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ABSTRACT 

 

Describing the Ecology of Cryptic Marine Megafauna and the Threats to their Survival 

 

by 

 

Lindsey Eleanor Peavey 

 

Marine megafauna are large, long-lived, highly mobile, and feed below the surface, 

making much of their ecology mysterious to humans. They are also exposed to a number of 

human-caused threats of varying magnitude across their ranges, which are of particular 

concern for endangered species. Because of their cryptic nature, quantitative estimates such 

as their roles as consumers across disparate oceanic food webs are lacking. I use multiple 

non-invasive approaches such as stable isotope analyses, genetics, expert surveys, and 

cumulative impacts modeling to describe the ecology and conservation priorities of sea 

turtles and marine mammals for case-study populations that lack estimates. In my 

dissertation, I discuss how my findings enhance our understanding of megafauna ecology, 

and how these integrative approaches may advance the ways in which we prioritize research 

and management strategies to meet population recovery objectives.
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I. Olive Ridley Sea Turtle Opportunistic Generalism and Oceanic 

Foraging Habitat Inferred from Stable Isotopic Compositions in the 

Eastern Pacific Ocean 

Nitrogen stable isotopic compositions have been widely used to gain insight into trophic 

dynamics, especially of highly mobile aquatic predators whose behavior and dietary 

preferences are difficult to directly observe and measure. Olive ridley sea turtles 

(Lepidochelys olivacea) are oceanic consumers distributed across >3 million km2 of the 

tropical and subtropical eastern Pacific Ocean, and their open ocean trophic ecology has not 

yet been empirically described. Individuals migrate through and feed within biogeographic 

regions where varying nutrient cycling regimes result in phytoplankton with distinct δ15N 

values that are inherited by the turtles. Here, we have used bulk tissue and compound 

specific isotopic results to demonstrate that olive ridleys in the eastern Pacific are 

opportunistic omnivores, and we hypothesize that their trophic role remains constant with 

ontogenesis. We observed some variation in niche structure across food webs, but little 

variation in median trophic position (~3.15±0.26) across the entire eastern Pacific seascape, 

revealing that during their 2006 breeding season olive ridleys occupied the same generalist 

consumer function across their range. The relatively productive region of the Costa Rica 

Dome was the only exception; during our study’s time frame individuals fed at a trophic 

position approximately 0.36 (median) higher there than in any other oceanographic sub-

region sampled. This suggests that in high productivity areas, like the Costa Rica Dome, 

intra-individual variation can decrease. Whereas generalism and flexibility in foraging, 

nesting, and migration (i.e., lack of precise migrating corridors) suggest olive ridleys in the 
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eastern Pacific may be resilient to the impacts of climate change, their low metabolism, 

narrow thermal niche and temperature-dependent sex determination suggest they may still 

be quite vulnerable to environmental change unless they are able to undergo adaptation. 

A. Introduction 

Mobile marine consumers can have differing and variable foraging strategies. 

Generalists opportunistically feed upon a dynamic array of items across space and time, and 

often from multiple basal nutrient and/or trophic levels (omnivory). Prey and/or foraging 

habitat selection can be determined by a number of influences on phenotype, physiology, or 

community structure. Examples include intra- and interspecific competition, prey species 

composition and prey availability, energy requirements, imminent threats, chemical cues 

(Hay, 2009), environmental shocks, nutrient pulses or shifts, and human exploitation of the 

consumer, its prey, and/or its competitors. Specialists feed on a small number of prey items 

and are subject to the same selection determinants as generalists, but have developed 

morphological and/or behavioral traits that restrict their foraging plasticity. Both types of 

consumers are important in regulating food web dynamics such as complexity (Kondoh, 

2003; Gellner and McCann, 2011), nutrient cycling (Kitchell et al., 1979; McManamay et 

al., 2011), and stability (Vandermeer, 2006; Alcántara and Rey, 2012). A consumer’s 

trophic role in an ecosystem can change across space (e.g., habitat) and time (e.g., with 

growth) due to aforementioned influences, or it can remain constant despite those 

influences. Estimated tropic position of a consumer within a food web combined with other 

aspects of its ecology (e.g., niche width, mobility, fasting) can provide evidence to infer 

foraging strategy.  
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Stable isotopic compositions have been used extensively to gain insight into the trophic 

ecology especially of highly mobile aquatic predators whose behavior and dietary 

preferences are difficult to directly observe and measure (Fry, 1988; Olson et al., 2010). 

Carbon and nitrogen isotopic compositions vary across ecosystems and are tracers of 

metabolic and biogeochemical processes. Reactions and trophic transfers alter the ratio of 

rare to common isotopes in environments and organisms, known as isotopic fractionation. 

For example, nitrogen that is integrated and stored in consumer tissues is enriched in 15N 

relative to its food, a trophic discrimination that reverberates through an entire food web 

such that top predators have the highest 15N/14N ratios (e.g., δ15N values) (DeNiro and 

Epstein, 1981; Fry, 1988; Cabana and Rasmussen, 1996). Trophic discrimination is 

reasonably predictable and can be accounted for with a discrimination factor (DeNiro and 

Epstein, 1981; Minagawa and Wada, 1984; Bradley et al., 2014). If examining multiple 

consumers within the same aquatic food web over a given time period, trophic 

discrimination is the major form of nitrogen variation that requires consideration. However, 

different nitrogen cycling regimes across different regions of the same habitat or in different 

aquatic ecosystems (lake, river, estuary, salt marsh, seagrass, coral reef, kelp forest, 

upwelling zones, open ocean, etc.) result in variation in phytoplankton or baseline δ15N 

values (Hobson, 1999; Vander Zanden and Rasmussen, 2001), as reflected in the dissolved 

nitrogen pools of resources feeding the primary producers (Peterson and Fry, 1987). Thus, 

spatially discrete, local food webs with measurably divergent basal δ15N values are 

isotopically distinct—natural variation that and can be exploited for comparative landscape-

scale (100s-1000s+ km) ecological studies (Hobson et al., 2012). In practice, δ15N values of 

the same tissue from several individuals of the same consumer population across multiple 
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food webs allows for characterization of local nitrogen sources and trophic roles (Thomas 

and Crowther, 2014). It is also possible to describe variation of δ15N values (or another 

stable isotope) over any time scale of interest in one discrete food web, or across several 

food webs.  

For large-scale studies, it is important to consider both natural variations of basal δ15N 

values as well as variation across trophic levels. Often trophic studies using isotopic 

compositions measure δ15N and δ13C values in “bulk” (whole) tissue. Bulk values reflect a 

composite view of isotopes assimilated into a tissue, one that combines the ratios stored in 

all component organic compounds (e.g., protein amino acids) that make up that tissue. Many 

marine studies have used bulk tissue isotopic compositions to infer the diet composition, 

niche width and/or trophic interactions of cryptic consumers among diverse taxa (e.g., fish 

(Jennings et al., 2002; Cunjak et al., 2005), sharks (Estrada et al., 2003; Carlisle et al., 

2012), seabirds (Thompson et al., 2015), sea turtles (Vander Zanden et al., 2010; Lemons et 

al., 2011; Allen et al., 2013), mammals (Burns et al., 1998; Hobson and Schell, 1998; Schell, 

2000), and squid (Ruiz-Cooley and Gerrodette, 2012). Niche width is n-dimensional 

hypervolume that describes the ecological space a consumer occupies in a food web based 

on habitat and prey choices (Hutchinson, 1957), and is a particularly accessible description 

of a species’ position within and across food webs.  

A consumer’s isotopic niche width characterizes carbon and nitrogen integrated from 

diet based on δ15N and δ13C values (Hutchinson, 1957; Carrascal et al., 1994; McDonald, 

2002; Newsome et al., 2007; Yeakel et al., 2016). Bearhop et al. (2004) first introduced 

isotopic niche analysis as a robust approach to estimate niche width, as substitute for, or 

compliment to, conventional, often invasive, dietary analyses. While such bulk tissue 
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isotopic studies are quite useful and have made substantial headway in filling trophic 

ecology knowledge gaps for mobile marine consumers, they are constrained by the inability 

to identify the root of variation in bulk tissue δ15N and δ13C values, particularly across a 

broad geographic range that may experience varying nutrient cycling regimes (Bowes & 

Thorp 2015).   

Amino acid compound-specific nitrogen isotopic analyses (AA-CSIA) can be used to 

overcome the constraints of bulk tissue analysis. There are two types of amino acids, ones 

whose δ15N values change little with trophic transfers and record the nitrogen isotopic 

baseline, known as “source” amino acids (e.g., phenylalanine), and ones whose δ15N values 

increase with trophic transfers (i.e., trophic enrichment) and reflect the consumer’s trophic 

position within a food web, known as “trophic” amino acids (e.g., glutamic acid) (McClellan 

and Montoya, 2002; Popp et al., 2007). δ15N values of the two types of amino acids 

therefore can provide information at a finer resolution, sufficient for parsing influences of 

source nitrogen and trophic status, beyond the capabilities of bulk tissue analysis alone 

(McClellan and Montoya, 2002; McCarthy et al., 2007; Popp et al., 2007; Chikaraishi et al., 

2009; Lorrain et al., 2009; Chikaraishi et al., 2010). The geographic variability among 

primary producers (i.e., source values) coupled with N cycling information (e.g., N* 

(Pennington et al. 2006), or nitrogen isoscapes (Olson et al. 2010)) can help identify the 

geographic foraging location of mobile consumers. Being able to distinguish between these 

two sources enables researchers to understand if variation in bulk δ15N values in consumer 

tissue is explained by foraging location or strategy.  

For example, only after measuring both bulk values and completing AA-CSIA, Seminoff 

et al. (2012) was able to conclude that the variation of δ15N in Pacific leatherback sea turtle 
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(specialists) skin could be attributed to the different baseline δ15N values of the eastern 

versus western foraging regions of the Pacific Ocean. Vander Zanden et al. (2013) used 

these complimentary analyses to reveal that although Caribbean green sea turtles (Chelonia 

mydas) of the same breeding population feed in several different foraging aggregations with 

different bulk primary producer and consumer δ15N values, they maintain the same foraging 

strategy (i.e., trophic position) in each. These examples and others (e.g., yellowfin tuna: 

Lorrain et al. 2015) demonstrate the efficacy of comparing different cryptic foraging 

subpopulations of the same turtle species to learn how their trophic status does or does not 

change over time and space.  

Likewise, here we apply bulk stable isotope analysis and AA-CSIA to an elusive open 

ocean forager whose trophic ecology has not yet been empirically investigated. Olive ridley 

sea turtles (Lepidochelys olivacea) foraging in the eastern Pacific provide an ideal case study 

because individuals forage across an impressively large range spanning over 3 million km2 

(Olson et al., 2010) and in many distinct biogeographic regions with different baseline δ15N 

values (e.g., in Longhurst provinces 5, 7, 8, 35, 36, & 37 (VLIZ, 2009)) (Pennington et al., 

2006). The eastern region of the tropical and subtropical Pacific Ocean is oceanographically 

dynamic but has persistent and predictable areas of upwelling, warm pools, cold tongues, 

and boundary currents (Fiedler and Talley, 2006) that make up spatially explicit food webs. 

Thus, δ15N isotopic values are systematically distributed across the region’s oceanographic 

features reflecting their different nutrient cycling regimes, such as nitrogen fixation and 

denitrification.  

Olive ridleys are listed as “vulnerable” on the International Union for Conservation of 

Nature’s Red List of Threatened Species (Abreu-Grobois and Plotkin, 2008) as their 
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abundance is at least an order of magnitude lower than their historical abundance. 

Individuals in the population span the waters of ten countries in Pacific Latin America, each 

having jurisdiction over the management and protection of individuals that occur within 

their state boundaries. Olive ridleys in the eastern Pacific were commercially overharvested 

to collapse in the 1960’s but have since received considerable conservation attention, 

especially on nesting beaches, and subsequent significant increase in population size 

(Plotkin et al., 2012). The eastern Pacific olive ridley breeding population is of particular 

conservation concern currently because of the high incidences of interaction with fishing 

gear (Dapp et al. 2013, Lewison et al. 2014). 

Olive ridleys are presumed opportunistic generalist omnivores that can feed in both 

benthic and pelagic habitats (Bjorndal, 1997; NMFS and USFWS, 1998; Robins et al., 2002; 

Whiting et al., 2007; Wedemeyer-Strombel et al., 2015). From approximately June through 

December females nest on eastern Pacific beaches from Mexico (Lopez-Castro & Rocha-

Olivares 2005) south to Ecuador, with sporadic nesting in Peru (Lopez-Castro and Rocha-

Olivares, 2005; Kelez et al., 2009). Although this breeding population is one of the more 

abundant sea turtle populations in the world, estimated at 1.39 million individuals (Eguchi et 

al., 2007), we have little empirical information regarding individual foraging behavior 

because apart from when nesting, they spend their lives in the open ocean where sampling is 

challenging (Polovina et al., 2003; Plotkin, 2010). Individuals of both sexes and all ages are 

understood to be nomadic and dispersed across the eastern Pacific anywhere from a few 

meters (neritic) up to thousands of kilometers (pelagic/oceanic) from shore (Plotkin, 2010); 

presumably foraging at-will with recorded maximum dive depth of 200 m and duration of 

180 min for the species (Polovina et al., 2003; McMahon et al., 2007; Whiting et al., 2007). 
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In the western Pacific, telemetry evidence has suggested that at least some olive ridleys 

show fidelity to patchy but predictable suitable foraging habitat (Whiting et al. 2007).  

The seemingly divergent foraging behavior of two isolated breeding populations of the 

same species provokes several questions regarding the magnitude of individual variation, 

and what it could reveal about the ecologic role this generalist plays in disparate ocean 

basins and in distinguishable habitats, both benthic and oceanic. Such observed individual 

variation for mobile marine consumers has been described elsewhere as individual 

specialization (Bolnick et al., 2002), including for sea turtles (Vander Zanden et al., 2010; 

Thomson et al., 2012). In this study, we quantitatively describe niche width variation and 

estimate the trophic positions of adult olive ridleys foraging in disparate oceanic food webs 

in the eastern Pacific over a large geographic scale. We discuss our findings as they relate to 

persistent but dynamic oceanic foraging habitats, conservation implications of potentially 

unique open-ocean foraging areas, and the olive ridley’s resiliency to climate and prey 

changes. 

B. Materials and Methods 

1. Study Region and Sub-regions 

The study region spans the tropical and subtropical eastern Pacific Ocean, extending 

from ~30° N (Gulf of California) to ~12° S (Peru Current), and ~76° W (west coast of the 

Americas) to ~115° W. We examined isotopic variation of olive ridley aggregations 

according to two different theoretical ways to partition isotopic niches, one based on 

biogeochemical Longhurst provinces (VLIZ 2009), and one based on the distinct and 

persistent oceanographic features described in Fiedler & Talley (2006). We grouped samples 

into three Longhurst provinces, 7 (“Coastal – Central American Coastal Province”), 8 
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(“Coastal – Chile-Peru Current Coastal Province”), and 35 (“Trades – North Pacific 

Equatorial Countercurrent Province”) (VLIZ 2009) (Figure 1a). Alternatively, we grouped 

samples into five distinct sub-regions based on the following oceanographic features: the 

Gulf of California (GC), the North Equatorial Current (NEC), the Eastern Pacific Warm 

Pool (EPWP), the Costa Rica Dome (CRD), and the Peru Current (PC) (Figure 1b). Spatial 

analyses across sub-regions were limited to individuals within the boundaries under our 

assumption that sub-regions represent unique food webs with varying basal levels of 

isotopic resources. 
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Figure 1. Adult olive ridley turtles samples represented as symbols and aggregated 
according to [a] Longhurst province (VLIZ 2009) and [b] oceanographic region 
(Fiedler & Talley 2006).  
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2. Sample Collection and Preparation 

Between August and December 2006, olive ridley sea turtles were opportunistically 

hand-captured from the National Oceanographic Atmospheric Administration R/V David 

Starr Jordan during the Stenella Abundance Research (STAR) cruise. Life history data and 

tissue samples were collected from each turtle before their release. Morphometric 

information was collected for all turtles, and putative sex was recorded for mature 

individuals (approximately straight carapace length ≥ 56 cm) based on external 

morphology—reproductively mature male turtles have long tales, females have short tales. 

For individuals sampled within the GC (n = 29), NEC (n = 36), EPWP (n = 192), and CRD 

(n = 63) sub-regions [alternatively: Longhurst province 7 (n = 172), Longhurst province 8 (n 

= 21), and Longhurst province 35 (n = 151)], epidermis (“skin”) samples were collected 

using a razor blade from the dorsal neck surface and immediately frozen at -80°C, later 

transported on ice and archived at the Southwest Fisheries Science Center (La Jolla, CA, 

U.S.A.). Each skin sample was split for dual archiving (stable isotopes and genetics) and 

stored at -20°C until laboratory analysis. All turtles were released unharmed in roughly the 

same location where they were captured. 

Prior to stable isotope measurement, samples were thawed and rinsed with distilled 

water, freeze dried for one 8-hour cycle, and lipid-extracted using an Accelerated Solvent 

Extractor (ASE 200) according to previously published methods (Lemons et al. 2011, Allen 

et al. 2013). Whole skin samples (~2mm in length) were split for two types of 

measurements: bulk tissue δ13C and δ15N values, and compound specific nitrogen isotope 

analysis of amino acids (AA-CSIA). All samples were analyzed for bulk tissue stable 
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isotope values, however due to cost and time restraints, only 4-14 samples in each sub-

region were processed for AA-CSIA.  

Olive ridleys in the Peru Current were sampled opportunistically during a different 

sampling effort that took advantage of turtles incidentally captured by Peruvian longline 

fishing vessels. Using a 2-mm biopsy punch, skin samples were taken from the dorsal neck 

surface of adult olive ridleys in 2003 (n = 3), 2004 (n = 5), 2008 (n = 10), and 2009 (n = 4), 

preserved with salt, and archived at -20°C at the Southwest Fisheries Science Center (La 

Jolla, CA U.S.A.) until laboratory analysis. These samples were lipid extracted and analyzed 

for bulk tissue stable isotope values as described in Kelez (2011) and Arthur et al. (2014); 

AA-CSIA was completed for five samples from 2008 and 2009 using the same methods 

described below and in Arthur et al. (2014). 

3. Bulk Tissue Analysis  

For GC, NEC, EPWP, and CRD 2006 samples (n = 320), 0.7-1 mg of skin was 

homogenized with a razor blade and loaded into tin capsules. Samples were analyzed by a 

Costech Instruments elemental combustion system (ECS4010) coupled to a continuous-flow 

Thermo Finnigan MAT Delta Plus XL isotope ratio mass spectrometer in the Stable Isotope 

Laboratory at the University of Florida, Gainesville in 2011. Bulk isotope values are 

reported in standard delta notation (δ) in parts per thousand (‰): δHX = ([Rsample/Rstandard] – 

1) (1000), where the superscript ‘H’ is the mass of the rare isotope, ‘X’ is the element of 

interest, and R is the ratio of the rare X isotope to the common X isotope (Fry 2006). Rstandard 

were air (atmospheric N2) and Vienna Pee Dee Belemnite (VPDB) for δ15N and δ13C, 

respectively. Continuous calibration was completed using USGS40 (L-glutamic acid: δ15N = 

-4.52‰ and δ13C = -26.39‰) with an average precision of 0.07‰ for δ15N and 0.10‰ for 
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δ13C. To ensure accuracy, 1-3 blind sample duplicates were run per 30 samples with an 

average standard deviation of 0.14‰ for δ15N and 0.27‰ for δ13C.   

