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Dynamic Modeling  of Tractor-Semitrailer Vehicles
for Automated  Highway Systems

Chieh Chen and Masayoshi Tomizuka

Department of Mechanical Engineering

University of California at Berkeley

Berkeley, California 94720

Abstract

This report is concerned with dynamic modeling of the tractor-semitrailer vehicles in Automated Highway

Systems (AHS). A modeling approach for roll, pitch and yaw motions of tractor-semitrailer vehicles is

proposed. A coordinate system is defined to precisely describe the translational and rotational motions of

the vehicle. A nonlinear complex model and simplified models for designing controller will be proposed.

A simplified linear model, which includes lateral and yaw motions, is derived based on the assumptions

that the longitudinal velocity is constant and that the vehicle lateral and yaw motions are small. It is shown

that the vehicle damping is inversely proportional to the longitudinal speed, and the gyroscopic forces are

proportional to the product of trailer mass and the longitudinal speed.
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Executive Summary

This report summaries the first year research results of the PATH project (MOU 129) : Steering and

Braking Control of Heavy Duty Vehicles. This project is concerned with the dynamic modeling and lateral

motion control of heavy-duty vehicles in automated highway systems. The objectives of this research are to

characterize the dynamic response of articulated heavy-duty vehicles, identify the key system parameters,

develop control algorithms to achieve automatic guidance, and conduct experiments on lateral guidance

control of articulated heavy-duty vehicles.

A modeling approach for roll, pitch and yaw motions of articulated heavy-duty vehicles is described in

this report. A coordinate system is defined to precisely describe the translational and rotational motions of

the vehicle. A nonlinear complex model is proposed to simulate the dynamic responses of articulated vehicles

and will be exploited to evaluate the effectiveness of lateral control algorithms in the second and third years.

This simulation model is derived by applying Lagrangian mechanics and has an advantage over a Newtonian

mechanics formulation in that our models eliminate the holonomic constraints at the fifth wheel by carefully

choosing the generalized coordinates. Since there is no constraint involved in the equations of motion, it is

easier to design control algorithms and to solve the differential equations numerically. Other configurations

of articulated vehicles, for example tractor/three trailer combination, can also be modeled with the same

approach. A linear control model is simplified from the complex nonlinear model. The directional response

of the complex model and that of the simplified model are compared. Linear quadratic optimal controller

as well as optimal preview controller will be designed based on this linear model in the near future.



1 Introduction

In the past few years, there has been an increasing amount of research on Advanced Vehicle Control Systems

(AVCS) for A u omated Highway Systems (AHS). In the area of automated vehicle lateral control, Zhangt

(19910) h p pas ro osed a magnetic marker referencing/sensing system which accurately measures vehicle lateral

displacement from the road centerline. Peng and Tomizuka (1991) synthesized a preview optimal control

algorithm for light passenger vehicles based on a fourth order linear model. This algorithm has been validated

by an experimental study (Peng et al. 1992). A fuzzy rule-based controller for vehicle lateral guidance

has been designed (Hessburg and Tomizuka 1993). Lane change maneuvers (Chee and Tomizuka 1994) in

automated highway systems are also currently being studied. However, these researches are all concerned

with the control of passenger vehicles. On the other hand, heavy duty vehicles play an important role in

transportation. The roadway transportation system of the United States includes 190 million motor vehicles,

more than 45 million of which are trucks and buses (MVMA 1992). In 1987, buses, single-unit and articulated

trucks were responsible for 28.5% of the total motor vehicle travel miles (MVMA 1987),  which is significantly

higher than the 22.8% of 1979. Nevertheless, only a very small fraction of past AVCS research was devoted

to the control of heavy vehicles for automated highway systems.

The directional response of articulated heavy duty vehicles is quite different from that of passenger

vehicles in several ways. First, articulated h eavy duty vehicles are usually heavier, more likely to bear

nonlinear dynamics due to tires, articulation joints and suspension systems, and respond slower to steering

inputs than passenger vehicles. Secondly, variations of parameters, such as mass, moment of inertia and

location of mass center due to trailer load condition, are much larger than those in passenger vehicles.

