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SELECTED TOPICS ON THE ELECTRONIC STRUCTURE OF SMALL MOLECULES
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A systematic procedure is presented for constructing symmetrized
functions of the coordinates of N fermion particles which may be used
as trial wavefunctions in a quantum mechanical description of an N~electron
molecitlar system. The functions are symmetrized with respect to the
mathematical point group of operators which commute with the system's
electronic Born-Oppenheimer Hamiltonian, as well as the permutation
group. The procedure is.particularly useful if the group of operators
is non-Abelian, which results in multi-degenerate irreducible representa-
tions of the group. The procedure is essentially the Clebsch-Gordan
geneological coupling method (which is well~known from its application
to the coupling of angular momenta) applied to the finite groups which
describe the symmetry operations of a molecule.

The coupling procedure is applied to the study of the electromic
structure of several statés of the diatomic molecule sulfur oxide.
The advantage of the coupling procedure in this study is that it results
in entirely real N-particle functions which are constructed from entirely
real single-particle functions. Most other procedures which are capable

of generating symmetrized functions of mnon-abelian groups require the

| use of or result in complex functions. The use of complex functions
tends to be cumbersome from a computational point of view and should be

avoided when possible.
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of the electric and magnetic propcrtiés of small molecules. The probability

by a magnetic field (the éhemiqal_ghift) are computed using perturbation
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Also, a simple‘model is presented which provides insight into some

distribution of_the'electrons in a molecule is apprpximated by that of a
singlé barticié moving in a three~diménsional snigotropic harmonic

oscillator poteptial. Within this apprdximation the molecular electric
polarizability,~the m;gueﬁic sﬁsc&ptibility,-and the magnetic shielding

of a nuclear spin due to currents generated in the electron distribution

theory. The modelﬂexhibits-Van'Vleck‘paramagnetism for the last twe
properties.,,The»prédictions for the three properties provided by the
model as applied to molecular hydrogen, HZ’ are,compared with experimental

results,
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I. The Construction of Symmetrized N-particle Functions

A. Introduction
: In quantum mechanics one is often confronted with the determination
of eigenfunctions and corresponding eigenvalues of the time independent

Schrodinger equation:
W= Ep . (1A.1)

The existence of any symmetry in the form of the Hamiltonian
operator H can usually be exploited to facilitate the solution of
(IA.1). Suppose, for example, there is an operator A which commutes
with the Hamiltonian. Then it is well-known that functions may be
found which simultaneously are eigenfunctions of both H and A. This
fact may be used to help solve (IA.l) if it is easier to find eigen-
functions of A than H. One first solves for the eigenfunctions of Aj;
denote by {¢i; i=]1 to ga} the g, eigenfunctions of A with eigenvalue a.
Since H and A commute, the eigenfunctions of H with eigenvalue a of A
may be expressed as some linear combinations of the g, eigenfunctions
of A.

Consider now the slightly more complicated case of a collection of
operators G = {A, B, C, ...} which all commute with H and with each other.
One may then find functions which are eigenfunctions of all operators.
If the collection of operators constitutes a group algebra, the require-
ment of mutual commutativity defines the group as an abelian group.
Abelian groups are special in that their irreducible representations

(IRs) are all one-dimensional. This means that the allowable eigenvalues



of the group of operators may be looked up in a character table in a
refgrence bookl if the group is isomorphic with any of commonly oceuring
groups. The eigenfunctions of the group which all have the same
characters are identified by the label of the IR according to which
they transform. By analogy with the case of one operator commuting
with H, to solve (IA.1) when H commutes with an abelian group G of
operators, one first finds the eigenfunctions of the group G. These
are known as symmetrized functions and they are conventionally labelled
by the standard label used for the IR according to which they transform.
Each eigenfunction of H will transform‘according to a particular IR and
can therefore be expressed as a linear combination of the corresponding
symmetrized functions.

Finally, suppose H commutes with a collection G of operators which
do not commute among themselves. One cannot find functions which
simultaneously are eigenfunctions of H and every element of G. If é
forms a group, however, one may still take maximum advantage of the
commutation of H with each elehent of G. The result is that the eigen-
functioﬁs of H may be expressed as linear combinations of functions each
of which transform as a given row of a given IR. Degeneracy of the IR
implies a degeneracy of eigenvalues of H. This is, of course, a direct
generalization of the precee&ing two paragraphs. The demonstration will
" not be given here because it may be found in most group theory textbooks
which discuss applications to quantum mechanics.2

It is important to note that if the Hamiltonian commutes with the
elements of a non-abelian group, there will be degeneracies in energy.
The fact that the elements of the group do not commute results in there

being IRs with dimension higher than unity, and hence, corresponding



invariant subspaces of functions.whose menbers have identical energy.

Proof: Suppose there are two elements A,B of a finite group G which do
not commute. Since ABA™L # BAA™T = B, the class that contains B will
contain other elements. The number of classes will therefore bé less
than the number of group elements. It is well-known for finite groups
that the number of classes equals the number Qf IRs. Since the sum

of the degeneracies of the IRs must gqual the number of elements, and
since the number of IRs is less than the number of elements, there is
required to be an IR with a degeneracy greater than unity. It is already
known3 that functions which transform as different components of the

same IR have the same energy. QED

In the study of the properties of small molecules, it is customary4
to seek solutions to the time independent non-relativistic Schrodinger
equation for a system of M nucleii and N electrons within the Born-

Oppnheimer approximation:

o % v, 5 z % 2,2,
He HUR, D) = - § -+ - T—i—r + T *
~1 =1 2 = IR T IR

(1A.2
2 T )

where ry (Ri) represents the three coordinates of the iEh electron
(nucleus),‘and'zi tho charge ofvthe.iﬁﬂ nucleus. Within the Born-

Oppephéimer*approximatibn“the»enetgy'and wavefunction depend parametrically




on the nuclear coordinates.

In éeeking solutions to (IA.1) for the Hamiltonian given above it
is natural to search for a set of opefafions vwhich commute with 1:4
Since H cont#ins no dependence on the spin coordinates of any of the

alectrons, cleariy
-1
R HR=H . (IA.3)

where R is a rotation of the spin coordinates of any or all of the
electrons. Furthermore, for a specific choice of nuclear coordinates

{Ri} there may exist a set of operations {Ti} on the spatial coordinates

such that
TYRT, = H iy (1IA.4)
i i *

It might seem that the application of group theory would only be
useful in the "rare" occurances that the sat of. commuting operators
forms a group. However, it is straightforward to show that the set

of operators which commutes with H always constitutes a group.

Proof: 1I1f g and gy commute with H then so does 83 = 88, as can be
seen from the following:

-1 o -1 g -1, -1, . -1 _
83 H gy = (28)) "H(g8,) = (5,78, )H(g,8,) = 8, (g, He,), =8

o He

2

e H .

This demonstrates closure of the set. The presence of inverse elements
is obvious. Since the identity operation trivially commutes with H, we

may add it to the set generated By the above procedures of including all



unique products of operatibns. The resulting set thus satisfies the

group axioms.

It may be assumed, therefore, that {Ti}' {R} and also the set formed of
their direct produéts are all groups. The determination of the eigen-
values and eigenvectors of H then becomes first a problem of determining
the invariant subspaces of these groups of operators.

There is one other requirement on the eigenfunctions of H that
comes not from any symmetry of H but from the fact that the electrons
are fermions. The eigenfunctions must be antisymmetric on interchange

of any pair of electrons.

w(!.:l,---,Ei,---,sj,-l-,EN) = -W(El,---’Ej.-.-,zi.---,EN) . (IA.S)

There will be présumed to exist a self-adjoint operator, A, called the
antisymmetrizer which yields an antisymmetrized N-particle function
when operating on an arbitrary N-patricle function.

The form of the antisymmetrizer will depend on what form of N-particle
function is to be used. The usual procedure5 is to use a product of N
single-particle functions or a linear combination of such products. This
is a good statﬁing point because the Hamiltonmian (IA.2) would be separable
in electronic coordinates, and a product of single-particle functions
would be exact, if it weren't for the electron-electron repulsion term.

It may be assumed that the single-particle functions are solutions of
some approximate Hamiltonian (e.g., one obtained by neglecting the
electron repulsion term of H) and, as such, constitute an orthonormalized

basis for a Hilbert space. Each unique product of N single-particle



functions then is a basis function.for an N~body direct product Hilbert
space. The antisymmetrizer operates on an arbitrary function in this
space and projects out the component in Fock Fermion space, the anti-
symmetric component. If the form of the wavefunction is an N-body direct
product form, the resulting antisymmetrized form can always be written
as a normalized linear combination of Slater determi.nants.6

Since operations on spin and space coordinates of an electron
commute and the Hamiltonian (IA.l) has no spin dependence, the siﬁgle-
particle functions are expressed as a product of a space and a spin
part, and the spin parts are the usual functions for a spin )% fermion,
Yy = {o.,8}. The orthonormal space parts are finitr in number for most

practical applications, and will be denoted {fiii=1,m}. Thus,

v=)a, A[£, (r,)...£ ()Y, (1)...v, (W] (1A.6)
;1: i 1,41 LR Y Ny

is an acceptable form for Y. With y in this form, A may be written

A= (m)"fzsgn(oj) P(0,) (1A.7)

] 3

where cj is an element of the symmetric group of N particles. P(Oj)

is an operator which produces a new function in the N-particle direct

product space different than the operand by the permutation (0,) of

3

particle indices. Recall that any permutation may be written as a
product of transposition (;imple exchange) permutations. The function
agn(oj) is +1 1f the number of terms in such a product is even and ~1
if the number is odd. The summation is over all permutations of the

%

N electrons. The (N!) * is for normalization and this form for A assumes




that the-{fi} are orthonormalized.
The best set of {ai} and {fi}'in (IA.6) is usually determined
by a variatiqnal procedure, i.e., the functional E

Bclaghuteh = MLy yae (14.8)

is minimized, The two procedures most common today in the field of
electronic structure4 are (a) the determination of the best set of
spatial orbitals {fi} for a fixed and usually small number of a's, and
(b) the determination of the best set of coefficients {ai} for a fixed
set of orbitals {f.;}. Procedure (a) is known as the Hartree-Fock Self-
Consistent Field (HMFSCF) techuique, and procedure (b) is known‘as the
Counfiguration Interaction (CI) technique.