4. AA-CSIA  

Of the 320 samples from 2006 used for bulk tissue stable isotope analysis, a subset of 26 

2-10mg samples were dried and homogenized with a mortar and pestle and/or razor blade. 

Samples making up the subset were chosen to cover the widest geographic area of each sub-

region: GC (n = 6); NEC (n = 6); EPWP (n = 10); CRD (n = 4); and alternatively Longhurst 

province 7 (n = 14), Longhurst province 8 (n = 5), and Longhurst province 35 (n = 12).  

Samples were prepared (hydrolysis and derivatization) and analyzed for compound-

specific isotopic composition of amino acids at the Biogeochemical Stable Isotope 

Laboratory at the University of Hawaii at Manoa using the instruments and protocols 

detailed in Décima et al. (2013). Samples were hydrolyzed with 0.5ml of 6N HCl and heated 

for 70 minutes at 150ºC. They were then dried with N2 at 55ºC. Samples were re-dissolved 

with 1ml of 0.01N HCl and filtered using VWR 25mm Polyethersulfone filters with 0.2µm 

pore size. Amino acids were eluted with 4ml 2N NH4OH and dried with N2 at 80ºC. Cation 

exchange was then performed using Grace Alltech GracePure solid phase extraction cation 

6mL columns (Grace ALLTECH #5141488, now discontinued).  

Next, 0.5ml of 0.2N HCl were added to each sample and heated at 110ºC for 5 minutes, 

then dried with N2 at 55ºC. 2.5ml of 4:1 C3H8O and CH3COCl mixture were added to each 

sample and heated at 110ºC for 60 minutes for esterification, then dried with N2 at 60ºC. 

600µl CH2Cl2 and 200µl C4F6O3 were added to each sample and heated at 100ºC for 15 

minutes for trifluoroacetylation. 2ml of Phosphate-buffer (KH2PO4 + H=Na2HPO4 in Milli-

Q water, potential Hydrogen [pH] 7) and 1ml of CHCl3 were added to N2-dried samples, and 
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shaken for one minute to isolate amino acids into the CHCl3 fraction. Phosphate-buffer and 

CHCl3 fractions were separated via a 600g centrifuge for 5 minutes. The CHCl3 layers were 

retained. Amino acid isolation was repeated to separate any residual amino acids remaining 

in the Phosphate-buffer fractions. CHCl3 was evaporated with N2 and then 

trifluoroacetylation was repeated. Samples were frozen at -20ºC until analysis.  

Just before analysis each sample was dried with N2 at room temperature and 250-500µl 

of C4H8O2 was added. δ15N isotopic compositions of 13 amino acids (alanine, glycine, 

valine, serine, leucine, isoleucine, proline, glutamic acid, phenylalanine, lysine, tyrosine, and 

norleucine (Nor) and aminoadipic acid (AAA) measured against internal Nor/AAA 

standards) in each sample were identified and quantified in triplicate using a mass 

spectrometer (Thermo Scientific DeltaPlusV or MAT 253 interfaced with a Trace GC/GCIII) 

(see Hannides et al. 2009 for further mass spectrometry details). Every block of three sample 

measurements was bookended by a suite of amino acids with known δ15N (alanine, 

threonine, isoleucine, proline, glutamic acid, and phenylalanine). Suite/samples were co-

injected with norleucine (Nor) and aminodipic acid (AAA) of known δ15N to serve as 

internal standards and control for errors due to sample loss, injection variations, and 

variability in dilution preparations. Injections consisted of 1ul air, the appropriate volume of 

Nor/AAA standard, another 1ul of air, followed by the appropriate volume of external suite 

standard or sample (5:1 ratio of Nor/AAA to standard suite or sample). During injections, 

background interference was manually corrected as needed (e.g., ensuring background levels 

were the same before and after each injection), but manual corrections were kept as minimal 

as possible. Sample δ15N values for 11 amino acids were corrected for accuracy as needed 

using regression (typically R2>0.9) of either the Nor/AAA or suite standards. Accuracy was 
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maintained to within 1‰ of the known value, and the average standard deviation of δ15N 

across all 2006 samples and amino acids was 0.75‰. 

The Peru and Hawaii (referenced, see Discussion) samples included in this study were 

prepared and analyzed separately but in the same lab and with the same protocol at the 

University of Hawaii at Manoa with an average standard deviation of δ15N across all 

samples and amino acids of 0.56‰ and 0.63‰, respectively.  

5. Isotopic Niche Area 

Only sub-regions GC, NEC, EPWP, and CRD [alternatively Longhurst 7 and Longhurst 

35] had sufficient individual measurements of bulk tissue δ13C and δ15N values to estimate 

the isotopic niche width. Standard niche width ellipse and convex hull areas were estimated 

using maximum likelihood, and Markov chain Monte Carlo (MCMC) credible intervals 

were generated to calculate uncertainty around ellipse estimates using Stable Isotope 

Bayesian Ellipses in R (SIBER) functions (Jackson et al. 2011) in the Stable Isotope 

Analysis in R (SIAR) package (Parnell et al. 2008, Parnell et al. 2010) in R (http://www.r�

project.org/). Probability of size differences between ellipses were calculated by comparing 

pairs of draws from the posterior MCMC distributions. 

6. Trophic Position Estimations 

Chikaraishi et al. (2009) presented a universal algorithm based on the differences in δ15N 

values of specific amino acids that can estimate the trophic position (TP) of a variety of 

aquatic organisms. Although the δ15N values of multiple representative source (e.g., glycine, 

serine, phenylalanine, etc.) and trophic (e.g., alanine, proline, glutamic acid, etc.) amino 

acids can be used to estimate TP (e.g., (Hannides et al., 2009; Sherwood et al., 2011; 
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Décima et al., 2013; Hannides et al., 2013; Bradley et al., 2015; Décima et al., 2015)), to 

date most studies use just two, phenylalanine and glutamic acid (e.g., (Chikaraishi et al., 

2009; Chikaraishi et al., 2010; Dale et al., 2011; Seminoff et al., 2012; Vander Zanden et al., 

2013). Bradley et al. (2015) and Nielsen et al. (2015) show that increasing the number of 

amino acids (i.e., weighted mean) used to estimate marine teleost TPs results in a more 

precise estimates across taxa and trophic levels, as compared to prey items and/or stomach 

contents. Per these recommendations we explored both approaches but found negligible 

difference, so present the most simplistic estimate here. Based on Chikaraishi et al. (2009) 

algorithm, we used δ15N values for either phenylalanine (Phe) or weighted mean of source 

amino acids [glycine, serine, tyrosine, lysine, Phe], and glutamic acid (Glu) or weighted 

mean of trophic amino acids [alanine, valine, leucine, isoleucine, proline, Glu] to estimate 

olive ridley TP in each sub-region. The following TP equation shows Glu and Phe as 

placeholders but were replaced with weighted means to compare approaches. Estimates of 

15N enrichment factors among amino acids in primary producers (βGlu-Phe = 3.6 ‰) and for 

each trophic level (ΔGlu-Phe = 5.7 ‰) used were recommendations of Bradley et al. (2014). 

Others suggest ΔGlu-Phe = 7.6 ‰ (Chikaraishi et al., 2009), 6.6 ‰ (Nielsen et al., 2015), or 

other values (see Lorrain et al. (2009), Dale et al. (2011), etc.), however we chose to use 5.7 

because it resulted in TPs more consistent with TP estimates from stomach contents: 

!" = 	%
&'()*+ −	%&'(-./ − 	0

Δ + 1	

Due to the small AA-CSIA sample sizes, we did not assume that TP estimates are 

normally distributed, and thus used the Kruskal Wallis non-parametric statistical test to 

compare TP distribution across sub-regions. Exploratory analysis of δ15N probability 

densities, median TP, and confidence intervals of each sub-region prompted a pooled 
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pairwise comparison (Mann-Whitney U test) of trophic position estimates between the Costa 

Rica Dome and all others. All statistical tests were performed in R (R Core Team 2013). We 

treated sub-region as a blocking factor in the Mann-Whitney rank sum test and alpha was set 

at 0.05 for both tests. 

7. Residence Assumption 

The eastern Pacific is a dynamic basin and the boundaries of features fluctuate on a 

seasonal basis, or in response to climatic events such as El Niño. As our sampling effort was 

completed over one season (Aug-Nov) during a ‘normal’ year (2006), we assume that the 

feature boundaries that we base the oceanographic sub-region categorizations upon 

remained consistent during the study time frame. 

Our study design hinges on the assumption that stable isotope values reflect diet 

assimilation from the local food web in which the turtle was sampled. To justify this 

assumption, we estimate the sample scale as follows. The smallest sub-region by geography 

is the Costa Rica Dome. Based on Fiedler (2002) and the minimum and maximum latitude 

and longitude of our samples grouped within the Costa Rica Dome, we estimate the area of 

our Costa Rica Dome-associated samples to have an 800 km N-S diameter and a 1000 km 

W-E diameter. In reality, the actual oceanographic feature is larger than the convex hull of 

the samples. Estimated olive ridley daily swim speed is 15 to 40 km, dependent on behavior. 

At the high end of the range, Block et al. (2002) suggest that high speeds are likely burst-

speeds aided by currents, and Polovina et al. (2003) reported that olive ridley speeds in 

Hawaii doubled when “riding” the North Equatorial Current. Via telemetry Whiting et al. 

(2007) recorded olive ridley movements of up to 37 km over 23 days between nesting, and 

post-nesting migration swim speeds between Australia beaches and foraging areas of 0.87-
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1.54 km h-1. The same study hypothesized that observed slowing of swim speeds indicated 

foraging, and several instances of slowing during migration were recorded for two of the 

tagged migrating olive ridleys. Similarly, McMahon et al. (2007) recorded frequent foraging 

during migration in Australian waters. For olive ridleys studied in the eastern Pacific via 

telemetry, Plotkin (2010) observed swim speeds of 0.41-1.69 km h-1 for females and 0.33-

1.33 km h-1 for males and concluded that adults swim and presumably forage continuously 

while not nesting. Given this information, we estimate that if an adult olive ridley were 

swimming in the eastern Pacific an average of 0.94 km h-1, it would have to swim 

continuously without rest for 35.5 days to traverse our estimated N-S diameter of the Costa 

Rica Dome. While these are rough calculations, we state them to justify our assumption that 

the potential travel radius within the time frame captured by 15N-assimilation from diet in 

turtle skin (40-50 days (Reich et al. 2008, Thomas & Crowther 2014)) remains within each 

sub-region, and that there is no spatial autocorrelation between sub-regions.   

C. Results 

Similar to Olson et al. (2010), we observed a general pattern of 15N enrichment with 

increasing latitude, with the lowest latitude sample (4.17 N) δ15N = 11.85‰ and the highest 

latitude sample (26.48 N) δ15N =15.56 (Figure 2). δ15N probability density plots according 

to Longhurst province (Figure 3a) do not show a clear enrichment pattern, whereas density 

plots according to oceanographic sub-region do show the latitude pattern (Figure 3b).  
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Figure 2. The gradient of δ15N values across the study area 
range from 11.36‰ to 15.56‰, and in   general δ15N increases 
with latitude. 

 

 

Figure 3. δ 15N density plots showing variation across [a] Longhurst 
provinces, and [b] oceanographic sub-regions. [b] illustrates 15N 
enrichment with latitude. 
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Standard ellipse areas representing isotopic niches are plotted in Figure 4a&b and show 

a population-wide (n = 346) δ13C range of -17.08‰ to -14.51‰ and a δ15N range of 

11.36‰1 to 15.56‰. Maximum likelihood sub-region ellipse area estimates (with small 

sample size corrections in parentheses) are as follows: Longhurst 7 = 0.658(0.663)‰2, 

Longhurst 35 = 0.933(0.938)‰2, Costa Rica Dome = 0.5(0.51)‰2, East Pacific Warm Pool 

= 0.56(0.57)‰2, Gulf of California = 1.04(1.08)‰2, North Equatorial Current = 

0.744(0.77)‰2. Pairwise comparison of posterior draws from Bayesian credible intervals 

around the maximum likelihood standard ellipse area estimates found (Figure 4c&d): 

• 99.67% Central American province ellipse < North Pacific Equatorial Countercurrent 

province ellipse; 

• 99.99% and 99.26% probabilities that East Pacific Warm Pool ellipse < Gulf of 

California and North Equatorial Current ellipses, respectively;  

• 99.99% and 96.94% probabilities Costa Rica Dome ellipse < Gulf of California and 

North Equatorial Current ellipses, respectively; 

• 89.2% probability Gulf of California ellipse > North Equatorial Current ellipse; and 

• 99.99% probability East Pacific Warm Pool ellipse < Costa Rice Dome ellipse.  

                                                
1 Some Peruvian Current samples lack sample location information. The minimum across all 
samples is 8.76‰, from a Peruvian Current sample missing lat/long information. 
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Figure 4. Maximum likelihood standard ellipse area estimation is plotted for [a] 
Longhurst provinces 7-Central American and 35-North Pacific Equatorial 
Countercurrent; and [b] oceanographic sub-regions the Gulf of California, North 
Equatorial Current, East Pacific Warm Pool, and the Costa Rica Dome. Plotted in [c] 
and [d] are the Bayesian inference credible intervals around the Markov chain Monte 
Carlo mean ellipse area, standard ellipse area (Rands et al. 2010) estimates, and the 
small sample size-corrected standard ellipse (SEAc) estimates for the Longhurst 
provinces and oceanographic sub-regions, respectively.  

 

Median trophic position (TLGlu/Phe) across the entire eastern Pacific seascape was 3.15 

±0.26 SD (Figure 5). When comparing sub-regions we see no significant difference in 

TLGlu/Phe across Longhurst provinces (χ2 (2) = 1.8252, p-value =0.4015, α = 0.05), and no 

significant difference across oceanographic regions GC, NEC, EPWP, CRD, and PC (χ2 (4) 

= 5.5215, p-value =0.2378, α = 0.05). However, we do see a difference in TLGlu/Phe between 

the Costa Rica Dome and all other oceanographic sub-regions pooled (W = 88, p-value 
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=0.04836, α = 0.05). Individuals in the Costa Rica Dome were feeding at a 0.36 TLGlu/Phe 

higher (median) than in other oceanographic sub-regions.  

 

Figure 5. Boxplots showing individual trophic position (TLGlu/Phe) estimates as open 
circles, median trophic position as the dark band within each box, first and third 
quartiles as the lower and upper box sections, respectively, and the minimum and 
maximum estimates as whiskers for each sub-region. Sub-region labels are as follows: 
GC = Gulf of California, NEC = North Equatorial Current, EPWP = East Pacific 
Warm Pool, CRD = Costa Rica Dome, PC = Peruvian Current, L7 = Central American 
Coastal, L8 = Chile-Peru Current, L35 = North Pacific Equatorial Countercurrent.  

 

D. Discussion 

To understand and preserve the ecological functions of species in marine food webs we 

need cost-effective tools to study consumers across their foraging ranges. For highly mobile 
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consumers, their range can be tens to thousands of square kilometers and can include 

temporally dynamic habitats. For sea turtles, most empirical research studies are focused on 

nesting beaches, and therefore often limited to accessible reproductive females, and/or 

hatchlings. This study’s large sample size and inclusion of oceanic individuals of a variety 

of sizes (ages) and both sexes of olive ridley sea turtles foraging across much of their range 

in the eastern Pacific has advanced our understanding of this breeding population’s trophic 

role in oceanic food webs. Here, we measured the δ13C and δ15N values of 346 olive ridley 

skin samples during one season (Aug-Nov 2006) to estimate isotopic niche—a proxy for 

ecological niche. Further, to investigate if trophic role varied across space we completed 

AA-CSIA of a subset of 31 samples grouped by two different theoretical ways to define 

unique ecosystems in the eastern Pacific Ocean, Longhurst provinces and persistent 

oceanographic features.  

Grouping foragers by Longhurst province did not prove to be insightful. These 

biogeochemical province boundaries are defined according to physical forces that regulate 

the distribution of phytoplankton in oceans. Oceans were divided first by biome (polar, 

westerlies, trade-winds, and coastal boundary zone), and secondarily by environmental 

parameters (e.g., bathymetry, chlorophyll a concentration, surface temperature, and salinity) 

that distinguish the area as unique (Reygondeau et al. 2013). While these ecological 

partitions make good sense and seem useful in guiding large-scale biogeochemical studies 

concerned with nutrient cycling such as isotopic analyses, they are static and quite large 

compared to the sub-regions we defined based on the persistent oceanographic features 

described in Fiedler & Talley (2006). Although they may be valid for other seascape-scale 

investigations, in our study we do not believe they sufficiently capture the nuance of biotic 
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and abiotic differences between oceanographic features, such as thermocline depth and 

strength. Specifically, provinces 7 and 35 span many degrees of latitude encompassing 

several local nutrient cycling regimes, and therefore blurring their influences. However we 

did find it insightful to compare individuals grouped by five oceanographic sub-regions, 

presumably unique food webs, and so we focus our discussion and conclusions on 

comparisons across oceanographic sub-regions, not Longhurst provinces. 

Olson et al. (2010) explained the causes of 15N enrichment of both copepods and 

yellowfin tuna with latitude in the eastern Pacific and concluded that the pattern is 

maintained in all levels of a trophic chain. In short, upwelled nitrate is drawn down at the 

equator, but as latitude increases denitrification signals dominate.  

This study has enhanced our understanding of the open-ocean foraging ecology of the 

eastern Pacific olive ridley, and in the following paragraphs we discuss the implications of 

our findings. 

1. Empirical evidence for olive ridley omnivory and generalism across the eastern    

Pacific seascape 

Anecdotal observations and stomach content analyses have suggested that adult eastern 

Pacific olive ridleys are generalist omnivores (Bjorndal 1997, NMFS & USFWS 1998, Holt 

et al. 1999, Wedemeyer-Strombel et al. 2015). The population range of δ13C [-17.08‰, -

14.51‰] and δ15N [11.36(8.76)‰, 15.56‰] suggests prey resources come from a variety of 

primary producers (basal carbon sources), and from primary and secondary trophic levels. 

Ellipse area estimates suggest that the olive ridley isotopic niche is larger in the Gulf of 

California and the North Equatorial Current than in the Costa Rice Dome or East Pacific 

Warm Pool (Figure 4b), however the credible intervals (uncertainty) around the estimates of 
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the two larger sub-region area estimates are much wider than the two smaller sub-regions 

(Figure 4d).  

One explanation as to why the olive ridleys in the Gulf of California have a broader 

niche (1.08‰2) compared to other sub-regions is that the majority of turtles were sampled in 

the entrance zone. There, basal resources, particularly N inputs, come from a mix of 

enriched (denitrified) subsurface water from the Eastern Tropical North Pacific (transported 

via the California Undercurrent) and tropical surface water from the west; large cell 

diazotrophy; N2 fixation in the euphotic zone2; and terrestrial sources (sediments, guano, 

runoff). Upwelled nitrate δ15N values in the entrance zone have measured 10.4-14.3‰; 

diazotrophy produced particulate material δ15N values measured at ~0‰; and N2-fixation 

contributions in sediment particles measured between 4‰ and 18‰ (White et al. 2013). 

These estimates are consistent with the range of δ15N values we measured in turtle skin (see 

the Gulf of California δ15N probability density function in Figure 4b).  

The relative medium niche breadth of foragers in the North Equatorial Current (0.77‰2) 

is likely reflective of a range of distance-from-shore basal signals, as individuals in this sub-

region were effectively sampled along a longitudinal transect of the feature. Oligotrophic 

pelagic areas are depleted in both 13C and 15N relative to near-shore areas, and so this current 

is expected to support a wider trophic niche given the baseline isotopic variation within its 

geographic dimensions.  

