
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Training Efficient Neural Network Models via Pruning and Knowledge Distillation

Permalink
https://escholarship.org/uc/item/4db2940d

Author
Yang, Biao

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4db2940d
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Training Efficient Neural Network Models via Pruning and Knowledge Distillation

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Mathematics

by

Biao Yang

Dissertation Committee:
Professor Jack Xin, Chair

Professor Long Chen
Professor Yifeng Yu

2022

Portion of Chapter 2 © 2019 IEEE
Portion of Chapter 3 © 2021 Springer Nature Switzerland AG

All other materials © 2022 Biao Yang

TABLE OF CONTENTS

Page

LIST OF FIGURES iv

LIST OF TABLES v

LIST OF ALGORITHMS vi

ACKNOWLEDGMENTS vii

VITA viii

ABSTRACT OF THE DISSERTATION x

1 Introduction 1
1.1 Developing Efficient Neural Network . 1
1.2 Relaxed Group-wise Splitting Method . 4
1.3 Improving Efficient Semantic Segmentation Networks by Enhancing Multi-

Scale Feature Representation via Resolution Path Based Knowledge Distilla-
tion and Pixel Shuffle . 5

1.4 Generalized Feature Affinity Loss . 7
1.5 Light DETR for Human Detection . 8

2 Relaxed Group-wise Splitting Method 10
2.1 Preliminaries . 10

2.1.1 Convolutional Neural Network(CNN) 10
2.1.2 Channel Pruning . 12

2.2 Relaxed Group-wise Splitting Method . 13
2.2.1 Group-wise Thresholding Formulas 13
2.2.2 Relaxed Group-wise Splitting Method (RGSM) 15

2.3 Experiments and Results . 17
2.3.1 VGG-16 on CIFAR-10 . 17
2.3.2 ResNet-18 on CIFAR-10 & CIFAR-100 18

2.4 Conclusion . 22

ii

3 Improving Efficient Semantic Segmentation Networks by Enhancing Multi-
Scale Feature Representation via Resolution Path Based Knowledge Dis-
tillation and Pixel Shuffle 23
3.1 Overview . 23
3.2 Search and Training in FasterSeg . 24
3.3 Resolution Path Based Distillation . 26

3.3.1 Tutor Model with 1/4 Resolution Path 27
3.3.2 Feature Affinity Loss . 27
3.3.3 Teacher Net Guided Student Net Search and Training 29

3.4 Experiment Results . 31
3.4.1 Dataset and Implementations . 31
3.4.2 Experimental Results and Analysis 32
3.4.3 Analysis of FA loss . 35

3.5 Pixel Shuffle Prediction Module . 38
3.6 Conclusion . 39

4 Generalized Feature Affinity Loss 41
4.1 Overview . 41
4.2 Computational Cost of Feature Affinity Loss 42
4.3 Fast Feature Affinity Loss . 42

4.3.1 Fast Feature Affinity Loss . 43
4.3.2 Analysis of Fast Feature Affinity Loss 43

4.4 Numerical Experiments . 47
4.5 Conclusion . 49

5 Light DETR for Human Detection 51
5.1 Light DETR model . 51

5.1.1 DETR architecture . 51
5.1.2 Light DETR architecture . 52

5.2 Experiment Results . 55
5.3 Conclusion . 56

Bibliography 57

iii

LIST OF FIGURES

Page

2.1 Example of a Convolutional Neural Network. 12
2.2 Layer-wise channel numbers in VGG-16 before and after pruning on CIFAR-10. 19
2.3 Layer-wise channel numbers in ResNet-18 before and after pruning on CIFAR-

10. 20
2.4 Layer-wise channel numbers in ResNet-18 before and after pruning on CIFAR-

100. 21

3.1 Tutor net: a FasterSeg form of Student Net with 1/4 resolution path added. 27
3.2 Student Net with virtual 1/4 path (lower) distilled from tutor net (upper). . 29
3.3 Baseline student net improved by student net with virtual 1/4-path (pixels

in rectangular regions). The 4 columns (left to right) display input images,
true labels, output labels of the baseline net and the student net with virtual
1/4-path resp. The 5 example images are taken from the validation dataset. 34

3.4 Histograms of entries in affinity matrix entries in tutor-student distillation
learning. 37

3.5 Proposed Pixel Shuffle Prediction Module vs. that of FasterSeg [8]. 39

4.1 Plots for inference time of FA loss and FFA loss. 50

5.1 DETR architecture. 52
5.2 Architecture of DETR’s transformer. 53
5.3 Light DETR Encoders. CONV is the convolutional layer, DW-CONV is

depth-wise convolution, and DW-D-CONV means dilated depth-wise convo-
lution. CFF means convolutional feed-forward network. 54

iv

LIST OF TABLES

Page

2.1 Accuracy (Acc. %) and Sparsity (Sp. %) of VGG-16 on CIFAR-10. 18
2.2 Accuracy (Acc. %) and Sparsity (Sp. %) of ResNet-18 on CIFAR-10. 22
2.3 Accuracy (Acc. %) and Sparsity (Sp. %) of ResNet-18 on CIFAR-100. 22

3.1 Tutor/student net with virtual 1/4 path for low/high image input sizes on
Cityscapes Val dataset. 34

3.2 Student nets with virtual 1/4 path on low input size images of Val dataset. . 34
3.3 Comparison of validation mIoUs of our proposed up-scaling method with

depth-wise separable convolution (dep. sep. conv) and Pixel Shuffle (PS)
on low/high input image sizes vs. those of the FasterSeg student (original
net) [8] implemented on our local machine. 39

4.1 EfficientNet on Cifar-100 dataset with KL-divergence and with/without FA
loss or FFA loss. B3 (B0) stands for modified EfficientNet-B3 (B0). FA (FFA)
means FA (FFA) loss is applied in the training. And Column 2-4 contain 3
independent experiments’ results and Column 5 lists the average accuracy for
each method. 49

5.1 Experiments of Light DETR on person-only data. 55

v

LIST OF ALGORITHMS

Page
1 Relaxed Group-wise Splitting Method . 17

vi

ACKNOWLEDGMENTS

I would like to thank my advisor, Professor Jack Xin for his patience, profound advice, and
continuous support during my Ph.D. study. He not only inspired my research interest and
guided me with his immense knowledge and plentiful experience, but also encouraged me a
lot in my daily life.

I would also like to thank Dr. Yingyong Qi, Dr. Shuai Zhang, and Dr. Jiancheng Lyu for
their treasured support and guidance during my research. I wish to thank my collaborator
Fanghui Xue. It was my great honor to work with them.

I would like to thank all my defense committee members, Professor Long Chen and Professor
Yifeng Yu as well as my advancement committee members, Professor Hongkai Zhao and
Professor Lizhi Sun for their time and expertise.

I would like to extend my appreciation to Donna McConnel, Aubrey Rudd, and Kate Lynch
for their help with all the paperwork and registration; Professor Patrick Guidotti for being
my provisional advisor; Professor Katya Krupchyk and Professor Roman Vershynin for their
guidance in courses.

Finally, I would like to express my appreciation to my family and my friends. It would be
impossible for me to finish my study without their sincere love and great support.

I would like to thank all my funding supports. My research was partially supported by
Professor Jack Xin’s NSF grant IIS-1632935, DMS-1854434, DMS-1952644, a Qualcomm
Faculty Award, and Qualcomm AI Research.

Formal acknowledgments:
Portion of the text of Chapter 2 is a reprint of the material as it appears in IEEE [69].
Dr. Shuai Zhang, Dr. Jiancheng Lyu, and Dr. Yingyong Qi provided contributions to
enlightening discussions and helpful suggestions. Professor Jack Xin provided the concept
and directed and supervised research which forms the basis for the dissertation. The work
was partially supported by NSF grant IIS-1632935, DMS-1854434, a Qualcomm Faculty
Award, and Qualcomm AI Research.

Portion of the text of Chapter 3 is a reprint of the material as it appears in Springer Nature
Switzerland [70]. The co-authors of the original article are acknowledged as follows. Fanghui
Xue contributed to some of the experiments and the presentation of content. Dr. Shuai
Zhang and Dr. Jiancheng Lyu contributed to discussions and suggestions about the project.
Professor Jack Xin and Dr. Yingyong Qi directed and supervised research which forms the
basis for the dissertation. The work was partially supported by NSF grants DMS-1854434,
DMS-1952644, and a Qualcomm Faculty Award.

vii

VITA

Biao Yang

EDUCATION

Doctor of Philosophy in Mathematics 2022
University of California, Irvine Irvine, California

Master of Science in Applied Mathematics 2014
State University of New York. Stony Brook Stony Brook, New York

Bachelor of Science in Mathematics 2013
Nankai university Tianjin, Tianjin

RESEARCH EXPERIENCE

Graduate Research Assistant 2018–2022
University of California, Irvine Irvine, California

TEACHING EXPERIENCE

Teaching Assistant 2018–2022
University of California, Irvine Irvine, California

viii

REFEREED CONFERENCE PUBLICATIONS

Channel Pruning for Deep Neural Networks via a Re-
laxed Group-wise Splitting Method

Aug 2019

2019 Second International Conference on Artificial Intelligence for Industries

Improving Efficient Semantic Segmentation Networks
by Enhancing Multi-Scale Feature Representation via
Resolution Path Based Knowledge Distillation and
Pixel Shuffle

Oct 2021

16th International Symposium on Visual Computing

ix

ABSTRACT OF THE DISSERTATION

Training Efficient Neural Network Models via Pruning and Knowledge Distillation

By

Biao Yang

Doctor of Philosophy in Mathematics

University of California, Irvine, 2022

Professor Jack Xin, Chair

A relaxed group-wise splitting method (RGSM) is developed and evaluated for channel prun-

ing of deep neural networks. Experiments with VGG-16 and ResNet-18 architectures on

CIFAR-10/100 image data show that RGSM can achieve much higher channel sparsity than

group Lasso method, while keeping comparable accuracy.

Multi-resolution paths and multi-scale feature representation are key elements of semantic

segmentation networks. We develop two techniques for efficient networks based on the recent

FasterSeg network architecture. One is to use a state-of-the-art high resolution network (e.g.

HRNet) as a teacher to distill a light weight student network. Due to dissimilar structures

in the teacher and student networks, distillation is not effective to be carried out directly in

a standard way. To solve this problem, we introduce a tutor network with an added high

resolution path to help distill a student network which improves FasterSeg student while

maintaining its parameter/FLOPs counts. The other finding is to replace standard bilinear

interpolation in the upscaling module of FasterSeg student net by a depth-wise separable

convolution and a Pixel Shuffle module which leads to 1.9% (1.4%) mIoU improvements on

low (high) input image sizes without increasing model size.

A Fast Feature Affinity loss is developed for intermediate feature knowledge distillation. It

requires less computational cost as well as storage cost. Experiments with modified Efficient-

x

Net architectures on CIFAR-100 data show that both Feature Affinity loss and Fast Feature

Affinity loss improve the accuracy of the network and have close performance.

A compact DETR based architecture is proposed for human-only detection. By replacing

the backbone of DETR with MobileNet-V3 and shrink the decoder layer, we first obtain

a baseline model. Then we replace the transformer encoder with convolutional encoder.

And experiments show that convolutional based encoders have better performance, but less

FLOPs and parameters.

xi

Chapter 1

Introduction

1.1 Developing Efficient Neural Network

Although the concept of backpropagation [31, 17, 41] and multilayer neural network [29] did

exist over 50 years ago, it was until in 1986 when David Rumelhart, Geoffrey Hinton, and

Ronald Williams sparked the interest in training neural networks by backpropagation in [57].