To use the theory of groups to help in solving (IA.l) it is required
that Y be symmetrized--i.e., that Y transform as one component of some IR
of the group of operators commuting with H. The terms of the sum in
(IA.6) are Slater determinants which are not, inlgenerél, individually
symmetrized. Lineér combinations of Slater déterﬁinanté arising from
the same eleétron occupation (e.o.) of spatial orbitals (to be defined
later) may be made which are properly symmétrized. These linear
combinatioﬂﬁ will be calied cohfigurations.

The construction of configurations maf simplify both the HFSCF and
CI procedures. For § to transform as a particular component of a
particular IR, it is sufficient that it be expressed as a linear combina-

tion of configurations that transform the same way. Thus. (IA.6) becomes



b= ehy | (18.9)

where each wi is a configuration given as

"’1 nZdjx(determinants of the 1.1:L e.,0.) . (IA.10)
h|

The sum in (IA.9) is generally much smaller than the one lin (IA.6) and
so the consfruction of configurations simplifies a CI procedure.
Furthermore, since a copfiguration is the simplest symmetrized function
of a given e.o., the construction of a configuration is necessarily the
first étep that should be taken in a HFSCF procedure to ensure that the
wavefunction (and, hence, the'energy)'correSponds to the desired invariant
subspace. »

The remainder of this section will déal with the construction of

‘configurations, the determination of the dis of (IA.10).

B. The Coupling Procedure

In general there may be several determinants corresponding to the
Same.eieﬁtroh oégupati§n.(e.o.) of‘spatiﬁl orBitals. Thé configurations,
or Qariods symmetrized functions, are constructed from ﬁhese determinants.
The e.o; numbers specify howAmany‘electrons are in eacﬁ orBital of the

‘molecule. For example, consider BHS, wvhich belongs to the spacial point

group D . The e.o. of the ground state is
laiz‘ Zaiz le'd ' ' (IB.1)

while: low~lying excited states might be expected to form from the e.o.



12 9,12 7,13 140 . . L : . .
lel Zal le lal . : (1B.2)

(The humbérswwhich,arezneither superscripts -nor eubecripte,frefer to ‘the
"principal quantum number" of the molecular spatial orbitals. The super-
scripts refer to the e.o. numbers, and the rest deaignates the IR according
to wuhich the molecular orbital transforms under the space group of the
molecule. It will be assumed that the spatial orbitals, referred to
previously as the {fi}' transform appropriately as componente of variOus
IRs of the.space group of the molecule.) Since the e' IR is two-fold
degenerate, the determinants that can be constructed from the e.o. of

(IB.2) are

- 12 912 .12 "
D, » A[la1 2a lea leé la1 aBanBaa]

1
D, = " aBl
o= 8]
D, = " B8]

m Af1a'2 2a'2 102 1’ 12" oo
D5. A[lal 2al leb lea la1 aBaﬁaBaa]

D6 = o " aB]
D7 - ) " Ba]
D8 = " 881 . (IB.3a-h)

In the above. several simplifications in notation have been introduced
£ (tk) will be denoted simply by fi’ and it will be assumed that when a

product of single particle functions is written the single particle
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functions are functions of coordinates of successive electrons. Further-~

more, fi will represent, naturally, fi(fk)fi(§k+1).

in the product what k is. Sometimes fi(h) will be

It will be obvious

i
written to represént fi(rﬁ).

from the order of £

Thus, the e.o. numbers specify how the electrons are distributed
among the spatial functions without reference to their spin component
(o or B) or to the component of the spatial'functibnif it transforms
as a degenerate IR. In the above example, the e' orbital is degenerate,
having an e, and an e$ component .

It should be clear that the set of eight determinants listed above
form an invariant subspace under all the group operatioms. (All the a
type orbitals transform to themselves. All the e, orbitals transform
to linear combinations of e, and ey 6rbitals; and so on.) This subépace
is, in general, reducible and the linear combinations (of determinants)
which transformAaccording to the various IRs of the full group are the
configurations. Thus, the specification of the e.o. is the first step
in the construction of the configurations.

The e.o. numbers specify a partitioning of electrons into shells.
The coupling procedure7 will involve first the coupling of electrons
within a shell, then the successive coupling of shells to produce an
N-particle function which éarries a particular IR, and finally, to anti-
symmetrize the N-particle funétion and express the result, a configuration,
as a linear combination of determinants.

The possibility exists that an N-particle function symmetrized with respect

to the space group cannot be made antisymmetric with respect to partiéle exchange.

In this event, operation by A will kill the function, since A projec;s out the
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component of the function in Fermion Fock space. For example, consider

the two-particle function ¢ = (2) %f (aB+Ba)
Ap = f. % £(0B4) - & £ Gared)} =0 _ (18.4)

These cases can be eliminated by consideration for fermion statistics
only during the first step listed above: forming the intrashell
couplings. The necessity for ccmsideration for fermion statistics at
this point onl& is a result of the fact that the Pauli exclusion
principle will exclude particular couplings of electrons in the same
shell, but not of electrons in different shells. An efample of this
is that for two‘s type electrous as in He, the ls2 e.o0. gives rise to
only a ls whereas the ls2s e.o. gives rise to both a 15 and a 3S state.

With this in mind, the coupling procedure for constructing the
-configurations ofna given e.o. is as follows:

(i) Intrashell coupling. The possible space-spin states consistent
with fermion statistics that can arise from each of the shells is
determined. (see section D.)

(ii)  For a particulér ordering of shelis, the direct product of
the states of each shell with the states resulting from the cumulative
coupling of all previous shells is decomposed. This decomposition is
) doné without regard for fermion statistics in contrast to (i). Further-
more, the space and spin parts may be decomposed separately. The
intermediate couplings which result in a state of the desired‘symmetry
constitute a geneology.7

(iii) The geneologies are used in conjunction with a set of

coupling coefficients to construct the symmetrized functions. (See
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section C for the coupliﬁg coefficlents.) If one e.o. gives rise to
several symmetrized functions of the same Symme:iy‘;h:ough'different
geneologies, they are guaranteed to be_or;hogohai;8

(iv) The reSulting function is symmetrizgd and if each shell
function is written as‘a linear COmbinatioh of determinants the product
of such functions is trivially antisymmetrized.

To illustrate this Ptocedﬁre, coﬁgider a molecule with C3v spatial

operations, and an e.o. of lai Zai 3a1 1e2 2e. This might be an e.o.

corresponding to some excited states of BH3 which has a nonplanar
geometry. Suppose‘configurations of space-spin symmetry 3A1 are desired.

For this e.o., the shells and their allowed space-spin states are

2 2 1. 1 2
ai: ;Al; a;: Al; e : E, Al’ 3A2; and e: "E. Section D will explain

how these are determined and also hqw to obtain the correct linear

combinatiqnbof one- and two-particle functiong that transform_appropriately.
For the ordering of shells as given, lai(lAl) may be coupled only

one way with Zai(IAl) to give a resulting state lAl. This méy then be

coupled only‘ope yay»with Bal(zAl),to givg ZAl. Ihe result may then

be coupled four ways with lez: with lez(;E) to give 2E, with 1e2(1A1)

tq_givé ?Al_and w;;h»lez(SAz) to give 2A2 and 4Az. These four states

may then be coupled with'Ze(zE) to give 1E, 3E, 1Al, 3A1, 1A2’ and 3A2
- : ,

Al)’ lE and 3E (from ?Az), and SE:and

1

(ffomv;hg %5,
4

yband 3 (from
' 3E (fgom 2). There is, therefore, only one geneology teSult;ng in
the desired 3Al symmetry. The decqmpo;ition of.direct products of

spin IRs is given by the usual formula § = lSl+52|,,..,|SIfSZI, and the

decomposition of direct products of spacial IRs is given by the usual

procedure?
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a = ‘{.x‘”(ck)* X(CONy | (13.5)
where aj is the frequency index for the.jth IR, x(j)(Ck) is the
character of the jth IK for the kth class Ck of Nk elements in an
h element group. X(Ck) is the character of the reducible representa-
tion for the kth class Sf elements obtained by multiplying the
characters of the two IRs whose direc£ product is being decpmposed.10
The geneologies result;ng from this procedure are illustrated in
figure 1. Lines connect intermediate cumulative couplings, and above
each line is listed the coupling of each of the shells.
To produce the configuration of symmetry 3A1, the space couplings
for products of e-type IRs are required. Thése will be derived in

section C, but for now they will simply be presented:

J% [ex(l)ex(Z) + ey(l)ey(Z)Jv tfansforms like the 3y IR
J;.(e (l)e (2) -e (l)e (2)] transforms like the a, IR

(e (1)e (2) - e (l)e (2)]

e
transforms like the {ex} IR . (IB.6a-c)
[-e (1)e (2) - e (e (2] ' y

: ﬁx»—- ' “n»?

- In other words, the transformations of the two-particle functions on the
left generate an IR of the type indicated on the right. The only spin

couplings (Clebsch-Gordon combinations) needed are
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7w - BLe@] = [5:0; ug=0>
/3 [@B@ + 8] = |s=1; ng=0>
a(L)a(2) = |s=1; mg=1>
| B(1)B(2) = |s=1; mg=-1>

|8=0; mg=0>|s=0; mg=0> = |$=0; mg=0> K (IB.7a-e)

Coupling the first four shells together yields the following

seven~particle funétions which have 2E symmetry:

L7 18] (@B-B)]( 7 227 (28-B)] (3,01 5 (lef-Le)) (aB-fe)]
" ‘ [1] | [SaIB] ‘ n

(38,01 (5(-le de - le le ) (af-a)]

o : " . [33181 " (1B.8a-d)

. The four fﬁnc:ions (IB.8a-d) transform, respectively as e, &0,

y

ex"fﬂ B"' e
for the desired geneology, 3Al, the ‘last shell is added with coupling

a.a, and.ey ® B. To obtain the highest spin component (msal)

given by (IB.6a) and (IB.7c). This produces the eight particle function:

Lj5 103 (aB-Bo) ][ 7= 26 (of-B0) ] [3a,0] o
, (18.9)
x J;&){[-;'—(lex - 1) (aB-a) ) 2¢ 0] + [%(-lexley - le le,) (af-a) 1 [2e a1},
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This function is the eight-particle symmetrized function which must now be
written as a linear combination of determinants. To do ;his, each shelll

function is written as a linear combination of dgterminants:

[AQLa aB)l[A(Za aB)][Sa Q]JP VFJA(le o) - A(le aB)][Ze ol

1 .
-VE[A(lexleyaB) - A(lexléyﬂa)][Zeym]} .
(IB.10)