                                                
2 Variable N2 fixation rates: e.g., during summer months 15-70 µmol N m-2 d-1 with bloom 
rates as high as 453-795 µmol N m-2 d-1, lower in the late summer (White et al. 2013). In 
contrast, N2 fixation rates in the oligotrophic North Pacific subtropical gyre is ~estimated 
111 ±66 µmol N m-2 d-1 (Luo et al. 2012). 



 

 26 

The East Pacific Warm Pool supports an impressively small isotopic niche area for olive 

ridleys (0.57‰2) considering it is the largest sub-region by geography, spanning 10 degrees 

of latitude and 16 degrees of longitude. This speaks to the robustness of denitrification 

across the feature. Characteristics such as temperature, pycnocline, and mixed layer depth 

are particularly stable and reliable during the season in which our sampling was conducted 

(Fiedler & Talley 2006). The Gulf of Tehuantepec and the Gulf of Papagayo are two 

especially productive gulfs (high chlorophyll and nitrate concentrations) within the East 

Pacific Warm Pool due to wind-driven upwelling. As a result of our sampling platform 

(NOAA R/V David Starr Jordan) spending concerted time observing those two regions, 

many of the samples we examine within the East Pacific Warm Pool were in or near those 

two gulfs.  

The Costa Rica Dome supports an isotopic niche area almost equal in size (0.51‰2) to 

the East Pacific Warm Pool, but is considerably smaller in geographic size (we consider it 

800-1000 km in diameter). It is the most seasonally dynamic oceanographic feature making 

up our study’s sub-regions, in its spatial location and characteristics. It has a seasonally 

predictable strong and shallow thermocline (15 m at the peak of the dome, shoaling off to 50 

m to the N and S) and from July through November, during the time period of our study, the 

Dome is defined by countercurrent thermocline ridging and expansion, primarily westward 

(Fiedler 2002). The Costa Rica Dome experiences productivity blooms May through 

December, and regional maximum chlorophyll concentration is present over the Dome from 

May-September (Fiedler 2002). High chlorophyll combined with nutrients brought to the 

surface via wind mixing and/or upwelling leads to high primary productivity in this region. 

Upwelling is uncommon in the eastern tropical Pacific, and thus the Costa Rica Dome is a 
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unique area where cold, nutrient rich water is brought to the surface (Peña et al. 1994, 

Fiedler 2002). It also is not as iron-limited as other high-nitrate low-chlorophyll regions of 

the equatorial Pacific (Fung et al. 2000), a factor which is believed to boost productivity. 

Both the East Pacific Warm Pool and the Costa Rica Dome are within the Tropical Surface 

Water mass (Fiedler & Talley 2006) and have high concentrations of chlorophyll and nitrate 

compared to other areas in the eastern Pacific (Pennington et al. 2006). Some might even 

consider the Costa Rica Dome as a feature within the East Pacific Warm Pool, for example 

Pennington et al. (2006) who describes the Gulf of Papagayo (within the East Pacific Warm 

Pool) and the Costa Rica Dome as interacting and merging during certain times of the year. 

While driven by different physical sources, the Gulfs of Tehuantepec and Papagayo and the 

Costa Rica Dome share characteristics that determine basal isotopic signals, such as 

upwelling, nitrate concentrations, and denitrification, which is why we believe they support 

such a similar isotope niche for olive ridleys. 

2. Elevated trophic position in the Costa Rice Dome 

Olive ridleys have the ability to travel great distances (>1500 km) (Pandav & Choudhury 

1998, Polovina et al. 2003, Whiting et al. 2007, Plotkin 2010) and we have learned much 

about their movements and diving behavior, but their role(s) in pelagic food webs have 

lacked robust empirical estimates. In this study, bulk tissue isotopic analyses were useful in 

describing and inferring biogeochemical roots of δ13C and δ15N value ranges and isotope 

niche area estimates in each sub-region. However, bulk analysis alone was insufficient to 

identify local drivers of observed variation in values, particularly δ15N, over ~40 degrees of 

latitude. As expected, our complimentary amino acid compound-specific isotopic analyses 

(AA-CSIA) produced information at the resolution needed to measure both local basal and 
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trophic δ15N values. This allowed us to calculate trophic position by accounting for variation 

in baseline while preserving variation in values due to differences in trophic function. With 

this two-pronged analytical approach we learned that regardless of the 15N enrichment with 

latitude trend (see Figure 2), adult olive ridleys occupy virtually the same trophic position 

(median TLGlu/Phe = 3.15) across the eastern Pacific. This suggests that regardless of foraging 

location, olive ridleys maintain omnivory and the opportune exploitation of resources across 

unique oceanographic features. While this finding says nothing about foraging site fidelity 

or lack thereof, it is consistent with Plotkin (2010) and others who have concluded that olive 

ridleys in the eastern Pacific have evolved to have such flexible migratory behaviors that 

they are able to be energetically successful over their entire range. Further, our results imply 

that their functional role as generalist consumers remains consistent across oceanic food 

webs separated by thousands of kilometers and with varying biogeochemical and physical 

characteristics.  

There was one exception to the generalist paradigm for olive ridleys: in the Costa Rica 

Dome individuals fed at a 0.36 median level higher than in any other sub-region (p≈0.5). As 

detailed previously, the Costa Rica Dome is unique in many ways, and it shifts in space 

seasonally due to physical forces. Regardless, many high-level consumers are able to 

consistently locate the Dome to forage and exploit the relatively high productivity it 

supports. In fact, the Costa Rica Dome supports the highest productivity (e.g., zooplankton 

mean biomass) of the regional upwelling areas (equatorial upwelling zone, Gulf of 

Tehuantepec, Gulf of Papagayo, Gulf of Panama) except for the Peru Current. Cetaceans, 

seabirds and tuna feed on standing stocks of zooplankton and other prey (Rielly and Thayer 

1990,(Sissenwine et al. 1998, Ballance et al. 2006).   
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As designed, our singular-species study provides estimates of trophic position, but does 

not reveal the mechanism behind elevated trophic status in the Costa Rica Dome. There are 

multiple conceivable explanations and future studies could be designed to empirically 

explore mechanistic hypotheses. In the following paragraphs, we discuss three potential 

ecological pathways: a decrease in individual specialization, community structure, and food 

chain length. Note that two or more of these may be interacting simultaneously.   

It is conceivable that olive ridleys in the Costa Rica Dome are exploiting a narrow subset 

of higher-nutrient (i.e., higher trophic position) prey items among the full set of prey 

resources available. For example, Aresco (2015) observed an omnivorous freshwater turtle 

opportunistically eat dead predatory fish during a mass mortality event. They simultaneously 

observed an elevation in the turtle’s isotopic trophic level and were able to explain the 

increase with the facultative scavenging of a new, high-value and high δ15N prey resource. 

Intra-individual variation, known as individual specialization theory (Bolnick et al. 2002, 

Bolnick et al. 2003, Araújo et al. 2011), was used by Vander Zanden et al. (2010) to 

describe observations of a variable diet in a generalist carnivore population of loggerhead 

sea turtles (Caretta caretta) that occupy a broad isotopic niche. In the Costa Rica Dome we 

observe the opposite—a narrow isotopic niche and an elevated trophic position of a 

generalist omnivore. Therefore, we suggest that in the Costa Rica Dome where high value 

prey is abundant we are observing a decrease in intra-individual variation, presumably 

otherwise prevalent in olive ridleys as obligate omnivores since they are both habitat and 

diet generalists (Ducatez et al. 2015). 

Community structure discrepancies across oceanic food webs could also lead to an 

elevated olive ridley trophic position. If the relative biomasses of each prey item were 
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consistent between disparate food webs over the sampling time period, it would be feasible 

that olive ridleys could actively individually specialize in the Costa Rica Dome based on 

prey preference. However, if the relative biomasses of higher value prey items were larger in 

the Costa Rica Dome compared to the other sub-regions, then an elevated trophic position 

could be explained by prey encounter rate alone: individual turtles could simply encounter 

higher nutrient prey items more frequently within the Costa Rica Dome compared to in other 

oceanic food webs. A future study could estimate prey isotope values and biomasses across 

the eastern Pacific to test and contrast these first two pathways. Layman et al. (2012) 

outlines other ways in which these hypotheses could be empirically tested and/or modeled.      

δ15N-determined trophic positions of consumers reflect the underlying food web 

structure and food chain length (Cabana & Rasmussen 1996, Vander Zanden & Rasmussen 

1999, Post 2002). Theory suggests that food chain length increases with productivity 

(Tilman 1999, Loreau et al. 2001), and Post and Takimoto (2007) discuss the potential 

causes for a predator trophic position shift. Empirical studies both support (e.g., Duffy et al. 

2005) and contrast (e.g., Post et al. 2000) this theory. Further, community diversity and/or 

biomoss can significantly interact with food chain length (Mulder et al. 1999, Naeem et al. 

2000, Duffy et al. 2005). Typically, productive areas such as upwelling zones are 

characterized by large phytoplankton cell sizes and high zooplankton grazing rates. In the 

Costa Rica Dome, grazing rates are definitively high but phytoplankton cell size reports are 

variable (Franck et al. 2005, Décima et al. 2015), leaving doubt regarding what, if any, chain 

length assumption can be made. Olson et al. (2010) found that yellowfin tuna in the eastern 

tropical Pacific had an elevated tropic position in a longer food chain (oligotrophic) than a 

shorter food chain (near-shore). If the Costa Rica Dome food chain is shorter than other sub-
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regions, as seems logical based on productivity, then we would expect the trophic position 

of a secondary consumer to decrease; however, we found the opposite with olive ridleys.  

Without understanding the mechanism(s) behind the elevated trophic position estimate 

in the Costa Rica Dome we are unable to tell if it is a relatively important oceanic foraging 

habitat for olive ridleys in the eastern Pacific; however, we are confident that between 

August and December 2006 it was a unique one.  

3. Other Considerations 

Further highlighting the Costa Rica Dome as a unique foraging area for adult olive 

ridleys is a qualitative extension of our TLGlu/Phe estimates based on δ15N values of olive 

ridley sea turtle skin compared to TLGlu/Phe estimates based on uncorrected muscle δ15N 

values from Hawaii3. Average TLGlu/Phe of two samples from Hawaii was just above three, 

which is analogous to the trophic position estimates of olive ridleys from four EP sub-

regions, and likewise ~0.4 lower than estimates in the Costa Rica Dome.   

Although we only estimated the trophic positions of adult olive ridleys, we explored 

whether bulk δ13C and δ15N values varied with turtle size (proxy for age), but found no 

association. Therefore, we do not believe olive ridleys experience trophic ontogeny, as seen 

in other marine turtle species (Arthur et al. 2008, Ramirez et al. 2015, Tomaszewicz et al. 

2015). This is intuitive given their lack of habitat ontogeny. There is still tissue from many 

of the turtles used in this study archived at the Southwest Fisheries Science Center (La Jolla, 

CA, U.S.A.), as well as from other eastern Pacific individuals of all sizes not included here. 

                                                
3 We are able to refer to two previously analyzed samples collected from stranded olive 

ridleys in Hawaii (Arthur et al. 2014). AA-CSIA was completed for these pectoral muscle 
samples, one from September of 2009 and one from July 2010. The average standard error 
was 0.18. 
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This serves as a resource for future investigations of ontogeny, or other questions such as 

inter- and/or intra-variation of the results we’ve presented. 

Density dependence of foraging strategies has been observed in other aquatic consumers. 

Svanback and Persson (2004) concluded that when adult perch population was high, 

individual and population niche breadth and individual specialization was highest, and prey 

switching was observed. Based on what we currently know about sea turtle life history, no 

density dependence exists in any of the life stages for turtles. However, there have been 

some proposed contradictions, or exceptions, such as Bjorndal et al. (2000) providing 

evidence for density dependent somatic growth in green sea turtles — juvenile turtles on 

crowded feeding grounds grew slower than other stages. The authors theoretically support 

this claim by noting that in the absence of exploitation, sea turtle populations would likely 

be regulated by food availability since individuals outgrow most predators. Therefore 

density-dependent effects would result from competition for limiting resources, and/or as 

population levels approach carrying capacity. Some researchers suggest that density 

dependence should be explored more seriously in sea turtle population models before ruling 

it out. 

4. Persistent, but dynamic: oceanic foraging sites 

Other sea turtle species exhibit foraging site fidelity, including fellow pelagic 

consumers, the leatherback (James et al. 2005). Based on satellite tracking, eastern Pacific 

olive ridleys are observed to be pelagic nomads (Plotkin 2010). Based on our stable isotope 

foraging ecology investigations, we conclude that in general adult olive ridley movements 

are likely not dictated by the need to rely on fixed resources in a specific static location, but 

rather that while migrating, turtles opportunistically exploit suitable resources when present. 
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Our findings indicate that persistent but dynamic oceanographic features as unique 

biogeochemical environments offer suitable resources, such that there was no detectable 

shift in the food web role of olive ridleys across any of the features we sampled within, 

indicating their energetic requirements are comparably met across the entire eastern Pacific 

seascape. The exception of the Costa Rica Dome provides further support to the long list of 

reports that recognize it as a special habitat. Based on this study, the area appears to be a 

particularly special foraging habitat for turtles, in addition to other consumers. We thus 

encourage further study of the food web dynamics in the Costa Rica Dome to enable the 

exploration of mechanisms driving consumer functional role observations.  

In addition, it would be useful to explore if the elevated trophic position of olive ridleys 

remains over intra- and inter-annual time scales. Such investigations may lead to concrete 

open-ocean habitat-specific management and conservation recommendations under the 

umbrella of dynamic ocean management (Howell et al. 2008, Maxwell et al. 2014, Maxwell 

et al. 2015), especially in light of the high olive ridley bycatch in the central and eastern 

Pacific Ocean. In the Costa Rica longline fishery alone, 9-14 olive ridley sea turtles are 

caught per 1,000 hooks (Dapp et al. 2013). Fisheries bycatch is the largest threat to all sea 

turtle species in the open ocean (Lewison et al. 2014). Comprehensive high-resolution 

spatial and temporal pelagic habitat use and food web structure information gleaned from 

isotopic, genetic, endocrine, and telemetry studies in combination is critical to enhance our 

ability to inform marine consumer protection and ecosystem-based management.  

At present, it would be speculative to comment on what is influencing adult olive ridley 

movement, and/or prey and habitat selection in the open ocean; however, we can look to 

their physiology, life history and reproductive strategies for clues about how olive ridleys 
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successfully meet energetic requirements over such a large and variable biogeographic scale. 

Relative to other hard-shelled turtles, olive ridleys have lower standing metabolic rates, 

undergo actively deeper dives (to forage, not to rest), can travel more variable and greater 

distances between nesting events, show no trophic or habitat ontogeny, and may have less 

consistent nesting site fidelity (in the eastern Pacific) (Plotkin et al. 1995, Polovina et al. 

2003, McMahon et al. 2007, Hamel et al. 2008, Plotkin 2010). It has been speculated that 

the long-distance movements between nesting events could be attributed to searching for 

food and/or alternate nesting sites, and that between-nesting time intervals are determined by 

environmental factors rather than physiology as in other hard-shelled turtles (Hamel et al. 

2008). Studies show that olive ridleys also uniquely have plasticity in the timing of 

oviposition, being able to delay fertilization and egg-laying until suitable environmental 

conditions and nesting habitat arise, particularly for the females that nest en masse (Plotkin 

et al. 1995, Hamel et al. 2008). These factors explain how olive ridleys can exploit a wide 

range of prey resources across variable habitats, both benthic and pelagic, over large 

dynamic areas and depths. While generalism and flexibility in foraging, nesting, and 

migration (i.e., lack of precise migrating corridors) suggest that olive ridleys in the eastern 

Pacific may be resilient to the impacts of climate change (Plotkin 2010), their low 

metabolism, narrow thermal niche and temperature-dependent sex determination suggest 

they may still be quite vulnerable to environmental change unless they are able to undergo 

adaptation.  

5. Conclusions 

This study illustrates the utility of compound specific analyses of amino acids in 

identifying local drivers of isotopic variation across a seascape. A small skin biopsy of a 
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marine consumer holds the biochemical information needed to isotopically describe trophic 

roles at much larger scales than with direct observation or animal tracking alone. It is also 

less invasive than stomach contents analysis. As such, isotopic investigative approaches are 

especially useful for cryptic, mobile oceanic foragers with a large distribution and range. 

Here we have used isotopic approaches to empirically corroborate reports that olive ridleys 

in the eastern Pacific are opportunistic omnivores, we have developed the hypothesis that 

their trophic role remains constant with ontogenesis, and have shown that during their 2006 

breeding season they occupied the same generalist consumer function across their range. 

Among the persistent but dynamic oceanic foraging habitats that we sampled, the Costa Rica 

Dome was unique and we encourage further investigation of its food web dynamics. 

The isotopic data generated in this study adds to the growing body of work describing 

stable isotope baseline data for marine organisms in the eastern Pacific Ocean (Arthur et al. 

2008, Olson et al. 2010, Ruiz-Cooley & Gerrodette 2012, Seminoff et al. 2012, Lorrain et al. 

2015). A natural future direction would be to estimate marine isoscapes across taxa and 

trophic levels (Somes et al. 2010, Ceriani et al. 2014, Vander Zanden et al. 2015) that can 

contextualize stable isotope ecological applications in the region. 
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II. A Characterization of the At-Sea mtDNA Composition of  

Panmictic Olive Ridley Sea Turtles (Lepidochelys olivacea) in the    

East Pacific Ocean 

Sea turtles generally have female philopatry, while gene flow is presumed to be largely 

male-mediated. Olive ridley sea turtles are found throughout the Pacific and Indian Oceans 

in sub-tropical and tropical waters between ~30˚N and ~20˚S, generally bound by the North 

Pacific and South Equatorial Currents. Mitochondrial DNA (mtDNA) has revealed at least 

27 Indo-Pacific olive ridley sequences (haplotypes), and a strong geographic separation of 

West and East basin breeding populations. Previous studies have found high genetic 

connectivity and weak structure across olive ridley rookeries. However, little is known about 

the at-sea genetic composition, or to what extent there is mixing between rookeries and 

isolated breeding populations. To determine the nesting stock origin of oceanic olive ridleys, 

we identified haplotypes (~775 bp) of 156 individuals (juveniles n=67, males n=49, females 

n=40) in the Gulf of California south to Colombia and from the Americas west to -116°. We 

compared East Pacific (EP) oceanic haplotypes to all known olive ridley haplotypes from 

rookeries across the Indo-Pacific and grouped similar haplotypes using maximum likelihood 

estimation. All but one olive ridley sampled in our study area most closely associated with 

EP rookery haplotypes. The exception was an adult female found in Costa Rican waters with 

haplotype Lo74, most closely associated with haplotype Lo44 from Northeast India. To our 

knowledge, Lo74 has not yet been reported at any rookery. 68% of all oceanic olive ridleys 

were haplotype Lo46, which has been reported at all EP source rookeries except Peru, and 

once at an Indian Ocean rookery. The detection of one Indian Ocean haplotype among the 

EP breeding population suggests at least occasional gene flow between geographically 
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isolated breeding regions. The separation of East and West Pacific and Indian Ocean 

haplotype groups supports the management of each region’s rookeries as separate units. We 

did not find mtDNA evidence differing solitary and mass nesting (arribada) rookeries, 

despite the uniqueness of the two nesting strategies. Based on these results and records of at-

sea mating, we infer that genetic mixing across EP rookeries occurs not just offshore nesting 

beaches, but also throughout open ocean regions where olive ridleys migrate and forage. 