However limited by the computing power and the design of the networks [25, 20] during that

time, most researchers shifted their interest toward other machine learning algorithms like

Support Vector Machines and Random Forests. But the foundation of deep learning was still

slowly built over the next decade. Many well-known neural networks were created including

first backpropagation trained Convolutional neural network (CNN) [35], LeNet [36], long

short-term memory recurrent neural nets (LSTMs) [26] . After 2010, with cheaper GPUs,

faster computing power and larger data, it becomes possible to train deep neural networks. In

2012, the famous convolutional neural network AlexNet [34], developed by Alex Krizhevsky,

Ilya Sutskever, and Geoffrey Hinton, won the ImageNet Large Scale Visual Recognition

Challenge (ILSVRC) [58] and led the second place over 10% accuracy. The great success of

1

AlexNet inspired more and more researchers to engage in deep neural network. And deep

neural network (DNN) has made great achievement in many fields such as computer vision

[34, 61], speech recognition [23], and natural language processing [13, 15].

Generally, a neural network can be considered as a composite function with images, videos,

sound or text input and certain output based on its task. For example, the output will be

the probability for each category in image classification task, a pixel-wise labeled image in

semantic segmentation task, and translated text in machine translation task. Now given

the neural network architecture, training data, and a task, a loss function of the network’s

output and the target is introduced to measure the performance of the model. Then training

such a model can be treated as a minimization problem of the high dimensional non-convex

loss function. Surprisingly, such complex networks are usually trained well by the simple

stochastic gradient descent (SGD).

Although people have not fully understood the neural network from a theoretical perspective

[38, 4, 60], it does not prevent researchers from developing many advanced neural network

architectures. Nowadays, DNNs have occupied most of the leaderboards on different pub-

lic datasets. From AlexNet (Parameters: 60M) [34], VGG-19 (Parameters: 144M) [61] to

ResNext-101 (Parameters: 829M) [49], people proposed larger and more complicated neu-

ral networks on the journey of searching more powerful and better performance models.

However, these neural networks often require higher computational cost and memory, which

might result in tens of or hundreds of GPU hours training time and longer inference time.

As DNN models are more exposed to personal computers and edge devices such as smart-

phones or IoT devices, it has become a critical issue of improving training efficiency, reducing

model size and computational latency while maintaining the performance on resource limited

devices.

Besides designing more efficient models like MobileNet [28], ShuffleNet [77], AutoShuffleNet

[48], and EfficientNet [64], model compression has been widely studied to solve the issue

2

in the past decades. Typically, model compression can be categorized into three methods:

Quantization, Pruning, and Knowledge Distillation.

Quantization method [51, 11, 72, 30, 12] quantizes full precision floating point model weights

into lower bit floating point numbers. At the lower bitwidth representation, one can directly

reduce the model size and improve inference speed with the help of hardware and software

accelerators such as s NVIDIA’s Tensor Core [52], AMD Matrix Core [1], Intel MKL-DNN

[50], and NVIDIA TensorRT [53]. Quantizing a 32-bits floating-point model to 16-bits float-

ing point model is often considered as a ”free” quantization since it directly reduces the

model size by half without much loss of accuracy. And quantizing model to 8-bits or even

lower is still an active topic in model compression.

In Pruning [16, 46, 68, 37, 47], the unimportant weights or structures of models are removed.

Based on removing individual weights or groups of weights, pruning method is divided into

unstructured pruning and structured pruning. For unstructured pruning , individual weights

in the neural are removed by setting them to 0, which turns the dense tensors into sparse

tensors. And with certain software, like the Neural Magic Inference Engine, one can run the

pruned networks much faster. For structured pruning, group of weights are literally removed,

such as channels or filters. This will result in direct compression and speedup of the models.

Knowledge distillation [24, 3, 71, 56, 66] is the process of transferring knowledge from a

larger teacher model to a smaller student model. The larger teacher network usually has

better performance but more computational cost and slower inference rate. And by utilizing

the learning framework, one can enhance the performance of student network while keeps

its efficiency.

Our work focuses on improving network efficiency via different model compression methods.

We first introduce a structured pruning method via regularization. Then we introduce an

intermediate knowledge distillation framework and a structural design technique for efficient

3

networks based on a multi-resolution paths network architecture. We further improve the

efficiency of the intermediate knowledge distillation method making it suitable for high res-

olution features. In the last chapter, we present our current work on transformer, where we

design a light transformer model for human detection.

1.2 Relaxed Group-wise Splitting Method

Deep neural networks have achieved great successes in many fields in the past decades. The

high performance of networks relies on their millions or even billions of parameters. In

resource limited situations however, light weight networks are desirable for which pruning

methods have been actively studied. One approach to reduce the redundancy of networks is

the pruning method which removes parameters from an existing network.

In network pruning [46], a major line of work is on structured pruning [68] via group sparsity

penalties, most notably Glasso [74]. Besides direct implementation in gradient descent [68],

primal-dual like approaches can bring additional efficiency in pruning. In [76], the alternating

direction method of multipliers (ADMM) is applied for unstructured weight pruning. In

[16], a relaxed variable splitting method (RVSM) is proposed for unstructured sparsity and

its convergence is analyzed in a regression problem. In RVSM, thresholding and gradient

descent are efficiently integrated to handle non-smooth (discontinuous) penalties for network

training. The RVSM is much simpler than ADMM, and so is more computationally appealing

for deep network training.

In this work, we propose a Relaxed Group-wise Splitting Method (RGSM) extending the

Relaxed Variable Splitting Method (RVSM)[16] to group sparsification of network weights,

especially focusing on channel pruning. Channel sparsity yields highly compact network as

zeroing out channels also reduce filters and network complexity. The RGSM utilizes the

4

thresholding formulas of group-Lasso (GLasso) [74], and group-ℓ0. Moreover, we also found

that blending RGSM with the direct GLasso [68] can help zero out small weights more

effectively than each individual method. Our main contributions are:

• formulation of RGSM for structured network pruning;

• general applicability of RGSM for discontinuous penalty ℓ0 and others with closed form

proximal operators;

• blending RGSM and direct GLasso [68] into an efficient group sparsity method.

1.3 Improving Efficient Semantic Segmentation Net-

works by Enhancing Multi-Scale Feature Repre-

sentation via Resolution Path Based Knowledge

Distillation and Pixel Shuffle

Semantic segmentation is concerned with pixel-wise classification of images and has been

studied as a long-standing problem in computer vision, see [42, 65] and references therein.

Predictions are first made at a range of scales, and are then combined with averaging/pooling

or an attention layer. A class of efficient networks (called FasterSeg) have been recently

constructed [8] based on differentiable neural architecture search [43] of a supernet and a

subsequent knowledge distillation [24] to generate a smaller student net with 3.4M parameters

and 27G FLOPs on full resolution (1024× 2048) image input 1.

We are interested in distilling such a light weight Student Net from a high performance

Teacher Net which we choose as HRNet-OCR [75] in this work. Our motivation is to im-

1This model was searched on our machine based on source code from FasterSeg [8].

5

prove the FasterSeg Student Net while maintaining its size and FLOPs by enhancing the

resolutions of its multi-scale feature maps and their combinations for better prediction. The

HRNet has about 10% higher accuracy than the FasterSeg Teacher Net on Cityscapes dataset

[10]. Specifically, we first add a higher resolution path to the FasterSeg Student Net archi-

tecture and train it through distilling HRNet predictions. Then we let this high resolution

path guide the prediction of the lower resolution paths in FasterSeg Student Net through a

feature affinity (FA) matrix. At inference, the high resolution path is absent hence its role is

virtual and does not add computational overheads on the Student Net. Though knowledge

distillation at intermediate level was known in FitNets [56], the knowledge passing across

multi-resolution paths for semantic segmentation appears new. In addition, we improve the

inaccurate interpolation treatment in FasterSeg’s feature fusion module by a combination

of depth-wise separable convolutions and Pixel Shuffle (PS) technique [59], resembling the

efficient operations in Shufflenets [77, 48] for regular image classification task.

Our main contributions are:

• introducing a novel teacher-tutor-student framework to enhance multi-resolution paths

by path-wise knowledge distillation with application to Faster-Seg Student Net while

keeping computational costs invariant, which utilizes the intermediate feature informa-

tion from the tutor model;

• improving multi-scale feature map fusion by depth-wise separable convolution and

Pixel Shuffle techniques to gain 1.9% (1.4%) validation accuracy in mIoU on low (high)

resolution input images from Cityscapes dataset, at reduced computational costs.

6

1.4 Generalized Feature Affinity Loss

The teacher-student framework training with feature affinity loss can help smaller networks

learning pixel-wise cosine similarity information of the intermediate feature maps, which

has been verified in Dual Super-Resolution Learning for Semantic Segmentation [67] and

Chapter 3. However, the heavy computational burden during computing the FA loss limits

its application to high resolution feature maps. For feature maps of size C × H × W ,

the computational cost and memory space of FA loss are O(N2C) and O(N2) respectively,

where N = HW . In [67], to reduce the high computational cost and memory overheads,

they subsample the the pairs of pixels to its 1/8, which may drop some key pixels during

the training.

In the corresponding chapter, we introduce an efficient Feature Affinity loss named Fast

Feature Affinity (FFA) loss. Benefiting from sampling, we greatly reduce the computational

cost and the memory space of FA loss to O(NC) and O(N). In our FFA loss, we generate

a random vector in each batch during the training and compute a loss based on projected

vector by the affinity matrix. Instead of explicitly calculating the affinity matrix, the FFA

loss can be viewed as computing the loss along a random dimension in each batch. So the

large computational cost is distributed into batches. And under expectation, we theoretically

prove that our FFA loss will be equal to or close to the original FA loss. We also perform

numerical experiments on modified EfficientNet [64] on CIFAR-100 [33] data, and the FFA

loss has comparable performance as FA loss. Experiments on inference time indicate that

FFA loss is much more computational efficient on high resolution features.

Our main contributions are:

• improving the efficiency of Feature Affinity loss by sampling, which largely reduce the

computational cost and memory space needed in calculation of the loss;

7

• theoretically proving the FA loss and our FFA loss are equivalent under expectation,

and numerically showing that they have close performance on EfficientNet on CIFAR-

100 dataset.

1.5 Light DETR for Human Detection

Object detection is a computer vision technique that works to predict a set of bounding boxes

along with category labels for objects of interest. The technique is widely used in tasks such

as vehicle counting, face detection, face recognition, and image annotation. Methods for

object detection are typically split into neural network based and non-neural network based.

And modern neural network approaches can be generally categorized into two: two-stage

methods and one-stage methods. In the two-stage approaches, models will first generate

region proposals by select search [19, 18] or regional proposal network [55, 5]. Then a separate

network will label a class or refine the region by bounding box regression for each region

proposal. On the contrary, the one-stage methods will directly make predictions without

pre-generated region proposals. Without region proposal stage, these networks pre-design

anchors or window centers that help assign the boxes. Classical one-stage methods include

YOLO [54] and SSD [44]. One-stage methods are usually faster and simpler at a potential

expense of drop of the performance.