The configuration written as a linear combination of determinants is

(" = l(D =D,-D,+D,) (IB.11)
3 2 4
Al,ms=1 :

where

- A[(laiae)(zaius)(3a1a)(ieige)(zexu)1

= ' 2
D2 = Al " (leyaB)(Zexa)]
P3.= Al " | | (1exleyu8)(2gyu)]
D, = Al "o (lede p)2e @] . (1B.12a-d)

1t may be' seen by construction that the other eleven configurations
ariaing from this same e.0. are orthogonal ‘to the one above and also to
each other. |

Thé~importanée of the minﬁs sign in (IB.6¢) cannot be overemphasized.
The minus sign of the two—particle function transforming as ey ultimately
resulted in the minus signs of the second and third determ1n;pts of the

configuration (IB,11). The coupling method reqdires the‘partially coupled
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shells to transform in pfecisély the same way as the basis functions of

the IRs; However, if the relative phases of a set of two-parficle functions
(as in IB.6c) is'seiected arbitrérily, the fun@tions will not transform
according to exactly the same IRs as their constituent one-par;icle B
functions. In other words, the two-diménsional representation of the

C3v operations fienecrated by the pair of functions (x,y) ié different from
that generated by (x,-y). The coupling coefficients generated by these
two'differént representations would also differ. 1In practical applications
of the coupling technique, care must also be taken tﬁat all deggneraté
partners of the set of oﬁe—particle spatial functions_transfo:m the

éamg way. This point must be paid particular attention to because most
HFSCf:procedures which are used to generate the ohe-particle spatial
functions produce these functions ﬁith random phases; This is usually

the case because no aspect of the HFSCF procedure depends on the

relative phases.

C. The Coupling Coefficients
This ééction will explain how cbupling coefficients like those (IB.6)
used in the previous section are derived and will illustrate with the

derivation of coupling coefficients for the point group C3v.

Let rq, FB, and'I‘Y be three IRs of a group G carried by the set of

functions {fg}. {fgl. and {EI}, respectively. The index i, for example,

runs from one to m(a), the degeneracy of the ath IR. The coupling

coefficients czEI are defined as

Y. oy o 8 - - e
£y kzzck“ g8 f . . (1€60)
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If G = SU(2), the c's are.the Clebsch~Gordon coefficients which»are
tabulated in most quantum mechanics textbooks., No such information
is tabulated if G is a finite dimensional point group, however.

. The most straightforward.way to generate the coupling coefficients
is with a projection operator technique like that described in many
group theory textall which discuss the generation of symmetry adapted
funétions for a single particle. The generalization to a two- or more-
particle function space is straightforward.

Recall that for a space of single-particle functiomns, PR is defined

as

o m(a) a -a
Py = J);:l fj I‘ji(R), VREG R : (1C.2)

where P?i(R) is an element of the matrix that represents element R in
G as described by the ath IR. It is a consequence of the great
orthogonality theorem that .

m8= o
?ijfk ij 6&6 fi . | (1c.3)

where P:j is given by

o . ma) g0 '
P*?“ - );-ru(mn . (IC.4)

. .
Pi* is called a projection operator because it projects out of an arbitrary
J .
fu.ct. 'a the part that corresponds to the ith component of the ath IR if the
function .ontains a component that transforms like the jth component of

the Gth IR,
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To extend this technique to a two~particle function space, we need
only define’PR on a‘direct product space.

NH RO (5 o £ 1, ® % (®). | (1€.5)
LD YR I B

The coupling coefficlents for the C3v point group can be worked
out by the projection operator technique. The character table12 for

this group is provided below.

C3v E 203 3q
Al 1l 1 1
Az, 1l 1 -1

The representation matrices Fgﬁ for the one~dimensional IRs are given
trivially as the>first two rows of the character ﬁable. The representation

matrices for the E IR will be takenl3 as

| 1 0 -1 V3 : i - 1
E 1 E, 2 _1
T™(E) = ; rBcy) =+ i TU(CD) = 5 ;
(o _1) ¥z (—ﬁ -1) 3 2(‘/3 -1)_

. {1 0 . L[V -1 -\5.

. These matrices (a representation) are generated by the action of the group
of operators on a vector space of functions, In fact they arebgenerated
by the functions (x,y) [where this notation specifies their ordering] as

"operated on" by the operationis of the group. "Operation" is defined for
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the group elements as follows: the C3 cperations rotate the contours
of a single-valued function in a left-handed sense about. the +z-axis
(clockwise in the xy plane), the Uv operation reflects the contours of
a function through the xz plane and the planes of reflection for ovZ
and Oy3 also contain tﬁe 2z-axis and are C3 and Cg rotations, respectivelys
of the o, plane. Thus, the notation "ex, and ey" will be used to denote
pairé of functions which transform among themselves exactly like (x,y).
This notation is being presented meticulously because there are so many
different conventions in the literature,

Thus, from the métrix réﬁresenting CS’ and the defining relations

(1€.2) and (IC.5),

1 V3 N 1
R, lege, (D1 = [ 3 &, 3 e (WI0G €@ - 7 o]

= G o (e (e, ey (2)-3e, (e (I e e ()

and

Pavi[ex(l)ey(z)] = -ex(l)ey(z) . (1c.7)

‘Once ‘the operation of all operators on all possible two-particle functions

constructed from the direct product of two single-particle functions

(eaéH brope:1y_transforming as one component of omne of the IRs) is determined, the

projection operator technique may be used.

‘,Suppose.qne wishes to determine the coupling coefficients for
coupling tg?Apagticles, each of which is in a single particle function
transfdrming”as the E IR.F This situation provides the coupling coefficients

for the e.o. le2e, which were given in (IB.6). One constructs the various




20

two—-particle projection operators, guesses a two—particle

function which has a component which transforms as desired,

then projects out and normalizes the resulting function. Two inequivalent
e particles can be coupled to Al, AZ' and E. As an example of the

procedure,

A
P Lo = § {(xx + (1)@ (xorB xynByx +3 yy)
+ (1) (%) (xx—\/; xy-\/3_ yx+3yy)
+(Dxx + (1) Gaeor/3 xyrByx +3yy)
+ (1) (%) (x;:-\/g xy-\/é-yx +3yy)}
1
= -2- (xx+yy) N (IC-B)

This must be gormalized tOJ% [ex(l)ex(l) + ey(l)ey(l)] to give (IB.6a).

Similarly,
A,
P (xx) =0 . (1€.9)
P2 (xx) = L (xxeyy)
xx 2 =Yy . | (1€.10)
E (L 1
Pyx L (x=y9)] = - B &R . , (1C.11)
) .
Ay 1
P “(xy) =3 (xy=yx) . (1C.12)

Note that the transverse projection'bpérator. P?j(ifj) must be used to

glve the correct relative phases of the various components of degenerate

IRs.
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After normalizatidn, the e & e coupling coefficients are those

presented in (IB.6):

1 : » :
. vE.(exex + eyey) transforms as the al_IR

= (exgy - e e transforms as the a, IR

% e

J% [ee -ece] &

2 XX Yy %
transforms as the IR. (1C.13a-c)

1l e

-;]2- [exey + eyex] | y

Similar coupling coefficien;s’may be obtained for a, R e,

transforms as the IR . (1C.14)

and for a1 2 e,

a.e e
17x X

transforms as the ° IR . (1c.15)

ae, ey

-Acéually,(ai-d (aﬁy IR) triVially deébmpoéea to (any IR) and the '
¢components of a, ® (any IR) match exactly withlthoée of (any‘IR);

The projection operator techniqug may be used, of course, for any
of the point groups. (Coupling coefficients for £hév24 elgmenE-Td group
have been derived and may be obtained from the author.) It should be

obvious that if G i; a group all of whose IRs are dneFdiméhaional,_each

®
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dirent product of functions transforming as these IRs may be decomposed
into only one of the other IRs. Thus, each direct product of functioms
is already symmetrized. The coupling coefficients take on a particularly

simple form for these abelian groups.. (IC.l) reduces to the following:
£ = %P ae ) = x® (Ck)-ﬁa)(ck), vk .

The subscripts of the fi have been dropped because they are meant to refer
to a component of the ath IB, and if G has only one~dimensional representa-
tions, the subscript is unnecessary. It is therefore seen that the

coupling coefficients take on a particularly simple form:

if (V) (Y PPN ()
o8y JLEX (€ = x7 (Y % (c), Yk

0 otherwise

D. Allowed Intrashell Couplings

As was mentioned in section IB, not all N-particle functions are
allowed by fermi statistics. These functions cannot be éntisymmettized-—
the antisymmetrizer A annihilates them.

Consider the shell in the C3v example which contained two equivalent

e electrons. Without regard to fermi statistics, the six states that

3 1 1 3

can be constructed are lAl, Al. Az, 3A2. E and "E. The corresponding

‘wavefunctions are (méximﬁm mg value only)

A1= %-(exex + eyey)(uﬂ-ﬁu)

3, . 1 |
Al. 5 (exex + eyey)au
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Ay 3 (e - ee,)(B-Bo)

1
Az. \E (exey - eyex)aq

3 Cee, - e e,) (af-ga)

1
E 1
3 (—exey - eyex) (aB~-Ba)
i (ee - e e )on
V2 XX Yy
3 L v} . (ID.1a-f)
\/—2- (—exey - eyex)d.a

1
Operation by the antisymmetrizer, however, kills off all except the "A

l’
3A2 and lE'states, leaving
1 1 1 :
Al.‘ 5 .A(exexaB) + 5 .A(eyeyaB)
3A : Ale_e ao)
-2 Xy
and
1 1
1A -
\/i (exexu.B) \/E A(eyeyuﬁ)
lg ) (ID. 2a-c)

1 1
- ¥ A(exeyotB) 5 A(exeyBa)

In constructing the allowable states arising from other occupations
of shells, for example, 23. a cumulative coupling procedure exactly like
that which was used in section IB may be used. provided only antisymmetrized

states are kept. In most of these cases the éntisjmmetrizer will kill off
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all but a few couplings. Without regard for fermi statistics, for example,

2

lezle produces ZE, 2Al. Az (from coupling 1E with 2E),,ZE (from coupling

lA1 with,zE) and 2E, 4E (frbm coupling 3A2 with 2E). 0f these six states,
the antisymmetrizer kills all but one, the 2E result of coqpling lA2 with
zE:
) A(exexeyaBa) ' e
E: transforms as .
A(eyeyexgea) ey

This is, of coursé, an overly simple example because it is generally
well-known that "holes" may be coupled like electrons. The e3‘case can
be treated like the el case, which can only be coupled 2E. There are
situations, however, where the cumulative coupling procedure-fﬁr
coupling particles in the saﬁe shell‘(follbwed by antisymmgtrization) is
easier than constructing projection dperators inba higher-particle space.14

One such situation arises in the intrashell couplings of t3.




