorithms and datasets. Brass can facilitate collective robot
learning with datasets that evolve over time. We also illustrate how the previously mentioned
instance recognition system can be packaged and consumed as a Brass service. This work
was first described by Ben Kehoe in his dissertation [61].

http://rll.eecs.berkeley.edu/bigbird
http://www.ycbbenchmarks.org/

CHAPTER 1. INTRODUCTION 5

1.3 Related Work

1.3.1 Object Instance Recognition

Many existing approaches toward instance recognition first extract descriptors from a training
set of objects, then match them to corresponding descriptors in a given test scene, using the
correspondences to simultaneously determine the correct object and pose. Gordon and Lowe
[39] use SIFT features [84] and structure from motion to register a camera pose against a
known object model. Our work is inspired by the MOPED system of Collet et al. [88], which
first constructs a sparse descriptor database by extracting SIFT features [84] at training
time. At test time, MOPED uses the SIFT features to jointly estimate object class and pose.
Unlike our system, it does not use depth information or perform multimodal verification.

A number of different approaches have been presented for incorporating depth information.
Several of these rely on extracting feature descriptors from the depth data, including spin
images [55], point feature histograms [110, 112], or histograms of oriented gradients on the
depth image [23, 75]. Our approach incorporates depth information at multiple stages of
the processing pipeline. During training we build 3D mesh models in addition to 3D metric
feature representations, and at test time we use depth to segment objects and verify scene
consistency.

Aldoma et al. [2] obtain good performance by combining two pipelines, one using 2D and
the other 3D features, via an optimization-based hypothesis verification framework. They too
use features extracted at keypoints, and differ in their use of a 3D histogram-based feature.

Several works on category recognition suggest that dense sampling tends to yield higher
performance. For example, Tuytelaars et al. [133] attribute part of the success of their Naive
Bayes Nearest Neighbor classifier to dense descriptor computation. In the unsupervised
feature learning context, Coates et al. [19] demonstrate that dense convolution in convolutional
neural networks leads to higher performance. Nowak et al. also illustrate the importance of
dense sampling for bag-of-features image classification [101]. To the best of our knowledge,
however, our work is the first to demonstrate that dense features play a crucial role in
attaining strong performance on the instance recognition problem.

In addition to improving performance using dense features, we consider using an ensemble
of models over several modalities to aid in recognition. Ensemble learning, also referred to
as blending, has been thoroughly explored in the machine learning community [11, 33]. One
simple method is to learn an affine combination of the scores obtained through each modality.
Another method that extends this idea is feature weighted linear stacking [89, 121]. We
evaluate both methods for the purpose of generating hypothesis detections.

Thorough experimentation illustrates that our approach obtains significantly better results
than the previous state of the art. Several recent datasets have been created using the Kinect
sensor to gather color and depth images of household objects. The textured object training
data and testing data used in this work comes from the Solutions in Perception Challenge at
ICRA 2011 [142]. Lai et al. [75] recently presented a larger color and depth image dataset for
category and object recognition, containing both textured and untextured objects. Other

CHAPTER 1. INTRODUCTION 6

datasets are discussed in Section 1.3.4.
In the past few years, the computer vision community has used deep learning to make

substantial progress on related problems, including image classification, object localization,
and semantic segmentation. In image classification, the task is to assign one or more labels to
an image corresponding to the main objects in the image. In object localization, the task also
requires outputting the bounding box of each object. Semantic segmentation refers to the
task of labeling each pixel in an image with a label corresponding to an object (potentially
including a “background” label). Figure 1.1 illustrates the differences between these tasks
on an image from the PASCAL VOC dataset [29]. Algorithms implementing these tasks
can be used as building blocks in an instance recognition system, but such algorithms do
not necessarily solve the instance recognition problem as we define it here, since they do not
output the 3D pose of the object.

One of the most well-known examples is “AlexNet”, presented by Krizhevsky et al. [72],
which is a deep convolutional neural network yielding impressive classification results on the
ILSVRC 2012 dataset [109]. Several advancements have recently been made on both the
object localization and semantic segmentation problems. For object localization, well-known
methods include OverFeat [117], R-CNN [38], ResNets [45], and very deep convolutional
networks [122]. For semantic segmentation, ResNets, along with methods presented by
Long et al. [83] and Lin et al. [80], perform very well.

Deep learning has also been used to deal with 3D viewpoint. Held et al. [46] present an
approach for training deep learning methods for instance recognition with much less training
data than typically used, while still remaining robust to changes in viewpoint. However, they
primarily focus on the problem of identifying the correct object, as opposed to also identifying
the object pose. Hinton et al. [48] describe transforming auto-encoders, where a neural
network outputs instantiation parameters of an object, such as 2D affine transformations and
3D viewpoints. Tulsiani and Malik [132] use a convolutional neural network to predict a coarse
viewpoint of an object, which can be fine-tuned via keypoint prediction. Gupta et al. [43]
use a convolutional neural network to first estimate a coarse pose of an object, and then
align a 3D model. Su et al. [127] also present a convolutional neural network for object
viewpoint estimation, along with an image synthesis pipeline for generating training data.
Lai et al. [74] present a hierarchical sparse coding technique for unsupervised learning of
features from RGB-D images and 3D point clouds. Su et al.present multi-view convolutional
neural networks, used to recognize 3D shapes [126] from a collection of their 2D projections.
Eitel et al.compose two convolutional neural networks, one for depth and one for color, into a
single network [28].

1.3.2 Clothing Recognition

Extensive work has been done on enabling specialized and general-purpose robots to manipu-
late clothing. To the best of our knowledge, however, with the exception of the towel folding
capability demonstrated by Maitin-Shepard et al. [87], no prior work has reported successful
completion of the full end-to-end task of picking up an arbitrarily placed clothing article and

CHAPTER 1. INTRODUCTION 7

bringing it into a neatly folded state. In our work we focus on a key part of this end-to-end
task: bringing a clothing article from an unknown configuration into a desired configuration.

The work of Osawa et al. [103] and Kita et al. [63, 64, 65, 66] is the most closely related
to our approach. Osawa et al. use the idea of iteratively grasping the lowest-hanging point.
They describe how this procedure leads to a relatively small number of fixed points. Once
their perception unit recognizes that a corner has been grasped, their procedure compares
the shape observed while pulling taut with pre-recorded template images. They reported
recognition rates on seven different clothing categories. In contrast to our work, they require
template images of the articles, they have a one-shot decision making process (rather than
a probabilistic estimation framework), and their procedure only performs “lowest-hanging
point” re-grasps. As a consequence of only re-grasping lowest points, their final configuration
is not necessarily spread out. While they do not report success rates, they show successful
manipulation of a long-sleeved shirt with a final configuration in which it is held by the ends
of the two sleeves.

Kita et al. consider a mass-spring model to simulate how clothing will hang. Their work
shows the ability to use fits of these models to silhouettes and 3D point clouds to extract the
configuration of a clothing article held up by a single point with a good success rate. Their
later work [64, 65, 66] shows the ability to identify and grasp a desired point with the other
gripper. None of this prior work demonstrates the ability to generalize to previously unseen
articles of clothing.

There is also a body of work on recognizing categories of clothing; some of this work
includes manipulation to assist in the categorization. For example, Osawa et al.[103], as well
as Hamajima and Kakikura [44], present approaches to spread out a piece of clothing using
two robot arms and then categorize the clothing.

Some prior work assumes a known, spread-out, or partially spread-out configuration, and
focuses on folding or completing other tasks. The work of Miller et al. [94], building on the
work of van den Berg et al. [8], has demonstrated reliable folding of a wide range of articles.
Paraschidis et al. [30] describe the isolated executions of grasping a laid-out material, folding
a laid-out material, laying out a piece of material that was already being held, and flattening
wrinkles. Yamakazi and Inaba [145] present an algorithm that recognizes wrinkles in images,
which in turn enables them to detect clothes laying around. Kobori et al. [67] have extended
this work to flattening and spreading clothing, managing to successfully spread out a towel.

Recently, Willimon et al. [141] have proposed an alternative approach to unfolding,
involving the detection of cloth discontinuities and repeated manipulation. Ramisa et al. [106]
combine depth and appearance features for detecting grasp points, reducing the need for
multiple re-grasps. Schulman et al. [116] describe an algorithm for real-time tracking of
deformable objects from sequences of point clouds.

1.3.3 3D Data Collection

The chief obstacle in collecting a high-quality large-scale object dataset involves constructing
a reliable 3D scanning system that can provide both high-quality depth and color information.

CHAPTER 1. INTRODUCTION 8

Most commercial 3D scanners either provide only range sensor and low-resolution color
information, and/or are very expensive. Recent work demonstrates that KinectFusion
variants can provide high-quality 3D reconstructions [53, 100, 140, 149]. However, some of
these approaches do not provide calibrated RGB images, which are required by many instance
recognition systems, and those that do only provide low-resolution RGB images from the
Kinect sensor. Furthermore, the data collection process requires a human to slowly move a
Kinect around the full object; even with an automated turntable, a single Kinect attached
to an arm cannot image non-convex objects and translucent/transparent objects due to the
inherent limitations of Kinect-style RGB-D sensors.

Using multiple Kinects and high-resolution DSLR cameras along with an automated
turntable constitutes one possible approach to jointly reducing human effort while improving
RGB-D mesh quality. The use of multiple types of sensors requires highly accurate intrinsics
for each sensor, as well as relative transformations between pairs of sensors. Researchers
have extensively studied this problem for both single and multiple 2D cameras, and have
recently explored it for single and multiple RGB-D sensors [36, 47, 76, 124, 138, 147, 148].
Typical approaches involve first calibrating each sensor individually to compute its intrinsics,
computing stereo pairs between sensors to estimate each sensor’s extrinsics, and then running
a joint optimization procedure to refine each sensor’s intrinsics and extrinsics. For calibrating
RGB-D sensors, many approaches require additional hardware and/or setup from what is
required for 2D cameras. For example, Herrera et al. [47] present a method that requires
affixing a chessboard to a large, flat plane, whereas typical 2D approaches simply require a
chessboard alone. Our method requires a source of infrared light, but no additional hardware
setup.

Additionally, interference between IR patterns complicates constructing a data-collection
system with multiple RGB-D sensors. Butler et al. [12] propose an approach for mitigating
interference from multiple depth sensors. However, their approach requires affixing a vibrating
motor to each device, which makes a static calibration procedure impossible and also introduces
more complexity into the system. We employ time-multiplexing, another common approach,
which involves turning off each camera when it is not taking a picture. Specifically, we turn
off the infrared emitter, which is roughly two times faster than turning off the depth stream.

1.3.4 Datasets

1.3.4.1 3D Object Datasets

Although several 3D vision datasets exist, most datasets either (1) have few objects, (2) have
low-quality objects, (3) provide only single views of objects or scenes, (4) do not contain
calibration and pose information, or (5) provide low-resolution RGB data [21, 54, 75, 120,
125, 142]. Furthermore, although most recent instance recognition systems work with RGB-D
data, there are also high-quality instance recognition systems that use only RGB images,
such as MOPED, presented by Collet et al. [20]. However, these generally work with higher-
quality RGB images than those provided by RGB-D sensors. Unfortunately, this makes it

CHAPTER 1. INTRODUCTION 9

quite difficult to compare RGB-D instance recognition systems with RGB-only systems, as
simply applying the RGB-only systems to the images from RGB-D datasets would yield
unrepresentative results. Because we provide high-quality RGB images in addition to the
RGB-D data, we enable meaningful comparison of these systems.

The closest work to ours is that of Kasper et al. [57]. They have a similar setup in which
a laser scanner collects 3D data and a stereo pair collects data from 360 points from the
viewing hemisphere. They also provide object meshes and calibrated RGB data. However,
their 3D data collection setup is only semi-automated and their image collection setup takes
an additional 20 minutes. Although they provide a relatively large number of objects (roughly
130 at the time of writing), scaling up to thousands may be infeasible at that speed. Our
approach is fully automated after placing the object in the system, and data collection takes
less than five minutes per object.

Recently, Borji et al.introduced iLab-20M [10], a dataset of a large number of controlled
images of tiny models, including 15 categories, 8 rotation angles, 11 cameras, 5 lighting
conditions, and 3 focus settings. They also use a robot arm to take 1:160 scale scenes.

1.3.4.2 Grasping and Manipulation Datasets

The necessity of manipulation benchmarks is highly recognized in the robotics community [50,
52, 85] and continues to be an active topic of discussion at workshops on robotic manipu-
lation [25, 104]. The majority of prior work concerning object sets has involved only the
models and images of those objects, often created for research in computer vision [92, 123,
129]. There have also been a number of shape/texture sets designed for/by the robotics
community, particularly for applications such as planning and learning. The Columbia
Grasp Database [78] rearranges the object models of the Princeton Shape Benchmark [119]
for robotic manipulation and provides mesh models of 8000 objects together with assigned
successful grasps per model. Such a database is especially useful for implementing machine
learning-based grasp synthesis algorithms in which large amounts of labeled data are required
for training the system. A multi-purpose object set that also targets manipulation is the KIT
Object Models Database [57] which provides stereo images and textured mesh models of 100
objects. While there are a large number of objects, the shape variety is limited, and like the
previously mentioned datasets, the objects are not easily accessible to other researchers.

There have only been two robotics-related efforts in which researchers can obtain the
physical objects relatively easily. The household objects list [16] provides good shape variety
that is appropriate for manipulation benchmarking, as well as a shopping list. Unfortunately,
the list is outdated, and most objects are no longer available. Also, the 3D models of the
objects are not supplied which prevents the use of the object set in simulations. Recently,
the Amazon Picking Challenge [4] also provided a shopping list for items, but the objects
were chosen specifically for a bin-picking application.

In terms of other robotic manipulation benchmarking efforts, a number of simulation tools
have been presented in the literature. The OpenGRASP benchmarking suite [134] presents a
simulation framework for robotic manipulation. The benchmarking suite provides test cases

CHAPTER 1. INTRODUCTION 10

and setups, and a standard evaluation scheme for the simulation results. So far, a benchmark
for grasping known objects has been established using this suite. VisGraB [69] provides a
benchmark framework for grasping unknown objects. The unique feature of this software
is utilizing real stereo images of the target objects for grasp synthesis, and executing and
evaluating the result in a simulation environment. For gripper and hand design, benchmark
tests [70, 71] are proposed for evaluating the ability of the grippers to hold an object, but only
cylindrical objects are used. The OpenAI Gym [102] is a toolkit for comparing reinforcement
learning algorithms on tasks including bipedal locomotion and game playing.

Recently, Mahler et al.introduced Dex-Net [86], which draws from several datasets (in-
cluding BigBIRD) to yield over 10000 unique 3D object models labeled with 2.5 million
parallel-jaw grasps. Each grasp also includes an estimate of the probability of force closure
under uncertainty of both object and gripper pose.

1.3.5 Frameworks for Cloud Robotics

Cloud robotics and automation originated in “Networked Robotics" over two decades ago [60].
In 1997, work by Inaba et al. on “remote brained robots" described the advantages of remote
computing for robot control [51]. In 2010, James Kuffner coined the term “Cloud Robotics"
and described a number of potential benefits [73].

Previous approaches to cloud-based computation for robotics and automation have focused
on using Platforms as a Service (PaaS) to move the existing computational setup onto cloud-
based infrastructure. An important motivation for this approach is the ubiquity of the ROS
ecosystem (Robot Operating System) [105]. The design of ROS gives developers powerful,
convenient ways to connect software components together to form ROS networks. The
code for software components that use ROS can be distributed through the ROS software
ecosystem. However, due to the architecture of the ROS messaging system, when that code
is run as a process, the process cannot be shared between ROS networks. This means that
when using ROS or a ROS-like design, processes that run in the cloud are dedicated to the
software end-user that deployed them, or, at most, other end-users that must be allowed
access to each other’s data and robots. This means that using ROS or a ROS-like design
generally requires a PaaS architecture.

In 2009, the RoboEarth project was announced. It envisioned “a World Wide Web for
robots: a giant network and database repository where robots can share information and learn
from each other about their behavior and environment" [136, 139]. The RoboEarth project
includes a PaaS component named Rapyuta for cloud-based computation that provides
secured customizable computing environments with ROS integration [96]. Rapyuta uses
Linux containers, which are the underlying technology of the Docker [27] containers used
by Brass, to provide isolation and platform independence for end-user code running on its
servers.

DAvinCi is another cloud computing framework designed for service robots [5]. It provides
PaaS in the form of parallel computation for map-reduce tasks created and submitted by the
end-user, but, like ROS, also assumes that all of the robots connected to the service are in

CHAPTER 1. INTRODUCTION 11

the same environment, and can therefore share all data between them. This assumption is
appropriate for the robotics application it was designed for, but limits the possibility that it
could be used by many end-users with different robots and applications.

In contrast to PaaS approaches, previous works in cloud-based SaaS (Software as a
Service) computation systems implement a specific algorithm or set of algorithms [59, 82,
108]. These systems are convenient for the end-user, but do not provide a platform on which
other SaaS computation can be provided. An example is CloudSim, from the Darpa Robotics
Challenge [18], which illustrates the benefits of SaaS. All the teams in the challenge were
given access to identical simulators through a cloud-based interface. This eliminated the need
for teams to develop or run the simulator themselves, enabling them to spend more time on
completing the challenge.

Brass is similar in many ways to Algorithmia [3], a web site that allows algorithms
to be provided as web services. However, there are some key differences. First, Brass
leverages Docker to allow algorithm implementers to use any programming language, software
architecture, and dependencies to build services, whereas Algorithmia requires code to be
written in one of their supported languages (including Java, Ruby, and Python). In addition,
Brass provides common robotics data types for use as inputs and outputs, including matrices,
poses, images, and point clouds.

CHAPTER 1. INTRODUCTION 12

(a) Example image from the PAS-
CAL VOC Dataset.

(b) Classification
.

(c) Localization (d) Semantic segmentation

Figure 1.1: Examples of image classification, localization, and semantic segmentation on an image
from the PASCAL VOC dataset.

13

Chapter 2

Instance Recognition

This chapter describes our work on object recognition for robotic perception. Researchers
often divide object recognition tasks into (1) category-level recognition, where objects in a
particular category are given the same label (e.g. “bowl” or “soda can”), and (2) instance
recognition, where each specific object is given its own label (e.g. “Coke can” or “Diet Coke
can”).1 Perception for robotics has a number of unique features which differentiate it from
other problems in computer vision.

First, since robots in fixed environments may only have to interact with hundreds of
objects, instance recognition may be sufficient for a wide variety of tasks, whereas general
object recognition systems generally work with thousands of object classes. Furthermore,
robotic perception generally requires a significantly lower error rate than what is often
reported in image retrieval and recognition tasks. In addition, a robot can take advantage of
data from multiple sensing modalities such as cameras and depth sensors. Lastly, robotic
perception systems usually need to output the 3D pose of recognized objects. We therefore
treat the problem as an instance recognition problem, gathering a large amount of training
data (including color and depth images) for each object instance, with the goal of approaching
near-perfect performance and yielding accurate poses.

We evaluate our system on two textured household object datasets used for the Solutions
in Perception Challenge [142], which we refer to as the Willow and Challenge datasets. The
datasets are described in detail in Section 2.3.1.

2.1 Problem Description
We consider the problem to have two separate stages: an offline training stage and an online
testing stage. During training, we are given color images and point clouds of each object

1This distinction is quite similar to the type–token distinction in logic and philosophy. One nuance is the
distinction between “Diet Coke can” and “Diet Coke can with serial number X (unique).” We let the task
requirements determine the granularity used. For example, Figure 2.3 shows several different Odwalla flavors.
We treat each one as a different instance, as required by the task.

CHAPTER 2. INSTANCE RECOGNITION 14

Point
Clouds

Merged
Clouds

3D
Mesh

Image
Data

Mask
Image

Extract
Features

Object
Model

Point
Clouds

Object
Clusters

Image
Data

Extract
Features

RANSAC +
Pose Estimation

Mode1

Mode2

Mode3

Meta

SVM

Multimodal
Blending

Generate
Occlusion Data

Verify

Figure 2.1: An overview of our system. The top row shows the training pipeline, and the bottom
row shows the test pipeline.

from multiple views taken from a Kinect [93] sensor. At test time, the task is to identify the
objects in a new test scene, consisting of a previously unseen color image and point cloud.
Test scenes may contain more than one object, and may also contain objects that are not
part of the training set and should therefore not be detected. Our approach operates under
some additional assumptions:

1. Training objects have relatively non-specular and non-transparent surfaces: RGB-D sensors
using structured-light approaches (e.g. the Kinect) can, at best, generate noisy, incomplete
point clouds of highly-specular or transparent objects.

2. Training objects contain texture: we use gradient-based descriptors to estimate training
object poses.

3. Objects in test scenes are supported by a tabletop plane, which allows for simple test
scene segmentation (see Section 2.2.4.1).