With this study we have compiled all known Indo-Pacific olive ridley haplotypes and 

provided an important first characterization of the mtDNA makeup of oceanic olive ridleys 

in the EP. Despite the apparent stability and resilience of olive ridleys in the EP, low 

population structure and connectivity across sources rookeries suggests that disease and 

catastrophes have the potential to quickly reverberate through the breeding population on 

ecological time scales.  

A. Introduction 

Sea turtles face threats to their survival in all oceans around the globe, and the majority 

of populations are threatened or endangered. One or more rookery can make up a 

subpopulation, a geographically or otherwise distinct breeding group with little demographic 

or genetic exchange with other breeding groups distinguishing them evolutionarily and/or 

ecologically. Understanding the genetic structure of each breeding population is critical to 

effective conservation and management of rookeries and foraging areas as subpopulations 

can uniquely be resilient or susceptible to extinction. Examining at-sea genetic compositions 

and mixing can improve our understanding of how disparate extinction risks impact 

individuals in various habitats (nesting, foraging, migrating) across large land- and sea-

scapes (Wallace et al. 2011), and how those risks reverberate through the population. As 



 

 48 

such, it is important to understand how genes flow between rookeries of the same 

subpopulation, and between breeding populations (Shamblin et al. 2014).  

Turtle population structure is most commonly determined by studying genes of nesting 

females and/or hatchlings available on nesting beaches. Such studies have been completed 

for every extant sea turtle species around the globe, covering many of the known rookeries. 

Understanding how genes are or are not mixed between rookeries can be accomplished with 

a description of the genetic makeup of individuals within a breeding population (juveniles, 

adult males and females) across at-sea foraging and migration habitats, and the subsequent 

assignment of individuals to their origin (e.g., mixed stock analysis: (Bolker et al. 2007)). 

Such complimentary oceanic genetic composition studies are few due to logistical and 

resource constraints, and so relevant evolutionarily and/or ecologically meaningful 

groupings (e.g., ‘Distinct Population Segments’ for vertebrates as defined by the 1973 U.S. 

Endangered Species Act (see Pennock & Dimmick 1997); “Management Units” (MU) 

(Moritz 1994)) that are valuable to resource managers are weakly or un-defined.  

Wallace et al. (2010) addressed this need for sea turtles by dividing species around the 

globe into “regional management units” (RMUs), using mark-recapture and telemetry data 

in addition to, or in place of, available genetic information. Other studies with greater 

genetic resolution have shown that low-resolution approaches may mislead our 

understanding of breeding population structure, the connectivity between source rookeries 

within and between distinct populations, and our ability to inform appropriate conservation 

strategies. For example, a re-examination of the population structure of the critically 

endangered Caribbean hawksbill sea turtle using longer mitochondrial DNA (mtDNA) 

sequences revealed new population distinctions and colonization and dispersal pathways 
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(Leroux et al. 2012). With their results, the authors of the study were able to offer 

suggestions for updated hawksbill MUs for effective conservation of genetic diversity. The 

same was true for a re-analysis of mtDNA population structure and phylogeography 

completed by Shamblin et al. (2014) for Pacific green sea turtles. 

1. Male-Mediated Gene Flow 

Conventional understanding is that both males and females migrate to nesting beaches 

during the nesting season, while only females come on to the beach for egg-laying (Dizon & 

Balazs 1982, Limpus 1993, Plotkin et al. 1996, FitzSimmons et al. 1997a). As such, it is 

well understood that sea turtle genetic exchange happens during mating adjacent to nesting 

beaches (Ehrhart 1982, Alvarado & Figueroa 1989). Kopitsky et al. (2000) and Kopitsky 

(2002) described olive ridley sea turtle mating behavior (e.g., copulating pairs) a mean 

distance of 138 km from land and determined the reproductive status of females at-sea in the 

eastern Pacific via ultrasound between 1990 and 2003. In 1999, upon ultrasonic 

confirmation of enlarged follicles (an indication of preparing for fertilization), post-capture 

movements of four females were tracked via satellite transmitters. One female that was 

tagged 180 km from land was observed nesting in Ostional, Costa Rica, and the others 

emitted transmissions from nesting beaches shortly after release (20-54 days), often 

indicating several nesting events during the season. In her thesis, Kopitsky (2002) concluded 

that ~25% of the pelagic olive ridleys she sampled in the eastern tropical Pacific were 

mating. Myself and other sea-going researchers in the eastern Pacific Ocean note at-sea 

mating as common for olive ridleys (R. Pitman, pers. comm.). Such records of at-sea mating 

events broaden conventional understanding of olive ridley mating locations and timeframes, 

suggesting that genetic exchange among rookeries and isolated breeding populations is 
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likely male-facilitated via movement across the open ocean, in addition to known exchange 

during the mating season adjacent to nesting beaches (Figure 1, Appendix).  

 

Figure 1. Anecdotal observations (n=116) of at-sea mating olive ridley pairs 
throughout the eastern Pacific are displayed as white circles. These observations 
were recorded between 1990 and 2006 by the Southwest Fisheries Science Center, 
La Jolla, CA. Google Imagery © 2016 TerraMetrics. 

 

mtDNA approaches reveal relationships between lineages, and they do not shed light on 

male dynamics or male-mediated genetic exchange as nuclear DNA (nDNA) studies can. 

Further, low sample sizes and under-represented rookeries and oceanic sampling areas can 

restrain mtDNA studies. But because the relationships between gene flow and genetic 

differentiation is nonlinear, even small sample sizes can help resolve phylogeographic 

patterns. Even just a few individuals successfully moving between rookeries per generation 

can prevent genetic drift (Oyler-McCance & Leberg 2005), and these relationships are 

detectable with mtDNA approaches. Such studies, along with nDNA studies, estimates of 
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natal homing rates, dispersal probabilities, density-dependence and/or other influences can 

help resolve metapopulation dynamics, including gene flow.  

2. Indo-Pacific Olive Ridley Sea Turtle Phylogeography  

Olive ridley sea turtles (Lepidochelys olivacea) are widespread throughout the 

subtropical and tropical Pacific and Indian Oceans (Bowen et al. 1997). They are the second 

smallest of the seven extant sea turtles in size and are generalist omnivores (NMFS & 

USFWS 1998, Abreu-Grobois & Plotkin 2008, Peavey Chap 1 of this dissertation). Along 

with their congener found in the Gulf of Mexico, the Kemp’s ridley (Lepidochelys kempii) 

(Shaver & Wibbels 2007), Lepidochelys spp. nest both solitarily and en masse (100s to 

10,000s), known as an “arribada.” Olive ridleys are also unique in their lack of, or muted, 

ontonogenic habitat shifts that other sea turtle species typically undergo (e.g., loggerheads: 

Tomaszewicz et al. 2015). Instead, olive ridleys spend all life stages in the open ocean and 

so their behaviors and habitat use are challenging to directly observe.  

Although over 1.7 million individual olive ridleys in the eastern Pacific Ocean makes up 

the most abundant sea turtle breeding population in the world (Eguchi et al. 2007, Seminoff 

& Wallace 2012), most turtle research and resources have been concentrated on more 

critically endangered species, and so there are glaring gaps in our understanding of their  

basic biology and ecology. Shanker et al. (2004) proposed olive ridley colonization from 

west to east during the late Pleistocene. mtDNA studies have identified 27 Indo-Pacific olive 

ridley sequences (haplotypes) and a strong geographic separation of western and eastern 

breeding populations. Bowen et al. (1997), Shanker et al. (2004), and others have shown low 

mtDNA differentiation across multiple olive ridley subpopulations. Rodríguez-Zárte et al. 

(2013) showed high connectivity and weak nDNA structure across nesting colonies in 
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Mexico. From these and other foundational studies, we assume that the Indian and West 

Pacific breeding populations are genetically separate from the East Pacific breeding 

population, and that genetic structure within each basin is low. There are not distinct 

population segment designations to reflect this (NMFS & USFWS 2014), however RMUs 

designations do (Wallace et al. 2011). 

In the East Pacific, there is potentially over 5,000 kms of olive ridley nesting habitat 

along Mexico, Central and South America. Only six source rookeries have published 

mtDNA information (Baja California Sur (n=46), Sinaloa (n=14), Guerrero (n=12), Oaxaca 

(n=17) (Mexico); Costa Rica (n=32); Peru (n=1)); all have low sample sizes. Throughout 

their range, higher-resolution population structure and comprehensive mixed-stock analyses 

of olive ridleys are needed. For example, Roberts et al. (2004) found that Indian and Atlantic 

Ocean green sea turtles (Chelonia mydas) are connected via recent or ongoing migration 

between ocean basins, suggesting the occurrence of more substantial geographic overlap of 

demographically independent sea turtle populations during foraging or migration than 

previously presumed. In contrast, although Amorocho et al. (2012) reported juvenile western 

Pacific green turtles in eastern Pacific waters, no Hawaiian or East Pacific green turtle 

haplotype has been recorded at West Pacific rookeries (Shamblin et al. 2014). One 

explanation is that a phylogeographic barrier restricted dispersal between breeding 

populations around 0.336 mya (Shamblin et al. 2014); which implies colonization occurred 

at different time scales or mechanisms for Pacific green and olive ridley sea turtles. These 

studies highlight the evolutionary and ecological insights resulting from an enhanced 

understanding of the magnitude of geographic overlap and gametic exchange among 

breeding populations. 
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The RMU approach assessed conservation status and overlap separately for solitary and 

arribada (mass nesting) olive ridley nesting rookeries. Wallace et al. (2011) concluded that 

of the eight global olive ridley RMUs, the three Indian Ocean (Northeast (solitary); 

Northeast (arribada); West (solitary, putative)) are among the top four most endangered in 

the world due to the presence of high threats (e.g., fisheries bycatch) and low population 

abundances. In contrast, the two East Pacific (soliatary; arribada) and one West Pacific 

(solitary) RMUs are currently at a low risk of extinction, despite the presence of threats, 

because their abundances are relatively high (Wallace et al. 2011). Overlap between the six 

Indo-Pacific olive ridley RMUs, three with high risk of extinction and three with low risk of 

extinction, is most probable in the Central Pacific where West and East RMUs meet. Given 

their disparate extinction risks, it is imperative that we better understand the connectivity 

between and resilience of each breeding region. 

Mysterious inter-nesting behavior presents an added challenge for studying olive ridleys 

at-sea. Other turtle species show both nesting and foraging site fidelity (e.g., Atlantic green 

turtles: Makowski et al. 2006), while there is no evidence to suggest olive ridleys have 

fidelity to specific oceanic feeding locations (Plotkin 2010, Peavey Chap 1 of this 

dissertation). In this study we use a unique set of tissue samples from a large-scale at-sea 

sampling effort to describe the haplotype composition of 156 olive ridleys found in the East 

Pacific basin, and assign them to nesting origins based on haplotype databases. We found a 

mixed composition of 19 different haplotypes with no apparent spatial pattern across the 

study area. All but one of the oceanic haplotypes most closely associated with East Pacific 

rookeries, and Lo46 was overwhelmingly the most abundant (~68%) and widespread 

haplotype. The apparent connectivity of source rookeries combined with the lack of mtDNA 
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structure among individuals across the eastern Pacific seascape is a classic example of 

panmixia. We discuss implications for genetic exchange between breeding populations in 

terms of stability, resilience, and management units.   

B. Methods 

1. Sample Collection 

350 olive ridleys were opportunistically hand-captured and released at-sea from the 

National Oceanographic and Atmospheric Administration R/V David Starr Jordan during 

the Stenella Abundance Research cruise in 2006 between the months of August and 

December. Location, sex (generally for turtles with straight carapace length >56 cm: long 

tail = male, short tail = female), and morphometric information were recorded, and tissue 

(blood and skin) samples were collected from the dorsal surface of the neck. Red blood cells 

and plasma were immediately separated using centrifuge, and blood and skin samples were 

stored at -80°C until transported to archive at -20°C at the Southwest Fisheries Science 

Center (SWFSC) Marine Mammal and Turtle Molecular Research and Stable Isotope 

Sample Collections (La Jolla, CA, USA).  

2. Laboratory Analysis 

Genomic DNA was extracted, amplified, and purified from 156 samples of blood and 

skin as described by LaCasella et al. (2013). Negative controls were used to detect 

contamination. Sequences were trimmed to a ~775 base-pair (bp) high quality fragment of 

the control region and assigned mitochondrial haplotypes based on SWFSC Marine Turtle 

Molecular Research and GenBank (http://www.ncbi.nlm.nih.gov) databases. 
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3. Nomenclature 

We identified nomenclature for Indian and Pacific Ocean haplotypes, Wallace et al. 

(2011)-defined Regional Management Units (RMUs)), and associated GenBank IDs. We 

standardized nomenclature for all 27 Indo-Pacific haplotypes with a “Lo” prefix and 

numerically sequential names based on Southwest Fisheries Science Center standards, and 

submitted to GenBank as needed. 

4. Statistical Analysis 

All 27 known Indo-Pacific haplotypes were assessed for relatedness using maximum 

likelihood in MEGA6.06 (Tamura et al. 2013). A phylogenetic tree was estimated with 

Lepidochelys kempii as the out-group. Pearson’s Chi-square (χ2) was used to test the null 

hypothesis that oceanic haplotype frequency proportions were equal to hypothesized oceanic 

foraging regions: Gulf of Mexico, North Equatorial Current, East Pacific Warm Pool, Costa 

Rica Dome (Peavey Chap 1 of this dissertation). Statistical analyses were completed in R (R 

Core Team 2013). 

5. Documentation of Mating Pairs 

Between the years of 1990 and 2006, the locations of 123 pairs of mating hard-shell sea 

turtles (116 olive ridleys) were recording by visual observers during ship-based line transect 

surveys conducted in the eastern Pacific Ocean by four National Oceanographic and 

Atmospheric Administration research vessels: David Starr Jordan, McArthur, McArthur II, 

and Endeavor.  
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C. Results 

We sequenced 19 unique haplotypes across 156 olive ridley sea turtles in the eastern 

Pacific Ocean (Table 1). Table 2 lists all 27 known haplotypes sequenced across Pacific and 

Indian Ocean rookeries, previously and in this study. All East Pacific, West Pacific, and 

Indian Ocean RMUs are represented in this study, except for the putative West Indian RMU. 

Peru is the most southeast known Pacific olive ridley nesting area, but Peruvian waters were 

not sampled in this study, and thus Peruvian source haplotype information is not included in 

Figure 3. 

All turtles in this study associate with East Pacific rookery haplotypes, with the 

exception of one Lo74 adult female (straight carapace length = 60.2 cm) found in Costa 

Rican waters (Figure 1). Lo74 most closely associates with Lo44, described at the solitary 

east coast India rookery, Madras.  

We observe Lo27 three times in disparate East Pacific locations spanning >15 

degrees of latitude and >25 degrees of longitude (see Table 1). Previous studies have only 

recorded Lo27 three times at nesting beaches in both West and East Pacific breeding 

populations: twice in Costa Rica; once in Australia (Table 2). 

Lo46 accounts for 68% (n=106) of observed haplotypes (Figure 2) and is ubiquitously 

observed at solitary and arribada East Pacific rookeries except Peru. Prior to this study, 

Lo46 has been observed once outside of the East Pacific, at Madras (Shanker et al. 2004).  

Although Peavey (Chap 1 of this dissertation) hypothesized distinct oceanic foraging 

sub-regions in the eastern Pacific based on persistent oceanographic features (e.g., Costa 

Rica Dome), chi-squared analysis of a 4x18 contingency table suggests no significant 
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association between at-sea haplotype frequency and sub-region (X2(51) = 46.82, p-value 

=0.6402, alpha = 0.05).  

Table 1. Olive ridley capture date, location, gender (M = male, F = female, I = 
immature), straight carapace length (cm; no data is represented as —), and mtDNA 
haplotype (n=156) based on ~775 bp. 

 

2006 Capture Date 

 

Capture Location 

 

Morphometrics 

 

mtDNA 

Month Day Longitude Latitude Gender 

Straight 

Carapace 

Length (cm) 

Haplotype 

8 5 -113.33 23.10 M 56.8 Lo46 

8 8 -111.95 20.67 M 61.1 Lo54 

8 9 -110.07 21.12 M 67.2 Lo54 

8 10 -108.62 23.55 M 63 Lo46 

8 10 -108.68 23.60 M 56.4 Lo46 

8 10 -108.69 23.60 I 55.6 Lo46 

8 10 -108.65 23.62 I 58.9 Lo46 

8 10 -108.78 23.70 M 60.2 Lo54 

8 10 -108.95 23.88 M 60.6 Lo52 

8 10 -108.95 23.89 I 21.3 Lo28 

8 10 -109.03 23.94 F 60 Lo46 

8 10 -109.02 23.93 F 63.7 Lo46 

8 10 -109.07 24.10 F 61.2 Lo46 

8 10 -109.17 24.17 I 25.1 Lo54 

8 10 -109.20 24.27 M 66.5 Lo46 

8 10 -109.20 24.32 F 57.7 Lo71 

8 10 -109.30 24.50 F 54 Lo52 
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8 10 -109.28 24.50 F 60 Lo46 

8 11 -111.00 26.48 F 63.2 Lo27 

8 13 -107.92 23.78 I 51 Lo46 

8 13 -107.65 23.86 I 53 Lo46 

8 13 -107.90 23.79 I 48.6 Lo46 

8 13 -107.88 23.75 I 59.1 Lo46 

8 13 -107.85 23.73 M 58.4 Lo46 

8 13 -107.83 23.70 F 59.2 Lo46 

8 13 -107.83 23.66 F 60.9 Lo46 

8 13 -107.82 23.65 F 59.8 Lo46 

8 13 -107.73 23.55 M  — Lo46 

8 17 -106.31 22.76 F 61.9 Lo46 

8 17 -106.38 22.67 I 22.9 Lo28 

8 20 -111.93 15.60 F 62.1 Lo46 

8 30 -92.48 6.27 F 62.9 Lo54 

8 30 -92.48 6.27 I 58.4 Lo46 

9 2 -87.08 7.13 M 61.4 Lo46 

9 3 -86.58 8.60 M 59.7 Lo46 

9 3 -86.58 8.60 F 60.2 Lo74 

9 9 -84.60 9.29 M 58.8 Lo27 

9 3 -86.48 8.57 M 57.8 Lo46 

9 12 -78.24 6.65 I 57.4 Lo46 

9 14 -78.25 6.66 I 49.3 Lo46 

9 18 -84.82 6.82 F 58.4 Lo46 

9 18 -84.83 6.93 M 68.8 Lo46 
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9 18 -84.83 6.97 M 59.6 Lo46 

9 18 -84.88 7.18 F 63.3 Lo46 

9 19 -85.62 8.85 M 63.3 Lo52 

9 19 -85.65 9.10 M 64.5 Lo52 

9 19 -85.71 9.20 M 60.1 Lo72 

9 19 -85.71 9.26 M 67.7 Lo46 

9 19 -85.86 9.86 M  — Lo46 

9 19 -85.86 9.86 F 59.1 Lo46 

9 19 -85.72 9.40 F 56.7 Lo46 

9 19 -85.72 9.40 I 56.8 Lo54 

9 19 -85.85 9.82 F 57.8 Lo55 

9 19 -85.92 9.95 M 59.5 Lo46 

9 20 -86.80 10.75 F 62.7 Lo46 

9 20 -86.79 10.76 M 57.6 Lo46 

9 20 -86.79 10.09 M 62.1 Lo46 

9 20 -86.96 10.71 F 53.8 Lo46 

9 20 -87.15 10.58 I 45.2 Lo33 

9 20 -87.15 10.58 M 64.3 Lo46 

9 20 -87.22 10.53 F 60.2 Lo46 

9 20 -87.22 10.53 M 66.5 Lo57 

9 20 -87.49 10.48 M 65.4 Lo46 

9 23 -91.62 7.33 I 22.8 Lo46 

9 23 -91.66 7.55 M 65.7 Lo46 

9 23 -91.85 7.88 F 59 Lo46 

9 24 -91.72 7.96 I 28.6 Lo46 
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9 24 -91.61 7.94 I 29.5 Lo46 