2
E 1.3.1, 3 1 3
{°E,’E, Aj,7A 74y, AZ}

E "{IE,SE}
2
E {lE,?E}
2
4Az E {3E,5E} *
Figure 1

Caption: Diagram illustiating geneological couplings for an electron

22 2
occupation 2,a,3,e e.

5¢
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11. The Application of the Geneological Cougling.MEthod to the Study of

Sulfur Oxide

A. Introduction

In this section the geneological coupling proéedure'ﬁill be used
to generate configurations'for a configuration interaction (CI)
study of the diatomic molecule sulfur oxide, SO.

In a single configuration scheme, SO has a ground state valence
structure similar to both 52 and 02. Although S2 and 02 have been
studied extensively both experimentally and theoretically,l the informa-
tion available on SO is on considerably less stable ground. The ground

state of SO arises from the electron occupation (e.o.)

4 . 2

2 30?2 402 11° 50° 60

1o 202

2 4 , 2

70% 21 3 . (T1A.1)

This e.o. gives rise to three possible couplings each of which exists
in nature as a bound electronic state. They are: the ground state
itself, x3z', and two excited states, alA and b12+. Three additional

states will be studied which derive from the e.o.

e 2m 30 . (I1A.2)

The states to be sfudied from this e.o. are ch—, 3A, and 3Z+. By
analogy with the well-studied molecules S2 and 02 and also by direct
experimental evidence1 there is reéson to believe the six states of the
above two‘electron occupations are the loﬁest six electronic étates of
S0. Calculations will be performed on each of the states to determine

various properties of the molecule.
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The strategy for this study will be the usual one of a) constructing
a configuration of the desired symmétry frdm one of the electron
occupations, b) using a standard SCF-MO procedure to construct the best
orbitals for this single éonfiguration, é) generating a seg of configura-
tions obtained as all couplings ﬁith the same symmetry as that in (a)
and derived from electron occupations that are substitutions of one and
two electrous from the reference occupation, d) constructing
Hamiltonian matrix over the reference configuration and all others
generated in (c), and e) extracting the lowest elgenvalue and eigen-
vector from this matrix. This procedure, which is called a singles and
doubles configuration interaction calculation, has been discussed at

length in the literature.2

B. The Coupling,Coefficients for the Cmv G:oup
Both stepsfa) ahd c) above involve the generation of configurations
from a given.set of electron occupations. This involves, of course, the
generation of coupling coefficients for the Cwv group if the
- geneological procedure of part I is to be used.
The projection operator techniéue used for the derivation éf coupling
- coefficients for the C3v pqiﬂt group in the previous section is not

tead;ly'app;icable to infinite groups such as cdﬂv or D " Here, an

ooh *
‘alternate method will be used.
For. thé’grpup C@v, there are two common sets of symmetry functionms,

- a;complex’sgé_and a.reél'set. The complex set is given by
[ =A(2ﬂ)_k exp(im¢); m= 0,%+1,£2, ... Co (I1B.1)

-whére ¢ = arctan(y/x), and the real set is given by the linear combinations
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n, = (2m™*

no= (D7F (G AT ) =17 commd
' m=1,2, ... . (11B.2)
n, = D (gt ) =1"% stnmg

These two sets of functions each provide a basis for a representation of
the group. The two répresentations supplied diffcr by an equivalence
transformation. The coupling coefficients, of course, are different for
the two representations.

It is usually more convenient from a computational standpoint to
construct configurations, calculate integrals, etc., if real single-
particle functions are employed. This demands the determination of
coupling coefficients for basis functions tram: ..rming as (IIB.2) rather
than (IIB.l). The coupling coefficients, however, are more easily
determined from the representations provided by (IIB.l). The procedure
to be used here will be to a) examine the transformation properties of
the complex functions Z, and of the real functions n, as well as the
unitarj transformation that relates them and their representations, b)
derive ﬁhe coupling coefficients of the complex tunctions. and c)'utilize
a unitafy:transfofmatign to derive the coupling coefficlients of the real
.functions from those sf}pﬁe complex ones. o

The group QhQ is geﬁerated by thé operators C(6) and Uv. A
coordinate system may be chosen so that the C(B)-axis'is the z=-axis

and o, is a reflection in the xz plane. If one defines

.

€y = exp(imf); cm=cosm9; »sm = sinmd s (11B.3)
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and "operation" as it was .defined in part IC, the effects of the

generating operators on the basis fupctions are

;m 1™
c(6) emcm e gt n_ o
Gv C_m (sign m)nm . (I1B.4)

This table is adequate to generate the representation supplied by
either the complex or real functionms. )

From inspection, the pair {cm,c_m} forms an invariant two-dimensional
subspace which is irreducible, if m #VO. If m = 0, the subspace is
one~dimensional and the function supplies the A1 representation. For
non-zero m, however, the representatioris are

e 0 0o 1 '
c(o) : ( n ) : o, ( , ) . (1IB.5)
0 € 1 0 : :

and the characters are 2 cosmd and zerd.,respectively.,iden;ifying the Em

IR of qu. o |
Similarly for the real functions {nm.n_m}. the real function m = 0
supplies the Al representation and the pair for nonzero m supply the Em

IR. For completeness, the representation matrices are

4 c s 1 0 .
c(o) : ( n “‘) : g ( ) (11B.6)
—sm_ c v 0 -1
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and thgse_have the same traces as those above.
The two sets of basis functions are related by a transformation

from C-space to n-space, N = EE where .;

11 | - .
1 -1 1
U=E , vt ) (11B.7)
= V2 (1 —1) = W2 (1 i)

An element of C-space, for example, is defined by a;m+bc_m and is
represented by the column vector (:) . The transformation is also a

similarity transformation which relates (IIB.5) and (IIB.6) by
I'®R) = U} TR . R = C(6),0, (11B.8)

where ' is the representation supplied By z (IIB.5) and T is that
supplied by n (IIB.6). Note that U is unitary, so U+U = UU+ =1,

The coupling coefficients for the set of complex basis functions
are easily determined. The axial rotation group is a subgroup of the
full rotation group, and both are discussed in many‘texcbooks on angular
momentum and quantum mechanics.3 Consider first the direct products of
the functions {Cm,c_m} and {cn.c_n} for m 2 n 2 0. This examination will

provide coupling coefficients for,Em ] En’ E n.Em. Em’n A,, (for n = 0),

m 1
and Al B Al. The four direct products are ‘m‘n' ;m;—n’ C-mcn’ and ;_mc_n.
With operations on single-particle functions, the pair of functions
{;n;n. ;_m;_n} (in this order, of course) provides the representation

matrices

€ € 0 € 0 0 1
c(6): ( mn ) = (mrin) 1 O :( ).(IIB.Q)
0 E € 0 € ) V'\1 0
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Thus, this pair of functions transforms as {g(m+n)’;~(m+n)}' The

pair of functions {§ &_ ,C_. L } provides the representation

€ 0\ - Sy o . |
m-n

e (™) ()
0 . € 1 0

-(m-n)

Thus, if m > n > 0, the direct products of two E-type representationsv
Em ;| En provide functions which in turn provide representations for two
morokE-type representations, Em+n and gm-n'

If m = n > 0, the above representations correspond to E2 » provided
by {?; z .C_ml; m} and to the two one-d:.mensmnal representations Al and

L )} -respectively. This can be seen

A, provided by {JF-( T % %

gimply by examining the (reducxble) representation matrices supplied by

(2 b bplnl?
1 0' | 0 1
Cc(8): ( ) : sz ( ) . (11B.11)
. 0 v ' 1 0

The normalized sum and;diﬁférence of the two products, ﬁowever,_provides

1 0 1 o |
c(0): ( ) H o, ( ) , (1IB.12)
0 1l .0 -1 .

illustrating chat this combination reduces the two-dimensional representa-
tion (IIB.11) to two one—dimen31onal ones with characters corresponding
to A, and A,. |

Ifm>n=0,orm=n =0, the (trivial) coupling coefficients for

Em a A1 and Al -] Al aro ob:aihed. When direct products of funoéions
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transforming both as one-dimensional_IRs are taken (such as A1 ] Al,
Az a AZ,‘and Al ] Az) the coupling coefficients are always trivial since
another one-dimensional representation is obtained. The only coupling
coefficients needed, therefore, arxe for Em L Az. which will be a
representation for Em (as can be seen from a character table) provided
by some linear combination of the functions L £ and [ f where f

‘ m-a, -m-a, a,
is any function transforming as the A2 IR. The matrices for the A2

representation are the same as the characters, so the two functions

provide

‘l € 0 /0 -1
c(8): ( ) : cv: . (11B.13)
0 e -1 0 ~

m

This representation does not correspond to the Em IR, but that provided

by the pair {cmfa -_ £, } does,

2 2
The coupling coefficients are as follows:
transforms as . form2n>0 (IIB.1l4a)
% n®n ‘-(m+n)
cmc---ﬂ cm-n
" form>n20 (TIIB.14b)
. & /7 4 '
-m°n -(m-n)
_1.. " .
. VE—(Cmc—m+c-mcm) o) form>0 (1IB.14c)
1 " .
N3 (C 8 Conln) " A, form>0 (IIB.14d)
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;mfa 2 ) Cm ! . o :
’ transforms as form >0 . (IIB.l4e)
- £

g

-mM 32 -m

To obtain the coupling coefficlents for the representations provided
by the real functions, the column vectors above need only be multiplied
by a unitary matrix V which provides the transformation from a pair of

complex functions to a pair of real functions. The transformation V is

defined as
i *m 1 1
() = edl)
n_. t 2\ i

Note that V is different than U, which is given by (1IB.7), because V
transforms functions whereas U transforms vectors which are described
in terms of basis functions {nm.n_m} and {cm,;_m}. Application of V to the

pair of functions (IIB,l4a), gives

v (;m;n ) =1 (;m;n"'c-mc-n ) = 1 (nmnn—n-m“—n) '
"\C_ &, V2 gl (I AL A V2 nn_ o n.

wvhich transforms as

g o .
g( min ) - ( min ) , form2n >0 , (IIB.15)
"\ (i) N_(mn)

i.e., according to the representations (IIB.6) supplied by the real

functions n. Continuation with this procedure results in the following:
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n_-n_n_ n
1 (““l no-n ") transforms as ( mn ) form>n >0
2 . : : .
"aenten'n A

N (m+n)

o .u
1 (nmnn'm—mn-n)- (nm—n )
form>n >0
. Jz- n_n.-nn n_(m_n)

-mn m+=n

1 ' "
¥ (ntn_n_) ! A,
form > 0
1 - "
/i (M_ o) A,
. n'mfaz nm
" form > 0 .(IIB.l6a-e)
-nmfa12 A n__m

The functions (IIB,l4c and d) yield (IIB.16c and d) directly after writing
;m in termé of Ny and normalizing, since the Al_and A2 representations are
one;dimensional.

