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Abstract 
 

Large-Scale Neuronal Network Changes Underlying Neuroprosthetic Learning 
 

By 
 

Aaron Christopher Koralek 
 

Doctor of Philosophy in Neuroscience 
 

Designated Emphasis in Computational Science and Engineering 
 

University of California, Berkeley 
 

Professor Jose M. Carmena, Chair 
 

 
 
Research on brain-machine interface (BMI) systems has flourished in recent years, with 
motor BMIs showing great promise as a therapeutic option for patients suffering from 
limb loss or immobility.  In addition to this direct clinical application, BMI tasks also 
serve as a powerful research tool, in that they enable the researcher to directly define 
which cells are relevant for behavioral output and the ways in which activity in these 
cells affects the external world.  Neuroprosthetic tasks also serve as a completely novel 
motor-like learning paradigm for subjects, as they invoke the motor system but do not 
involve natural body movements or muscle activity.  Intriguingly, a large body of work 
has nevertheless suggested striking similarities between natural motor learning and 
neuroprosthetic learning, implying that the two forms of learning may share common 
neural mechanisms. 
 
We developed a novel rodent paradigm to study neuroprosthetic learning in which 
rodents controlled a one-dimensional auditory cursor by modulating activity in primary 
motor cortex (M1) in order to hit one of two targets.  We first use this paradigm to 
explore corticostriatal representations of neuroprosthetic skills, the ways in which these 
representations change over the course of learning, and the necessity of plasticity in the 
corticostriatal network for abstract learning.  We then investigate fine-scale temporal 
coordination between M1 and the dorsal striatum over the course of neuroprosthetic 
learning, demonstrating the development of coherent interactions between M1 spikes 
and the striatal local field potential with high temporal precision.  Importantly, we found 
these interactions to be specifically present in output-relevant neurons, despite close 
proximity to other neuronal populations.  Finally, we modified this behavioral paradigm 
for use in conjunction with two-photon calcium imaging in head-fixed mice to examine 
the fine-scale spatial characteristics of network adaptations during neuroprosthetic 
learning.  We demonstrate the development of coordinated network activity and the 
sparsening of task-relevant modulations over the course of learning.  This novel 
imaging-based BMI paradigm also allows for a number of new techniques to now be 
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applied to research on neuroprosthetic learning.  Together, these data suggest striking 
similarities between BMI and natural motor learning, demonstrating an important 
computational role for corticostriatal plasticity, neuronal coherence, and sparsening of 
cortical representations over the course of neuroprosthetic learning. 
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Chapter 1: 
 
Introduction 
 
In recent years, it has become possible to directly connect machines with the brain.  
Such brain-machine interfaces (BMIs) manifest in a number of forms, with many BMIs 
aimed at restoring lost motor function and others aimed at restoring lost sensory 
function.  For example, electrical stimulation is used in the case of cochlear implants or 
deep brain stimulation to restore functionally relevant activity in damaged neural 
pathways (Chopra et al., 2013; van Schoonhoven et al., 2013).  In the case of motor 
neuroprostheses, recorded neural activity is entered into a decoding algorithm and used 
to directly control disembodied actuators in real-time, helping to restore motor function 
in patients suffering from limb loss or immobility (Fetz, 2007; Serruya et al., 2002; Taylor 
et al., 2002; Carmena et al., 2003).  Recent work has demonstrated the utility of 
neuroprostheses for restoring movement in paralyzed human patients (Hochberg et al., 
2006; Colinger et al., 2012), providing exciting prospects for clinical applications of this 
technology in humans in the future. 
 
Importantly, a large body of work has recently demonstrated that BMI is not simply 
based on replacing dysfunctional neural circuits with an exact artificial replica, but rather 
involves a profound learning and adaptation process with striking similarities to natural 
learning (Green & Kalaska, 2011; Ganguly & Carmena, 2009).  In addition to important 
clinical implications, such a view of BMI also suggests that neuroprosthetic tasks can be 
used as a research tool to study general neural mechanisms underlying learning from a 
unique perspective (Ganguly et al., 2011).   
 
This dissertation focuses on BMIs aimed at restoring motor function in patients suffering 
from limb loss or immobility, and particularly on large-scale neuronal network changes 
that underlie the learning of neuroprosthetic skills.  We begin this chapter with a review 
of motor BMIs, the ways in which such systems can be used as a unique research tool, 
and the similarities of BMI systems with the natural motor system.  We then provide an 
overview of the chapters to come. 
 
 
1.1 Motor brain-machine interface systems 
 
Even when restricted to the motor realm, BMI systems span a wide range of 
manifestations.  In general, most motor BMIs share a common closed-loop architecture 
(Figure 1.1).  Recorded neural activity is entered into an online decoding algorithm that 
transforms that activity directly into movement of a disembodied actuator, which can 
take a number of forms.  Sensory feedback is then supplied to subjects to facilitate 
learning and improve performance with the actuator.  Apart from this general control 
loop, however, motor BMIs vary greatly. 
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One way in which motor BMIs differ is the choice of the control signal.  Many potential 
signals exist for use in BMI, with an initial distinction between invasive and noninvasive 
methods.  Noninvasive BMIs have been demonstrated using electroencephalography 
(Pascual et al., 2012) and even functional magnetic resonance imaging (Shen et al., 
2014).  However, noninvasive recording methods offer poor spatial and temporal 
resolution relative to invasive recording techniques, and there is therefore a limit on the 
complexity of behavioral performance that these control signals can support.  Invasive 
methods, on the other hand, offer superior spatiotemporal resolution, but require 
surgery before they can be used.  Invasive BMIs have been demonstrated using 
electrocorticography (Ganguly et al., 2009; Ledochowitsch et al., 2013), but the vast 
majority of BMI work has been performed with chronically-implanted arrays of 
penetrating electrodes (Serruya et al., 2002; Taylor et al., 2002; Carmena et al., 2003; 
Ganguly & Carmena, 2009).  Penetrating electrodes can record single-unit activity, 
multi-unit activity, or local field potentials (LFPs), all of which can potentially be used for 
neuroprosthetic control (Carmena et al., 2003; Orsborn et al., 2012; So et al., 2014).  All 
of these methods have been demonstrated to provide some level of skillful control when 
used in BMI, but array recordings continue to be the most commonly used technique.  In 
addition, recordings can theoretically be taken from any region of the brain, although 
they are most often performed in primary motor cortex (M1). 
 

 
 
Motor BMIs also differ in the choice of decoding algorithm.  A major distinction here is 
between biomimetic and non-biomimetic decoders (Koyama et al., 2010; Ganguly & 

Figure 1.1 Schematic demonstrating 
the general architecture for BMI tasks.  
Neural activity is recorded and entered 
into a decoding algorithm that directly 
translates that activity into movement 
of an actuator.  Sensory feedback is 
supplied to subjects to facilitate 
learning.  A wide range of recording 
methods and neural signals can be 
used as the control signal. 
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Carmena, 2010; Cunningham et al., 2011).  Biomimetic decoders attempt to mimic the 
brain’s normal motor coding strategy.  Subjects are therefore often asked to perform a 
natural motor task with their body while the researchers record neural activity, and the 
weights of the decoder are then trained based on these natural movements.  Non-
biomimetic decoders, on the other hand, do not attempt to have any relation to natural 
movements and instead require subjects to learn arbitrary mappings between neural 
activity and behavioral output.  While biomimetic decoders intuitively seem far superior, 
our current lack of understanding of the brain’s natural coding strategy makes them 
fairly difficult to implement effectively and they therefore have not been demonstrated to 
currently offer superior control relative to non-biomimetic decoders (Orsborn et al., 
2012). 
 
Finally, motor BMIs often differ in the choice of external actuator.  Researchers have 
used neural activity to control the motion of virtual objects (Serruya et al., 2002; Taylor 
et al., 2002; Carmena et al., 2003; Dangi et al., 2013), auditory tones (Koralek et al., 
2013), wheelchairs (Millan et al., 2009), robotic limbs (Hochberg et al., 2006; Collinger 
et al., 2012), and even the user’s own body with closed-loop muscular stimulation 
(Ethier et al., 2012).  In all cases, modulations in neural activity are directly translated 
into a consistent movement of the external device, but the specifics of that external 
device are determined by the specific research goal. 
 
 
1.1.1 BMI as a research tool 
 
In addition to the direct neurological applications discussed above, BMI has proven to 
be a powerful tool for investigating general neuronal mechanisms of learning (Green & 
Kalaska, 2011; Ganguly & Carmena, 2009; Koralek et al., 2012).  During BMI learning, 
the researcher can directly define which cells are entered into the decoding algorithm, 
and therefore which cells are relevant for behavioral output.  Thus, the task-relevant 
neuronal population is clearly defined.  In the case of natural motor tasks, vast networks 
of neurons play a direct role in performance, and the entire network cannot be identified, 
nor can the entire network be recorded with current neural recording technologies.  
Importantly, the definition of the relationship between neural activity and behavioral 
output in BMI tasks often results in neighboring neurons displaying vastly different 
functional roles in the network, thereby enabling researchers to determine neural 
changes that are strictly related to task learning and performance.  In the natural 
system, neighboring neurons often have similar functional roles, making network effects 
far more difficult to disentangle. 
 
In addition, through even minor changes in the decoder weights, the researcher can 
define the precise ways in which neural activity in this output-relevant neuronal 
population affects behavioral output.  This allows researchers to investigate how 
neuronal networks adapt in response to changes in their functional properties in ways 
that would be completely impossible with natural motor tasks.   
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BMI work to date has used such manipulations to demonstrate striking network 
reorganization while animals adapt to perturbations in the decoder weights (Jarosiewicz 
et al., 2008).  Past work has also used neuroprosthetic tasks to demonstrate highly-
specific functional changes in output-relevant neuronal populations (Ganguly et al., 
2011).  Together, this body of work has capitalized on neuroprosthetic tasks to elucidate 
network mechanisms that underlie behavioral improvement over the course of skill 
learning. 
 
1.2 Similarities with natural motor learning 
 
Intriguingly, a growing body of work has demonstrated striking similarities between 
natural motor learning and neuroprosthetic learning (Green & Kalaska, 2011).  Pivotal 
work in primates demonstrated clear functional reorganization of spike patterns in M1 
during the early stages of BMI learning, followed by stabilization of these firing patterns 
as animals become skilled at neuroprosthetic control (Ganguly & Carmena, 2009).  In 
this work, the decoder was calibrated based on natural arm movements, and therefore 
the a priori optimal strategy for task performance would be to simply recapitulate the 
neural patterns that occurred during natural movement.  However, this is not what the 
researchers observed.  Instead, the brain appears to adapt to the dynamics of the task 
that are imposed by the decoder and produce novel firing patterns, just as the brain 
adapts to novel dynamics in natural motor tasks.  As the animal becomes skilled at the 
task, neuronal firing patterns then stabilize and become reproducible from trial to trial for 
the remaining days of training.  This is analogous to work on natural motor learning 
showing network plasticity in the early stages of skill acquisition followed by stabilization 
in later learning (Xu et al., 2009), as well as work showing neuronal adaptations 
following output perturbations with natural limb movements (Gandolfo et al., 2000).  
Together, these studies suggest that BMI may be seen as an extension of natural skill 
learning and may rely on similar neural mechanisms for storage and retrieval of learned 
skills. 
 
1.3 Chapter previews 
 
In Chapter 2, we present a novel rodent model of neuroprosthetic control, variants of 
which will be used throughout this dissertation.  We probe the learned neuroprosthetic 
skills for intentionality, explore representations of neuroprosthetic skills in the 
corticostriatal system of rats, and use the task with mutant mice that lack long-term 
potentiation specifically in the dorsal striatum to determine the necessity of 
corticostriatal plasticity for neuroprosthetic skill acquisition and performance. 
 
In Chapter 3, we explore the development of coordinated activity between M1 and the 
dorsal striatum during neuroprosthetic learning.  We quantify this coordination using 
spike-field coherence, and further demonstrate cell-specificity and highly precise timing 
of these coherent interactions. 
 
In Chapter 4, we modify the behavioral paradigm for use with two-photon calcium 
imaging in order to explore the fine-scale spatial characteristics of network 
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reorganization across the learning process.  We demonstrate a sparsening of the 
cortical representation as the animals become more skilled and efficient at performing 
the task. 
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Chapter 2: 
 
Corticostriatal plasticity is necessary for learning 
neuroprosthetic skills 
 
We first investigate similarities between natural and neuroprosthetic learning by 
exploring neuronal representations of neuroprosthetic skills in basal ganglia circuitry. 
The dorsal striatum (DS) is the primary input to basal ganglia circuitry and mediates the 
transfer of information between the neocortex and subcortical loops (Graybiel et al., 
1994; Hoover & Strick, 1991). Although the striatum has long been seen as the neural 
substrate for motor skill learning and performance (Yin et al., 2009; Barnes et al., 2005; 
Graybiel, 1998; Atallah et al., 2007), it receives input from vast expanses of the 
neocortex (Stern et al., 1997; Stern et al., 1998) and has therefore been proposed to 
play a more general role in the flow of information in large-scale neuronal networks, as 
well as participate in a wide range of cognitive processes (Garcia-Munoz et al., 2010; 
Grahn et al., 2008; Pennartz et al., 2009; Chudasama et al., 2006). Despite this 
possibility, it has remained difficult to dissociate broad, higher-level functions from basic 
motor control.  Here we utilized a novel task in rodents designed to precisely examine 
these cognitive processes irrespective of natural motor behavior.  Rodents learned to 
control the pitch of an auditory cursor to reach one of two targets by modulating activity 
in M1 in the absence of physical movements.  Degradation of the association between 
action and outcome, as well as sensory-specific satiety tests, demonstrated that these 
cognitive actions were intentional and goal-directed rather than habitual.  Striatal 
response profiles were altered as rodents learned to perform the task and strong 
functional interactions developed in corticostriatal networks across learning, suggesting 
that the DS serves a similar role in abstract learning as in natural motor learning. In 
addition, genetically disrupting the molecular mechanisms for plasticity in the DS 
resulted in marked learning deficits. Together, these results suggest that striatal 
plasticity is necessary for high-level cognitive actions that are dissociated from motor 
behavior, and further, that the striatum plays a more general role in cortical network 
dynamics than previously appreciated. 
 
2.1 Introduction 
 
The ability to learn new actions and perfect them with practice allows us to master 
amazing skills like playing the piano or riding a bicycle. Learning these skills usually 
implies moving faster, more accurately, and less variably (Brashers-Krug et al., 1996). 
However, mastering other types of skills, like playing chess or doing math calculations, 
often does not directly involve changes in movement (VanLehn, 1996). Cortico-basal 
ganglia circuits have been implicated in the learning, selection and execution of physical 
skills (Yin et al., 2009; Barnes et al., 2005; Graybiel, 2008; Hikosaka et al., 1999; 
Brasted & Wise, 2004; Kubota et al., 2009; Kimchi & Laubach, 2009). In particular, 
plasticity in the motor cortices and the striatum, the major input region of the basal 
ganglia, has been shown to accompany the learning of physical skills (Yin et al., 2009; 
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Rioult-Pedotti, 2000). The motor cortex and frontal cortices have also been implicated in 
the learning of cognitive skills (Georgopoulos et al., 1993; Gandolfo et al., 2000; 
Fincham & Andersen, 2006; Badre et al., 2010), and in learning to control 
neuroprosthetic devices in the absence of movement (Ganguly & Carmena, 2009; 
Ganguly et al., 2011). Some studies suggest that not only cortical areas, but also the 
striatum, are involved in learning cognitive skills (Beauchamp et al., 2003; Poldrack et 
al., 1999; Pasupathy & Miller, 2005). However, it is still unclear if the striatum is required 
for cognitive skill learning, and if corticostriatal circuits undergo plasticity during the 
learning of cognitive skills as they do during the learning of physical skills. Here, we use 
a novel behavioral paradigm in conjunction with electrophysiology and genetic 
manipulations in both rats and mice to investigate the role of corticostriatal circuits and 
corticostriatal plasticity in the learning of intentional cognitive actions.  
 
2.2 Methods 
 
2.2.1  Animals 
 
All experiments were performed in compliance with the regulations of the Animal Care 
and Use Committees at the University of California, Berkeley and at the NIAAA, and 
according to NIH guidelines. Six male Long-Evans rats weighing roughly 250 grams 
were used for the experiments. In addition, striatal-specific NMDAR1-knockout mice and 
littermate controls (7 and 8, respectively) were generated by crossing RGS9-cre mice 
with NMDAR1-loxP mice, as described previously (Dang et al., 2006). Behavioral 
experiments were performed on RGS9-cre+/NMDAR1-loxP homozygous mice, and 
control mice were littermates consisting of RGS9-cre+, RGS9-cre+/NMDAR1-loxP 
heterozygous, and NMDAR1-loxP homozygous mice.   

 
2.2.2  Surgery 
 
Rodents were chronically implanted with microwire arrays ipsilaterally in M1 and the DS.  
In rats, 2 arrays were independently implanted: each array contained 16 tungsten 
microelectrodes (35 μm diameter, 250 μm electrode spacing, 8x2 configuration; 
Innovative Neurophysiology, Durham, NC).  Stereotactic coordinates relative to bregma 
were used to center the arrays. In rats, these coordinates were: anteroposterior +2.0 
mm, mediolateral +2.0 mm, and dorsoventral +1.5 mm for M1; and anteroposterior +0.5 
mm, mediolateral +4.0 mm, dorsoventral +4.5 mm for DLS.  In mice, a customized array 
contained 32 tungsten microeletrodes (8 columns x 4 rows configuration, 35 μm 
diameter, 150 μm electrode spacing, 200-1000-200 μm electrode row spacing, 1.5 mm 
shorter for medial than lateral two rows; Innovative Neurophysiology, Durham, NC) was 
implanted unilaterally, with the medial two rows of electrodes targeting M1 and the 
lateral two rows of electrodes targeting DS; coordinates centered at anteroposterior 
+0.5 mm and mediolateral +2.0 mm, lowering dorsoventrally from brain surface 1.0-1.1 
mm for M1 and 2.2 mm for DS). In all cases, M1 implants were targeted to record from 
layer 5 pyramidal neurons. Rats were anesthetized with Ketamine (50 mg/kg) and 
Xylazine (5 mg/kg) with supplemental isoflurane gas as needed. Mice were 
anesthetized with isoflurane. Craniotomies were sealed with cyanoacrylate and rodents 
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were allowed to recover for ten days after implantation before behavioral training.  Rats 
were given dexamethasone treatment (0.5 mg/kg) for one week following surgery to 
minimize tissue damage around the implant (Zhong et al., 2007).   
 
