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Model Close Match as a Criterion for Structured Model Comparison and Its Robust

Statistical Tests

Abstract

Traditional model comparison procedure selects nested structured models by evaluating the

feasibility of the equality constraints that differentiate the models. We propose instead to

evaluate model close match, using the distance between two models, either as important

supplementary information or as a criterion for nested model comparison. Based on Mac-

Callum, Browne and Cai (2006) and the results of Vuong (1989) and Yuan, Hayashi and

Bentler (2007), we develop a reasonable cutoff value and some ADF-like tests for inference

on model closeness. Simulation studies show that several of our proposed tests have ro-

bust and desirable performance in spite of severe nonnormality when sample size is as large

as 150. Consequently, a two-stage procedure which combines the traditional nested model

comparison and the additional inferential information regarding model close match is further

suggested to improve the typical practice of model modification.
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1. Introduction

In structural equation modeling (SEM), a set of statistics is used for evaluating the overall

exact fit of the model in terms of their type I and type II errors, including the classical normal

theory based likelihood ratio (NTLR) test, Browne’s asymptotically distribution free test

(Browne, 1984), the Satorra-Bentler scaled test (Satorra & Bentler, 1988, 1994) or the more

recent residual-based tests (Yuan & Bentler, 1997, 1998, 1999). The distribution, and hence

performance, of these statistics depends on meeting the various assumptions underlying these

statistics. One of the assumptions is that the strict null hypothesis holds, namely, that the

model is exactly correct in the population.

Another set of statistics in SEM involves the comparison of alternative nested models

that contain additional restrictions beyond those of the more general model. They include

the chi-square difference test which is often an NTLR test (e.g., Jöreskog, 1971; Steiger,

Shapiro, & Browne, 1985), the Satorra-Bentler scaled difference test for greater robustness

(e.g., Satorra, 2000; Satorra & Bentler, 2001), or the Lagrange Multiplier (LM) and Wald

(W) tests (e.g., Chou & Bentler, 1990; Lee & Bentler, 1980; Lee, 1985; Sörbom, 1989) for

convenience of working with only the more general model or only the more restricted model.

Similarly, as when alternative models are evaluated, the distribution, and hence performance,

of this set of statistics depends on meeting various assumptions (Satorra, 1989) one of which

is the strict correctness of the null hypothesis, namely, that the restrictions that differentiate

the general and restricted models are exactly true in the population.

In standard model modification, the significance of each statistic in this branch is deter-

mined with reference to the assumed distribution under the null. While such a procedure

may not work perfectly in practice (e.g., Yuan & Bentler, 2004), especially when such a

model comparison is post hoc rather than a priori (e.g., MacCallum, Roznowski & Necowitz,

1992), some type of model comparison can not be avoided in practice. Most a priori models

are incorrect in some way, and the process of model modification to yield improved mod-

els remains an inevitable and important part in the application of SEM (Jöreskog, 1993).

One rationale for imposing constraints on a general model is that the estimates in the more

restricted and parsimonious model will be more precise (Bentler & Mooijaart, 1989).
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Ever since Jöreskog (1969) developed confirmatory factor analysis, the two sets of sta-

tistical tests discussed above have been embraced in SEM because they provide scientific

rigor to testing hypotheses with nonexperimental data. After some limitations were raised

on the role of testing in exploratory factor analysis (Tucker & Lewis, 1973), Bentler and

Bonett (1980) noted that tests of exact fit in general SEM can not on their own provide a

sufficient basis for evaluation of models, especially in large samples where any restrictive null

hypothesis is liable to be rejected. They proposed that a model also needs to be evaluated

in terms of the extent to which it explains covariances better than a most restricted model

of uncorrelated variables which explains no covariances. They provided several so-called

fit indices to evaluate such an increment in fit, and also proposed to evaluate differences

in model fit between two nested models by evaluating the associated increment in fit. In

the meantime, additional fit indices such as the root mean square error of approximation

(RMSEA, Steiger & Lind, 1980), comparative fit index (CFI, Bentler, 1990), goodness of fit

index (GFI, Jöreskog & Sörbom, 1981) etc. have been devised to provide a measure of the

extent of approximate or close fit of a model.

Critiques of tests of exact fit were also made from two other perspectives, namely from

a rejection of the basic null hypothesis, and from the point of view of statistical theory.

It does not make sense to test a specific model null hypothesis if one does not in the first

place believe that a specific model might exist in the population. Any particular model may

be nothing more than an approximation to reality, and it may be said that the modeling

enterprise should mainly aim to provide information about the relative performance of alter-

native plausible models, none of which may be precisely true (e.g., Bentler & Bonett, 1980;

de Leeuw, 1988; Browne & Cudeck, 1993; MacCallum, 2003). From the point of view of

statistical theory, questions have been raised on whether the distribution of a test statistic

under the null hypothesis provides the most meaningful possible model evaluation when such

a null hypothesis may not make a priori sense. To provide an alternative, recently researchers

such as Ogasawara (in press) and Yuan, Hayashi, and Bentler (2007) investigated the general

distribution of the NTLR test under model misspecification and weak distributional assump-

tions on the data. In addition, some asymptotically robust model close fit tests implemented
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via the sample RMSEA also have been introduced and studied by Li and Bentler (2006).

These critiques of hypothesis testing on exact fit of a given model apply directly to the

comparison of nested models, but little statistical development has been done to provide an

alternative approach for comparing such models. In this paper, we first review some relevant

statistical theories and propose a framework of close match between two competing models

based on MacCallum, Browne and Cai (2006). Under this framework, the measures, the

cutoff values and the corresponding estimators of model close match will be given. Then,

using the results of Vuong (1989) and Yuan, Hayashi and Bentler (2007), the asymptotic

distribution of these estimators will be derived and some asymptotic robust tests of close

match between competing models will be defined. Finally, numerical examples will be given.

2. Theoretical Background

In classical single population SEM, the relationship of p-observed variables in a p ×

1 random vector X = (x1, . . . ,xp)
′ and m-unobserved factors may have many different

specifications. Without loss of generality, we only consider two such model specifications at

one time for simplicity. In one parameterization, M1 has q free unknown parameters which

are included in a q × 1 parameter vector θ, while another competing parameterization M2

has r free unknown parameters which are included in an r × 1 parameter vector γ. As a

result, the hypothesized model M1 leads to the model-implied mean µ(θ) and covariance

matrix Σ(θ) and M2 leads to µ(γ) and Σ(γ).

For simplicity, we assume that sampling yields a complete data set. Now let µ = E(X),

Σ = cov(X), X̄ and S be the corresponding mean and unbiased sample estimator. Let

β ≡ (µ′, vech(Σ)′)′ and its unbiased estimator β̂ = (X̄ ′, vech(S)′)′, where vech(·) is an

operator which transforms a symmetric matrix into a vector by stacking the nonduplicated

elements of the matrix. Suppose that the data Xi = (xi1, . . . , xip)
′, i = 1, . . . , n = N + 1

are identically and independently drawn from X. The normal theory based log likelihood

function of the observations is then given by

ln(β) =
n

∑

i=1

li(β) =
n

∑

i=1

logf(Xi; β) = constant − n

2
log|Σ| − 1

2

n
∑

i=1

(Xi − µ)′Σ−1(Xi − µ)
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where f(Xi; β) is the density function of the multivariate normal distribution for individual

observation Xi.

Let µ0, Σ0 denote the population counterparts to µ, Σ and β0 ≡ (µ′

0
, vech(Σ0)

′). Let

Γ be the asymptotic covariance matrix of β̂, then under some standard regularity condi-

tions (e.g., Kano, 1986; Shapiro, 1984), β̂ will be strongly consistent and asymptotically

normally distributed, that is,
√

n(β̂ − β0)
L−→ N(0,Γ) , where Γ can be shown to be equal

to A−1

β0
Bβ0

A−1

β0
(e.g., Vuong, 1989; Yuan & Jennrich, 1998) with

Aβ0
= −E

[

∂2li(β0)

∂β0∂β′

0

]

Bβ0
= E

[

∂li(β0)

∂β0

∂li(β0)

∂β′

0

]

where E(·) denotes the expectation with respect to the true distribution of X. When µ and

Σ are parameterized as M1 and M2 as mentioned before, the corresponding log likelihood

functions become ln(θ) and ln(γ) separately. In SEM, the maximum likelihood estimators of

θ and γ, θ̂ML and γ̂ML, are estimated by minimizing

FML(X̄,S; θ) = (X̄ − µ(θ))′Σ−1(θ)(X̄ − µ(θ)) + log|Σ(θ)| + tr(SΣ−1(θ)) − log|S| − p

and

FML(X̄,S; γ) = (X̄ − µ(γ))′Σ−1(γ)(X̄ − µ(γ)) + log|Σ(γ)| + tr(SΣ−1(γ)) − log|S| − p

respectively. Let θ∗ and γ∗ be the minimizer of FML(µ0,Σ0; θ) and FML(µ0,Σ0; γ) respec-

tively. Then θ̂ and γ̂ will be strongly consistent and asymptotically normally distributed

(e.g., Vuong, 1989; Yuan & Jennrich, 1998), that is,
√

n(θ̂ML − θ∗)
L−→ N(0, A−1

θ∗
Bθ∗A

−1

θ∗
)

and
√

n(γ̂ML − γ∗)
L−→ N(0, A−1

γ∗ Bγ∗A
−1
γ∗ ).