Configurations may now be constructed by the coupling proceduré out~-
lined in part I and either real orbitals Nim coupléd according Eo (Iiﬁ.lé)
or comﬁ;ex orbitals ctm coupled according to (IIB.1l4) may be used.

‘Thé coupling of two equivalent W electrons (m=tl) may be done to
produce functions transforming spatially as the A (Ez). gt (Al) or I~
(A2) IRs. The spin component may be coppled singlet (5=0) or triplet

{(S=1) for a possibility of six space-spin couplings (maximum m value

only):
1+ 01 1
z ! = -
("a)): 2 ("x"x"'"y“y)(“B Ba)
3.+ ,3 1
L' (CA): V2 (ﬂxﬂx+ﬂyﬂy)du



37

1g- (1A2): %'(nynx-nxﬂy) (af-Ba) -
3;‘ (3A2): \/—;; (nynx—nxwy)aa.
St e 3 (“x“x‘"y"y) (0B-Ba)
lAy (IE}.’): % (ﬂxnyfnynx) (qB-Bq) |
3Ax (3Ex) \/% (nxnx-':ry'rry) oo
A ( E ): Jé (vxwy+ﬂyﬂx)aa D (11B.17)

Application of the antisymmetrizer kills off all except ;hree,

1):+ J.l;- A('n T aB) +‘/— A('n T aB)

z A(nxﬂyaa)

1 . 1.,
= A(m.m 0B) -~ = A(m_ 7 _oB)
X % Yy
.1/; V2 V2 . (1IB.18)

1 1 :
Jz- A('trxrryaB) + JZ-_A(wynxaB)

These functions are the apalogs of (ID.2a-c) which represent the coupling
of two equivalent e electrons in a Cayv molecule. The couplings are the
same except fqr only one sign in the lAy function compared to
the ;Ey function,

If two nonequivalent T electrons are to be coupled, all six symmetry
functions of (IIB.1l7) are‘permitted.‘ By the particle-hole equivalence

mentioned in the previous section, the coupling n3ﬂ3bproduces the same
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six states of (IIB.17) and the three of SO to be studied here (see IIA.2)

are

3 1 2
. = AQlwS 1w ZTI' 2 oo) + A11r 11r 21r 21r o0,
\/— A ‘" y y ) Jz- ( y y )
1l 2 2 1 2 2
. 3 A(11rx 11Ty 21Ty 2':1x o) - 5 A(l'rrx lﬂy 211y 21Tx Ba)
T
1 2 1l 2 2
-3 A(11ry 117x 21ri 211y ol + 3 A(l'ny 1'rrx 2'rrx 2ny Bo)
3

1 2 2 1 2 2
A 177 1m 2n° 27 o) - = A(lm. 1w 270 2T oo
x‘/-2-4\(}, x 2Ty 2y )ﬁ(x y “x 4Ty )

3Ay J% Acn? 1m 2ny om ) aa) + \/% CLagLY znf, o om) . (IIB.19)
¢. The Calculations :
Using a wavefunction of the single configuration form as derived from
the one of the two electron occupations of (IIA.l and 2) and having the
appropriate space-spin symmetries as giveﬁ in (ITB.18 and 19), the best
set of orbitals was determined by the SCF-MO procedure.4 The orbitals
generated by the SCF-MO procedure were constrained to bg orthonormal and
consisted of optimized (by the variational theorem) linear combinations
of single-vélued functions of three-spéce called basis functions. Each
basis function is itself a fixed (i.e., not subject to variatiomal
optimization) linear combination of simple sphetically‘symmettic radial
gaussians of the form z:exp[-a (t-Rk) ] multiplied by a carte31an spherical
harmonic.s The gauss1an functions that constitute a basis function are
all centered at Bk which is usually the position vector of one of the

nuclei‘(the kth) of the molecule.
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The calculation pérformed here employed thirty-eight basis functions,
with twenty-three centered on'the sulfur nucleus and fifteen on the oxygen
nucleus. The basis set is denoted S[12s8pld/6s4pld] and 0[955pid/452p1d],
meaning that centered on the sulfur nucleus there are six s-type basis.
functions, four tripléts of functions of p-type symmetry, and bné set of
five functions of d-type symmetry. The six s~tvpe functions are six
different linear combinations of twelve simple gaussians, 'and similarly
for the p— and d-~type functions.5 -All the basis functions are real.

The SCF-MO procedure produces orbitals which transform according to
the various IRs provided by the real function N and LI The orbitals
are thus identified by the IR according to which they transform: ﬂx’“y
if they transform as nl,n_l; Gx,G& if as NysN_ys and so on. It is thus
at the SCF-MO stage that the symmetrized single-particle functions are
generated. From thirty-eight funétions, thirty-eight orbitals are
produced: The molecular orbital bﬁsis set may be denoted [1808728], 87
meaning there are eight L and eight ny orbitals, Although there are
thifty-eight orbitals, only thirteen are occupied at the SCF level of
theory. The twenty~five unoccupied orbitals are called virtual
orbitals.

From the SCF-MO wavefunction properties of the molecule may be
computed such as'the‘dipole moment and polarizabilities. If several
calculations are performed at different internuclear distances, the
resulting energies may be fitted to a curve an. vibrational properties may
be predicted such as the classical vibrational frequency.

Following the generation of a set of molecular orbitals, a configuration

interaction (CI) calculation may be performed. First, a set of
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configurationé is generated as all those couplings of tﬁe correct space-
spin symmetry from a set of electron occupations. The set of electron
occupatiéns are usually-géneratédvas all exci;atioﬁs of one and two
electrons from the occupied to fhe viftual set‘of orﬁitals generated by
the SCF-MO calculation. Usually the configuration list consists of
thousands of configurations.

The next step of the CI procedure is to construct a Hamiltonian matrix
using the (orthonormal) configuration list as the basis. The lowest
eigenvalue and eigenvector, which is a linear combination of configura-
tions, may be extracted from the Hamiltonian by an interative procedure.2
The resulting wavefunction may be used to compute properties of the
molécule, and an electronic energy curve parameterized by internuclear
distance may be constructed to compute vibrational ﬁroperties, just as
can be done with the SCF-MO wavefunctions and energies.

- The results of this procedure ére shown in the table together with
the best available experimental information for comparison. The column
labeled Te provides excitation energies from the minimum of the ground
‘state (x3z') energy curve to the minimum of the excited state energy
curve. In addition to the dipole moment, spectroscopic data usually
supplied by infrared experiments are also given.

If the data»providéd-Sy experiments are considered correct, it canm be
seen that,thévCI technique provides more accurage piedictions than SCF.
Also, by analysing the discrepancy between the molecular parameters.
predicted by the theories and those provided by the experiments, the
accuracy of the theory can be determined. Thus, as provided by the few

experimental results, the SCF level of theory gives excitation energies,
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bond lengths, and stretching frequencies to 40%, 3%, and 20%, respectively,
whereas CI gives the same to 15%, 1%, and 8%. This is in agreement with

. 1
similar calculations performed on 82 and so these percentages are expected

to be applicable to the states of SO for which there is no experimental

information.



Comparison of Theoretical Predictions and Experi.mem:ala Results for SO

Nmnﬁer of C_

: v b -1 ° - -1 '

State Method Qonf151£ations —Te »Cm r ,A w_,cm B .cm U, Debye

st a 2349 26200 1.797 680 0.489 1.25
SCF 18200 1.735 810 0.525 1.32
Expt

A 2615 25400 1.789 700 0.494 1.25
SCF 17500  1.729 820 0.529 1.27
Expt 28400%

ez (3 2041 24400 1.788 680 0.494 1.24
SCF 16700 1.723 820 0.532 1.26
Expt 27700°

it cI 898 12400 1.518 1160 0.686 1.76
SCF 16400 1.464 1350 0.738 2.10
Expt 10509.97 1.5004  1067.66  0.7026

ala ct 959 7140 1.506 1200 0.697 1.82
SCF 8300 1.460 1260 0.742 2.23
Expt 6150 1.4889° 1115.3°  0.700°  1.319

XL c1 1046 0 1.499 1200 0.7031 1.95
SCF 0 1.457 1350 0.7446 2.42
Expt 0 1.4810  1148.19  0.7208

v



Table continued.

3rom Donnégs Spectroscopiques Relatives aux Molécules Diatomiques, edited by B. Rosen

{(Pergamon, Oxford, 1971), unless noted.

bAll'excitatibn‘enetgies are relative to the minimum energy of the ground state potential
curve. This energy is -472,33354 at the SCF level of theory and -472.51170 at the CI

level.

CFrom laserVNMR experiments of C. Yamada, K. Kawaguchi and E. Hirota, J. Chem. Phys. 69,
1942 (1978). .

dFrom C. R. Byfleet, A. Carrington and D. K. Russell, Mol. Phys. GB 20, 271 (1971).
®From Y.-P. Lee and G. C. Pimentel, J. Chem. Phys. 69, 3063 (1978). ' |
ffrom 0. E. Tevault and R. R. Smardzewski, J. Chem. Phys. 69, 3182 (1978).

8From T. Ishiwata and I. Tanaka, "Sensitized Chemiluminescence by SO (1A)“, Thirteenth
Informal Conference on Photochemistry. Clearwater Beach, Florida, 1978.

1% 4
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I1I. A Harmonic Oscillator Model for Electronic Properties.

A. Introduction
‘ The wavefunctions and eigenvectors describing a particle moving in
a harmonic potential are aimost as old as quantum mechanics itself.
Indeed, this potential is one of the few for which exact analytic
solutions to the time-independent Schrddinger equation can be found. In
view of this, the approximation of real non-harmonic potentials by
harmonic ones has been the basis of many theories and "back-of-the
envelope" calculations. All of normal mode analysis for the study of
the vibrational energies and corresponding wavefunctions of polyatomic
molecules, for example, is based on the assumption that the complex
motions of the nuclei of a molecule may be described as some linear
combination of a collection of harmonic oscillators.