2.2.3  Electrophysiology 
 
Single unit activity and local field potentials were simultaneously recorded with a 
Multichannel Acquisition Processor (MAP; Plexon Inc., Dallas, TX).  Activity was sorted 
using an online sorting application (Plexon Inc., Dallas, TX) prior to each daily recording 
session.  Only units with a clearly identified waveform and high signal-to-noise ratio 
were used.  Sorting templates were further refined using an offline sorting application 
(Plexon Inc., Dallas, TX).  Behavioral timestamps were sent to the MAP recording 
system through Matlab (Mathworks, Natick, MA) and synchronized to the neural data for 
later analyses. 
 
2.2.4  Behavioral task 
 
After rodents recovered from surgery, two ensembles of 2-4 well-isolated M1 units each 
were chosen for testing based on waveforms, interspike-interval histograms, and 
refractory periods.  Activity from these ensembles was binned in 200 millisecond bins 
and entered into an online transform algorithm that related neural activity to the pitch of 
an auditory cursor, and by modulating activity in these ensembles, rodents controlled 
the pitch of the cursor.  The specific transform used was: 
 

∑ ∈ ∑ ∈  
 
where  is the cursor frequency,  is the firing rate for neuron i at time bin t,  and 

 denote the units in ensembles one and two, respectively, and A1 , A2, and B are 
coefficients that are set based on a daily baseline recording session of 250 cycles.  This 
transform caused increased activity in the first ensemble to produce increases in the 
cursor pitch, while increased activity in the other ensemble produced decreases in the 
cursor pitch.  Linear changes in firing rate resulted in exponential changes in cursor 
frequency, and frequency changes were binned in quarter-octave intervals to match 
rodent psychophysical discrimination thresholds (Han et al., 2007). 
 
The rodents had to then precisely modulate these neuronal ensembles to move the 
cursor to one of two target pitches, one which was associated with a 20% (10% in mice) 
sucrose solution reward and one which was associated with a 45 mg (20 mg in mice) 
food pellet reward.  Rodents were free to choose either reward at any time, although M1 
activity levels had to return to baseline levels for a new trial to begin.  A trial was marked 
incorrect if neither of these target states were achieved within 30 seconds of trial 
initiation.  
 
To control for physical movements, rats also performed the task after being given 
injections of lidocaine in the whisker pad to locally inactivate sensory and motor nerve 
endings.  Array placement in the vibrissa region of M1 was confirmed by applying trains 
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of 60 μA biphasic pulses through the recording array and observing subsequent 
twitches of the whisker pad.  Pulses lasted 200 μs and were delivered at 350 Hz.  0.5-1 
mL of a 2 mg/mL lidocaine solution was then injected into the whisker pad immediately 
before the behavioral session. 
 
Behavioral sessions took place in a rodent operant box equipped with liquid and pellet 
dispensers (For rats: Lafayette Instrument Company, Lafayette, IL; For mice: Med 
Associates, Inc., St. Albans, VT).  Recorded neural data was entered in real time to 
custom routines in Matlab that then translated those activity levels into the appropriate 
feedback pitch and played the pitch on speakers mounted on 2 sides of the operant 
box.  Frequencies used for auditory feedback ranged from 1-24 kHz in quarter-octave 
increments.  When a target was hit, a Data Acquisition board (National Instruments, 
Austin, TX) controlled by Matlab triggered the operant box to supply the appropriate 
reward to rodents.   
 
2.2.5  Action-outcome manipulations 
 
After initial training, the action-outcome contingency was degraded for 2 days.  M1 
ensemble activity still determined the pitch of the cursor, but reward was now given on a 
variable time schedule with equal probability of getting a reward after target 
achievement and no target achievement. Contingency was then reinstated for 2 days; 
performance had to return to previous levels before further task manipulations were 
performed. 
 
A sensory-specific satiety test was also performed to manipulate expected reward value 
– Devaluation test.  Animals were given free access to one of the task rewards in a 
cage different than their home cage for one hour before a choice session, thus reducing 
the subjective value of that reward.  Animals were then placed into the operant training 
box and allowed to perform the task with free choice over which target to hit at any time 
during the session. 
 
Finally, an omission test was performed to demonstrate that rodents were able to 
intentionally inhibit the learned cognitive actions. For this test, animals were no longer 
rewarded after achieving one of the behavioral targets and the reward associated with 
that target was now delivered when animals successfully inhibited the action for the 
duration of the trial (30 seconds). During this manipulation, the other target continued to 
be rewarded normally. This manipulation was performed separately for both targets to 
assess the intentional inhibition of the cognitive action. 
 
2.2.6  Data analysis 
 
All analyses were performed in Matlab (Mathworks, Natick, MA) with custom-written 
programs.  Unit data were first binned in 1 millisecond time bins and digitized.  As no 
difference was seen between the two targets in the basic task, data from the two targets 
were pooled.  Peri-stimulus time histograms (PSTHs) were calculated in relation to 
target achievement and firing rate analyses were performed from 4 seconds before until 
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4 seconds after this event, as well as from 6 seconds before until 1 second after this 
event.  Firing rates and PSTHs were smoothed with a moving window of 100 
milliseconds.  Representative days for early and late learning were chosen for each 
animal from days 2-4 and 8-11, respectively, based on behavioral performance, 
motivation, and signal quality.  For firing rate z-score analyses, firing rates for individual 
units were binned in 100 millisecond time bins, averaged across events, and smoothed 
with a moving average.  Mean firing rates for each unit were then z-scored and plotted 
during both early and late learning sessions.  Cross-correlograms were also calculated 
with spiking activity in either M1 or DS being correlated to the occurrence of action 
potentials in the other region. 
 
For coherence analyses, a multi-taper method was used to compute spectral estimates 
of spiking activity in both regions (Jarvis & Mitra, 2001; Thomson, 1982; Mitra & 
Pesaran, 1999).  A total of 5 tapers were used and estimates were computed every 50 
milliseconds with a window size of 500 milliseconds.  Coherence between spiking 
activity in the two regions was calculated and defined defined as: 

 

Cxy 	

 
where  and  are the power spectra and  is the cross-spectrum. Power and 
spike-spike coherence estimates were calculated relative to the delivery of reward and 
averaged across trials and animals.  Mean coherence in the theta band was calculated 
and defined as 4-8 Hz (4.5-9 Hz in mice). 
 
 
 

 
 
 
 
 

Figure 2.1 Task schematic. M1 unit 
activity was entered into an online 
transform algorithm that related 
ensemble activity to the pitch of an 
auditory cursor. Two opposing 
ensembles were chosen, with 
activity of one ensemble increasing 
the cursor pitch and activity of the 
other ensemble decreasing the 
cursor pitch.  Constant auditory 
feedback about cursor location was 
supplied to rodents, and distinct 
rewards were supplied when rodents 
brought M1 activity into one of two 
target states.   
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2.3 Results 
 
2.3.1  Development of a rodent BMI task 
 
We developed a novel operant brain-machine interface task in which rodents were 
required to modulate activity in M1, rather than do a physical movement, to obtain 
reward (Figure 2.1).  Modulation of M1 ensemble activity resulted in changes in the 
pitch of an auditory cursor, which provided constant auditory feedback to rodents about 
task performance.  Reward was delivered when rodents precisely modulated M1 activity 
to move this auditory cursor to one of two target tones, and a trial was marked incorrect 
if no target had been hit within a set time limit (30 seconds).  One of these targets was 
associated with a reward of sucrose solution, while the other target was associated with 
a pellet reward (see Methods).  Two neural ensembles consisting of 2-4 well-isolated 
units each were used to control the auditory cursor.  The action of these two ensembles 
opposed each other, such that increased activity in one ensemble produced increases 
in cursor pitch, while increased activity in the other ensemble caused decreases in 
cursor pitch.  Thus, in order to achieve a high-pitched target, rodents had to increase 
activity in the first ensemble and decrease activity in the second, while the opposite 
modulations were necessary to hit a low-pitched target (Figure 2.2).  Importantly, the 
opposing effect of activity in these ensembles ensures that rodents cannot simply 
increase activity broadly throughout the network, but rather must precisely modulate 
activity in specific neuronal populations.  These firing rate modulations had to be 
maintained for several time bins (200-600 milliseconds) for a target to be hit.  Hence, in 
this operant task, rodents had to bring the two M1 ensembles into a desired state 
irrespective of motor output.  
 

 
 
 
We trained six male Long-Evans rats on the task, and verified that they exhibited 
marked improvement in the percentage of correct trials over the course of 11 days 
(Figure 2.3a), following a characteristic learning curve.  We could clearly see a phase of 
rapid improvement followed by a phase of slower learning, representing early (days 2-4) 

Figure 2.2 Mean M1 ensemble 
firing rates for units in 
ensemble 1 (green), ensemble 
2 (blue), and M1 units not used 
in the transform (black) in 
relation to the achievement of 
target 1 (top) or target 2 
(bottom). Representative 
waveforms recorded from M1 
in rats are shown on the right, 
with shaded regions denoting 
the standard deviation. 
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and late (days 8-11) phases of learning. The percentage of correct trials increased 
significantly from early to late in learning (Figure 2.3b; p < 0.001), demonstrating that 
rats robustly learned to perform the task.  This learning resulted in performance well 
above chance (Figure 2.3c; p < 0.001).  Chance levels of target achievement were 
assessed by collecting daily baseline recordings in which neural activity was entered 
into the transform algorithm but rodents were not engaged in the task and received no 
auditory feedback or reward to guide learning and performance, thus measuring how 
often spontaneous fluctuations of neural activity would lead to target achievement.  
Analyses of M1 firing rates further showed that rats were producing the desired 
neuronal ensemble rate modulations during task performance (Figure 2.2). 
 

 
 
 
 
 
 
 
 
2.3.2  Task performance does not rely on natural movements 
 
We next investigated if animals were performing physical movements that would 
modulate the activity of those particular M1 ensembles. First, we monitored overall 
rodent movement with a three-axis accelerometer mounted on the recording headstage, 
which allowed us to measure if the animals produced any gross body or head 
movement during target achievement. Accelerometer traces exhibited no changes 
before and during target reaching, but did show prominent deflections after target 
reaching as the animals retrieved the reward (Figure 2.4a), demonstrating that rodents 
were not relying on gross motor behavior to perform the task. We also monitored 
movements of the vibrissae with electromyographic (EMG) recordings of the mystacial 
pad (electrodes targeted M1 areas controlling vibrissae movement, see Methods), and 
observed no significant EMG signals before target achievement, although there were 
clear EMG signals afterwards as animals retrieved and consumed the reward (Figure 
2.4b). Importantly, there was no correlation between EMG activity and the spiking of the 
M1 neurons controlling the auditory cursor - the correlation coefficient for all trials in a 
behavioral session was 0.092 ± 0.003 (mean ± s.e.m.), and the distribution of 
correlation coefficients across a session was not significantly different from zero (p = 

Figure 2.3 a. Mean percentage of correct responses for all rats across days 1-11 of learning.  
Shaded regions denote the range of days from which the early and late learning analyses were 
performed. b. The percentage of correct responses for all rats increased significantly from early 
(light blue) to late (dark blue) in learning. c. Performance in late learning was significantly above 
our assessment of chance levels of target achievement. 
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0.57). This was observed across all training days, including during early learning. These 
data suggest that rats do not rely on physical movements to learn the task, although it is 
difficult to exclude the possibility that animals use some movement to generate neural 
activity to drive the auditory cursor during exploratory phases of the task in early 
learning. Nonetheless, the data shows that animals eventually learn to perform the task 
in the absence of overt movement. To further demonstrate that rats did not require 
vibrissae movements to control M1 activity, we injected lidocaine into the whisker pad to 
locally inactivate sensory and motor nerve endings during a session in late learning (see 
Methods). There was no significant change in performance during the temporary 
inactivation (Figure 2.4c; p > 0.9), with rats achieving 78.1 ± 2.2 % correct with lidocaine 
(mean ± sem) versus 78.8 ± 6.5 % without lidocaine. Taken together, these data 
indicated that rodents were able to learn to operantly control M1 activity irrespective of 
any overt movement.  
 

 
 
 
 
 
 
 
 
 
 
 
2.3.3  Probing intentionality 
 
Operant actions can be goal-directed or intentional if they are performed because of 
their consequences, or habitual if they are elicited in a particular situation based on past 
reinforcement history (Balleine & Dickinson, 1998; Yin et al., 2006; Hilario & Costa, 
2008). Goal-directed actions are therefore sensitive to changes in the relation between 
performing the action and obtaining a reward (contingency) and to changes in the 
expected value of the reward, while habits are not. We asked if these cognitive actions, 
i.e. actions performed based on the modulation of specific neural activity but in the 
absence of physical movement, were performed intentionally because the animal 

Figure 2.4 a. Representative accelerometer traces in relation to time of reward delivery (time 
zero) show no gross motor behavior leading to target achievement, but clear deflections as 
animals initiate movement to retrieve reward. b. Representative EMG traces time-locked to the 
time of reward delivery show no muscle activity in the mystacial pad before target achievement, 
but clear deflections as animals retrieve and consume reward. c. Mean performance in all rats 
when lidocaine was injected into the whisker pad before a behavioral session late in learning (red) 
compared to performance during a no-lidocaine session (dark blue).  Lidocaine injection did not 
significantly decrease task performance. 
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volitionally controlled M1 activity to get the outcome (goal-directed), or habitually due to 
reinforcement history. To test this, we first degraded the contingency between executing 
the action and obtaining the outcome: i.e. the auditory cursor was still under control of 
M1 ensemble activity, but the probability of obtaining reward was similar irrespective of 
target achievement, which had no effect on the rate of reward.  Following two days of 
contingency degradation, rats markedly diminished their responding and the percentage 
of correct trials decreased significantly (Figure 2.5a; p < 0.001).  When contingency was 
reinstated, rats resumed responding and the percentage of correct trials returned to 
plateau levels seen in late learning.   
 
 

 
 
 
 
 
 
 
 
 
 
 
To further investigate the intentional nature of the task, we performed a test where each 
of the outcomes was devalued using sensory-specific satiety.  Rats were given free 
access to either sucrose solution or pellets for one hour before the behavioral session, 
thereby reducing the expected value of that outcome (Hilario et al., 2007).  After specific 
devaluation of each outcome/reward, rats chose the target leading to that reward much 
less than the target leading to the reward that was not devalued (Figure 2.5b; p < 
0.001), indicating that they performed the action driven by the expected value of the 
outcome. Importantly, there were no significant differences in reward preference during 
normal task performance when neither of the outcomes was devalued (p > 0.25).  
Finally, we asked whether rats were able to intentionally inhibit the reaching of one of 
the two targets in order to obtain the specific reward associated with that target. To 
examine this we performed an omission test, where the reward previously associated 
with reaching a particular target was now only delivered when rats successfully inhibited 

Figure 2.5 a. Significant reduction in response rate when the causal relation between target 
achievement and reward delivery was degraded (dark blue).  When contingency was 
reinstated, performance rapidly returned to pre-degradation levels (red).  b. Percentage of 
total correct trials that were directed at the target associated with pellet reward (blue) or 
sucrose solution reward (red) during choice sessions where rats had free access to pellets 
before the session (left; “Pellets Devalued”),  or rats had free access to sucrose solution 
before the session (right; “Sucrose Devalued”). c. Percentage of total trials that involved 
responses toward target 1 (blue), target 2 (red), or response omissions (black) when omission 
tests were performed for target 1 (left) or target 2 (right). 
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reaching that target throughout the duration of the trial. If the target was reached during 
the 30s of trial duration, then no reward would be delivered and a new trial would be 
initiated. Importantly, reaching the other target continued to lead to reward as during 
training. Animals behaved in a goal-directed manner in the omission test for both 
targets, since they reduced the number of target reaches for the target they had to omit 
versus the no-omission target, while increasing the number of correctly omitted 
responses (Figure 2.5c; p < 0.001 for both comparisons). Taken together, these data 
show that the neuroprosthetic actions in our task are sensitive to changes in the causal 
relation between performing the action and obtaining the reward (contingency 
degradation and omission test), and to changes in the expected value of the outcome 
(sensory-specific devaluation), indicating that they are intentional and goal-directed 
rather than habitual. 
 
2.3.4  Corticostriatal plasticity accompanies BMI learning 
 
We next examined if learning to operantly control M1 activity in the absence of overt 
movement involves striatal plasticity, akin to what is observed for natural motor learning 
(Costa et al., 2004; Jin & Costa, 2010; Miyachi et al., 2002). We verified that the 
improvement in behavioral performance seen across learning was accompanied by a 
significant increase in firing rates in the DS in late learning compared to early learning 
(Figure 2.6a; p < 0.001).  In addition to this general increase in firing rates, we noticed 
that firing rates of DS neurons exhibited greatest modulation during target reaching 
compared to baseline control periods (Figure 2.6b, before time zero indicating reward 
delivery), as observed during natural motor learning (Costa et al., 2004).  This 
modulation was markedly enhanced in late learning (Figure 2.6b, firing rates for 
individual DS units are z-scored across time in a window surrounding target 
achievement).  Indeed, the percentage of DS units exhibiting target-related firing rate 
modulation was significantly greater in late learning than early learning (Figure 2.7a; p < 
0.05), indicating that DS neurons changed their activity during the volitional control of 
M1 activity, and that this change increased with learning.  
 