However, making predictions on a large set of proposals, anchors or window centers require

postprocessing such as non-maximum suppression (NMS) to remove duplicate predictions

and anchor-based coordinate decoding which makes these methods inefficient. A recent work

DEtection TRansformer (DETR) [6] propose a new pipeline in object detection. DETR

directly addresses the prediction problem without requirement of any postprocessing like

most architectures do. The design of DETR is simple with a convolutional neural network

backbone, a transformer encoder-decoder and a feed forward network head. And in 2021,

8

Machine Learning Research at Apple introduces their compact framework HyperDETR [2]

for on-device panoptic segmentation for camera. Modified on DETR model, the HyperDETR

is compact and efficient enough to execute on-device with reasonable accuracy.

Inspired by all these works, we propose a compact DETR based model named Light DETR.

The network is designed for human-only detection for targets less than 5. Light DETR has

MobileNet-V3 as its backbone and a SOTA convolutional based encoder. We experimentally

show that convolutional encoder can achieve better performance and be more efficient than

original transformer encoder on the selected COCO dataset. On the human-only dataset,

Light DETR with VAN block encoder has close performance, but only about 2/3 FLOPs

and parameters than Light DETR with transformer encoder.

9

Chapter 2

Relaxed Group-wise Splitting Method

2.1 Preliminaries

In this section we first describe the structure of a convolutional neural network and the way

it works. Then we further explain the concept of channel pruning.

2.1.1 Convolutional Neural Network(CNN)

Consider a simple Convolutional Neural Network(CNN) with L layers as shown in Figure

2.1. Without considering batches, the model takes an input x0 ∈ R3×H×W . In the l-th layer

the output feature map xl is computed as

xl
i,:,: = δ(W l

i,:,:,: ⊙ xl−1 + bli), i = 1, 2, ..., C l
o

with input feature map xl−1 and then the result is passed to the next layer. Here ⊙ is the

convolution operation if the layer is a convolutional layer and regular matrix multiplication is

10

the layer is a dense layer. δ is the activation function, and a common option is the Rectified

Linear Unit function δ(x) = ReLU(x) = 1x≥0(x).

For a convolutional layer, the kernel weight in l-th layer W l is of the size C l
o×C l

i × kl
h× kl

w,

here C l
o, C

l
i are the number of output channels and input channels of l-th layer respectively,

kl
h, k

l
w are the height and width of the kernel size. bl is the bias vector with shape C l

o. We

usually name W l
i,:,:,: the i-th filter and W l

:,i,:,: the i-th channel of the kernel in l-th layer. The

convolution operation is to slide a filter W l
i,:,:,: across the feature map and the elementwise

multiplication is performed between the filter and its mapping feature map. Then all the

results are summed with the bias to give us a one-depth channel convoluted feature output.

The above computation for i-th filter centering at (p, q) of the input feature map can be

formularized as below.

x̃l
i,p,q =

∑
W l

i,:,:,: ∗ xl−1
:,p−⌊klh/2⌋:p+⌊klh/2⌋,q−⌊klw/2⌋:q+⌊klw/2⌋ + bli

With repeating the process among all the C l
o filters and stacking the output features together,

we will obtain the C l
o-depth channel output feature map before the activation function.

Let ϕ be a loss function which is used to measure the performance of neural network h(·, w)

depending on the task and the model weights w = {W l, bl|l = 1, ..., L}. Now, given input

data Xi with corresponding labels Yi, i = 1, 2, ...,m, an empirical risk minimization problem

is f̂X,Y (w) =
∑

i=1,...,m ϕ(h(Xi;w), Yi). Considering the population loss function f(w) =

EX,Y f̂X,Y (w), with Stochastic gradient descent (SGD), the weights w can be updated by:

wt = wt−1 − η∇f(wt) (2.1)

where t is the iteration number, η is the learning rate.

11

Figure 2.1: Example of a Convolutional Neural Network.

2.1.2 Channel Pruning

Channel pruning which belongs to structured pruning focuses on zeroing out channels of

weights in the convolutional layers. As shown in Figure 2.1, if the channel in the second

convolutional layer (red color) is set to be all zeros, then the corresponding channel (yellow

color) of the input feature map for the second layer has no effect on the output result of the

layer. Accordingly, the filter (green color) in the first layer which generates the channel of

the input feature map for the second layer can be removed as well. So in channel pruning,

removing channels can not only reduce the number of channels in the current layer, but also

reduce the number of filters in the previous layer. As a result, the pruning method will lead

to direct compression and speedup without dedicated hardware or libraries.

12

2.2 Relaxed Group-wise Splitting Method

We solve for the explicit group-wise threshholding formulas in Section 2.2.1 and then propose

our Relaxed Group-wise Splitting Method in Section 2.2.2.

2.2.1 Group-wise Thresholding Formulas

Let w = {w1, ..., wg, ..., wG} be the grouped weights of convolutional layers of a deep network,

where G is the total number of groups. Let Ig be the indices of w in group g. In the channel

pruning case, {wg : g = 1, ..., G} are grouped weights of channels in convolutional layers.

The GLasso penalty [74] is defined as:

∥w∥GL :=
G∑

g=1

∥wg∥2. (2.2)

We obtain the GLasso proximal operator of (2.2) by solving:

y∗ = argminyλ ∥y∥GL +
1

2
∥y − w∥22, (2.3)

or Group-wise:

y∗g = argminygλ ∥yg∥2 +
1

2

∑
i∈Ig

|yg,i − wg,i|2, g = 1, 2, ..., G, (2.4)

If y∗g ̸= 0, the objective function of (2.4) is differentiable and setting the gradient to zero

gives:

yg,i − wg,i +
λ

∥yg∥2
yg,i = 0, ∀i ∈ Ig

13

or

(1 +
λ

∥yg∥2
)yg,i = wg,i, ∀i ∈ Ig, (2.5)

which implying:

(1 +
λ

∥yg∥2
)∥yg∥2 = ∥wg∥2.

Then we should have:

∥y∗g∥2 = ∥wg∥2 − λ, if ∥wg∥2 > λ, (2.6)

Otherwise, the critical equation does not hold and y∗g = 0. Then based on (2.5) and (2.6),

the minimal point formula is:

y∗g,i =


∥wg∥2−λ

∥wg∥2 wg,i , if ∥wg∥2 > λ

0 , otherwise.

The result can be written as a soft-thresholding operation:

y∗g := ProxGL,λ(wg) =
max(∥wg∥2 − λ, 0)

∥wg∥2
wg =

Sλ(∥wg∥2)
∥wg∥2

wg. (2.7)

Similarly, the group-ℓ0 penalty (G-ℓ0) is:

∥w∥Gℓ0 :=
G∑

g=1

1∥wg∥2 ̸=0. (2.8)

In this case, to obtain the G-ℓ0 proximal (projection) operator, equations (2.3) and (2.4) are

14

replaced by:

y∗ = argminyλ ∥y∥Gℓ0 +
1

2
∥y − w∥22, (2.9)

and

y∗g = argminyλ1∥yg∥2 ̸=0 +
1

2

∑
i∈Ig

|yg,i − wg,i|2, g = 1, 2, ..., G, (2.10)

If yg = 0, the objective equals 1
2
∥wg∥22. So if λ ≥ 1

2
∥wg∥22, yg = 0 is a minimal point. If

λ < 1
2
∥wg∥22, yg = wg gives minimal value λ. Thus the solution for (2.10) is the hard-

thresholding operation:

y∗g := ProxGℓ0,λ(wg) = wg1∥wg∥2>
√
2λ. (2.11)

2.2.2 Relaxed Group-wise Splitting Method (RGSM)

To sparsify network weights channel-wise, we add group sparsity to the population loss

function f . Consider the minimization problem:

l(w) = f(w) + λ∥w∥. (2.12)

where ∥w∥ is the GLasso or G-ℓ0 regularization. Inspired by the unstructured sparsifying

method, Relaxed Variable Splitting Method [16], we first relaxed (2.12) into an equation of

two variables

l(w, u) = f(w) + λ∥u∥.

15

and consider its augmented Lagrangian

Lβ(w, u) = f(w) + λ∥u∥+ β

2
∥w − u∥22. (2.13)

To minimize (2.13), we alternately update w and u. Noticing that Lβ(w, u) is differentiable

in w, we simply use SGD to update w. For the update on u, it is equivalent to minimize

λ∥u∥ + β
2
∥w − u∥22 which has solved in Section 2.2.1. Now we have extended RVSM [16] to

our RGSM by modifying gradient descent (2.1) into:

ut
g = Proxλ/β(w

t
g), g = 1, · · · , G, (2.14)

wt+1 = wt − η∇f(wt)− η β (wt − ut), (2.15)

Here Proxλ/β(·) is one of the two Group-wise thresholding operators in (2.7) or (2.11). λ and

β are two positive hyperparameters.

In the experiments, we find that blending our RGSM with GLasso [68] can imrpove the

performance as well as the stability of training. Let λ1 = λ and λ2 be the GLasso blending

parameter. So the general RGSM is summarized in Algorithm 1. If λ2 = 0, Algorithm 1 is

called Relaxed Group-wise Splitting method (RGSM). And if λ2 ̸= 0, it becomes Relaxed

Group-wise Splitting method blending with GLasso, (RGSM+GL) for short. The RGSM

can be RGSM(GL) or RGSM(G-ℓ0) depending on using (2.2) or (2.8). The output ut (t =

max−epoch) gives the pruned weights. The {wt}’s are auxiliary weights to help compute

{ut}’s.

16

Algorithm 1 Relaxed Group-wise Splitting Method

Input: β, λ1, λ2,maxepoch,maxbatch

Output: umaxepoch

Define: objective function ρ(w) = l(w) + λ2∥w∥GL

Initialize: w0

Define: u0

for g = 1, 2, ..., G do
u0
g = Proxλ1(w

0
g)

end
for t = 1, 2, ...,maxepoch do

for batch = 1, 2, ...,maxbatch do
wt+1 ← wt − η∇ρ(wt)− η β (wt − ut)
for g = 1, 2, ..., G do

ut+1
g ← Proxλ1(w

t
g)

end
end

end

2.3 Experiments and Results

We compare Algorithm 1 with GLasso [68] on CIFAR-10 [32] dataset through VGG-16[61]

and ResNet-18 [22], and on CIFAR-100 [33] through ResNet-18. In training, λ1 controls the

threshold, and is found to be larger for RGSM(G-ℓ0) to be effective.

2.3.1 VGG-16 on CIFAR-10

We train VGG-16 model in 200 epochs, and use SGD as optimizer with momentum 0.9,

weight decay 5e-4 and initial learning rate 0.1. The learning rate decays by a factor of 0.1 at

the 100th and 160th epochs. We apply Algorithm 1 to pruning convolutional layers of the

model. The sparsity is measured as the percentage of all channels with ℓ2-norm less than

10−15. Table 2.1 shows that both RGSM(GL) and blended RGSM(GL) with Glasso (GL)

achieve higher channel sparsity than GL while maintaining the original network accuracy.

And Figure 2.2 shows the number of channels of each layer in VGG-16 trained on CIFAR-10

17

Table 2.1: Accuracy (Acc. %) and Sparsity (Sp. %) of VGG-16 on CIFAR-10.

Model β λ1 λ2 Acc. Channel Sp. Weight Sp.
Original 0 0 0 93.94 0 0

GL 0 0 1e-4 93.62 65.9 74.1
RGSM(GL) 1 1e-3 0 93.68 69.0 77.7

RGSM(GL)+GL 1 1e-3 1e-6 93.61 70.1 78.8
RGSM(G-ℓ0) 1 4e-2 0 93.77 67.8 76.6

RGSM(G-ℓ0)+GL 1 4e-2 1e-6 93.64 70.1 78.9

with only GL and our blended RGSM(GL) with GL. Both methods tend to prune channels

at the last several layers, where these layers tend to extract high level feature information.