Let F1 = FML(µ0,Σ0; θ∗) and F2 = FML(µ0,Σ0; γ∗). Then NF1 and NF2 are the so-

called noncentrality parameters of M1 and M2 respectively. In the model close fit literature,

the noncentrality parameter is a measure of the distance between the specified model and

the saturated one and plays a key role in defining many so-called fit indices. In this article,

we only focus on one of these fit indices, that is, RMSEA (Browne & Cudeck, 1993; Steiger

& Lind, 1980). Let df1 = p∗−q and df2 = p∗−r denote the degrees of freedom of M1 and M2

respectively, where p∗ = p + p(p + 1)/2. The true RMSEAs corresponding to these models
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are defined as

r10 =

√

F1

df1

r20 =

√

F2

df2

(1)

for M1 and M2 respectively.

3. A Close Match Framework

For convenience of illustration, we introduce our idea of model close match by using an

example by Curran, Bollen, Chen, Paxton and Kirby (2003) (see their population model 2).

In this example, the population model underlying the data is as follows,

y = Πη + ε η = Bη + ζ

where ε and ζ are independent to each other with E(ε) = 0, Cov(ε)=Ψ, E(ζ) = 0, Cov(ζ)=Ξ.

Moreover, Ψ = diag(.51, .51, .51, .51, .51, .2895, .51, .51, .51, .2895, .2895, .51, .51, .51, .51), Ξ =

diag(.49, .3136, .3136),

Π =







1.0 1.0 1.0 1.0 1.0 .30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 .30 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 .30 1.0 1.0 1.0 1.0 1.0







′

and B =







.00 .00 .00

.60 .00 .00

.00 .60 .00





 .

For our illustration, we focus on four specifications used by Curran et al. (2003). They

are: Specification 1 is properly specified, Specification 2 sets π11,2 as zero, Specification 3

sets π11,2 and π10,3 as zero, and Specification 4 sets π11,2, π10,3 and π6,1 as zero. During the

model fitting of each specification, we set π1,1, π7,2 and π12,3 to 1.0 for identification while all

other nonzero parameters in the population model are set free. As a result, the models by

Specification 1, 2, 3, and 4 have degrees of freedom equal to 85, 86, 87 and 88, respectively.

For model comparison, any pair of these four specifications can be a comparison pair. Let

us denote the general model of a comparison pair as M1 while the restricted one of the pair

which is nested in M1 as M2. Let F12 = F2 − F1. Then following MacCallum, Browne and

Cai (2006), we reparameterize the equality constraints bridging M1 and M2 such as π6,1 = 0
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for the comparison pair of Specification 3 vs. 4 as the null hypothesis HE
0

: F12 = 0 and

consider HE
0

: F12 = 0 as the null hypothesis of equality or exact match of the models M1

and M2.

Since the omitted paths (cross loadings), π11,2, π10,3 and π6,1, are equal to .30 in the

population when compared with all other loadings that are 1.0, we can consider these as

minor cross loadings. In general, a simple cluster structure such as Specification 4 in this

example will be very desirable from a theoretical perspective. However, real data hardly

allow such a simple cluster structure, and typically may require a more complex factor

loading structure, like the population model in this example where the cluster structure is

compounded by some minor cross-loadings. As a result, the null hypothesis HE
0

: F12 = 0 for

any pair of the four specifications above is false, and related test statistics such as the NTLR

statistic will reject this hypothesis if the sample size is large enough. Then the unwanted

minor paths will be included in the final model, perhaps making it less interpretable.

What we illustrated here is a typical model comparison paradigm by the traditional

approach. Like exact fit tests in model overall evaluation, the traditional approach to the

model comparison involves choosing between the better fit of the general model M1 and the

parsimony or meaningfulness of the restricted model M2 by examining a statistic assessing

the equality or exact match of the nested models. Even though this approach is valuable,

it may not be a complete one. In practice, HE
0

: F12 = 0 may not hold because of some

minor differences between two models, e.g., unexpected minor cross loadings as illustrated

above. Even though these differences may be minor or unmeaningful substantively, the

traditional exact match testing procedure would inevitably favor M1 (especially in a large

sample) because of the infeasibility of exact model equality. In practice, a more realistic

approach to model comparison would decide between the better fit of M1 and the parsimony

or meaningfulness of M2, using as a criterion the degree of close match instead of exact match

between two models1. In other words, like the concept of close fit in overall model evaluation,

1Theoretically, imposing an inequality constraint on unwanted or unnecessary minor paths such as
π6,1 ≤ .4 and testing this by the likelihood ratio test (see Dijkstra, 1992; Shapiro, 1985) is also a possible
way of handling minor paths. Unfortunately to our knowledge, there is no development of an appropriate
methodology for such purpose, with existing approaches to inequality constraints requiring a correctly spec-
ified fitting function. This requirement limits their application to close fitting models, especially when the
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the concept of close match between M1 and M2 may yield an appropriate comparison of two

models. As an additional approach to model comparison, this may yield a more practical

criterion for model modification in substantive research.

Actually, our idea of close match is not completely new. MacCallum et al. (2006) realized

the infeasibility of the null hypothesis HE
0

: F12 = 0 and advocated the good-enough principle,

as presented by Serlin and Lapsley (1985), for testing for a small difference between nested

models. They further suggested the following null hypothesis

H0 : F12 ≤ δC (2)

for such testing, where δC is some chosen small number. In this article, we consider (2) as

the null hypothesis of model close match. In practice, the competing models vary in each

study. In order to choose an appropriate value for δC across situations, MacCallum et al.

(2006) expressed δC in terms of overall fit of M1 and M2, that is,

δC = df2r
2

2C − df1r
2

1C (3)

where r1C and r2C are some choice of true RMSEA values for M1 and M2. MacCallum et

al. (2006) suggest to use a range of reasonable pairs of r1C and r2C for power analysis.

In this article, we further extend the idea of (2) and (3). Let us combine the identity

F12 = df2r
2
20
− df1r

2
10

implied by (1) with (2) and (3). Then we obtain a null hypothesis of

close match equivalent to (2), that is,

H0 : df2r
2

20
− df1r

2

10
≤ df2r

2

2C − df1r
2

1C . (4)

Now let us assume df1 = 85 and df2 = 86 as in Specification 1 vs. 2 of our illustrative

example, then the reasonable area of a r10 and r20 pair is above Line 0 in Figure 1, where

Line 0 is the line r20 =
√

df1/df2 ·r10 where F12 = 0. Clearly Line 0 is lower than the diagonal

line since
√

df1/df2 < 1. When HE
0

: F12 = 0 holds, r20 − r10 ≤ 0 and varies along Line 0

while Line 0 varies with df1 and df2. So the value of r20 − r10 does not accurately reflect the

exact or close match of two competing models. We prefer to use F12 for close match as in

(2) instead of r20 − r10.

data is nonnormal.
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Now let p1 denote the point (.06, .08) in Figure 1 and as our choice of (r1C , r2C) in (4).

Then there should exist one line, the Line A in Figure 1, which consists of a series of points

(r1C′ , r2C′) in Figure 1 and satisfies the following equality

df2r
2

2C′ − df1r
2

1C′ = df2r
2

2C − df1r
2

1C . (5)

Similarly, when the point p2 = (0.07, 0.10) is chosen for (4), then the Line B exists in Figure

1 by (5). In fact, Line 0 is also a line satisfying (5). So no matter what the reasonably chosen

point (r1C , r2C) is, there will always exist a line in the figure consisting of points satisfying (5).

Let us call this line the equi-discrepancy line. Then Line 0 can be called the equi-discrepancy

line of exact match while any other line above it will be the equi-discrepancy line of close

match. Further, by (4), the meaning of the null hypothesis of close match can be redefined

as testing if the true RMSEA pair (r10, r20) which we don’t know exactly at hand is inside

the area between the equi-discrepancy line of close match defined by the chosen RMSEA

pair (r1C , r2C) and the equi-descrpancy line of exact match, the line 0, or not. Clearly, when

the chosen RMSEA pair (r1C , r2C) represents a higher equi-discrepancy line of close match,

then the area of testing is larger, δC is larger and greater discrepancy is allowed between

nested models. In reverse, when (r1C , r2C) represents a lower line, then the area of testing is

smaller, δC is smaller and less discrepancy is allowed.