9 24 -91.75 7.95 I 32 Lo79 

9 24 -91.77 7.99 M 64.6 Lo57 

9 24 -90.77 8.98 I 17.4 Lo46 

9 24 -90.74 9.18 M 68.2 Lo52 

9 24 -90.67 9.40 F 60.3 Lo46 

9 24 -90.67 9.38 M 61.3 Lo46 

9 25 -89.64 10.70 I 46.5 Lo46 

9 26 -90.11 12.51 M 65.2 Lo52 

10 3 -90.83 13.72 M 63.1 Lo46 

10 3 -90.83 13.72 M 61.8 Lo52 

10 3 -90.88 13.64 F 59.4 Lo46 

10 3 -90.89 13.61 M 64.3 Lo46 

10 3 -90.95 13.60 I 55.8 Lo31 

10 3 -90.98 13.53 F  — Lo27 

10 4 -91.68 11.92 M 66.2 Lo46 

10 4 -91.68 11.87 M 62.3 Lo46 

10 4 -91.72 11.82 I 46.7 Lo62 

10 4 -91.73 11.80 M 63.3 Lo46 

10 4 -91.80 11.68 F 61 Lo60 

10 4 -91.93 11.33 F 58.9 Lo46 

10 5 -92.90 9.33 I 43.2 Lo46 

10 7 -94.30 10.28 I 31 Lo46 

10 7 -94.26 10.38 M 64 Lo59 

10 7 -94.26 10.39 F 63.5 Lo46 
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10 7 -94.25 10.60 M 62.1 Lo46 

10 7 -94.25 10.55 M 59.3 Lo46 

10 7 -94.23 10.58 M 61.6 Lo72 

10 7 -94.23 10.58 F 65 Lo46 

10 7 -94.25 10.53 I 54.2 Lo71 

10 7 -94.25 10.55 I 57.4 Lo46 

10 7 -94.25 10.53 I 42.1 Lo46 

10 7 -94.25 10.87 I 30.2 Lo46 

10 8 -94.06 13.67 I 28.3 Lo46 

10 9 -94.02 15.47 F 58.7 Lo31 

10 9 -94.02 15.47 F 62.8 Lo46 

10 11 -98.20 10.67 F 63.2 Lo46 

10 21 -101.23 15.18 I 24.5 Lo46 

10 26 -100.42 15.80 I 28.2 Lo46 

10 26 -100.42 15.80 I 27.4 Lo46 

10 26 -100.52 15.88 M 60.6 Lo34 

10 27 -99.90 15.35 I 24 Lo52 

10 27 -99.88 15.38 M 57.1 Lo54 

10 27 -99.86 15.40 M 61.7 Lo46 

10 27 -99.80 15.50 F 58.9 Lo46 

10 28 -99.17 15.02 I 27.4 Lo46 

10 28 -99.52 15.05 I 24.7 Lo54 

10 29 -98.45 14.75 I 26.3 Lo46 

10 29 -98.62 14.82 I 6.6 Lo46 

10 29 -98.53 14.57 F 56.3 Lo46 
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10 30 -98.95 14.98 F 56.9 Lo83 

11 1 -100.93 15.50 I 52.8 Lo46 

11 1 -100.90 15.53 F 59.7 Lo61 

11 2 -100.05 15.58 I 33.5 Lo52 

11 2 -99.95 15.37 I 25.7 Lo46 

11 3 -99.50 15.47 M 62.5 Lo46 

11 4 -98.70 14.98 I 29.5 Lo46 

11 4 -98.45 14.95 I 22.1 Lo54 

11 5 -97.05 15.17 I 4.18 Lo46 

11 5 -97.08 15.17 I 17.6 Lo59 

11 5 -97.10 15.13 F 53.5 Lo46 

11 6 -99.40 12.63 M 63.5 Lo46 

11 12 -106.35 13.97 I 22.2 Lo46 

11 25 -104.57 19.00 I 58.4 Lo46 

11 26 -105.90 19.00 I 29.2 Lo46 

11 26 -105.95 18.98 I 19.7 Lo46 

11 26 -105.95 18.95 I 25.1 Lo34 

11 26 -105.97 18.95 I 33.6 Lo54 

11 26 -106.07 18.92 I 46.8 Lo28 

11 26 -106.10 18.80 I 22.5 Lo46 

11 26 -106.10 18.80 I 32.8 Lo46 

11 26 -106.12 18.78 M 63.6 Lo60 

11 26 -106.12 18.78 I 25 Lo46 

11 26 -106.17 18.72 I 24.4 Lo46 

11 26 -106.18 18.72 I 21.9 Lo57 
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11 26 -106.17 18.72 I 28.9 Lo46 

11 26 -106.20 18.68 I 27.5 Lo46 

11 26 -106.22 18.60 I 30.3 Lo46 

11 26 -106.25 18.55 F 63 Lo46 

11 26 -106.28 18.45 I 22.9 Lo54 

11 26 -106.30 18.48 I 30.6 Lo54 

11 26 -106.31 18.49 I 20.2 Lo46 

11 26 -106.37 18.45 F 61.2 Lo46 

11 26 -106.37 18.45 I 28.6 Lo46 

11 26 -106.38 18.45 I 24.7 Lo46 

11 26 -106.43 18.43 I 25.4 Lo46 

11 27 -108.03 16.75 I 54.6 Lo46 

11 30 -113.40 16.98 I 27.6 Lo46 

12 2 -116.32 19.63 M 59.8 Lo54 



 

 

Table 2. 27 mtDNA haplotype frequencies across the Indo-Pacific are organized according to GenBank identifiers, Regional 
Management Units (Wallace et al. 2010), and hypothesized oceanic foraging sub-regions (Peavey Chap. 1). Only one haplotype 
sequenced in this study exists in GenBank (Lo27, Accession No. KC207830). Although the other 18 have been sequenced, they 
have not yet been submitted to GenBank but have been cataloged in the Southwest Fisheries Science Center Marine Turtle 
Molecular Research database (La Jolla, CA, USA). With this paper, the remaining 18 haplotype sequences are submitted to 
GenBank. Frequencies highlighted in gray represent haplotypes that closely associate with East Pacific rookeries (see Figure 
1). 

 

Haplotype GenBank Frequencies at Rookeries Frequencies At-Sea
East Pacific (Arribada RMU) East Pacific (Solitary RMU) Northeast Indian (Arribada RMU) Northeast Indian (Solitary RMU) West Pacific (Solitary RMU) Hypothesized oceanic foraging region (Peavey Chap. 1)

Guerrero, Mexico Oaxaca, Mexico
Baja California Sur, 

Mexico Sinaloa, Mexico Costa Rica Peru Gahirmatha Devi Mouth Rushikulya Madras (India)
Tiwi Islands 
(Australia)

McCluer Group 
Islands 

(Australia)
Flinders Beach 

(Australia)
Gulf of 

California

North 
Equatorial 

Current
East Pacific 
Warm Pool

Costa Rica 
Dome Other TOTAL

Current Previous No. of base pairs Accession No. ID
Lopez-Castro and 

Rocha-Olivares 2005
Lopez-Castro and 

Rocha-Olivares 2005
Lopez-Castro and 

Rocha-Olivares 2005
Lopez-Castro and 

Rocha-Olivares 2005

Jensen et al. 2013; 
Lopez-Castro and 

Rocha-Olivares 2005
Kelez et al. 

2009
Shanker et al. 

2004
Shanker et al. 

2004
Shanker et al. 

2004 Shanker et al. 2004
Jensen et al. 

2013
Jensen et al. 

2013
Jensen et al. 

2013 n = 25 n = 31 n = 55 n = 38 n = 4 156
Lo1 782 JN391445 399658676 51 7 9
Lo15 782 JN391459 399658690 2 7 3 6
Lo2 781 JN391446 399658677 1 2
Lo21 782 JN391465 399658696 1

Lo27
774 (this study); 
782 (GenBank) KC207830 478304818 2 1 1 1 1 3

Lo28 774 2 1 3
Lo3 782 JN391447 399658678 1 9
Lo31 773 2 2
Lo33 774 1 1
Lo34 774 1 1 2
Lo4 782 JN391448 399658679 3
Lo44 unknown 18 12 12 13
Lo46 774 11 13 44 9 12 1 19 20 31 29 7 106
Lo5 782 JN391449 399658680 1

Lo52 776 1 1 2 7 2 5 2 9
Lo54 775 2 6 3 1 1 13
Lo55 752 1 1
Lo57 776 1 1 1 3
Lo59 774 2 2
Lo60 774 1 1 2
Lo61 775 1 3 1 3 10 1 1 1
Lo62 775 1 1 1
Lo71 775 1 1 2
Lo72 775 1 1 2
Lo74 768 1 1
Lo79 775 1 1
Lo83 775 1 1

TOTAL 12 17 46 14 32 1 20 12 12 14 64 11 27

64 
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Figure 1. Maximum likelihood phylogenetic tree showing genomic similarities 
between mtDNA haplotypes, using Lepidochelys kempii (Kemp’s Ridley) as the out-
group. Haplotypes are geographically grouped with brackets by ocean basin: East 
and West Pacific, Indian Ocean. Haplotypes indicated with an asterisk were 
sampled in the eastern Pacific Ocean in this study. 
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Figure 2. 156 individual oceanic Pacific olive ridleys are displayed as circles across 
the eastern Pacific seascape study area; mtDNA samples are from 2006 (see Table 1 
for sample details). Haplotype Lo46 is displayed in green across 106 individuals, 
while all other haplotypes (n=18) across the remaining 50 individuals are displayed 
in black. See Figure 3 to view the haplotypes of the non-Lo46 individuals.  
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Figure 3. Fifty individual oceanic Pacific olive ridley non-Lo46 haplotypes 
(n=18) are displayed as colored circles across the eastern Pacific seascape study 
area; mtDNA samples are from 2006 (see Table 1 for sample details). Haplotype 
sources (n=5) that were collected over several years and studies (see Table 2) 
are displayed as pie charts. Inset [A] on the bottom left is a breakdown of all the 
at-sea haplotypes (n=19), including the most common haplotype, Lo46. See 
Figure 2 for the location of at-sea Lo46 individuals.
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D. Discussion 

This study provides the most comprehensive summary of Indo-Pacific olive ridley 

haplotypes since Bowen et al. (1997). It also represents the only characterization of at-sea 

mtDNA composition of olive ridley sea turtles in the eastern Pacific. We found that the 

tropical and sub-tropical eastern Pacific Ocean appears to provide habitat to a mix of turtles 

from East Pacific source rookeries, with minor contribution from West Pacific and Indian 

Ocean source rookeries. Lo46 was overwhelming the most common and widespread at-sea 

haplotype. Aside from Lo46, the distributions of the other 18 haplotypes are heterogeneous 

across space and demography. These results reflect the weak population structure observed 

across East Pacific rookeries, as well as across eastern India (Bowen & Karl 2007). These 

results are not unexpected based on our previous understanding of the separations between 

olive ridley breeding populations, and mirrors other highly mobile, broadly distributed 

oceanic megavertebrates with mixed stock composition (e.g., sharks: Cardenosa et al. 2014; 

Atlantic bluefin tuna: Carlsson et al. 2006). Analogous with other migratory species 

characterized by both philopatry of females and opportunistic mating by males, the East 

Pacific olive ridley breeding population structure is complex (Bowen et al. 1997, Kassahn et 

al. 2003, Bowen et al. 2005). 

Lo46 has previously been recorded at all East Pacific rookeries (solitary and arribada) 

(Figure 3) except in Peru, and once at Madras, India (Shanker et al. 2004). Only one 

haplotype has been described in Peru to date, Lo61 (Kelez et al. 2009). Lo61 has been 

described at all six source East Pacific rookeries (Baja California Sur, Sinaloa, Guerrero, 

Oaxaca, Costa Rica, Peru), yet in this study we only observed one Lo61 at-sea individual. 

Similarly, while Lo54 was the distant second most common at-sea haplotype (n=13) 
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observed in our dataset, it has yet to be formally described at any rookery in the East Pacific. 

These observations illustrate that even with modest sample sizes, gene flow between 

rookeries and between breeding populations is detectable.  

One observation of an Indian Ocean haplotype (Lo74) among eastern Pacific oceanic 

olive ridleys is interesting, but not extraordinary. Recall that Lo46, the ubiquitous East 

Pacific haplotype, has been recorded in India; and that Lo27 has been recorded in Australia. 

Although one in 156—less than 1%—may seem small, we do no believe that this is a rare 

event. Instead, we believe that because detection from one ocean basin to another occurred 

in just over 150 samples out of a breeding population of >1.7 million, it reveals that 

connectivity between distinct breeding populations exists. In other words, we believe that if 

we were to sequence additional eastern Pacific oceanic olive ridleys, we would find 

additional haplotypes associated with non-EP rookeries. This could be tested, for example 

by sampling individuals bycaught by fishing vessels e.g., (Stewart et al. 2016).  

We conclude that it is reasonable to assume that any olive ridley sea turtle encountered 

in the eastern Pacific Ocean is most likely native to an East Pacific rookery; but drawing 

conclusions about fidelity to a specific rookery is premature. Likewise, it is unreasonable to 

presume any association between olive ridleys observed in a persistent and distinct 

oceanographic region (e.g., the Gulf of California) and specific East Pacific rookery. Bowen 

and Karl (2007) previously suggested that shallow population structure may indicate low 

site specificity in nesting females, as compared to other sea turtles (e.g., Florida 

loggerheads: Tucker 2010). While our results cannot test their hypothesis, they do support 

the consideration of olive ridleys across the eastern Pacific seascape as one panmictic 

population, a theory pervasive in the literature to date. Strong site fidelity is understood to 
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restrict gene dispersal in sea turtles (Allard et al. 1994), and so future research that describes 

the degree and variation of fidelity across East Pacific rookeries could refine our 

understanding of olive ridley population structure and connectivity.  

Although Wallace et al. (2011), the IUCN Red List (Abreu-Grobois & Plotkin 2008), 

and the U.S. Endangered Species Act distinguishes between East Pacific rookeries by 

nesting strategy (solitary vs. arribada), and East Pacific rookery decline estimates vary 

dramatically between arribada and non-arribada strategies (as low as 31% vs. upwards of 

83%, respectively (Abreu-Grobois & Plotkin 2008)), our mtDNA analyses are not able to 

distinguish between the contributions of the two rookery types to at-sea stock composition. 

Literature suggests that isolated management units will thrive or expire without significant 

input from other populations, thus supporting the need for unit-specific management 

regimes (Bowen et al. 2005). In this case, encapsulating all East Pacific rookeries into one 

RMU as does Wallace et al. (2011) appears sensible. Our results provide less support for 

separate RMUs for disparate nesting strategies, however follow-on studies testing olive 

ridley site fidelity specific to the two contrasting nesting strategies, as well as more robust 

mtDNA descriptions of source rookeries, would help to validate solitary- and arribada-

specific RMUs.  

While useful to understand population structure of nesting beaches, describing the 

genetic composition of oceanic sea turtles based on haplotype frequencies alone has its 

limitations, some outlined in Bowen and Karl (2007). One important limitation is that 

nesting colonies are not always differentiated in haplotype frequencies, in which case 

feeding aggregations would not be expected to be, either. Mixed-stock analysis is useful in 

answering specific questions, here revealing that while not often, olive ridley haplotypes 
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from distant breeding populations can turn up on eastern Pacific feeding grounds (e.g., 

Lo74, this study), and likewise a haplotype from the East Pacific breeding population can be 

detected on a distant nesting beach (e.g., Lo27, Shanker et al. 2004). Although mtDNA 

information does not give indication about male dynamics, Lo46 being so common and 

widespread in the East Pacific olive ridley breeding population across a substantial sample 

size provides evidence that fine-scale structure is lacking. This is true in other species with 

greater population structure, such as haplotype CmP4 in foraging eastern Pacific green 

turtles (Dutton et al. 2008, Amorocho et al. 2012), making precise stock assignment difficult 

or, as in this study, nearly impossible.  

Mechanism for mixing and connectivity is not apparent with maternally-inherited 

mtDNA data alone, and gene flow between rookeries of the same and/or distinct breeding 

populations is not quantifiable with our approach. However, we recognize that exchange 

cannot be insignificantly low since it was detected in this study. Dispersal in highly 

migratory marine vertebrates is influenced by behavior and ecology (e.g., Antarctic fur 

seals: Okuyama & Bolker 2005, Hoffman & Forcada 2012), and as such, genetic mixing can 

occur on ecological timescales much faster than evolutionary timescales (Bowen et al. 1993, 

Bowen and Karl 2007). Since it is believed that male sea turtles are the conduit for gene 

flow within and between breeding populations (Karl et al. 1992, FitzSimmons et al. 1997a, 

FitzSimmons et al. 1997b, Roberts et al. 2004), we can conclude that at least some males are 

traveling between rookeries and breeding populations. Our observation of one Indian Ocean 

rookery-associated adult female among the East Pacific breeding population suggested that 

perhaps it is not only male olive ridleys that occasionally make trans-oceanic migrations. 

However such a conclusion regarding social female-facilitated gene flow between nesting 
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populations with overlapping oceanic feeding grounds (Bowen et al. 1989, Bass et al. 1996, 

Bowen and Karl 2007) requires telemetry and/or biochemical tracking validation. 

At present, low population structure, high at-sea mixing of olive ridley mtDNA, and 

large relative population size in the eastern Pacific suggests resilience against genetic 

bottlenecking, and high haplotype richness of the at-sea composition is indicative of long-

term population stability. More robust sampling would help to confirm low haplotype 

diversity across East Pacific sources rookeries, and validate analyses dependent on 

categorizing haplotypes frequencies and distributions.  

Although we are unable to assign at-sea individuals at a resolution finer than an ocean 

basin (i.e., to a specific rookery), we are able to gain useful insights regarding how threats 

specific to regions and/or habitats will affect the population (see Jensen et al. 2013), and 

regarding scale of management (e.g., RMUs). If olive ridleys showed strong sub-structuring, 

like salmon, local or regional impacts could potentially wipe out an entire rookery without 

affecting the entire breeding population. However, because the East Pacific breeding 

population is well-mixed, local threats could potentially aggregate up and reverberate to 

other rookeries quite quickly, affecting overall mortality rates at much larger scales than the 

threat itself. These dynamics could be particularly concerning for catastrophes (e.g., red 

tides) and disease outbreaks (Ene et al. 2005, Cross et al. 2009).  

The study raises a number of questions that encourage additional data collection and 

analyses of both mtDNA and nDNA. First, are there certain rookeries that are unique 

sources for any of the low-frequency haplotypes identified in the at-sea composition? To 

date, Lo62 has only been observed in Costa Rica rookeries. Only a few Lo62 individuals 

were observed at-sea across the breeding population, but more robust sampling could 
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validate the distribution of Lo62 and other uncommon haplotypes. From the results of this 

study, probabilities could be calculated to develop testable hypotheses for future studies. 