2.3.2 ResNet-18 on CIFAR-10 & CIFAR-100

We implement Algorithm 1 on CIFAR-10 and CIFAR-100 with ResNet-18 under the same

training condition as VGG-16. In Table 2.2 and 2.3 , the blended RGSM(G-ℓ0) and GL

garners the highest sparsity under 1% loss of the original accuracy. This can be explained

by the observation: while the splitting procedure zeros out channels with ℓ2-norm under

certain threshold, the blended GLasso helps promote channel differences so more channels

with small ℓ2-norm appear. Figure 2.3 and Figure 2.4 show the number of channels of each

layer in ResNet-18 trained on CIFAR-10 and CIFAR-100 with only GL and our blended

RGSM(GL) with GL. Most pruned channels appear at the last several layers as experiment

results for VGG-16. Surprisingly on CIFAR-10, our RGSM(GL)+GL prunes all channels at

the last 2 layers, which means convolutional layers are not necessary in these layers.

18

(a) Before and after GL pruning on CIFAR-10.

(b) Before and after RGSM(GL)+GL pruning on CIFAR-10.

Figure 2.2: Layer-wise channel numbers in VGG-16 before and after pruning on CIFAR-10.

19

(a) Before and after GL pruning on CIFAR-10.

(b) Before and after RGSM(GL)+GL pruning on CIFAR-10.

Figure 2.3: Layer-wise channel numbers in ResNet-18 before and after pruning on CIFAR-10.

20

(a) Before and after GL pruning on CIFAR-100.

(b) Before and after RGSM(GL)+GL pruning on CIFAR-100.

Figure 2.4: Layer-wise channel numbers in ResNet-18 before and after pruning on CIFAR-
100.

21

Table 2.2: Accuracy (Acc. %) and Sparsity (Sp. %) of ResNet-18 on CIFAR-10.

Model β λ1 λ2 Acc. Channel Sp. Weight Sp.
Original 0 0 0 94.97 0 0

GL 0 0 1e-4 95.13 29.7 37.4
RGSM(GL) 1 1e-3 0 94.74 45.8 61.4

RGSM(GL)+GL 1 1e-3 5e-6 94.74 46.1 62.1
RGSM(G-ℓ0) 1 1e-2 0 95.19 35.9 44.3

RGSM(G-ℓ0)+GL 1 1e-3 5e-6 94.87 49.7 62.8

Table 2.3: Accuracy (Acc. %) and Sparsity (Sp. %) of ResNet-18 on CIFAR-100.

Model β λ1 λ2 Acc. Channel Sp. Weight Sp.
Original 0 0 0 77.76 0 0

GL 0 0 1e-4 77.52 11.2 9.5
RGSM(GL) 1 1e-3 0 77.03 11.1 9.5

RGSM(GL)+GL 1 1e-3 5e-6 77.47 12.7 10.7
RGSM(G-ℓ0) 0.1 5e-2 0 76.93 19.7 15.3

RGSM(G-ℓ0)+GL 0.1 5e-2 1e-6 76.88 20.3 16.6

2.4 Conclusion

We propose the Relaxed Group-wise Splitting Method (RGSM) which is developed for struc-

tured channel pruning. It outperforms GLasso in the number of pruned channels while

maintaining network accuracy. The blended ℓ0-version, viz. RGSM(G-ℓ0)+GL, achieve most

channel sparsity while keeping loss of accuracy under one percent for pruning ResNet-18 on

both CIFAR-10 and CIFAR-100. The blending of group-wise splitting and GLasso is found

to be effective. While splitting zeros out channels with ℓ2-norm under certain threshold,

GLasso helps create channel differences.

22

Chapter 3

Improving Efficient Semantic

Segmentation Networks by Enhancing

Multi-Scale Feature Representation

via Resolution Path Based Knowledge

Distillation and Pixel Shuffle

3.1 Overview

Semantic segmentation has been studied for decades. Recent lines of research include hier-

archical architecture search, knowledge distillation (introduced in [24] for standard classifi-

cation), and two-stream methods. Among large capacity models are Autodeeplabs ([42] and

references therein), high resolution net (HRNet [75]), zigzag net [39] and hierarchical multi-

scale attention network [65]. Among the light weight models are FasterSeg [8], and BiSenet

23

[73]. In Gated-SCNN [63], a high level stream on region masks guides the low level stream on

shape features for better segmentation. A gated structure connects the intermediate layers of

the two streams, and resulted in 2% mask (mIoU) gain over DeepLabV3+ [7] on Cityscapes

dataset [10]. In [67], a dual super-resolution learning framework is introduced to produce

high resolution representation on low resolution input. A 2% gain in mIoU over various

baseline models is accomplished on Cityscapes data. A feature affinity function is used to

promote cooperation of the two super-resolution networks, one on semantic segmentation,

the other on single image super-resolution.

Though knowledge distillation at an intermediate level [56] has been known conceptually,

how to set it up in the multi-resolution paths for semantic segmentation networks is not

much studied. In part, a choice of corresponding locations in the Teacher Net and Student

Net depends on network architecture. This is what we set out to do on FasterSeg Student

Net.

Besides the conventional upscaling methods like bilinear interpolation, Pixel Shuffle (PS) is

widely adopted in various multi-resolution image processing tasks. In the super-resolution

task [59], an artful PS operator has been applied to the output of the convolutional layer in

the low resolution, and hence has reduced the computational complexity. This technique is

inherited by [67] for the super-resolution semantic segmentation, boosting the performance

of the model with low resolution input.

3.2 Search and Training in FasterSeg

The FasterSeg search space consists of multi-resolution branches with searchable down-

sampling-path from high resolution to low resolution, and searchable operations in the cells

(layers) of the branches. Each cell (layer) contains 5 operations: skip connect, 3 × 3 Conv,

24

3 × 3 Conv ×2, Zoomed 3 × 3 Conv and Zoomed 3 × 3 Conv ×2. The ”Zoomed Conv”

contains bilinear down-sampling, 3× 3 Conv and bi-linear up-sampling.

Below we recall FasterSeg’s architecture search and training procedure [8] in order to in-

troduce our proposed path-wise distillation. In the search stage, the overall optimization

objective is:

L = Lseg(M) + λLat(M) (3.1)

where Lat(M) is the latency loss of the supernet M ; Lseg is the supernet loss containing

cross-entropy of logits and targets from different branches. Note that the branches come

from resolutions: 1/8, 1/16, 1/32, 1/8+1/32 and 1/16+1/32, as well as losses from different

expansion ratios (max, min, random and architecture parameter ratio).

The architecture parameters (α, β, γ) are in a differentiable computation graph, and opti-

mized by gradient descent. The α is for operations in each cell, β for down-sampling weight,

and γ for expansion ratio. Following [43], the training dataset is randomly half-split into

two disjoint sets Train-1 and Train-2. Then the search follows the first order DARTS [43]:

1) Update network weights W on Train-1 by gradient: ∇wLseg(M |W,α, β, γ).

2) Update architecture α, β, γ on Train-2 by gradient:

∇α,β,γLseg(M |W,α, β, γ) + λ · ∇α,β,γLAT (M |W,α, β, γ).

For teacher-student co-searching with two sets of architectures (αT , βT) and (αS, βS, γS), the

first order DARTS [43] becomes:

1) Update network weights W by ∇wLseg(M |W,αT , βT) on Train-1,

2) Update network weights W by ∇wLseg(M |W,αS, βS, γS) on Train-1,

25

3) Update architecture αT , βT by ∇α,β,γLseg(M |W,αT , βT) on Train-2,

4) Update architecture αS, βS, γS by ∇α,β,γLseg(M |W,αS, βS, γS)

+λ∇α,β,γLAT (M |W,αS, βS, γS) on Train-2.

The next step is to train the weights to obtain final models.

Step 1): train Teacher Net by cross-entropy to compute the losses between logits of different

resolutions and targets.

lossT = CE(pred8T , target) + λCE(pred16T , target) + λCE(pred32T , target) (3.2)

where prednT is the prediction of the 1/n resolution path of the Teacher Net.

Step 2): train Student Net with an extra distillation loss between logits of resolution 1/8

from Teacher Net and logits of resolution 1/8 from Student Net.

LossS = CE(pred8S, target) + λCE(pred16S, target)

+λCE(pred32S, target) +KL(pred8T , pred8S). (3.3)

Here prednS is the prediction of 1/n resolution path of the Student Net.

3.3 Resolution Path Based Distillation

In Section 3.3.1, we first show how to build a FasterSeg Student Net with 1/4 resolution path.

Then we introduce feature affinity loss in Section 3.3.2, with search and training details in

Section 3.3.3.

26

Figure 3.1: Tutor net: a FasterSeg form of Student Net with 1/4 resolution path added.

3.3.1 Tutor Model with 1/4 Resolution Path

We build a FasterSeg Student Net (“student tutor”) with 1/4 resolution path, see in Figure

3.1. The 1/4 resolution path follows the 1/4 resolution stem and contains 2 basic residual

2× layers also used in other stems. The 1/4 path then merges with the 1/8 resolution path

by interpolating output of the 1/8 resolution path to the 1/4 resolution size, refining and

adding. The model is trained with HRNet-OCR as the Teacher Net.

In Figure 3.1, the stem is a layer made up of Conv and Batch normalization and ReLU. The

cell is mentioned in Section 3.2. And the head is to fuse outputs of different resolution paths

together. In 1/4 path, its output is directly added to the output of 1/8 path. While for

the other paths, the outputs are concatenated with up-sampled output of lower resolution

paths, and then go through a 3×3 Conv.

3.3.2 Feature Affinity Loss

Feature Affinity (FA) loss [67] is a measure to overcome dimension inconsistency in comparing

two feature maps by aggregating information from all channels. Consider a feature map with

dimensions (H,W,C), which contains H ×W vectors (in pixel direction) of length C. A

pixel of a feature map F is denoted by Fi, where 1 ≤ i ≤ H ×W . The affinity of two pixels

27

is reflected in the affinity matrix with entries being the pairwise normalized inner product:

Sij = (
Fi

∥Fi∥p
)T · (Fj

∥Fj∥p
). (3.4)

In other words, the affinity matrix consists of cosine similarities of all pixel-pairs. In order

to make sure their consistency in the spacial dimension, we need to interpolate the student

affinity matrix to the same dimensional size of the teacher affinity matrix. Let the two

affinity matrices for the Teacher and Student Nets be denoted by St
ij and Ss

ij. Then the

Feature Affinity (FA) loss is defined as [67]:

Lfa =
1

H2W 2
∥St − Ss∥q. (3.5)

where q is not necessarily the dual of p, and the norm is entry-wise q-norm. Here we choose

p = 2, q = 1, and consider adding the FA loss (3.5) to the distillation objective for gradient

descent.

Let S1/n be the output of the 1/n resolution path of Student Net after passing to ConvNorm

layers, T 1/n be the output of the 1/n resolution path of Teacher Net. We introduce a path-

wise FA loss as:

FA loss = Lfa(S
1/8, T 1/4) + λLfa(S

1/16, T 1/16) + λLfa(S
1/32, T 1/32), (3.6)

where λ balances the FA losses on different paths. In our experiment, λ = 0.8 is chosen to

weigh a little more on the first term for the 1/8 path of the student net to mimic the 1/4

28

Figure 3.2: Student Net with virtual 1/4 path (lower) distilled from tutor net (upper).

path of the tutor net. Figure 3.2 illustrates how our path-wise FA loss is constructed for

distillation learning in the training process.