More importantly, any equi-discrepancy line in Figure 1 by (5) will cross the vertical axis

and has a point (r1C′

0
, r2C′

0
) with r1C′

0
= 0. For example, (r1C′

0
, r2C′

0
) = (0, 0.053) for Line A

while (r1C′

0
, r2C′

0
) = (0, 0.072) for Line B. Combining (r1C′

0
, r2C′

0
) with (3) and (5), we obtain

δC = df2r
2

2C − df1r
2

1C = df2r
2

2C′

0

. (6)

Notice that by (6), any chosen discrepancy defined by δC and df2r
2
2C − df1r

2
1C for model

comparison is equivalent to a discrepancy between the saturated model and a close fitted

model with df2 degrees of freedom and the true RMSEA = r2C′

0
. For example, p1 on Line A

can be considered to represent an overall discrepancy of a model with df = 86 and the true

RMSEA=0.053 against the saturated model while for p2 on Line B this close fitted model has

df = 86 and a true RMSEA=0.072. Thus, by (6), we translate the choice of δC or (r1C , r2C)
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for the model close match into an equivalent choice of r2C′

0
for a close fitted reference model

with its degrees of freedom equal to df2. The advantage of such translation is obvious. The

choice of r2C′

0
sets us free from a two dimensional choice of (r1C , r2C) and also allows us to

utilize the cutoff criteria of RMSEA which have been established in SEM for a close fitted

reference model. It is commonly believed that an RMSEA equal to 0.053 or 0.072 means

a discrepancy of some mild misspecification. So p1 and p2 by their reference modes with

r2C′

0
= 0.053 and r2C′

0
= 0.072 respectively can be considered to allow too much discrepancy

between two competing models. In SEM, 0.05 is widely accepted RMSEA cutoff value for

model close fit and can be used as r2C′

0
to define δC . However, the equi-discrepancy line for

the point (0,0.05) lies above the line r20 = 0.05. This means that by such cutoff point r20

is allowed to be greater than 0.05 even when r10 is as little as between 0 and 0.01. So such

a cutoff point is reasonable in terms of model overall fit on one side, but the corresponding

(r1C′ , r2C′) makes less sense in terms of model comparison on another side and may allow too

much discrepancy. In addition, if (0,0.01) is used as cutoff point, the tolerable discrepancy

may be too little. So as a compromise we decide to choose p3 = (0, 0.03) as our cutoff point

and denote the corresponding cutoff value δC as δC,df2,0.03. For Specification 1 vs. 2 in our

example, δC,86,0.03 = 86 · 0.032 = 0.0774 while δC,87,0.03 = 0.0783 and δC,88,0.03 = 0.0792 are

the cutoff values when the restricted models in the comparison are Specification 3 and 4

respectively.

It is widely accepted that the population RMSEA is a model and sample-size independent

measure of model overall fit. So our cutoff point p3 doesn’t need to change with df1 or df2.

It holds in general and remains the same meaning no matter what the competing models

are, even though the value of δC,df2,0.03 and the shape of the corresponding equi-discrepancy

line, Line C, may change in each case by (5) and (6).

Another interesting point we should mention here is that the interval between an equi-

discrepancy line of close match and Line 0 always shrinks as r10 increases as in Figure 1.

Substantively, this means that under the same tolerable model discrepancy, our close match

approach by (4) allows more restriction or parsimony (larger r20 − r10) when the general

model contains less misspecification (smaller r10), or equivalently, less restriction (smaller
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r20 − r10) when the general model becomes less trustable (larger r10). Although we don’t

know what the values of r10 and r20 are, our close match approach by (4) automatically set

a corresponding standard for r10 and r20 by the equi-discrepancy lines.

Now let R12 =
√

F12. In this article, we treat R12 as another measure of model close

match. Then the null hypothesis (2) can be redefined as

H0 : R12 ≤
√

δC (7)

while the same meaning remains. When R12 is divided by
√

df12, it becomes the RDR index

(the root discrepancy per restriction) proposed by Browne and du Toit (1992). Although

Browne now recommends against the use of RDR index (see MacCallum et al. 2006), it is

possible to test such an index meaningfully by our close match framework above. Of course,

R12 can also be divided by
√

df1 or
√

df2 to form a RMSEA-like index that has some special

meaning. In this article, we feel that the discussion in this direction is out of our scope.

Now let us calculate F12 and R12 for all possible specification pairs in our illustrative

example. The results are presented in Table A. By our cutoff values δC,86,0.03, δC,87,0.03 and

δC,88,0.03 calculated before, all specification pairs on the diagonal line are acceptable while

the off-diagonal specification pairs are unacceptable.

4. General distribution of likelihood ratio statistics

Let F̂1 = FML(X̄,S; θ̂ML) and F̂2 = NFML(X̄,S; γ̂ML). Then TML 12 = NF̂2 − NF̂1

L−→

χ2
df12

under normality is the well-known NTLR test statistic that is used to test HE
0

: F12 =

0 in a nested model comparison. When HE
0

doesn’t hold, the inequality of two nested

models becomes true and TML 12 follows χ2
df12

(NF12) under normality and the population

drift assumption which is

µ0 − µ(θ∗) = O(1/
√

n) and Σ0 − Σ(θ∗) = O(1/
√

n) (8)

µ0 − µ(γ∗) = O(1/
√

n) and Σ0 − Σ(γ∗) = O(1/
√

n) (9)

(e.g., Satorra, 1989; Satorra & Saris, 1985; Steiger, Shapiro, & Browne, 1985). Although

this noncentral chi-square distribution of TML 12 can be used for testing H0 in (2) and its
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equivalence (4) and (7) under the inequality of two nested models, the assumptions of nor-

mality and population drift are hard to satisfy or verify in practice. These limitations prevent

TML 12 from being the appropriate statistic to use in such practical testing situations. Satorra

(1989) further proposed a generalized score test and generalized wald test which drop the

assumption of normality and are asymptotically noncentral chi-square distributed under the

inequality of two nested models. However, the noncentrality parameters of their noncen-

tral chi-square distributions contain Γ which is based on the distribution of the data and

varies with its nonnormality. Such distributional dependence of the noncentrality parame-

ters, along with the requisite population drift assumption, similarly raise questions about

the appropriateness of using these statistics for testing model close match in (2).

Given the inadequacy of existing methods for testing of model close match, we turn our

attention to some results of Vuong (1989) and Yuan, Hayashi and Bentler (2007). Now let

ω2 = E

[

log

[

f(Xi; θ∗)

f(Xi; γ∗)

]]2

−
[

E

[

log

[

f(Xi; θ∗)

f(Xi; γ∗)

]]]2

. (10)

Then by Yuan, Hayashi and Bentler (2007), we obtain the following corollary, that is,

Corollary 1. Under standard regularity conditions as in Yuan and Bentler (1997),

√
n

(

F̂12 − F12

)

L−→ N(0, 4ω2) (11)

if ω2 6= 0 or equivalently if F12 6= 0 when two models are nested.

One point which should be mentioned is that this asymptotic approximation holds only

when ω2 6= 0. Vuong (1989) pointed out that the equivalence between ω2 = 0 and f(Xi; θ∗) =

f(Xi; γ∗) holds in general (see Lemma 4.1 by Vuong). For nested models, it can be showed

that f(Xi; θ∗) = f(Xi; γ∗) and F12 = 0 are equivalent to each other under standard regularity

conditions (see Lemma 7.1 by Vuong, 1989). So a rejection of the equality or exact match

of two nested models: F12 = 0, which is equivalent to f(Xi; θ∗) = f(Xi; γ∗), is a way to

establish ω2 6= 0 and should be conducted before the use of (11).

In fact, F̂12 has some asymptotic bias as an estimator of F12. It can be shown (e.g., Li &

Bentler, 2006; Vuong 1989) that

AE(TML 12) = NF12 + d2 − d1 (12)
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where d1 = tr(A−1

β0
Bβ0

− A−1

θ∗
Bθ∗) and d2 = tr(A−1

β0
Bβ0

− A−1
γ∗ Bγ∗), and AE represents the

asymptotic expectation with respect to the true distribution of X.