Second, is low richness at source rookeries representative of founder events? Theoretically: 

establishment (e.g., Ixtapilla, Michoacán, Mexico) and re-establishment after genetic 

bottlenecking (relatedness of individuals increase with associated loss of heterozygosity 

(Nei et al. 1975)) occurred when this population was greatly reduced due to overharvest 

between 1960-1990 (Rodríguez-Zárate et al. 2013). Detecting a bottleneck is difficult 

without pre-bottleneck samples, an illustration of why baseline genetic characteristics are so 

important for population biology, monitoring, and conservation. Even with a large reduction 

in population size, if recovery happens quickly genetic variation may not be lost (Queney et 

al. 2000, Spencer et al. 2000). Due to cessation of commercial fishing and decades of 

conservation efforts, olive ridleys in the eastern Pacific have recovered to over 1.7 million 

at-sea individuals (Eguchi et al. 2007) and over 75,000 nesting females (Abreu-Grobois & 

Plotkin 2008), conservatively around 8% of its assumed pre-harvest nesting population of 

well over 10 million. While some rookeries are thought to be stabilizing, others are still low 

and/or in decline, and yet others have not been re-colonized (e.g., arribadas in Jalisco and 

Guerrero, Mexico: Abreu-Grobois & Plotkin 2008; solitary rookery Mismaloya, Mexico: 

Rodríguez-Zárate et al. 2013). Lastly, it is unclear if any haplotypes (lineages) are unique to 

nesting strategy. Addressing these questions on the heels of this study and Rodríguez-Zárate 

et al. (2013), we can better understand conservation implications of location-based threats 

and thus prioritize the protection of rookeries and oceanic habitats based on explicit 

objectives to preserve the stability and resilience of this population as changes such as 

climate and habitat loss loom.  
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Appendix  

Anecdotal observations (n=123) of at-sea mating hardshell sea turtles throughout the 

eastern Pacific, recorded between 1990 and 2006 by the Southwest Fisheries Science Center, 

La Jolla, CA. Species codes: LO = Lepidochelys olivacea, CM = Chelonia mydas, CC = 

Caretta caretta, unid = unidentified hardshell sea turtle. LO mating pairs are mapped in 

Figure 1. 

 

Month Day Year Longitude Latitude Species 

 

9 26 1990 -81.95 5.09 LO 

9 28 1990 -83.92 8.08 LO 

9 28 1990 -83.93 8.12 LO 

8 5 1992 -97.23 15.08 LO 

8 5 1992 -96.55 15.06 LO 

8 6 1992 -97.93 15.14 LO 

8 6 1992 -97.38 15.11 LO 

8 7 1992 -90.30 13.03 LO 

8 8 1992 -87.07 12.01 LO 

8 8 1992 -87.72 11.06 LO 

8 9 1992 -88.20 10.14 LO 

8 10 1992 -89.20 9.13 LO 

8 18 1992 -93.03 10.02 LO 

8 19 1992 -92.65 10.06 LO 
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8 20 1992 -93.60 7.08 LO 

8 21 1992 -91.43 10.07 LO 

8 25 1992 -89.73 13.01 LO 

8 31 1992 -90.70 13.14 LO 

9 1 1992 -89.40 11.09 LO 

9 4 1992 -86.60 9.10 LO 

9 4 1992 -86.28 9.06 LO 

9 4 1992 -86.13 9.04 LO 

9 5 1992 -84.48 8.12 LO 

9 10 1992 -86.03 8.16 LO 

9 23 1992 -83.18 8.01 LO 

9 23 1992 -84.13 8.11 LO 

9 24 1992 -84.90 9.08 LO 

10 21 1992 -81.52 7.03 LO 

10 8 1993 -106.00 20.15 LO 

8 19 1998 -105.79 21.92 unid 

8 22 1998 -103.67 18.49 LO 

8 23 1998 -102.92 17.79 LO 

8 25 1998 -97.13 15.09 LO 

8 26 1998 -94.99 15.86 LO 

8 29 1998 -90.35 11.78 unid 

8 30 1998 -90.63 13.65 LO 

8 31 1998 -88.97 12.32 LO 
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9 1 1998 -87.35 11.56 unid 

9 3 1998 -84.56 9.15 LO 

9 4 1998 -84.02 8.53 LO 

9 6 1998 -78.80 7.06 LO 

9 6 1998 -80.95 7.09 LO 

9 6 1998 -80.94 7.08 LO 

9 24 1998 -105.40 18.88 LO 

10 4 1998 -100.51 14.66 LO 

10 21 1998 -89.70 10.01 LO 

10 30 1998 -86.62 6.92 LO 

8 10 1999 -108.70 23.58 LO 

8 20 1999 -104.73 19.03 LO 

9 7 1999 -103.35 16.29 LO 

9 13 1999 -99.95 16.74 LO 

9 13 1999 -99.93 16.09 LO 

9 20 1999 -96.73 14.24 LO 

9 28 1999 -85.61 8.35 LO 

9 29 1999 -87.30 10.56 LO 

9 29 1999 -87.30 10.56 LO 

9 30 1999 -85.58 9.57 LO 

10 7 1999 -87.25 9.44 LO 

10 7 1999 -87.26 9.74 LO 

10 7 1999 -87.29 9.92 LO 
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10 7 1999 -87.13 9.02 LO 

10 8 1999 -83.98 8.73 LO 

10 8 1999 -83.70 8.27 LO 

10 8 1999 -84.08 8.14 LO 

10 9 1999 -88.74 10.01 LO 

11 22 1999 -88.80 7.09 LO 

11 25 1999 -116.89 15.56 LO 

8 8 2000 -108.87 21.87 CC 

8 12 2000 -106.03 20.14 LO 

8 15 2000 -105.77 20.29 LO 

8 20 2000 -107.31 17.10 LO 

9 7 2000 -98.69 16.18 LO 

9 7 2000 -98.69 16.18 LO 

9 12 2000 -100.53 16.98 LO 

9 26 2000 -94.40 13.01 LO 

9 27 2000 -91.22 13.50 LO 

9 27 2000 -91.22 13.50 LO 

9 28 2000 -88.55 12.16 LO 

9 30 2000 -86.14 10.28 LO 

10 5 2000 -84.62 9.52 unid 

10 10 2000 -87.87 10.11 LO 

10 20 2000 -97.49 15.81 unid 

11 24 2000 -92.93 5.78 LO 
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11 28 2000 -104.00 8.77 LO 

8 21 2003 -104.85 17.79 LO 

9 5 2003 -102.63 17.07 LO 

9 6 2003 -100.46 16.92 LO 

9 17 2003 -99.60 16.59 LO 

9 18 2003 -98.10 16.09 LO 

9 18 2003 -98.09 16.10 LO 

9 22 2003 -107.07 3.89 LO 

9 23 2003 -92.61 13.61 LO 

9 26 2003 -88.67 11.02 LO 

9 27 2003 -88.89 12.56 LO 

9 27 2003 -88.29 12.65 LO 

9 27 2003 -88.13 12.67 LO 

9 28 2003 -86.70 11.58 LO 

10 7 2003 -84.80 8.60 LO 

10 11 2003 -91.00 -0.22 CM 

10 29 2003 -93.95 15.03 LO 

10 30 2003 -95.29 15.77 LO 

11 16 2003 -101.29 16.89 LO 

11 20 2003 -81.34 7.33 LO 

11 21 2003 -83.84 8.52 LO 

11 23 2003 -107.50 18.59 LO 

8 20 2006 -111.62 16.00 LO 
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8 20 2006 -111.93 15.61 LO 

8 30 2006 -92.48 6.27 LO 

9 3 2006 -86.58 8.60 LO 

9 19 2006 -85.70 9.23 LO 

9 19 2006 -85.91 9.92 LO 

9 19 2006 -85.92 10.04 LO 

9 20 2006 -87.20 10.54 LO 

9 23 2006 -91.85 7.88 LO 

9 24 2006 -90.67 9.40 LO 

9 26 2006 -89.60 10.77 LO 

9 26 2006 -90.00 13.16 LO 

9 27 2006 -90.72 13.69 LO 

10 3 2006 -90.83 13.72 LO 

10 4 2006 -91.67 11.91 LO 

10 11 2006 -98.00 10.83 LO 

10 29 2006 -98.58 14.58 LO 

11 5 2006 -96.70 15.53 LO 
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III. Formally Integrating Empirical Information and Expert Opinion to    

Assess Cumulative Impacts on Marine Mammals 

Endangered species are threatened by the cumulative impacts of multiple pressures, but 

management controls of human-caused mortality can be biased towards threats that are 

easiest to quantify. As such, recovery in some marine mammal populations has been limited 

despite single-threat reduction efforts such as the cessation of commercial whaling and 

fisheries bycatch quotas. Certain pressures exert disproportionate effects, but empirical 

studies measuring effects to marine mammals, especially highly mobile and pelagic species, 

are sparse. Here, we present an approach that formally quantifies individual, interacting, and 

cumulative impacts of multiple human activities by integrating empirical data and expert 

knowledge. Using the endangered Southern Resident Killer Whale (SRKW) population as a 

case study, we use structured expert surveys to estimate the relative influences of multiple 

pressures on vital rates. With this approach, we estimate per capita annual mortality rates for 

five threats contributing to lethal injury and find that anthropogenic SRKW mortality 

exceeds the limit of 10% Potential Biological Removal (PBR) set by the U.S. Marine 

Mammal Protection Act. Our conclusion contrasts the findings of the most recent U.S. stock 

assessment for SRKW that measures PBR against two threats, fisheries bycatch and vessel 

interactions, suggesting human-caused mortality is insignificant and approaching zero. 

Accounting for the discrepancy are indirect effects of acute chemical pollution, acute noise, 

and marine debris interactions previously unquantified. This natural and social science 

integrated approach innovates the concept and use of ‘best available science’ mandated by 

environmental laws and has wide applicability to marine mammals and other taxa 

worldwide. 
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A. Introduction 

Recovery in many marine mammal populations has remained limited (1-5) despite 

single-threat reduction efforts such as the cessation of whaling and the reduction of fisheries 

bycatch (6-9). It is generally accepted that it is the cumulative effects of multiple pressures 

that precludes recovery (5, 10-13). Unfortunately, empirical data for both marine mammal 

populations and the anthropogenic stresses they are exposed to are poor (5, 14). Therefore 

the magnitude of individual and combined threats that influence behavior, survival and 

fitness remain largely unknown (15). Plagued by quantitative data gaps, particularly for 

indirect and sub-lethal effects, the implementation of top-down management controls of 

marine mammal mortality is not comprehensive. By mandate, environmental management 

and policy decisions must be based on quantitative evidence, making up “best available 

science” (16-18). Since existing empirical studies have not yet quantified how multiple 

impacts affect marine mammal vital rates, management proceeds with partial information. 

Here, we present a more comprehensive way to inform management by integrating empirical 

data with expert opinion to assess how pressures accumulate and interact to impact 

population vital rates. We relate our findings to a current top-down mortality management 

tool, Potential Biological Removal (PBR). 

In the late 1990s the U.S. Marine Mammal Protection Act (MMPA) defined PBR, an 

algorithm used to control anthropogenic marine mammal mortality. PBR is transparent, 

conservative and broadly practical in real-world management, which is why it has also been 

used in other countries around the world (19, 20). PBR is the number of individuals 

considered safe to remove from a population, above and beyond natural mortality, without 
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causing depletion4. PBR is calculated by the maximum theoretical or estimated intrinsic 

growth rate at a small population size divided by two (Rmax/2), multiplied by the minimum 

current population size estimate (Nmin) and the target population level recovery factor (FR, a 

number between 0.1 and 1): PBR = Nmin(Rmax/2)FR (21-23). Rmax/2 is an estimate of the 

population growth rate when it is at the Optimal Sustainable Population, defined as half the 

current environmental carrying capacity. For endangered populations the MMPA sets FR = 

0.1 (24). In general, PBR estimates sustainable anthropogenic mortality scaled to the overall 

size of the population and takes into account uncertainty in both abundance measurements; 

bias in our understanding of the population’s structure; carrying capacity (K); and ecosystem 

health. Accurate parameter estimation is crucial for calculating an appropriate PBR. PBR 

has been criticized for assuming unrealistic population dynamics and the rule’s utility and 

limitations have been discussed in the literature (8, 25, 26). The following provides a list of 

assumptions of concern: the current population size is known; K is constant (see 26); the 

population is closed, at a stable age distribution, and experiences logistic growth. These 

assumptions are often not reasonable for long-lived cetaceans. PBR also applies a blanket 

population target of 0.5K for all marine mammals, and some have argued that population 

targets should vary between species and populations (e.g., 25). Regardless of these 

limitations, PBR has been effective in aiding recovery when fisheries bycatch is the main 

threat (see 14). However, its effectiveness varies greatly when indirect and sub-lethal threats 

exceed the threat of bycatch or other direct threats.  

                                                
4 Depletion is defined as abundance below the maximum net productivity level (MNPL). 

MNPL is assumed to be between 50% and 70% of the historic population size. 
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PBR is inherently bias towards direct threats because it’s original intention was to 

calculate mortality limits for marine mammal interactions with fishing operations (21). 

However as soon as the rule was formally included in U.S. policy there was an immediate 

need to estimate and permit marine mammal “takes” for other anthropogenic mortality 

sources, as well. With perfect information regarding mortality, a PBR-based control would 

theoretically work seamlessly. In reality we lack much information regarding indirect and 

cumulative impacts of threats, and thus new management tools and approaches under the 

umbrella of ecosystem-based management are needed.  

Over the past two decades a body of analytical cumulative impacts marine research has 

emerged inspiring new ways to tackle objective-based management of the modern ocean (1, 

11, 12, 27-33). Human use of marine space, habitats and species are growing each year, and 

inaction due to data limitations is unsustainable (34, 35). Indeed, decision-support priorities 

for the Coastal and Marine Spatial Planning strategic action plan of the U.S. National Ocean 

Council include compiling data, models and other information; and identifying gaps relative 

to assessing cumulative impacts, interactions among human uses and stressors, non-linear 

responses of systems to increasing human use and natural forces, and developing user-

friendly, open-source transparent management tools (35-37). U.S. Ocean Policy and its 

Implementation Plan calls for integrated and interdisciplinary research to determine the 

influences of multiple and interacting stressors to improve the efficacy and adaptability of 

management rules aimed at reducing the cumulative natural and anthropogenic impacts on 

marine ecosystems (37, 38). In this paper we present a conceptual model and research 

framework that quantitatively estimates multiple impacts, even for data-poor populations, 

using an integrated natural and social science approach. We define a general conceptual 
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model in which 16 human activities create 13 threats that act simultaneously in various 

combinations of type and magnitude to generate six stressors. Those stressors along with 

natural factors influence marine mammal population vital rates. With this approach it is 

possible to prioritize action(s) and research need(s) with respect to specific conservation 

and/or multi-use objectives within an ecosystem-based management framework for any 

marine mammal population in any ocean. We test proof-of-concept by applying the 

approach to a case study on endangered Southern Resident Killer Whales in the northeast 

Pacific Ocean.  

We asked 16 experts to provide best estimates, lower and upper bounds around their 

estimate, and their confidence in their estimate for each link in the model. Experts ranked 

nodes and estimated historic and current carrying capacity. When possible, we used 

empirical data as a quantitative anchor to estimate annual rates for each model link. To 

conclude, we discuss the general utility, scope and limitations of our cumulative impacts 

assessment approach for marine mammals and hope it inspires continued advancement of 

adaptive management.  

B. Materials and Methods 

1. Conceptual Framework to Identify Pathways of Multiple Impacts 

We drew from previous works that have conceptually modeled the pathways of multiple 

pressures, quantified direct impacts, and used expert opinion to rank threats for at-risk 

species (27, 49, 51). First, we developed working definitions for important terms that 

underpin our approach. A full list of definitions can be found in Appendix II, and in the 

survey available online 

here: https://www.surveymonkey.com/s/CumulativeImpacts_KillerWhales. Definitions for 
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the conceptual model categories are as follows: A “threat” is a possibly deleterious 

interaction between a human activity and a marine mammal or its surrounding environment. 

A “stressor” is the biological, behavioral, or physiological consequence of the presence of 

one or more threat. “Natural factors” are non-anthropogenic influences of individual fitness 

and survival and population vital rates, including predation, competition, natural pathogens, 

naturally occurring bio-toxins, intra- and interspecific aggression, natural climate variability, 

and others.  

We constructed a general conceptual model (Figure 1) that identifies how 16 present 

human activities pose 14 threats, which in turn generate 7 stressors that potentially affect a 

specific marine mammal in a given area. On a case-by-case basis, threats interactions may 

be incorporated, however interactions are not inherently included / assumed in the general 

model. Finally, we map how stressors along with natural factors influence the vital rates of a 

given marine mammal population. Depending on the life table of the population of interest, 

the number and type of vital rates can be amended, and in turn the stressor(s) to vital rates 

links. This general conceptual model serves as a multi-faceted, comprehensive framework 

transferable to any marine mammal population in any ocean, and it is updatable as 

relationships and/or data change over time and/or space. To apply this framework to a 

specific case study, one must turn nodes and links of the network ‘on’ and ‘off’ as applicable 

for the population of interest. 



 

 

Figure 5. This schematic represents a general conceptual model where 16 present human activities pose 14 threats, which in 
turn generate 7 stressors that potentially affect a specific marine mammal in a given area.  
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2. Case Study: Endangered Southern Resident Killer Whales 

To illustrate how our approach can quantify relative effects of natural and anthropogenic 

threats and stressors we apply it to a case study on endangered Southern Resident Killer 

Whales. Southern Resident Killer Whales are a genetically distinct population of Orcinus 

orca found in the northeast Pacific Ocean (52) that is protected under the U.S. Endangered 

Species and Marine Mammal Protection Acts, and the Canadian Species at Risk Act since 

2005, 1972, and 2001, respectively. Both countries have legally designated Southern 

Resident critical habitat, in the U.S. since 2006 and in Canada since 2008. As a species, 

orcas are apex predators found in every ocean and receive protection under two international 

agreements, Appendix II5 of the Convention of International Trade in Endangered Species of 

Wild Fauna and Flora (53) and Appendix II (Migratory species conserved through 

Agreements) of the Convention on the Conservation of Migratory Species of Wild Animals 

(54). The IUCN lists orcas globally as Data Deficient, but the Southern Resident population 

is recognized as endangered (55).  

Southern Residents are specialist consumers, dependent mostly on Chinook salmon 

(Oncorhynchus tshawytscha), particularly in the summer (18, 56, 57). Reports have 

estimated that Southern Resident Killer Whale carrying capacity was 97-140 individuals 

prior to when extensive wild whale collections began in 1967 for public displays (18, 58), 

but the U.S. National Oceanic and Atmospheric Administration (18) has called for improved 

robust estimates of historic abundance and current carrying capacity (18). Genetic analyses 

                                                
5 CITES Appendix II includes species not necessarily threatened with extinction, but in 

which trade must be controlled in order to avoid utilization incompatible with their survival. 



 

 93 

of museum collections suggest that the historical range of Southern Residents is similar to 

what it is today: California to Southeast Alaska (53, 59).  

When Southern Residents were first censused in 1974 at the end of wild collections they 

had depleted to 71 individuals (60). That rapid initial population decline of 25-30% was 

disproportionately made up of calves targeted for public display, which altered the age 

structure of the small population and, along with other factors, is thought to have played a 

role in the periodic trends of recovery and decline in the years that followed (58). But by 

1995 the population had recovered 74% and was back up to pre-collection numbers (61). 