3.3.3 Teacher Net Guided Student Net Search and Training

We summarize our search and training steps below.

Search:

FasterSeg searches its own teacher model, which takes time and may not be most ideal.

Instead, we opt for a state-of-the-art model as teacher to guide the search of a light weight

Student Net. In our experiments, the Teacher Net is HRNet-OCR [65]. To shorten inference

time, we set it back to the original HRNet [62]. The search objective is:

L = Lseg(M) + λ1 Lat(M) + λ2Dist(M,HR). (3.7)

29

The Lseg(M) and Lat(M) are same as in Equation (3.1) of FasterSeg, with the added third

term to narrow the distance between Student Net and the Teacher Net HR.

By first order DARTS [43] on the randomly half split training datasets (Train-1 and Train-2),

we have:

1) Update network weights W by ∇wLseg(M |W,α, β, γ) on Train-1

2) Update architecture α, β, γ by ∇α,β,γL(M |W,α, β, γ) on Train-2.

Training:

1) The baseline model is a FasterSeg student model distilled from HRNet. The training

objective is:

LossS = CE(pred8S, target) + λCE(pred16S, target)

+λCE(pred32S, target) +KL(predHR, pred8S). (3.8)

Here predHR is the prediction of the HRNet and prednS is the same notation as in FasterSeg

training.

2) For the Student Net with virtual 1/4 path, we first train a FasterSeg Student Net with

additional 1/4 resolution path as in Section 3.3.1. This more accurate yet also heavier

temporary Student Net serves as a “tutor” for the final Student Net.

Similar to FasterSeg, we only use the outputs of the 1/4, 1/16 and 1/32 resolution paths.

The output of the 1/8 path is fused with that of the 1/4 path for computational efficiency

30

and memory savings. The resulting loss is:

LossTu = CE(pred4Tu, target) + λCE(pred16Tu, target)

+λCE(pred32Tu, target) +KL(predHR, pred4Tu). (3.9)

Here Tu stands for the “tutor” model with 1/4 resolution path.

Next we distill the true Student Net from the “tutor net” by minimizing the the loss function:

LossS = c FA loss+ CE(pred8S, target) + λCE(pred16S, target)

+λCE(pred32S, target) +KL(pred4Tu, pred8S), (3.10)

where prednTu is the prediction of the tutor model.

3.4 Experiment Results

In Section 3.4.1, we introduce the dataset and our computing environment. We present

experimental results and analysis in Section 3.4.2, and analyze FA loss in Section 3.4.3.

3.4.1 Dataset and Implementations

We use the Cityscapes [10] dataset for training and validation. There are 2975 images for

training, 500 images for evaluation, and 1525 images for testing. The class mIoU (mean

Intersection over Union) is the accuracy metric.

31

Our experiments are conducted on Quadro RTX 8000. Our environment is CUDA 11.2 and

CUDNN 7.6.5, implemented on Pytorch.

3.4.2 Experimental Results and Analysis

We perform our method on both low resolution (256×512) input and high resolution (512×

1024) input. The different resolution here means the cropping size of the raw image input.

The evaluation is on the original image resolution of 1024× 2048. And we use only the train

dataset for training and perform validation on validation (Val) dataset.

During the search process, we set pretrain epochs as 20, number of epochs as 30, batch

size as 6, learning rate as 0.01, weight decay as 5 × 10−4, initial latency weight λ1 as 10−2,

distillation coefficient λ2 as 1.

We first train a baseline student model with total epochs as 500, batch size as 10, learning

rate as 0.012, learning rate decay as 0.990, weight decay as 10−3. The baseline model is

comparable to FasterSeg’s student [8] in performance.

Then we train our 1/4 path tutor model for low (high) resolution input as a student initialized

from the baseline model above with HRNet as teacher. The total number of epochs is 350

(400 for high), batch size is 10, learning rate is 0.0026 (0.003 for high), learning rate decay

is 0.99, and weight decay is 10−3.

Finally, we distill the student model with virtual 1/4 path from the 1/4 path tutor model

with 400 epochs, batch size 10, learning rate 0.003, learning rate decay 0.99, weight decay

10−3 and coefficient c for FA loss as 1.

The results are in Table 3.1 where the baseline Student Net has 60.1% (71.1%) mIoU for

low (high) resolution input. The tutor net with 1/4 path has 63.6% (73.03%) mIoU for low

32

(high) resolution input. The Student Net with virtual 1/4 path increases the accuracy of the

baseline Student Net to 62.2% (72.3%) mIoU for low (high) resolution input. While we have

trained the Student Net for different input sizes (256× 512 and 512× 1024), the inferences

are made on the full resolution (1024 × 2048). For all of our experiments, FLOPs is also

computed on the full resolution (1024× 2048) images, regardless of the training input size.

The improvement by the student net with virtual 1/4 path over the baseline student net are

illustrated through images in Figure 3.3. In the rectangular regions marked by dashed red

lines, more pixels are correctly labeled by the student net with virtual 1/4 path. On test

dataset, the baseline Student Net has 57.7% (69.3%) mIoU for low (high) resolution input,

and the virtual 1/4 path Student Net has 60.2% (69.7%) mIoU for low (high) resolution

input.

We show ablation experimental results for low resolution input in Table 3.2. It contains

student nets with virtual 1/4 path trained from scratch and different coefficient c settings for

the FA loss in Equation (3.10). Both fine tuning and FA loss contribute to the improvement

of the accuracy.

To further understand our teacher-tutor-student distillation framework, we studied direct

student net distillation from HRNet with the help of FA loss. However, the mIoU is lower

than that from the above teacher-tutor-student distillation framework. This might be due

to the more disparate architectural structures between the teacher model and the FasterSeg

form of the student net. We notice that our improvement is lower for the high resolution

input. This may be due to reaching the maximal capability of the student net. In our

experiment, we only have 2 layers in the 1/4 resolution path of the student net. For more

gain in mIoU, adding more layers in the path is a viable approach to be explored in the

future.

33

Table 3.1: Tutor/student net with virtual 1/4 path for low/high image input sizes on
Cityscapes Val dataset.

Input size 256× 512 512× 1024 Param/FLOPs

baseline student net 60.1 71.1 3.4M/27G

tutor net w. 1/4-path 63.6 73.0 3.9M/100G

student net (w. virtual 1/4-path) 62.2 72.3 3.4M/27G

Table 3.2: Student nets with virtual 1/4 path on low input size images of Val dataset.

Input size 256× 512

baseline student net 60.1

student net (w. virtual 1/4-path) from scratch 59.9

student net (w. virtual 1/4-path) c = 0 60.9

student net (w. virtual 1/4-path) c = 1 62.2

Figure 3.3: Baseline student net improved by student net with virtual 1/4-path (pixels in
rectangular regions). The 4 columns (left to right) display input images, true labels, output
labels of the baseline net and the student net with virtual 1/4-path resp. The 5 example
images are taken from the validation dataset.

34

3.4.3 Analysis of FA loss

In [67], the authors added a ConvNorm layer right after the extraction of feature maps to

adjust their distributions before computing FA loss. We found that it would be better not

add extra layers to both the tutor and student models. Adding such a ConvNorm Layer

to the student model would be enough. By checking the affinity matrices with and without

ConvNorm layers, we observed that given the tutor model, adding such extra layers to both

student and tutor models before computing FA loss forces the entries of affinity matrices all

close to 1 (a trivial way to reduce FA loss). This phenomenon is illustrated in Figure 3.4.

And we also find that enlarging the coefficient c in FA loss will help the model converge

faster but might cause overfitting.

Theoretically, given Fi and Fj which are two pixels of feature map F, if a ConvNorm layer

is applied to F before passing to Equation (3.4) with p = 2, we have

Sij = (
g(Fi)

∥g(Fi)∥2
)T · (g(Fj)

∥g(Fj)∥2
). (3.11)

where the g is the ConvNorm layer which contains a 1×1 Convolutional layer, a BatchNorm

layer and a ReLU layer. For a vector (x ∈ RC) ∼ D,

g(x) = δ
((Ax+ b)− Ex

var(x)
γ + β

)
(3.12)

with learnable parameters A ∈ RC×C , b ∈ RC , and γ, β ∈ R, and δ(·) is the ReLU activation

function. Assume that we have Fi, Fj
iid∼ N (µ, σ2I), then we show that there would be trivial

choices of learnable parameters in g such that the Sij in Equation (3.11) would be close to

1 in high probability.

Now consider an all-ones matrix A = (1)C×C , b = µ, and γ = σ2, then for x ∼ N (µ, σ2I)

35

Equation (3.12) becomes

g(x) = δ
((Ax+ b)− Ex

var(x)
γ + β

)
= δ

((Ax+ µ)− µ

σ2
σ2 + β

)
= δ

(
Ax+ β

)
= δ

(
(
∑
k

xk + β)1C
)

where 1C is a all-ones vector of length C. Noting that (
∑

k xk + β) ∼ N (Cµ + β, Cσ2), by

choosing a large enough β, with high probability we have (
∑

k xk+β) > 0 and so is g(x) > 0.

In Equation (3.11), g(Fi) = δ
(
(
∑

k Fik + β)1C
)
and g(Fj) = δ

(
(
∑

k Fjk + β)1C
)
are both

positive vector with high probability, hence

Sij = (
(
∑

k Fik + β)1C
∥(
∑

k Fik + β)1C∥2
)T · ((

∑
k Fjk + β)1C

∥(
∑

k Fjk + β)1C∥2
) = 1

with high probability.

In the case that Fi, Fj
iid∼ D with D being a positive distribution, the same strategy still

works. And by choosing a all-ones matrix A = (1)C×C , b = EFi, β > 0, and γ = var(Fi), then

g(Fi) = δ
(
(
∑

k Fik+1)1C
)
= (

∑
k Fik+1)1C and g(Fj) = δ

(
(
∑

k Fjk+1)1C
)
= (

∑
k Fjk+1)1C .

Then similiar argument will guarantee Sij = 1.

Thus adding ConvNorm layers to both teacher and the student nets before computing FA

loss might not help to transfer knowledge as there are trivial settings of ConvNorm which

forces affinity scores Sij of both nets all close to 1 independently of the models.

36

(a) Histogram of Sij with ConvNorm layers added to feature maps
prior to computing FA loss from Equation (3.10).

(b) Histogram of Sij from Equation (3.10).

Figure 3.4: Histograms of entries in affinity matrix entries in tutor-student distillation learn-
ing.

37

3.5 Pixel Shuffle Prediction Module

In this section, we develop a specific technique for FasterSeg student prediction module, see

Figure 3.5. FasterSeg [8] uses Feature Fusion Module (FFM) to fuse two feature maps from

different branches, with the outcome of size C ×H ×W , which is passed through the Head

Module to generate the prediction map of size 19×H×W . Afterward, a direct interpolation

by a factor of 8 up-scales the prediction map to the original input size. This treatment makes

FasterSeg fast however at an expense of accuracy.

We discovered an efficient improvement by generating a larger prediction map without in-

troducing too many parameters and operations. The idea is to adopt depth-wise separable

convolution [9] to replace certain convolution operations in FasterSeg. First, we reduce the

channel number of FFM by half and then use Refine Module (group-wise convolution) to

raise the channel number. Finally, we apply Pixel Shuffle on the feature map to give us

a feature map of size C/2 × 2H × 2W . Let us estimate the parameters and operations

of FFM and Heads focusing on the convolution operations. The FFM is a 1×1 convolu-

tion with C2 parameters and C2HW operations. The Head contains a 3×3 Conv and a

1×1 Conv, whose parameters are 9C2 + C N and the operations are 9C2HW + CNHW .