Let σ1∗ = (µ(θ∗)
′, vech(Σ(θ∗))

′)′, σ2∗ = (µ(γ∗)
′, vech(Σ(γ∗))

′)′, σ̇1∗ = ∂σ1∗/∂θ∗ and

σ̇2∗ = ∂σ2∗/∂γ∗ respectively and let Dp be the duplication matrix as defined by Magnus

and Neudecker (1988). Then we define

W1∗ ≡ diag
[

Σ−1(θ∗), 2
−1D′

p(Σ
−1(θ∗) ⊗ Σ−1(θ∗))Dp

]

W2∗ ≡ diag
[

Σ−1(γ∗), 2
−1D′

p(Σ
−1(γ∗) ⊗ Σ−1(γ∗))Dp

]

U1 ≡ W1∗ − W1∗σ̇1∗(σ̇
′

1∗
W1∗σ̇1∗)

−1σ̇′

1∗
W1∗

U2 ≡ W2∗ − W2∗σ̇2∗(σ̇
′

2∗
W2∗σ̇2∗)

−1σ̇′

2∗
W2∗

Then it can be shown (e.g., Li & Bentler, 2006; Yuan & Marshall 2004) that under the

population drift assumption (8) and (9),

AE(TML 12) = NF12 + tr(U2Γ) − tr(U1Γ). (13)

When normality is assumed also, this reduces to

AE(TML 12) = NF12 + df12 (14)

Combining (12), (13), (14) and Corollary 1, we obtain the following Corollary,

Corollary 2. Under standard regularity conditions as in Yuan and Bentler (1997),

√
n

(

F̂12 − F12 −
d2

n
+

d1

n

)

L−→ N(0, 4ω2)

if ω2 6= 0 or equivalently if F12 6= 0 when two models are nested. Under the population drift

assumption, this reduces to

√
n

(

F̂12 − F12 −
tr(U2Γ)

n
+

tr(U1Γ)

n

)

L−→ N(0, 4ω2)

When normality is assumed also, it reduces to

√
n

(

F̂12 − F12 −
df2

n
+

df1

n

)

L−→ N(0, 4ω2)

12



Notice that Corollary 2 has no conflict with Corollary 1 because the extra terms d1/n,

d2/n, tr(U1Γ)/n, tr(U2Γ)/n, df1/n and df2/n in Corollary 2 approach zero as n goes to

infinity.

In the last section, we proposed R12 as another measure of model close match. Following

the sample RMSEA definition in SEM, we define a sample estimate of R12,

R̂12 =

√

√

√

√max

(

F̂12 −
df2

n
+

df1

n
, 0

)

and also define a relatively robust one by Corollary 2, that is,

R̃12 =

√

√

√

√max

(

F̂12 −
tr(Û2Γ̂)

n
+

tr(Û1Γ̂)

n
, 0

)

.

where Γ̂ is the consistent estimator of Γ (e.g., Bentler, 2006), and Û1 and Û2 are consistent

estimators of U1 and U2 obtained by replacing θ∗ and γ∗ by θ̂ML and γ̂ML respectively. Then

by Corollary 1 and the Delta method, we obtain the following corollary.

Corollary 3. Given ω2 6= 0 or equivalently if F12 6= 0 when two models are nested, then

under some standard regularity conditions as in Yuan and Bentler (1997)

√
n

(

R̂12 − R12

)

L−→ N

(

0,
ω2

F12

)

and

√
n

(

R̃12 − R12

)

L−→ N

(

0,
ω2

F12

)

Proof.

√
n

(

R̂12 − R12

)

a
=

√
n

(√

F̂12 −
√

F12

)

L−→ N

(

0,
ω2

F12

)

(Delta method)

The distribution of R̃12 can be proved in the same way.

Now let us plug θ̂ML and γ̂ML into (10). Then we obtain an consistent estimator of ω2,

that is,

ω̂2 =
1

n

n
∑

i=1

[

log

[

f(Xi; θ̂ML)

f(Xi; γ̂ML)

]]2

−
[

1

n

n
∑

i=1

[

log
f(Xi; θ̂ML)

f(Xi; γ̂ML)

]]2

. (15)

Yuan, Hayashi and Bentler (2007) further derived an explicit form for ω2 under various

conditions and gave the corresponding estimators. Although their work is valuable, our

13



preliminary results from a simulation study of normal data show that there is no big difference

in performance between their estimators and ω̂2 in (15). More importantly, their estimators

are limited to single group mean and covariance structure analysis and are not as general as

ω̂2. So, in this article, we use ω̂2 for the tests that follow.

5. Tests of model close match

In section 3, we proposed the null hypothesis H0 : F12 ≤ δC against its alternative

H1 : F12 > δC as the way to test model close match. Suppose now for two nested models,

H0 is true and TML 12

L−→ χ2
df12

(NF12), then Pr{TML 12 > χ2
df12,.95(NδC)} is asymptotically

no more than .05. So a test of close match can be proposed as follow: reject H0 in favor of

H1 if TML 12 is greater than χ2
df12,.95(NδC). Otherwise, H0 can not be rejected.

The last section gave some asymptotic results for F̂12, and a consistent estimator of ω2

was given in (15). Based on these results, we propose two test statistics for model close

match. The first is Yuan-Hayashi-Bentler test statistic (T1), which is

T1 =

√
n

(

F̂12 − δC − df2/n + df1/n
)

2ω̂

as well as a robust version of Yuan-Hayashi-Bentler test statistic2 (T2), which is

T2 =

√
n

(

F̂12 − δC − tr(Û2Γ̂)/n + tr(Û1Γ̂)/n
)

2ω̂

Corollary 4. Given ω2 6= 0 or equivalently F12 6= 0 when two models are nested, then

under some standard regularity conditions as in Yuan and Bentler (1997)

T1

a
= T2

L−→ N(
√

nδ1, 1) where δ1 =
F12 − δC

2ω

and

1. When F12 = δC , then δ1 = 0 and T1

a
= T2

L−→ N(0, 1).

2
U1 and U2 defined in this article and used for T2 is not equal to and less general than U1 and U2 defined

by Yuan, Hayashi & Bentler (2007). However, when the population drift assumption holds, two types of
terms are equivalent, and T2 and its counterpart in Yuan, Hayashi & Bentler (2007) should perform closely.
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2. When F12 > δC , then δ1 > 0 and T1

a
= T2 −→ +∞ as n −→ +∞.

3. When F12 < δC , then δ1 < 0 and T1

a
= T2 −→ −∞ as n −→ +∞.

Let λ.95 be 95 percent quantile of the standard normal distribution, then Pr{T1 or T2 >

λ.95} is asymptotically no more than .05 under H0. Clearly, T1 and T2 can be used to test

H0 in (2). For each of them, H0 will be rejected if it is greater than λ.95. Otherwise, H0 can

not be rejected.

In last section, we also get some results for R̂12 and R̃12. So by Corollary 3, we define a

test statistic T3 for testing H0 in (7) that is equivalent to H0 in (2), which is

T3 =

√
n

(

R̂12 −
√

δC

)

ω̂
/

√

F̂12 − df2/n + df1/n

and a relatively robust version, T4, which is

T4 =

√
n

(

R̃12 −
√

δC

)

ω̂
/

√

F̂12 − df2/n + df1/n

Let ĉ = (tr(Û2Γ̂) − tr(Û1Γ̂) − df2 + df1)/n. Following Li and Bentler (2006), we further

define another two robust test statistics T5 and T6 as

T5 =

√
n

(

R̃12 −
√

δC

)

√
ω̂2 − ĉ

/

√

F̂12 − df2/n + df1/n + ĉ

and

T6 =

√
n

(

R̃12 −
√

δC

)

√
ω̂2 − 2.5 · ĉ

/

√

F̂12 − df2/n + df1/n + ĉ

Clearly, ĉ is an estimator of c0 = (tr(U2Γ) − tr(U1Γ) − df2 + df1)/n and converges to c0

in the order of Op(n
−3/2). When the data is normal, c0 is equal to zero and ĉ will converge

to zero in the order of Op(n
−3/2). So in this condition, T3, T4, T5 and T6 should have similar

performance. When the data is nonnormal, c0 and thus ĉ carry information on nonnormality

of the data. So compared to T3, T4 has a correction in the numerator while T5 and T6 have

a correction both in numerator and denominator. Even though such corrections should not

matter asymptotically, they may make a difference in performance with small samples.
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Another point which should be mentioned here is that when two models are nested, one

or several quantities among F̂12−df2/n+df1/n, F̂12−df2/n+df1/n+ ĉ, ω̂2− ĉ and ω̂2−2.5 · ĉ

can be less than or equal to zero especially in a small sample. Then the corresponding test

statistics T3, T4, T5 or T6 will be undefined respectively. So during the simulations below,

replications with such a problem will be discarded.

Corollary 5. Given ω2 6= 0 or equivalently if F12 6= 0 when two models are nested, then

under some standard regularity conditions as in Yuan and Bentler (1997)

T3

a
= T4

a
= T5

a
= T6

L−→ N(
√

nδ2, 1) where δ2 =
F12 −

√
F12 · δC

ω

and

1. When R12 =
√

δC , then δ2 = 0 and T3

a
= T4

a
= T5

a
= T6

L−→ N(0, 1).

2. When R12 >
√

δC , then δ2 > 0 and T3

a
= T4

a
= T5

a
= T6 −→ +∞ as n −→ +∞.

3. When R12 <
√

δC , then δ2 < 0 and T3

a
= T4

a
= T5

a
= T6 −→ −∞ as n −→ +∞.