2.2 Method

2.2.1 Overview

At training time, we first combine the provided color images and point clouds to build
a full point cloud from which we construct a 3D mesh model of the object (described in
Section 2.2.2.1). Next, we extract local image features from each training image and register
them to the 3D model to create object models (described in Section 2.2.3).

CHAPTER 2. INSTANCE RECOGNITION 15

Symbol Description
I ∼ a color image
p ∼ a point (x, y, z)
P ∼ a point cloud of size |P |
f ∼ an image feature descriptor
F ∼ a set of descriptors of size |F |
M ∼ a feature model or (P, F) pair with each pi corresponding to fi
C ∼ a set of feature correspondences
p(f) ∼ point corresponding to descriptor f

NN(f,Md) ∼ nearest neighbor of feature f in model Md, d ∈ {shape, color, SIFT}
ε ∼ distance threshold—either in feature space (εd) or 3D space (ε3D)
s ∼ score—either RANSAC (sNN) or verification (sd)
T̂ ∼ an estimated 6DOF pose
Nobj ∼ number of training objects

NRANSAC ∼ number of RANSAC iterations

Table 2.1: Summary of Notation

At test time, we are given a new color image and point cloud. We first segment the
scene into individual objects by fitting a supporting plane and using depth information
(Section 2.2.4.1). For each segment, we compute a RANSAC [32] score for each candidate
object, and then compute pose-based verification scores (Section 2.2.4.2). We then compute
metafeatures (see Table 2.2) on the test scenes, and, given the metafeatures, RANSAC, and
pose verification scores, output object hypotheses (Section 2.2.4.3). Finally, we run scene
consistency checks to handle oversegmentation, in which an object may be split into two
clusters (Section 2.2.4.5).

An overview of our training and testing pipelines is illustrated in Figure 2.1. A summary
of notation used in the remainder of this chapter is given in Table 2.1.

2.2.2 Object Model Generation

At training time, we require a set of NI labeled training instances ({Ii, Pi}, {T̂i, yi}), i =
1, ..., NI , where yi specifies an object label, Ii is a color image containing a single object
(specifically, object yi), Pi is an associated 3D point cloud containing position and color
information, and T̂i is the 6DOF pose of the camera and depth sensor in a known reference
frame. Ideally, for each unique object yl, l = 1, ..., Nobj, there exist multiple training instances
with yi = yl together covering all visible areas of the object. Using the image and point cloud
data, we create a 3D point cloud P yl , a 3D mesh model Myl , and several 3D feature models
(Myl

SIFT, M
yl
color, M

yl
shape) for each of the Nobj unique objects in our training set.

CHAPTER 2. INSTANCE RECOGNITION 16

2.2.2.1 3D Mesh Construction

Using the camera pose T̂i associated with each image and point cloud pair (Ii, Pi), we can
create a complete 3D point cloud model P yl by combining the known camera poses to register
all point clouds belonging to object yl into a single coordinate frame. We then segment away
the table plane and perform Euclidean distance-based clustering to extract the actual object,2
keeping the largest cluster.

This 3D point cloud P yl is at best a noisy representation of the actual object due to
sensor errors and camera pose measurement errors.3 To address this, we use an off-the-shelf
Poisson surface reconstruction tool [58] to construct a 3D mesh model Myl for each object yl.
Poisson reconstruction smoothly regularizes inconsistencies in the full 3D point cloud and
fills in small gaps in the model.

2.2.3 Feature Extraction

Given the 3D mesh model Myl , we can use our known camera poses T̂i to project Myl onto
each training image Ii which contains object yl = yi in our training set. This projection is
used as an accurate segmentation mask for the object.4 We then extract features from the
segmented image and associate each feature with a 3D location on each mesh model by using
the known camera pose to project the 2D location of the feature in the image onto the 3D
mesh model.

Although our initial approach used sparse feature extraction via SIFT interest points, we
find that using dense feature extraction significantly improves performance. We therefore
compute image features densely at both training and test time. At training time, rather
than keeping descriptors computed at every pixel, we employ voxel grid downsampling (with
a leaf size of 0.5cm) of the descriptors for each view after projecting them onto the object
mesh. This discards features that are very close to each other and thus likely to be very
similar. At test time, we use a stride of 20px for the query image descriptors. Voxel grid
downsampling and the use of a stride of 20px have minimal impact on performance due to
high correlation between neighboring descriptors. We still extract approximately 5 to 10
times as many descriptors compared to using interest points. We analyze the effect of dense
feature extraction in Section 2.3.5.

In addition to the models using gradient-based SIFT descriptors, we construct models
to exploit local color and shape information. Concretely, we construct color feature models
using L*a*b* values at each pixel, and shape feature models using shape context features
computed in a similar fashion as described by Belongie et al. [6], using the additional depth
information to scale the downsampled edge points before binning.

2We used a Euclidean clustering algorithm available in PCL [111].
3In principle, this initial alignment could be improved by aligning the point clouds using, for example, an

iterative closest points (ICP) algorithm, but the 3D mesh modeling process already performs some level of
denoising.

4In practice we also include a buffer region of 15 pixels around the edge of the object.

CHAPTER 2. INSTANCE RECOGNITION 17

The collection of all feature descriptors and their corresponding 3D locations {(fi, pi)}
yields three feature models (Myl

SIFT,M
yl
color, and M

yl
shape).

2.2.4 Object Detection

At testing time, we are given a color image and point cloud (I, P) (possibly containing multiple
objects), and the goal is to recover the set of labels and poses {yk, T̂k}, k = 1, ..., NK for each
of the NK objects in the input scene. Our system first segments and clusters the scene into
potential objects using supporting plane and depth information. Next, we extract features as
described above. We then attempt to align each candidate object to each potential object,
computing RANSAC and pose-based verification scores. We use multimodal blending to
output object hypotheses using scene metafeatures and the computed scores. High-probability
object detections are removed from the test image and point cloud. Next, the detection
pipeline is repeated on any remaining object clusters to recover from undersegmentation errors.
Finally, oversegmentations are handled by merging together consistent object hypotheses
which occupy the same region of space.

2.2.4.1 Segmentation

Given a color image I and point cloud P of a scene, we first attempt to locate table planes
in P using a RANSAC plane fitting approach. Each candidate plane is represented as a
surface normal plus an offset. We eliminate incorrect planes using the gravity vector, and
use the highest remaining plane as the supporting table plane. We remove all points which
do not lie above the plane, and apply agglomerative clustering on the remaining points to
obtain individual potential object point clouds {Pm}, m = 1, ...,M . These point clouds are
reprojected onto the original test image I to obtain M masked image and point cloud pairs
{Im, Pm} as segmentation candidates for the object classification stage.

2.2.4.2 Pose Estimation

As described in Algorithm 1, we attempt to align each training object to a given test cluster
using the SIFT feature model. Empirically, we find that the training object yielding the
highest RANSAC score (sNN) usually matches the object in the test cluster, assuming the
test object is not an imposter (an object not in the training set).

In the presence of imposters and spurious segmentations, the ratio between the first
and second highest sNN is a reliable indicator of whether the first ranked object should be
declared.5 This baseline approach alone yields 100% precision and 99.31% recall on the
Challenge dataset (which contains no imposters), but far from perfect performance on the
Willow dataset (93.82% precision and 83.97% recall).

After estimating the pose for each candidate object, we use Algorithm 2 to compute
pose-based verification scores (one for each of the SIFT, shape, and color models) for each

5Specifically, we use rNN = 1.5; if the ratio is lower than this, then we do not declare a detection.

CHAPTER 2. INSTANCE RECOGNITION 18

Algorithm 1: RANSAC Pose Estimation

Data: test cluster P test, corresponding test features F test, feature models {Md
i }

Nobj

i=1

where d is the model feature type, query-to-model NN correspondences {Ci}Nobj

i=1

Result: RANSAC scores {sNN
i }

Nobj

i=1 , estimated poses {T̂i}Nobj

i=1

Initialize {sNN
i = −∞}Nobj

i=1

for i = 1 to Nobj do
for j = 1 to NRANSAC do

Cij ← sample 3 correspondences from Ci
T̂ij ← EstimateTransform(Cij)
Align P test to Md

i using T̂i
for j = 1 to |P test| do

if ‖pj − p(NN(fj,Md
i))‖2 < ε3D then

sNN
ij = sNN

ij + 1 // Increment score

end
end
if sNN

ij > sNN
i then

sNN
i = sNN

ij // Update best score

T̂i = T̂ij // Update best pose

end
end

end

candidate object. These scores ({scolor, sSIFT, sshape}Nobj

i=1) provide additional information for
determining whether to declare or eliminate a detection.

For each candidate object, and for each feature model, we project the 2D locations of
all features detected in the query image onto the corresponding 3D object model (using our
candidate pose) to obtain a 3D position for each descriptor. This includes SIFT features
which did not match the object during the initial RANSAC step. We then search the 3D
feature model for 3D point and descriptor pairs where the 3D position in the query image
is close to the 3D position in the feature model, and the descriptor in the query image is
similar to the descriptor in the feature model. The purpose of this pose verification step is to
ensure that most features found in the query image can be explained by the given object and
pose hypothesis. This allows us to correct for SIFT features which were incorrectly matched
during the initial alignment step. It also helps reject errors in object classification and pose
recovery.

Intuitively, the multimodal approach leverages the strength of each feature type in different
contexts. For example, object views with few texture cues (e.g. Figure 2.2) typically yield
low RANSAC scores, rendering the ratio test unreliable. In this case, shape cues can provide
information regarding correct object detection.

CHAPTER 2. INSTANCE RECOGNITION 19

Algorithm 2: Pose-based Verification

Data: test cluster P test, corresponding test features F test, estimated poses {T̂i}
Nobj

i=1 ,
feature models {Md

i }
Nobj

i=1 , where d is the feature model type
Result: verification scores {sdi }

Nobj

i=1

Initialize {sdi = 0}Nobj

i=1

for i = 1 to Nobj do
Align P test to Md

i using T̂i
for j = 1 to |P test| do

// Radius search finds all model points // within ε3D of ptestj in Md
i when aligned

F train
ij , P train

ij ← RadiusSearch(Md
i , ptestj , ε3D)

for k = 1 to |P train
ij | do

if ‖f test
j − f train

ijk ‖2 < εd then
sdi = sdi + 1 // Increment score

break
end

end
end

end

Color information also greatly helps in improving precision. Given that our procedure
estimates an accurate pose, the color ratio check

scolori

|F test| > rcolor

serves as a reliable indicator of whether object i is the correct object. This check works well
in the particular case of instances of different flavors, such as the Odwalla bottles shown in
Figure 2.3, where the algorithm cannot reliably distinguish objects using only gradient or
local shape information.

Given object hypotheses for a test cluster, we apply the color ratio check described above
and also verify that the object hypothesis ranks at the top in at least half of the model scores
before declaring a detection.

2.2.4.3 Multimodal Blending

There are many rules that could be used in addition to the color ratio threshold described in
the previous section. Rather than relying on (typically tedious and labor-intensive) hand-
engineering to generate such rules for combining the multiple modalities, we use a method
inspired by the feature-weighted linear stacking (FWLS) approach proposed by Sill et al. [121].
This method blends the scores obtained using each model through a systematic, data-driven

CHAPTER 2. INSTANCE RECOGNITION 20

Figure 2.2: Example of a case where our multimodal approach helps with an untextured test object
view.

approach. Furthermore, this method can leverage the intuition that certain models may be
more reliable in some settings than others.

The FWLS approach blends the model outputs by using metafeatures, which provide
information about which models might be most reliable for a particular query scene. Rather
than performing regression against the outputs of several models, the FWLS approach
performs regression against all pairs of products of metafeatures and model outputs, as
illustrated in Figure 2.4. For example, the median color saturation of the test image is
one metafeature we use; low median color saturation suggests that color scores may be less
reliable.

We extend the work of Sill et al. on FWLS in a regression setting to a discriminative
setting in a method we refer to as multimodal blending. In short, we take pairwise products
of metafeatures with model scores and use them as features for a classifier.

In particular, we use a standard ranking support vector machine (SVM) formulation to
declare which object, if any, is present in each input cluster. Our formulation is given by

CHAPTER 2. INSTANCE RECOGNITION 21

Figure 2.3: Example of a test scene where the color component helps avoid detection of imposter
objects.

minimize
w, ξ

λ

2
‖w‖22 +

∑
i

∑
j 6=yi

ξij

subject to wTφyi(xi) ≥ wTφj(xi) + 1− ξij,
∀i,∀j 6= yi

where w represents the weight parameters, the ξij are slack variables, i ranges over all input
clusters, j ranges over object labels, yi is the correct label for input i, λ is a regularization
parameter, x represents the values of all metafeatures and model scores for all objects for
an input cluster, and φj denotes a feature function that constructs the feature vector (as
illustrated in Figure 2.4) for object j.

CHAPTER 2. INSTANCE RECOGNITION 22

⊗ →

scolor

sSIFT

sshape

sNN

1

scores

m1

m2

m3

1

metafeatures

sSIFT

...

1

scolor · m1

sSIFT · m1

sshape · m1

sNN · m1

m1

scolor · m2

sNN

sshape

final feature vector

Figure 2.4: Illustration of the computation of all pairs of products. The sd values represent
verification scores. The mi values represent metafeatures. Note that for each test cluster, there will
be Nobj such feature vectors—one per training object.

CHAPTER 2. INSTANCE RECOGNITION 23

Description
1 median color saturation (HSV) of test image
2 fraction of pixels in test image where gradient magnitude > 10
3 visible ratio: (test cluster size)/(size of each MSIFT)
4 binary variable indicating whether object ranked first in RANSAC score
5 binary variable indicating whether object ranked first in color verification score
6 binary variable indicating whether object ranked first in shape verification score
7 binary variable indicating whether object ranked first in SIFT verification score

Table 2.2: Metafeatures used for model blending.

At test time, the dot products between the weight vector and each of the feature vectors
(i.e. wTφj(xi)) yield a score for each object class, where the system declares the object with
the highest score. In the presence of imposter objects, a threshold may be used such that the
system can eliminate some spurious detections.

In order to provide training data to the SVM, we generate simulated occlusions on the
Willow training data using our 3D models as the occluding objects. We randomly sample
occluding objects and poses around the ground truth pose provided for approximately 10
views of each object in the Willow training data, resulting in approximately 10,000 simulated
occlusions across all training objects. We then run our pipeline, treating the generated data
as testing data, which gives the RANSAC and pose-based verification scores as well as the
metafeatures for each view. We use the resulting scores and metafeatures as input training
data for the SVM.

2.2.4.4 Recovering from Undersegmentation

Undersegmentations result in a candidate object which actually consists of several real objects
contained in the same cluster. When this occurs, the classification and pose verification steps
can match only one of the objects correctly.

To account for this, after we have finalized our correct object hypotheses ym, we remove
the points in the test point cloud P contained in the bounding volume of any object. We
then re-segment the modified point cloud P ′ to obtain new candidate objects {I ′m, P ′m}, and
run them through our pipeline.

2.2.4.5 Scene Consistency

After all candidate objects {Im, Pm} have been processed, our system checks all accepted
object hypotheses (ym, T̂m) for overlaps. If two hypotheses have the same object label, and
their bounding volumes overlap, we merge the two hypotheses by keeping the pose with the
higher verification scores. This helps eliminate spurious matches due to oversegmentation,
where an object that is split into two object clusters generates two object hypotheses with

CHAPTER 2. INSTANCE RECOGNITION 24

Figure 2.5: The thirty-five textured household objects from the Willow and Challenge dataset.

roughly equivalent poses. We do not modify object hypotheses which overlap but do not
share the same object label.

In addition, a separate check ensures that each object hypothesis (ym, T̂m) is consistent
with the original point cloud P . This is done by projecting the 3D bounding volume of each
object hypothesis onto the observed query scene. We ensure that the observed point cloud
and projected 3D volume have a large enough overlap to be consistent with each other.

2.3 Results
In the following sections, we describe our experiments and present our results. An interactive
visualization of our results is available at http://rll.berkeley.edu/odp/.

2.3.1 Datasets

We evaluate our system on two textured household object datasets used for the Solutions
in Perception Challenge [142]. Both datasets contain the same 35 rigid, textured objects
provided by Willow Garage (see Figure 2.5). These objects were imaged using a Kinect sensor
on a calibrated turntable rig, providing 360-degree coverage at a single azimuth angle.

The Willow dataset was released before the challenge and contains roughly 1000 training
instances. Each instance consists of a Kinect point cloud, a color image, and a ground truth

http://rll.berkeley.edu/odp/

CHAPTER 2. INSTANCE RECOGNITION 25

Figure 2.6: Sample test data for the Willow dataset.

pose for a particular object at a particular azimuth. The Willow dataset also contains roughly
500 test instances consisting of Kinect point clouds and color images. Each of these frames
contains multiple objects, and may contain imposter objects. The Challenge dataset was
used for the challenge itself, and also contains roughly 1000 training instances, together with
120 test instances (Kinect frames) containing a total of 434 objects. The Challenge dataset
does not contain imposter objects. Figure 2.6 shows some examples of test data from the
Willow dataset.

CHAPTER 2. INSTANCE RECOGNITION 26

Method Precision Recall F-score
Tang et al. [128] 0.9672 0.9744 0.9710
Bo et al. [9] 0.9744 1.000 0.9870

Ours [no blending] 0.9976 0.9976 0.9980
Ours [blending] 1.0000 1.0000 1.000

Table 2.3: Single object instance recognition. “No blending” declares the object with the highest
RANSAC inlier count score, while “blending” uses the highest score (as output by the ranking SVM)
with no metafeatures.

2.3.2 Threshold Selection

As described in Section 2.2.4, the system contains two thresholds in the verification step: the
color ratio threshold and the blending score threshold. Because the training data does not
contain imposter objects, even though the Willow dataset does, we cannot reliably set these
thresholds using a subset of the training data as a validation set. In previous work, this likely
resulted in thresholds being tuned directly on the test set, leading to overfitting.

In order to avoid overfitting to the test set, we ensure that the thresholds for each scene
are selected on data excluding that scene. Specifically, we use a leave-one-out procedure that
chooses the best threshold from all scenes other than the scene currently being evaluated.
Note that the Willow dataset consists of 24 scenes, with a varying number of objects and
frames per scene. We run the system on all 23 scenes not under consideration, choose the
threshold that results in the highest F-score on these 23 scenes, and then use it to evaluate
the scene under consideration. Note that this procedure will almost always result in lower
scores than those that would be achieved by directly optimizing the F-score on all 24 scenes.

2.3.3 Single Instance Recognition

As a preliminary test, we evaluate our methods on recognizing individual objects. For this
experiment, we used the training data from the Willow dataset to build our object models,
and the training data from the Challenge dataset as the test set. Each frame of the test set
contains exactly one object in an unknown pose. We remove any verification checks, simply
choosing the highest scoring object as the detection. We present results in Table 2.3, where
we also compare our performance to the hierarchical matching pursuit algorithm described
by Bo et al. [9]. Our method achieves perfect precision and recall on this task.

2.3.4 Multiple Instance Recognition

We now investigate our system’s performance on the Willow and Challenge testing data,
which can contain multiple objects in the same frame. Recall that the Willow dataset may
contain imposter objects not present in the training data (e.g. in Figure 2.3); the system
should not declare any detection of imposter objects.

CHAPTER 2. INSTANCE RECOGNITION 27

Method Precision Recall F-score
Tang et al. [128] 0.9873 0.9023 0.9429
Aldoma et al. [2] 0.9977 0.9977 0.9977
Ours [no blending] 1.0000 0.9931 0.9965
Ours [blending] 1.0000 0.9977 0.9988

Ours [blending+mf] 0.9954 0.9885 0.9919

Table 2.4: Results on the Challenge dataset.

Method Precision Recall F-score
Tang et al. [128] 0.8875 0.6479 0.7490
Aldoma et al. [2] 0.9430 0.7086 0.8092
Ours [no blending] 0.9976 0.8311 0.9062
Ours [blending] 0.9683 0.8827 0.9235

Ours [blending+mf] 0.9828 0.8778 0.9273

Table 2.5: Results on the Willow dataset.

We use both verification methods described in Section 2.2.4 for all results in this experiment.
When we use blending, we also have a threshold for the blending score. We compare our
results to those in our initial work (presented by Tang et al. [128]) and that of Aldoma et al. [2],
and surpass state-of-the-art performance on these datasets. We provide results for our method
(1) without blending, (2) with blending but no metafeatures, and (3) with blending and
metafeatures.

Results for the Challenge dataset are shown in Table 2.4. Note that Challenge is a small
dataset, with only 434 objects to be detected. Without blending, our method already achieves
near-perfect performance (perfect precision, 0.9931 recall), only failing to declare 3 out of
the 434 correct detections. Although blending without metafeatures improves this further,
adding metafeatures slightly decreases performance. We attribute this primarily to noise due
to the small size of the dataset, as only a small number of detections are changed. We show
the accuracy of pose recovery on the Challenge dataset in Figure 2.7.