 
 
 
 
 
 
 
 

Figure 2.6 a. Mean normalized firing rates in the DS increased significantly from early (light blue) 
to late (dark blue) in learning, mirroring the improvement in behavioral performance.   
Representative waveforms recorded from the DS are shown on the right, with shaded regions 
denoting the standard deviation. b. Z-scored firing rates for individual DS units in relation to target 
achievement (time zero).  In late learning, the response profiles primarily exhibit modulation 
before target achievement. 
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We next investigated if learning, and the observed changes in DS target-related activity, 
were accompanied by corticostriatal plasticity, i.e. changes in the functional interactions 
between M1 and DS neurons.  We noticed that cross-correlation histograms between 
the two regions in late learning exhibited pronounced oscillatory spike coupling (Figure 
2.7b).  To quantify this interaction, we calculated the coherence between spiking activity 
in the two regions in both early and late learning (Methods).  The resulting coherograms 
exhibited a clear increase in coherence at low frequency bands in late learning relative 
to early learning (Figure 2.7c), and these frequencies corresponded to the oscillatory 
frequency seen in the cross-correlation histograms.  Furthermore, mean coherence in 
the theta band (4-8 Hz) was significantly greater in late learning than early learning 
(Figure 2.7d; p < 0.001).  Thus, cognitive skill learning is accompanied by dynamic 
changes in functional interactions between M1 and the DS neurons, suggesting an 
important role for corticostriatal plasticity in this novel task. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.7 a. The percentage of DS units exhibiting target-related firing rate modulation 
increased significantly with learning. b. Cross-correlation histograms in late learning for M1 
spiking activity in relation to DS spikes (left), and DS spiking activity in relation to M1 spikes 
(right), showing oscillatory coupling between the two regions. c. Coherence between M1 spikes 
and DS spikes in early (left) and late (right) learning shows a clear increase in low frequency 
coherence in late learning relative to early learning. d. Significant increase in mean coherence in 
the theta range in late (dark blue) versus early (light blue) learning.  Shaded regions denote the 
standard error. 
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2.3.5  Corticostriatal plasticity is necessary for BMI learning 
 
We therefore investigated if corticostriatal plasticity would be necessary for cognitive 
skill learning. N-Methyl-D-aspartic acid (NMDA) receptors in striatal medium spiny 
neurons are critical for corticostriatal long-term potentiation (Di Filippo, 2009). We 
generated mutant mice with a striatal-specific deletion of the NMDAR1 gene using the 
Cre/loxP system (RGS9-cre+/NMDAR1-loxP-/-, referred to here as striatal NR1-knockout 
mice), and compared their learning to that of littermate controls (see Methods).  
Although control mice showed performance improvement across learning in the 
absence of physical movement as observed for rats (Figure 2.8a,b; p < 0.001), striatal 
NR1-knockout mice exhibited marked learning deficits on the task, with no significant 
increase in the percentage of correct trials from early to late in learning (Figure 2.8a; p = 
0.98).  Consistently, DS neurons in littermate controls exhibited a significant increase in 
firing rate across learning, but striatal NR1-knockout mice did not (Figure 2.8c; main 
effect of genotype F1, 10 = 32.45, p < 0.001; early vs. late p < 0.05 for CT and p = 0.23 
for KO).  Also, in control mice the proportion of DS neurons with significant target-
related firing rate modulation increased with learning (Figure 2.8d,e; p < 0.05), but this 
was not observed in knockout mice (Figure 2.8e; p = 0.28).  Finally, the development of 
functional corticostriatal interactions during learning was also abolished in striatal NR1-
knockout mice, with no significant increase in the coherence between M1 and DS units 
observed during learning (Figure 2.8f, g, F80, 10 = 0.65, p = 0.44), despite littermate 
controls showing a clear increase as seen in rats (Figure 2.8f, g, F80, 10 = 4.86, p < 0.05).  
Taken together, these results demonstrate that the same striking plasticity in 
corticostriatal networks that was observed in rats during learning also occurs in control 
mice, but this plasticity is absent in mice lacking functional NMDA receptors in the 
striatum. These mutant mice do not show improvement with training, therefore 
indicating that corticostriatal plasticity is necessary for learning to intentionally modulate 
M1 states to obtain specific outcomes. 
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Figure 2.8 a. RGS9L-NR1-KO mice (red) exhibit no significant increase in the percentage of correct 
trials over the course of learning, despite clear performance improvement in littermate controls (blue). 
b. Accelerometer traces from control mice showing no clear oscillation during task performance, but 
clear deflections as mice retrieve reward. c. There is no significant increase in DS firing rates in 
knockout mice (red) from early to late in learning, although DS firing rates increase markedly in 
control mice (blue). d. DS units of littermate controls exhibit strong target-related firing rate 
modulations, including both excitation (left) and inhibition (right). e. The percentage of DS units 
showing significant target-related firing rate modulations increases significantly across learning in 
control mice (blue), but not in RGS9L-NR1-KO mice (red). f. Coherograms showing coherence 
between M1 spikes and DS spikes in early (left) and late (right) learning for both control mice (top) or 
knockout mice (bottom).  Coherence in low frequency bands increases greatly from early to late 
learning in control mice, but there is no significant change in coherence in knockout mice. g. Mean 
coherence in the theta range for control (top) and knockout (bottom) mice.  In control mice, there is a 
significant increase in coherence from early (light blue) to late (dark blue) learning, while there is very 
little change in knockout mice from early (light red) to late (dark red) learning. 
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2.4 Discussion 
 
In summary, we used a novel task in rodents to demonstrate that corticostriatal 
networks exhibit profound plasticity during the learning of intentional cognitive skills, and 
further, that disrupting this plasticity impairs learning.  This adds great support to claims 
that cortico-basal ganglia circuits, and more specifically the striatum, play a role in high-
level cognitive processes.  We observed that DS neurons strongly modulated their 
activity in relation to M1 activity even when M1 activity was dissociated from physical 
movements, suggesting that the striatum is important for learning and selecting 
cognitive actions that are controlled by cortical output. Ultimately, these data suggest 
that cortico-basal ganglia circuits are involved in learning thought actions and skills that 
do not require physical movement, indicating that they may have a broader role in 
intention and decision-making than previously acknowledged.   
 
Our results also have important implications for the field of brain-machine interfaces.  
The cognitive actions investigated here form the basis for skillful neuroprosthetic control 
(Ganguly & Carmena, 2009; Fetz, 2007) and, as we have seen here, these actions 
recruit elements of the natural motor system outside of M1. Thus, our results suggest 
that neuroprosthetic movements capitalize on the neural circuitry for motor learning and 
therefore have great potential to feel naturalistic, generalize well to novel movements 
and environments, and benefit from our nervous system’s highly-developed storage and 
retrieval mechanisms for skilled behavior.  
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Chapter 3: 
 
Temporal precision and cell-specificity in corticostriatal 
coherence 
 
After observing the development of striking oscillatory coupling in the corticostriatal 
system during neuroprosthetic learning, we next aimed to more precisely dissect these 
functional interactions, with a focus on the role these interactions might play in natural 
corticostriatal coding and the specificity of neuronal coherence. It has been postulated 
that the selective temporal coordination between neurons and the development of 
functional neuronal assemblies are fundamental for brain function and behavior. Still, 
there is little evidence that functionally relevant temporal coordination emerges 
preferentially in neuronal assemblies that directly control behavioral output.  Here we 
investigate coherence between primary motor cortex and the dorsal striatum as rats 
learn an abstract operant task.  Striking coherent interactions developed between these 
two regions as learning progressed.  Interestingly, this coherence was selectively 
increased in cells relevant for behavioral output compared with other adjacent cells.  
Furthermore, the phase offset of these coherent interactions aligned closely with 
estimates of the corticostriatal conduction delay, demonstrating highly precise timing.  
Spikes from either region were followed by a consistent phase in the other, suggesting 
that network feedback reinforces the coherent oscillations.  Together, these results 
demonstrate that temporally precise coherence develops during learning specifically 
between output-relevant neuronal populations and the striatum, and further suggest that 
correlations in oscillatory activity serve to synchronize large-scale brain networks to 
produce behavior. 
 
3.1 Introduction 
 
For any given task, the nervous system must coordinate the activity of large ensembles 
of individual neurons across distant brain regions.  Even in seemingly trivial motor tasks, 
such as holding a cup of coffee, large ensembles of neurons must interact to properly 
control the musculature and monitor sensory feedback.  Although the nervous system is 
equipped with dense anatomical connectivity to support interactions between cell 
groups, these interactions must be rapidly and flexibly altered as we move from one 
behavioral context to the next, and particularly as we learn a new task.   
 
Brain-machine interface (BMI) tasks involve subjects learning to modulate neuronal 
activity in order to control a disembodied actuator (Fetz, 2007), and therefore provide a 
completely novel learning environment for subjects.  As discussed above, past work has 
shown that neuroprosthetic skills rely on similar neural substrates as natural motor 
learning (Green & Kalaska, 2007) and therefore have similar computational 
requirements for rapid and flexible information transfer.  Importantly, BMI tasks offer the 
unique advantage that the researcher can define which neuronal ensembles are directly 
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relevant for behavioral output, therefore allowing for an investigation of functional 
specificity within local neuronal populations. 
 
Recent theories have proposed that alterations in the pattern of large-scale 
synchronous activity could serve as the substrate for the flexible neuronal associations 
necessary to coordinate activity in distant brain regions for performance of both natural 
and neuroprosthetic behaviors (Womelsdorf et al., 2007; Buschman et al., 2012; 
Canolty et al., 2010).  Oscillatory local field potential (LFP) activity reflects rhythmic 
current flow across cell membranes in local ensembles and is hypothesized to alter the 
excitability of neuronal groups across different spatiotemporal scales (Buzsaki & 
Draguhn, 2004; Lakatos et al., 2005; Frohlich & McCormick, 2010). Therefore, precise 
temporal control in neuronal networks could enhance the efficiency of information 
transfer in specific populations (Wang et al., 2010; Tiesinga et al., 2001). It could also 
serve as a mechanism for synaptic gain control (Zeitler et al., 2008) and influence spike-
timing-dependent plasticity (Huerta & Lisman, 1993; Harris et al., 2003), as spikes 
arriving at excitability peaks will have enhanced efficacy relative to poorly-timed spikes. 
The development of temporally coordinated activity in ensembles of neurons has been 
implicated in processes as diverse as perception (Rodriguez et al., 1999), expectation 
(von Stein et al., 2000), decision making (Pesaran et al., 2008), coordination (Dean et 
al., 2012), memory formation (Pesaran et al., 2002; Siegel et al., 2009; Fujisawa & 
Buzsaki, 2011), spatial cognition (Colgin et al., 2009), reward processing (van der Meer, 
2011), and attentional shifting (Bollimunta et al., 2011; Lakatos et al., 2008; Fries et al., 
2008; Steinmetz et al., 2000). In some cases, this synchrony manifests as spiking in 
one region becoming highly coordinated with LFP activity in a separate region (Pesaran 
et al., 2008).  Importantly, many tasks evoke changes in the temporal pattern of spiking 
without concomitant changes in firing rate, suggesting that synchrony could serve as an 
additional information channel in neuronal circuits (Riehle et al., 1997). Alterations in 
synchrony and LFP dynamics have also been implicated in pathological states such as 
epilepsy (Bragin et al., 2010) and Parkinson’s disease (Costa et al., 2006), highlighting 
their importance for normal brain functioning.   
 
Despite increasing evidence that changes in synchronous LFP activity are related to 
changes in behavior during learning (DeCoteau et al., 2007), there is little evidence that 
temporal coordination during learning emerges selectively between the neurons that are 
controlling the behavior. For example, although previous work has demonstrated 
selectivity of corticomuscular coherence across hemispheres (Schoffelen et al., 2007), 
there is less evidence of selective coherence emerging in cells directly relevant for 
behavioral output, largely because the differential participation of neighboring neurons 
in behavior has been difficult to disentangle.  In addition, investigating the progression 
of coherent interactions between distant brain regions across learning in individual 
animals has only recently become possible due to the development of chronically 
implantable multielectrode arrays.  Corticostriatal networks exhibit plasticity during 
action learning (Costa et al., 2004; Hikosaka et al., 1999) which involves changes in 
coherence between distal regions (Koralek et al., 2012), and they therefore serve as an 
important model system for investigating changing interactions across learning. Here, 
we examine the dynamics and the specificity of the temporal interactions between distal 
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nodes of corticostriatal circuits during learning using a brain-machine interface paradigm 
that permits the definition of output-relevant neurons. 
 
3.2 Methods 
 
3.2.1  Surgery 
 
All experiments were performed in compliance with the regulations of the Animal Care 
and Use Committee at the University of California, Berkeley.  A total of eight male Long-
Evans rats weighing roughly 250 grams were used for the experiments.  Rats were 
chronically implanted with microwire arrays in both M1 and the DS.  Each array 
contained 16 tungsten microelectrodes (35 μm diameter, 250 μm electrode spacing, 8x2 
configuration; Innovative Neurophysiology, Durham, NC).  Stereotactic coordinates 
relative to bregma were used to center the arrays (anteroposterior 2 mm, mediolateral 2 
mm, and dorsoventral 1.5 mm for M1; and anteroposterior 0.5 mm, mediolateral 4 mm, 
dorsoventral 4.5 mm for DS).  M1 implants were targeted for layer 5 neurons based on 
insertion depth, and this was verified histologically at the end of experiments (Koralek et 
al., 2012).  Rodents were anesthetized with Ketamine (50 mg/kg) and Xylazine (5 
mg/kg) with supplemental isoflurance gas as needed.  Craniotomies were sealed with 
cyanoacrylate and rodents were allowed to recover for ten days after implantation 
before behavioral training.  Rats were given dexamethasone treatment (0.5 mg/kg) for 
one week following surgery to minimize tissue damage around the implant (Zhong & 
Bellamkonda, 2007). Stimulation experiments were performed in the same animals 
used for training, with one additional animal that underwent the same surgical 
procedures but was not trained on the task. 

 
3.2.2  Electrophysiology 
 
Single unit activity and local field potentials were simultaneously recorded with a 
Multichannel Acquisition Processor (MAP; Plexon Inc., Dallas, TX).  Activity was sorted 
using an online sorting application (Plexon Inc., Dallas, TX) prior to each daily recording 
session.  Only units with a clearly identified waveform and signal-to-noise ratio greater 
than 2 were used.  Sorting templates were further refined using an offline sorting 
application (Plexon Inc., Dallas, TX).  Behavioral timestamps were sent to the MAP 
recording system through Matlab (Mathworks, Natick, MA) and synchronized to the 
neural data for later analyses.  Recording arrays were grounded to a screw in the 
occipital bone, and both arrays were also referenced locally using the online program 
Ref2 (Plexon Inc., Dallas, TX) to eliminate effects of volume conduction.  For 
referencing, an electrode on each array was chosen to be subtracted from all other 
electrodes on that array.  This was done independently for both M1 and DS. 
 
3.2.3  Behavioral task 
 
After rodents recovered from surgery, two ensembles of 2-4 well-isolated M1 units each 
were chosen for inclusion in the “output” population based on waveforms, interspike-
interval histograms, and refractory periods. No other selection criteria were used to 
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partition the recorded cells into each ensemble.  Although these output units were 
consistently well-isolated, we also ensured that many well-isolated units were included 
in the indirect population to enable a proper comparison, and we further verified that 
there was no difference in baseline firing rate between the two populations.  The units 
assigned to the output population remained relatively constant throughout training using 
the stability of spike waveforms, sorting templates, and interspike intervals across 
sessions as a guide.  When recordings from an output unit were lost, the unit was 
replaced by a unit on the same electrode or a directly neighboring electrode, thus 
keeping constant the general cortical volume from which output cells were selected. 
 
Activity from these ensembles of output units was binned in 200 millisecond bins and 
entered into an online transform algorithm that related neural activity to the pitch of an 
auditory cursor, and by modulating activity in these ensembles, rodents controlled the 
pitch of the cursor.  The specific transform used was: 
 

∑ ∈ ∑ ∈  
 
where  is the cursor frequency,  is the firing rate for neuron i at time bin t,  and 

 denote the units in ensembles one and two, respectively, and A1 , A2, and B are 
coefficients that are set based on a daily baseline recording session of 250 time bins.  
Ensemble firing rates were smoothed by a moving average of the past 3 time bins.  This 
transform caused increased activity in the first ensemble to produce increases in the 
cursor pitch, while increased activity in the other ensemble produced decreases in the 
cursor pitch.  Linear changes in firing rate resulted in exponential changes in cursor 
frequency, and frequency changes were binned in quarter-octave intervals to match 
rodent psychophysical discrimination thresholds (Han et al., 2007). 
 
The rodents had to then precisely modulate these neuronal ensembles to move the 
cursor to one of two target pitches, one which was associated with a 20% sucrose 
solution reward and one which was associated with a 45 mg food pellet reward.  
Rodents were free to choose either reward at any time, although M1 activity levels had 
to return to baseline levels for a new trial to begin.  Rats developed no clear preference 
for either reward during training (p < 0.001). A trial was marked incorrect if neither of 
these target states were achieved within 30 seconds of trial initiation, although in late 
learning animals only took 11.8 ± 1.1 seconds to hit targets (mean ± sem). 
 
Behavioral sessions took place in a rodent operant box equipped with liquid and pellet 
dispensers (Lafayette Instrument Company, Lafayette, IL).  Recorded neural data was 
entered in real time to custom routines in Matlab that then translated those activity 
levels into the appropriate feedback pitch and played the pitch on speakers mounted on 
2 sides of the operant box.  Frequencies used for auditory feedback ranged from 1-24 
kHz in quarter-octave increments.  When a target was hit, a Data Acquisition board 
(National Instruments, Austin, TX) controlled by Matlab triggered the operant box to 
supply the appropriate reward to rodents.   
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3.2.4  Intracortical microstimulation 
 
Intracortical microstimulation was applied to M1 while recording from the DS in order to 
estimate the corticostriatal conduction delay.  Single monophasic cathodal pulses 
lasting 250 μsec with an amplitude of 300 μA were applied to M1 using a Model 2100 
Isolated Pulse Stimulator (A-M Systems, Sequim, WA).  Neuronal activity was 
simultaneously recorded from the DS using a separate recording headstage and 
preamplifier.  
 