Clearly, after a rejection of exact match, like T1 and T2 discussed before, T3, T4, T5 or T6

also can be used to test the null hypothesis of close match H0 in (7). H0 will be rejected for

each statistic if its estimate is greater than λ.95. Otherwise, it can not be rejected.

Corollary 6. Under H1 : F12 > δC and some standard regularity conditions as in Yuan

and Bentler (1997), then T3, T4, T5 and T6 have more asymptotic power than T1 and T2 to

reject the null hypothesis of model close match.

Proof. By Corollary 4 and 5,

T1

a
= T2

L−→ N(
√

nδ1, 1) T3

a
= T4

a
= T5

a
= T6

L−→ N(
√

nδ2, 1)

where

δ1 =
F12 − δC

2ω
=

√
F12 −

√
δC

ω
·
√

F12 +
√

δC

2
, δ2 =

F12 −
√

F12 · δC

ω
=

√
F12 −

√
δC

ω
·
√

F12

Clearly, (
√

F12 +
√

δC)/2 <
√

F12 and thus δ1 < δ2 under H1.

6. Examples
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To evaluate whether the seven proposed statistics in the previous section are reliable

tools for testing H0 : F12 ≤ δC , we first look at the asymptotic approximation and one-sided

type I errors of these statistics when F12 = δC . It is hard to manipulate the level of F12 to a

specific value δC such as the suggested cutoff value δC,df2,0.03. So in our two examples below,

we first set δC = F12 for all statistics since F12 is known in a simulation study. Thus, for each

statistic, a desirable approximation to its theoretical distribution and a desirable rejection

rate close to .05 across conditions will suggest it as a reliable close match test. Otherwise, it

should not be used. After this first step, we set δC = δC,df2,0.03 in each statistics. Then we can

examine the acceptance or rejection performance of our statistics when F12 < δC = δC,df2,0.03

or F12 > δC = δC,df2,0.03. Since only our second example has both a comparison pair with

F12 < δC,df2,0.03 and a pair with F12 > δC,df2,0.03 (see the comparison pairs used below),

and thus may have a differential performance for the statistics across pairs, we present the

performance of our statistics only for the second example.

We generated normal, mild nonnormal and severe nonnormal data for each of our exam-

ples. In the mild nonnormal condition, the skewness and kurtosis of each observed variable

is set to 1.0 and 3.0 during data generation. In the severe nonnormal condition, they are set

to 2.0 and 7.0. For all examples, the sample size levels are set to 150, 300, 500 and 1000. So

there are 3 × 4 = 12 data conditions for each example. The number of replications is set to

2000 under each data condition.

The whole data generation and model fitting were conducted by using EQS 6.1 (Bentler,

2006). In addition, we specified SE=OBS during the analysis. Thus, the term ( ˆ̇σ∗

′

Ŵ∗
ˆ̇σ∗),

the Fisher information estimator, in Û1 and Û2 is replaced by the estimator of the Hessian

or observed information matrix.

Example 1: Unwanted Paths. The example in section 3 is our first example. It contains

some unwanted paths, which occurs frequently in SEM practice. For simulation, the popu-

lation covariance matrix is generated from the model in section 3 and the replications are

generated under each of 12 data conditions. Then different specifications are fitted to each

replication. For this example, we only study the performance of the comparison pairs on the

diagonal line of Table A. For all these pairs, we set δC = F12 in all statistics as mentioned
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before. Then the rejection rates of all statistics for Specification 1 vs. 2, Specification 2 vs.

3 and Specification 3 vs. 4 are presented in Table 1A-1C, Table 2A-2C and Table 3A-3C

respectively. In addition, as to Specification 1 vs. 2, in Figures 2 and 3 we also present

the QQ-plots of T1 to T6 against N(0, 1) with n = 150 for normal and severe nonnormal

data respectively.3 As we mentioned before, T3, T4, T5 and T6 can be undefined if some

elements in the denominators of their definitions are less than or equal to zero, and then

will be discarded from the analysis. We put the number of undefined replications on the

corresponding QQ-plots in Figures 2 and 3 as well as in parenthesis after the rejection rates

in each cell of the tables.

In Table 1A, under the normal condition, TML 12 performs well across the sample sizes.

However, in Tables 1B and 1C, across the sample sizes, the inflation of the rejection rates

of TML 12 increases as the nonnormality of the data increases. Its performance is poor,

especially with severe nonnormal data. In Figures 2 and 3, the QQ-plots of T1 and T2 show

that they have a poor normal approximation. In Table 1A-1C, T1 and T2 perform poorly

across all sample sizes. They overaccept in all conditions. In Figures 2 and 3, the QQ-plots

show that T3, T4, T5 and T6 are well approximated by N(0, 1) at the upper tail, while the

corresponding lower tails are not similarly well approximated. By examining all other QQ-

plots (which are not presented here), we find that such contrasting performance between the

upper and lower tails also occurs with T3, T4, T5 and T6 in all other comparison pairs in this

article when the sample sizes are small to medium and especially when the data is severely

nonnormal. Since the test of the hypothesis of close match is a one-sided test, the upper tail

approximation of the test statistics is crucial to test the hypothesis of close match. A reliable

upper tail convergence will be very valuable for testing purposes and could be considered

as the major criterion for validating the close match test statistics, especially with small or

medium samples where the overall performance of a statistic sometimes may not be good.

In Tables 1A-1C, T3, T4, T5 and T6 are undefined over ten percent of the time when n = 150.

Their failures increase as nonnormality increases, but failure reduces dramatically when n

3Since the number of data conditions for our two examples is too many to present here, we present Figures
2 and 3 for Example 1 only. The rest will be available upon request.
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increases to 300 for all data conditions. Their rejection performance is consistent across

the sample sizes in the three tables. The rejection rates are close to the target .05 for all

conditions, even though they, and especially T4, have a slight tendency to overaccept across

the tables.

The results on seven test statistics for Specification 2 vs. 3 in Tables 2A-2C, and Specifi-

cation 3 vs. 4 in Tables 3A-3C, are very similar. When the data is normal, TML 12 performs

well for Specification 2 vs. 3 and Specification 3 vs. 4 as long as the sample size is 150.

However, for both specification pairs, overrejections of the null hypothesis occurs for all

sample sizes as the nonnormality of the data increases. Its performance becomes especially

poor when the data is severely nonnormal. As before, T1 and T2 perform poorly across the

sample sizes in all six tables. With the same data, the rejection rates of T3, T4, T5 and T6

for Specification 2 vs. 3 and Specification 3 vs. 4 reach the target level of .05 more closely

than in Specification 1 vs. 2 in most conditions across the six tables. This may be due to

the increased F12 values of these two specification pairs (see Table A). Also in three tables of

each specification pair in this example, the number of undefined cases for the four statistics

generally decreases in the corresponding cells along three specification pairs. This also may

be due to the increased F12 values along these pairs.

Example 2: Model Uncertainty. In our previous example researchers may adopt our

close match based methods because they may have a strong a priori reason to favor a clean

structure and to reject unwanted paths in spite of the lack of support from exact match based

test statistics such as the NTLR test. However, perhaps a more typical situation occurs when

a researcher does not have a strong substantive preference for a specific model. In SEM

practice, there often may be many models that can be considered meaningful substantively

for a single data set. This is certainly true in exploratory factor analysis. For example, both

a two factor model and a three factor model may be interpretable for some psychological

data. Typically, the NTLR test will give support to the model with more parameters if

the extra factor in the three factor model can capture some extra characteristics of the

population. On the other hand, methods like AIC and BIC, due to their assigning a penalty

for more parameters in the model, sometimes may yield the opposite result. Similarly,

19



other indicators such as χ2/df ratio or various fit indices may indicate only a small distance

between the models. Even though these supplementary criteria are valuable, they are not

probabilistic criteria and hence they do not optimally allow inference on the discrepancy

between models in the population. As a remedy, our close match based test statistics are

probabilistic decision criteria like the traditional exact testing or NTLR tests. By their very

definition, like AIC and BIC, our close match approach already includes a tradeoff between

model goodness of fit and model parsimony.

In this example, we illustrate our close match approach to solving model uncertainty by

using an example from a TOEFL r© iBT test4 developed by the Educational Testing Service.

For this TOEFL r© iBT test, the variables in the original data (n=774) were grouped within

each of four test sections: Speaking, Writing, Reading and Listening. After some parceling,

there are 22 variables: six variables for Speaking, two variables for Writing, eight variables

for Reading and six variables for Listening. In the language assessment area, there is not

a consensus on the number of factors underlying data such as this. As a result, models

with a different number of factors have been hypothesized and studied (Bachman, Davidson,

Ryan, & Choi, 1995; Carroll, 1983; Hale, Rock, & Jirele, 1989; Kunnan, 1995; Swinton &

Powers, 1980). In our example, we focus on only three specifications. In Specification 1,

there are three factors: one factor is for all variables in the Speaking section, one factor

for all variables in the Writing section, and one factor for all variables in the Reading and

Listening section. In Specification 2, there are two factors: one factor is for all variables in

the Speaking section and another for all other variables in the test. In Specification 3, there

are also two factors: one factor is for all variables in the Speaking and Writing sections and

another for all variables in the Reading and Listening sections. In each specification above,

all factors are hypothesized to be correlated with each other.