We present results for the Willow dataset in Table 2.5. On the Willow dataset, we present
a significant leap over the previous state of the art, which we primarily attribute to dense
feature extraction and multimodal verification, yielding a recall of 0.8311 and a precision
of .9976, corresponding to a significant increase in F-score (from 0.8092 to 0.9062). Even
given this large performance increase, blending further increases performance by trading a
small sacrifice in precision for a large improvement in recall. Incorporating all components
(including blending and metafeatures) yields a recall of 0.8778 and precision of 0.9828, which
correspond to a further increase in F-score to 0.9273. We analyze the remaining failure cases
in Section 2.3.8.

CHAPTER 2. INSTANCE RECOGNITION 28

Figure 2.7: Histograms of pose errors on Challenge dataset. Ground truth poses are unavailable
for the Willow dataset.

Model Query Dataset Prec. Recall F-score
sparse sparse Challenge 0.9894 0.8614 0.9210
sparse sparse Willow 0.9453 0.5412 0.6883
sparse dense Challenge 0.9879 0.9401 0.9634
sparse dense Willow 0.9279 0.7199 0.8108
dense sparse Challenge 0.9975 0.9171 0.9556
dense sparse Willow 0.9432 0.5915 0.7271
dense dense Challenge 1.0000 0.9931 0.9965
dense dense Willow 0.9382 0.8397 0.8862

Table 2.6: Performance using sparse vs. densely computed (then downsampled) SIFT models and
query features. Only RANSAC scores and the ratio test are used for these results.

2.3.5 Comparison to Using Sparse Keypoints

Our experiments indicate that dense feature extraction plays a major role in attaining high
performance. We examine the effects of using SIFT keypoints versus our current approach.
At training time, we extract features at each pixel, then perform voxel grid downsampling of
the features after projecting them onto our mesh models. At test time, we downsample by
using a stride of 20 over the pixels at which we extract descriptors.

In general, using keypoints results in good precision but significantly reduced recall.
Table 2.6 illustrates the effects on performance of using SIFT keypoints when training feature
models and extracting test image descriptors.

CHAPTER 2. INSTANCE RECOGNITION 29

Experiment Prec. Recall F-score
Challenge 0.9975 0.9171 0.9556

Challenge [blending] 0.9881 0.9585 0.9731
Challenge [blending+mf] 0.9905 0.9585 0.9742

Willow 0.9432 0.5915 0.7271
Willow [blending] 0.9508 0.7604 0.8451

Willow [blending+mf] 0.9475 0.7654 0.8468

Table 2.7: Results when using keypoints at test time with blending.

2.3.6 Blending with Keypoints

Although multimodal blending boosts performance even when applied on top of dense feature
extraction, we observe that it yields significantly better relative increases in performance
when using sparse keypoints at test time with query images.

Table 2.7 shows the large increases in performance when applying blending to results
obtained from RANSAC and multimodal verification with keypoints.

These results are largely due to the fact that many of the remaining errors when using
dense feature extraction stem from poor pose estimations from the RANSAC phase, in which
case the RANSAC and verification scores are unreliable (we discuss such failure cases further
in Section 2.3.8). In contrast, when using keypoints, there are still many cases where a good
pose is estimated, but not enough features are extracted to determine the object class using
the ratio test with SIFT scores alone. In these cases, blending can combine scores across
modalities, which significantly improves keypoint-based performance.

2.3.7 Timing Results

All timing experiments were performed on a commodity desktop with a 4-core i7 processor
and 32GB of RAM.

At training time, there are three primary steps for each object:

1. merging the point clouds collected from each training view and reconstructing a mesh
from the merged cloud,

2. extracting features from the associated training images (SIFT, shape context, and color),

3. back-projecting the features onto the meshes to build our feature models, then building
k-d trees for fast nearest neighbor feature lookups (for pose estimation) as well as 3D-point
radius searches (for the verification step).

The entire training phase takes under 6 minutes for a single object. By parallelizing across
objects, we can complete the training phase for all 35 objects in well under an hour. Training

CHAPTER 2. INSTANCE RECOGNITION 30

Training Step Avg. Time Per Object (s)
Extracting + merging clouds 23.3
Mesh construction 1.1
Feature extraction, SIFT 128.1
Feature extraction, shape 132.7
Feature extraction, color 10.1
Model + k-d tree construction 56.6
Total 351.9

Table 2.8: Timing breakdown for the training stage.

the weight vector for multimodal blending on the 10,000 generated examples takes roughly
75 seconds. A detailed breakdown of time spent in the training stage is given in Table 2.8.

At test time, there are five primary steps:

1. table plane detection and segmentation of the test cloud into hypothesis object clusters,

2. feature extraction on each of the clusters (SIFT, shape context, and color),

3. RANSAC to generate object scores sNN, and simultaneously pose estimates T̂ (Algo-
rithm 1),

4. pose verification for each descriptor type to generate verification scores sd for each descriptor
type d (Algorithm 2), and

5. metafeature extraction followed by applying blending to obtain the final scores for each
object.

A timing breakdown for the testing phase (averaged over scenes in the Challenge test set)
is given in Table 2.9. Applying blending using a linear SVM simply consists of a dot product
and thus takes a negligible amount of time. Note that all steps following segmentation (i.e.
RANSAC and pose-verification scores) can be run in parallel across clusters.

It is possible to sacrifice some performance to speed up the testing phase by excluding
the pose-based verification step, which yields the already state-of-the-art results given in
Table 2.6.

Another alternative to greatly speed up the testing phase is to combine keypoints with
blending, which, as described in Section 2.3.6, yields good performance as well (the RANSAC
and verification steps take < 2s total when using keypoints).

2.3.8 Discussion

We now discuss the two primary failure cases of our system on the Willow dataset: detection
errors due to poor pose estimation and imposter objects being mistaken for training objects.
We discuss possible extensions in Section 7.1.

CHAPTER 2. INSTANCE RECOGNITION 31

Testing Step Time Per Scene (s)
Segmentation 5.4
Feature extraction, SIFT 5.1
Feature extraction, shape 5.4
Feature extraction, color 0.3
RANSAC pose estimation 13.9
Verification score, SIFT 3.8
Verification score, shape 0.4
Verification score, color 3.7
Total 38.1

Table 2.9: Timing breakdown for the test stage.

2.3.8.1 Pose Estimation Failures

We attribute the majority of the remaining missed detections to RANSAC’s failure to discover
the correct pose for the correct object. When RANSAC fails, the verification scores are usually
unreliable, leading the algorithm to declare the incorrect object (or no object). Because
RANSAC only works with local SIFT features, this frequently happens with highly occluded
objects or when only a nontextured part of the object is visible. Incorporating features that
are computed over larger windows or that are more robust for untextured objects into the
RANSAC computation may eliminate many of these errors.

2.3.8.2 Failures Due to Imposters

There are also a small number of errors due to imposter objects being declared as one of
the training objects. Because the training data contains no imposter objects, the classifier
cannot differentiate between the training objects and an imposter that has a high score for a
single feature model, but only moderate scores for the other feature models. Adding imposter
objects to the training data, which could be used as negatives for the classifier, may help
eliminate these failure cases. Imposters would not require complete models; a collection of
views without pose information would suffice.

32

Chapter 3

Clothing Recognition

Figure 3.1: The PR2 starts with a pair of pants in a crumpled initial configuration, and then
manipulates the pants into the desired configuration.

In highly structured settings, robots are able to repeatably perform a wide variety of
tasks with superhuman precision. However, outside of carefully controlled settings, robotic
capabilities are much more limited. Indeed, the ability to even grasp a modest variety of
previously unseen rigid objects in real-world cluttered environments is considered a highly
nontrivial task [7, 62, 114].

Handling of non-rigid materials, such as clothing, poses a significant challenge, as they
tend to have significantly higher dimensional configuration spaces. Moreover, they tend
to vary widely in both appearance and shape. The challenges involved in manipulation of
deformable objects are reflected in the state of the art in robotic laundry folding. Indeed, the
current state of the art is far from enabling general purpose manipulators to fully automate

CHAPTER 3. CLOTHING RECOGNITION 33

the task of laundry folding. Perhaps the biggest challenge for laundry folding is bringing a
clothing article into a known configuration from an arbitrary initial configuration.

In this chapter we present an approach that enables a general purpose robotic platform
to bring a variety of clothing articles into known configurations while relying on limited
perceptual capabilities. At the core of our approach is a hidden Markov model (HMM) for
how cloth behaves under certain simple manipulation strategies and how it is perceived using
very basic computer vision primitives.

3.1 Problem Definition
The problem we examine is defined as follows: we are presented with an unknown article
of clothing and wish to identify it, manipulate it into an identifiable configuration, and
subsequently bring it into a desired configuration.

We consider articles of different types and sizes. These potential articles make up the set
of articles (A) under consideration. For example, we may be considering two different pairs
of pants and a t-shirt; in this case, we have A = {pants1, pants2, t-shirt}. We assume that
each type of clothing can have its own desired configuration; for example, we choose to hold
pants up by the waist.

We represent each potential article a (from the set A) via a triangulated mesh. For
concreteness, let the mesh contain N points {v1, . . . , vN}. We work under the assumption
that the robot may be grasping a single point or a pair of points on the mesh. Let gt
be the grasp state of the cloth at time t, where gt = (glt, g

r
t) consists of the mesh point

of the cloth in the robot’s left and right gripper respectively. More precisely, we have
gt = (glt, g

r
t) ∈ G = {∅, v1, . . . , vN}2, where ∅ denotes that the gripper does not contain any

mesh point. The set G contains all possible grasp states of the cloth. The 3D coordinates of
the left and right gripper at time t are denoted by xlt and xrt respectively. We denote the 3D
coordinates of the N mesh points at time t as Xt = {x1

t , . . . ,x
N
t }.

3.2 Method

3.2.1 Outline

Our approach consists of two phases, as shown in Figure 3.2. First, we use a probabilistic
model to determine the identity of the clothing article while bringing it into a known
configuration through a sequence of manipulations and observations, which we refer to as the
disambiguation phase. Second, we bring the article into the desired configuration through
another sequence of manipulations and observations, which we call the reconfiguration phase.

These phases use three major components: a hidden Markov model, our cloth simulator,
and our algorithm for planning the manipulations for the reconfiguration phase:

CHAPTER 3. CLOTHING RECOGNITION 34

1. Hidden Markov model. The hidden state of our model consists of the grasp state
of the cloth (gt) and the article which the robot is currently grasping (a). The HMM operates
in the disambiguation phase, where the robot executes a sequence of manipulations consisting
of repeatedly holding up the clothing article by one gripper under the influence of gravity
and grasping the lowest-hanging point with the other gripper. The transition model of the
HMM encodes how the grasped points change when the robot manipulates the cloth. This
sequence quickly reduces uncertainty in the hidden state. After this manipulation sequence,
the HMM uses two observations: the height of the article when held by the last point in the
sequence and the contour of the article when held by two points.

2. Cloth simulator. We simulate articles using triangulated meshes in which each
triangle element is strain-limited and bending energy and collisions are ignored. This model
has a unique minimum-energy configuration (Xt) when some points in the mesh are fixed at
the locations (glt, grt).

3. Planning algorithm. To generate the plan for the reconfiguration phase, our
planning algorithm generates a sequence of manipulations in which the robot repeatedly
grasps two points on the cloth, places the cloth onto the table, and grasps two other points.
The planning algorithm assumes that the most likely model and state reported by the HMM
in the disambiguation phase are correct.

3.2.2 Hidden Markov Model

We have the discrete random variables A and Gt, where Gt takes on values from the set G of
all possible grasp states of the cloth (as defined in Section 3.1). The model estimates the
probability P (A = a,Gt = gt|E1:t = e1:t), where E1:t is the set of all observations through
time t. The robot’s gripper locations (xlt and xrt) are assumed to be deterministic. The
graphical model for our problem is shown in Figure 3.3.

Repeat lowest-
hanging point

procedure

Take
observations

Choose most
likely article and

configuration

Plan sequence
to desired

configuration

Initial
configuration

Arbitrary known
configuration

Desired
configuration

Disambiguation Phase Reconfiguration Phase

Figure 3.2: Block diagram outlining our procedure. The t-shirt starts out in a crumpled state. We
manipulate it with the lowest-hanging point procedure and take observations. We choose the most
likely configuration and article and plan a sequence of manipulations to the desired configuration.
The robot executes the sequence and grasps the t-shirt by the shoulders.

CHAPTER 3. CLOTHING RECOGNITION 35

...

A

G1 G2 Gt

E1 E2 Et

Figure 3.3: Graphical representation of the hidden Markov model.

As described above, the 3D coordinates of the mesh points at time t (Xt) are uniquely
determined from the article, grasp state of the cloth, and the locations of the grippers (a, gt,
xlt, and xrt , respectively). Using Gt as the state rather than Xt reduces the state space to a
tractable size on the order of N2, where N is the number points in a mesh.

Without loss of generality, we assume that the robot first picks up the article with its left
gripper. Intuitively, the initial probability distribution over models and grasp states should
be zero for any state in which the right gripper is grasping the cloth and uniform over all
states in which the left gripper is grasping the cloth. Therefore the initial distribution is:

P (a, g0) =

{
1

N |A| gr0 = ∅, gl0 6= ∅
0 otherwise.

Recall that the disambiguation phase consists of repeatedly holding up the article (under
the influence of gravity) by one gripper and grasping the lowest-hanging point with the other
gripper. Let gt−1 be the grasp state of the robot at the end of this process; the robot is
only holding the article in one gripper. Next, we take an observation of the height (ht−1)
of the article in this grasp state (gt−1). Afterwards, we have the free gripper grasp the
lowest-hanging point, bringing us into the grasp state gt, in which both grippers are grasping
the article. We then move the grippers such that they are at an equal height and separated
by a distance of roughly ht−1. Therefore the gripper locations are now

xlt =

(
x,
ht−1
2
, z

)
, xrt =

(
x,
−ht−1

2
, z

)

CHAPTER 3. CLOTHING RECOGNITION 36

where the exact values of x and z are unimportant. We then take an observation of the
contour of the article against the background.

Together, the lowest-hanging point sequence and the two observations compose all of the
information obtained about the article during the disambiguation sequence. The details of
the probabilistic updates for the transitions and observations are explained below.

3.2.2.1 Transition Model

A transition in the HMM occurs after holding the cloth up with one gripper, grasping the
lowest-hanging point with the free gripper, and then releasing the topmost point. Without
loss of generality, let the cloth be grasped by only the left gripper at time t. Specifically, the
grasp state gt is (glt, ∅). This implies gt+1 = (∅, grt+1), where grt+1 is the lowest-hanging point
at time t. The transition model gives the probability that each mesh point hangs lowest and
is therefore grasped by the right gripper. In particular,

P (gt+1|a, gt) =
{
P (grt+1 is lowest|a, glt is held) if glt+1 = ∅
0 if glt+1 6= ∅.

The transition model assumes the robot has successfully grasped a point with the right
gripper. When we simulate an article held at a single point vi, the resulting configuration X
is a straight line down from vi; the probability of point vj hanging lowest when the cloth is
held by vi depends on X. Let dij be the vertical distance from vi to vj in this configuration.
The probability of a point hanging lowest is based on dij:

P (vj is lowest | a, vi is held) = eλdij∑N
k=1 e

λdik
.

This expression is a soft-max function, resulting in a distribution in which points that hang
lower in the simulated configuration are more likely to be the lowest-hanging point in reality.
The parameter λ expresses how well the simulated configuration reflects reality.

Repeated application of the lowest-hanging point primitive causes the grasp state to
converge to one of a small number of regions on the clothing article. For example, if a pair of
pants is initially grasped by any point and held up under gravity, the lowest-hanging point
will likely be on the rim of a pant-leg. Once the rim of the pant-leg is grasped and held
up, the rim of the other pant-leg will likely contain the lowest-hanging point. Continuing
this procedure typically cycles between the two pant-leg rims. In practice, the clothing
articles we consider converge to a small number of points within two or three repetitions of
the lowest-hanging point primitive. The HMM transition model captures this converging
behavior, thereby significantly reducing uncertainty in the estimate of the article’s grasp
state (gt). Note that this transition model does not change the marginal probabilities of the
articles (P (a|e1:t)).

CHAPTER 3. CLOTHING RECOGNITION 37

Figure 3.4: The simulated contour (pink) is overlaid on the actual cloth image.

3.2.2.2 Height Observation

When the article is held up by a single gripper, the minimum-energy configuration provided
by our cloth simulator is a straight line, as described in Section 3.2.3. Although this provides
no silhouette to compare against, the length of this line (hsim) is a good approximation of
the article’s actual height (ht). The uncertainty in this height is modeled with a normal
distribution:

P (ht|gt, a) ∼ N (hsim + µ, σ2)

where µ is the mean difference between the actual height and the simulated height.
This update makes configurations of incorrect sizes less likely. For example, if we measure

that the article has a height of 70 cm, it is highly unlikely that the article is in a configuration
with a simulated height of 40 cm.

3.2.2.3 Contour Observation

When the cloth is held up by two grippers, the contour of the simulated configuration is a
good approximation to the actual contour, as seen in Figure 3.4. The predicted contours
for each pair of grasp states and articles (gt, a) are computed from the mesh coordinates
(Xt) generated by the cloth simulator, which is detailed in Section 3.2.3. Next, the dynamic
time warping algorithm is used to find the best alignment of each predicted contour to the
actual contour. The score associated with each alignment is then used to update the belief
p(gt, a|e1:t).

CHAPTER 3. CLOTHING RECOGNITION 38

Although the general shape of the simulated contour and the actual cloth contour are
similar, the amount of overlap between them can vary greatly between different trials due to
inconsistency in grasping and other unmodeled factors. To account for this, we use a dynamic
programming algorithm known as dynamic time warping (DTW) in the speech-recognition
literature [113] and the Needleman-Wunsch algorithm in the biological sequence alignment
literature [99]. Dynamic time warping is generally used to align two sequences and/or to
calculate a similarity metric for sequences.

In order to closely match the key features of clothing articles, such as corners, collars,
etc., we choose a cost function of the form

φ(pi, pj) = ‖θ(pi)− θ(pj)‖
where θ extracts the weighted features of each pixel pi. Our features are the (x, y) pixel
coordinates of the contour points and the first and second derivatives with respect to the arc
length s, (dx

ds
, dy
ds
) and (d

2x
ds2
, d

2y
ds2

). The derivative terms force corners and other salient points to
align to each other. An example where the amount of overlap is a poor measure of similarity
but DTW returns a reasonable alignment is shown in Figure 3.5.

Figure 3.5: An example of a challenging alignment where a simple overlap metric would perform
poorly. The dynamic time warping algorithm successfully matches the salient features of the
simulated contour (yellow) to the actual contour (blue).

Let the dynamic time warping cost for each article and grasp state pair (a, gt) be denoted
ca,gt . We found that using an exponential distribution with the maximum-likelihood estimate

CHAPTER 3. CLOTHING RECOGNITION 39

was too generous to costs associated with incorrect configurations. Based on inspection of
empirically collected DTW data, we propose the following distribution for the dynamic-time-
warping costs:

P (ca,gt|a, gt) =
{

1
f+ 1

d

if ca,gt < f
1

f+ 1
d

e−dca,gt if ca,gt ≥ f.

This distribution, shown in Figure 3.6, is uniform for costs below a certain threshold and
quickly drops off as the cost increases past this threshold.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

1

2

3

4

5

6

ca,gt

P
(c

a
,g

t
|a

,g
t
)

Figure 3.6: Our probability distribution over DTW costs for the correct grasp state and article.

3.2.3 Cloth Simulator

To go from the grasp state (gt) and article (a) to the simulated 3D coordinates of each mesh
point (Xsim = {x1

sim, . . . ,x
N
sim}), we minimize the gravitational potential energy of all mesh

points subject to two sets of constraints. Our choice of constraints and energy function make
this a convex optimization problem with a unique solution.

CHAPTER 3. CLOTHING RECOGNITION 40

The first set of constraints represents the cloth’s grasp state as equality constraints on
the simulated mesh configuration Xsim. If the grasp state (glt, g

r
t) = (va, vb), then the equality

constraints are xasim = xlt and xbsim = xrt .
The second set of constraints limits the extensibility of the cloth. We use the isotropic

strain-limiting model introduced by Wang et al.[137]. This model limits the strain of each
triangle element e ∈ E ⊂ {v1 . . . vN}3 by restricting the singular values of the deformation
gradient Fe1. Wang et al. restrict the minimum and maximum strain of each triangle element.
We restrict only the maximum strain2; our constraints are therefore expressed as

maxSingularValue(Fe(Xsim)) ≤ σ for all e ∈ E,

where σ is the extensibility of the mesh surface, with σ = 1 indicating the cloth cannot be
stretched at all3. This can also be expressed as the following semidefinite programming (SDP)
constraint: [

σ2I3 Fe(Xsim)
F>e (Xsim) I2

]
� 0 for all e ∈ E. (3.1)

In summary, our optimization problem becomes:

minXsim
U(Xsim) =

N∑
i=1

zi

s.t. xasim = xlt,x
b
sim = xrt

Xsim satisfies Equation 3.1

where zi is the z-coordinate of the ith mesh point. We feed this problem into the SDP solver
SDPA [146] to simulate the article’s configuration4.