The following sections will deal with a harmonic oscillator model
for the electronic properties of small closed-shell molecules. The
attempt will be to apbroximate'the‘electronic probability density of a
molecule by the probability density of a particle moving in an aniso-
tropic but harmonic potential. Three electronic properties will be
investigated: the electric polarizability, the magnetic susceptibility,
and the magnetic shielding of a nurlear spin by the electronic charge
(chemical shift). The predictions given by the model for molecular

hydrogen will be presented for doﬁparison with experimental results.

B. Electric Polarizability
The application of a harmonic oscillator model in the study of

electric polarizability is by no means a new idea. A classical treatment
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of the oscillator toward thié.goal is given iﬁ many electrodynamic textsl
and a quantumbmechanicalitreatment is usually giveﬁ as one problem in a
probleh set assigned invany first year quantum mechanics coursea.

‘ qu a system whi¢h may not bé spherically symmétfic, for small

enough electric fields, €, the energy way be expanded in a Taylor series

in the field

BE(e)l 1 3 9 E(g)

a=0 g + 2: 5 ae T e~0 eleJ + .e. o (IIIB.1)

E(E) = E(0) + 2
~ i 1753 =

This expression can be used to generate a definition for the polarizability
when combined with the fact that for a point dipole in aﬁ electric field

the energy is given as
E=E() -pc . ’ (I11B.2)

Apparently, the electric field induces a dipole moment in the charge
distribution, Pind® The total dipole moment will be a sum of a constant
Zero-field dipeole moment, Py and the induced dipole moment which may also

be written in a power series in the field:
p(E) = py + Py d(6)

= py + OE + (higher order terms in €) . ' (I1IB.3)

This is the usual definition for the polarizability, a. An expression
for 0. in terms of the energy may be obtained by inserting (IIIB.3) into
(I11B.2) and equating "coefficients" of various powers of €y in (IIIB.1).

One then finds

) = - BEE)

2oy = = e em0 | (ILIB.4)
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and

2 (e) |
aeia_t»:j €=

a

0 . (I11B.5)

N

The procedure will be to use perturbation theory to develop an
expression for E(E) and then use (IIIB.5) to get a corresponding
expression for «.

The Hamiltonian will be that of a three-dimensional anisotropic
Harmonic oscillator with three different frequemcies (hence the aniso-

tropy) with a mass m and charge q. It is

1 2.1 2.1 1 2.1 22
H=[G-p, +3 mw x%) + (2m y¥32 . v %) + (Gm P, + 5w,z

- qree ' (IIIB.6)

where r = xX + y§ + 2Z is a vector which points from the origin to the

particle. The part in brackets will be denoted Ho and the rest H'. The

eigenvalues and eigenfunctions of Ho are known exactly. Since Ho is
 separable in the three coordinates of the particle, its wavefunctions

will be simply products of three one~dimensional wavefunctions,

v (r) = w (x) ¥, (y) v, (@) , ' (I11B.7)

x'ny_# My By R

where n_» ny, and n, represent quantum numbers for motion in each of

the uncoupled directions. Dirac notation will sometimes be used.

o . <rln > o .
wnx,ny,nz(f) = flnx,ny,nz . : _ (I1IB.8)
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The use of functions of the form (IIIB.7) as the zeroth order

wavefunctions, perturbation theory to second order gives

E (e} = E_(0) + <n[H'[n>
' <o|u'|p'><n' |H'|p>

nt T E_(0)-E,(0)

~

+ (111B.9)

where n represents the ordered triplet of quantum numbers which specify
the state of the oscillator and the zercth order energies are given by
the well-known expression

- 1 L L -
En(O) = hwx(nx-bz) + hmy(ny-+2) + hwz(nz-kz) . (111B.10)

~

The first order term of (IIIB.9) is zero due to symmetry.
($*(r)$(r) has even parit&, whereas r has odd parity, so the integrand
of the first order term has odd parity,)

Substituting the form H' into IIIB.9, one obtains

2 3 o <alrlet<a’(r, (e ( b
E.E, . IIIB.1
i,§=1 E' En(o)-En' (0) i J

E () = B_(0) +q

-~

From (IIIB.5) one finds that the polarizability is given by

2 ' <n|ri|n'$<3'|rjlg>
Q,, = = .
2 n E“(O)-EE'(O)

(IIIB.12)

-~

Since the operator r has nonvanishing matrix elements only between states
which differ by one in ng quantum number, it 1s clear that unless i=j,

elther <n|r1|n'> or <n'|rjln> is zero. Hence, a is diagonal.
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In what follows, the model will be regtricted to one describing
molecules of axial.symmetry, S0 W, = wy = w_énd Gz = HW. Furthermofe.
only properties of the ground state of the molecule will be predicted,
and it will be assumed that the charge distribution of the ground state
of the molecule can be adequately described by thaf of a éround state
oscillator (E = 0). This last assumption will certainly be better for
some molecules than others. In particular one weould think it to be best
for molecules all of whose electrons are in nodeless orbitals; as is the
case for molecular hydrogen.

The assumption that a ground state oscillator probability distribu~
tion adequately describes that of a real molecule makes the model at this
point a purely geometrical one. That is, all the features of a real
molecule such as the number of electrons and the shape and nodal
character of the various orbitals are ahsorbed into two parameters,

w and W, which define only the shape (geometry) of the oscillator
distribution. Clearly a more elaborate model could be constructed where
each orbital could be mimicked by an oscillator wavefunction with a similar
nodal structure, and a total wavefunction built as an antisymmetrized
product of orbitals (see section I). A less elaborate model than this,
but still better than the purely geometric one, would be one where each
orbital is described by a ground state oscillator distribution with a
different size (different w and wz). Clearly, the treating of moleﬁular
hydrogen is practically the same for all three levels of modeling since
HZ has only one orbital and that orbital is nodeless.

Incorporationof the above notation into (IIIB.12) gives



50

o =0
XX yy

sy Olxlat>lx|o>
2 n' E

O—En'

-~

2 ‘ 2
-- & ') |<0]x|n">| (11IB.13)
: ' E' -w(n;+n;+Un;)

Since matrix elements for the operator x are nonvaniéhing only
between states which differ by one in quantum number ns the sum

reduces to one term with E' = (1,0,0). With <0|x|1> = (ﬁ/2mw)k.

2, 2
U-xx-CI/‘ﬂ"UJ )

and similarly

a, = < lmlu? S (IIIB.14)
In order to use the above relations, as well as those which follow, to
predict properties, some means must exist for determining the parameters
of the model; q, m, W and Y. The obvious choices for q and m are the
charge and mass of the electron. The values to be used for w and u will

be chosen based on the geometry of the molecule to be studied through the

relationships

'<O|x2|0> = h/2mw

<0|22|0> = h/2mpw . (IIIB.15)
From the 1iterature2 we obtain for H2
<x2> = 1,533 a2
0
2 2 .
<z™> = 2,121 a0 ’ (I1IB.16)
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thch when combined with (ITIIB.15) gives u=0.72 and values for o which

are compared in the following table:

‘ Model Experiment3
o 2.350 2,222
xR
o 4,499 3.054
zz
o 3.066 2,499 (I11B.17)

The units are ag where ag ig the DBohr radius. The 1ést line of the table
is one-third ;he trace of the polarizability which is the average
polarizability per molecule of a randomly oriented mixture.

Thus, the model gives values for the polarizability that differ by
as much as 50% with the experimental values. Of course, the model values
of the table above depend on the values for w and Y used. These may be
obtained many different ..ays. Values for w to be used for HZ may be
obtained, for example, as tine ones which give <r> or <r2> correctly for
the hydrogen atom when modeled by a spherical (u=1) oécillator. Values
for |t may also be derived by various procedures. It is interesting to

_note here that for the harmonic osecillator y = (Qxx/dzz)k. Experimental

polarizabilities yield a value of 0.85 for u.

C. Magnetic Susceptibility

Although the use of the oscillator model in predicting eleetric
polarizabilities is quite o0ld, its use in predicting magnetic susceptibilities
is actudlly a relatively recent one. Apparently the first one to derive
expressions for the susceptibility was the Russian worker Rebane4 whose

work was independently confirmed by Harris.5
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Thé developﬁcnt of the éxpressinns for the suscéptibility of au
oscillator pnfallels closely that for the electric polarizability. The
unperturbed osecillator Hamiltonian Qill be the same H,.as in the previous
section. The Hamiltonian for a charged particle of mass m and charge ¢

in the prescuce of a magnetic fleld B derived from a vector potential A
is
- 94 a2 e
I o= 5o (E . é) + (h.o, potential)
A 'iﬁi.
= Ho ~ Sme (E'ﬂ + ﬁ'E) + ;mcz é-é s (I1IC.1)

For a constant magnetic field B

Bxr (111C.2)

B =

and since p vV ,

B'Q N [V (BXr) ] + (uxf)-v
N pe(VXB) = Be(Uxy) + (Bxr)eV
N A-p

Aep (111¢.3)

The last proporticonality holds because VXB = 0 (B being constant) and

Vxr = 0. VWhen wve apply these facts to (ITIC.1), we obtain


http://Hum.il
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2
“Zae B * Sy (X ()

8mc
2 .
= _--.q..—- [ ‘-.{Lv-—- . . - [ : . .-I
2uc ? & + 2 § lf F§ IE] E : (111C.4)

By cxact analogy with section B, the susceptibility is defined as

2
| 1 2% |
Xi3 5 7 2 B o8, =0 . (ITLC.5)

Thus, a power series type expression for the energy needs'to_be derived.
Only the terms quadratic in the field components are of interest, however,
because terms of lowver power will vanish by the second derivative and
terms of'highef power will vanish when the derivative is evaluated at

zero field strength. As in the previous section perturbatipn theory

provides the required energy expressioh. Retention of all terms of quadratic

~or lower order in the field yields

2
E(B) = E(0) = 51 B+<0[L|0> + —S— Be<0|r+rI - rr|0>B
- . ~ - 8me~ ~ T TR%OOTM ¥

) .
+—L— ¥ <0|B+L|n><n|BeL|0>[E (0) - E_(0)] 1 . (11IC.6)
2 2 - ~la o 0 n
4dm~¢” n -
where It has been assumed that the ground state is being perturbed.
The first first-order term is zero because the ground state is
non-degenerate and therefore has no angular momentum. 'The‘remaining two
terms of interest will be examined separately. The second Eirst—ordér

term will be“bhlled‘ﬂd because it will contribute to the diamagnetic
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component of the susceptibility.