In total, there are 10C2HW + NCHW and 10C2 + NC operations. Similarly in our

structure, FFM consumes C2/2 parameters and (C2/2)HW operations, Refine costs 50C

parameters and 50CHW operations, the Head takes 9 (C/2)2 + (C/2)N parameters and

9(C/2)22H2W + (C/2)N2H2W operations. In total, there are (11/4)C2 + NC/2 + 50C

parameters and 9.5C2HW + 2CNHW + 50CHW operations. If C is large enough, our

proposed structure has fewer parameters and operations to produce a larger prediction map.

In our experiments, we replace the Prediction Module of FasterSeg model with our Pixel

Shuffle Prediction Module, keeping all the other choices in training the same. As shown in

Table 3.3, our proposed model has 0.1 MB fewer parameters, yet has achieved 1.9 % (1.4 %)

38

Figure 3.5: Proposed Pixel Shuffle Prediction Module vs. that of FasterSeg [8].

Table 3.3: Comparison of validation mIoUs of our proposed up-scaling method with depth-
wise separable convolution (dep. sep. conv) and Pixel Shuffle (PS) on low/high input image
sizes vs. those of the FasterSeg student (original net) [8] implemented on our local machine.

Input size 256× 512 512× 1024 Param/FLOPs

original net 60.1 71.1 3.4 MB/27 GB

our net with dep. sep. conv & PS 62.0 72.5 3.3 MB/27 GB

mIoU improvement for low (high) resolution input images.

3.6 Conclusion

We present a teacher-tutor-student resolution path based knowledge distillation framework

and apply it to FasterSeg Student Net [8] guided by HRnet. While preserving parameter

sizes and FLOPs counts, our method improves mIoU by 2.1% (1.2%) on low (high) input

image sizes on Cityscapes dataset. We design a depth-wise separable convolution and Pixel

Shuffle technique in the resolution upscaling module which improves FastserSeg’s Student

Net by 1.9% (1.4%) on low (high) input image sizes with slightly lower (same) parameter

39

(FLOPs) count.

40

Chapter 4

Generalized Feature Affinity Loss

4.1 Overview

In Equation (3.4), the affinity matrices of the teacher and the student nets’ are computed

by pixel-wise cosine similarity distance. And minimizing the Feature Affinity (FA) loss

[67] which measures the difference between two nets’ affinity matrices transfers pixel-wise

relation from the teacher net to the student net. And in Section 3.4.3, we analyze that

adding ConvNorm layers to both teacher and student nets before computing FA loss might

not help to transfer knowledge.

In this Chapter, we will first discuss about the computational cost of FA loss in Section 4.2,

and then propose a method to reduce the computational cost named as Fast Feature Affinity

(FFA) loss in Section 4.3. And the numerical experiment results are in Section 4.4.

41

4.2 Computational Cost of Feature Affinity Loss

We currently ignore the batch size and consider the FA loss for two feature map with same

dimensions (H,W,C). In Equation (3.4), the feature maps are reshaped to matrices of size

HW × C := N × C. The matrices are normalized in row dimension which costs O(NC)

operations and then two affinity matrices are generated by standard matrix multiplication of

the normalized matrices and their transposes respectively with O(N2C) operations needed.

In Equation (3.5), the average of 1-norm of the difference of two N ×N matrices are calcu-

lated, thus there are O(N2) operations needed. So in all, the number of total operations for

FA loss is O(N2C). And N ×N memory space is needed to store the matrices.

The number of operations and memory space grows quadratically as total number of pixels in

the feature map. If FA loss is implemented on lower level feature maps of a neural network

with a high resolution image input, the computational cost of FA loss would be beyond

tolerance.

4.3 Fast Feature Affinity Loss

To reduce the computational and storage cost of FA loss, we propose a Fast Feature Affinity

Loss, which requires only O(NC) operations and O(N) memory space.

Consider reshaped feature maps F 1 and F 2 of size HW × C = N × C. Let F̃ 1 and F̃ 2 be

normalized F 1 and F 2 with 2-norm respectively, i.e. F̃ 1
i = F 1

i /∥F 1
i ∥2 and F̃ 2

i = F 2
i /∥F 2

i ∥2

for i = 1, 2, ..., N . Then by Equation (3.4) and (3.5), we have the original FA loss to be

Lfa(F1, F2; q) = ∥F̃ 1F̃ 1
T
− F̃ 2F̃ 2

T
∥q. (4.1)

Here we currently do not consider the scaling coefficient. Now if let A = F̃ 1F̃ 1
T
and B =

42

F̃ 2F̃ 2
T
, Equation (4.1) can be written as

Lfa(F1, F2; q) = ∥A−B∥q. (4.2)

4.3.1 Fast Feature Affinity Loss

We introduce a random vector x ∼ N (0, IN), then we define our Fast Feature Affinity Loss

as

Lffa(F1, F2; q) = ∥(F̃ 1F̃ 1
T
− F̃ 2F̃ 2

T
)x∥q

= ∥(A−B)x∥q. (4.3)

And during the training, the x is randomly generated in each batch.

Since (F̃ 1F̃ 1
T
− F̃ 2F̃ 2

T
)x = F̃ 1(F̃ 1

T
x) − F̃ 2(F̃ 2

T
x), if we first compute the terms in the

parentheses on the right hand side of the equation, then the computational cost for this step

is only O(NC). And memory space is O(N) as only vectors of length at most N are needed

to store the intermediate results.

4.3.2 Analysis of Fast Feature Affinity Loss

We will show that Fast Feature Affinity Loss and Feature Affinity Loss are equivalent by

taking expectation. Hence by taking enough samples of x, Fast Feature Affinity Loss will

have comparable performance to Feature Affinity Loss.

43

Case: q=2

Noting that for the entry-wise norm and a matrix M with number of total entries m, we

should have
√
m∥M∥2 ≥ ∥M∥1 ≥ ∥M∥2. When m is fixed, minimizing ∥M∥2 can also result

in minimizing ∥M∥1. So we can consider minimizing FA loss with q = 2.

When q = 2, the original FA loss is

Lfa(F1, F2; 2) = ∥A−B∥2

=

√√√√ N∑
i=1

N∑
j=1

|aij − bij|2. (4.4)

And

L2
fa(F1, F2; 2) = ∥A−B∥22

=
N∑
i=1

N∑
j=1

|aij − bij|2. (4.5)

Now for our Lffa in Equation (4.3), the equation becomes

Lffa(F1, F2; 2) = ∥(A−B)x∥2

=

√√√√ N∑
i=1

(
N∑
j=1

|aij − bij|xj)2. (4.6)

44

And

L2
ffa(F1, F2; 2) = ∥(A−B)x∥22

=
N∑
i=1

(
N∑
j=1

|aij − bij|xj)
2. (4.7)

If we take the expectation on x for Equation (4.7), we have

ExL
2
ffa(F1, F2; 2) = Ex

N∑
i=1

(
N∑
j=1

|aij − bij|xj)
2

= Ex

N∑
i=1

(
N∑
j=1

|aij − bij|2x2
j + 2

∑
j ̸=k

|aij − bij||aik − bik|xjxk)

= Ex

N∑
i=1

N∑
j=1

|aij − bij|2x2
j + 2

N∑
i=1

∑
j ̸=k

|aij − bij||aik − bik|xjxk

=
N∑
i=1

N∑
j=1

|aij − bij|2Exx
2
j + 2

N∑
i=1

∑
j ̸=k

|aij − bij||aik − bik|Exxjxk

=
N∑
i=1

N∑
j=1

|aij − bij|2 = L2
fa(F1, F2; 2). (4.8)

Thus FFA loss is the same as FA loss under the expectation with q = 2.

45

Case: q=1

When q = 1, the original FA loss is

Lfa(F1, F2; 1) = ∥A−B∥1

=
N∑
i=1

N∑
j=1

|aij − bij|. (4.9)

Now for our Lffa in Equation (4.3), the equation becomes

Lffa(F1, F2; 1) = ∥(A−B)x∥1

=
N∑
i=1

∣∣ N∑
j=1

(aij − bij)xj

∣∣. (4.10)

If we take the expectation on x for Equation (4.10), we have

ExLffa(F1, F2; 1) = Ex

N∑
i=1

∣∣ N∑
j=1

(aij − bij)xj

∣∣
=

N∑
i=1

Ex

∣∣ N∑
j=1

(aij − bij)xj

∣∣. (4.11)

Since x ∼ N (0, IN), we have
∑N

j=1 (aij − bij)xj ∼ N (0,
∑N

j=1 (aij − bij)
2). Given a normal

distributed random variable Y ∼ N (0, σ2), we have E|Y | = σ
√

2
π
, where |Y | is also known

46

as having a folded normal distribution. So Equation (4.11) equals

ExLffa(F1, F2; 1) =
N∑
i=1

Ex

∣∣ N∑
j=1

(aij − bij)xj

∣∣
=

N∑
i=1

√√√√ N∑
j=1

(aij − bij)2

√
2

π


=

√
2

π

N∑
i=1

√√√√ N∑
j=1

(aij − bij)2. (4.12)

The expectation can be viewed as a norm of blending 1-norm with 2-norm on A−B. Thus

FFA loss with q = 1 is close to FA loss with q = 1.

4.4 Numerical Experiments

We conduct our experiments on CIFAR-100 [33] dataset with modified EfficientNet [64]. We

adopt ArcFace loss [14] and Label Refinery [3] in training the model. The batch size is 128,

and the total number of epochs is 70. We choose a simple learning rate strategy, by setting

learning rate to be 0.07 at epochs 1-25, 0.007 at epochs 26-50, 0.0007 at epochs 51-65 and

0.00007 at epochs 66-70. Our environment is CUDA 11.2 and CUDNN 7.6.5, implemented

on Pytorch with Quadro RTX 8000.

We first train a EfficientNet-B3 model. Then we use the model as the teacher net to train a

smaller network EfficientNet-B0 by minimizing KL-divergence between B3’s and B0’s output

logits as our benchmark. Next besides keeping the KL-divergence loss, we add FA or FFA

loss on the intermediate features from the B3 and B0 models to the final loss function in the

training. Here we do not add extra layers before implementing the FA or FFA loss as the

models only differ in the size and task is simpler. The FA or FFA loss is added before the

47

MBConvBlock with output channel number of 112, output spatial size of 16× 16.

In our experiments, we use the FA loss and FFA loss with different scaling coefficient as

below

Lfa(F1, F2) =


1

N2
∥F̃ 1F̃ 1

T
− F̃ 2F̃ 2

T
∥1, if q = 1

1

N
∥F̃ 1F̃ 1

T
− F̃ 2F̃ 2

T
∥2, if q = 2

and

Lffa(F1, F2) =


1

N2
∥(F̃ 1F̃ 1

T
− F̃ 2F̃ 2

T
)x∥1, if q = 1

1

N
∥(F̃ 1F̃ 1

T
− F̃ 2F̃ 2

T
)x∥2, if q = 2

And Table 4.1 shows that nets trained with FA loss or FFA loss outperform nets trained

without these intermediate feature information over 1.0% on average. And our FFA loss has

similar performance as the original FA loss in both q = 1 and q = 2 cases.