Despite the strong assumptions, this model predicts configurations whose contours are
realistic for the case of two fixed points. The predicted contours are used in the observation
update described in Section 3.2.2.3.

When the robot is only grasping the cloth with one gripper, the simulated configuration
is a straight line down from the fixed point. Although this predicted configuration is visually
unrealistic, the resulting height of each point is a good approximation. These height values
are used by the HMM in the transition model and the height observation as described in
Section 3.2.2.1 and Section 3.2.2.2 respectively.

1See Wang et al. for details [137].
2The minimum strain constraint is non-convex. We also ignore bending energy and collisions because

they too are non-convex.
3We found that σ = 1.03 works well.
4On a dual-core 2.0 GHz processor, SDPA can run roughly four simulations per second when we use

approximately 300 triangle elements per mesh. We find that increasing the number of elements past this
point does not make the simulations significantly more realistic.

CHAPTER 3. CLOTHING RECOGNITION 41

3.2.4 Planning Algorithm

Our planning algorithm generates the sequence of manipulations to be carried out during
the reconfiguration phase. We assume that the disambiguation phase correctly identifies the
article and grasp state of the cloth.

For each type of clothing (e.g. shirts, pants, etc.), the user specifies a desired configuration,
determined by the pair of points (vi, vj) that the robot should grasp. This determines a
desired grasp state gd = (vi, vj). For example, the user could choose that the robot should
hold a t-shirt by the shoulders or a pair of pants by the hips.

Our algorithm plans a sequence of grasp states, where each state has both grippers holding
the cloth, to go from the initial grasp state gi (obtained from the disambiguation phase) to
the desired grasp state gd. The sequence of manipulations to go from one grasp state to the
next consists of laying the cloth on the table, opening both grippers, and picking up the cloth
by a new pair of points.

The appropriate sequence of grasp states is generated by building the directed graspability
graph, which indicates which other grasp states can be reached from each grasp state. To build
this graph the article is simulated for all grasp states, and the resulting configurations are
analyzed for graspability. To ensure that our assumption that the robot fixes a single point
with each gripper is reasonable, we say that a point vi is graspable in a given configuration
X when only points in the local neighborhood5 of vi on the mesh surface are close to vi in
terms of Euclidean distance in X. Note that the local neighborhood on the mesh surface is a
property of the mesh and does not change with the configuration X. For example, consider
grasping the corner of a sleeve of a t-shirt. When the sleeve is folded onto the chest, the
mesh points on the chest are close to the corner of the sleeve in Euclidean distance but
not local to each other on the surface. We say that the sleeve cannot be grasped because
the robot would likely fix points on the chest in addition to the sleeve, resulting in a very
different configuration from the one where only the sleeve is grasped. The complete planning
algorithm is given in Algorithm 3.

To go from a grasp state ga to another grasp state gb, the robot drags the cloth onto the
table in a way that preserves the configuration that was present when the cloth was held in
the air under gravity. The friction force of the table on the cloth acts similarly to gravity.
We then simulate the minimum-energy configuration for the grasp state ga and extract the
predicted contour. An example contour is given in Figure 3.7. We then align this predicted
contour to the actual cloth contour using the dynamic time warping method described above
in Section 3.2.2.3. We then find the two pixels in the predicted contour corresponding to
points glb and grb . Next, we follow the alignment to get the corresponding pixels in the actual
contour and determine the 3D coordinates of points glb and grb . The desired grasp state for a
pair of pants is shown in Figure 3.7.

5The local neighborhood is determined by the geodesic distances from vi to the other points. We use the
algorithm by Mitchell et al. [95] to find the geodesic distances in the mesh.

CHAPTER 3. CLOTHING RECOGNITION 42

Algorithm 3: Planning algorithm
Input: geodesic distances D, start pair (va, vb)

desired end pair (vx, vy)
initialize graspability graph G with no edges
for all pairs (vp, vq) do
X← Simulate(vp, vq)
for all pairs (vs, vt) do
if Graspable(D,X, vs) and Graspable(D,X, vt) then

add edge ((vp, vq)→ (vs, vt)) to G
end if

end for
end for
path← Dijkstra(G, (va, vb), (vx, vy))

Algorithm 4: Graspable
Input: geodesic distances D, configuration X, point vp
Parameters: geodesic thresh. d1, Euclidean thresh. d2
for i = 1 to N do
if D(vi, vp) > d1 and ‖xi − xp‖ < d2 then
return false

end if
end for
return true

3.3 Results
We assess our system’s performance on two tasks. The first is the identification of the article
and its grasp state after the end of the disambiguation phase. The second task adds the
reconfiguration phase. Together, the two phases compose the end-to-end task of bringing
articles into a desired configuration. We discuss how we might improve performance on both
tasks in Section 7.2.

3.3.1 Setup

We use the PR2 robotic platform, manufactured by Willow Garage, to perform all manipula-
tions. The robot is entirely autonomous throughout the procedure. We used a compliant
foam working surface to allow the PR2’s grippers to slide underneath the cloth when grasping.
We use a pair of two 640x480 color cameras mounted on the PR2 for all visual perception
tasks. We use a green-colored background to simplify the task of image segmentation of the
clothing article from the background.

CHAPTER 3. CLOTHING RECOGNITION 43

Figure 3.7: The grasp points, shown in pink, are identified by following the alignment from the
simulated contour (yellow) to the actual contour (blue).

The system requires mesh models of all clothing articles under consideration. Models of
new clothing articles are generated by a nearly-autonomous process. The user measures three
dimensions on the garment, identifies the clothing type (e.g. shirt, pants, skirt, etc.), and
an appropriate cloth model is generated. Next, the mesh-generation software Triangle [118]
produces an initial planar mesh with triangle areas constrained to 15 cm2. This mesh is then
converted into a full two-sided 3D mesh. The final 3D mesh contains approximately 300
triangle elements per clothing article.

We use an approximation in the contour observation update of the HMM. Simulating all
N2 possible grasp states can be completed in around two hours per article. Although this
could be done offline, we opted to only consider a subset of the pairs. In our experiments we
tracked the probabilities associated with roughly 15 possible grasp points. We also exclude
simulations that are obviously infeasible, resulting in a contour observation runtime of one or
two minutes when considering five articles.

All experimental runs start with the clothing article in a random configuration on the
table in front of the robot, as shown in Figure 3.1. The test set for our experiments, shown
in Figure 3.8, consists of one short-sleeve shirt, one long-sleeve shirt, one pair of pants, one
skirt, one towel, and two infant clothing articles meant to judge how well our algorithm
generalizes. We found the maximum likelihood estimates of our parameters using data from a
separate training set of articles; the only prior interaction with the test set was measuring the
dimensions needed to generate the candidate article meshes. We conducted 30 full end-to-end
experiments on the test set. We also conducted 10 additional experiments consisting only
of the disambiguation phase. The data collected in the end-to-end runs was also used to
calculate the disambiguation results.

CHAPTER 3. CLOTHING RECOGNITION 44

Figure 3.8: Our test set of clothing articles.

3.3.2 Disambiguation Experiments

We tested the disambiguation phase and probabilistic model under three settings of the
candidate article set A:

1. In the first experiment, A only includes the correct article’s mesh. In this test, we
measure the accuracy of the grasp state reported by the HMM. We declare success
when the most likely grasp state gt = (glt, g

r
t) has both glt and grt within 5 cm of the

points on the cloth that the robot is actually holding.

2. In the second experiment, A includes the correct article a as well as four extra articles
which are transformed versions of a where each differs from a by 10 cm in a single
dimension. We record whether the grasp state and article (gt, a) reported by the HMM
has the correct article a. This experiment assesses the ability of the algorithm to
determine an article’s size to a resolution of 10 cm. We also check if the reported grasp
points are within 5 cm of the actual grasp points, as above.

3. In the third experiment, A includes the correct models of all seven articles in our test
set. We assess whether the reported grasp state and article (gt, a) has the correct article

CHAPTER 3. CLOTHING RECOGNITION 45

a, and whether the grasp state is accurate to within 5 cm.

The results for the disambiguation experiments are shown in Table 3.1 and detailed below.
Experiment 1: During the first experiment, 38 out of 40 runs were successful. One

failure occurred because that article had relatively weak shape features for distinguishing
between grasp states. In the other failure, the article was flipped over itself, as shown in
Figure 3.9. Therefore it was not in the minimum-energy configuration predicted by the
simulator.

Experiment 2: In the second experiment, the correctly sized article was chosen in 26
out of 40 trials. Because there were five choices (the actual article and the four transformed
articles), this is significantly better than a random selection. Eight of the 14 errors were from
two articles that lack strong shape features; adding 10 cm to a single dimension of these
articles does not significantly change the shape of the contour or the height when held by a
single point. However, in the same test, the grasp state of the articles was still accurately
determined in 38 out of 40 trials (even if the incorrectly sized article was reported).

Experiment 3: In the third experiment, in which all seven articles from the test set
were considered (with no transformed versions), the correct article was chosen in 36 out of
40 trials. One of the errors was due to the robot grasping two points with one gripper that
were not in the same local neighborhood on the mesh surface (the sleeve and the waist of a
t-shirt); because our grasp state model assumes each gripper only grasps a single point, this
configuration was not considered by the HMM. In one of the other failures, the robot was
grasping too much fabric, which violates this same assumption but in a less drastic manner.
Of the cases where the article was correctly identified, the correct grasp state was estimated
in all but one.

Figure 3.9: A cloth configuration in which the article is flipped over itself and therefore not in the
minimum-energy configuration predicted by our simulator.

CHAPTER 3. CLOTHING RECOGNITION 46

Candidate article set Correct article Correct grasp (5 cm)
Correct article only — 94.87%
With transformed articles 64.10% 94.87%
All test articles 92.31% 89.74%

Table 3.1: Results for the disambiguation experiments, in which the identity and grasp state of the
clothing articles are estimated. See Section 3.3.2 for details.

Overall success rate 20/30
Failure: Robot could not reach point 9/30
Failure: Incorrect estimated grasp state 1/30

Table 3.2: Results for the full end-to-end task. Note that the majority of failures were due to the
robot not being able to reach a target grasp point in the planned sequence.

3.3.3 End-to-End Task

On the end-to-end task of bringing articles into a desired configuration, our system successfully
brought the article into the desired configuration in 20 out of 30 trials. Of the 10 failures,
nine were because the robot could not reach a grasp point. The other failure was because the
disambiguation procedure reported an incorrect grasp state. The results are summarized in
Table 3.2.

47

Chapter 4

BigBIRD Object Dataset

As discussed in Chapter 2, instance recognition suits many robotic tasks well, as joint object
recognition and pose estimation are the primary components of the instance recognition
problem. Though the advent of commodity RGB-D sensors, such as the Microsoft Kinect,
aid in addressing 3D pose detection and localization by providing a depth channel in addition
to a color channel, instance recognition systems still cannot reliably detect hundreds of
objects [128, 135, 144]. We believe that the primary issue currently hampering progress
towards reliable and robust instance recognition is the lack of a large-scale dataset containing
high-quality 3D object data. Collecting such a dataset requires constructing a reliable and
high-quality 3D scanning system.

In this chapter, we first give an overview of our system. We then describe our method
for jointly calibrating the 3D Carmine sensors and Canon T3 high resolution RGB cameras.
Next, we discuss our 3D model generation procedure. Lastly, we describe the structure of
the released dataset, along with a description of how the data has been used for research in
instance recognition, 3D model reconstruction, and object grasp planning.

4.1 System Description

4.1.1 System Overview

The sensors in our system consist of five high resolution (12.2 MP) Canon Rebel T3 cameras
and five PrimeSense Carmine 1.08 depth sensors. We mount each Carmine to one of the
T3s using a mount designed by RGBDToolkit [37], as shown in Figure 4.1. Each T3 is then
mounted to the Ortery MultiArm 3D 3000.

We place each object on the turntable in the Ortery PhotoBench 260. The PhotoBench
contains a glass turntable, which can be rotated in units of 0.5 degrees. It also has four lights,
consisting of 4,000 LEDs, located at the bottom, the back wall, the front corners, and the
back corners. Using a reverse-engineered driver, we can programmatically control the lighting
and rotation of the turntable.

CHAPTER 4. BIGBIRD OBJECT DATASET 48

Figure 4.1: Carmine mounted to Canon T3 using RGBDToolkit mount.

To obtain calibrated data, we place a chessboard on the turntable; the chessboard is
always fully visible in at least one of the cameras, specifically the Canon and Carmine directly
above the turntable (see Figure 4.2). We refer to Carmine as the reference camera. After
calibrating all of the cameras to find the transformations from each camera to the reference
camera, we can provide a good estimate of the pose for every image.

For each object, we capture images with each camera at each turntable position. We
rotate the turntable in increments of 3 degrees, yielding a total of 600 point clouds from the
Carmines and 600 high-resolution RGB images from the Canon T3s. We then estimate poses
for each camera, segment each cloud, generate segmentation masks for each of the 600 views,
and produce a merged cloud and mesh model.

CHAPTER 4. BIGBIRD OBJECT DATASET 49

Figure 4.2: Side view of all Carmines mounted to respective Canon T3s, pointed at the Ortery
PhotoBench. The dimensions of the PhotoBench are 31” D x 26”H x 26” W.

4.1.2 System Details

Automation and speed are crucial to enabling large-scale data collection; a significant amount
of engineering is required to make the process as fast as possible.

Our system runs the following steps when collecting data for a single object:

1. Start the depth and color stream for each Carmine. Turn off the infrared emitter for
each Carmine.

2. Repeat for each turntable orientation (every 3 degrees, 120 total orientations):

a) Start a thread for each Canon T3 that captures an image.
b) Start a thread for each Carmine that captures a color image.
c) Start a single thread that loops through each Carmine, turning on the infrared

emitter, capturing a depth map, and turning off the infrared emitter in sequence.

CHAPTER 4. BIGBIRD OBJECT DATASET 50

Step Time (s)
Startup
Ortery PhotoBench Startup 3.5
Carmine Startup (depth and color) 9.3

Capture at each turntable position (done 120 times)
Capture images – performed in parallel 1.82
Capture Canon T3 images (all 5 in parallel) 1.2
Capture Carmine color (all 5 in parallel) 0.07
Capture Carmine depth (all 5 in sequence) 1.82

Rotate turntable 0.48
Total capture time 276
Shutdown 0.49
Total time for one object 289

Table 4.1: Timing information for the data-collection process. Note that the three image capture
threads all run in parallel, which means that the image capture step takes as long as the longest
process.

d) Once all of the above threads are done executing in parallel, rotate the turntable
by 3 degrees.

Using all Carmines simultaneously causes the projected infrared (IR) patterns to interfere,
leading to severe degradations in data quality. One option involves stopping the depth stream
for each device not taking a depth image, and restarting the depth stream immediately before
taking an image. However, stopping and starting a depth stream takes roughly 0.5 seconds,
which would impose a five minute minimum bound on collecting 120 images with each of the
five cameras. Rather than stopping the entire stream, we modified the OpenNI2 library to
allow the IR emitter to be turned off while keeping the depth stream open, which takes 0.25
seconds. We present detailed timing breakdowns in Table 4.1.

We now discuss how we jointly calibrate the sensors.

4.2 Camera Calibration
The 10 sensors are situated in a quarter-circular arc, with each Carmine mounted to a Canon
T3, and each Canon T3 mounted to the arm. One of the overhead cameras, referred to as
the reference camera, can always see the chessboard affixed to the turntable; specifically, we
use the overhead Carmine. In order to recover the pose of all of the other sensors, we must
estimate the transformation from each sensor to the reference camera.

Kinect-style RGB-D sensor calibration involves estimating the intrinsic matrix for the
IR camera, the intrinsic matrix for the RGB camera, and the extrinsic rigid transformation
from the RGB camera to the IR camera. Highly accurate calibration is crucial to achieving

CHAPTER 4. BIGBIRD OBJECT DATASET 51

high-quality depth-to-color registration. In our system, we need to calibrate not only the
intrinsics of each individual RGB-D sensor, but also the extrinsics which yield the relative
transformations between each of the 10 sensors, both RGB-D and RGB.

Accurate calibration also enables registering depth maps to different RGB images, including
the higher-resolution 1280x1024 image provided by the Carmine (hardware registration
only works when the color stream is at the same resolution as the 640x480 depth stream).
Although this is a relatively well-studied problem [47, 124], obtaining high-quality results is
still nontrivial due to multiple details about the Carmines that are not well documented.

Our method requires an external IR light and a calibration chessboard. At a high level, we
take pictures of the chessboard with the high-resolution RGB camera and the RGB-D sensor’s
IR camera and RGB cameras1, as well as a depth map. We then detect the chessboard
corners in all of the images. Note that we turn off the IR emitter before collecting IR images,
and turn it back on before collecting depth maps.

After collecting data, we first initialize the intrinsic matrices for all 15 cameras (five Canon
T3s and five Carmines that each consist of an RGB camera and IR camera) using OpenCV’s
camera calibration routines, based on the simple calibration method proposed by Zhang [148].
We also initialize the relative transformations between cameras using OpenCV’s solvePnP.
We then construct an optimization problem to jointly optimize the intrinsic parameters and
extrinsic parameters for all sensors.

4.2.1 Joint Optimization

We use an approach similar to that given by Le and Ng [76]. Their approach requires that all
sensors be grouped into 3D systems. A stereo pair of cameras (RGB or IR) yields one kind of
3D system (a stereo system), and a RGB-D sensor’s IR camera and projector yield the other
(an RGBD system). Each 3D system has intrinsic parameters, used to produce 3D points,
and extrinsic parameters, used to transform 3D points into another system’s coordinate frame.
We construct and solve the optimization problem using Ceres Solver [1].

The calibrator optimizes the intrinsic and extrinsic parameters such that (1) each 3D
system produces 3D points that match the physical characteristics of the chessboard (e.g.
the points are all planar, the points on a given chessboard row are linear, and the distance
between generated 3D points matches up with the true distance on the chessboard) and (2)
all 3D systems agree with each other on the locations of the chessboard corners.

The intrinsic parameters of an RGBD 3D system consist of the intrinsic matrix K and
distortion parameters of the sensor’s IR camera. The intrinsic parameters of a stereo 3D
system consist of the intrinsic matrices and distortion parameters of each camera, along with
the rotation and translation from one camera to the other.

1It is vital that the Carmine and chessboard remain completely still while both images are captured, as it
is not possible to simultaneously take a color and infrared image.

CHAPTER 4. BIGBIRD OBJECT DATASET 52

The loss function is given by

G =
∑
s∈S

∑
u∈U

I(s, u) +
∑

s1,s2∈S

E(s1, s2, u)

where I denotes the intrinsic cost, E denotes the extrinsic cost, S denotes the set of all
3D systems and U denotes the calibration data (i.e. the chessboard corners).

Let Q(s, ui) be a function that produces a 3D point for the corner ui using the intrinsic
parameters of system s. For a stereo system, this entails triangulation, and for an RGBD
system, this is simply converting image coordinates to world coordinates using the depth
value provided by the sensor.

For a 3D system, the intrinsic cost is given by

I(s, ui) =
∑
uj∈U

(||Q(s, ui)−Q(s, uj)|| − dij)2

+
∑
l∈L

d(Q(s, ui), l)

+ d(Q(s, ui), p)

where dij is the ground-truth 3D distance between points i and j on the chessboard, L
is the set of lines that corner ui belongs to, p is the plane that corner ui belongs to, and
d(Q(s, ui), p) measures the distance from the generated 3D point to the plane.

The extrinsic cost is given by

E(s1, s2, ui) =||R12Q(s2, ui) + t12 −Q(s1, ui)||2

where R12 and t12 represent the rotation and translation needed to transform a point from
the coordinate frame of 3D system s2 to s1.

The major difference between our approach and that of Le and Ng is that we add one
additional term to the cost function for stereo pairs; specifically, we ensure that epipolar
constraints are satisfied by adding an additional term to the stereo intrinsic cost function:

I(s, u) =||uT1 Fu2||2,
where F is the fundamental matrix implied by the current values of the stereo pair’s intrinsic
parameters, u1 are the homogeneous coordinates of the calibration datum in the first camera,
and u2 are the homogeneous coordinates of the calibration datum in the second camera.

We obtain the depth intrinsic matrix KDepth from the IR intrinsic matrix by subtracting
the offset between the depth image and IR image due to the convolution window used by the
internal algorithm. We found the values suggested by Konolige and Mihelich [68] of -4.8 and
-3.9 pixels in the x and y directions, respectively, worked well. Figure 4.3 shows the results
of registering the depth map to the RGB image using our calibration compared with using
hardware registration.