Suddenly between 1996 and 2001 the population dropped again by 15-20% down to ~80 

(18, 58), which was later found to be correlated with a decline in Chinook salmon due to 

unfavorable El Niño conditions and continued fishing pressure (43, 61). This five-year 

decline is what prompted the U.S. to declare Southern Residents an endangered distinct 

population segment under the ESA in 2005. Although the population has bounced back to 84 

individuals (62) it is still believed to be under carrying capacity. Chinook salmon in the 

Sacramento River winter-run and the Upper Columbia River spring-run have been 

endangered since 1994 and 1999, respectively, and are threatened in several Oregon, Idaho, 

and Washington state waterways.  

Given this history, prey depletion is a major concern for the viability of this population 

(18, 43, 46, 61, 63). Also of concern are acute (e.g., oil spill) and chronic (e.g., bio-

accumulated DDT, PCBs, and PBDEs) pollutants—it is among the most contaminated 

marine mammal populations in the world (18, 64). In addition, there is evidence that when 

vessels (motorized and/or un-motorized) are nearby, Southern Residents reduce their time 

spent foraging and travel more (65), altering their energetics and stress levels. Further, ships 
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produce elevated background noise at a range of frequencies within orca hearing, potentially 

interfering with both communication and echolocation. These and other threats act 

simultaneously over space and time. For example in the Salish Sea, critical habitat for 

Southern Residents during spring through fall, there is continual threat of oil spill with 

increasing oil tanker traffic with as many as 20 ships transiting each day (32, 66), 

underwater noise from ship traffic (67), interaction with whale watching vessels (18, 68), 

and an inadequacy of Chinook salmon abundance. Multiple population viability analyses 

show the same general conclusion: if the status quo continues, Southern Residents are in 

danger of quasi extinction; if any major threats (e.g., oil spill) increase, extinction is almost 

inevitable in as few as 100 years (63, 69).  

Even though this population is one of the most well studied marine mammal populations 

in the world, and it is well understood that the population is exposed to multiple pressures, 

managers are still unsure which threats are responsible for limiting the population’s recovery 

(18, 46). It is impossible to eliminate all threats, and therefore the over-arching goal of 

recovery is to reverse population decline; specifically that means raising the population 

growth rate to ≥1.0 for several generations. We know that older adult males and 

reproductive females tend to be more successful in reproducing and caring for calves, which 

suggests that the survival of males and reproductive females are key vital rates to focus on 

(18, 39, 70). Understanding the relative effects of pressures on those vital rates in particular 

may shed light on which threats are limiting recovery.  

3. Literature Review 

We completed a literature review to synthesize existing empirical studies, white papers, 

government documents, and unpublished reports. From this product, we specified the 
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general multiple impacts model for Southern Resident Killer Whales and compiled empirical 

estimates for each node and link, as available.  

4. Expert Elicitation and Consensus 

Using SurveyMonkey® (www.surveymonkey.com), we administered two voluntary 

online surveys to 16 killer whale experts with >300 years of combined experience to ask a 

series of questions regarding the SRKW model. Studies have suggested that 8-15 experts are 

a viable number and that findings do not change significantly with >15 experts (71). We 

conducted these confidential surveys in 2013 and 2014 with permission and guidance from 

the Arizona State University Human Subjects Institutional Review Board (ASU IRB 

#1304009117), through the ASU Office of Research Integrity and Assurance, and the 

University of California (UCSB Pro Number MSII-HA-BE-011-2N, Submission ID 13-

0581). Following the first survey, we held a three-hour “consensus webinar” on 21 August 

2013 using WebExTM (www.webex.com) software and recorded the audio. 10 of the 16 

experts participated in the webinar. Experts could identify each other and discuss openly. 

During the webinar we presented the aggregate results from the first survey to the experts 

without identifying individual responses. We then moderated discussion regarding 

definitions, wording of questions, and the results. We used feedback from the consensus to 

revise the survey. A second, updated survey was administered to all 16 experts and can be 

viewed here: https://www.surveymonkey.com/s/CumulativeImpacts_KillerWhales.  

We asked experts to base their responses on what they know of the SRKW population 

and environmental conditions over the last 30 years (i.e., baseline reference), and to make 

assessments of how the identified threats, stressors and natural factors will impact the 

population over the next three generations (i.e., a ~75-year time horizon). We first asked 



 

 96 

experts to rank anthropogenic threats and stressors, aside from natural factors, and vital rates 

in order of their influence on the population, with 1 being the most influential. We gave the 

option to answer “not applicable” if the expert believes the influence is negligible or zero. 

We then asked for best estimates (i.e., educated guess for the mean) and lower and upper 

bound around the estimate for each link in the SRKW model. For each question regarding a 

rank or best estimate, we asked the expert to indicate their overall confidence (a measure of 

uncertainty) in their answer between 0% and 100%. Threat, Stressor and Vital Rate ranks 

and estimates were weighted by expert-stated confidence, using the following algorithm 

where n = expert, En = expert estimate, and Cn = expert confidence: 

!"#$	&'	()*+	,*+-."+) = 0(23∗53)
053

																																												Eq. 1 

Threat and Stressor percent influences (I) upon a given Stressor or Vital Rate, 

respectively, were scaled between 0% and 100% by multiplying the Best Estimate defined 

by Eq. 1 by a scalar defined as: 

Scalar = <==
>?@AB	CABDEFB@                                          Eq. 2 

With these surveys, weighting and scaling approaches, we captured ranks, mean 

influence estimates, uncertainty for each rank and mean estimate, and upper and lower 

bounds around each mean estimate.  

5. Integrating Expert Opinion and Empirical Data 

We validated expert ranks (nodes) with published severity and importance 

categorizations (45). All expert ranks matched published information, so for this case study 

we did not need to adjust any ranks. We also used published data to anchor expert opinion. 
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When data was available as a rate for a particular link (e.g., observed bycatch, vessel strike), 

we effectively weighted empirical data more than expert opinion and used proportions of 

expert-estimated percent influence to empirical rates to solve for unknown rates. For 

example, for the five threats (acute chemical pollution, ship strike, acute noise, bycatch, 

marine debris interaction) that lead to the “Lethal Injury” stressor, we identified proportional 

relationships between weighted mean expert influence estimates (I) and the known per 

capita annual mortality rate (M): I1M2 = I2M1. Since all I variables have values derived from 

expert opinion, only one proportional relationship (I1/M1) is needed in order to solve for all 

other M values (Table 1): 

Table 1. This is an example of the integration of expert opinion and empirical data 
using one link in the multiple impacts model: threats à Lethal Injury. Knowing that 
ship strikes cause a 0.0014 annual lethal injury rate, that is set equal to 30.8% 
contribution based on expert estimates, and then all other annual lethal injury rates 
can be solved for. 

  

Mean confidence of expert 

estimates of percent influence 

of Threat to Lethal Injury, 

weighted by their overall 

confidence of Lethal Injury 

Mean percent influence 

(I) of Threat to Letha Injury 

(out of 100%), weighted by 

expert confidence (C) 

Empirical estimate of 

annual anthropogenic 

Lethal Injury rate is 

starred, estimated annual 

rates based on expert 

estimates are not starred 

Threat C I M 

Acute 

Chemical 

Pollution 

0.70 34.4% 0.0016 
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Ship Strike 0.71 30.8% 0.0014* 

Acute 

Noise 
0.65 17.6% 0.0008 

Bycatch 0.70 9.3% 0.00042 

Marine 

Debris 
0.65 7.9% 0.00036 

 

C. Results 

Expert ranks of Southern Resident threats, stressors, and vital rates are listed in Table 2, 

including range of rank responses and average expert-stated confidence. Final expert threat 

ranks are as follows: (1) prey depletion, (2) chronic chemical pollution, (3) chronic noise, 

(4) harassment, (5) acute chemical pollution, (6) acute noise (tie), (6) pathogens (tie), (8) 

breeding habitat degradation, (9) foraging habitat degradation, (10) ship strike, (11) fisheries 

bycatch, (12) marine debris interactions (tie), (12) harmful algal blooms (tie). Stressor ranks 

are as follows: (1) malnutrition, (2) endocrine disruption, (3) disease & immunosuppression, 

(4) lethal injury, (5) changed behavior: reproduction, and (6) sub-lethal injury. Vital rates 

are as follows: (1) fecundity and survival of mature females, (3 & 4) survival of mature 

immatures and mature males, and (5) post-reproductive females. Expert ranks of threats, 

stressors and vital rates align with categorizations available in government reports (see 

Table 3).



 

 

Table 2. Threats, stressors, and vital rates ranked according to their likely influence on the Southern Resident Killer Whale 
population dynamics over the next three generations (~75 years). Influences were ranked via expert opinion. Final ranks were 
calculated by weighting each expert rank by their stated confidence in their estimate. Ranks were validated with published 
categorizations as available. The ranges of expert ranks and mean expert confidence of ranks (out of 100%) appear in 
brackets, respectively. 

 

Rank Threat  Stressor Vital Rate 

 

1 prey depletion [1-3, 80%] malnutrition [1-5, 80%] fecundity [1-4, 80%] 

2 chronic chemical pollution [1-7, 80%] endocrine disruption [1-4, 70%] survival: mature females [1-4, 80%] 

3 chronic noise [1-3, 80%] disease & immunosupression [2-6, 70%] survival: immatures [1-5, 80%] 

4 harassment [2-8, 80%] lethal injury [1-6, 80%] survival: mature males [1-5, 70%] 

5 acute chemical pollution [1-12, 70%] changed behavior: reproduction [2-6, 70%] survival: post-reproductive females [4-5, 80%] 

6 acute noise [3-9, 70%] (40) sub-lethal injury [3-6, 70%]  

6 pathogens [3-11, 70%] (40)   

8 breeding habitat degradation [8-13, 70%]   

9 foraging habitat degradation [3-12, 70%]   

10 ship strike [4-13, 70%]   

11 fisheries bycatch [9-13, 70%]   

12 marine debris interactions [9-13, 70%] (40)   

12 harmful algal blooms [7-12, 70%] (40)   
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Table 3. This is an example of the integration of expert opinion and empirical data for one link in the multiple 
impacts model: Threats à Lethal Injury. PBR stands for Potential Biological Removal and is calculated as the 
minimum population size (NMIN = 85) times one-half the default maximum growth rate for cetaceans (0.5 of 3.2%) 
multiplied by an endangered stock recovery factor of 0.1 (24, 40).  
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For Southern Resident Killer Whales NOAA assumes Nmin = 85, Rmax = 3.2% and FR = 

0.1, resulting in a PBR of 0.14 whales per year (40-43). This is equivalent to the removal of 

one whale every 7 years. There has been no recorded direct mortality or serious injury 

caused to this population by fisheries (Table 4). In 2006 one whale was killed during a 

vessel interaction, and no other deaths from vessel interactions or any other non-fisheries 

sources have been recorded since. The most recent Southern Resident Killer Whale stock 

assessment estimates that human-caused mortality between 2007 and 2011 is zero and 

therefore does exceed 10% of PBR and is thus considered insignificant and approaching 

zero under the MMPA (40). However, in reality Southern Resident whale deaths are 

observed almost every year (44) (see “Observed Deaths” column of Table 4), and so we 

understand that commercial fisheries bycatch and vessel interactions are not the only threats 

that impact Southern Resident Killer Whale survival. While the NOAA Southern Resident 

stock assessment, population recovery plan and status review acknowledge indirect affects 

on survival, they are not considered when measuring recorded mortalities and serious 

injuries against PBR (40, 41, 45, 46). We consider all effects in this study and compare our 

results to the NOAA Southern Resident Killer Whale stock assessment’s conclusion 

regarding PBR. Empirical and expert integrated relative contribution estimates for Southern 

Resident lethal injury are summarized in Table 3. Knowing that one whale died from a 

vessel strike in 2006, we estimate the annual mortality rates for each of the five threats that 

contribute to lethal injury between 2004 and 2011 using expert estimates of relative 

influences to lethal injury (see Table 1). Although NOAA only considered five years of data 

(2007-2011) in the latest Southern Resident Killer Whale stock assessment (40), we chose to 

include eight years of data based on the National Marine Fisheries Service’s 2011 
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Guidelines for Assessing Marine Mammal Stocks to attain approximately unbiased (median 

absolute bias <25%) estimates of average annual fisheries-related mortality and serious 

injury, relative to PBR (see Table 4). The recommendation is to pool eight years of data 

when observer coverage is 10% and PBR is ≥1. The average per capita annual death rate is 

virtually the same when averaged across 5 and 8 years (Table 4). In doing so we find a 

0.0047 cumulative mortality lethal injury rate across five threats, equivalent to 0.4 whale 

deaths per year (Table 3). The mortality rate from this one stressor alone exceeds 10% of 

PBR, as do each of the five threats that contribute to lethal injury, which under the MMPA 

means that human-caused lethal injury cannot be considered insignificant and approaching 

zero, and the stock is not meeting the MMPA’s zero mortality rate objective.  

11/16 experts provided estimates of historic carrying capacity and year, and current 

(2014) carrying capacity in Table 5. Average historic carrying capacity was estimated to be 

203 ±51. The range of years given for the historical carrying capacity estimate was 1700-

1950. Average carrying capacity in 2014 was estimated to be 101 ±26. 



 

 

Table 4. Southern Resident Killer Whale abundance, births and deaths have been recorded by the Center for Whale Research 
(whaleresearch.com and orcanetwork.org) since 1998. Those estimates are compiled here, as well as observed vessel strikes 
and bycatch rates. The observer coverage, when known, in these fisheries is 10%. The annual per capita mortality and lethal 
injury rates are calculated, and the average (µ) rates are calculated for the five-year span (2007-2011) used in the 2013 
Southern Resident Killer Whale stock assessment (40), highlighted in gray, and the 8-year span (2004-2011) used in this study, 
outlined in black. 
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Table 5. 11/16 experts provided estimates of historical carrying capacity (K), historical K year, and current K for the year the 
survey was completed (2014). * indicates that the expert expressed great uncertainty about the estimate. Average K, KMIN, and 
KMAX ± standard deviation are calculated at the bottom of the table. For historical K, the first three averages include all expert 
estimates, while the second set of averages in bold omit expert 3’s estimate, indicated with †, as an outlier because it greatly 
reduces standard deviation.  
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D. Discussion 

In 2009 NOAA identified the need for a conceptual framework that can account for the 

cumulative impacts of multiple stressors acting on marine mammal populations and has 

prioritized developing innovative assessment approaches (18). Governments have invested 

resources in understanding indirect and sub-lethal effects, for example underwater noise 

(47), but no tangible updates have been made to the way human-caused mortalities are 

managed since the 1990s. With this study we propose one way to assess cumulative impacts 

by integrating empirical data and expert opinion. We apply the approach to endangered 

Southern Resident Killer Whales to rank threats, stressors, and vital rates, and to estimate 

historic and current carrying capacity. While all of the current threats directly and indirectly 

affecting Southern Resident vital rates have been identified, the relative contributions of 

each threat have not yet been quantified and so only recorded mortalities from fisheries 

bycatch and ship strike threats are measured against Potential Biological Removal (PBR). 

We have identified 11 additional threats and two interactions (see Appendix I G) that were 

unaccounted for but are cumulatively responsible, along with natural factors, for the 28 

deaths between 2005 and 2011 not considered against PBR in the 2013 Southern Resident 

Killer Whale stock assessment.  

With our cumulative impacts assessment we find that when all five direct and indirect 

threats producing the one of six stressors are considered against PBR, lethal injury, the U.S. 

MMPA zero mortality rule is not met, which contrasts the conclusion of NOAA’s Southern 

Resident Killer Whale stock assessment that mortalities and serious injuries6 from 

                                                
6 NOAA defines “serious injury” as an injury that is more likely than not to result in 
mortality (61). 
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interactions with fisheries and vessels are insignificant. This discrepancy is because this 

study and NOAA’s stock assessment are comparing PBR to cumulative and partial 

quantifications of mortality, respectively. We do not believe the authors of the stock 

assessment or killer whale experts will find this result surprising, as the implementation of 

PBR is limited to observations of direct threats and therefore does not account for multiple 

and interacting threats acting simultaneously and accumulate over time, particularly indirect 

effects (e.g., contaminants) (26, 47). 

This mismatch of management rule and reality suggests that PBR alone is inadequate to 

manage cumulative impacts, and illustrates is why the use of PBR for Southern Residents 

and other marine mammals may not be as conservative as it should be. For this case study, 

cumulative estimates of specific-threat mortality are very small and actual threats could be 

much smaller or much larger depending on uncertainty and stochasticity. We have largely 

ignored this variability for now to show proof-of-concept, however if this comprehensive 

integrative approach were to be used for management deviations should be quantified and 

considered.  

1. Summary of cumulative impacts assessment for Southern Resident Killer Whales 

Experts identified prey depletion, chronic chemical pollution, chronic noise, and 

harassment as the top four most detrimental threats to Southern Resident Killer Whales. This 

is in-line with threat concerns discussed in the population’s recovery plan and status review 

in the U.S. and recovery strategy in Canada. Also important to note are the three threats 

identified as least threatening, fisheries bycatch, marine debris interactions, and harmful 

algal blooms. In light of this, Southern Residents are particularly useful in illustrating that 

when fisheries bycatch is not a major threat to a particular marine mammal population, PBR 
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as currently used may be ineffective for assessing mortality limits. The only known 

Southern Resident Whale direct mortality came from a collision with a tugboat in 2006, and 

in this assessment the threat of ship strike ranks 10th out of 13. There is speculation that that 

death may have resulted from prolonged harassment and/or habituation to vessels (40). 

Nonetheless, 44 Southern Residents have died since 2005, 43 due to natural factors or 

threats other than fisheries bycatch and ship strikes and thus not measured against PBR. 

While harmful algal blooms tied with marine debris interactions as least important 

threats to Southern Residents, it was also the threat that experts were consistently least 

confident in estimating how it influences specific stressors. For example, while experts were 

~63% confident in estimating how both chronic chemical pollution and chronic noise 

influence change in reproductive behavior (~19% and ~16%, respectively), they were only 

~37% confident that harmful algal blooms have less influence (~11%), uncertainty also 

captured with the large bounds around the weighted estimate. Harmful algal blooms are a 

threat that is increasing across the globe and may require additional research before 

ignoring. 

Acute chemical pollution was ranked 5th, followed by acute noise and pathogens. This is 

interesting considering some population viability analyses show that an acute chemical 

pollution event, such as an oil spoil, would have the largest negative effect on Southern 

Resident Killer Whales and could induce extinction. Acute noise seems to be a consistent 

worry in regards to military and construction operations and has received much research 

attention to date. Their relative middle-of-the pack rank could be because while perhaps 

both threats are great, the probability of occurrence is low. Likewise, breeding and foraging 

habitat degradation ranked 8th and 9th out of 13, respectively. This may be reflective of years 
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of critical habitat protection by both the U.S. (2006) and Canada (2008), and/or that this 

population does not migrate long distances and therefore threats and protections work rather 

uniformly across space and time.  

Malnutrition, endocrine disruption, and disease & immunosuppression are the top three 

stressors that experts believe are impacting Southern Resident Killer Whale vital rates, 

followed by lethal injury, changed reproductive behavior, and sub-lethal injury. This 

explains why a fisheries- and/or serious injury-focused mortality reference point such as 

PBR is not as effective or conservative as it should be for Southern Resident Killer Whales. 

The implementation of the rule essentially ignores four of the six stressors, including the top 

three.  

Adult males and reproductive females have been shown to be important for reproduction 

and calf rearing, which implies that their survival along with fecundity might be most 

important to the success of the population. Confidence-weighted expert ranks agree, ranking 

fecundity and survival of mature females most important. Interestingly the survival of 

mature males and immatures are tied for second-most important. There may be several 

reasons for this nuance, and while not explored in this study could be a fruitful area of 

further research. Possibilities include recovering a stable age distribution since it was altered 

when 76% of the calves produced between 1959 and 1970 were captured for display, 

reproductive potential concerns, or others.  