3.2.5  Data Analysis 
 
Analyses were performed in Matlab (Mathworks, Natick, MA) with custom-written 
routines.  Unit data were first binned in 1 millisecond time bins and digitized.  As no 
difference was seen between the two targets in the basic task, data from the two targets 
were pooled.  Peri-stimulus time histograms (PSTHs) were calculated in relation to 
target achievement and firing rate analyses were performed from 4 seconds before until 
4 seconds after this event, as well as from 2 seconds before and after the event.  Firing 
rates and PSTHs were smoothed with a moving window of 100 milliseconds.  Neuronal 
modulation depths were calculated as the absolute value of the difference in firing rate 
for a given cell when hitting target 1 versus target 2.  For a number of analyses, 
representative days for early and late learning were chosen for each animal from days 
2-4 and 8-11, respectively, based on behavioral performance, motivation, and signal 
quality.  Representative days contained a minimum of 100 completed behavioral trials 
and 8 well-isolated M1 units. 
 
Coherence analyses were performed using algorithms from the Chronux toolbox 
(http://chronux.org) in conjunction with custom routines in Matlab.  A multi-taper method 
was used to compute spectral estimates of spiking activity in both regions (Jarvis & 
Mitra, 2001; Thomson, 1982).  A total of 5 tapers were used with a time-bandwidth 
product of 3, and estimates were computed every 50 milliseconds with a window size of 
500 milliseconds.  Coherence between spiking activity in the two regions was calculated 
and defined as: 
 

Cxy 	

	
where  and  are the power spectra and  is the cross-spectrum. Spectral 
analyses were calculated relative to the delivery of reward and averaged across trials 
and animals.  M1 and DS were referenced independently, and therefore coherence was 
never calculated between signals sharing a common local reference.  The mean event-
related potential and time-varying firing rate for each LFP channel or recorded unit, 
respectively, was subtracted from each trial before calculation of coherence values.  
However, it has been shown that this ERP subtraction can also produce artifacts rather 
than removing them, and the correct procedure for controlling for evoked responses 
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remains an open question (Truccolo et al., 2002).  The coherence analysis was 
therefore also performed without subtraction of the mean ERP and time-varying firing 
rate.  Mean coherence in the alpha band was calculated and defined as 6-14 Hz.  
Significance testing on coherence estimates was performed on mean alpha band 
estimates across spike-field pairs using independent samples t-tests with the Bonferroni 
correction for multiple comparisons across time. 
 
Coherence estimates can be affected by firing rate (Lepage et al., 2011) and we 
therefore performed a thinning procedure to equate firing rates between conditions in 
which rates differed (Gregoriou et al., 2009).  Trial-averaged spike trains in the neuronal 
populations were smoothed with a moving average of 10 msec.  The difference in firing 
rate between the populations normalized by the maximum firing rate at a given time 
point determined the probability that a spike would need to be removed from the 
population with a higher firing rate.  Spikes were then removed from the population with 
a higher firing rate based on this probability in order to eliminate any possible influence 
of firing rate on coherence estimates. 
 
Coherence phase offsets were then converted into temporal offsets for comparison with 
the corticostriatal conduction delay.  Phase offset values were converted to temporal 
offsets by calculating the derivative of phase with respect to frequency across the 6-14 
Hz band (Riddle & Baker, 2005) at every time point from 2 seconds before until 2 
seconds after target reaching.  The resulting distribution of estimates of the temporal 
delay was then compared against the distribution of conduction delay estimates 
obtained using ICMS.  Unless otherwise noted, all histograms were normalized to their 
maximum value.   
 
The STPC analysis is identical to calculations of intertrial phase coherence (Kim et al., 
2007; Zervakis et al., 2011), except the analysis is time-locked to spikes rather than to 
behavioral events.  For these analyses, LFP data were first bandpass filtered from 6-14 
Hz and Hilbert transformed.  The resulting complex values were normalized by their 
absolute value to extract phase and then averaged surrounding spiking activity.  The 
amplitude of this measure therefore reflects the consistency of the LFP phase from 
spike to spike with a range of temporal lags, and differs from the other coherence 
calculations only in that the analysis is time-locked to the occurrence of spikes.  
However, by comparing the time course of coherence values surrounding spikes, the 
results of such an analysis are suggestive, though not conclusive, of the direction of 
influence between spiking and LFP activity.  STPC values vary from 0 (no phase 
consistency) to 1 (perfect phase consistency).  To test for significance, surrogate data 
sets were created by shuffling the timing of recorded spikes.  1000 of these surrogate 
data sets were created for each animal (6000 total), STPC was calculated for each, and 
the experimental values of STPC were compared against this distribution of surrogate 
STPC values.  For calculations of STPC surrounding intracortical microstimulation, the 
stimulation artifact was removed by spline interpolation from the time of microstimulation 
until 50 msec after. 
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The signal-to-noise ratio for each recorded waveform was quantified as: 
 

2 ∗
 

 
where  is the peak-to-peak voltage of the mean waveform and  is the standard 
deviation of the residuals from each waveform after the mean waveform has been 
subtracted (Suner et al., 2005).  Units included in the analysis had a minimum signal-to-
noise ratio of 2. 
 
3.3 Results 
 
3.3.1  Acquisition of a neuroprosthetic skill 
 
We developed a brain-machine interface (BMI) task in which rats were required to 
modulate activity in primary motor cortex (M1) irrespective of physical movements. 
Modulation of M1 ensemble activity produced changes in the pitch of an auditory cursor, 
which provided constant auditory feedback to rodents about task performance.  Reward 
was delivered when rodents precisely modulated M1 activity to move this auditory 
cursor to one of two target tones, and a trial was marked incorrect if no target had been 
hit within a 30 second time limit.  Two neural ensembles consisting of 2-4 well-isolated 
units each were randomly chosen and used to control the auditory cursor (see 
Methods).  The action of these two ensembles opposed each other, such that increased 
activity in one ensemble produced increases in cursor pitch, while increased activity in 
the other ensemble caused decreases in cursor pitch.  Thus, in order to achieve a high-
pitched target, rodents had to increase activity in the first ensemble and decrease 
activity in the second, while the opposite modulations were necessary to hit a low-
pitched target (Figure 3.1a).  Firing rates were smoothed with a moving average of the 
past three 200-msec time bins, and rate modulations therefore had to be maintained for 
a target to be hit.  In this sense, the task required rodents to volitionally bring M1 into a 
desired state irrespective of motor output.  Importantly, this task allows us to directly 
define which cells are relevant for behavioral output, and therefore infer the causal link 
between neuronal activity in these cells and behavior. 
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We chronically implanted a group of rats (N = 8) with microelectrode arrays allowing us 
to simultaneously record activity in both M1 and the dorsal striatum (DS) throughout 
learning, and trained them in this paradigm.  A subset of these rats were used in a 
previous study but underwent additional experimental manipulations for the present 
work, and two additional rats were used exclusively for this study. The mean percentage 
of correct trials increased greatly over the course of learning, and this measure followed 
a standard learning curve (Figure 3.1b).  We could clearly see an initial phase of rapid 
improvement followed by a phase of slower learning, representing early (days 2-4) and 
late (days 8-11) phases of learning.  The percentage of correct trials increased 
significantly from early to late in learning (p < 0.001) demonstrating that rats were able 
to properly learn to perform the task.  Analyses of M1 firing rates further showed that 
rats were producing the desired ensemble rate modulations during task performance 
(Figure 3.1a). 
 
3.3.2  Corticostriatal coherence develops during neuroprosthetic learning 
 
We first investigated the relationship between spiking activity and the local field potential 
(LFP) oscillations recorded in each region during task engagement.  We performed 
spike-triggered averaging of the LFP oscillation in late learning time-locked to spikes 
occurring either in the same region or in the other region.  If spiking activity were 
independent of the LFP phase, then fluctuations would cancel out and produce a flat 
average LFP. We observed clear average LFP oscillations in both regions around action 
potentials from both regions; this oscillatory activity had a strong component between 6-
14 Hz (Figure 3.2a).  This is consistent with past work showing that oscillations in this 
range are particularly prominent in corticostriatal circuits when performing well-learned 
tasks (Berke et al., 2004), as well as work suggesting that motor cortex is predisposed 

Figure 3.1 a. Mean M1 ensemble firing rates for units in ensemble 1 (green), ensemble 2 (blue), 
and M1 units not used in the transform (black) in relation to the achievement of target 1 (top) or 
target 2 (bottom). Time zero indicates target achievement (red dashed line). b. Mean percentage 
of correct responses for all rats across days 1-11 of learning.  Shaded regions denote the s.e.m. 
and colored regions denote the range of days from which the early (blue) and late (red) analyses 
were performed. 
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to operate in this frequency range (Castro-Alamancos, 2013).  We therefore filtered the 
raw LFP from 6-14 Hz and calculated the predominant phase at which spikes occurred.  
Again, we observed clear phase-locking of spikes to the ongoing 6-14 Hz LFP in both 
regions (Figure 3.2b).  Although the relationship between LFP and spiking activity is 
certainly complex and neurons may spike at several preferred LFP phases, there was 
nevertheless a dominant phase preference across both regions.  Interestingly, both DS 
and MI spikes occurred preferentially at the peak of the striatal 6-14 Hz LFP oscillation, 
suggesting that DS neuron firing is maximal at the peak of the striatal LFP.  
 

 
 
 
 
 
 
 
To further quantify these corticostriatal interactions and the ways in which they evolve 
during learning, we calculated coherence between spiking activity in MI and LFP 
oscillations in DS.  A total of 1936 spike-field pairs were analyzed (121 M1 units and 16 
DS LFP channels). To avoid effects of evoked potentials on coherence estimates, the 
mean DS event-related potential (ERP) and M1 time-varying firing rate for each cell or 
LFP channel, respectively, were subtracted from individual trials before calculating 
coherence.  We saw a profound increase in spike-field coherence across a range of low 
frequencies in late learning, when the rats were skillfully performing the task, relative to 
early learning (Figure 3.3a).  This effect was most pronounced at frequencies between 
6-14 Hz, and there was a significant increase in the mean coherence at these 
frequencies from early to late in learning (Figure 3.3b; p < 0.001, Bonferroni corrected).  
However, while subtracting the mean ERP often reduces the effect of evoked potentials 
on estimates of spike-field coherence, it has also been shown that such a procedure 
can produce artifacts (Truccolo, 2002).  We therefore repeated the coherence analysis 
without subtracting the mean ERP, and again found a profound increase in 6-14 Hz 
coherence from early to late in learning.  This change in coherence was not due to 
differences in trial number between early and late learning, as we matched the 
conditions for number of trials included in the analysis.  Importantly, coherence was 
highest during target-reaching and decreased after trial completion at time 0 when the 
animals initiated movements towards the reward. Before trial completion, coherence 

Figure 3.2 a. The mean M1 LFP (top row) or DS LFP (bottom row) time-locked to occurrences of 
spikes from M1 (left column) or DS (right column).  All four average traces exhibit clear oscillatory 
activity with a strong component at roughly 8 Hz, showing that the phase at this frequency influences 
spiking activity.  b. Spikes from M1 (top row) or DS (bottom row) fire at a preferred phase of the 6-14 
Hz band in the M1 LFP (left column) or DS LFP (right column). 
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was significantly higher on correct relative to incorrect trials.  In addition, coherence 
between the M1 LFP and DS LFP also increased from early to late in learning (Figure 
3.3c), and this effect was also most pronounced between 6-14 Hz (Figure 3.3d).  We 
therefore focused further analyses on this frequency band. These data suggest that 
corticostriatal neuronal ensembles became tightly coordinated over the course of 
learning.  
 

 
 
 
 
 
 
 
 
 
 
 
 
3.3.3  Coherence is specific to output-relevant neurons and time periods 
 
We then asked whether this increase in coherence between M1 spikes and DS LFP 
was observed for all M1 cells recorded or was specific for task-relevant cells. The 
operant neuroprosthetic task used here offers the unique advantage that the cells which 
are directly controlling the output of the BMI (hereafter “output cells”; N=31) are explicitly 
defined. Because past work has demonstrated enhanced neuronal modulations in 
output cells relative to cells not entered into the BMI (Ganguly et al., 2011) (hereafter 
“indirect cells”; N=89), we first examined the firing rate modulations that rats were 
producing during task performance.  Although the indirect cells do not directly impact 
cursor movement, they are embedded in the same network as the output cells and 
modulation of their activity could therefore still play an indirect role in target 

Figure 3.3 a. Coherograms illustrating the grand average of coherence between M1 spikes and DS 
LFP in early (left) and late (right) learning time-locked to target achievement.  There is a clear 
increase from early to late in learning, with particularly pronounced activity in the 6-14 Hz band.  b. 
The mean coherence from 6-14 Hz in early (blue) and late (red) learning time-locked to target 
achievement.  Shaded regions denote s.e.m. Colored bars above plot designate time points with 
significant differences. c. Coherograms illustrating the grand average of coherence between M1 
LFP and DS LFP in early (left) and late (right) learning time-locked to target achievement.  There is 
a clear increase in low frequency coherence during learning. d. The percent increase in coherence 
from early to late in learning shows that this effect is most pronounced in the 6-14 Hz band. 
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achievement.  However, in late learning, rats modulated output cells significantly more 
than indirect cells surrounding target achievement (Figure 3.4a; p < 0.001), suggesting 
that the indirect cells were indeed being treated as  less task-relevant than output cells.  
Importantly, we found that the M1-DS coherence that emerged during learning was 
highly specific to output cells (Figure 3.4b), even when they were recorded on the same 
electrode as indirect cells and separated from this population by less than 100 μm.  This 
effect again appeared to be more pronounced in the 6-14 Hz range, with significantly 
larger coherence for output relative to indirect cells (Figure 3.4c; p < 0.01, Bonferroni 
corrected). We ensured that well-isolated units were included in both the output and 
indirect populations, and further verified that these populations did not differ in baseline 
firing rate (see Methods).  Nevertheless, spikefield coherence estimates can be affected 
by firing rate (Lepage et al., 2011) and the task structure required differences in firing 
rates in the two populations during target achievement.  We therefore performed a 
thinning procedure to equate firing rates between the two populations (Gregoriou et al., 
2009) (see Methods).  Despite differences in firing rate being removed, there remained 
a significant difference in spikefield coherence between output cells and indirect cells (p 
< 0.001, Bonferroni corrected), demonstrating that this effect was not driven by firing 
rate differences.  To further ensure that our results were not affected by firing rate, we 
separated our analysis by both cell and trial type to examine trials in which output cells 
were required to increase their firing rate and trials in which output cells were required 
to decrease their firing rate to achieve the target.  There was still a significant difference 
in coherence between output cells that were decreasing their firing rate relative to 
indirect cells (p < 0.05, Bonferroni corrected), despite no significant difference in firing 
rate between these same two populations.  Finally, we performed the coherence 
analysis after removing cells with low signal-to-noise ratio from the indirect population 
and coherence remained higher in output cells than indirect cells, demonstrating that 
the effect was not driven by differences in waveform quality (p < 0.05, Bonferroni 
corrected).  These coherent interactions were greatly diminished during the inter-trial 
intervals when rats were not actively engaged in the task (Figure 3.4d).  Furthermore, 
during these periods, the difference in coherence between output and indirect 
populations was abolished (Figure 3.4e,f).  These results suggest that the corticostriatal 
coherence that emerged during learning was highly specific for neurons that are directly 
relevant to behavioral output, even when they are closely intermingled with other cells, 
and that these precise interactions are flexible and appear rapidly during task 
performance. 
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3.3.4  Precise timing of corticostriatal activity 
 
Because we had found that M1 spikes were occurring preferentially at the peak of the 
DS LFP oscillations (Figure 3.2b), we next investigated the phase offset of the spike-
field coherence.  From the mean phase heat map, we see that there is a consistent 
negative phase offset in the 6-14 Hz range (Figure 3.5a).  By convention, this suggests 
that M1 spikes precede the peak of the DS LFP in the 6-14 Hz band. Indeed, the phase 
offset at 6-14 Hz was commonly negative, as can clearly be seen in the distribution of 
phase offset values for every cell and every frequency in the alpha band (Figure 3.5b). 
When the phase offset values are used to estimate a temporal delay between M1 
spikes and the DS LFP (see Methods), we see a clear preference for M1 cells to fire at 
an offset of roughly -5 to -7 msec relative to the DS LFP, as reflected in the mode of this 
distribution (Figure 3.5c; s.e.m. = 0.03 msec). This preference developed over the 
course of training and was not present in early stages of learning (Figure 3.5d) or in late 
learning during time periods when rats were not actively engaged in the task (Figure 
3.5e), suggesting that it is not innately apparent in corticostriatal circuits.  In addition, 
this temporal offset was specific to the 6-14 Hz band.  These results show that M1 is on 
average spiking 6 msec before the peak of the LFP oscillations in DS when the animals 
are performing a well-learned task. 