-~ ey
~

xd % <0]rerl - rr|0> . (I1IC.7)

Since»<0[rirj|0> = 0 for i # j, it is clear that xd is a diagonal tensor.
Also, due to the cylindrical symmetry. xix = xgy' The independent components

are, therefore,

d e 2 2

Xy 7 = g <0ly“ez® 0>
Sme

. 2
xczl = - .-—‘-L—z— <le2+y2|0> . ) (IIIC-S)
8mc :

2 ’ ' : .
and since <0[r;|0> = h/2mwi, the model yields

2 .
1 - 1
X = =3 )
lémcw
. d -. 2‘) ‘ o
X, == —35 . (I11C.9)
8m" e w

The remaining (paramagnetic) compounent of ¥, called xp, is

/324

Pa 57 <0fr|n><n]Lio> [E4(0) - En(O)]"1 . (11IC.10)
n -~

™

It will be shown that XP is also diagonal: Consider an off-diagonal

-
-

matrix element, say x:y. This element is a sum of terms each proportional
to <0|ypz—zpy|2><E|sz-xp2|0>. Owing to the selection rules for x and P,

in a harmonic oscillator basis, the first factor is zero unless n, = 0
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and ny = 1.’ The.second factor is zero unless.nx'= 1 and ny = 07 »Since
these conditions cannot be met for any n, xiy = 0. A similar argument
shows ;hat all off-diagonal elements are zero.

Duec to the cylindrical symmetry of the oscillator in its ground
state Lz|0> = <0|Lz = 0, This is seen to bu 80 by remembering that
Lz "~ 3/9¢, where ¢ is the angle about the z-axis. wn=0 has no ¢
dependence. This fact insures that xzz = 0, The cyiindrical symmetyy
further 1nsur¢s that xix = xgy.

The only nonzero elements of xp are, therefore,

' 2
p = p = —.:.(l— 2 b - [ -1
Xax = Xy 53 z|<O|Lx|2>| [E,C0) - E_(0)] . (11IC.11)
m“ec” n ~

For <OlLY|n> to be nonzero it must be that nx=0, ny=nz=l. Thus, the sum
collapses to one term. If we write Lx in terms of amnihilation and

creation operators,5 then operating on |0,1,1> we obtain

h
<0,0,0[1,[0,1,1> = 3 (w,7u )/ W) *
. |
=37 (-1 A . (1IIC.12)

Thus, insertion of this into (II1IC.1l) yields

‘ -2 2 2
P . M (u-1) 1
XX 4m2c2 4 u RT) . ' (I11C.13)

X

The following equations for the susceptibility have been derived:


http://HIC.11
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=gy
N
14 8m2c2m
xd = annxd sa
sz = '(ll-l)z)\'(zlzliiu(l-l-u)
Xx = Xoox x:x =25,/ (111C.1

Nofe that all diamagnetic terms are negative and all paramagnetic terms
are posifive. The components of the total susceptibility (paramagnetic
plus diamagnetic) are always negative. Since the energy goes as

'E'X'E the separation of X into a diamagnetic component which is
negative and a paramagnetic component which is positive is in keeping
with che usual definition that a diamagnetic' substance is repelled by

a magnetic field and a paramagnetic substanée is attracted. The para-
magnctism of moszparamagnetic auﬁgtances, however, is caused by a net
magnetic moment in the ground state (as in the net spin moment of
molecul v oxygen vhose ground state is 32;) which results in the first
order’term <0|L|0> of (I1LC.6) being nonzero. Molecules of this type
POSSOSS & molecular magnetic moment of 5%; <L.> which interacts in a
first order way with the magnetic field. The oscillator wmodel does not
describe this type of paramagnetism, but a muech smaller effect sometimes

7
known as Van Vleck paramaguetism.

What Is the source of Van Vleck paramagnetism? Recall that if Larmor'
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theorem were fully valid, the effect of the apﬁlied magnetic field would
be to induce all the'electfons of a molecule to rotate about the field
with an angular frequency w = eB/2me. The extra kinetic energy of the
electrons caused by this induced Lenz's law type current results in the
diamagnetic component of the energy. Because of the anisotropy of the
charpe distribution of‘a molecule, however, some of the eiectronic charge
will not be as frec to rotate abhout the field. It is this “quenching"
of the diamagnetic effec; that is called Van Vleck paramagnetism.s This
explains why there is a paramagﬁetic component to the susceptibility
only when the field is applied perpendicular to the axis of the molecule.
When the field is applied in the a~direction, the axial symmetry does not
restrict the "Larmor rotation" of the electronic charge. Because the
Van Vleck paramagnetism is only a reduction in the diamagnetism, it is
¢lear that it can never dominate the diamagnetism to produce a truly
paramagnetic molecule. This is seen from the model in that ixp/xdl <1,
for finite He

Proceeding with the application of the model to HZ’ one again identifijcs
q and m as the charge and mass of an electron and uses w and YU from
experinental data as was done in the previous section. The results are

displayed in the table.

Model Experiment3’8
Xy 0.446 0.427
X,z 0.383 0.372
-X 0.425 0.409
IxP x4 | 0.027 0.026 (11IC.15)
xx' “xx ) ' E
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The units in the table above are uzag. where o is the fine structure
constant. The model predicts susgeptibili;ies remarkably better than
polarizabilities. The differcence between model and experimental
susceptibilities is about 4%, However, it should be noted that the
"experimental data", <x2> and <zz>. that were used to derive M and w
are themsclves dervived from magnetic susceptibility experiments. 7o
some extent, therefore, the model has been "rigged" to exhibit a size
and shape that are suvperb for the modeling of susceptibility. The
excellent agreement between model and experimental values of-fxp/xdl
is to be noted, however. |

By combining equations (IiIB.lA) for the polarizability and (111C.14)

for the susceptibility one obtains

Wi

o = % tarad) nlle?ram?

X = - 3 (w0 Qulah/enledn (111C.16)

These equations may be combined to eliminate w and obtain a new relation-

ship betwecen the pol#rizability and the susceptibility,

X = -(ezlhmcz)f(u)\/a ag R (111C.17)

where the usual associatjion of q and m with the electron has been made

and

5+
£Qu) = Iiﬁ "“"JLTZ'WQ . (I1IC.18)
[3¢14217)] ’
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Duc to the fact that the polarizability and the susceptibility represent.
responses of a system to extremely different types of perturbations, it
wauld be indeed surprising if such a simple relation as (IIIC.17) were
valid. However, a similar relation, knuwn as the Kirkwood equation.q was
daveloped for atoms by a variational argument in 1932. Note that for
atoms, 4 = 1 and £(1) = 1. The fact that the oscillator model yields

the same relation as the Kirkwood equation 1s ctruly remarkable even given

that any relatlonship exists betwecen these two properties,

. B. Nuclear Magnetiec Shielding (Chemical Shift)

The application of the oscillator model to the problem of
estimating the shielding of a nuclear spin from an applied magnetic
field is a new one. Indeed few non-trivial models exist that can shed
light on and provide estimates for the magnitude of this phenomenon for
systems more gencral than atoms.lo

Consider first a bare nucleus with intrinsic angular momentum (spin)

S and a corresponding magnetic dipole moment of

m= gy (-f;-:-";) S = gyByS | (111D.1)

where ¢ and M are the charge and mass of a proton, c is the speed of light.

BN is called the nuclear magneton and is a comstant. is a dimensionless

En
quantity of the order of unity characteristic of the type of nucleus being
considered.

If a magnetic field E is applied to ;he bére nucleus, the energy of

the system depends on the orientation of the spin relative to the field.

In particular, the system is described by the Zeeman Hamiltonian,
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H=-mB . , ' o (I1ID.2)

Now if'ihere‘afe electrons around the nucleus, as éherc usuall& are,

the enorgy levels characterized by the nuclear spin qualitum numbers

will be pefturbéd; The field will induce currents in the electronic
distributiou which will tend to screen the nucleus from the full effects
of the npﬁlied field. Thé induced currents provide a field that is
prdportional to B and opposite to it. 'Thus, in the preseace of an
electronic distribution the hucleus actuélly'féels a magnetic field which

is smaller and given by -

~eff T 200 - - (I1ID.3)

where ¢ 1s called the chemical shift tensor which describes the effects
of the electrons in the molecule. The Zeeman Hamiltonian is thus

modified to

H = Helec - T'(ihg)'g s A (111D.4)
' where N1 ec is the Hamiltonian of the electrons in the field of the nuclei,

the applied field, and the fields of the other electrons, if there are
others. ‘

Considuf'now a particie hpund to the origin with a harmonic force
as befuré. AThe-ﬁaﬁticle will be assumed to have a charge q and a mass
m. The force will be dggcnernte in the i and y direction in order to
‘-proauco an. axially symﬁetric (diatomic-like) probability distriButién.

Near the origin, at R, will be fixed a nuclear spin S with a magnetic moment .
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m. It should be emphasized that the spin at R is not charged and.so does
not interact coulombically with the harmonically bound particle. In
order to maintain axial symmetry, the spin will be. placed on the z-axis
so that R = RZ, This entire system is then to be placed in a magnetic

field, B. The Hamiltonian for this is

2
H = é% (r - %-A) + (h.o. potential) - m*B . (ITID.5)
Other than the last Eerm; this Hamiltonian is just the same as that for
the magnetic susceptibility (IIIC.l).' However, in (IIIC.l) the vector
potential produced only a éoustaht magnetic field, whereas the vector
potential referred to above produces both a constant magnetic field and

the magnetic dipole of the nuclear spin.
) = A + 4 (I11ID.6)
3 éB . .