In traditional simulation studies, the data is generated by a predefined true model, much

as we did in Example 1. In reality, a true model may not exist, or if it does, it may be

disturbed or distorted by many other sources. Thus many models can be closely fitted to

4TOEFL r© is a registered trademark of Educational Testing Service (ETS), which provided the data for
this study. This publication is not endorsed or approved by ETS.
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such a population. Hence, in this example we treat the sample covariance matrix of the

22 variables from the TOEFL r© iBT test data as the population matrix. We do not know

its true structure, but whatever its structure, normal, mild and severely nonnormal samples

with different sample sizes are generated from this matrix. The rationale behind this research

paradigm is that the sample is a representative of the population underlying the TOEFL r©

iBT test and the samples generated from the sample covariance matrix actually represent

something like parametric bootstrap-like samples. Then, as in typical bootstrap analysis,

fitting the three specifications in last paragraph to the sample and the obtained bootstrap-

like samples mimics the fitting to the unknown population and its many possible samples.

However, unlike the bootstrap, we are able to control the distribution of the variables in our

samples.

These three specifications have 206, 208, and 208 degrees of freedoms, respectively, and

their population RMSEAs are .061, 0.067 and 0.072 respectively. By the widely-used cutoff

values for the population RMSEA, they all have some mild misspecifications. However, the

differences among these three true RMSEAs are minor. Presumably, the sample RMSEAs (or

other indices mentioned before) also will imply minor misspecification, and model uncertainty

will result if there is not a strong substantive preference for a particular parameterization.

Clearly, Specifications 2 and 3 are nested in Specification 1. We present the F12 and

R12 values of each nested pair in Table B. Although three specifications in terms of close

fit are not very distinguishable, in terms of F12 one could choose between models using our

cutoff value δC,df2,0.03 = .1872 in this case for model close match. Using that cutoff, the

difference between Specification 1 vs. 2 can be considered as minor while the difference

between Specification 1 vs. 3 is not ignorable. Although the Specification 1 will have a

better fit due to more parameters, the ignorable difference between Specifications 1 and 2

makes Specification 2 a good candidate to replace Specification 1, while the nonignorable

difference between Specification 1 and 3 would propose a rejection of Specification 3. Like

Example 1, we now examine how our proposed statistics would evaluate two nested pairs in

terms of type I error when confronted with a sample from this population. The simulation

results regarding these statistics are presented in Tables 4A-5C.
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One surprising result in Tables 4A-5C is that, in contrast to Example 1, TML 12 comparing

two nested pairs now performs poorly under both normal and nonnormal conditions. One

possible reason may be a violation of the population drift assumption in this example. As

before, T1 and T2 perform poorly most of the time in all six tables. When the data is normal

or mildly nonnormal, T3, T4, T5 and T6 have similar rejection patterns that are close to the

target one, even when n = 150. However, when the data is severely nonnormal, T3 still

performs very well at all sample sizes while T4 overaccepts the null hypothesis exclusively.

The performance of T5 and T6 under the severe nonnormality is somewhere between those

of T3 and T4. They are better than T4 but have some general tendency to overaccept.

So far, we set δC = F12 in all statistics for the specification pairs. As stated, in the next

step we set δC in all statistics to the cutoff value δC,df2,0.03 for two specification pairs in this

example and look at their acceptance or rejection performance. Let TML 12,0.03, T1,0.03, T2,0.03,

T3,0.03, T4,0.03, T5,0.03, and T6,0.03 denote the corresponding test statistics when δC is set to

δC,df2,0.03. Ideally, we expect the close match hypothesis to be always accepted or rejected,

i.e., hardly ever rejected or accepted, depending on if the F12 value of the specification pair

is less than or greater than δC,df2,0.03. The rejection rates of these statistics in the simulation

are presented in Tables 6A-6C (Specification 1 vs. 2) and Tables 7A-7C (Specification 1 vs.

3).

The results, shown in Tables 6A-7C, basically match our expectation. Overall, all statis-

tics intend to accept Specification 1 vs. 2 completely, while rejecting Specification 1 vs. 3

completely as n increases. Compared to the other six statistics, TML 12,0.03 performs poorly

for acceptance in Tables 6A-6C, while it does better for rejection in Tables 7A-7C. For Spec-

ification 1 vs. 2, T1,0.03 and T2,0.03 perform better than T3,0.03, T4,0.03, T5,0.03 and T6,0.03 in

general. But T3,0.03, T4,0.03, T5,0.03 and T6,0.03 have more power to reject than T1,0.03 and T2,0.03,

as expected when comparing Specification 1 vs. 3, although they reach rejection rates above

90% only in the normal condition with n = 1000.

7. Discussion

Our close match approach and proposed cutoff value and statistics provides a new ap-
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proach to model comparison. We believe that the methods provide an additional tool for

evaluating a preferred model which may be rejected by a traditional exact match based test.

In addition to avoiding limitations of the traditional exact match approach, they provide a

new alternative in SEM to such common model comparison methods as AIC, BIC, χ2/df

ratio and the difference between fit indices. Moreover, our idea of equi-discrepancy lines and

selection of the appropriate cutoff values for close match is also applicable to some other

theoretical issues such as power analysis (see MacCallum et al., 2006).

It is well known that simulation studies always have their limitations, and our study

is no exception. Based on our limited simulation results in two examples we found that

T3, T5 and T6 perform well in terms of type I error rates across different data conditions

when n is as large as 150. As to the power to reject, the simulation results are consistent

with Corollaries 3, 5 and 6, although sometimes a large sample size is needed to achieve

complete rejection (e.g., Tables 7A-7C). Our simulation results also show that our statistics

have a contrasting convergence performance on the lower and upper tails. Athough a good

convergence on the upper tail can justify our statistics for the close match testing purpose,

a poor convergence on the other tail may limit the application of our statistics to confidence

interval and power analysis especially when the sample size is small. In addition, for our

statistics and simulation, tr(U1Γ) and tr(U2Γ) instead of the more general terms d1 and d2

are used as the asymptotic bias. Although our examples show a desirable performance with

these bias terms, some further studies may need to check the performance of these statistics

with more general bias terms especially when the population drift assumption is violated.

One important point we want to emphasize again is that F12 = 0, i.e., model exact match,

must be rejected in order to appropriately use T3, T5 and T6 for comparing specification

pairs. Since in practice one does not know exactly whether this requirement is satisfied

or not, it makes sense that in a specific study one should first conduct some evaluation of

the exact match hypothesisis. Of course there are many possible tests for evaluating exact

match, including the NTLR test, LM test or Wald test under normality, or an asymptotically

distribution free test such as the Satorra-Bentler scaled difference test (Satorra, 2000; Satorra

& Bentler, 2001) or generalized score or Wald tests (Satorra, 1989). Thus we propose to use
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a sequential two-stage procedure for overall nested model comparison: accept the restricted

model if it satisfies an exact match test; or, accept the model if it is rejected by the exact

match test but still satisfies one of the close match tests such as T3,0.03, T5,0.03 and T6,0.03.

One potential problem of the two-stage procedure above is its significance level during

overall nested model comparison. Notice that H0 : F12 ≤ δC is a composite of HE
0

and

H0 − HE
0

. Let TE denote some reliable exact match test statistic such as the Satorra-

Bentler scaled difference test, and let TC denote some reliable close match test statistic such

as T3,0.03, T5,0.03 and T6,0.03. Further, let A ≡ { TE > χ2
df12,α} and B ≡ { TC > λα} .

Then Pr[reject H0|H0]=Pr[A ∩ B|H0] ≤max{ Pr(A ∩ B|HE
0

), Pr(A ∩ B|H0 − HE
0

)} ≤max{

Pr(A|HE
0

), Pr(B|H0−HE
0

)} . Let αE and αC be the asymptotic significance levels of TE and

TC respectively, then Pr(A|HE
0

) → αE and Pr(B|H0−HE
0

) → αC . So the significance level of

the two-stage strategy is asymptotically bounded above by the maximum of the asymptotic

significance levels αE and αC .

Our theory is based on likelihood ratio principles. The asymptotic bias terms tr(U1Γ)

and tr(U2Γ), which are widely used in the Satorra-Bentler procedure and our test statistics

in this article, are special cases of more general terms d1 and d2 based on the likelihood ratio

principle (see Li & Bentler, 2006). Given this result and the generality of the likelihood ratio,

it seems that our close match test statistics, and hence the two-stage procedure of nested

model comparison, may be extendable to a wide variety of situations in addition to our two

illustrated examples. Clearly, this would tremendously increase the scope of application of

the proposed methodology.