Figure 3.4 a. Firing rate modulation depth for output (red) and indirect (blue) cells in late learning.  
There is significantly greater modulation of output cells relative to indirect cells.  b. Coherograms in 
late learning showing the grand average for output cells (left) and indirect cells (right) time-locked 
to target achievement.  Coherence is markedly stronger in output than indirect cells.  c. Mean 
coherence from 6-14 Hz in late learning for output cells (red) and indirect cells (blue) time-locked to 
target achievement.  Shaded regions denote s.e.m. Colored bars above plot designate time points 
with significant differences. d. Coherence in late learning is greatly reduced during periods when 
rats are not actively engaged in the task. Plot shows the grand average across animals. e. When 
rats are not actively engaged in the task, there is no difference in coherence for output (left) and 
indirect (right) cells. f. Mean coherence from 6-14 Hz in late learning when rats are not actively 
engaged in the task again shows no difference between output (red) and indirect (blue) cells. 
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Figure 3.5 a. Phase values in late learning show a negative phase in the 6-14 Hz band relative to 
other frequency ranges.  By convention, this suggests that M1 spikes lead the DS LFP. b. The mean 
phase from 6-14 Hz surrounding target achievement exhibiting consistently negative phase. c. The 
distribution of temporal offset estimates obtained from the coherence phase data for every trial and 
every M1 cell-DS LFP channel pair (see Methods) shows that M1 spikes most often occur 5-7 msec 
before the peak of the DS 6-14 Hz LFP. d. The distribution of temporal offset estimates in early 
learning does not show the same phase preference seen in late learning. e. The distribution of 
temporal offset estimates in late learning during time periods when the rats were not actively 
engaged in the task does not show the same phase preference seen during task engagement. f. 
Mean spiking response in the DS time-locked to application of ICMS to M1. g. Histogram of the 
latency to DS spikes following application of ICMS to M1 as a measure of the corticostriatal 
conduction delay.  There is a clear peak 5-7 msec after application of ICMS.  h. The ICMS-based 
estimate of the conduction delay (top) aligns remarkably well with temporal offset estimates from the 
spike-field coherence analysis (bottom).  Temporal offsets are plotted with a reversed x-axis to 
correspond with the ICMS results. i. A working model for our results.  M1 spikes precede the DS 
LFP 6-14 Hz band peak by 5-7 msec, which is on scale with the corticostriatal conduction delay.  
Thus, after accounting for this delay, M1 spikes arrive at the DS during peak excitability. 
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The DS receives strong input from M1, and this temporal offset is concordant with past 
estimates of the conduction delay between the two regions (Cowan & Wilson, 1994), 
suggesting that M1 input may be driving DS firing (which occurs preferentially at the 
peak of striatal LFP oscillations; see Figure 3.2b). We therefore applied intracortical 
microstimulation (ICMS) to M1 while recording responses in the DS and estimated the 
delay between M1 stimulation and DS response. Brief cathodal pulses were applied to 

Figure 3.6 a. DS 6-14 Hz STPC time-locked to M1 spikes exhibits a marked peak immediately 
following M1 activity.  DS STPC (black) is significantly greater than the distribution of 6000 STPC 
values obtained by shuffling the timing of recorded spikes (blue). Colored bars above plot designate 
time points with significant differences.  b. M1 6-14 Hz STPC time-locked to DS spikes also exhibits 
a clear peak following DS activity.  M1 STPC (black) is significantly greater than surrogate STPC 
values (blue). Colored bars above plot designate time points with significant differences. c. DS 6-14 
Hz STPC (black) time-locked to application of ICMS to M1.  ICMS in M1 is followed by a consistent 
phase in the DS. This is significantly greater than surrogate STPC values (blue). Colored bars 
above plot designate time points with significant differences. d. DS 6-14 Hz amplitude time-locked 
to application of ICMS to M1 (black).  ICMS in M1 is followed by an increase in 6-14 Hz amplitude 
in the DS. This peak is significantly greater than values obtained on a surrogate dataset (blue). 
Colored bars above plot designate time points with significant differences. 
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M1 and produced a consistent spiking response in the DS (see Methods).  A total of 
3245 ICMS trials were performed in 7 animals over the course of several sessions.  The 
mean peristimulus time histogram (PSTH) time-locked to stimulation shows a marked 
peak in DS spiking activity following application of ICMS to M1 (Figure 3.5f).  For every 
cell, we then estimated the corticostriatal conduction delay by calculating the latency 
from M1 stimulation until the first DS spike occurred (Figure 3.5g).  This distribution of 
latencies had a mode at 6 ms (s.e.m. = 0.1 msec), which is on scale with past estimates 
of the conduction delay obtained with intracellular recording (Van der Maelen & Kitai, 
1980).  There was striking alignment between this estimate of the conduction delay and 
the temporal offset values determined above, and these distributions were not 
significantly different from each other (Figure 3.5h, p = 0.45).  Together these results 
suggest that M1 spikes in late learning are precisely timed to drive DS during task 
performance (Figure 3.5i). 
 
3.3.5  Network activity drives the 6-14 Hz LFP oscillation 
 
Our finding of a consistent nonzero phase lag concordant with the conduction delay 
between the two regions suggests that the two regions may interact directly rather than 
being coordinated by a third region.  To further investigate a mechanism for these 
precise dynamics, we calculated spike-triggered phase coherence (STPC) in the 6-14 
Hz band of both regions time-locked to spikes from either region (see Methods). STPC 
measures phase consistency from spike to spike. This measure will be 1 if, at a given 
time point, the phase is the same surrounding every spike, and it will be 0 if the phase is 
random. By investigating the time course of coherence fluctuations surrounding a spike, 
the STPC measure is suggestive of the direction of influence between spikes and LFP, 
although it cannot conclusively rule out the influence of a third region.  Importantly, the 
DS STPC exhibited a pronounced peak after spikes from M1 are fired, showing that M1 
spikes are followed by a highly consistent phase in the DS (Figure 3.6a; p < 0.001, 
Bonferroni corrected). Interestingly, we found a similar effect for the reverse calculation, 
with STPC in M1 significantly enhanced following spikes from the DS (Figure 3.6b; p < 
0.001, Bonferroni corrected). This shows that activity in the DS is followed by a 
consistent phase in M1, and underscores that corticostriatal circuits function as re-
entrant loops. To investigate whether M1 activity caused the 6-14 Hz activity or simply 
coordinated ongoing activity, we also calculated STPC in the DS surrounding 
application of ICMS to M1 (Figure 3.6c) and found that STPC was significantly 
enhanced following M1 ICMS (p < 0.001, Bonferroni corrected), suggesting that strong 
ICMS-induced activity in M1 produces entrainment that drives the DS 6-14 Hz 
oscillation. These peaks in STPC are significantly greater than values obtained with 
surrogate datasets in which the spike or event times were shuffled (see Methods). 
Importantly, M1 ICMS is also followed by an enhancement of 6-14 Hz amplitude in the 
DS (Figure 3.6d; p < 0.001, Bonferroni corrected), suggesting that strong M1 activity 
drives the 6-14 Hz activity in the DS rather than coordinating ongoing activity. 
Interestingly, the peak in 6-14 Hz amplitude following ICMS precedes the peak in STPC.  
This amplitude peak is again greater than values obtained with surrogate datasets, but 
as expected, surrogate values for the amplitude calculation are midway between the 
values seen in the actual data. They do not remain near zero like surrogate STPC 
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values because amplitude calculations are not as dependent on precise timing as phase 
calculations. Together these data suggest that, after learning, spiking in M1 or the DS 
produces a consistent LFP phase in the other region, resulting in reinforcement of 
coherent dynamics with precise timing throughout the network. 
 
3.4 Discussion 
 
In summary, we have shown that coherence develops in corticostriatal networks during 
learning with high temporal precision, and importantly, specifically involving the cells 
that control behavioral output, even when these cells are intermingled with other 
neuronal populations.  This specificity suggests that coherence can serve to enhance 
communication between task-relevant populations and bias local competitive 
interactions in their favor. This, in turn, allows for rapid modulation of the functional 
connectivity between local ensembles and distant brain structures, and for flexible 
routing of specific signals throughout the brain as these signals become immediately 
relevant for behavior. Interestingly, this cell-specific coherence occurred predominantly 
in the alpha band, between 6-14 Hz. This is consistent with recent work showing low-
frequency coherence between M1 spikes and DS spikes (Koralek et al., 2012). The 
slight shift in frequency between spike-spike coherence and spike-field coherence in the 
same task may reflect that spike-spike coherence measures similarity between the 
output spike trains of two regions, while spike-field coherence is thought to measure 
similarity between the output of one region and synchronous input to another (Zeitler et 
al., 2006). Differences between these measures in the dominant frequency of 
coherence could therefore reflect individual neurons not spiking on every cycle of the 
population rhythm or performing temporal integration of inputs.  
 
A number of distinct rhythms have been previously observed in this frequency range.  
While some of these rhythms, such as high voltage spindles or mu rhythms, are thought 
to be generated in thalamocortical circuits (Hughes & Crunelli, 2005), other forms of 6-
14 Hz LFP activity in M1 are thought to be generated via local circuit mechanisms 
(Castro-Alamancos, 2013).  Importantly, sleep spindles in this frequency range have 
been associated with memory consolidation (Steriade & Timofeev, 2003).  In addition, 
alpha band activity in the visual system (Kandel & Buzsaki, 1997) and mu rhythms in 
the sensorimotor system (Nicolelis et al., 1995), both centered roughly at 6-14 Hz, have 
frequently been associated with disengagement from external stimuli.  Thus, our finding 
of enhanced phase-locking of M1 spikes to the DS alpha band LFP in late learning 
could reflect the rodents learning to disengage the corticostriatal system from the 
musculature in order to perform our neuroprosthetic task.   
 
In addition, the precise timing of neuronal inputs that we observed could have 
consequences for network dynamics and plasticity throughout the brain.  A large body 
of work has shown that temporal precision modulates the induction and direction of 
long-lasting synaptic plasticity (Dan & Poo, 2004).  Indeed, computational models have 
demonstrated the importance of timing for spike-timing-dependent plasticity and 
information transfer through neuronal networks (Wang et al., 2010).  Input timing is 
particularly important for the regulation of dendritic calcium levels in striatal cells and, in 
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turn, synaptic plasticity (Kerr & Plenz, 2004).  Thus, the precise temporal dynamics 
demonstrated here may have important functional consequences for corticostriatal 
plasticity and its role in learning. 
 
Our results also suggest the intriguing possibility that these precise temporal 
interactions can be maintained by activity within the network reinforcing the 
synchronous LFP oscillations.  Cortico-basal ganglia circuits are organized as closed 
feedback loops (Hikosaka et al., 1999), with activity in any node influencing the flow of 
information throughout the system. Our finding of enhanced STPC following spikes in 
either M1 or DS therefore suggests that this flow of feedback through re-entrant 
corticostriatal loops maintains the orderliness and strength of coherent oscillations in the 
system. Indeed, while past work has suggested that oscillations spanning a range of 
frequencies may be produced in the thalamus, removal of corticothalamic feedback by 
decortication results in highly disordered oscillations (Contreras et al., 1996), 
highlighting the importance of network feedback mechanisms in the control and 
organization of coherent activity.  
 
In summary, our data support coherence as an effective means by which functional cell 
assemblies can quickly form and disband to meet task demands, as well as 
demonstrating ways in which such neuronal interactions can be learned and adapted to 
support a lifetime of flexible, skilled behavior. 
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Chapter 4: 
 
Fine-scale spatial characteristics of network reorganization 
 
While we have seen striking reorganization in neuronal networks over the course of 
neuroprosthetic learning, microelectrode arrays suffer from a number of limitations.  In 
particular, array recordings offer somewhat poor spatial resolution relative to several 
other techniques.  To address this issue and dissect the spatial characteristics of 
network changes during learning, we developed a task involving operant conditioning of 
spike-related calcium signals recorded with high spatial resolution using two-photon 
imaging.  Mice learned to modulate activity in both motor and somatosensory cortices, 
exhibiting learning across- and within-sessions, and this learning was accompanied by 
striking modifications to spatially localized networks.  Crucially, the use of two-photon 
imaging allowed dissection of neuronal changes associated with neuroprosthetic 
learning with unprecedented spatial resolution. 
 
4.1 Introduction 
 
Brain-machine interfaces (BMIs) have gained great momentum in recent years as a 
therapeutic option for patients suffering from limb loss or immobility (Fetz, 2007; 
Carmena et al., 2003; Hochberg et al., 2012; Collinger et al., 2013).  In addition to this 
direct clinical application, BMI tasks also provide a unique approach to studying 
sensorimotor learning, as they enable arbitrary mapping between neuronal activity, 
behavioral output, and reward (Green & Kalaska, 2011).  Recent work has used BMI to 
demonstrate network adaptations in response to output perturbations (Jarosiewicz et 
al., 2008), as well as highly specific functional changes in output-relevant neurons 
(Ganguly et al., 2011; Koralek et al., 2013).  However, past BMI work has been based 
on spatially sparse electrode recordings and lacks fine-scale spatial information about 
local network modifications.  To address this issue, we developed a BMI task in awake, 
head-restrained mice using 2-photon calcium imaging in local neural ensembles, in 
which activity of every neuron in a small field of view (150 by 150 microns) is imaged.  
We used this novel calcium-based BMI paradigm (CaBMI) to probe the fine-scale 
spatial characteristics of network reorganization in cortical layer (L) 2/3 of both motor 
and somatosensory cortices during BMI learning. 
 
4.2 Methods 
 
All animal procedures were performed in accordance with University of California 
Berkeley Animal Care and Use Committee regulations. 6 C57BL/6J and 4 CD1 male 
wild-type mice were used in these experiments, ranging in age from postnatal day 30–
45. Mice were housed with a 12-h dark, 12-h light reversed light cycle. All behavioral 
tests were performed in the same cohort of mice. 
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4.2.1  Surgery 
 
Mice were anesthetized using 2% isoflurane (vol/vol) and placed in a stereotaxic 
apparatus. Body temperature was maintained at 37 °C using a feedback-controlled 
heating pad (FHC, 40-90-8D) and a small incision was made in the scalp. The skull was 
cleaned and a steel headplate was affixed over M1 (1 mm rostral, 1 mm lateral to 
Bregma) or S1 (1 mm caudal, 3 mm lateral to Bregma) using Metabond dental cement 
(Parkell, S380). A 3-mm craniotomy was opened over M1 or S1, and 200 nl of AAV2.9 
Syn.GCamp6f.WPRE.SV40 (Chen et al., 2013) (University of Pennsylvania Vector 
Core) was injected 250 µm below the pia using a Nanoliter 2000 injector (World 
Precision Instruments). The tracer was delivered using a pulled glass pipette (tip 
diameter = 40–60 µm) at a rate of 40 nl min–1. The pipette was left in the brain for 10 
min after completion of the injection to prevent backflow. After the pipette was removed, 
the brain was covered with silicone oil (Sigma product # 181138) and a glass coverslip 
was affixed to the skull with dental cement, as previously described (Holtmaat et al., 
2012). We allowed 2 weeks for recovery and gCaMP6f expression. 
 
4.2.2  Two-photon imaging 
 
In vivo imaging was performed with a Moveable Objective Microscope (Sutter) using a 
Chameleon Ultra Ti:Sapphire mode-locked laser (Coherent) tuned to 900 nm. Photons 
were collected with a Hamamatsu photomultiplier tube (H10770PA-40) using a Nikon 
objective (16×, 0.8 NA). Animals were head-fixed on a custom-made spring mounted 
imaging platform and placed under the two-photon microscope. This setup allowed 
them to run freely, and their movements were recorded by an accelerometer fixed to the 
underside of the platform. Frames of 128 × 512 pixels (~160 × 160 µm) were collected 
at 7.23 Hz using ScanImage software (Pologruto et al., 2003) at 130–180 µm below the 
pia. The same imaging fields were used every day, localized by landmarks in the 
surface blood vessels. Imaged fields were stable over the course of training, and 
because the cortex was stabilized by a snugly fitting coverslip, only severe movements 
caused motion artifacts. Motion correction for slow drift in the imaging field was 
performed manually. Any period of gross movement during the task that caused cells to 
move out of their regions of interest (ROIs) resulted in poor task performance, as ∆F/F 
of E1 was reduced. In this sense, mice were punished for excessive movement and 
seem to have learned to remain still during the task. 
 
4.2.3  Behavioral task 
 
Two ensembles of 1–11 single cells each were chosen for inclusion in the output 
population. Cells with bright nuclei, indicating overexpression, were excluded, as were 
cells with many, poorly separable calcium events, an activity pattern indicative of fast-
spiking interneurons. No other selection criteria were used to partition the recorded cells 
into each ensemble. We also ensured that many cells with good signal were included in 
the indirect population to enable a proper comparison. The cells assigned to the output 
population were changed on some days. 
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Ensemble activity was measured as mean ∆F/F for all component neurons. 
Fluorescence values from these ensembles were binned in 200-ms bins and entered 
into an online transform algorithm that related neural activity to the pitch of an auditory 
cursor. By modulating activity in these ensembles, rodents controlled the pitch of the 
cursor. The modulations that we required of the mice were calibrated daily based on a 
baseline recording session of roughly 2 min. Next, 10–15 min of spontaneous baseline 
activity was recorded to assess chance levels of performance. Fluorescence values 
were smoothed by a moving average of the past three time points. Changes in the 
frequency of the auditory cursor were binned in quarter-octave intervals to match rodent 
psychophysical discrimination thresholds (Han et al., 2007). Mice then had to modulate 
calcium dynamics in these neuronal ensembles to move the cursor to a high-pitched 
target tone that was associated with a 10% sucrose (wt/vol) solution reward. A trial was 
marked incorrect if a target was not achieved within 30 s of trial initiation. A trial was 
self-initiated when E1 and E2 activity returned to baseline levels (either by decreased 
activity in E1 or increased activity in E2), which reset the tone to its starting pitch. 
 
Chance levels of performance (Figure 4.1b) were determined by running the animal on 
the task without reward or auditory feedback. Hits resulted when spontaneous 
fluctuations were large enough push the decoder to the target frequency. Failure to hit a 
target in 30 seconds resulted in a miss. The chance region represents the mean chance 
performance and s.e.m., pooled over all animals and all days. 
 
ROIs were extracted from recorded neural data in real time. These ROIs were entered 
into custom routines in MATLAB (Mathworks) that translated fluorescence levels into 
the appropriate feedback pitch and played the pitch on speakers mounted on two sides 
of the imaging platform. Frequencies used for auditory feedback ranged from 1–24 kHz 
in quarter-octave increments. When a target was hit, a MATLAB-controlled Data 
Acquisition board (National Instruments) triggered the operant box to supply the 
appropriate reward to rodents. Each daily training session lasted 48 ± 2 min (71 ± 4 
trials). 
 
4.2.4  Data analysis 
 
All analyses were performed with custom written routines in MATLAB. Recorded movies 
were spatially aligned using the dftregistration routine in MATLAB (Guizar-Sicairos et 
al., 2007). ROIs were manually selected to include the soma of neurons that appeared 
consistently throughout all recorded movies. Fluorescence traces were extracted from 
each ROI and data is presented as the relative change in fluorescence, ∆F/F (Chen et 
al., 2011). 
 