CHAPTER 4. BIGBIRD OBJECT DATASET 53

Figure 4.3: Comparison of hardware and software registration. The left image shows a hardware-
registered point cloud. Note the bleeding of the cardboard in the background onto the Pringles can
and the low resolution of the color data. The right image shows a software-registered point cloud
using our calibration. Most of the bleeding of the cardboard onto the can has been fixed, and we
can use higher-resolution color data.

4.3 3D Model Generation
After calibrating each camera to the reference camera, we proceed with model generation. At
a high level, we:

1. Collect data from each Carmine and Canon as the turntable rotates through 120 3◦

increments.

2. Filter each Carmine depth map to remove depth discontinuities (Section 4.3.1).

3. Generate point clouds for each Carmine view using calibration intrinsics.

4. Merge the five point clouds for each of the 120 scenes using calibration extrinsics.

5. Segment the object from the merged cloud (Section 4.3.3).

6. Improve the object cloud quality for each of the 120 scenes through plane equalization
(Section 4.3.2).

CHAPTER 4. BIGBIRD OBJECT DATASET 54

Figure 4.4: Applying depth discontinuity filtering. Pixels marked in red are considered unreliable
due to either a discontinuity or neighboring pixels that were not measured by the Carmine depth
sensor. Before proceeding, we discard depth measurements associated with the red pixels.

7. Merge the 120 scenes together to form a single cloud using calibration extrinsics.

8. Create a mesh via Poisson Reconstruction [17, 58].

4.3.1 Depth Discontinuity Filtering

After collecting data from each Carmine and Canon sensor, we run a depth discontinuity
filtering step as suggested by Whelan et al. [140], since depth map discontinuities tend to
yield imprecise depth and color measurements. To do so, we associate each 3× 3 patch p in
the depth image with a value max{(max p− pmid), (min p− pmid)} where pmid refers to the
center pixel’s depth. We keep all pixels whose associated patch has a value below a certain
threshold. See Figure 4.4 for an example of the pixels eliminated by depth discontinuity
filtering.

4.3.2 Plane Equalization

After obtaining a preliminary 3D mesh, we produce a cleaner cloud through a procedure called
plane equalization. As we collect point clouds, recall that we compute the transform from

CHAPTER 4. BIGBIRD OBJECT DATASET 55

the turntable chessboard to the reference camera via OpenCV’s solvePnP. Experimentally,
we notice slight depth ambiguities when computing these transforms, evidenced by the
non-aligned plane normals and inconsistent depths presented in Figure 4.5. Since we know
that the turntable chessboard revolves about a circle roughly horizontal to the ground, we
refine each transform’s rotational component and translational component by (1) computing
a new vector normal to be shared across all chessboards and (2) enforcing the centers of each
chessboard to lie on a circle.

Concretely, given a set T = {(R1, t1), . . . , (Rn, tn)} of chessboard poses, we produce a
refined set T ′ = {(R′1, t′1), . . . , (R′n, t′n)} of chessboard poses. Note that an Ri operates on a
plane with unit normal k̂ yielding a plane with unit normal Ri[3], the third column of Ri.
Ultimately, we would like all plane normals to match; to do this, we compute a unit vector
û so as to minimize

∑n
i=1(û · Ri[3])

2. We solve for û exactly by setting it to be the least
eigenvector of the covariance of all the Ri[3]s. We then compute each R′i by multiplying each
Ri by the transform that takes Ri[3] to û via rotation about the axis Ri[3] × û. We next
compute each t′i by projecting each ti onto the least squares circle determined by {t1, · · · , tn};
this problem can be solved quickly by projecting {t1, · · · , tn} onto a plane, computing the
least squares circle in the plane’s basis, and projecting each point onto the resulting circle.
In practice, plane equalization runs in negligible time (< 0.1 s) for n = 120 and yields higher
quality point clouds (see Figure 4.6).

4.3.3 Object Segmentation

As discussed above, for a given turntable angle, we merge the five Carmine point clouds into
a single cloud using calibration extrinsics. To segment the object from this cloud, we first
discard all points outside of the Ortery PhotoBench. We then discard all points below the
turntable plane (which was identified in the previous step), and lastly conduct agglomerative
clustering to remove tiny clusters of points.

4.3.4 Accuracy

Although we use a naive approach for building 3D models, our models are more accurate
than those used by Xie et al. [144] to obtain state-of-the-art RGBD instance recognition
results. In Figure 4.7, we give a rough idea of the accuracy of our 3D models by projecting
a representative mesh onto an image from one of the Canon cameras (which is not used
to build the mesh), showing that the system is well calibrated and produces reasonable
meshes. More sophisticated algorithms can produce higher-fidelity 3D models. For example,
Narayan et al.describe how to achieve significantly higher shape fidelity [98] and Narayan
and Abbeel show how to generate optimized color models for higher color fidelity [97].

CHAPTER 4. BIGBIRD OBJECT DATASET 56

Figure 4.5: The chessboard poses for each turntable location are shown in the frame of the reference
camera. In the top image, the chessboard poses are determined by solvePnP. In the bottom image,
we refine these pose estimates using the plane equalization method described in Section 4.3.2. The
refined board poses are significantly cleaner.

CHAPTER 4. BIGBIRD OBJECT DATASET 57

Figure 4.6: Constructed point clouds for one object. On the left, the cloud is constructed using
the raw solvePnP poses; the cloud has multiple shifted copies of the object due to misalignment. On
the right, the cloud is constructed with the output of the plane equalization procedure; the cloud is
much cleaner and better aligned.

4.3.5 Limitations

Our approach relies solely on point cloud data from the Carmines when building the 3D
mesh models. However, Kinect-style RGB-D sensors are known to perform poorly for certain
objects, including transparent and highly-reflective objects such as the bottle shown in
Figure 4.8. For these objects, the 3D models may be missing or of poor quality. Nevertheless,
by incorporating methods that also use RGB data, we could provide high-quality 3D models
for many of these objects in the future.

4.4 Dataset Usage
We anticipate that our dataset will be useful for multiple related computer vision problems,
including object instance recognition, object category recognition, and 3D object model
generation. The dataset can be obtained on our website (http://rll.eecs.berkeley.edu/
bigbird).

http://rll.eecs.berkeley.edu/bigbird
http://rll.eecs.berkeley.edu/bigbird

CHAPTER 4. BIGBIRD OBJECT DATASET 58

Figure 4.7: The 3D mesh is projected onto one of the Canon images.

Currently, the dataset has been used for the following problems:

1. High-quality 3D model generation [97, 98]

2. Object recognition [4, 46, 79, 86]

3. Robotic grasp planning [86]

4. Benchmarking of robotic manipulation tasks [4, 14]

4.4.1 Obtaining the Dataset

Due to the large size (and many uses) of the dataset (each object has roughly 3 GB of
data), it is both impractical to provide a single downloadable file for the entire dataset and
inconvenient to have a single downloadable file per object. On the website, we provide an
automated way to download the data for various use-cases. Instructions for downloading the
data are provided on the website. The settings can be configured to download whichever
subset of the following components are desired:

1. High-resolution (12MP) images (.jpg)

2. Low-resolution Carmine images (.jpg)

CHAPTER 4. BIGBIRD OBJECT DATASET 59

Figure 4.8: An example object for which Kinect-style RGB-D sensors yield poor-quality point
clouds.

3. Raw point clouds (.pcd)

4. Depth maps (.h5)

5. Segmented point clouds (.pcd)

6. Segmentation masks (.pbm)

7. 3D mesh model (.ply)

60

Chapter 5

YCB Object and Model Set

In this chapter, we present the Yale-CMU-Berkeley (YCB) Object and Model set, which we
intend to be used for benchmarking robotic manipulation research. The set includes objects
used in everyday life. We also describe a framework for defining protocols for manipulation
tasks that use the included objects. We hope that the availability of this object set and
the protocols enable the robotic manipulation community to more easily compare different
approaches and algorithms.

We first discuss the selection criteria for inclusion in the dataset. We then describe the
structure of the accompanying dataset. Lastly, we describe our framework for protocols
for manipulation tasks. Code, data, and the protocols are available on our website (www.
ycbbenchmarks.org).

5.1 Objects
The proposed object set is described in Section 5.1.2, and listed in detail in Table 5.1. We
include objects in five main groups: (1) food, (2) kitchen items, (3) tools, (4) items with
interesting shapes, and (5) items that represent interesting tasks. In the next section, we
discuss the selection criteria for the object set in more detail.

5.1.1 Object Selection Criteria

We aimed to choose objects that are either commonly used in daily life or frequently used
in simulations and experiments. We also considered studies on objects of daily living and a
daily activities checklist [90, 131]. In compiling the proposed object and task set, we took
several additional practical issues into consideration: variety, number of use cases, durability,
cost, and portability.

www.ycbbenchmarks.org
www.ycbbenchmarks.org

CHAPTER 5. YCB OBJECT AND MODEL SET 61

Figure 5.1: Food items included in the YCB Object Set. Back: chips can, coffee can, cracker
box, sugar box, tomato soup can. Middle: mustard container, tuna fish can, chocolate pudding
box, gelatin box, potted meat can. Front: plastic fruits (lemon, apple, pear, orange, banana, peach,
strawberries, plum).

5.1.1.1 Variety

In order to cover as many aspects of robotic manipulation as possible, we included objects that
vary in size, shape, texture, transparency, and deformability. Regarding size, the necessary
grasp aperture varies from 0.64cm (diameter of the smallest washer) to 14 cm (diameter of
the soccer ball). Considering deformability, we chose rigid objects, a foam brick, a sponge,
deformable balls, articulated objects, a t-shirt, and a rope. For transparency, we selected
a transparent plastic wine glass, a glass skillet lid, and a semi-transparent glass cleaner
bottle. The set includes objects with plain textures such as the pitcher and the stacking cups,
and objects with irregular textures like most of the groceries. Grasping and manipulation
difficulty was also a criterion; for instance, some objects in the set are well approximated
by simple geometric shapes (e.g. the boxes of food and the balls) and relatively easy for
grasp synthesis and execution, while other objects have higher shape complexity (e.g. the

CHAPTER 5. YCB OBJECT AND MODEL SET 62

Figure 5.2: Kitchen items included in the YCB Object Set. Back: pitcher, bleach cleanser, glass
cleaner. Middle: plastic wine glass, enamel-coated metal bowl, metal mug, abrasive sponge. Front:
cooking skillet with glass lid, metal plate, eating utensils (knife, spoon, fork), spatula, white table
cloth.

clamps and the spatula). Given these aspects, the proposed set has superior variety compared
to commercially available sets [4, 40, 56, 91, 143] which are each designed to address some
particular manipulation aspects only.

5.1.1.2 Use Cases

We included objects that are not only interesting for grasping, but also have a range of
manipulation uses. For example, we chose a pitcher and a cup, nails and a hammer, pegs,
clothes, and a rope. We also selected “assembly” items: a set of children’s stacking cups, a
toy airplane that must be assembled (Figure 5.6), and toy blocks (Figure 5.7). Additionally,
we included standard manipulation tests that are widely used in rehabilitation, such as an
improvised box and blocks test [143] and a 9-hole peg test [91]. These tasks are intended to

CHAPTER 5. YCB OBJECT AND MODEL SET 63

Figure 5.3: Tool items included in the YCB Object Set. Back: power drill, wood block. Middle:
scissors, padlock and keys, markers (two sizes), adjustable wrench, Phillips and flathead screwdrivers,
wood screws, nails (two sizes), plastic bolt and nut, hammer. Front: spring clamps (four sizes).

span a wide range of difficulty, from relatively easy to very difficult.

5.1.1.3 Durability

We aimed for objects that can be useful in the long term, and therefore avoided objects that
are fragile or perishable. Also, to increase the longevity of the object set, we chose objects
that are likely to remain in circulation and change relatively little in the near future.

5.1.1.4 Cost

We aimed to keep the cost of the object set as low as possible in order to broaden accessibility.
We therefore selected easily obtainable consumer products, rather than, for example, custom-
fabricated objects and tests. The current cost of the object set is approximately $350.

CHAPTER 5. YCB OBJECT AND MODEL SET 64

Figure 5.4: Shape items included the YCB Object Set. Back: mini soccer ball, softball, baseball,
tennis ball, racquetball, golf ball. Front: plastic chain, washers (seven sizes), foam brick, dice,
marbles, rope, stacking blocks (set of 10), blank credit card.

5.1.1.5 Portability

We aimed to have the object set fit inside a large suitcase and weigh less than the standard
airline weight limit (22kg) in order to allow easy shipping and storage.

5.1.2 Selected Objects

The object set was selected with the above considerations in mind. Each object is given a
numeric ID to avoid ambiguity. The set is listed in detail, with masses and dimensions, in
Table 5.1.

The food category includes objects with IDs 1 to 18, containing boxed and canned items,
as well as plastic fruits, which have complex shapes. These objects are pictured in Figure 5.1.

The kitchen category includes objects with IDs 19 to 34, containing objects for food
preparation and serving, as well as glass cleaner and a sponge. These objects are pictured in
Figure 5.2.

The tools category includes objects with IDs 35 to 52, containing not only common tools,

CHAPTER 5. YCB OBJECT AND MODEL SET 65

(a) Improvised box-and-blocks test objects: set
of 100 wooden cubes, two containers, and an
obstacle (container lid) between them.

(b) 9-hole peg test: wooden pegs are placed in
holes and stored in the base.

Figure 5.5: Objects for two widely used tasks in rehabilitation benchmarking.

(a) Toy airplane disassembled, including toy
power screwdriver.

(b) Toy airplane fully assembled.

Figure 5.6: Objects used for a complex toy airplane assembly task.

CHAPTER 5. YCB OBJECT AND MODEL SET 66

Figure 5.7: Lego Duplo blocks, which can be used as a simple assembly task.

but also items such as nails, screws, and wood, which can be used with the tools. These
objects are pictured in Figure 5.3.

The shape category includes objects with IDs 53 to 67, which span a range of sizes
(spheres, cups, and washers), as well as deformable objects such as a foam brick, a rope, and
a chain. These objects are pictured in Figure 5.4.

The task category includes objects with IDs 68 to 76. This category includes two widely
used tasks in rehabilitation benchmarking (box-and-blocks [143] and 9-hole peg test [91]),
pictured in Figure 5.5. It also includes items for both a relatively simple and a complex
assembly task (a LEGO Duplo set and a toy airplane, respectively), pictured in Figure 5.6
and Figure 5.7. We also include a t-shirt for clothing-related tasks, a timer, and a magazine.

5.2 Model Generation
The objects are scanned with two different systems. First, we use the same system used to
collect the BigBIRD dataset, as described in Chapter 4.

The objects are also scanned with the Google research scanner, which uses structured
light [115]. The scanner has a mostly light-sealed enclosure, three custom “scanheads,” and a
motorized turntable. Each scanhead is a custom structured light capture unit, consisting
of a consumer DLP projector and two monochrome Point Grey Grasshopper3 cameras in a
stereo pair. In addition, a Canon 5DMk3 DSLR is attached below the projector to capture
high-resolution color information. The objects were scanned using eight turntable stops for a
total of 24 views. For each object, three mesh models are generated with 16k, 64k, and 512k
mesh vertices.

CHAPTER 5. YCB OBJECT AND MODEL SET 67

ID Object Name Mass (g) Dimensions (mm)

1 Chips Can 205 75 x 250

2 Master Chef Can 414 102 x 139

3 Cracker Box 411 60 x 158 x 210

4 Sugar Box 514 38 x 89 x 175

5 Tomato Soup Can 349 66 x 101

6 Mustard Bottle 603 58 x 95 x 190

7 Tuna Fish Can 171 85 x 33

8 Pudding Box 187 35 x 110 x 89

9 Gelatin Box 97 28 x 85 x 73

10 Potted Meat Can 370 50 x 97 x 82

11 Banana 66 36 x 190

12 Strawberry 18 43.8 x 55

13 Apple 68 75

14 Lemon 29 54 x 68

15 Peach 33 59

16 Pear 49 66.2 x 100

17 Orange 47 73

18 Plum 25 52

19 Pitcher Base 178 108 x 235

20 Pitcher Lid 66 123 x 48

21 Bleach Cleanser 1,131 250 x 98 x 65

22 Windex Bottle 1,022 80 x 105 x 270

23 Wine Glass 133 89 x 137

24 Bowl 147 159 x 53

25 Mug 118 118g 80 x 82

26 Sponge 6.2 72 x 114 x 14

27 (a-b) Skillet 950 270 x 25 x 30

Continued on next page

CHAPTER 5. YCB OBJECT AND MODEL SET 68

ID Object Name Mass (g) Dimensions (mm)

28 Skillet Lid 652 270 x 10 x 22

29 Plate 279 258 x 24

30 Fork 34 14 x 20 x 198

31 Spoon 30 14 x 20 x 195

32 Knife 31 14 x 20 x 215

33 Spatula 51.5 35 x 83 x 350

34 Table Cloth 1315 2286 x 3352

35 Power Drill 895 35 x 46 x 184

36 Wood Block 729 85 x 85 x 200

37 (a-b) Scissors 82 87 x 200 x 14

38 Padlock 304 24 x 47 x 65

39 Keys 10.1 23 x 43 x 2.2

40 Large Marker 15.8 18 x 121

41 Small Marker 8.2 8 x 135

42 Adjustable Wrench 252 5 x 55 x 205

43 Phillips Screwdriver 97 31 x 215

44 Flat Screwdriver 98.4 31 x 215

45 Nails 2, 2.7, 4.8 4 x 25, 3 x 53, 4 x 63

46 Plastic Bolt 3.6 43 x 15

47 Plastic Nut 1 15 x 8

48 Hammer 665 24 x 32 x 135

49 Small Clamp 19.2 85 x 65 x 10

50 Medium Clamp 59 90 x 115 x 27

51 Large Clamp 125 125 x 165 x 32

52 Extra-large Clamp 202 165 x 213 x 37

53 Mini Soccer Ball 123 140

54 Softball 191 96

55 Baseball 148 75

Continued on next page

CHAPTER 5. YCB OBJECT AND MODEL SET 69

ID Object Name Mass (g) Dimensions (mm)

56 Tennis Ball 58 64.7

57 Racquetball 41 55.3

58 Golf Ball 46 42.7

59 Chain 98 1149

60 Washers
0.1, 0.7, 1.1, 3,

5.3, 19, 48

6.4, 10, 13.3, 18.8,

25.4, 37.3, 51

61 Foam Brick 59 50 x 75 x 50

62 Dice 5.2 16.2

63 (a-e) Marbles N/A N/A

64 Rope 18.3 3000 x 4.7

65 (a-k) Cups

13, 14, 17, 19,

21, 26, 28,

31, 35, 38

55x60, 60x62, 65x64, 70x66,

75x68, 80x70, 85x72,

90x74, 95x76, 100x78

66 Blank Credit Card 5.2 54 x 85 x 1

67 Rope 81 3000

68 Clear Box 302 292 x 429 x 149

69 Box Lid 159 292 x 429 x 20

70 (a-b) Colored Wood Blocks 10.8 26

71 (a-b) Nine-hole Peg Test 82 1150 x 1200 x 1200

72 (a-k) Toy Airplane 304 171 x 266 x 280

73 (a-m) Lego DUPLO N/A N/A

74 T-shirt 105 736 x 736

75 Magazine 73 265 x 200 x 1.6

76 Timer 8.2 85 x 80 x 40

Table 5.1: The objects included in the YCB Object and Model set. Note that the object IDs are
consistent with [13]. Some objects have multiple parts; these parts are indicated by the letters next
to their ID numbers.

CHAPTER 5. YCB OBJECT AND MODEL SET 70

5.3 Data Structure and Usage
We provide the data in a variety of formats, including the raw image and depth data. In order
to make the generated models more easily usable, we provide formats that can be integrated
into a variety of robot simulation packages. For example, in the MoveIt [15] simulation
package, the mesh can be directly used as a collision object. Furthermore, a Unified Robot
Description Format (URDF) file can be automatically constructed to integrate with ROS [105].
This provides a way of specifying mass properties and can link to alternate representations
of the mesh for visualization and collision. Integration with the OpenRAVE [26] simulation
package is similarly straightforward where we link to the display and collision meshes from
a KinBody XML file. Using the scans, we can easily create URDF and KinBody files for
all of the objects in the dataset. Once in a simulation environment, a variety of motion
planners and optimizers can use these models either as collision or manipulation objects.
Some algorithms, such as CHOMP [107], require signed-distance fields to avoid collisions
which can be computed from the included watertight meshes. All data and accompanying
code are available on our website (www.ycbbenchmarks.org).

5.3.1 Data Structure Details

The data are ordered by object ID, followed by the name of the objects. For each object,
several compressed files are supplied:

• Processed Data contains:

– a point cloud in .ply extension obtained by merging the data acquired
from all the viewpoints.

– Poisson meshes.

– TSDF meshes.

• Raw RGB contains:

– 600 images with 12 MP resolution in JPEG format.

– pose of the RGB camera for each image in Hierarchical Data Format
(HDF5).