The Hamiltonian may be divided and perturbation theory used, as before.
The unperturbed Hamiltonian H0 will include the kinetic energy of the
pafticlc, the Hérmoﬁlcfbotentiél and the -T'g term. This Hamiltonian is
separable 1u particle and nuclear spin coordinates aud the eigenvalues
will Se direét.prodaéts of paiticle énd spin (SZ,SZ) éigenfunctions. The

perturbation is, theh.

o 2
LERTOR ' 2 2
R A S
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An expressicn for the energy i1s desired that is first order in
both the field and the magnetic moment so that ¢ may be abstracted
from it according to (LIID.4). This expréssi&n can come from
perturbation theory only to sccond order and only perturhing terms
that are zeroth or first order in B or m need be kept. This results
in

2
B s - (A h APy A A (1IID.8)
me
The neglected terms are second order in either B or m and can never
produce an energy expression of the formb(IIID.4). First-order

perturbation theory produces only one term of the desired form

2
B = 041—2) <0|ﬂi£§:§l-(er)!0> . (I11D.9Y)
2me 3 -
| r-R]

By using vector manipulation and by extracting m and B outside the brackets,
it is straightiorward to identify a first-order contribution to the

chemical shift tensor which will be called dd,

2
o = -5 <0 [ (x-R)*xT - (z-ROT]|r-R| o> . (171D, 10)
~ 2mc_ PR ~oy ~ o~ o ~ o~ .

From the fact that the nucleus lies along the z-axis, R = RE, the symmetry

of the situation yields only two independent nonzero elements of od:

2 .
d d q 2 . -3

O woemdea. <0|[y + z(z-R)]Ir-R 0>
xX yy 2mc2 - "I l

(4]

d 2 x2
a '3-2' <0"""‘—'3'|0>

%7 . (111ID.11)

[}

mc Ir-R
~ "
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‘ Second-order perturbation theory produces only one kind of sum all

© of whose tetmé are first-order in both B and m. This is

2
q
i - 5 )_‘ I<o‘-~ nxr-p|n> nlp' ’f'-—mlos + c.c. ] —————» . (11ED.12)
m e n lr-Rl Eg-E

Again, use of vector identitles and extraction of m and B outside the brackets

vields the second-order contributlon to the chemical shift,

P

~ Zm c

~-9-— T [<0igfn><n| II R)I*L——lm + e @ -E)TT , (111D.13)
n r-R

~

L}

where £ = rXp. It is obvious from the form of of that it is real and
symmetric. Also, for the choice of R along the z-axis, of is diagonal
with only two unique components. Furthermore, since 27|0> = <0|2z = 0,

as was discusscd in the section on susceptibilities, czz = 0. This

leaves only

P v —q2 ' yp,~(2-R)p
Oy = Oy = 7‘%— 2 <oje |n><n]—-———-—1’]o>(1. -E ) (1IID.14)
W one n R

-~ o~

As for the previous properties, the sum above reduces to one term.
This is because when lx operates on the ground state the resulting state
is proportional to one of the excited states of the oscillator. In fact,

using a ladder operator technique it is easy to show that

. ih -
<0I'2.x = <0f(yp,-zp ) = - 5 =X <o11] , (I11D.15)

so that only the term n = (0,1,1) remains. Furthermore, since
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p*[ﬂ? = ﬁmﬁkx|0? . . ' | | (ITID.1A,

which can also be proven simply using ladder opérators, sz may be
written as an expecétation value of a function of coordinates only. The

result is

2 yp_ - (z-R)p -
UP_ = - _%“? <0|lx-~—? 3__X10> [h (w +wz)] 1 (I1D.i
o 7723 . y

2.2 2
2 (W —mz) Wy z —myy z(z-R)

= A -<0| I0>
i '
hcz (my wz) lE'B|3
e aaE - . d d p
To simplify the three equations above for Uxx’ Uzz’ and wa’ they

will be normalized to the spherical limit (u=1, R=0) chemical shift.
This gets rid of the excess baggage of constants that preface each
expression. In the spherical limit, the well-—known]'1 expression for

the chemical shift is

2 1
op = g olglo>
dm¢
2 % w
=3 -;lf Coir? : , for an oscil;ator. | (I1Tbh. 3

Fufthermore,_a diménsionless iength parameter is defined asid2 = (mm/h)R2
to simplify the equhtipns.

Sincé the integrals to be evaluated involve integrands which are
essentially Gaussian functions mulfiplied by simple funcﬁions of spatial
coordinates, they may be simplifed using Gaussian transform techniquesl2

from three-dimensional to one-dimensional form. The results are
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¢ .
a
2% o 3/2 jx exp[—]ld "X ][1- l—u)x 17 dx
30

0 0
°:~c /2 1 2 2 2.-2.. 2.2 2 2
. f expl-pd 252 ] [1- (L)% 1™ 2 [1ex2-2a2ux? (1~ (1-1) %) 1.
% * 4

P
o 1/2 1

XX _ (1-u) - -
o 5 ) J/.x exp [ ud X ][1 (1 u)x ]

x {1- (1|2ud2+2u ax? + 2palxieou- —@-x——-—}dx .

[1-(L-1)x?]

Unfortunately, theée integrals cannot be performed analytically.

‘-Howevet, they are well behaved in the region of integration and this
allows them to be easily evaluated for particular values of b and dz
By any of several unumerical procedures. In what follows, the Gaussian
quadrature ptocedure13 was used.

It should be remarked at this point that an cxperiment cannot
determine separately tﬁe paramagnetic and diagmagnetic contributions
to the chemical shift, but only the sum of the two. The diamagnetic .

component may be determined indirectly by a measurement of the size
(<x2>; <zz>) of the nolecule as determined by a different type of
experiment. The paramagnetic component is then determiﬁed by subtract:
the diamagnetic component from‘the total shift as determined by a
standard magnetic resonance experiment., It may be argued that this
procedure.is ambiguous.

This mddel. as well as other theories of magnetic resonance, canm
escape this same amhiguity. This 1s because only the total chemical

shift, the sum of the diamagnetic and paramagnetic components, is gaugu.
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2 . - . :
invariant. The individual compounents are not gauge invariant., For
‘example, iun the model developed here, the external constant magnetic
field was generated by a vector potential A = E-er, where r was measured

from the origin., One ecould just as well have used é' = % ExEs, where

r, = I-B locates the Harmonic oscillator particle relative to the nuclear
spin. 1This different choice of vector potential, or different gauge,
produces the same magnetic ficld and the same total chemical shift.
However, the paramagnetic and dinmagﬁetic contributions to G are different.
(One advantage of the use of the vector potential A', however, is that

the paramagnetic term is explicitly negative and»the diamagnetic term

ié explicitly positive. Tﬁis is in keeping‘with the usuval definition of

diamagnetism and paramagnetiswm since E v meceB.) Since only the total

~ ome o
] .

chemical shift is observable, individual countributions will not be
calculated. |

In applying the model te¢ the hydrogen moléculc, the first problem
is the determination of the threc parameters R, w and u. »Clearly, since
the oscillator should be centered between the nuclei, R will be half the

cquilibrium bond length of 1.4 a For u the value of 0.72 will be used

0’
as was done for the polarizability and susceptibility. Also -s before,
w will be determined by <x2> data and equations B.1l5 and 16. These

assipnuents give

™o 1.4 0.2

a2 = @D =006 . ~(1mp.21)
These paramcters provide enough information to evaluate the integrals
(I1ID.20), but this only gives chemical shifts scaled to the "spherical

limit". To determine the actual components of o, do needs to be determined.

e
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‘ Clearly, there are many ways to do this. One way ié»to use equation
(II1ID.19) for the shift of the spheriéal oscillétpr'and insert a
frequency w determined from <x2>; as above. ' Hawever, wz could also
be used for the frequency, and in keeping with Ehe idea of do being
a "spheriecal limit" shift, an w determived from <r2> = <x2> + <y2> +
<zz> mlght also be considered. The fact is. however, that since HZ is
&0 close to spharical (U = <x2>/<22> = 0.72) these procedures give
substantially the same results.

An equally valid wvay to determine the spherical limit chemical
shift is to considef the‘chemicalishifté of various atoms. The united
atom limit of Hzn(helium) immediately comes to mind. However, since
the nuclear charge is larger, helium has a much more localized probability
distribution than would be needed here. What is desired is the shift
in some limit where the charge aistribution becomes spherical without
"shrinking" much as iy would if the nuclear charge incréased. Thus, an
appropriate va;ug of % could bé that éf two electrons in a hydrogen ls
orbitui. Siﬁce'the chcmichl shift of hydrogen, which may be calculated

0 2
ppm = 35.52 ppm. Using this and the above values for w, ¥, and R, the

annlyticaliy. is 0 = 17.76 ppm, a good value for o, for H, is 2 x 17.76

vaiuaéfof-éhe‘following table are obtained:

Model Experimentz’la
Gxx 18.3 ppm - 27.3 ppm
S, 29.§ ppm 34.9 ppm
oxxlﬂzz 0.61 Q.78

o ‘ 22.1 ppm 25.3 ppm .



Thus, the model gives values correct to within about- 20%. .
The model has also been sol\'e.dl5 for the chemical shift I:
case of 1 2 1 (where the probability distribution is oblate, -
shaped) and B = Rx. Tn this form the oscillator may be used !
the proton or (for different R) the 13C chemical shift of bcu.
Another use which comes to mind is the modeling of the situat.
nuclear spin af the active site inside a porphyrin ring (R=0Q,

as in hemoglobin and ehlorophyll.

E. Comments

As can be deduced from the three tables, the oscillator
not predict accuraté values of préperties of molecular hydro:
was repeatedly nentioned above, however, ﬁhat there ar. ..y oo
choosing values for the scﬁeral parametérs of the model, som:
may give better predictions for propertics than were derived p
Indeed, in some cases where cxperiméntal information is unavai:
the accuracy of the model as used above may be enough.

liowéver, the feal vélue of the model is ﬁof in the accurﬂ
predictibﬁs But in the insight it provides to the compléx intoy
of aﬁ clectronic wavefunction with ulecﬁric and magnetic field:
nuéleur spins. Although simple enough to provide annLyéié axp
for several properties, the wodel can exhibit a complex phenom.
Van Vleck paramagnetism in both the magnetic susceptibility ana
chemical shift.

There is every reason to belicve that the model is genera!
to total anisotropy (mx # u& # wz) g0 that less-than-axially-s:

molecules could be mimicked, It is also probable that other mn!
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proparties may be predicted;‘such.né‘theiépiﬁ-rotatiuﬁ coupling of
nuclear (orx eleccronic) spin with molecular rotntion.

‘Anocher line of 1nvestignc10n,which could prove £ruitfu1 is
the generalization of the nheoxy to an oscillator in other than its
ground state. These excited atates could thcn he used to model the
varigus orhitals of a molecule by providing states of the correct nodal
sttuctufc. liven more aimply. each orbital of a laxge molecule could
be moduled by a grouud state oscillator with different w and u It is

- quite ]ikely, however, thar the model is most valuable in its simplest

form, as prescnted hcre.
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