No statistical methods were used to pre-determine sample sizes, but our sample sizes 
are similar to those generally employed in the field. For analyses of behavioral 
performance during the contingency degradation (Figure 4.1f), the first ten trials of a 
session were removed before calculating performance to exclude the transition period 
and reflect the animal’s performance once the animal had fully learned the new reward 
contingency. For all sliding window analyses, sessions were divided into an equal 
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number of bins to determine the window size, and the step size was a fraction of this 
window size. 
 
For the data plotted in Figure 4.2g, mean z score values during task engagement were 
binned by distance from E1 or E2 centroid. The first bin included all cells from 0–50 µm 
from the centroid of the output ensemble (close cells), the second bin included all cells 
50–100 µm from the output ensemble, and the final bin including all cells 100+ µm from 
the output ensemble. ‘Distant’ cells included all cells at a distance of greater than 50 µm 
from the E1 centroid. We include data from 3 d late in training from 5 mice where 20 or 
more indirect cells were apparent in the field. 
 
For the cross-correlation histograms, fluorescence traces from output cells were z-
scored and values above 3 s.d. were considered an event. The first time point in which 
fluorescence values crossed this threshold during each event was used for time-locking. 
Fluorescence values in other populations of cells were then averaged around these 
indices. 
 
In all cases, multiple comparisons were controlled for using the Bonferroni correction. 
Differences between groups were tested with t tests. To evaluate trends over time, we 
tested whether the slope of a fitted linear regression was significantly different from 
zero. All statistical tests were two-tailed. 
 
For testing the activity modulations for low versus more active cell groups in Figure 2b, 
the high active group included cells with spontaneous event rate greater than the 
median spontaneous event rate, the low active group included cells with spontaneous 
event rate less than the median. 
 
Data distributions were assumed to be normal, but this was not formally tested. Data 
collection and analysis were not performed blind to the experimental conditions. 
Randomization was not performed, as the experiment primarily involved within-animal 
comparisons and there were no multiple experimental cohorts. 
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Figure 4.1 a. Task schematic. b. Behavioral performance over 8 days of training.  Mean 
performance is shown in black, and individual animals are shown in gray.  Error bars denote s.e.m. 
Shaded region denotes chance levels of performance. c. Behavioral performance for animals 
trained to use M1 (top) and S1 (bottom). d. Hit rate increases over the course of individual 
sessions.  Shaded region denotes s.e.m. e. Animals achieve 50% performance faster over the 
course of training. f. Performance rapidly dropped compared to normal task levels (T) when the 
reward was randomized (contingency degradation, CD). Performance returned to previous levels 
when contingency was reinstated (R). g. �F/F in E1 increases during the task and rapidly 
decreases during contingency degradation. Likewise, target hits (red) increase in frequency over 
training, and decrease during contingency degradation.  h. At the beginning of day 2 of 
contingency reversal, the animal initially performs as if the previous day’s transform algorithm were 
still in use, but quickly learns the new transform. 
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4.3 Results 
 
4.3.1 Volitional modulation of calcium dynamics 
 
We trained ten mice expressing the genetically-encoded calcium indicator gCaMP6f in 
L2/3 of either primary motor (M1) or primary somatosensory (S1) cortex to modulate 
neural activity in response to auditory feedback (Figure 4.1a; see Methods).  This task 
was adapted from one used previously with electrode-based recordings (Koralek et al., 
2012).  Each day, two ensembles containing 1-11 neurons each were chosen to control 
the task. Ensemble activity was measured as mean ∆F/F for all component neurons.  
The ensembles opposed each other, such that increased activity in one ensemble (“E1”) 
above its baseline (measured in a 10-15 min spontaneous activity period prior to task 
onset) increased the pitch of the auditory feedback, while increased activity in the other 
ensemble (“E2”) decreased the pitch. Tone pitch was updated every 200 ms as a 
function of the relative activity (E1-E2), and a sugar water reward was delivered when a 
specific high-pitched target was reached within 30 seconds of trial initiation (hit trial). 
Incorrect trials (target not hit within 30 seconds) were signaled with white noise. A trial 
was self-initiated when E1 and E2 activity returned to baseline levels, which reset the 
tone to its starting pitch.  Ensemble cells were occasionally changed when calcium 
signals had significantly degraded.  
 
Mice learned the task rapidly (Figure 4.1b), with initial rapid improvement (1-3 days) 
followed by slower improvement (4-8 days).  After just 1 day of training, mice performed 
above chance level (Figure 4.1b, shaded region, 10 mice, p = 0.0036 on day 2, t(8) = 
4.07).  Similar learning occurred using either M1 or, more surprisingly, S1 (Figure 4.1c).  
Hit rate increased significantly within each daily session (Figure 1d, p = 2.6x10-5, t(43) = 
4.7, R2 = 0.34).  Mice reached a criterion performance level (50% hits) faster across 
sequential days of training (Figure 4.1e, p = 0.0247, t(6) = 2.98, R2 = 0.596), suggesting 
that within-session learning occurs faster as between-session learning progresses.  As 
seen previously (Koralek et al., 2012), performance was not impaired by lidocaine 
injection into the contralateral mystacial pad (p = 0.876, t(3) = 0.17), and gross limb 
movements were absent preceding target hits, indicating that performance does not rely 
on natural movement and that neural activity, particularly in S1, is not driven by whisker 
reafference (data not shown).  
 
4.3.2  Probing intentionality 
 
We next asked whether these modulations were sensitive to the contingency between 
action and outcome (Hilario et al., 2007).  We performed a contingency degradation, 
whereby after an animal successfully learned the task, we ceased rewarding target hits 
and instead delivered rewards under a variable interval schedule.  Mice quickly ceased 
responding (Figure 4.1f-g; p = 0.0089, t(4) = 4.76).  When reward was reinstated the 
next day using the same E1 and E2 ensembles as the previous day, mice again 
performed at normal levels (Figure 4.1f; p = 0.791, t(3) = 0.289).  Thus, the animal’s 
performance was sensitive to reward contingency.  Post-hoc analysis of imaging data 
showed that E1 activity increased during task performance, and decreased during 
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degradation (Figure 4.1g).  On a separate day, we performed a contingency reversal (N 
= 3 mice) in which E1 and E2 identities were reversed between one day (termed day 
CR1) to the next (day CR2), requiring mice to reverse E1 and E2 neural activity patterns 
to obtain reward.  At the beginning of day CR2, E2 in one example mouse showed clear 
bursting activity (consistent with its identity as E1 on day CR1), and E1 showed little 
activity (consistent with its identity as E2 on CR1).  This pattern quickly reversed as the 
mouse learned the new contingency.  We compared the behavioral hit rate on day CR2 
to a simulated hit rate based on the E1/E2 identity and transform algorithm from day 
CR1.  The simulation showed initially high performance that then dropped to zero, 
indicating that this mouse initially performed according to the learned CR1 transform, 
but then quickly adapted to the new CR2 transform (Figure 4.1h). Across all mice, the 
ratio of E1/E2 activity increased over the course of day CR2 (N = 3, p < 0.01), 
demonstrating that the animals learn to flexibly up-modulate E1 over E2. Together, 
these data indicate that mice can modulate calcium signals in a contingency-dependent 
manner, and that these modulations can be flexibly applied to arbitrarily chosen cells. 
 
4.3.3  Neuronal changes during neuroprosthetic learning 
 
We next investigated neural changes that accompany the learning process.  We used a 
sliding window analysis to examine how activity changed over the course of a session in 
E1 and E2 cells (“output cells”).  Mean ∆F/F increased for E1 cells over the course of 
individual sessions (Figure 4.2a; p = 1.17x10-11, t(18) = 15.09, R2 = 0.927), decreased 
during subsequent contingency degradation (p = 0.05, t(18) = 2.08), mirroring the 
changes in hit rate.  In contrast, mean ∆F/F did not significantly change for E2 cells 
during the task or contingency degradation, indicating that task learning was primarily 
driven by modulation of E1 ∆F/F. This may reflect a bias toward volitional increases, 
rather than decreases, of mean L2/3 neuron activity over baseline. 
 
Calcium imaging detects activity even in neurons that are rarely active, which are 
numerous in L2/3 (O’Connor et al., 2010; Barth et al., 2012).  Although detectable with 
the extracellular recordings used in most BMI studies, these cells are undersampled by 
extracellular recordings and are often neglected in BMI studies (Shoham, 2006). Thus, 
their role in BMI learning is unclear. We observed a 30-fold range of baseline 
spontaneous activity across L2/3 cells (measured in the pre-task period) (Figure 4.2b).  
E1 cells with low spontaneous activity increased frequency of calcium events during the 
task, whereas cells with high spontaneous activity tended to slightly suppress burst 
frequency during task.  E2 cells tended to lower their frequency of calcium events during 
task engagement, independent of spontaneous responsiveness (Figure 4.2b), even 
though mean fluorescence did not change over the session. Thus, task learning tended 
to preferentially recruit low-active E1 neurons to become more active. “Silent” L2/3 
neurons clearly contributed to learning, because behavioral learning occurred normally 
even when all E1 cells had very low or zero baseline activity suggesting a role for 
“silent” L2/3 neurons in learning (Barth et al., 2012). Although the task structure 
encourages correlated network activity, this is not strictly enforced and mice can 
achieve targets with uncoordinated activity modulations. Within multi-cell E1 ensembles, 
multiple cells increased fluorescence around hits, and not just single neurons.  
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4.3.4  Network changes during neuroprosthetic learning 
 
To examine higher-level network dynamics during learning, we first calculated the mean 
cross-correlation histograms time-locked to the occurrence of large fluorescence bursts 
in either E1 or E2 (see Methods).  E1 and E2 cells developed coordinated, synchronous 
activity with other cells in the same ensemble (Figure 4.2c,d).  E2 cells also developed a 
tendency to spike before E1 cells (Figure 4.2c,d), likely reflecting a strategy of bursting 
E2 in order to reset the cursor for trial initiation, followed by bursting of E1 to drive the 
cursor to target.  This coordinated activity was not present in non-E1, non-E2 cells that 
were simultaneously imaged (Figure 4.2c,d; “indirect cells”).  This prompted us to 

Figure 4.2 a. Mean fluorescence 
increases in E1 cells over the course of 
a behavioral session. b. E1 cells with low 
levels of spontaneous activity increase 
their activity more during the task than 
cells with high levels of spontaneous 
activity. E2 cells suppress their activity 
evenly. Plotted on a logarithmic axis. c. 
Activity in E1, E2 and indirect cells time-
locked to large events in E1 cells. d. 
Activity in E1, E2 and indirect cells time-
locked to large events in E2 cells. e. 
Correlations increase between output 
cells (blue-green) over the course of the 
session, with no similar increase in 
correlations between indirect cells 
(black). f. Indirect cells located near 
output cells have more task-related 
activity than those located far from 
output cells. g. Early in a session (solid 
lines), target-related rate modulations in 
indirect cells decrease with distance 
from cells in E1 (blue) and increase with 
distance from cells in E2 (green).  Later 
in the session (dashed lines) there are 
no significant modulations in indirect 
cells, regardless of distance from output 
cells. 
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investigate activity correlations between cells over the course of individual sessions.  
We found that correlations between output cells in the same ensemble increased 
significantly over the course of the session (p = 0.0198, t(3) = 4.55, R2 = 0.874), while 
correlations between indirect cells did not (Figure 4.2e).  By the second time point, 
output cells in the same ensemble were significantly more correlated than indirect cells 
(p = 0.0056, t(60,366) = 2.77). Within each session, correlations between output cells 
were initially similar to those between indirect cells, but output cells became more 
correlated than indirect cells as the session progressed. This enhanced correlation 
between output cells in the same ensemble was observable in individual animals. 
Output cells also became more correlated over days of training, even though neural 
composition of ensembles changed. This is analogous to increased correlations of 
functionally similar cells during natural motor learning (Komiyama et al., 2010) and 
could reflect tight coupling with millisecond precision that has been demonstrated with 
penetrating electrodes (Engelhard et al., 2013). These data suggest that output cells 
become more coordinated as animals learn the task, and this effect is not present in the 
indirect population as a whole. 
 
4.3.5  Fine-scale changes in spatial activity patterns during learning 
 
We next examined the spatial organization of learning-related activity at a fine spatial 
scale (~10-100 µm) that is not possible with electrode-based BMI.  Learning 
performance did not vary systematically with distance between output ensembles 
(measured by E1 and E2 centroids), indicating that the proximity of output cells does not 
confer an advantage in learning (p = 0.906).  Performance did depend on the number of 
cells in an ensemble: animals were more successful at learning the task with fewer 
neurons, suggesting that it was difficult to maintain coordinated control over multiple 
randomly selected neurons. Additionally, high baseline correlations between E1 and E2 
cells predicted worse correlations.   Next, we analyzed the spatial profile of learning 
within local networks surrounding the E1 and E2 ensembles.  For each indirect cell, we 
calculated the correlation between its mean fluorescence and a moving average of the 
animal’s instantaneous hit rate in temporal windows over the course of the session. We 
found that activity in indirect cells close to E1 (<50 µm away from E1 centroid) was 
significantly more correlated with hits than activity in distant indirect cells (>100 µm 
away from E1; Figure 4.2f, p = 0.048, t(249) = 1.98). Finally, we calculated mean target-
related activity modulations in indirect cells for early and late epochs within daily 
learning sessions (Figure 4.2g). Early in sessions, indirect cells near the E1 centroid 
exhibited increased ∆F/F around hits, while more distant indirect cells did not.  In 
contrast, indirect cells near the E2 centroid showed modest activity suppression early in 
sessions in indirect cells near E2, with increased activity evident in cells distant from E2 
and close to E1.  This shows that early in the session mice modulate activity in a 
relatively large local network surrounding output cells (Ganguly et al., 2011), but as the 
session progresses this target-related activity modulation in indirect cells disappears, 
such that only direct E1 and E2 cells exhibited task-related modulations.  This suggests 
that as learning progresses mice are able to hone in on the individual output cells and 
precisely modulate the activity of these cells for efficient target achievement.  However, 
indirect neurons that were more highly spontaneously correlated with E1 cells, and 
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therefore more likely to be embedded in the same local sub-network (Harris et al., 
2013), were more likely to continue modulating their activity during the task (p=5e-5).  
Given the rapid falloff of spontaneous correlations with distance, such fine-scale effects 
cannot be measured with electrode-based recording methods. Together, these data 
demonstrate that mice initially modulate activity in a larger local network of cells that 
falls off with distance from the output cells, but over the course of learning are able to 
restrict activity modulations to the cells that are directly relevant to behavioral output, or 
preferentially functionally coupled to these output cells.  This restriction in spatial activity 
is similar to sparsening of cortical representation observed during classical conditioning 
(Gdalyahu et al., 2012).  
 
4.4 Discussion 
 
To our knowledge, this CaBMI task is the first demonstration that mice can volitionally 
modulate calcium dynamics in L2/3 of M1 and S1, and the use of imaging has allowed 
for the dissection of learning-related network modifications during BMI with 
unprecedented spatial resolution. Mice rapidly learn the task and exhibit learning both 
within- and across-sessions. We found the learned neuronal modulations in this task to 
be very sensitive to changes in reward contingency, suggesting that they are goal-
directed (Dias-Ferreira et al., 2009).  This learning is accompanied by gradually 
increasing correlations between direct output cells. Furthermore, this learning involves a 
transient increase in activity modulation in neighboring indirect cells that disappears as 
learning progresses and circuits are refined so that primarily output cells are modulated.  
These findings demonstrate that the cortex can identify and select specific cells and 
neural patterns that are relevant for obtaining specific outcomes (Costa et al., 2011).  
Importantly, this novel paradigm provides a powerful tool for investigating the spatial 
extent of functional and structural plasticity during neuroprosthetic learning, and can be 
easily combined with other techniques, such as whole-cell recording and tracer 
injections, to precisely dissect learning strategies employed by the cortex. 
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Chapter 5: 
 
Conclusions and open questions 
 
The ability to learn new skills and perfect them with practice is fundamental to our daily 
lives.  Whether it be refining the precise motor patterns used for playing a musical 
instrument, or learning the series of movements necessary to cook a great meal, or 
even developing an intuition for more abstract skills like chess and mathematics, our 
ability to learn from experience is what has led to the nearly endless repertoire of 
behaviors that human beings are capable of producing.  However, the neuronal 
mechanisms of this form of learning and the seemingly limitless capacity of the 
procedural memory system remain poorly understood. 
 
This work has investigated neuronal mechanisms of skill learning from the novel 
perspective of neuroprosthetic skills.  By exploring these questions through a unique 
vantage point, we have been able to explore neural systems for skill learning that do not 
directly involve the musculature, and we have seen striking functional adaptations over 
the course of learning that are specific on the single cell level.  In addition, we have 
seen that BMI tasks rely on similar neural substrates as natural skill learning, 
highlighting the intriguing ways in which these two areas of active research exist 
synergistically. 
 
5.1 Summary of contributions 
 
A primary motivation of this work was to investigate similarities between natural motor 
learning and neuroprosthetic learning, and the ways in which the two sub-disciplines 
can inform one another and capitalize on the respective benefits of each.  Throughout 
this work, we have seen important implications for both BMI and basic science that 
could have only been elucidated through this novel perspective.  In addition, a growing 
literature has supported the similarities between these two forms of learning (Green & 
Kalaska, 2011), and utilized this paradigm to gain important insights into the neural 
mechanisms at play (Jarosiewicz et al., 2008).   
 