References

Bachman, L. F., Davidson, F., Ryan, K., & Choi, I-C. (1995). An investigation into the com-

parability of two tests of English as a foreign language. Cambridge, England: Cambridge

University Press.

Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin,

107, 238-246.

Bentler, P. M. (2006). EQS 6 structural equations program manual. Encino, CA: Multivariate

Software.

24



Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis

of covariance structures. Psychological Bulletin, 88, 588-606.

Bentler, P. M., & Mooijaart, A. (1989). Choice of structural model via parsimony: A

rationale based on precision. Psychological Bulletin, 106(2), 315-317.

Browne, M. W. (1984). Asymptotically distribution free methods for the analysis of covari-

ance structures. British Journal of Mathematical and statistical Psychology, 37, 62-83.

Browne, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A.

Bollen & J.S. Long (Eds.), Testing structural equation models (pp. 136-62). Newbury

Park, CA: Sage.

Browne, M. W., & du Toit, S. H. C. (1992). Automated fitting of nonstandard models.

Multivariate Behavioral Research, 27, 269-300.

Carroll, J. B. (1983). Psychometric theory and language testing. In J. W. Oller, Jr. (Ed.),

Issues in language testing research (pp. 80-107). Rowley, MA: Newbury House.

Chou, C.-P., & Bentler, P. M. (1990). Model modification in covariance structure modeling:

A comparison among likelihood ratio, Lagrange multiplier, and Wald tests. Multivariate

Behavioral Research, 25, 115-136.

Curran, P. J., Bollen, K. A., Chen, F., Paxton, P., & Kirby, J. (2003). The finite sampling

properties of the RMSEA: Point estimates and confidence intervals. Sociological Methods

and Research, 32, 208-252.

De Leeuw, J. (1988). Model selection in multinomial experiments. In T. K. Dijkstra (Ed.),

On model uncertainty and its statistical implications (pp. 118-138). Berlin: Springer.

Dijkstra, T. K. (1992). On statistical inference with parameter estimates on the boundary

of the parameter space. British Journal of Statistical and Mathematical Psychology, 45,

289-309.

Hale, G. A., Rock, D. A., & Jirele, T. (1989). Confirmatory factor analysis of the Test of

English as a Foreign Language (TOEFL Research Rep. No. RR-32; ETS RR-89-42).

Princeton, NJ: ETS.
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Jöreskog, K. G. (1993). Testing structural equation models. In K. A. Bollen & J. S. Long

(Eds.), Testing structural equation models (pp. 294-316). Newbury Park, CA: Sage.
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Figure 1. The equi-discrepancy lines with df1 = 85 and df2 = 86

Table A. F12 and R12 (in parenthesis) by specification pairs in the example

by Curran et al. (2003)

Specification of unrestricted model

Specification of Specification 1 Specification 2 Specification 3

restricted model (r10 = 0.000) (r10 = 0.021) (r10 = 0.031)

Specification 2 (r20 = 0.021) .0396(.199) - -

Specification 3 (r20 = 0.031) .0828(.288) .0431(.208) -

Specification 4 (r20 = 0.040) .1408(.375) .1012(.318) .0581(.241)

Table B. F12 and R12 (in parenthesis) by specification pairs in Example 2

Specification of Specification of unrestricted model

restricted model Specification 1 (r10 = 0.061)

Specification 2 (r20 = 0.067) .1598(.400)

Specification 3 (r20 = 0.072) .2933(.542)
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Figure 2. QQ plots of T1 to T6 against N(0, 1)

for Misspecification 1 vs. 2 under the normal condition with n = 150
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Figure 3. QQ plots of T1 to T6 against N(0, 1)

for Misspecification 1 vs. 2 under the severe nonnormal condition with n = 150
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Table 1A. Rejection rate of different statistics with α = .05

for Specification 1 vs. 2 in Example 1, normal condition, NR=2000

Sample Size 150 300 500 1000

TML 0.051 0.061 0.051 0.061

T1 0.011 0.021 0.022 0.026

T2 0.012 0.021 0.022 0.028

T3 0.040(203) 0.045(23) 0.037(1) 0.045(0)

T4 0.041(203) 0.045(23) 0.037(1) 0.045(0)

T5 0.040(201) 0.044(22) 0.037(1) 0.045(0)

T6 0.038(204) 0.045(22) 0.037(1) 0.045(0)

Table 1B. Rejection rate of different statistics with α = .05

for Specification 1 vs. 2 in Example 1, mild nonnormal condition, NR=2000

Sample Size 150 300 500 1000

TML 0.072 0.074 0.077 0.073

T1 0.011 0.016 0.017 0.021

T2 0.009 0.013 0.013 0.021

T3 0.042(220) 0.042(29) 0.037(5) 0.037(0)

T4 0.038(220) 0.037(29) 0.033(5) 0.035(0)

T5 0.040(202) 0.039(29) 0.034(3) 0.035(0)

T6 0.042(223) 0.041(31) 0.036(3) 0.036(0)

Table 1C. Rejection rate of different statistics with α = .05

for Specification 1 vs. 2 in Example 1, severe nonnormal condition, NR=2000

Sample Size 150 300 500 1000

TML 0.125 0.112 0.124 0.115

T1 0.013 0.013 0.014 0.019

T2 0.008 0.008 0.011 0.013

T3 0.054(283) 0.036(77) 0.044(8) 0.043(0)

T4 0.038(283) 0.028(77) 0.036(8) 0.037(0)

T5 0.044(242) 0.033(59) 0.039(2) 0.038(0)

T6 0.051(299) 0.036(76) 0.041(6) 0.039(0)
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Table 2A. Rejection rate of different statistics with α = .05

for Specification 2 vs. 3 in Example 1, normal condition, NR=2000

Sample Size 150 300 500 1000

TML 0.060 0.053 0.054 0.059

T1 0.013 0.015 0.021 0.029

T2 0.013 0.016 0.022 0.029

T3 0.045(135) 0.038(21) 0.040(1) 0.045(0)

T4 0.047(135) 0.037(21) 0.040(1) 0.045(0)

T5 0.046(134) 0.038(22) 0.040(1) 0.045(0)

T6 0.043(134) 0.038(22) 0.040(1) 0.045(0)

Table 2B. Rejection rate of different statistics with α = .05

for Specification 2 vs. 3 in Example 1, mild nonnormal condition, NR=2000

Sample Size 150 300 500 1000

TML 0.082 0.085 0.083 0.076

T1 0.008 0.018 0.026 0.029

T2 0.004 0.017 0.025 0.025

T3 0.050(170) 0.047(32) 0.052(4) 0.048(0)

T4 0.042(170) 0.043(32) 0.048(4) 0.045(0)

T5 0.047(165) 0.044(30) 0.051(4) 0.046(0)

T6 0.050(176) 0.047(31) 0.052(4) 0.048(0)

Table 2C. Rejection rate of different statistics with α = .05

for Specification 2 vs. 3 in Example 1, severe nonnormal condition, NR=2000

Sample Size 150 300 500 1000

TML 0.118 0.113 0.11 0.118

T1 0.012 0.012 0.015 0.026

T2 0.006 0.006 0.009 0.020

T3 0.053(271) 0.041(64) 0.037(13) 0.05(0)

T4 0.037(271) 0.030(64) 0.032(13) 0.043(0)

T5 0.045(231) 0.034(47) 0.035(6) 0.046(0)

T6 0.053(298) 0.040(58) 0.036(10) 0.048(0)
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Table 3A. Rejection rate of different statistics with α = .05

for Specification 3 vs. 4 in Example 1, normal condition, NR=2000

Sample Size 150 300 500 1000

TML 0.053 0.056 0.054 0.046

T1 0.016 0.024 0.026 0.026

T2 0.017 0.025 0.026 0.026

T3 0.039(67) 0.043(2) 0.042(0) 0.036(0)

T4 0.039(67) 0.044(2) 0.041(0) 0.037(0)

T5 0.039(64) 0.043(2) 0.041(0) 0.036(0)

T6 0.039(66) 0.043(2) 0.041(0) 0.036(0)

Table 3B. Rejection rate of different statistics with α = .05

for Specification 3 vs. 4 in Example 1, mild nonnormal condition, NR=2000

Sample Size 150 300 500 1000

TML 0.07 0.079 0.073 0.075

T1 0.018 0.028 0.027 0.030

T2 0.015 0.021 0.021 0.028

T3 0.047(83) 0.056(3) 0.045(0) 0.048(0)

T4 0.040(83) 0.049(3) 0.043(0) 0.041(0)

T5 0.044(83) 0.051(3) 0.043(0) 0.041(0)