Our findings for Southern Resident Killer Whales may be of interest on the heel of one 

of the strongest El Niño of record, given that prey depletion and competition with other 

salmon predators for resources are of major concern for the sustainability of Southern 

Residents. It remains to be seen how threatened and endangered populations of Chinook will 
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respond to the impending combined pressures of salmon fishing and 2015-2016 El Niño 

conditions. 

2. Utility and applications 

In the five-year review of the 2008 Recovery Plan for Southern Resident Killer Whales, 

authors state that, “Although the population has been studied for more than 30 years, we are 

not certain which threat is the most important to address in order to ensure recovery. The 

Recovery Plan therefore addresses each of the threats based on the best available science. 

NMFS has linked the management actions in the Recovery Plan to research and monitoring 

actions to gather information, to inform prioritization, refine recovery actions, and identify 

new actions as needed.” These types of formal reviews are important to assess progress that 

management rules and actions are making towards species recovery objectives. In this 

situation, we argue that while the Southern Resident Killer Whale five-year review was 

thorough, it highlights that collectively and collaboratively as scientists and managers, our 

view of the ‘best available science’ needs to be more comprehensive, especially in data-poor 

situations. The multiple impacts framework and data synthesis approach presented here 

show how expert knowledge can be incorporated, both qualitatively and quantitatively, to 

augment empirical information and generate quantitative priors for data gaps. We believe 

that the Southern Resident Killer Whale case study illustrates how empirical data and expert 

opinion combined can make up the best available science. We have presented one set of 

analyses to complete the cumulative impacts assessment, however within the framework we 

have developed there are perhaps several other viable analytical solutions a user might 

choose based on case study-specific objectives and available data. Similar but variant 

approaches that integrate expert and empirical information for cumulative impact 
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assessments have been undertaken for the Mojave Desert Tortoise (48, 49) and the Pacific 

walrus (30, 50), as well as others. 

Developing comprehensive management tools for marine mammal management is 

urgent as the uses of the ocean increase, and new threats such as ocean acidification and 

warming seas loom. The need is even more apparent for endangered and threatened species, 

and for populations whose main threats are not the easiest or most direct to quantify. A 

natural and social science integrated approach innovates the concept and use of ‘best 

available science’ mandated by environmental laws and has wide applicability to marine 

mammals and other taxa. The good news is that combined, we have the empirical, 

institutional, and expert knowledge to move forward with such necessary management 

innovations. The U.S. Endangered Species and Marine Mammal Protection Acts can be 

powerful ways to evoke action to reduce threats, and this case study shows that if our 

evaluation tools are not able to show violations of those legislations, action may be slow or 

inadequate. An amendment to current law and policy to update marine mammal mortality 

reference levels, the implementation of PBR, and/or cumulative impact assessment 

approaches would catalyst a new wave of comprehensive management. 
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Appendix 

I. Considerations for a cumulative impacts model that integrates multiple sources    

of information 

The assessment approach we have described offers a new way to consider the 

cumulative effects of lethal and sub-lethal pressures to marine mammal populations against 

objective-based reference points, like PBR. There are other feasible approaches to assess 

cumulative impacts, including other ways to use expert judgment. To advance the use of 

such integrative approaches in management we discuss the justification, function and 

limitations of the elements we have incorporated into our approach. 

A. Expert Opinion 

Subjective probabilities or artificial intelligence is more commonly termed expert 

knowledge/opinion/judgment in conservation science (74). It has conceivably been used by 

decision makers throughout human history, but it’s structured use in the aerospace industry, 

military intelligence, the commercial nuclear industry and other probabilistic risk analysis, 

and policy analysis has been documented back to the 1940s (75). In the 1970s it began to be 

systematically used to model scientific reasoning under uncertainty. With this study we 

assert that integrating empirical data with expert opinion is a viable way to inform 

management decisions and research directions for marine mammals now, in the face of data 

gaps and uncertainty. Drawing from both natural and social sciences (35) innovates the 

notion of “best available science,” especially in data-poor cases. 
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B. Definitions 

Definitions of terms (Appendix II) were critical for standardizing the way in which we 

framed our research approach and communicated with and across experts (28) who 

individually and anonymously provided their opinion. The research team initially defined 

terms before administering the first survey and then edited, omitted, and added terms as-

needed based on the feedback received from experts during the consensus webinar, prior to 

the administration of the second survey. Defining terms is an important first step in building 

a multiple impacts model, and definitions can and should evolve with the research process. 

Lexicons are living products of biological conservation research and management efforts 

(e.g., IUCN Red List of Threatened Species’ Classification Schemes (76)).  

C. Reference Point(s) and Time Horizon 

Equally as important as definitions is ensuring all estimates in a multiple impacts model 

are made based on the same baseline reference point(s) and over the same time horizon (77). 

Here, we asked experts to consider what they know about the Southern Resident Killer 

Whale population over the last 30 years and provide estimates regarding how multiple 

threats and stressors will influence population dynamics over the next three generations (~75 

years). We chose the baseline of the last 30 years because the population has been monitored 

closely since the mid-1970s7 and so we assume that experts are familiar with population 

dynamics, threats, and stressors across at least the last three decades. 30 years has also been 

used by NOAA (46). 

                                                
7 The Center for Whale Research (Friday Harbor, Washington, U.S.A.) has been 

counting Southern Resident Killer Whale births and deaths since 1974. 
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We asked experts to provide estimates over the next three generations because that is 

typically the time horizon the IUCN Red List uses when making assessments regarding 

reduction in population sizes for long-lived mammals (78). This is in part because 

uncertainties and data gaps make predictions over periods longer than three generations 

unreliable (79). The IUCN defines generation length as follows: “the average age of parents 

of the current cohort (i.e., newborn individual in the population). Generation length 

therefore reflects the turnover rate of breeding individuals in a population. Generation length 

is greater than the age at first breeding and less than the age of the oldest breeding 

individual, except in taxa that breed only once. Where generation length varies under threat, 

the more natural, i.e., pre-disturbance, generation length should be used.” Taylor and others 

(80) estimated generation length for orcas for conditions present in 2007 as 24.0 years, and 

for pre-disturbance conditions as 25.7 years. Therefore, we assume that 75 years represents 

roughly three generations for orcas. A population viability analysis (PVA) for Southern 

Residents by Taylor and Plater in 2001 predicted a median time to extinction of 74 years 

with a 95% confidence interval of 33-121 years (69), other PVAs have predicted a bit 

longer. Akcakaya and others (79) caution against using time horizons that are not long 

enough to reflect the affects of climate change, noted to be 50+ years. Given all of this 

information and advice, we believe three generations is an acceptable time horizon to 

quantify cumulative impacts for Southern Resident Killer Whales.  

D. Natural Factors 

Marine mammals are influenced by natural factors such as stochastic environmental 

change and pulsed resources. These natural stresses combine with multiple human-induced 

stresses to influence population dynamics across space and time. There are many justifiable 
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ways to parse and account for natural and anthropogenic factors in a multiple impacts 

model. Perhaps the most recognizable is from fisheries science where total mortality of a 

fish population is the sum of fishing and natural mortality. Of course for marine mammals 

there are more anthropogenic sources of lethal and sub-lethal stress than fishing/direct take. 

In this study we focus on threats and stressors that can be modified by managing human 

activities—by definition an ecosystem-based management approach (34). We expanded 

sources of stress caused by humans to include all direct and indirect sources, but kept natural 

factors collapsed into one summative stressor. We asked experts to provide estimates for 

anthropogenic influences on Southern Resident Killer Whale population dynamics above 

and beyond natural factors, and treated natural factors as a direct influence on vital rates (see 

Figure 1). In the final model, experts were asked to estimate the influences of natural factors 

(e.g., what proportion of mortality will be due to natural factors over the next three 

generations) with respect to all anthropogenic stressors combined on vital rates. This is 

because during the consensus webinar experts collectively expressed that they did not feel 

confident to estimate influences of natural factors at the threats à stressor level, but more 

confident in estimating how natural factors influence vital rates relative to how 

anthropogenic stressors influence vital rates. Additionally, treating natural factors as a direct 

input to vital rates allows us to quantify the influence of anthropogenic stressors but leave 

natural factors as an unquantified input, if desired. Once the expert opinion and empirical 

data are integrated, the influence of natural factors can then be solved for, rather than 

estimated: survival = 1 – mortality(anthropogenic, natural). The two methods for estimating 

the influences of natural factors can be compared and contrasted depending on the objective. 
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E. Uncertainty & Confidence Intervals 

After Cooke (75), Halpern and others (29) argued that failure to assess uncertainty in 

expert opinion threats assessments diminished their efficacy as a substitute for empirical 

data. In light of this, we designed explicit ways in which experts could state their confidence 

in their overall knowledge of the subject of interest, as well as their confidence of each 

estimate. Further, we asked each expert to provide a lower and upper bound for each best 

estimate, which in effect translates to a confidence interval. These measures of uncertainty 

and confidence were useful in two ways. First, we were able to weigh each expert’s response 

based on their self-defined certainty of the general subject (e.g., harassment) and specific 

model links (e.g., harassment à malnutrition). Therefore, when aggregating expert estimate 

distributions, opinions of experts who are most knowledgeable about a particular response 

contribute more to the aggregate (final) distribution than opinions of experts who were less 

knowledgeable. This has been called “unequal expert weights in opinion pooling” (71, 74, 

75). Second, we were able to bound each expert’s best estimate with an expert-defined 

confidence interval. Draws were made from each expert’s bounded distribution when 

calculating the aggregate (final) distribution for a given link in the model (71, 74, 75). For 

example, if an expert thought a given threat, say harassment, contributed 30% to a given 

stressor, say malnutrition, their estimated lower and upper bounds effectively indicated the 

functional shape of the distribution around their best estimate. If no confidence intervals had 

been specified, one might assume every expert estimate is bounded between 0% and 100% 

and takes on the same functional shape, perhaps a uniform distribution. From our results we 

can see that would have been an erroneous assumption, as confidence intervals and 

functional shapes varied. Thus one of the novel contributions of this cumulative impacts 
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assessment approach is the explicit incorporation of uncertainty and confidence intervals 

around expert judgment (23, 29, 74, 81). 

F. Consensus 

The Delphi communication method was developed in the 1950s & 1960s and is based on 

the principle that information amassed from a structured group of experts is more accurate 

than those from an unstructured group of experts (82). The method allows for facilitated 

interaction among experts (83-86) and the format is typically as follows: Experts 

individually complete a questionnaire and are then brought together and provided with an 

anonymous summary of aggregate expert responses. Then, experts are encouraged to 

converse and explain reasoning. After the structured interaction, experts are able to, but not 

required to, revisit and revise the questionnaire. Iteration through this cycle can be 

completed two or more times until consensus is achieved (83, 86). During the research 

process presented here, following the first anonymous online survey we facilitated voluntary 

structured interaction via a webinar and 10 of the 16 experts participated. The tone of the 

three-hour interaction was pleasant and amenable. While each expert was initially unaware 

of which other experts would be participating in the webinar, no one was surprised to ‘see’ 

the other, as they were all familiar with one another from their combined >300 years 

experience studying killer whales. Following the webinar a second anonymous online 

survey was administered. Experts had the opportunity to carry over applicable responses 

from the first survey and/or make revisions. The last question of the second survey asked if 

the expert felt another structured interaction (webinar) was warranted. 5/10 respondents said 

no, 3/10 said possibly / if time permits, and 2/10 said yes. While this iterative process could 

go on and on and continue to be improved, and we did receive indication that at least some 
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experts would be willing to participate in a second webinar, we decided to publish the 

results after one facilitated interaction and two surveys. Both because we felt it would take 

much more time (perhaps 1+ years) for unknown added benefit, and because time is short 

for the critically endangered case study population and we hope our findings might aid 

recovery efforts. 

We found the consensus portion of our research process valuable in a two main ways. 

Frist, it improved and refined the content of the Southern Resident Killer Whale multiple 

impacts model and the information we gleaned from the elicitation process. While the 

research team has expertise in cumulative impacts assessment, conservation biology, and 

applied ecology, the 10 experts that provided feedback during the webinar have far more 

experience with both marine mammals in general, and of course killer whales. Having their 

concerted energy and input for a focused three hours was invaluable. Notably experts were 

able to tell us what information they were confident in estimating based on their knowledge, 

and what information they were not. For example, they were uncomfortable providing 

estimates for natural factors and functional forms of their responses, and so we omitted both 

of those questions from the survey. In contrast, they were comfortable estimating 

interactions between threats and the open platform allowed us to discuss how to best include 

interactions in the model. The ways in which we updated the survey based on their feedback 

is detailed in the online survey itself 

(https://www.surveymonkey.com/s/CumulativeImpacts_KillerWhales). Some examples of 

the suggestions that were incorporated in the second survey are: the consideration of adult 

male, female and post-reproductive female survival separately, versus a combined ‘adult 

survival’ vital rate; the change of the “disease” stressor to “disease and 
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immunosuppression;” the addition of stressors “endocrine disruption” and “malnutrition,” 

and the removal of stressors “changed behavior: foraging” and “compromised body 

condition;” the addition of  “marine debris interactions” and “harmful algal blooms” threats; 

the addition of interactions between chemical pollution (acute and chronic) and pathogens 

threats. Some of the revisions were important improvements to the general conceptual model 

design and assessment approach, such as assessing anthropogenic influences separate from 

natural factors. Many of the content and survey revisions were modifying the Southern 

Resident Killer Whale-specific model. This would likely be valuable for any case study.  

The second major value the consensus webinar added to the process was credibility. 

Asking experts to volunteer to anonymously complete a time-consuming (upwards of one 

hour or more) online survey is a hefty request. The webinar took even more time, as did the 

second online survey. While we did not ask the question, we speculate that being able to 

deliberate directly with the researchers and other experts during the webinar gave each 

expert additional incentive to participate. We feel that full participation and buy-in among 

experts was essential to our ability to complete a robust cumulative impacts assessment, and 

it is often an under-recognized benefit of structured consensus-building interaction (28, 87). 

While we don’t doubt that there may have been some skepticism of the elicitation process 

during the first survey, the consensus-building interaction seemed to provide the overall 

process with credibility and momentum. 

G. Interacting Threats 

We do not include interacting threats or stressors in the general conceptual model 

because we believe they are highly population-dependent. For the Southern Resident case 

study we discussed interactions during the consensus webinar with experts and decided it 
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was important to include two threat interactions: acute chemical pollution and pathogens; 

chronic chemical pollution and pathogens. In the second survey experts were asked to 

provide estimates for individual threat à stressor links, as well as interacting threats à 

stressor links (e.g., acute chemical pollution X pathogens à endocrine disruption).  

H. Anchoring Expert Information with Empirical Data 

For each segment within the multiple impacts network model (e.g., multiple threats à 

one stressor) we anchored expert estimates with empirical data when possible. From our 

literature review we identified data that are either reported as or easily translated into annual 

rates: number of individuals affected per year. For example, ship strike rate. Second, we 

used the expert percent contribution estimates and the rate(s) anchors to calculate estimates 

for other rates that have not yet been estimated in the literature. Table 2 provides an example 

of this approach for five threats that influence Lethal Injury. Essentially, this approach 

integrates expert opinion with empirical data to generate quantitative priors for all impacts, 

even those that have not yet been empirically assessed. All priors are updateable as new 

information becomes available.  

II. Glossary 

ACUTE NOISE: Short term (seconds to days in duration), high magnitude underwater noise 
resulting from human activities 
ACUTE CHEMICAL POLLUTION: Short-term exposure to a sudden release of dissolved 
chemicals, nutrients, oil or other minute human-caused pollution that impairs water quality 
and animal health 
BREEDING HABITAT DEGRADATION: Either total or partial damage to biological 
and/or physical aspects of the environment that reduces or impedes successful reproduction 
BYCATCH: Unintentional or incidental capture in active or passive fishing gear targeting a 
different species 
CHANGED BEHAVIOR: REPRODUCTION: Alteration of typical reproductive behavior, 
such as fewer breeding attempts, changed mating system, shorter nursing periods, etc. 
CHRONIC CHEMICAL POLLUTION: Long-term exposure to a sustained release of 
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dissolved chemicals, nutrients, oil or other minute human-caused pollution that impairs 
water quality and animal health 
CHRONIC NOISE: Long-lasting or repetitive underwater noise resulting from human 
activities, generally lower in magnitude than acute noise 
DISEASE & IMMUNOSUPPRESSION: Changes in cellular and humoral immunity, 
including, but not limited to impairment of natural killer (NK) cell activity, T-lymphocyte 
function, antigen-specific lymphocyte proliferative responses, delayed-type hypersensitivity, 
and antibody responses that impair normal cellular and humoral response to infectious 
agents (natural or foreign) such as viruses, bacteria, fungi and parasites. 
ENDOCRINE DISRUPTION: Mimicry or interference with bodily hormone function by 
naturally occurring or man-made compounds; disruption can occur by turning on, shutting 
off, or modifying signals that hormones carry and can affect the normal functions of tissues 
and organs. Consequences can include developmental, reproductive, neural, or other 
problems. 
FECUNDITY: Number of female offspring produced per female in the population per year 
FORAGING HABITAT DEGRADATION: Either total or partial damage to biological 
and/or physical aspects of the environment that reduces or impedes successful foraging 
HARASSMENT: Intentional or unintentional disturbance from their natural behavior, 
including tourism disturbance, aggression from fishers or fish farmers, etc. 
HARMFUL ALGAL BLOOMS: A rapid increase in the abundance of algae that are either 
toxic to marine mammals (causing illness or death), or adversely affect marine mammal 
prey (e.g. clog gills of fish and invertebrates) 
LETHAL INJURY: Physical trauma resulting in death 
MALNUTRITION: The inadequate intake of any of an animal's required nutrients; note that 
malnutrition can occur in an animal receiving large amounts of food when they are not able 
to ingest, digest, absorb, or use the food, or if the food is inadequate in one or more of the 
required nutrients. When an animal is not able to obtain food for an extended period of time 
either for the previously listed reasons or due to an unavailability of food or insufficient 
energy intake, this is defined as starvation. 
MARINE DEBRIS INTERACTIONS: Exposure to relatively large pieces of human-
produced products possibly resulting in entanglement, plastic ingestion, etc. 
NATURAL FACTORS: non-anthropogenic factors that influence individual fitness and 
survival and population vital rates. Natural factors include predation, competition, natural 
pathogens, naturally occurring biotoxins, intra- and interspecific aggression, natural climate 
variability, and other factors. Note that some threats may have both natural and 
anthropogenic components (e.g., prey depletion). 
PATHOGENS: Microorganisms, including bacteria, viruses, and fungi, which cause disease  
PREY DEPLETION: Reduction of favorable or important prey species populations 
SHIP STRIKE: Physical impacts or interactions with a vessel or its propeller 
SUBLETHAL INJURY: Physical trauma resulting in impaired health or function but not 
leading to immediate death 
SURVIVAL: IMMATURES: Proportion of immature individuals in the population 
surviving and growing to sexual maturity per year 
SURVIVAL: MATURES FEMALES: Proportion of sexually mature female individuals in 
the population surviving to the next year 
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SURVIVAL: MATURES MALES: Proportion of sexually mature male individuals in the 
population surviving to the next year 
SURVIVAL: POST-REPRODUCTIVE FEMALES: Proportion of reproductively senescent 
(or post-menopausal) female individuals in the population surviving to the next year 

 