– camera intrinsic parameters in HDF5 format.

– segmentation masks in .pbm format.

• Raw RGBD contains:

– 600 RGB-D images in HDF5 format.

– pose of the RGB-D camera in HDF5 format for each image.

www.ycbbenchmarks.org

CHAPTER 5. YCB OBJECT AND MODEL SET 71

– camera intrinsic parameters in HDF5 format.

– segmentation masks in .pbm format.

• 16k scan contains meshes with 16,000 vertices.

• 64k scan contains meshes with 64,000 vertices.

• 512k scan contains meshes with 512,000 vertices.

The meshes for each object include:

• Textureless meshes (provided in .xml, .stl, and .ply formats).

• Textured meshes (provided in .mtl and .obj formats).

• Texture maps (provided in .png format).

• Point clouds (provided in .ply format).

5.4 Protocols
A standard set of objects and associated models are a great starting point for common
replicable research and benchmarking in manipulation, but there must be a sufficient amount
of specification about what should be done with the objects in order to directly compare
approaches and results. Given the wide range of applications being examined in the ma-
nipulation research community, along with how quickly the field moves, we cannot possibly
provide sufficient task descriptions that will span the range of interests and remain relevant
long-term. We therefore focus on two efforts: (1) developing a framework for task protocols
and (2) constructing a preliminary set of example protocols. In addition to supplying the
data described above, our website (www.ycbbenchmarks.org) will also serve as a portal for
task protocols. The portal will provide links to all protocols that meet the standards laid out
in the template, and will provide a forum for discussion on individual protocols.

5.4.1 Guidelines

The aim of this section is to provide guidelines that help to maintain reliable and widely
applicable benchmarks for manipulation. Five categories of information are introduced for
defining manipulation protocols: (1) task description, (2) setup description, (3) robot/hard-
ware/subject description, (4) procedure, and (5) execution constraints. These categories are
explained below.

www.ycbbenchmarks.org

CHAPTER 5. YCB OBJECT AND MODEL SET 72

5.4.1.1 Task Description

The task description is the highest level of information about the protocol. It describes the
main actions of a task and (often implicitly) the expected outcomes. In this category, no
constraints are given on the setup layout or how the task should be executed. Some task
description examples are “pouring liquid from a pitcher to a mug,” “hammering a nail into a
wood block,” or “grasping an apple.”

5.4.1.2 Setup Description

This category provides the list of target objects of the experiment, their descriptions, and their
initial poses with respect to each other. Also, if there are any other objects used as obstacles
or clutter in the manipulation scenario, their description and layout are described here. For
instance, if the task is pouring a liquid from a pitcher to a glass, the object properties of the
pitcher and glass should be given, and their initial poses should be defined. As discussed in
the previous sections, the usage of non-standard objects introduces uncertainty into many
manipulation experiments presented in the literature. Removing uncertainties in this category
of information is crucial for maintaining well-defined benchmarks.

5.4.1.3 Robot / Hardware / Subject Description

This category provides information about the task executor. If the protocol is designed
for a robotic system, the initial state of the robot with respect to the target object(s) and
prior information provided to the robot about the manipulation operation (e.g. semantic
information about the task, object shape models, etc.) are specified in this category. If the
protocol is designed for a specific hardware setup (including sensory suite), the description is
given. If the task executor is a human subject, how the subject is positioned with respect to
the manipulation setup is described here.

5.4.1.4 Procedure

In this category, the actions that must be taken by the person conducting the experiment are
explained step by step.

5.4.1.5 Execution Constraints

In this category, the constraints on how to execute the task are provided. For instance, if the
task is “fetching a mug,” the robot may be required to grasp the mug by its handle.

5.4.2 Available Protocols

Protocols can be found on our website (www.ycbbenchmarks.org). Currently, protocols and
benchmarks exist for the following tasks:

www.ycbbenchmarks.org

CHAPTER 5. YCB OBJECT AND MODEL SET 73

1. Grasp objects of various shapes and sizes.

2. Arrange blocks into a specified pattern (block pick-and-place).

3. Insert a peg into a hole using a learned policy.

4. Pour a liquid from a pitcher into a mug.

5. Set a table by placing kitchen objects into predefined places.

74

Chapter 6

Brass: Berkeley RAaaS Software

In this chapter, we first define Robotics and Automation as a Service (RAaaS). We then
describe Brass (Berkeley RAaaS Software), a preliminary framework for defining and using
cloud-based robotics and automation services. We lay out our goals for the framework and
our initial design. Lastly, we give an example of how the instance recognition system from
Chapter 2 can be turned into a Brass service.

Brass was developed in collaboration with Ben Kehoe, Dibyo Majumdar, and Sachin Patil.
Our work was first presented by Ben Kehoe in his dissertation [61].

6.1 Background

6.1.1 Cloud Computing

Cloud computing provides computation resources using a number of different models. These
models are commonly separated into Infrastructure as a Service (IaaS), Platform as a Service
(PaaS), and Software as a Service (SaaS). In order, these models reduce the effort needed to
deploy and run software, but increase the restrictions placed on software that may be run.
IaaS is the most general and requires the most work, while SaaS is the simplest and most
restrictive.

With Infrastructure as a Service (IaaS), the user is provided with bare computing resources,
which may be physical or virtualized machines in the cloud. This model offers the most
flexibility. At the most basic level, any local computer setup could be replicated on a machine
in the cloud and connected to the local network via a Virtual Private Network (VPN). Any
cloud computing application is implementable on IaaS, but requires that the user set up and
manage all of the software needed for the application. Examples of IaaS are Amazon Elastic
Compute Cloud (EC2) and Google Compute Engine (GCE).

Platform as a Service (PaaS) provides more structure than IaaS, generally geared towards
an intended use, such as web applications or parallel computation. Software can be deployed
and run on a PaaS more easily, but must conform to the requirements of the platform. This

CHAPTER 6. BRASS: BERKELEY RAAAS SOFTWARE 75

The Cloud

Point
Clouds

Objects
Grasps
Motion plans

Outcomes

Figure 6.1: Example Robotics and Automation as a Service (RAaaS) application. In this example,
a robot arm with an RGBD sensor must pick up and inspect parts on an assembly line. The robot
sends point clouds into the Cloud, and receives back detailed object models, grasps, and motion
plans. Following the execution of these grasps and motion plans, outcomes are sent back into the
Cloud to improve future performance. Multiple robots use the service.

places restrictions on the programming languages, system architectures, and database models
that can be used. Examples of PaaS include Heroku and Google App Engine (GAE).

Google App Engine is a PaaS platform for developing and hosting web applications in
Google-managed data centers. GAE provides databases and features such as automatic
scaling. While it provides support for a wide range of programming languages and web
frameworks, it does not provide the level of flexibility and control that GCE provides.

Software as a Service (SaaS) streamlines interaction for users even further. The term
SaaS covers two related but different concepts in software: standalone apps, and software
libraries, which can be used as part of other software programs. Google Docs is an example
of the former, and the Google Cloud Vision API is an example of the latter.

CHAPTER 6. BRASS: BERKELEY RAAAS SOFTWARE 76

Implement Share

Download Build
Install

Integrate UseDeploy

Algorithm Implementer

Software End-User

Run

PaaS

Implement Deploy Use

Algorithm Implementer Software End-User

Run

Brass

Figure 6.2: PaaS and Brass flowcharts. The top figure shows the usage of PaaS frameworks:
algorithm implementers share their algorithms such that software end-users can download, build,
and install them. Then, the software end-users must integrate the algorithms with their own code,
and deploy this code into the PaaS cloud. The bottom figure shows the usage of Brass: algorithm
implementers deploy their code, in the form of services, directly into the cloud using Brass. This
code is then immediately available for software end-users to access.

6.1.2 Robotics and Automation as a Service

To illustrate the concept of RAaaS, consider the hypothetical situation of a graduate student
setting up a robot workstation for a pick-and-place task. The workstation contains a 7-DOF
robot arm with a parallel-jaw gripper, and a Microsoft Kinect RGBD sensor. The purpose
of the robot is to pick up and inspect parts as they come down an assembly line, placing
parts that fail the inspection into a bin. This task requires several components to function,
including object instance recognition, grasp planning, and motion planning. The graduate
student is then a software end-user who plans to integrate algorithms in software packages
written by algorithm implementers.

We consider three scenarios the graduate student may choose from: (1) run the software
locally, (2) run the software in the cloud using IaaS, and (3) run the software in the cloud
using RAaaS.

In Scenario 1, the software runs locally. First, the software for each component (e.g.
instance recognition) must be located and set up. Many algorithm implementers have shared
their software, but for the graduate student, as a software end-user, using these libraries
requires several steps. First, the software end-user must locate the library. Next, the end-user
must integrate it with their other software. The integration step may involve several tasks,
including downloading and building libraries, resolving dependencies, and installation. Each

CHAPTER 6. BRASS: BERKELEY RAAAS SOFTWARE 77

of these steps can take tens of person-hours.
Software engineering efforts in robotics and automation have attempted to reduce the

effort needed for each of these steps. One of the most impactful advances in the past decade
has been the introduction of robotics software frameworks and the success of the Robot
Operating System (ROS) [105]. ROS provides three key benefits that save time. First,
the middleware (message-passing system) allows software components, possibly on different
machines, to communicate through convenient standardized interfaces. This significantly
reduces the effort needed to integrate separate software components. Second, ROS provides a
build system that handles many common tasks, reducing the effort needed to compile C++
software. Finally, ROS provides a software ecosystem for sharing software packages through
Ubuntu’s package distribution system.

Although ROS has greatly improved how robotics and automation software is distributed
and used, there are some disadvantages. First, it can be intimidating for newer users, as
installing ROS on Ubuntu can require anywhere from tens to hundreds of packages. It is
nontrivial to set up a secure, distributed network with ROS. The user must have control
over their network environment and be comfortable setting up VPNs. Lastly, dependency
resolution can bring setup to a halt if two components the end-user would like to use depend
on different ROS versions.

In Scenario 2, the software used in Scenario 1 is run in the cloud instead, using an IaaS
such as EC2 or GCE. Cloud computing offers increased capability for software end-users,
including massively parallel computing and data storage. It can also involve a reduction in
time and costs spent on local computer setup and administration. However, this comes at
the cost of additional effort required to configure cloud resources, and deploy and manage
the software in the cloud, increasing the person-hours needed for the project.

Scenario 3 uses RAaaS, as shown in Figure 6.1. Algorithm implementers have deployed
their software to the cloud, eliminating the need for the graduate student to download and
install any software locally. The student visits a website to input the arm, sensor, and gripper
models. Next, the student selects the desired instance recognition, motion planning, and
grasping algorithms, and uses a simple Python script or a graphical interface to connect these
algorithms together into a pipeline. The robot sends point clouds from the Kinect. The robot
then receives object identities and poses, and executes motion plans and grasps, reporting
back outcomes to the cloud-based pipeline, which are combined with similar feedback from
other robots to improve the software over time.

6.2 Brass Framework

6.2.1 Goals

Brass aims to reduce the effort needed to share and integrate algorithms for algorithm
implementers and software end-users. Below are 12 potential advantages:
for algorithm implementers:

CHAPTER 6. BRASS: BERKELEY RAAAS SOFTWARE 78

1.1) Brass can allow developers to write services in any programming language on any Linux
operating system, requiring only minimal wrapper code written in Python.

1.2) Brass can facilitate porting packages currently offered in ROS.

1.3) Brass can provide a convenient interface for services to call other Brass services.

1.4) Brass can enable developers to maintain confidentiality about details regarding their
algorithms and source code, if desired, while allowing end-users to test and use these
algorithms.

for software end-users:

2.1) Brass can provide algorithms as web services, so that any Brass service can be used from
any operating system and robot hardware with minimal local installation of packages or
libraries.

2.2) Brass aims to make available a comprehensive set of services/packages for robotics and
automation applications, eventually a superset of those available in ROS.

2.3) Brass includes multiple communication formats, including verbose for debugging and
binary for fast operation.

2.4) Brass provides automatic replication and load-balancing of services that is transparent
to end-users.

for both algorithm implementers and software end-users:

3.1) Algorithm implementers can update their services to improve capabilities and perfor-
mance; end-users can begin using these updates immediately.

3.2) Service and dataset versioning allows end-users to select a specific version that will not
change in functionality, content, or interface.

3.3) Brass can enable benchmarking between algorithms and datasets.

3.4) Brass can facilitate collective robot learning with datasets that evolve over time.

Brass is a hybrid of cloud computing models: we provide a PaaS for algorithm implementers
to deploy their code such that it can be shared with software end-users. These implemented
algorithms are then available to software end-users through a SaaS model.

For a service that has been uploaded to Brass, no deployment of computational resources
is required by the software end-user. Configuration information is sent with a service call,
and the appropriate computational and data resources are created or reused as necessary.
To accomplish this, services only run when responding to input from an end-user. This
is different from other PaaS approaches, as illustrated in Figure 6.2, and enables Brass to
provide transparent scaling and replication of services.

CHAPTER 6. BRASS: BERKELEY RAAAS SOFTWARE 79

6.3 Design
In designing a framework that seeks to reduce the effort necessary to share and integrate
algorithms, a delicate balance between algorithm implementers and software end-users exists
in the amount of structure required of implemented algorithms uploaded to the framework. If
too much structure is used, the amount of effort needed to convert an existing codebase into
a service will deter algorithm implementers from sharing their software. At the same time,
too little structure will cause services and datasets to vary so widely that too much effort will
be required of software end-users to learn about any particular service; this will also restrict
the ability of an end-user to change between services offering similar functionality.

To add an algorithm or library of code to Brass, it is defined as a service. A service is
a collection of methods, where a method is a function that has a defined set of inputs and
outputs. Each method of a service uploaded to Brass is accessible through a specific URL.

When writing a service, an algorithm implementer can declare that the service requires
one or more data resources. Each data resource is given a name, along with the type of data
resource and whether it will be used as read-only or writable. Brass services are not allowed
to keep mutable internal state: all mutable state is stored in these data resources. Then,
when the service is used, the software end-user selects the specific data resources for the
service to use. This allows the service to be written in a data-agnostic manner. For example,
an instance recognition service may declare that it requires a data resource for the object
library, giving it the name candidate_objects.

The primary type of data resource for Brass is a dataset. Datasets provide hierarchical
storage similar to filesystems, and any existing file-based data can be directly uploaded to
Brass to create a dataset. Given the instance recognition service described above, a software
end-user may then connect to the service, specifying that the YCB/kitchen1 dataset should be
used as the candidate_objects data resource. Other potential data resource types include
SQL databases and the RoboEarth knowledge repository [130].

To achieve the goals of Brass, we have imposed a restriction on the way services can store
state. When a service is loaded, it may create internal state for faster processing. Examples
of this are loading information from a data resource into memory. However, when a method
is called on the service, it is not allowed to make any modifications to the internal state that
persist after the end of the method call. Any information that persists beyond the duration
of the method call must be stored in a writable data resource attached to the service. This
requirement means that for any service that uses only read-only data resources (or no data
resources), the service can be trivially replicated any number of times to provide for a higher
traffic volume.

The restriction on internal mutable state and the fact that Brass services are only run in
response to a software end-user calling a method on the service means that, in comparison
with PaaS approaches, some algorithmic architectures are not feasible with Brass. As one

1Service and dataset names in Brass take the form <namespace>/<name> to allow similar names from
different users to be distinguished.

CHAPTER 6. BRASS: BERKELEY RAAAS SOFTWARE 80

example, consider a Kalman filter that may not receive observation updates at every timestep.
With a PaaS approach, the filter can continue running between observations from the end-user,
so that when the end-user sends an observation, the amount of computation required to
produce a new estimate is fixed. With Brass, the service would have to compute the updates
for all the timesteps since the last observation in order to compute the current estimate.

6.3.1 Pipelines

With a simple service-based architecture, information only transits between a service and
the software end-user. However, consider the scenario where a second service is used for
preprocessing the input to the first service. For example, a service to remove self-occlusions
by the robot from a point cloud may be used before the point cloud is sent to the instance
recognition service. With a naive approach, the original point cloud would be sent to the
filtering service, which would return a filtered point cloud to the software end-user. This
filtered point cloud would then be sent to the instance recognition service. To reduce the
required communication, Brass provides for the creation of pipelines, which in this example
would allow the filtered point cloud to be sent directly to the object recognition service.

6.4 Example
In this section, we detail an example service named example/instance_recognition for
instance recognition using the system described in Chapter 2 as a library named odp, along
with a dataset of object models.

6.4.1 Algorithm Implementer

This section describes the code necessary for an algorithm implementer to create the service
and the dataset, and upload these to Brass.

First, the algorithm implementer defines a Service subclass named InstanceRecognition,
which requires a binary data resource. On startup, it loads the object models from the data
resource and sets up the object detector. The service has a single method, detect_objects,
which takes an input point cloud and returns the identities and poses of any objects from the
data resource that are detected in the point cloud.

The following code is placed in a file named example.py:
import odp

from brass import *

@data_resource(‘candidate_objects’, type=‘binary’)

class InstanceRecognition(Service):

@startup

def initialize_detector(self):

self.detector = odp.Detector()

CHAPTER 6. BRASS: BERKELEY RAAAS SOFTWARE 81

objects = self.data_resources[‘candidate_objects’]

path = objects.get_file_path_for(‘/objects’)

self.detector.load_objects(path)

@input(PointCloud, ‘point_cloud’)

@output(Pose[..], ‘poses’)

@output(String[..], ‘labels’)

def detect_objects(self, **inputs):

poses, labels = self.detector.detect_objects(inputs[’point_cloud’])

return poses, labels

This file is placed in a Docker container with the detection library (odp) installed. The
following code is placed in a file named example.docker:
FROM ubuntu

RUN git clone git@github.com:rll/object_detection_pipeline && \

cd object_detection_pipeline && \

make install

COPY detector.py /services/example.py

ENV PYTHONPATH /services:$PYTHONPATH

In the shell, the following commands are given to create the Docker container, and then
push the container to the Brass server and load it into the Brass system:
> brass_build_docker example/instance_recognition example.docker

> brass_load_service example/instance_recognition

6.4.2 Software End-User

This section shows the code necessary for a software end-user to connect to the service created
in the previous section. The following code snippet connects to the service and calls the
instance recognition service.
import brass

service = brass.connect(‘brass://example/instance_recognition’,

data_mapping={‘candidate_objects’: ‘YCB/kitchen’})

point_cloud = capture_point_cloud() # get point cloud of query scene

poses, labels = service.detect_objects(point_cloud)

To use the service, the software end-user uses the connect function in the Brass library,
providing the location of the service and directing it to use the YCB/kitchen dataset as the
candidate_objects data resource required by the service.

82

Chapter 7

Conclusion

We described how progress in several areas of robotics research, including perception, grasping,
manipulation, and working with deformable objects, can be accelerated by having shared
datasets and benchmarks. Furthermore, we explained how cloud robotics can help establish
such benchmarks, along with its other benefits. We presented two systems well suited for
cloud-based implementations: one for object instance recognition, and another for clothing
recognition manipulation. We additionally presented two datasets: one consisting of 3D
object data and models, for perception research, and another consisting of object scans and
physical objects, for manipulation and grasping research. Lastly, we described a preliminary
framework for simplifying the development and usage of cloud-based robotics and automation
services.

Each of these contributions represents a step towards useful cloud-based systems and
benchmarks. However, each part still has significant room for further work. Additionally, the
components have not yet been unified into a cohesive platform which can be effectively used
and improved by the robotics community.

Our overarching goal is to build a platform which enables researchers to easily develop,
share, and benchmark algorithms and methods for robotic research problems, including
perception, manipulation, grasping, navigation, and more. In this chapter, we describe
potential future work towards this goal. First, we describe extensions for our instance
recognition and clothing recognition work, especially those that make use of both Brass and
BigBIRD. Next, we describe what further work can be done with the BigBIRD dataset and
YCB Object and Model Set. Lastly, we outline what work needs to be done with Brass to
enable such a platform.

7.1 Instance Recognition
In Chapter 2, we presented a system for robotic perception, focusing on identifying object
instances and recovering their 3D pose with high precision and recall. This work was initially
presented at ICRA 2012 and ICRA 2013 [128, 144]. An interactive visualization of our results

CHAPTER 7. CONCLUSION 83

is available at http://rll.berkeley.edu/odp/.
Although this system was state-of-the-art at the time of publication, recent advances in

deep learning would likely lead to significantly higher performance. Several deep-learning-
based methods have been published for various tasks that are closely related to the instance
recognition problem as we define it. Our system could use such methods in multiple ways.
First, we could replace the hand-engineered feature models with learned features, while
leaving the rest of the system constant. Second, we could replace the RANSAC-based pose
estimation procedure with a deep network that is specifically trained to recover viewpoint,
such as that described by Tulsiani et al. [132]. In either case, using deep learning requires the
use of substantially more data than what is available in the Willow and Challenge datasets.
The data in BigBIRD, augmented with the occlusion generation procedure we described,
would likely yield enough data as a starting point. We can also define a Brass service and
make it available for others to use.