Thirdly, articulated heavy duty vehicles exhibit a roll instability mode due to high location of the mass

center. In a recent study (Huang et al. 1993),  it was found that roll motion has to be included for accurate

modeling even for minivan  types of vehicles. Fourthly, articulated vehicles are prone to unstable yaw modes.

There are two yaw instability modes studied in the past: divergent yaw response (jackknifing and trailer

swing) and (lightly damped) nondivergent rearward amplification (fishtailing). Jackknifing is one of the

most common causes of serious traffic accidents of articulated vehicles. The principal mechanism causing

divergent yaw instability was found to be tire force saturation, which may be caused directly by braking or

indirectly by steering inputs. Excessive steering inputs may cause roll motions that reduce the tire force

capacity on one side of the vehicle and result in tire force saturation. Fifthly, the off-tracking phenomenon

in articulated vehicles is more significant than in passenger vehicles. Off-tracking is defined as the radial

difference between the path of the front-most wheel and that of the rear-most wheel. A significant amount

of knowledge has been accumulated on the dynamics of articulated vehicles (Dugoff  and Murphy 1971;

Vlk 1982; Vlk 1985). H owever, little effort has been applied toward their control, especially for automatic

guidance purposes. Utilizing modern control technologies, the automatically guided heavy duty vehicles can

avoid these unstable modes, which may occur in improper human maneuvers.
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This report is concerned with dynamic modeling of articulated tractor-semitrailer vehicles in Automated

Highway Systems (AHS). Firstly, a complex nonlinear simulation model for the tractor semitrailer vehicle

is proposed. This model includes the roll, pitch and yaw motions of tractor and semitrailer. This model

will be used to validate the effectiveness of lane following control algorithms designed based on simplified

models. The uniqueness of this model is that we derive the equations of motion by applying Lagrangian

mechanics. Lagrangian mechanics formulation has the advantage over Newtonian mechanics in that it

can eliminate the holonomic constraints at the linking joint between tractor and semitrailer by carefully

choosing the generalized coordinates. The Lagrangian mechanics formulation is particularly suitable for

control algorithm synthesis. Secondly, a 3 degree of freedom (6 states) linear control model including the

vehicle lateral motion as well as tractor’s and semitrailer’s yaw motions is obtained by simplifying the

nonlinear complex model. Some linear analysis shows that the system damping is inversely propotional

to the vehicle longitudinal speed. This result generalizes Bundorf’s analysis (1967) which showed that the

damping of the motion of the articulation angle is inversely proportional to the vehicle speed by neglecting

the interaction of tractor and trailer. Strong gyroscopic effect can also be seen in this linear model. The

gyroscopic terms are propotional to trailer’s mass times vehicle speed.

Figure 1: Automated Vehicle System

2 Dynamic Modeling of Articulated Vehicles

2.1 Definition of Coordinate Systems and Equations of Motion

A coordinate system (figure 2) is defined to precisely describe the translational and rotational motion of the

vehicle. X,Y,Z,  is the inertial reference coordinate. We will obtain the expressions of vehicle’s kinetic and

potential energies relative to this reference coordinate. X,Y,Z,  is the tractor’s unsprung mass coordinate.

a There is relative translational motion in the X - Y plane and relative rotational yaw motion in the

direction of 2 axis between X,Y,Z,,  and X,Y,Z,.  X,Y,Z,  is the tractor’s sprung mass coordinate, which

is body-fixed at the tractor’s center of mass. Coordinate X,Y,Z,  has roll and pitch motions relative to
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ROLL
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X

Figure 2: Coordinate System to Describe the Vehicle Motion

coordinate X,Y,  Z,, . Since roll and pitch motions are small in normal highway maneuvers, we will not define

Euler angles to describe them. These two coordinates, X,Y,Z,  and X,Y,Z,,  can be used to completely

describe the tractor’s translational and rotational motions relative to the inertial coordinate X,Y,Z,  To

describe the semitrailer’s motion, we need to study the linking mechanism between tractor and semitrailer

first. The most common joint of tractor semitrailer vehicle is called the “fifth wheel”(figure  3) (Ellis 1989).

The kinematic design of the fifth wheel provides for free articulation in yaw mode while connecting tractor

and semitrailer in translational motion. The pitch and roll connections between tractor and semitrailer

are more complicated. We examine two extreme cases: 1. When the articulation angle is 0 degrees, the

fifth wheel provides free pitch between tractor and semitrailer, while the roll motion is rigidly connected.