T6 0.046(88) 0.055(3) 0.045(0) 0.043(0)

Table 3C. Rejection rate of different statistics with α = .05

for Specification 3 vs. 4 in Example 1, severe nonnormal condition, NR=2000

Sample Size 150 300 500 1000

TML 0.119 0.122 0.111 0.117

T1 0.020 0.023 0.022 0.026

T2 0.013 0.013 0.013 0.021

T3 0.056(156) 0.056(17) 0.048(0) 0.048(0)

T4 0.039(156) 0.040(17) 0.036(0) 0.039(0)

T5 0.046(146) 0.050(12) 0.040(0) 0.042(0)

T6 0.054(173) 0.054(15) 0.044(0) 0.044(0)

34



Table 4A. Rejection rate of different statistics with α = .05

for Specification 1 vs. 2 in Example 2, normal condition, NR=2000

Sample Size 150 300 500 1000

TML 0.068 0.069 0.067 0.073

T1 0.032 0.024 0.025 0.039

T2 0.031 0.024 0.026 0.037

T3 0.051(3) 0.044(0) 0.043(0) 0.054(0)

T4 0.049(3) 0.043(0) 0.041(0) 0.053(0)

T5 0.050(2) 0.044(0) 0.042(0) 0.053(0)

T6 0.050(2) 0.043(0) 0.042(0) 0.054(0)

Table 4B. Rejection rate of different statistics with α = .05

for Specification 1 vs. 2 in Example 2, mild nonnormal condition, NR=2000

Sample Size 150 300 500 1000

TML 0.099 0.09 0.1 0.098

T1 0.025 0.022 0.036 0.036

T2 0.015 0.015 0.029 0.034

T3 0.052(3) 0.042(0) 0.054(0) 0.048(0)

T4 0.041(3) 0.032(0) 0.046(0) 0.044(0)

T5 0.047(2) 0.035(0) 0.047(0) 0.045(0)

T6 0.05(2) 0.037(0) 0.049(0) 0.045(0)

Table 4C. Rejection rate of different statistics with α = .05

for Specification 1 vs. 2 in Example 2, severe nonnormal condition, NR=2000

Sample Size 150 300 500 1000

TML 0.146 0.162 0.142 0.149

T1 0.025 0.027 0.029 0.03

T2 0.01 0.013 0.017 0.022

T3 0.054(10) 0.053(0) 0.045(0) 0.045(0)

T4 0.031(10) 0.035(0) 0.032(0) 0.032(0)

T5 0.036(9) 0.041(0) 0.035(0) 0.034(0)

T6 0.042(15) 0.044(0) 0.036(0) 0.035(0)
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Table 5A. Rejection rate of different statistics with α = .05

for Specification 1 vs. 3 in Example 2, normal condition, NR=2000

Sample Size 150 300 500 1000

TML 0.077 0.074 0.069 0.065

T1 0.029 0.037 0.034 0.040

T2 0.029 0.037 0.034 0.040

T3 0.051(0) 0.050(0) 0.045(0) 0.048(0)

T4 0.048(0) 0.049(0) 0.045(0) 0.048(0)

T5 0.050(0) 0.049(0) 0.045(0) 0.048(0)

T6 0.050(0) 0.049(0) 0.045(0) 0.048(0)

Table 5B. Rejection rate of different statistics with α = .05

for Specification 1 vs. 3 in Example 2, mild nonnormal condition, NR=2000

Sample Size 150 300 500 1000

TML 0.095 0.09 0.092 0.101

T1 0.034 0.029 0.033 0.036

T2 0.025 0.022 0.026 0.029

T3 0.052(0) 0.046(0) 0.044(0) 0.048(0)

T4 0.042(0) 0.035(0) 0.038(0) 0.041(0)

T5 0.045(0) 0.038(0) 0.039(0) 0.041(0)

T6 0.047(0) 0.04(0) 0.04(0) 0.042(0)

Table 5C. Rejection rate of different statistics with α = .05

for Specification 1 vs. 3 in Example 2, severe nonnormal condition, NR=2000

Sample Size 150 300 500 1000

TML 0.14 0.148 0.133 0.153

T1 0.028 0.037 0.034 0.035

T2 0.013 0.021 0.018 0.022

T3 0.052(0) 0.058(0) 0.047(0) 0.046(0)

T4 0.026(0) 0.033(0) 0.035(0) 0.034(0)

T5 0.033(0) 0.04(0) 0.036(0) 0.037(0)

T6 0.038(0) 0.044(0) 0.036(0) 0.037(0)
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Table 6A. Rejection rate of TML,0.03, T1,0.03 to T6,0.03

for Specification 1 vs. 2 in Example 2, normal condition, NR=2000

Sample Size 150 300 500 1000

TML,0.03 0.039 0.017 0.013 0.009

T1,0.03 0.015 0.007 0.005 0.002

T2,0.03 0.013 0.006 0.004 0.002

T3,0.03 0.026(3) 0.013(0) 0.008(0) 0.003(0)

T4,0.03 0.025(3) 0.013(0) 0.008(0) 0.003(0)

T5,0.03 0.025(2) 0.012(0) 0.008(0) 0.003(0)

T6,0.03 0.025(2) 0.012(0) 0.008(0) 0.003(0)

Table 6B. Rejection rate of TML,0.03, T1,0.03 to T6,0.03

for Specification 1 vs. 2 in Example 2, mild nonnormal condition, NR=2000

Sample Size 150 300 500 1000

TML,0.03 0.056 0.037 0.036 0.021

T1,0.03 0.011 0.007 0.009 0.004

T2,0.03 0.006 0.005 0.007 0.003

T3,0.03 0.026(3) 0.013(0) 0.015(0) 0.006(0)

T4,0.03 0.016(3) 0.009(0) 0.012(0) 0.004(0)

T5,0.03 0.018(2) 0.009(0) 0.013(0) 0.005(0)

T6,0.03 0.021(2) 0.01(0) 0.013(0) 0.005(0)

Table 6C. Rejection rate of TML,0.03, T1,0.03 to T6,0.03

for Specification 1 vs. 2 in Example 2, severe nonnormal condition, NR=2000

Sample Size 150 300 500 1000

TML,0.03 0.092 0.093 0.052 0.043

T1,0.03 0.014 0.014 0.005 0.006

T2,0.03 0.004 0.004 0.004 0.004

T3,0.03 0.031(10) 0.023(0) 0.013(0) 0.009(0)

T4,0.03 0.015(10) 0.012(0) 0.007(0) 0.006(0)

T5,0.03 0.02(9) 0.017(0) 0.007(0) 0.007(0)

T6,0.03 0.024(15) 0.018(0) 0.007(0) 0.007(0)
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Table 7A. Rejection rate of TML,0.03, T1,0.03 to T6,0.03

for Specification 1 vs. 3 in Example 2, normal condition, NR=2000

Sample Size 150 300 500 1000

TML,0.03 0.389 0.568 0.762 0.946

T1,0.03 0.215 0.415 0.617 0.893

T2,0.03 0.216 0.411 0.616 0.892

T3,0.03 0.312(0) 0.488(0) 0.677(0) 0.915(0)

T4,0.03 0.305(0) 0.485(0) 0.675(0) 0.914(0)

T5,0.03 0.307(0) 0.486(0) 0.676(0) 0.914(0)

T6,0.03 0.309(0) 0.486(0) 0.677(0) 0.914(0)

Table 7B. Rejection rate of TML,0.03, T1,0.03 to T6,0.03

for Specification 1 vs. 3 in Example 2, mild nonnormal condition, NR=2000

Sample Size 150 300 500 1000

TML,0.03 0.415 0.566 0.723 0.918

T1,0.03 0.193 0.343 0.538 0.834

T2,0.03 0.154 0.311 0.515 0.824

T3,0.03 0.283(0) 0.427(0) 0.607(0) 0.858(0)

T4,0.03 0.249(0) 0.402(0) 0.589(0) 0.85(0)

T5,0.03 0.261(0) 0.41(0) 0.591(0) 0.851(0)

T6,0.03 0.269(0) 0.416(0) 0.593(0) 0.852(0)

Table 7C. Rejection rate of TML,0.03, T1,0.03 to T6,0.03

for Specification 1 vs. 3 in Example 2, severe nonnormal condition, NR=2000

Sample Size 150 300 500 1000

TML,0.03 0.42 0.554 0.692 0.877

T1,0.03 0.151 0.267 0.397 0.675

T2,0.03 0.088 0.199 0.34 0.644

T3,0.03 0.245(0) 0.353(0) 0.489(0) 0.723(0)

T4,0.03 0.174(0) 0.296(0) 0.435(0) 0.7(0)

T5,0.03 0.201(0) 0.312(0) 0.453(0) 0.704(0)

T6,0.03 0.213(0) 0.319(0) 0.46(0) 0.708(0)
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