7.2 Clothing Recognition
In Chapter 3, we presented a method for first identifying clothing articles from arbitrary
initial configurations and then bringing them into desired configurations. This method was
originally presented at ICRA 2011 [22].

Our method involves limited perceptual capabilities: it only uses the silhouettes of the
clothing article against a background. This means it does not use the appearance of individual
articles for recognition. This would improve performance in our limited test set, and would be
vital for any real-world implementation which would need to deal with several more articles
of clothing per category (i.e. most wardrobes contain multiple t-shirts). We can also take
advantage of cloud computing by running the clothing simulations for all clothing models
in parallel. Additionally, for the end-to-end task, we can incorporate joint base and arm
motion planning to eliminate the failures in which the robot could not reach the desired point
on the clothing article. Lastly, we can define two Brass services and release our prototype
implementation for others to use (one for the disambiguation phase and another for the
reconfiguration phase).

7.3 BigBIRD
In Chapter 4, we presented a large dataset of household items, consisting of calibrated RGB-D
images and high-resolution RGB images. The dataset was first presented at ICRA 2014 [123].
Code and data are available at http://rll.eecs.berkeley.edu/bigbird.

The dataset is currently a good fit for object reconstruction work and basic object
recognition work. However, in order for the dataset to be maximally useful, it should also
include a large number of test scenes composed of objects in the set, ideally in natural settings.
Furthermore, the dataset should be published as a Brass dataset.

http://rll.berkeley.edu/odp/
http://rll.eecs.berkeley.edu/bigbird

CHAPTER 7. CONCLUSION 84

Another improvement would be to build and distribute higher-quality 3D models for each
of the objects. We have already developed a method to improve the shape fidelity [98], and
Narayan and Abbeel describe a method for improving the color fidelity [97]. Running these
methods over the entire dataset would yield significantly higher-quality models than those
currently available.

7.4 YCB Object and Model Set
In Chapter 5, we presented the Yale-CMU-Berkeley Object and Model Set, which contains
objects and corresponding models for robotic manipulation research. The YCB Object and
Model Set work was originally presented at ICAR 2015 [14]. Code and data are available at
http://www.ycbbenchmarks.org/.

We also outlined initial protocols for several manipulation tasks. Collecting a set of
reference implementations for each task across a range of robotic platforms would help to
encourage the community to follow suit, and would further illustrate the power of benchmarks
and shared datasets. Lastly, we could emulate the OpenAI Gym and several vision datasets
by keeping track of the best performing systems for each task, and publishing them on a
website.

7.5 Brass
In Chapter 6, we described Brass, a preliminary framework for RAaaS. Brass was developed
with several collaborators, most notably Ben Kehoe.

Although a prototype implementation exists, it is not publicly available. First, a shareable
implementation should be built and released to the community. Next, supporting infrastruc-
ture must be developed. We envision hosting a Brass implementation for community use, as
well as releasing a set of open-source scripts for users to host their own Brass implementations.
Lastly, to accelerate adoption from the community, Brass interfaces and services must be
defined for a set of common robotics applications, such that end-users can immediately start
using Brass without needing to wrap several services themselves.

http://www.ycbbenchmarks.org/

85

Bibliography

[1] S. Agarwal, K. Mierle, and Others. Ceres Solver. url: https://code.google.com/p/
ceres-solver/.

[2] A. Aldoma, F. Tombari, J. Prankl, A. Richtsfeld, L di Stefano, and M. Vincze.
“Multimodal Cue Integration through Hypotheses Verification for RGB-D Object
Recognition and 6DOF Pose Estimation”. In: International Conference on Robotics
and Automation. 2013.

[3] Algorithmia. url: http://algorithmia.com/.

[4] Amazon Picking Challenge. url: http://amazonpickingchallenge.org/.

[5] R. Arumugam, V. Enti, L. Bingbing, W. Xiaojun, K. Baskaran, F. Kong, A. Kumar, K.
Meng, and G. Kit. “DAvinCi: A Cloud Computing Framework for Service Robots”. In:
International Conference on Robotics and Automation (ICRA). 2010, pp. 3084–3089.

[6] S. Belongie, J. Malik, and J. Puzicha. “Shape Matching and Object Recognition Using
Shape Contexts”. In: Pattern Analysis and Machine Intelligence (TPAMI). 2002.

[7] D. Berenson and S. Srinivasa. “Grasp Synthesis in Cluttered Environments for Dexter-
ous Hands”. In: IEEE-RAS Int. Conf. on Humanoid Robots. 2008.

[8] J. van den Berg, S. Miller, K. Goldberg, and P. Abbeel. “Gravity-Based Robotic Cloth
Folding”. In: Algorithmic Foundations of Robotics IX. 2010, pp. 409–424.

[9] L. Bo, X. Ren, and D. Fox. “Unsupervised Feature Learning for RGB-D Based Object
Recognition”. In: International Conference on Experimental Robotics (ISER). June
2012.

[10] A. Borji, S. Izadi, and L. Itti. “iLab-20M: A Large-Scale Controlled Object Dataset
to Investigate Deep Learning”. In: The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 2016.

[11] L. Breiman. “Bagging predictors”. In: Machine Learning 24.2 (Aug. 1996), pp. 123–140.

[12] D. A. Butler, S. Izadi, O. Hilliges, D. Molyneaux, S. Hodges, and D. Kim. “Shake’n’sense:
reducing interference for overlapping structured light depth cameras”. In: Proceedings
of the 2012 ACM annual conference on Human Factors in Computing Systems. ACM.
2012, pp. 1933–1936.

https://code.google.com/p/ceres-solver/
https://code.google.com/p/ceres-solver/
http://algorithmia.com/
http://amazonpickingchallenge.org/
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5509469

BIBLIOGRAPHY 86

[13] B. Calli, A. Walsman, A. Singh, and S. Srinivasa. “Benchmarking in Manipulation
Research Using the Yale-CMU-Berkeley Object and Model Set”. In: Robotics and
Automation Magazine 22.3 (2015), pp. 36–52.

[14] B. Calli, A. Singh, A. Walsman, S. Srinivasa, P. Abbeel, and A. M. Dollar. “The YCB
object and model set: Towards common benchmarks for manipulation research”. In:
International Conference on Advanced Robotics (ICAR). IEEE. 2015, pp. 510–517.

[15] S. Chitta, I. Sucan, and S. Cousins. “MoveIt!” In: IEEE Robotics and Automation
Magazine 19.1 (2012), pp. 18–19. issn: 1070-9932. doi: 10.1109/MRA.2011.2181749.

[16] Y. S. Choi, T. Deyle, T. Chen, J. D. Glass, and C. C. Kemp. “A list of household
objects for robotic retrieval prioritized by people with ALS”. In: IEEE International
Conference on Rehabilitation Robotics. IEEE. 2009, pp. 510–517.

[17] P. Cignoni, M. Corsini, and G. Ranzuglia. “MeshLab: an Open-Source 3D Mesh
Processing System”. In: ERCIM News 2008.73 (2008).

[18] CloudSim. url: http://gazebosim.org/wiki/CloudSim/.

[19] A. Coates, H. Lee, and A. Y. Ng. “An analysis of single-layer networks in unsupervised
feature learning”. In: AISTATS. 2011.

[20] A. Collet, M. Martinez, and S. S. Srinivasa. “The MOPED framework: Object Recog-
nition and Pose Estimation for Manipulation”. In: (2011).

[21] D. Cremers and K. Kolev. “Multiview Stereo and Silhouette Consistency via Convex
Functionals over Convex Domains”. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 6.33 (2011), pp. 1161–1174.

[22] M. Cusumano-Towner, A. Singh, S. Miller, J. F. O’Brien, and P. Abbeel. “Bringing
clothing into desired configurations with limited perception”. In: IEEE International
Conference on Robotics and Automation (ICRA). IEEE. 2011, pp. 3893–3900.

[23] N. Dalal and B. Triggs. “Histograms of Oriented Gradients for Human Detection”. In:
Computer Vision and Pattern Recognition (CVPR). 2005.

[24] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. “ImageNet: A Large-Scale
Hierarchical Image Database”. In: CVPR09. 2009.

[25] R. Detry, O. Kroemer, and D. Kragic. International Workshop on Autonomous Grasp-
ing and Manipulation: An Open Challenge. 2014.

[26] R. Diankov and J. Kuffner. OpenRAVE: A Planning Architecture for Autonomous
Robotics. Report. 2008. doi: citeulike-article-id:9071546. url: http://www.ri.
cmu.edu/publication_view.html?pub_id=6117.

[27] Docker. url: http://www.docker.com/.

http://dx.doi.org/10.1109/MRA.2011.2181749
http://gazebosim.org/wiki/CloudSim/
http://dx.doi.org/citeulike-article-id:9071546
http://www.ri.cmu.edu/publication_view.html?pub_id=6117
http://www.ri.cmu.edu/publication_view.html?pub_id=6117
http://www.docker.com/

BIBLIOGRAPHY 87

[28] A. Eitel, J. T. Springenberg, L. Spinello, M. Riedmiller, and W. Burgard. “Multimodal
deep learning for robust RGB-D object recognition”. In: IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE. 2015, pp. 681–687.

[29] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman. The
PASCAL Visual Object Classes (VOC) Challenge. http://www.pascal-network.org/
challenges/VOC/voc2010/workshop/index.html. 2010.

[30] N. Fahantidis, K. Paraschidis, V. Petridis, Z. Doulgeri, L. Petrou, and G. Hasapis.
“Robot handling of flat textile materials”. In: IEEE Robotics & Automation Magazine
(1997), pp. 34–41. issn: 1070-9932. doi: 10.1109/100.580981.

[31] L. Fei-Fei, R. Fergus, and P. Perona. “Learning generative visual models from few
training examples: An incremental Bayesian approach tested on 101 object categories”.
In: Comput. Vis. Image Underst. 106.1 (2007), pp. 59–70.

[32] M. A. Fischler and R. C. Bolles. “Random Sample Consensus: A Paradigm for Model Fit-
ting With Applications to Image Analysis and Automated Cartography”. In: Commun.
ACM 24.6 (June 1981), pp. 381–395. issn: 0001-0782. doi: 10.1145/358669.358692.
url: http://dx.doi.org/10.1145/358669.358692.

[33] Y. Freund and R. E. Schapire. “A decision-theoretic generalization of on-line learning
and an application to boosting”. In: Proceedings of the Second European Conference on
Computational Learning Theory. EuroCOLT ’95. London, UK, UK: Springer-Verlag,
1995, pp. 23–37. isbn: 3-540-59119-2.

[34] Y. Furukawa and J. Ponce. “Accurate, Dense, and Robust Multi-View Stereopsis”. In:
PAMI 32.8 (2010).

[35] Y. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski. “Towards Internet-scale Multi-
view Stereo”. In: CVPR. 2010.

[36] A. Geiger, F. Moosmann, O. Car, and B. Schuster. “A Toolbox for Automatic Calibra-
tion of Range and Camera Sensors using a Single Shot”. In: ICRA. 2012.

[37] J. George, A. Porter, J. Minard, and M. Heavers. RGBD Toolkit. 2013. url: http:
//www.rgbdtoolkit.com/.

[38] R. B. Girshick, J. Donahue, T. Darrell, and J. Malik. “Rich feature hierarchies for
accurate object detection and semantic segmentation”. In: CoRR (2013). url: http:
//arxiv.org/abs/1311.2524.

[39] I. Gordon and D. G. Lowe. “What and Where: 3D Object Recognition with Accurate
Pose”. In: Toward Category-Level Object Recognition. 2006, pp. 67–82.

[40] GRASSP. Web Page. url: grassptest.com.

[41] G. Griffin, A. Holub, and P. Perona. The Caltech-256. Tech. rep. California Institute
of Technology, 2007.

http://www.pascal-network.org/challenges/VOC/voc2010/workshop/index.html
http://www.pascal-network.org/challenges/VOC/voc2010/workshop/index.html
http://dx.doi.org/10.1109/100.580981
http://dx.doi.org/10.1145/358669.358692
http://dx.doi.org/10.1145/358669.358692
http://www.rgbdtoolkit.com/
http://www.rgbdtoolkit.com/
http://arxiv.org/abs/1311.2524
http://arxiv.org/abs/1311.2524
grassptest.com

BIBLIOGRAPHY 88

[42] J. Guillemaut and A. Hilton. “Joint Multi-Layer Segmentation and Reconstruction for
Free-Viewpoint Video Applications”. In: Int. J. Comput. Vision 93.1 (2011), pp. 73–
100.

[43] S. Gupta, P. Arbelaez, R. Girshick, and J. Malik. “Aligning 3D Models to RGB-D
Images of Cluttered Scenes”. In: The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). 2015.

[44] K. Hamajima and M. Kakikura. “Planning strategy for task of unfolding clothes”. In:
Int. Conf. on Robotics and Automation. Vol. 32. 2000, pp. 145 –152.

[45] K. He, X. Zhang, S. Ren, and J. Sun. “Deep Residual Learning for Image Recognition”.
In: CoRR (2015). url: http://arxiv.org/abs/1512.03385.

[46] D. Held, S. Thrun, and S. Savarese. “Deep Learning for Single-View Instance Recogni-
tion”. In: CoRR (2015). url: http://arxiv.org/abs/1507.08286.

[47] C. D. Herrera, J. Kannala, and J. Heikkilä. “Accurate and practical calibration of a
depth and color camera pair”. In: CAIP. 2011.

[48] G. E. Hinton, A. Krizhevsky, and S. D. Wang. “Transforming auto-encoders”. In:
International Conference on Artificial Neural Networks. Springer. 2011, pp. 44–51.

[49] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled Faces in the Wild:
A Database for Studying Face Recognition in Unconstrained Environments. Tech. rep.
2007.

[50] IEEE RAS. Technical Committee on Performance Evaluation & Benchmarking of
Robotic and Automation Systems. url: http://www.ieee-ras.org/performance-
evaluation.

[51] M Inaba. “Remote-brained robots”. In: International Joint Conference on Artificial
Intelligence. 1997, pp. 1593–1606.

[52] I. Iossifidis, G. Lawitzky, S. Knoop, and R. Zöllner. “Towards Benchmarking of
Domestic Robotic Assistants”. In: Advances in Human-Robot Interaction. Springer,
pp. 403–414.

[53] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shotton,
S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon. “KinectFusion: real-time 3D
reconstruction and interaction using a moving depth camera”. In: UIST. 2011.

[54] A. Janoch, S. Karayev, Y. Jia, J. T. Barron, M. Fritz, K. Saenko, and T. Darrell. “A
Category-Level 3-D Object Dataset: Putting the Kinect to Work”. In: ICCV Workshop
on Consumer Depth Cameras for Computer Vision. 2011.

[55] A. Johnson and M. Hebert. “Using Spin Images for Efficient Object Recognition
in Cluttered 3D Scenes”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 21.5 (1999).

http://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1507.08286
http://www.ieee-ras.org/performance-evaluation
http://www.ieee-ras.org/performance-evaluation
http://ijcai.org/Past Proceedings/IJCAI-97-VOL2/PDF/118.pdf

BIBLIOGRAPHY 89

[56] S Kalsi-Ryan, A Curt, M. Verrier, and F. MG. “Development of the Graded Redefined
Assessment of Strength, Sensibility and Prehension (GRASSP): reviewing measurement
specific to the upper limb in tetraplegia”. In: Journal of Neurosurgery: Spine 1 (2012),
pp. 65–76.

[57] A. Kasper, Z. Xue, and R. Dillmann. “The KIT object models database: An ob-
ject model database for object recognition, localization and manipulation in service
robotics”. In: The International Journal of Robotics Research 31.8 (2012), pp. 927–934.

[58] M. M. Kazhdan, M. Bolitho, and H. Hoppe. “Poisson Surface Reconstruction”. In:
Symposium on Geometry Processing. 2006, pp. 61–70.

[59] B. Kehoe, A. Matsukawa, S. Candido, J. Kuffner, and K. Goldberg. “Cloud-Based
Robot Grasping with the Google Object Recognition Engine”. In: International Con-
ference on Robotics and Automation (ICRA). 2013.

[60] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg. “A Survey of Research on Cloud
Robotics and Automation”. In: IEEE Transactions on Automation Science and Engi-
neering 12.2 (2014), pp. 398–409.

[61] B. R. Kehoe. “Cloud-based Methods and Architectures for Robot Grasping”. PhD
thesis. University of California, Berkeley, 2014.

[62] C. C. Kemp, A. Edsinger, and E. Torres-Jarra. “Challenges in Robot Manipulation in
Human Environments”. In: IEEE Robotics and Automation Magazine (2007).

[63] Y. Kita and N. Kita. “A model-driven method of estimating the state of clothes for
manipulating it”. In: Proc. of 6th IEEE Workshop on Applications of Computer Vision.
2002. url: http://www.is.aist.go.jp/terashi/Papers/kitay_clothes.pdf.

[64] Y. Kita, F. Saito, and N. Kita. “A deformable model driven visual method for handling
clothes”. In: Proc. ICRA. 2004. url: http://www.is.aist.go.jp/terashi/Papers/
handling-clothes-icra04.pdf.

[65] Y. Kita, T. Ueshiba, E. S. Neo, and N. Kita. “A method for handling a specific part
of clothing by dual arms”. In: Proc. IROS. 2009.

[66] Y. Kita, T. Ueshiba, E. S. Neo, and N. Kita. “Clothes state recognition using 3D
observed data”. In: Proc. ICRA. 2009.

[67] H. Kobori, Y. Kakiuchi, K. Okada, and M. Inaba. “Recognition and Motion Primitives
for Autonomous Clothes Unfolding of Humanoid Robot”. In: Proc. IAS. 2010.

[68] K. Konolige and P. Mihelich. Technical description of Kinect calibration. 2013. url:
http://wiki.ros.org/kinect_calibration/technical.

[69] G. Kootstra, M. Popovic, J. A. Jorgensen, D. Kragic, H. G. Petersen, and N. Kruger.
“VisGraB: A benchmark for vision-based grasping”. In: Paladyn, Journal of Behavioral

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6631180
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6631180
http://www.is.aist.go.jp/terashi/Papers/kitay_clothes.pdf
http://www.is.aist.go.jp/terashi/Papers/handling-clothes-icra04.pdf
http://www.is.aist.go.jp/terashi/Papers/handling-clothes-icra04.pdf
http://wiki.ros.org/kinect_calibration/technical

BIBLIOGRAPHY 90

Robotics 3.2 (2012), pp. 54–62. issn: 2080-9778. url: http://dx.doi.org/10.2478/
s13230-012-0020-5.

[70] G. A. Kragten, A. Kool, and J. Herder. “Ability to hold grasped objects by under-
actuated hands: Performance prediction and experiments”. In: IEEE International
Conference on Robotics and Automation, pp. 2493–2498.

[71] G. A. Kragten, C. Meijneke, and J. L. Herder. “A proposal for benchmark tests for
underactuated or compliant hands”. In: Mechanical Sciences 1.1 (2010), pp. 13–18.
url: http://www.mech-sci.net/1/13/2010/.

[72] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “Imagenet classification with deep
convolutional neural networks”. In: Advances in neural information processing systems.
2012, pp. 1097–1105.

[73] J. Kuffner. “Cloud-Enabled Robots”. In: IEEE-RAS International Conference on
Humanoid Robots. 2010.

[74] K. Lai, L. Bo, and D. Fox. “Unsupervised feature learning for 3d scene labeling”. In:
2014 IEEE International Conference on Robotics and Automation (ICRA). IEEE.
2014, pp. 3050–3057.

[75] K. Lai, L. Bo, X. Ren, and D. Fox. “A Large-Scale Hierarchical Multi-View RGB-D
Object Dataset”. In: International Conference on on Robotics and Automation (ICRA).
Shanghai, China, 2011.

[76] Q. V. Le and A. Y. Ng. “Joint Calibration of Multiple Sensors”. In: IROS. 2009.

[77] Y. LeCun, C. Cortes, and C. J. C. Burges. The MNIST Database. 1998. url: http:
//yann.lecun.com/exdb/mnist/.

[78] B. Li, Y. Lu, C. Li, A. Godil, T. Schreck, M. Aono, Q. Chen, N. Chowdhury, B.
Fang, T. Furuya, H. Johan, R. Kosaka, H. Koyanagi, R. Ohbuchi, and A. Tatsuma.
SHREC’14 Track: Large Scale Comprehensive 3D Shape Retrieval. Web Page. 2014.
url: http://www.itl.nist.gov/iad/vug/sharp/contest/2014/Generic3D/.

[79] C. Li, A. Reiter, and G. D. Hager. “Beyond Spatial Pooling: Fine-Grained Representa-
tion Learning in Multiple Domains”. In: The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). 2015.

[80] G. Lin, C. Shen, I. D. Reid, and A. van den Hengel. “Efficient piecewise training of
deep structured models for semantic segmentation”. In: CoRR (2015). url: http:
//arxiv.org/abs/1504.01013.