In Chapter 2, we presented a novel rodent paradigm for neuroprosthetic control that 
required rodents to learn an arbitrary mapping between neuronal activity and behavioral 
output.  Learning followed a typical learning curve across slightly over a week of 
training, with rapid improvement in the first few days followed by slower improvement up 
to a plateau level in subsequent days.  Using a three-axis accelerometer and EMG 
recordings in the mystacial pad, we verified that the animals were producing the desired 
neural modulations irrespective of gross motor output or more subtle muscular activity.  
We further verified, through three distinct manipulations on outcome value, that the 
animals were performing these modulations in a goal-directed rather than habitual 
manner.   
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In the second half of Chapter 2, we found striking changes in corticostriatal firing 
patterns in rats as task learning progressed.  We found that striatal neurons fired 
significantly more strongly in late learning and a significantly larger proportion of striatal 
neurons exhibited target-locked firing rate modulations in late learning than in early 
learning, similar to what has been seen in natural motor learning (Yin et al., 2009).  We 
also found changes in the interactions between M1 and the striatum, with significantly 
greater coherence between spikes in the two regions as learning progressed.  Finally, 
we ran the task on both wildtype mice and mutant mice lacking functional NMDA 
receptors in the DS.  Wildtype mice learned the task well and exhibited the same 
neuronal changes observed in rats, but mutant mice were unable to perform the task 
and exhibited none of the neural changes discussed above.  Together, this work 
demonstrates that functional corticostriatal plasticity is necessary for animals to learn 
abstract skills that do not involve the musculature, and further suggests that BMI 
learning capitalizes on the neural systems for learning that are already in place in the 
nervous sytem. 
 
In Chapter 3, we examined these coherent corticostriatal interactions in greater depth, 
in line with the theory of “neuronal communication through neuronal coherence” (Fries, 
2005).  We found that coherence increases between M1 spikes and the striatal LFP 
over the course of learning.  These coherent interactions were highly specific to the 
population of output cells relative to neighboring indirect cells, even when these cells 
were recorded on the same electrode.  In addition, this coherence was only present 
surrounding target achievement, and not during the inter-trial interval when rats were 
not actively performing the task.  We then measured the corticostriatal conduction delay 
and found it to match the coherence phase offset, demonstrating that activity in the 
network becomes precisely timed to effectively drive other downstream regions.  Finally, 
we found that activity in any node of the network is followed by reinforced phase 
consistency in other nodes, suggesting a form of positive feedback in maintaining these 
precise, coherent dynamics. 
 
In Chapter 4, we adapted the behavioral paradigm for use with two-photon imaging.  
Mice again learned an arbitrary mapping between neuronal activity patterns and 
behavioral output, but now they were head-fixed during task performance and they were 
modulating calcium signals from cells in L2/3 rather than spikes from cells in L5.  Their 
performance improved both within single sessions, as well as across days of training.  
We again found that the neuronal modulations were being performed in a goal-directed 
manner, and we found that mice could flexibly apply these learned modulations to 
arbitrarily chosen cell populations during the contingency reversal manipulation.  Over 
the course of learning, output cells developed striking coordinated activity.  Finally, 
using the fine-scale spatial information available with two-photon imaging, we found that 
at the beginning of training sessions, mice were modulating activity in a local network of 
indirect cells surrounding output cells, and these task-relevant modulations fell off with 
distance from output cells.  Over the course of learning, however, mice honed in on the 
behaviorally-relevant neuronal populations and eventually modulated activity only in the 
output cells. 
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5.1.1 Additional engineering collaborations 
 
In addition to the findings discussed in this dissertation, this work resulted in a number 
of interesting collaborations with other graduate students developing novel methods for 
the recording and analysis of neural signals.  These projects will not be discussed in 
depth, but will be briefly mentioned here. 
 
First, the data and findings from this work were used to validate the use of directed 
information as a measure of functional connectivity in neuronal networks (So et al., 
2012).  In addition, the experiments presented here on intracortical microstimulation 
were used in collaborative work to develop new methods for the reduction of stimulation 
artifacts when performing simultaneous stimulation and recording (Chu et al., 2013).  
This work together has forwarded the development of novel algorithms for acquiring and 
analyzing high-quality neural data. 
 
In addition, several collaborations have aimed to develop and validate novel devices for 
neural recording.  For example, we implanted micro-electrocorticography grids 
chronically in rats and then trained the rats to use the recorded neural signals for 
neuroprosthetic control (Ledochowitsch et al., 2013).  In addition, we tested a new 
circuit for completely wireless neural recording, including wireless powering and data 
transfer, using the same micro-electrocorticography grid (Muller et al., 2014).  Together, 
these collaborations furthered the development of novel technologies for neural 
recording. 
 
5.2 Open questions and future directions 
 
As we have seen, the fields of natural motor learning and neuroprosthetic learning 
mutually benefit from interactions between the disciplines.  There is now ample 
evidence to support the view that the two processes share many common neural 
substrates, and there are similarly many opportunities to utilize these commonalities to 
answer a number of important open research questions. 
 
5.2.1 The role of the striatum in tasks that do not involve the motor system 
 
By utilizing neuroprosthetic tasks that do not involve the musculature, we have been 
able to demonstrate a role for the striatum in abstract skill learning, or the learning of 
skills that are irrespective of physical movements.  However, the neuroprosthetic tasks 
used here still utilized neuronal activity from motor and somatosensory cortices, which 
are still part of the broader motor system.  To more definitively demonstrate a role for 
corticostriatal plasticity in tasks that are completely divorced from the motor system, 
control signals must be acquired from brain regions that are far removed from the motor 
system.  Recent work in our lab has begun to use activity from primary visual cortex 
towards this aim, and has showed promising initial results. 
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5.2.2 Basal ganglia and thalamic contributions to corticostriatal signaling 
 
The work presented in Chapter 3 demonstrated intriguing mechanisms between M1 and 
the striatum to facilitate temporal precision and synchrony throughout the network.  
However, these brain regions are part of much larger cortico-basal ganglia-thalamic 
loops, with many nodes also participating in larger-scale interactions.  To more precisely 
dissect the mechanisms of neuronal communication and network formation, recordings 
must be taken from other regions in the system, including all other nuclei in the basal 
ganglia, as well as functionally relevant nuclei in the thalamus that participate in such 
large-scale neuronal coordination. 
 
5.2.3 Structural plasticity during neuroprosthetic learning 
 
With the development of a neuroprosthetic task involving two-photon calcium imaging, 
researchers are now able to visually identify the relevant network involved in 
neuroprosthetic learning.  Importantly, this allows for the investigation of structural 
changes that accompany neuroprosthetic learning.  For example, initial stages of motor 
learning are characterized by the rapid turn-over of dendritic spines, and these spines 
stabilize as performance improves (Xu et al., 2009).  Similar mechanisms could be at 
work during neuroprosthetic learning, but this can only now be examined with structural 
imaging of the network.  In addition, neuroprosthetic tasks can be used to investigate 
whether any observed structural changes are specific to output-relevant neuronal 
populations, or whether learning is accompanied by broader structural plasticity in 
cortex. 
 
5.2.4 Local circuit mechanisms of neuroprosthetic learning 
 
Finally, with the use of the novel two-photon BMI paradigm, we can begin to answer 
more mechanistic questions about functional changes that occur during neuroprosthetic 
learning.  For example, because the network can now be visualized, researchers can 
now easily insert intracellular electrodes into output cells to examine how the balance 
between inhibitory and excitatory inputs changes over the course of learning.  In 
addition, a number of tracers can be injected into relevant neuronal populations to follow 
changes in connectivity that occur during learning.  All of these important research 
questions have only recently become possible with the development of a BMI task using 
two-photon imaging. 
 
5.3 Conclusion 
 
Directly interfacing machines with the mind has not only provided clinically important 
therapies for patients suffering from limb loss or immobility, but has also provided an 
exciting and completely novel vantage point for studying neural mechanisms of 
complex, abstract skill learning.  By capitalizing on the benefits of neuroprosthetic tasks, 
we have been able to demonstrate high selectivity in fundamental neuronal processes 
that researchers have previously only been able to describe on much larger spatial 
scales.  Although a number of open questions remain, the development of an imaging-
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based neuroprosthetic task allows for a greater repertoire of experimental tools that can 
be applied towards elucidating these remaining unknown processes.  Through further 
work, research at the intersection of natural and neuroprosthetic learning will continue to 
shed light on the fundamental neural mechanisms that allow us to learn a lifetime of 
flexible, skilled behaviors. 
  



52 
 

Bibliography 
 
Atallah, H.E., Lopez-Paniagua, D., Rudy, J.W., & O’Reilly, R.C. Separate neural 

substrates for skill learning and performance in the ventral and dorsal striatum. 
Nature Neurosci., 10, 126-131 (2007). 

Badre, D., Kayser, A.S., & D’Esposito, M. Frontal cortex and the discoivery of abstract 
action rules. Neuron, 66, 315-326 (2010). 

Balleine, B.W. & Dickinson, A. Goal-directed instrumental action: contingency and 
incentive learning and their cortical substrates. Neuropharmacology, 37, 407-419 
(1998). 

Barnes, T.D., Kubota, Y., Hu, D., Jin, D.Z., & Graybiel, A.M. Activity of striatal neurons 
reflects dynamic encoding and recoding of procedural memories. Nature, 437, 
1158-1161 (2005). 

Barth, A.L. & Poulet, J.F.A. Experimental evidence for sparse firing in the 
neocortex.Trends in Neurosciences, 35, 345–355 (2012). 

Beauchamp, M.H., Dagher, A., Aston, J.A., & Doyon, J. Dynamic functional changes 
associated with cognitive skill learning of an adapted version of the Tower of 
London task. Neuroimage, 20, 1649-1660 (2003). 

Berke, J.D., Okatan, M., Skurski, J., & Eichenbaum, H.B. Oscillatory entrainment of 
striatal neurons in freely moving rats. Neuron, 43, 883-896 (2004).  

Bollimunta, A., Mo, J., Schroeder, C.E., & Ding, M. Neuronal mechanisms and 
attentional modulation of corticothalamic alpha oscillations. J. Neurosci., 31, 
4935-4943 (2011). 

Bragin, A., Engel, J. Jr., & Straba, R.J. High-frequency oscillations in epileptic brain. 
Curr. Opin. Neurol., 23, 151-156 (2010). 

Brashers-Krug, T., Shadmehr, R., & Bizzi, E. Consolidation in human motor memory. 
Nature, 382, 252-255 (1996). 

Brasted, P.J. & Wise, S.P. Comparison of learning-related neuronal activity in the dorsal 
premotor cortex and striatum. Eur. J. Neurosci., 19, 721-740 (2004). 

Buschman, T.J., Denovellis, E.L., Diogo, C., Bullock, D., & Miller, E.K. Synchronous 
oscillatory neural ensembles for rules in the prefrontal cortex. Neuron, 76, 838-
846 (2012). 

Buzsaki, G. & Draguhn, A. Neuronal oscillations in cortical networks. Science, 304, 
1926-1929 (2004). 

Canolty, R.T., Ganguly, K., Kennerley, S.W., Cadieu, C.F., Koepsell, K., Wallis, J.D., & 
Carmena, J.M. Oscillatory phase coupling coordinates anatomically dispersed 
functional cell assemblies. PNAS, 107, 17356-17361 (2010). 

Carmena, J.M. et al. Learning to control a brain-machine interface for reaching and 
grasping by primates. PLoS Biology, 1, e2 (2003). 

Castro-Alamancos, M.A. The motor cortex: a network tuned to 7-14 Hz. Front. Neur. 
Circuits, 7, doi:10.3389/fncir.2013.00021 (2013). 

Chen, T.-W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. 
Nature, 499, 295–300 (2013). 

Chopra, A., Klassen, B.T., & Stead, M. Current clinical application of deep-brain 
stimulation for essential tremor. Neuropsychiatr. Dis. Treat. 9, 1859-1865 (2013). 

Chu, P., Muller, R., Koralek, A., Carmena, J.M., Rabaey, J.M., & Gambini, S. 



53 
 

Equalization for intracortical microstimulation artifact reduction.  Proceedings of 
the 35th Annual International Conference of the IEEE EMBS, pp. 245–248 
(2013). 

Chudasama, Y. & Robbins, T.W. Functions of frontostriatal systems in cognition: 
comparative neuropsychopharmacological studies in rats, monkeys, and 
humans. Biol. Psych., 73, 19-38 (2006). 

Colgin, L.L., Denninger, T., Fyhn, M., Hafting, T., Bonnevie, T., Jensen, O., Moser, 
M.B., & Moser, E.I. Frequency of gamma oscillations routes flow of information in 
the hippocampus. Nature, 462, 323-327 (2009).  

Collinger, J.L. et al. High-performance neuroprosthetic control by an individual with 
tetraplegia. The Lancet, 381, 557–564 (2013). 

Contreras, D., Destexhe, A., Sejnowski, T.J., & Steriade, M. Control of spatiotemporal 
coherence of a thalamic oscillation by corticothalamic feedback. Science, 274, 
771-774 (1996). 

Costa, R.M., Cohen, D., & Nicolelis, M.A. Differential corticostriatal plasticity during fast 
and slow motor skill learning in mice. Curr. Biol., 14, 1124-1134 (2004). 

Costa, R.M., Lin, S.C., Sotnikova, T.D., Cyr, M., Gainetdinov, R.R., Caron, M.G., & 
Nicolelis, M.A. Rapid alterations in corticostriatal ensemble coordination during 
acute dopamine-dependent motor dysfunction. Neuron, 52, 359-369 (2006). 

Costa, R.M. A selectionist account of de novo action learning. Current Opinion in 
Neurobiology, 21, 579–586 (2011). 

Cowan, R.L. & Wilson, C.J. Spontaneous firing patterns and axonal projections of single 
corticostriatal neurons in the rat medial agranular cortex. J. Neurophys., 71, 17-
32 (1994). 

Cunningham, J. P., Nuyujukian, P., Gilja, V., Chestek, C. A., Ryu, S. I., and Shenoy, K. 
V. A closed-loop human simulator for investigating the role of feedback control in 
brain-machine interfaces. Journal of Neurophysiology 105, 1932 – 1949 (2011). 

Dan, Y. & Poo, M.-M. Spike timing-dependent plasticity of neural circuits. Neuron, 44, 
23-30 (2004). 

Dang M.T. et al. Disrupted motor learning and long-term synaptic plasticity in mice 
lacking NMDAR1 in the striatum. Proc. Natl. Acad. Sci. U.S.A., 103, 15254-
15259 (2006). 

Dangi, S., So, K., Orsborn, A.L., Gastpar, M.C., and Carmena, J.M. Brain-machine 
interface control using broadband spectral power from local field potentials. In 
Proceedings of the 35th Annual International Conference of the IEEE EMBS, pp. 
285–288 (2013). 

Dean, H.L., Hagan, M.A., & Pesaran, B.  Only coherent spiking in posterior parietal 
cortex coordinates looking and reaching. Neuron, 73, 829-841 (2012). 

DeCoteau, W.E., Thorn, C., Gibson, D.J., Courtemanche, R., Mitra, P., Kubota, Y., & 
Graybiel, A.M. Learning-related coordination of striatal and hippocampal theta 
rhythms during acquisition of a procedural maze task. PNAS, 104, 5644-5649 
(2007). 

Dias-Ferreira, E. et al. Chronic stress causes frontostriatal reorganization and affects 
decision-making. Science, 325, 621–625 (2009). 

Di Filippo, M. et al. Short-term and long-term plasticity at corticostriatal synapses: 
implications for learning and memory. Behav. Brain Res., 199, 108-118 (2009). 



54 
 

Engelhard B, Ozeri, N., Israel, Z., Bergman, H. & Vaadia, E. Inducing gamma 
oscillations and precise spike synchrony by operant conditioning via brain-
machine interface. Neuron, 77, 361–375 (2013). 

Ethier, C., Oby, E. R., Bauman, M. J., and Miller, L. E. Restoration of grasp following 
paralysis through brain-controlled stimulation of muscles. Nature 485, 368–371 
(2012). 

Fetz, E.E. Volitional control of neural activity: implications for brain-computer interfaces. 
J. Physiol., 579, 571-579 (2007). 

Fincham, J.M. & Anderson, J.R. Distinct roles of the anterior cingulate and prefrontal 
cortex in the acquisition and performance of a cognitive skill. Proc. Natl. Acad. 
Sci. USA, 103, 12941-12946 (2006). 

Fries, P. A mechanism for cognitive dynamics: neuronal communication through 
neuronal coherence.  Trends Cogn Sci, 9, 474-480 (2005). 

Fries, P., Wolmesdorf, T., Oostenveld, R., & Desimone, R. The effects of visual 
stimulation and selective visual attention on rhythmic neuronal synchronization in 
macaque area V4. J. Neurosci., 28, 4823-4835 (2008). 

Frohlich, F. & McCormick, D.A. Endogenous electric fields may guide neocortical 
network activity. Neuron, 67, 129-143 (2010). 

Fujisawa, S. & Buzsaki, G. A 4 Hz oscillation adaptively synchronizes prefrontal, VTA, 
and hippocampal activities. Neuron, 72, 153-165 (2011). 

Gandolfo, F., Li, C., Benda, B.J., Schioppa, C.P., & Bizzi, E. Cortical correlates of 
learning in monkeys adapting to a new dynamical environment. Proc. Natl. Acad. 
Sci. USA, 97, 2259-2263 (2000). 

Ganguly, K. & Carmena, J.M. Emergence of a stable cortical map for neuroprosthetic 
control. PLoS Biol., 7, e1000153 (2009). 

Ganguly, K., Secundo, L., Ranade, G., Orsborn, A., Chang, E.F., Dimitrov, D.F., Wallis, 
J.D., Barbaro, N.M., Knight, R.T., & Carmena, J.M.  Cortical representation of 
ipsilateral arm movements in monkey and man. J Neurosci, 29, 12948-12956 
(2009). 

Ganguly, K., and Carmena, J. M. Neural correlates of skill acquisition with a cortical 
brain-machine interface. Journal of Motor Behavior 42, 355–360 (2010). 

Ganguly, K., Dimitrov, D.F., Wallis, J.D.  & Carmena, J.M. Reversible large-scale 
modification of cortical networks during neuroprosthetic control. Nat. Neurosci 
doi:10.1038/nn.2797 (2011). 

Garcia-Munoz, M., Carrillo-Reid, L., & Arbuthnott, G.W. Functional anatomy: dynamic 
states in basal ganglia circuits. Front. Neuroanat., 4, 1-7 (2010). 