We theoretically analyze the FLOPs of both extra losses in our case with q = 1. For FA loss,

the estimated FLOPs in feature normalizing is 2 × 3 × 112 × 162 = 172, 032, in computing

affinity matrices is 2× 2× 162 × 162 × 112 = 29, 360, 128, and in calculating the final loss is

2 × 162 × 162 = 131, 072. So the total FLOPs for FA loss is around 29, 663, 232. Similarly,

for FFA loss, the estimated FLOPs in feature normalizing remains the same, the estimated

FLOPs in computing the products is about 2× 2× 162× 112+ 2× 2× 162× 112 = 229, 376,

and the FLOPs in computing the final loss is 2× 162 = 512. Thus the total FLOPs for FFA

loss is approximately 401, 920. The FLOPs needed in FFA loss is much less than the FLOPs

in FA loss.

We also measure these two losses’ inference time in a separate experiment in the same

environment. By fixing the batch size to be 10 and the channel number to be 100, we

generate features of size H × H with H ranging from 10 to 1000 of step size 10. And for

48

Models Exp1 (%) Exp2 (%) Exp3 (%) Ave (%) Param/FLOPs
B3 80.24 80.24 80.24 80.24 10.5M/0.97G
B0 75.62 76.00 76.02 75.88 4.1M/0.38G

B0+FA(q = 1) 77.17 77.56 77.61 77.45 4.1M/0.38G
B0+FFA(q = 1) 77.32 77.52 77.63 77.49 4.1M/0.38G
B0+FA(q = 2) 76.78 77.54 77.72 77.35 4.1M/0.38G
B0+FFA(q = 2) 77.27 77.29 77.31 77.29 4.1M/0.38G

Table 4.1: EfficientNet on Cifar-100 dataset with KL-divergence and with/without FA loss
or FFA loss. B3 (B0) stands for modified EfficientNet-B3 (B0). FA (FFA) means FA (FFA)
loss is applied in the training. And Column 2-4 contain 3 independent experiments’ results
and Column 5 lists the average accuracy for each method.

different spatial size H, we record the time of 50 running of FA loss and FFA loss respectively

and take their average. For FA loss, the maximum spatial size for the features is 140, while

larger size will run out of GPU memory on our machine. We draw a log-log plot to describe

the result in Figure 4.1a. Although difference in inference rate between FA loss and FFA

loss is negligible for small spatial size H (See Figure 4.1b), the speedup is obvious for larger

spatial size. And more importantly, FFA loss can handle features with spatial size greater

than 140× 140, but FA loss can not.

4.5 Conclusion

We propose the Fast Feature Affinity Loss which is developed for knowledge distillation

on intermediate feature maps. It maintains the performance of the Feature Affinity Loss,

while largely reducing both computational cost and computing memory space. We also

theoretically prove that under expectation our Fast Feature Affinity Loss will have similar

behavior as the Feature Affinity Loss.

49

(a) Log-log plot for inference time of FA loss and FFA loss.

(b) Zoomed in plot for inference time of FA loss and FFA loss.

Figure 4.1: Plots for inference time of FA loss and FFA loss.

50

Chapter 5

Light DETR for Human Detection

5.1 Light DETR model

Light DETR is a light neural network model suitable for human-only detection task. Inspired

by DETR [6], we adopt their novel detection pipeline and modify their transformer encoder-

decoder architecture into convolutional encoder and transformer decoder. In Section 5.1.1,

we briefly recall the architecture of DETR. And we introduce our convolutional based encoder

in Section 5.1.2.

5.1.1 DETR architecture

The DETR architecture can be generally divided into 3 parts: a CNN backbone, a trans-

former encoder-decoder, and a simple feed forward network (FFN) which makes the final

detection prediction. The architecture is well summarized in the Figure 5.1.

The original DETR [6] uses ResNet-50 and ResNet-101 [22] as the backbone. The back-

bone aims to extract feature representation. In the encoder-decoder module, DETR has a

51

Figure 5.1: DETR architecture.

conventional Transformer encoder which contains a multi-head self-attention module and a

feed forward network (FFN). Positional embedding is also included during the computation

to keep the position information. And a standard Transformer decoder which transforms

N object queries into output embeddings is adopted in DETR. The N output embeddings

are then fed to FFN and turned into N predictions. The structure of the Transformer

encoder-decoder is depicted in Figure 5.2.

5.1.2 Light DETR architecture

As we are more interested in object detection in daily situation, we constrain the number

of prediction slots in original DETR model from default configuration of 100 to 5. We

then replace the ResNet-50 and ResNet-101 [22] model with a much more compact model,

MobileNet-V3 Large [27], in the backbone. The lighter backbone greatly reduces the compu-

tational cost and number of parameters of the model, while it remains acceptable detection

performance for our target images. We next shrink the number of decoder layers from 6 to 2

to further compress our model. Now our analysis of the computational cost and the number

of parameters indicates that there are 2.95M parameters and 2.74G FLOPs in the backbone,

52

Figure 5.2: Architecture of DETR’s transformer.

7.86M parameters and 6.12G FLOPs in the encoder, and only 3.14M parameters and 0.18G

FLOPs in the decoder. To further improve the performance, we replace the transformer en-

coder with two recent convolutional based attention block: ConvNeXt block [45] and Visual

Attention Network (VAN) block [21]. To our understanding, convolutional based networks

are more efficient in extracting feature representation while transformer based networks are

better at decoding.

The architecture of two different encoders are described in the Figure 5.3. In the figure,

CONV is the convolutional layer, DW-CONV is depth-wise convolution, and DW-D-CONV

means dilated depth-wise convolution. CFF means convolutional feed-forward network. For

example, CONV 1×1, C means that the corresponding module is a convolutional layer with

kernel size 1× 1 and input channel number C.

53

(a) Architecture of ConvNeXt
Block.

(b) Large Kernel Attention
(LKA). (c) Architecture of Visual At-

tention Network (VAN) block
.

Figure 5.3: Light DETR Encoders. CONV is the convolutional layer, DW-CONV is depth-
wise convolution, and DW-D-CONV means dilated depth-wise convolution. CFF means
convolutional feed-forward network.

54

Table 5.1: Experiments of Light DETR on person-only data.

Backbone Encoder GFLOPS #params AP APs APm APl

MobileNetV3 DeTR 9.0 14.0M 53.8 12.9 51.0 72.9

MobileNetV3 ConvNext block [45] 5.0 9.3M 51.0 11.3 46.5 70.5

MobileNetV3 VAN block [21] 5.7 10.6M 54.0 14.0 51.1 73.1

VAN VAN block [21] 13.0 11.7M 57.7 19.1 55.4 75.3

5.2 Experiment Results

We perform our numerical experiments on object detection task on our self-selected person-

only COCO dataset [40]. The person-only data is a subset of the COCO dataset, consisting

of images with person annotations only. We have further restricted the number of people to

be less than 5, and remove all the crowds of people. The training setting is the same as in

DETR. We first train Light DETR with MobileNet-V3 Large backbone as baseline. Then we

test models with transformer encoder replaced by convolutional encoder. We also test Light

DETR model with VAN backbone and VAN block encoder. All experiments are performed

on Pytorch with Quadro RTX 8000 under CUDA 11.2 and CUDNN 7.6.5 environment. The

results are list in the Table 5.1.

The ConvNext encoder reduces the FLOPs and parameters almost by half with a 2.8%

drop of AP. And to our surprise, the VAN encoder has a slightly better performance than

Light DETR with original encoder, but has only around 2/3 FLOPs and parameters. VAN

backbone and VAN encoder can bring much higher accuracy, but also increase the FLOPs.

55

5.3 Conclusion

We present Light DETR, a compact transformer object detection model based on DETR.

The model achieves reasonable results on a selected human-only data of COCO dataset.

And experiments on different encoder reveal that convolutional based encoders outperform

the original transformer encoder in DETR with less FLOPs and parameters and better

performance.

56

Bibliography

[1] AMD. Amd cdna architecture. https://www.amd.com/system/files/documents/

amd-cdna-whitepaper.pdf. Accessed: 26 April 2022.

[2] M. L. R. at Apple. On-device panoptic segmentation for camera using transform-
ers. https://machinelearning.apple.com/research/panoptic-segmentation#

figure3l. Accessed: 26 April 2022.

[3] H. Bagherinezhad, M. Horton, M. Rastegari, and A. Farhadi. Label refinery: Improving
imagenet classification through label progression.

[4] P. Baldi and R. Vershynin. The capacity of feedforward neural networks. CoRR,
abs/1901.00434, 2019.

[5] Z. Cai and N. Vasconcelos. Cascade r-cnn: Delving into high quality object detection.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2018.

[6] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S. Zagoruyko. End-to-
end object detection with transformers. In ECCV, 2020.

[7] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam. Encoder-decoder with
atrous separable convolution for semantic image segmentation. ECCV, 2018.

[8] W. Chen, X. Gong, X. Liu, Q. Zhang, Y. Li, and Z. Wang. Fasterseg: Searching for
faster real-time semantic segmentation. ICLR, 2020; arXiv 1912.10917, 2019.

[9] F. Chollet. Xception: Deep learning with depthwise separable convolutions. In Pro-
ceedings of IEEE CVPR, July 2017.

[10] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke,
S. Roth, , and B. Schiele. The cityscapes dataset for semantic urban scene understand-
ing. CVPR, 2016.

[11] M. Courbariaux, Y. Bengio, and J.-P. David. Binaryconnect: Training deep neural
networks with binary weights during propagations. In Advances in neural information
processing systems, pages 3123–3131, 2015.

57

https://www.amd.com/system/files/documents/amd-cdna-whitepaper.pdf
https://www.amd.com/system/files/documents/amd-cdna-whitepaper.pdf
https://machinelearning.apple.com/research/panoptic-segmentation#figure3l
https://machinelearning.apple.com/research/panoptic-segmentation#figure3l

[12] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio. Binarized neural
networks: Training deep neural networks with weights and activations constrained to+
1 or-1. arXiv preprint arXiv:1602.02830, 2016.

[13] Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier. Language modeling with gated
convolutional networks. CoRR, abs/1612.08083, 2016.

[14] J. Deng, J. Guo, N. Xue, and S. Zafeiriou. Arcface: Additive angular margin loss for
deep face recognition. In 2019 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 4685–4694, 2019.

[15] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidi-
rectional transformers for language understanding. In Proceedings of the 2019 Confer-
ence of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186,
Minneapolis, Minnesota, June 2019. Association for Computational Linguistics.

[16] T. Dinh and J. Xin. Convergence of a relaxed variable splitting method for learning
sparse neural networks via l1, l0, and transformed-l1 penalties. Intelligent Systems
Conference (IntelliSys).

[17] S. E. Dreyfus. The numerical solution of variational problems. Journal of Mathematical
Analysis and Applications, 5:30–45, 1962.

[18] R. Girshick. Fast r-cnn. CoRR, abs/1504.08083, 2015.

[19] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate
object detection and semantic segmentation. In 2014 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), volume 00, pages 580–587, June 2014.

[20] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks. In G. Gor-
don, D. Dunson, and M. Dud́ık, editors, Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics, volume 15 of Proceedings of Ma-
chine Learning Research, pages 315–323, Fort Lauderdale, FL, USA, 11–13 Apr 2011.
PMLR.

[21] M.-H. Guo, C.-Z. Lu, Z.-N. Liu, M.-M. Cheng, and S.-M. Hu. Visual attention network,
2022.

[22] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
770–778, 2016.

[23] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Van-
houcke, P. Nguyen, T. N. Sainath, and B. Kingsbury. Deep neural networks for acoustic
modeling in speech recognition: The shared views of four research groups. IEEE Signal
Processing Magazine, 29(6):82–97, 2012.