[81] T. Lin, M. Maire, S. J. Belongie, L. D. Bourdev, R. B. Girshick, J. Hays, P. Perona,
D. Ramanan, P. Dollár, and C. L. Zitnick. “Microsoft COCO: Common Objects in
Context”. In: CoRR (2014). url: http://arxiv.org/abs/1405.0312.

http://dx.doi.org/10.2478/s13230-012-0020-5
http://dx.doi.org/10.2478/s13230-012-0020-5
http://www.mech-sci.net/1/13/2010/
http://www.scribd.com/doc/47486324/Cloud-Enabled-Robots
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
http://www.itl.nist.gov/iad/vug/sharp/contest/2014/Generic3D/
http://arxiv.org/abs/1504.01013
http://arxiv.org/abs/1504.01013
http://arxiv.org/abs/1405.0312

BIBLIOGRAPHY 91

[82] B. Liu, Y. Chen, E. Blasch, K. Pham, D. Shen, and G. Chen. “A Holistic Cloud-
Enabled Robotics System for Real-Time Video Tracking Application”. In: Future
Information Technology. Ed. by J. J. Park, I. Stojmenovic, M. Choi, and F. Xhafa.
Vol. 276. Lecture Notes in Electrical Engineering. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2014, pp. 455–468.

[83] J. Long, E. Shelhamer, and T. Darrell. “Fully convolutional networks for semantic
segmentation”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 2015, pp. 3431–3440.

[84] D. G. Lowe. “Distinctive Image Features from Scale-Invariant Keypoints”. In: Interna-
tional Journal of Computer Vision (IJCV). 2004.

[85] R. Madhavan, R. Lakaemper, and T. Kalmar-Nagy. “Benchmarking and standardiza-
tion of intelligent robotic systems”. In: International Conference on Advanced Robotics,
pp. 1–7. url: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=

5174743&isnumber=5174665.

[86] J. Mahler, F. T. Pokorny, B. Hou, M. Roderick, M. Laskey, M. Aubry, K. Kohlhoff,
T. Kröger, J. Kuffner, and K. Goldberg. “Dex-Net 1.0: A Cloud-Based Network of 3D
Objects for Robust Grasp Planning Using a Multi-Armed Bandit Model with Correlated
Rewards”. In: 2016 IEEE International Conference on Robotics and Automation
(ICRA). 2016, pp. 1957–1964. doi: 10.1109/ICRA.2016.7487342.

[87] J. Maitin-Shepard, M. Cusumano-Towner, J. Lei, and P. Abbeel. “Cloth Grasp Point
Detection based on Multiple-View Geometric Cues with Application to Robotic Towel
Folding”. In: Proc. ICRA. 2010.

[88] M. Martinez, A. Collet, and S. S. Srinivasa. “MOPED: A Scalable and Low Latency
Object Recognition and Pose Estimation System”. In: International Conference on on
Robotics and Automation (ICRA). 2010.

[89] Z. Marton, F. Seidel, F. Balint-Benczedi, and M. Beetz. “Ensembles of Strong Learners
for Multi-cue Classification”. In: Pattern Recognition Letters (PRL), Special Issue on
Scene Understandings and Behaviours Analysis (2012). In press.

[90] K. Matheus and A. M. Dollar. “Benchmarking grasping and manipulation: Properties of
the Objects of Daily Living”. In: IROS. IEEE, pp. 5020–5027. isbn: 978-1-4244-6674-0.
url: http://dblp.uni-trier.de/db/conf/iros/iros2010.html#MatheusD10.

[91] V. Mathiowetz, K. Weber, N. Kashman, and G. Volland. “Adult norms for the Nine
Hole Peg Test of finger dexterity”. In: Occupational Therapy Journal of Research 5.1
(1985), pp. 24–38. issn: 0276-1599(Print).

[92] McGill 3D Shape Benchmark. 2005. url: http://www.cim.mcgill.ca/~shape/

benchMark/.

[93] Microsoft Kinect. https://developer.microsoft.com/en-us/windows/kinect.

http://link.springer.com/10.1007/978-3-642-40861-8
http://link.springer.com/10.1007/978-3-642-40861-8
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5174743&isnumber=5174665
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5174743&isnumber=5174665
http://dx.doi.org/10.1109/ICRA.2016.7487342
http://dblp.uni-trier.de/db/conf/iros/iros2010.html#MatheusD10
http://www.cim.mcgill.ca/~shape/benchMark/
http://www.cim.mcgill.ca/~shape/benchMark/
https://developer.microsoft.com/en-us/windows/kinect

BIBLIOGRAPHY 92

[94] S. Miller, M. Fritz, T. Darrell, and P. Abbeel. “Parameterized Shape Models for
Clothing”. In: Proc. ICRA. 2011.

[95] J. S. B. Mitchell, D. M. Mount, and C. H. Papadimitriou. “The Discrete Geodesic
Problem”. In: SIAM Journal on Computing 16.4 (1987), pp. 647–668.

[96] G. Mohanarajah, D. Hunziker, R. D’Andrea, and M. Waibel. “Rapyuta: A Cloud
Robotics Platform”. In: IEEE Transactions on Automation Science and Engineering
(T-ASE) PP.99 (2014), pp. 1–13.

[97] K. S. Narayan and P. Abbeel. “Optimized color models for high-quality 3D scanning”.
In: IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE.
2015, pp. 2503–2510.

[98] K. S. Narayan, J. Sha, A. Singh, and P. Abbeel. “Range sensor and silhouette fusion
for high-quality 3d scanning”. In: 2015 IEEE International Conference on Robotics
and Automation (ICRA). IEEE. 2015, pp. 3617–3624.

[99] S. B. Needleman and C. D. Wunsch. “A general method applicable to the search for
similarities in the amino acid sequence of two proteins”. In: J. of Molecular Biology
48.3 (1970), pp. 443 –453. issn: 0022-2836. doi: 10.1016/0022-2836(70)90057-4.

[100] R. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. Davison, P. Kohli,
J. Shotton, S. Hodges, and A. Fitzgibbon. “KinectFusion: Real-time dense surface
mapping and tracking”. In: ISMAR. 2011.

[101] E. Nowak, F. Jurie, and B. Triggs. “Sampling Strategies for Bag-of-Features Image
Classification”. In: European Conference on Computer Vision (ECCV). 2006.

[102] OpenAI. OpenAI Gym. 2016. url: https://gym.openai.com/ (visited on 08/07/2016).

[103] F. Osawa, H. Seki, and Y. Kamiya. “Unfolding of Massive Laundry and Classification
Types by Dual Manipulator”. In: JACIII 11.5 (2007), pp. 457–463. url: http://
berkeley-rll.pbworks.com/f/spreading_paper.pdf.

[104] A. P. del Pobil, R. Madhavan, and E. Messina. “Benchmarks in Robotics Research”.
In: IROS Workshop. 2007. url: http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.475.2453&rep=rep1&type=pdf.

[105] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler,
and A. Ng. “ROS: an open-source Robot Operating System”. In: ICRA Workshop on
Open Source Software. 2009.

[106] A. Ramisa, G. Alenya, F. Moreno-Noguer, and C. Torras. “Using depth and appearance
features for informed robot grasping of highly wrinkled clothes”. In: IEEE International
Conference on Robotics and Automation. IEEE. 2012, pp. 1703–1708.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6853392
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6853392
http://dx.doi.org/10.1016/0022-2836(70)90057-4
https://gym.openai.com/
http://berkeley-rll.pbworks.com/f/spreading_paper.pdf
http://berkeley-rll.pbworks.com/f/spreading_paper.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.475.2453&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.475.2453&rep=rep1&type=pdf
http://pub1.willowgarage.com/~konolige/cs225B/docs/quigley-icra2009-ros.pdf

BIBLIOGRAPHY 93

[107] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa. “CHOMP: Gradient Optimization
Techniques for Efficient Motion Planning”. In: IEEE International Conference on
Robotics and Automation (2009), pp. 4030–4035. issn: 1050-4729.

[108] L Riazuelo, J. Civera, and J Montiel. “C2TAM: A Cloud Framework for Cooperative
Tracking and Mapping”. In: Robotics and Autonomous Systems 62.4 (2013), pp. 401–
413.

[109] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. S. Bernstein, A. C. Berg, and F. Li. “ImageNet Large Scale Visual
Recognition Challenge”. In: CoRR (2014). url: http://arxiv.org/abs/1409.0575.

[110] R. B. Rusu, N. Blodow, and M. Beetz. “Fast Point Feature Histograms (FPFH) for
3D Registration”. In: The IEEE International Conference on Robotics and Automation
(ICRA). Kobe, Japan, 2009. url: http://files.rbrusu.com/publications/Rusu
09ICRA.pdf.

[111] R. B. Rusu and S. Cousins. “3D is here: Point Cloud Library (PCL)”. In: International
Conference on Robotics and Automation. Shanghai, China, 2011.

[112] R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu. “Fast 3D Recognition and Pose
Using the Viewpoint Feature Histograms”. In: Proceedings of the 23rd IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). Taipei, Taiwan,
2010.

[113] H. Sakoe and S. Chiba. “Dynamic programming algorithm optimization for spoken
word recognition”. In: IEEE Transactions on Acoustics, Speech, and Signal Processing
26.1 (1978), pp. 43–49.

[114] A. Saxena, J. Driemeyer, and A. Y. Ng. “Robotic Grasping of Novel Objects using
Vision”. In: Int. J. of Robotics Research (2008).

[115] D. Scharstein and R. Szeliski. “High-accuracy stereo depth maps using structured light”.
In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
2003, pp. 195–202.

[116] J. Schulman, A. Lee, J. Ho, and P. Abbeel. “Tracking deformable objects with point
clouds”. In: 2013 IEEE International Conference on Robotics and Automation (ICRA).
IEEE. 2013.

[117] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. “OverFeat:
Integrated Recognition, Localization and Detection using Convolutional Networks”.
In: CoRR (2013). url: http://arxiv.org/abs/1312.6229.

[118] J. Shewchuk. “Triangle: Engineering a 2D quality mesh generator and Delaunay
triangulator”. In: Applied Computational Geometry Towards Geometric Engineering
(1996), pp. 203–222.

http://www.sciencedirect.com/science/article/pii/S0921889013002248
http://www.sciencedirect.com/science/article/pii/S0921889013002248
http://arxiv.org/abs/1409.0575
http://files.rbrusu.com/publications/Rusu09ICRA.pdf
http://files.rbrusu.com/publications/Rusu09ICRA.pdf
http://arxiv.org/abs/1312.6229

BIBLIOGRAPHY 94

[119] P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser. “The Princeton Shape Benchmark”.
In: Shape Modeling Applications, 2004. Proceedings, pp. 167–178.

[120] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. “Indoor Segmentation and Support
Inference from RGBD Images”. In: ECCV. 2012.

[121] J. Sill, G. Takács, L. Mackey, and D. Lin. “Feature-Weighted Linear Stacking”. In:
CoRR abs/0911.0460 (2009).

[122] K. Simonyan and A. Zisserman. “Very Deep Convolutional Networks for Large-Scale
Image Recognition”. In: CoRR (2014). url: http://arxiv.org/abs/1409.1556.

[123] A. Singh, J. Sha, K. S. Narayan, T. Achim, and P. Abbeel. “BigBIRD: A Large-Scale
3D Database of Object Instances”. In: 2014 IEEE International Conference on Robotics
and Automation (ICRA). IEEE. 2014, pp. 509–516.

[124] J. Smisek, M. Jancosek, and T. Pajdla. “3D with Kinect”. In: Consumer Depth Cameras
for Computer Vision. Springer, 2013, pp. 3–25.

[125] J. Sturm, J. Engelhard, F. Endres, W. Burgard, and D. Cremers. “A Benchmark for
the Evaluation of RGB-D SLAM Systems”. In: IROS. 2012.

[126] H. Su, S. Maji, E. Kalogerakis, and E. G. Learned-Miller. “Multi-view Convolutional
Neural Networks for 3D Shape Recognition”. In: CoRR (2015). url: http://arxiv.
org/abs/1505.00880.

[127] H. Su, C. R. Qi, Y. Li, and L. J. Guibas. “Render for CNN: Viewpoint Estimation
in Images Using CNNs Trained With Rendered 3D Model Views”. In: The IEEE
International Conference on Computer Vision (ICCV). 2015.

[128] J. Tang, S. Miller, A. Singh, and P. Abbeel. “A Textured Object Recognition Pipeline
for Color and Depth Image Data”. In: International Conference on on Robotics and
Automation (ICRA). 2012.

[129] A. Tatsuma, H. Koyanagi, and M. Aono. “A large-scale Shape Benchmark for 3D object
retrieval: Toyohashi shape benchmark”. In: Signal Information Processing Association
Annual Summit and Conference (APSIPA ASC), 2012 Asia-Pacific, pp. 1–10.

[130] M. Tenorth and M. Beetz. “KnowRob: A Knowledge Processing Infrastructure for
Cognition-Enabled Robots”. In: International Journal of Robotics Research (IJRR)
32.5 (2013), pp. 566–590.

[131] The Dash - "Disabilities of the Arm, Shoulder and Hand". Web Page. url: http:
//dash.iwh.on.ca/system/files/dash_questionnaire_2010.pdf.

[132] S. Tulsiani and J. Malik. “Viewpoints and keypoints”. In: 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). IEEE. 2015, pp. 1510–1519.

[133] T. Tuytelaars, M. Fritz, K. Saenko, and T. Darrell. “The NBNN Kernel”. In: Interna-
tional Conference on Computer Vision (ICCV). 2011.

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1505.00880
http://arxiv.org/abs/1505.00880
http://ijr.sagepub.com/content/32/5/566.short
http://ijr.sagepub.com/content/32/5/566.short
http://dash.iwh.on.ca/system/files/dash_questionnaire_2010.pdf
http://dash.iwh.on.ca/system/files/dash_questionnaire_2010.pdf

BIBLIOGRAPHY 95

[134] S. Ulbrich, D. Kappler, T. Asfour, N. Vahrenkamp, A. Bierbaum, M. Przybylski,
and R. Dillmann. “The OpenGRASP benchmarking suite: An environment for the
comparative analysis of grasping and dexterous manipulation”. In: IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pp. 1761–1767. url:
http://opengrasp.sourceforge.net/benchmarks.html.

[135] N. Vaskevicius, K. Pathak, A. Ichim, and A. Birk. “The Jacobs Robotics Approach
to Object Recognition and Localization in the Context of the ICRA Solutions in
Perception Challenge”. In: International Conference on on Robotics and Automation
(ICRA). 2012.

[136] M. Waibel, M. Beetz, J. Civera, R. D’Andrea, J. Elfring, D. Gálvez-López, K. Häusser-
mann, R. Janssen, J. Montiel, A. Perzylo, B. Schießle, M. Tenorth, O. Zweigle, and
R. De Molengraft. “RoboEarth”. In: IEEE Robotics & Automation Magazine 18.2
(June 2011), pp. 69–82.

[137] H. Wang, J. O’Brien, and R. Ramamoorthi. “Multi-Resolution Isotropic Strain Limit-
ing”. In: Proc. ACM SIGGRAPH Asia. Seoul, South Korea, 2010.

[138] M. Warren, D. McKinnon, and B. Upcroft. “Online Calibration of Stereo Rigs for
Long-Term Autonomy”. In: International Conference on Robotics and Automation
(ICRA). Karlsruhe, 2013.

[139] What is RoboEarth? url: http://www.roboearth.org/what-is-roboearth.

[140] T. Whelan, M. Kaess, M. Fallon, H. Johannsson, J. Leonard, and J. McDonald. “Kintin-
uous: Spatially Extended KinectFusion”. In: RSS Workshop on RGB-D: Advanced
Reasoning with Depth Cameras. Sydney, Australia, 2012.

[141] B. Willimon, S. Birchfield, and I. D. Walker. “Model for unfolding laundry using
interactive perception.” In: IROS. 2011, pp. 4871–4876.

[142] Willow Garage. Solutions In Perception Instance Recognition Challenge, ICRA 2011.
url: https://web.archive.org/web/20110611202107/http://opencv.willowgarage.
com/wiki/http%3A//opencv.willowgarage.com/wiki/SolutionsInPerceptionChallen

ge?action=show&redirect=SolutionsInPerceptionChallenge.

[143] T. Wisspeintner, T. van der Zan, L. Iocchi, and S. Schiffer. “RoboCup@Home: Results
in Benchmarking Domestic Service Robots”. In: RoboCup 2009: Robot Soccer World
Cup XIII. Vol. 5949. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2010, pp. 390–401. isbn: 978-3-642-11875-3. url: http://dx.doi.org/10.1007/978-
3-642-11876-0_34.

[144] Z. Xie, A. Singh, J. Uang, K. S. Narayan, and P. Abbeel. “Multimodal Blending for
High-Accuracy Instance Recognition”. In: IROS. 2013.

http://opengrasp.sourceforge.net/benchmarks.html
http://spectrum.ieee.org/automaton/robotics/artificial-intelligence/roboearth-a-world-wide-web-for-robots
http://www.roboearth.org/what-is-roboearth
https://web.archive.org/web/20110611202107/http://opencv.willowgarage.com/wiki/http%3A//opencv.willowgarage.com/wiki/SolutionsInPerceptionChallenge?action=show&redirect=SolutionsInPerceptionChallenge
https://web.archive.org/web/20110611202107/http://opencv.willowgarage.com/wiki/http%3A//opencv.willowgarage.com/wiki/SolutionsInPerceptionChallenge?action=show&redirect=SolutionsInPerceptionChallenge
https://web.archive.org/web/20110611202107/http://opencv.willowgarage.com/wiki/http%3A//opencv.willowgarage.com/wiki/SolutionsInPerceptionChallenge?action=show&redirect=SolutionsInPerceptionChallenge
http://dx.doi.org/10.1007/978-3-642-11876-0_34
http://dx.doi.org/10.1007/978-3-642-11876-0_34

BIBLIOGRAPHY 96

[145] K. Yamakazi and M. Inaba. “A Cloth Detection Method Based on Image Wrinkle
Feature for Daily Assistive Robots”. In: IAPR Conf. on Machine Vision Applications.
2009.

[146] M. Yamashita, K. Fujisawa, and M. Kojima. “Implementation and Evaluation of
SDPA 6.0 (Semidefinite Programming Algorithm 6.0)”. In: Optimization Methods and
Software 18.4 (2003), pp. 491–505. issn: 1055-6788.

[147] C. Zhang and Z. Zhang. “Calibration between depth and color sensors for commodity
depth cameras”. In: ICME. 2011.

[148] Z. Zhang. “Flexible camera calibration by viewing a plane from unknown orientations”.
In: ICCV. 1999.

[149] Q. Zhou, S. Miller, and V. Koltun. “Elastic Fragments for Dense Scene Reconstruction”.
In: ICCV. 2013.

	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Contributions
	Related Work
	Object Instance Recognition
	Clothing Recognition
	3D Data Collection
	Datasets
	3D Object Datasets
	Grasping and Manipulation Datasets

	Frameworks for Cloud Robotics

	Instance Recognition
	Problem Description
	Method
	Overview
	Object Model Generation
	3D Mesh Construction

	Feature Extraction
	Object Detection
	Segmentation
	Pose Estimation
	Multimodal Blending
	Recovering from Undersegmentation
	Scene Consistency

	Results
	Datasets
	Threshold Selection
	Single Instance Recognition
	Multiple Instance Recognition
	Comparison to Using Sparse Keypoints
	Blending with Keypoints
	Timing Results
	Discussion
	Pose Estimation Failures
	Failures Due to Imposters

	Clothing Recognition
	Problem Definition
	Method
	Outline
	Hidden Markov Model
	Transition Model
	Height Observation
	Contour Observation

	Cloth Simulator
	Planning Algorithm

	Results
	Setup
	Disambiguation Experiments
	End-to-End Task

	BigBIRD Object Dataset
	System Description
	System Overview
	System Details

	Camera Calibration
	Joint Optimization

	3D Model Generation
	Depth Discontinuity Filtering
	Plane Equalization
	Object Segmentation
	Accuracy
	Limitations

	Dataset Usage
	Obtaining the Dataset

	YCB Object and Model Set
	Objects
	Object Selection Criteria
	Variety
	Use Cases
	Durability
	Cost
	Portability

	Selected Objects

	Model Generation
	Data Structure and Usage
	Data Structure Details

	Protocols
	Guidelines
	Task Description
	Setup Description
	Robot / Hardware / Subject Description
	Procedure
	Execution Constraints

	Available Protocols

	Brass: Berkeley RAaaS Software
	Background
	Cloud Computing
	Robotics and Automation as a Service

	Brass Framework
	Goals

	Design
	Pipelines

	Example
	Algorithm Implementer
	Software End-User

	Conclusion
	Instance Recognition
	Clothing Recognition
	BigBIRD
	YCB Object and Model Set
	Brass

	Bibliography