Gdalyahu, A. et al. Associative fear learning enhances sparse network coding in primary 
sensory cortex. Neuron, 75, 121–132 (2012). 

Georgopoulos, A.P., Taira, M., & Lukashin, A. Cognitive neurophysiology of the motor 
cortex. Science, 260, 47-52 (1993). 

Grahn, J.A., Parkinson, J.A., & Owen, A.M. The cognitive functions of the caudate 
nucleus.  Prog. Neurobiol., 86, 141-155 (2008). 

Graybiel, A.M., Aosaki, T., Flaherty, A.W., & Kimura, M. The basal ganglia and adaptive 
motor control. Science, 265, 1826-1831 (1994). 

Graybiel, A.M. The basal ganglia and chunking of action repertoires. Neurobiol. Learn. 
Mem., 70, 119-136 (1998). 



55 
 

Graybiel, A.M. Habits, rituals, and the evaluative brain. Ann. Rev. Neurosci., 31, 359-
387 (2008). 

Green, A.M. & Kalaska, J.F. Learning to move machines with the mind.  Trends 
Neurosci., 34, 61-75 (2011). 

Gregoriou, G.G., Gotts, S.J., Zhou, H., & Desimone, R. High-frequency, long-range 
coupling between prefrontal and visual cortex during attention. Science, 324, 
1207-1210 (2009). 

Guizar-Sicairos, M., Thurman, S.T. & Fienup, J.R. Efficient subpixel image registration 
algorithms. Optics Letters, 33, 156–158 (2008). 

Han, Y.K., Köver, H., Insanally, M.N., Semerdjian, J.H., & Bao, S. Early experience 
impairs perceptual discrimination. Nature Neurosci., 10, 1191-1197 (2007). 

Harris, K.D., Csicsvari, J., Hirase, H., Dragoi, G., & Buzsaki, G. Organization of cell 
assemblies in the hippocampus. Nature, 424, 552-556 (2003).  

Harris, K.D. & Mrsic-Flogel, T.D. Cortical connectivity and sensory coding. Nature, 503, 
51–58 (2013). 

Hikosaka, O., Nakahara, H., Rand, M.K., Sakai, K., Lu, X., Nakamura, K., Miyachi, S., & 
Doya, K. Parallel neural networks for learning sequential procedures. Trends. 
Neurosci., 22, 464-471 (1999). 

Hilario, M.R., Clouse, E., Yin, H.H., & Costa, R.M. Endocannabinoid signaling is critical 
for habit formation. Front. Integr. Neurosci., 1, 1-12 (2007). 

Hilario, M.R. & Costa, R.M. High on habits. Front. Neurosci., 2, 208-217 (2008). 
Hochberg, L.R. et al. Reach and grasp by people with tetraplegia using a neutrally 

controlled robotic arm. Nature, 485, 372–375 (2012). 
Holtmaat, A. et al. Imaging neocortical neurons through a chronic cranial window. Cold 

Spring Harbor Protocols, 2012, 694–701 (2012). 
Hoover, J.E. & Strick, P.L. Multiple output channels in the basal ganglia. Science, 259, 

819-821 (1991). 
Huerta, P.T. & Lisman, J.E. Heightened synaptic plasticity of hippocampal CA1 neurons 

during a cholinergically induced rhythmic state. Nature, 364, 723-725 (1993). 
Hughes, S.W. & Crunelli, V. Thalamic mechanisms of EEG alpha rhythms and their 

pathological implications. Neuroscientist, 11, 357-372 (2005). 
Jarosiewicz, B., Chase, S.M., Fraser, G.W., Velliste, M., Kass, R.E., & Schwartz, A.B. 

Functional network reorganization during learning in a brain-computer interface 
paradigm. PNAS, 105, 19486-19491 (2008). 

Jarvis, M. & Mitra, P. Sampling properties of the spectrum and coherency of sequences 
of action potentials. Neural Comput., 13, 717-749 (2001). 

Jin, X. & Costa, R.M. Start/stop signals emerge in nigrostriatal circuits during sequence 
learning. Nature, 466, 457-462 (2010). 

Kandel, A. & Buzsaki, G. Cellular-synaptic generation of sleep spindles, spike-and-wave 
discharges, and evoked thalamocortical responses in the neocortex of the rat. J. 
Neurosci., 17, 6783-6797 (1997). 

Kerr, J.N.D. & Plenz, D. Action potential timing determines dendritic calcium during 
striatal up-states. J. Neurosci., 24, 877-885 (2004). 

Kim, Y.J., Grabowecky, M., Paller, K.A., Muthu, K., & Suzuki, S. Attention induces 
synchronization-based response gain in steady-state visual evoked potentials. 
Nat. Neurosci., 10, 117-125 (2007). 



56 
 

Kimchi, E.Y. & Laubach, M. Dynamic encoding of action selection by the medial 
striatum. J. Neurosci., 29, 3148-3159 (2009). 

Komiyama, T. et al. Learning-related fine-scale specificity imaged in motor cortex 
circuits of behaving mice. Nature, 464, 1182–1186 (2010). 

Koralek, A.C., Jin, X., Long, J.D., Costa, R.M., & Carmena, J.M. Corticostriatal plasticity 
is necessary for learning intentional neuroprosthetic skills. Nature, 483, 331-335 
(2012). . 

Koralek, A.C., Costa, R.M. & Carmena, J.M. Temporally precise cell-specific coherence 
develops in corticostriatal networks during learning. Neuron, 79, 865–872 (2013). 

Koyama, S., Chase, S. M., Whitford, A. S., Velliste, M., Schwartz, A. B., and Kass, R. E. 
Comparison of brain–computer interface decoding algorithms in open-loop and 
closedloop control. Journal of Computational Neuroscience 29, 73–87 (2010). 

Kubota, Y., Liu, J., Hu, D., DeCoteau, W.E., Eden, U.T., Smith, A.C., & Graybiel, A.M. 
Stable encoding of task structure coexists with flexible codeing of task events in 
sensorimotor striatum. J. Neurophys., 102, 2142-2160 (2009). 

Lakatos, P., Shah, A.S., Knuth, K.H., Ulbert, I., Karmos, G., & Schroeder, C.E. An 
oscillatory hierarchy controlling neuronal excitability and stimulus processing in 
the auditory cortex. J. Neurophys., 94, 1904-1911 (2005). 

Lakatos, P., Karmos, G., Mehta, A.D., Ulbert, I., & Schroeder, C.E. Entrainment of 
neuronal oscillations as a mechanism of attentional selection. Science, 320, 110-
113 (2008). 

Ledochowitsch, P., Koralek, A.C., Moses, D., Carmena, J.M., & Maharbiz, M.M. Sub-
mm functional decoupling of electrocortical signals through closed-loop BMI 
learning. Proceedings of the 35th Annual International Conference of the IEEE 
EMBS, pp. 5622–5625 (2013). 

Lepage, K.Q., Kramer, M.A., & Eden, U.T. The dependence of spike field coherence on 
expected intensity. Neural Computation, 23, 2209-2241 (2011). 

Millán, J. d. R., Galan, F., Vanhooydonck, D., Lew, E., Philips, J., and Nuttin, M. 
Asynchronous non-invasive brain-actuated control of an intelligent wheelchair. In 
Proceedings of the 31st Annual International Conference of the IEEE EMBS, pp. 
3361–3364 (2009). 

Mitra, P. & Pesaran, B. Analysis of dynamic brain imaging data. Biophys. J., 76, 691-
708 (1999). 

Miyachi, S., Hikosaka, O., & Lu, X. Differential activation of monkey striatal neurons in 
the early and late stages of procedural learning. Exp. Brain Res., 146, 122-126 
(2002). 

Muller, R., Le, H.-P., Li, W., Ledochowitsch, P., Gambini, S., Bjorninen, T., Koralek, A., 
Carmena, J.M., Maharbiz, M.M., Alon, E., & Rabaey, J.M. A miniaturized 64-
channel 225 µW wireless electrocorticographic neural sensor.  Presented at the 
annual meeting of the International Solid-State Circuits Conference, San 
Francisco (2014). 

Nicolelis, M.A., Baccala, L.A., Lin, R.C., & Chapin, J.K. Sensorimotor encoding by 
synchronous neural ensemble activity at multiple levels of the somatosensory 
system. Science, 268, 1353-1358 (1995). 

O'Connor, D.H., Peron, S.P., Huber, D. & Svoboda, K. Neural activity in barrel cortex 
underlying vibrissa-based object localization in mice. Neuron, 67, 1048–1061 



57 
 

(2010). 
Orsborn, A.L., Dangi, S., Moorman, H.G., & Carmena, J.M. Closed-loop decoder 

adaptation on intermediate time-scales facilitates rapid BMI performance 
improvements independent of decoder initialization conditions. IEEE TNSRE, 20, 
468-477 (2012). 

Pascual, J., Velasco-Alvarez, F., Muller, K.R., & Vidaurre, C. First study towards linear 
control of an upper-limb neuroprosthesis with an EEG-based Brain-Computer 
Interface. In Proceedings of the Annual International Conference of the IEEE 
EMBS, pp. 3269-73 (2012). 

Pasupathy, A. & Miller, E.K. Different time courses of learning-related activity in the 
prefrontal cortex and striatum. Nature, 433, 873-876 (2005). 

Pennartz, C.M.A., Berke, J.D., Graybiel, A.M., Ito, R., Lansink, C.S., van der Meer, M., 
Redish, A.D., Smith, K.S., & Voorn, P. Corticostriatal interactions during learning, 
memory processing, and decision making. J. Neurosci., 29, 12831-12838 (2009).  

Pesaran, B., Pezaris, J.S., Sahani, M., Mitra, P.P., & Andersen, R.A. Temporal structure 
in neuronal activity during working memory in macaque parietal cortex.  Nat. 
Neurosci., 5, 805-811 (2002). 

Pesaran, B., Nelson, M.J., & Andersen, R.A. Free choice activates a decision circuit 
between frontal and parietal cortex.  Nature, 453, 406-409 (2008). 

Poldrack, R.A., Prabhakaran, V., Seger, C.A., & Gabrieli, J.D. Striatal activation during 
acquisition of a cognitive skill.  Neuropsychology, 13, 564-574 (1999). 

Pologruto, T.A., Sabatini, B.L. & Svoboda, K. ScanImage: flexible software for operating 
laser scanning microscopes. BioMed Eng OnLine, 2, 13 (2003). 

Riddle, C.N. & Baker, S.N. Manipulation of peripheral neural feedback loops alters 
human corticomuscular coherence. J. Physiol., 566, 625-639 (2005). 

Riehle, A., Grun, S., Diesmann, M., & Aertsen, A. Spike synchronization and rate 
modulation differentially involved in motor cortical function. Science, 278, 1950-
1953 (1997). 

Rioult-Pedotti, M.S., Friedman, D., & Donghue, J.P. Learning-induced LTP in neocortex. 
Science, 290, 533-536 (2000). 

Rodriguez, E., George, N., Lachaux, J.P., Martinerie, J., Renault, B., & Varela, F.J. 
Perception’s shadow: long-distance synchronization of human brain activity. 
Nature, 397, 430-433 (1999).  

Schoffelen, J.-M., Poort, J., Oostenveld, R., & Fries, P. Selective movement preparation 
is subserved by selective increases in corticomuscular coherence. J. Neurosci., 
31, 6750-6758 (2011).  

Serruya, M.D., Hatsopoulos, N.G., Paninski, L., Fellows, M.R., & Donoghue, J.P. Instant 
neural control of a movement signal. Nature, 416, 141-142 (2002). 

Shen, G., Zhang, J., Wang, M., Lei, D., Yang, G., Zhang, S., & Du, X. Decoding the 
individual finger movements from single-trial functional magnetic resonance 
imaging recordings of human brain activity.  Eur J Neurosci., doi: 
10.1111/ejn.12547. (2014). 

Shoham, S., O'Connor, D.H. & Segev, R. How silent is the brain: is there a “dark matter” 
problem in neuroscience? J Comp Physiol A 192, 777–784 (2006). 

Siegel, M., Warden, M.R., & Miller, E.K. Phase-dependent neuronal coding of objects in 
short-term memory. PNAS, 106, 21341-21346 (2009).  



58 
 

So, K., Koralek, A.C., Ganguly, K., Gastpar, M.C., & Carmena, J.M. Assessing 
functional connectivity of neural ensembles using directed information. J Neural 
Eng, 9, doi: 10.1088/1741-2560/9/2/026004 (2012). 

So, K., Dangi, S., Orsborn, A.L., Gastpar, M.C., & Carmena, J.M. Subject-specific 
modulation of local field potential spectral power during brain-machine interface 
control in primates.  J Neural Eng, 11:026002 (2014). 

Steinmetz, P.N., Roy, A., Fitzgerald, J., Hsiao, S.S., Johnson, K.O., & Niebur, E. 
Attention modulates synchronized neuronal firing in primate somatosensory 
cortex. Nature, 404, 187-190 (2000).  

Steriade, M. & Timofeev, I. Neuronal plasticity in thalamocortical networks during sleep 
and waking oscillations. Neuron, 37, 563-576 (2003). 

Stern, E.A., Kincaid, A.E., & Wilson, C.J. Spontaneous subthreshold membrane 
potential fluctuations and action potential variability of rat corticostriatal and 
striatal neurons in vivo. J. Physiol., 77, 1697-1715 (1997). 

Stern, E.A., Jaeger, D., & Wilson, C.J. Membrane potential synchrony of simultaneously 
recorded striatal spiny neurons in vivo. Nature, 394, 475-478 (1998). 

Suner, S., Fellows, M.R., Vargas-Irwin, C., Nakata, G.K., & Donoghue, J.P. Reliability of 
signals from a chronically implanted, silicon-based electrode array in non-human 
primate primary motor cortex. IEEE TNSRE, 13, 524-541 (2005). 

Taylor, D.M., Tillery, S.I., & Schwartz, A.B. Direct cortical control of 3D neuroprosthetic 
devices. Science, 296, 1829-1832 (2002). 

Thomson, D. Spectrum estimation and harmonic analysis. Proc IEEE, 70, 1055-1096 
(1982). 

Tiesinga, P.H.E., Fellous, J.-M., Jose, J.V., & Sejnowski, T.J. Optimal information 
transfer in synchronized neocortical neurons. Neurocomputing, 38-40, 397-402 
(2001).  

Truccolo, W.A., Ding, M., Knuth, K.H., Nakamura, R., & Bressler, S.L. Trial-to-trial 
variability of cortical evoked responses: implications for the analysis of functional 
connectivity. Clin. Neurophysiol., 113, 206-226 (2002). 

Van der Maelen, C.P. & Kitai, S.T. Intracellular analysis of synaptic potentials in rat 
neostriatum following stimulation of the cerebral cortex, thalamus, and substantia 
nigra. Brain Res. Bull., 5, 725-733 (1980). 

van der Meer, M.A.A., & Redish, A.D. Theta phase precession in rat ventral striatum 
links place and reward information. J. Neurosci., 31, 2843-2854 (2011).  

VanLehn, K. Cognitive skill acquisition. Ann. Rev. Neurosci., 47, 513-539 (1996). 
van Schoonhoven, J., Sparreboom, M., van Zanten, B.G., Scholten, R.J., Mylanus, E.A., 

Dreschler, W.A., Grolman, W., & Maat, B.  The effectiveness of bilateral cochlear 
implants for severe-to-profound deafness in adults: a systematic review. Otol 
Neurotol, 34, 190-198 (2013). 

Venkatraman, S., Jin, X., Costa, R.M., & Carmena, J.M. Investigating neural correlates 
of behavior in freely behaving rodents using inertial sensors. J. Neurophys., 104, 
569-575 (2010). 

von Stein, A., Chiang, C., & Konig, P. Top-down processing mediated by interareal 
synchronization.  PNAS, 97, 14748-14753 (2000). 



59 
 

Wang, H.-P., Spencer, D., Fellous, J.-M., & Sejnowski, T.J. Synchrony of 
thalamocortical inputs maximizes cortical reliability. Science, 328, 106-109 
(2010).  

Womelsdorf, T., Schoffelen, J.-M., Oostenveld, R., Singer, W., Desimone, R., Engel, 
A.K., & Fries, P. Modulation of neuronal interactions through neuronal 
synchronization. Science, 316, 1609-1612 (2007). 

Xu, T., Yu, X., Perlik, A.J., Tobin, W.F., Zweig, J.A., Tennant, K., Jones, T., & Zuo, Y. 
Rapid formation and selective stabilization of synapses for enduring motor 
memories.  Nature, 462, 915-919 (2009). 

Yin, H.H., Knowlton, B.J., & Balleine, B.W. Inactivation of dorsolateral striatum 
enhances sensitivity to changes in the action-outcome contingency in 
instrumental conditioning. Behav. Brain. Res., 166, 189-196 (2006). 

Yin, H.H. et al. Dynamic reorganization of striatal circuits during the acquisition and 
consolidation of a skill. Nature Neurosci., 12, 333-341 (2009). 

Yokota, T., Saito, Y., & Miyatake, T. Conduction slowing without conduction block of 
compound muscle and nerve action potentials due to sodium channel block. J. 
Neurol. Sci., 124, 220-224 (1994). 

Zeitler, M., Fries, P., & Gielen, S. Assessing neuronal coherence with single-unit, multi-
unit, and local field potentials. Neural Computation, 18, 2256-2281 (2006). 

Zeitler, M., Fries, P., & Gielen, S. Biased competition through variations in amplitude of 
gamma oscillations. J. Comput. Neurosci., 25, 89-107 (2008). 

Zervakis, M., Michalopoulos, K., Iordanidou, V., & Sakkalis, V. Intertrial coherence and 
causal interaction among independent EEG components. J. Neurosci. Methods, 
197, 302-314 (2011). 

Zhong, Y. & Bellamkonda, R.V. Dexamethasone-coated neural probes elicit attenuated 
inflammatory response and neuronal loss compared to uncoated neural probes. 
Brain Res., 1148, 15-27 (2007). 

 