58

[24] H. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a neural network.
NeurIPS-Worskop, 2014.

[25] S. Hochreiter. The vanishing gradient problem during learning recurrent neural nets
and problem solutions. International Journal of Uncertainty, Fuzziness and Knowledge-
Based Systems, 6(2):107–116, 1998.

[26] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation,
9(8):1735–1780, 1997.

[27] A. Howard, M. Sandler, G. Chu, L. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu,
R. Pang, V. Vasudevan, Q. V. Le, and H. Adam. Searching for mobilenetv3. CoRR,
abs/1905.02244, 2019.

[28] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto,
and H. Adam. Mobilenets: Efficient convolutional neural networks for mobile vision
applications, 2017. cite arxiv:1704.04861.

[29] A. G. Ivakhnenko. Polynomial theory of complex systems. IEEE transactions on Sys-
tems, Man, and Cybernetics, (4):364–378, 1971.

[30] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and
D. Kalenichenko. Quantization and training of neural networks for efficient integer-
arithmetic-only inference. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2018.

[31] H. J. Kelley. Gradient theory of optimal flight paths. ARS Journal, 30:947–954, 1960.

[32] A. Krizhevsky, V. Nair, and G. Hinton. Cifar-10 (canadian institute for advanced
research).

[33] A. Krizhevsky, V. Nair, and G. Hinton. Cifar-100 (canadian institute for advanced
research).

[34] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep con-
volutional neural networks. In F. Pereira, C. Burges, L. Bottou, and K. Weinberger,
editors, Advances in Neural Information Processing Systems, volume 25. Curran Asso-
ciates, Inc., 2012.

[35] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L. D. Jackel. Backpropagation applied to handwritten zip code recognition. Neural
Computation, 1:541–551, 1989.

[36] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to
document recognition. In Proceedings of the IEEE, pages 2278–2324, 1998.

[37] N. Lee, T. Ajanthan, and P. Torr. SNIP: SINGLE-SHOT NETWORK PRUNING
BASED ON CONNECTION SENSITIVITY. In International Conference on Learning
Representations, 2019.

59

[38] N. Lei, D. An, Y. Guo, K. Su, S. Liu, Z. Luo, S.-T. Yau, and X. Gu. A geometric
understanding of deep learning. Engineering, 6(3):361–374, 2020.

[39] D. Lin, D. Shen, S. Shen, Y. Ji, D. Lischinski, D. Cohen-Or, and H. Huang. Zigzagnet:
Fusing top-down/bottom-up context for object segmentation. CVPR, 2019.

[40] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D. Ra-
manan, C. L. Zitnick, and P. Dollár. Microsoft coco: Common objects in context, 2014.
cite arxiv:1405.0312Comment: 1) updated annotation pipeline description and figures;
2) added new section describing datasets splits; 3) updated author list.

[41] S. Linnainmaa. Taylor expansion of the accumulated rounding error. BIT Numerical
Mathematics, 16:146–160, 1976.

[42] C. Liu, L. Chen, F. Schroff, H. Adam, H. Wei, A. Yuille, and F. Li. Auto-deeplab:
Hierarchical neural architecture search for semantic image segmentation. CVPR, 2019;
arXiv:1901.02985v2, 2019.

[43] H. Liu, K. Simonyan, and Y. Yang. DARTS: Differentiable architecture search. ICLR,
2019; arXiv preprint arXiv:1806.09055, 2018.

[44] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C.-Y. Fu, and A. C. Berg. Ssd:
Single shot multibox detector. In B. Leibe, J. Matas, N. Sebe, and M. Welling, editors,
ECCV (1), volume 9905 of Lecture Notes in Computer Science, pages 21–37. Springer,
2016.

[45] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie. A convnet for the
2020s, 2022.

[46] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell. Rethinking the value of network
pruning, 2018.

[47] J.-H. Luo, J. Wu, and W. Lin. Thinet: A filter level pruning method for deep neural net-
work compression. 2017 IEEE International Conference on Computer Vision (ICCV),
pages 5068–5076, 2017.

[48] J. Lyu, S. Zhang, Y. Qi, and J. Xin. Autoshufflenet: Learning permutation matrices
via an exact Lipschitz continuous penalty in deep convolutional neural networks. KDD,
2020.

[49] D. Mahajan, R. Girshick, V. Ramanathan, K. He, M. Paluri, Y. Li, A. Bharambe, and
L. van der Maaten. Exploring the limits of weakly supervised pretraining. In V. Ferrari,
M. Hebert, C. Sminchisescu, and Y. Weiss, editors, Computer Vision – ECCV 2018,
pages 185–201, Cham, 2018. Springer International Publishing.

[50] I. MKL-DNN. Intel(r) math kernel library for deep neural networks (intel(r) mkl-dnn).
https://oneapi-src.github.io/oneDNN/v0/index.html. Accessed: 26 April 2022.

60

https://oneapi-src.github.io/oneDNN/v0/index.html

[51] M. Nagel, M. van Baalen, T. Blankevoort, and M. Welling. Data-free quantization
through weight equalization and bias correction. 2019 IEEE/CVF International Con-
ference on Computer Vision (ICCV), pages 1325–1334, 2019.

[52] NVIDIA. Nvidia h100 tensor core gpu architecture overview. https://resources.

nvidia.com/en-us-tensor-core. Accessed: 26 April 2022.

[53] NVIDIA. Tensorrt documentation: Working with int8. https://docs.nvidia.com/

deeplearning/tensorrt/developer-guide/index.html#working-with-int8. Ac-
cessed: 26 April 2022.

[54] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Unified,
real-time object detection, 2015. cite arxiv:1506.02640.

[55] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection
with region proposal networks. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 28.
Curran Associates, Inc., 2015.

[56] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio. Fitnets:
Hints for thin deep nets, ICLR, 2015.

[57] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning Representations by
Back-propagating Errors. Nature, 323(6088):533–536, 1986.

[58] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. International Journal of Computer Vision (IJCV), 115(3):211–
252, 2015.

[59] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop, D. Rueckert, and
Z. Wang. Real-time single image and video super-resolution using an efficient sub-pixel
convolutional neural network. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1874–1883, 2016.

[60] R. Shwartz-Ziv and N. Tishby. Opening the black box of deep neural networks via
information. CoRR, abs/1703.00810, 2017.

[61] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. CoRR, abs/1409.1556, 2014.

[62] K. Sun, Y. Zhao, B. Jiang, T. Cheng, B. Xiao, D. Liu, Y. Mu, X. Wang, W. Liu,
and J. Wang. High-resolution representations for labeling pixels and regions. arXiv:
1904.04514, 2019.

[63] T. Takikawa, D. Acuna, V. Jampani, and S. Fidler. Gated-scnn: Gated shape cnns for
semantic segmentation. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 5229–5238, 2019.

61

https://resources.nvidia.com/en-us-tensor-core
https://resources.nvidia.com/en-us-tensor-core
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#working-with-int8
https://docs.nvidia.com/deeplearning/tensorrt/developer-guide/index.html#working-with-int8

[64] M. Tan and Q. Le. EfficientNet: Rethinking model scaling for convolutional neural
networks. In K. Chaudhuri and R. Salakhutdinov, editors, Proceedings of the 36th
International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pages 6105–6114. PMLR, 09–15 Jun 2019.

[65] A. Tao, K. Sapra, and B. Catanzaro. Hierarchical multi-scale attention for semantic
segmentation. arXiv: 2005.10821, 2020.

[66] Y. Tian, D. Krishnan, and P. Isola. Contrastive representation distillation. In Interna-
tional Conference on Learning Representations, 2020.

[67] L. Wang, D. Li, Y. Zhu, L. Tian, and Y. Shan. Dual super-resolution learning for
semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 3774–3783, 2020.

[68] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. H. Li. Learning structured sparsity in deep
neural networks. In NIPS, 2016.

[69] B. Yang, J. Lyu, S. Zhang, Y. Qi, and J. Xin. Channel pruning for deep neural networks
via a relaxed groupwise splitting method. In 2019 Second International Conference on
Artificial Intelligence for Industries (AI4I), pages 97–98, 2019.

[70] B. Yang, F. Xue, Y. Qi, and J. Xin. Improving efficient semantic segmentation networks
by enhancing multi-scale feature representation via resolution path based knowledge
distillation and pixel shuffle. In G. Bebis, V. Athitsos, T. Yan, M. Lau, F. Li, C. Shi,
X. Yuan, C. Mousas, and G. Bruder, editors, Advances in Visual Computing, pages
325–336, Cham, 2021. Springer International Publishing.

[71] J. Yim, D. Joo, J. Bae, and J. Kim. A gift from knowledge distillation: Fast op-
timization, network minimization and transfer learning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), July 2017.

[72] P. Yin, S. Zhang, J. Lyu, S. Osher, Y. Qi, and J. Xin. Binaryrelax: A relaxation
approach for training deep neural networks with quantized weights. SIAM Journal on
Imaging Sciences, 11(4):2205–2223, 2018.

[73] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang. BiSenet: Bilateral segmentation
network for real-time semantic segmentation. ECCV, 2018.

[74] M. Yuan and Y. Lin. Model selection and estimation in regression with grouped vari-
ables. Journal of the Royal Statistical Society Series B, 68:49–67, 02 2006.

[75] Y. Yuan, X. Chen, and J. Wang. Object-contextual representations for semantic seg-
mentation. arXiv preprint arXiv:1909.11065v5, ECCV, 2020.

[76] T. Zhang, S. Ye, K. Zhang, J. Tang, W. Wen, M. Fardad, and Y. Wang. A systematic
dnn weight pruning framework using alternating direction method of multipliers. In
ECCV, 2018.

62

[77] X. Zhang, X. Zhou, M. Lin, and J. Sun. Shufflenet: An extremely efficient convolutional
neural network for mobile devices. CVPR, 2017.

63

	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Developing Efficient Neural Network
	Relaxed Group-wise Splitting Method
	Improving Efficient Semantic Segmentation Networks by Enhancing Multi-Scale Feature Representation via Resolution Path Based Knowledge Distillation and Pixel Shuffle
	Generalized Feature Affinity Loss
	Light DETR for Human Detection

	Relaxed Group-wise Splitting Method
	Preliminaries
	Convolutional Neural Network(CNN)
	Channel Pruning

	Relaxed Group-wise Splitting Method
	Group-wise Thresholding Formulas
	Relaxed Group-wise Splitting Method (RGSM)

	Experiments and Results
	VGG-16 on CIFAR-10
	ResNet-18 on CIFAR-10 & CIFAR-100

	Conclusion

	Improving Efficient Semantic Segmentation Networks by Enhancing Multi-Scale Feature Representation via Resolution Path Based Knowledge Distillation and Pixel Shuffle
	Overview
	Search and Training in FasterSeg
	Resolution Path Based Distillation
	Tutor Model with 1/4 Resolution Path
	Feature Affinity Loss
	Teacher Net Guided Student Net Search and Training

	Experiment Results
	Dataset and Implementations
	Experimental Results and Analysis
	Analysis of FA loss

	Pixel Shuffle Prediction Module
	Conclusion

	Generalized Feature Affinity Loss
	Overview
	Computational Cost of Feature Affinity Loss
	Fast Feature Affinity Loss
	Fast Feature Affinity Loss
	Analysis of Fast Feature Affinity Loss

	Numerical Experiments
	Conclusion

	Light DETR for Human Detection
	 Light DETR model
	DETR architecture
	Light DETR architecture

	Experiment Results
	Conclusion

	Bibliography