2. When the articulation angle is 90 degrees, the tractor’s picth and trailer’s roll motions are free, while

the tractor’s roll and trailer’s pitch motions are rigidly connected. From this, we see that the fifth wheel

imposes three translational motion constraints and one combined roll and pitch rotational motion constraint.

Since the trailer has six degree of freedom and the fifth wheel provides 4 degree of freedom constraints, we

only need to choose another two generalized coordinates to describe the trailer’s motion. The most natural

way is to attach two coordinates X,,Y,,Z,f  , X,,Y,,Z,f  satisfying the kinematic constraints at the fifth

wheel. X,,Y,jZ,f  has the relative pitch motion to X,Y,Z,, while X,jY,jZ,j  has relative yaw motion to

X,jY,jZ,j.  Having completely defined the coordinate system, we can calculate the kinetic energy, T, and

potential energy, V, of the vehicle. The equations of motion can then be derived by applying Lagrange’s

equations, $3 - $$ = F,, where L = T - V is the Lagrangian and F, is the generalized force. The

transformation matrices between each coordinate and kinetic and potential energies are listed in Appendix



relative pitch

0

:

00 tractor rear axle

Figure 3: The mechanism of ‘fifth wheel’

Here we assume that vehicle body is rigid, i.e., we neglect the compliant effect of the vehicle body.

This assumption can be relaxed by introducing another two coordinates for the tractor-semitrailer vehicle:

one, say XS~Y.+ZQ~, is body-fixed at the tractor’s fifth wheel, and the other, say X,2YS2Z,2,  is body fixed

at trailer’s center of mass. Coordinate X,~Y,IZ,~ has relative roll motion to coordinate X,Y,Z,;  similarly,

coordinate XS2YS2ZS2  has relative roll motion to coordinate X,jY,jZ,j.  The vehicle body can be modeled

as a combination of a spring and a damper. Knowing the spring stiffness and damping coefficient, we

can calculate the Lagrangian again as well as the equations governing the tractor’s and semitrailer’s body

vibrational modes.

2.2 Generalized Forces

The external forces acting on the vehicle body are from the tire/road interface and suspensions. In applying

Lagrange’s equations, we need to calculate each generalized force corresponding to each generalized coordi-

nate explicitly, i.e., we want to transform the external forces in the Cartesian coordinate to the generalized

force corresponding to each generalized coordinate. Figure 4 shows the definition of the number of the vehicle

wheel and the external forces at wheel i in the Cartesian coordinate, where the longitudinal force, FAN, is in

the direction of X, axis, the lateral force, F~i,is  in the direction of Y, axis and the normal force, Fpi, is in

the direction of Z, axis, i = 1 to 6.

Deriving the position vector in Cartesian coordinates of each wheel in terms of the generalized coordinates,

(1)



Fa6

Fa4 F&2

Figure 4: Definition of Tire Force in the Cartesian Coordinate

we can calculate the generalized forces as

The expressions of the generalized forces are listed in appendix 3.

3 Subsystems : Tire Force Model and Suspension Model

3.1 Tire Force Model

Road Conditons

Longit”dinal  slip Ratio

mcrd CJip  Angle

Normal Force

Traction/Braking  Forces
>

Cornering Forces
>

Figure 5: Tire Force Model

Since all forces acting on the vehicle body are from tire/road interfaces and through the vehicle’s suspension

system, an accurate tire force model to predict tire traction/baking force and cornering force is crucial for

the dynamic modeling and response of the vehicle.

There are two common approaches to the tire force modeling. 1. Curve-fitting of the experimental data.

This approach can predict a more accurate force traction field; however, the data depends on tire types;
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thus it is less portable. 2. Analytical tire model. One way to analyze the traction field is to divide the tire

contact patch into two zones: the sliding zone and the adhesion zone. Shear stresses in the sliding zone of

the contact patch are determined by the frictional properties of the tire/road interface. Shear stresses in

the adhesion zone are determined by the elastic properties of the tire; for example, the cornering stiffness

C, and longitudinal stiffness C, represent the first order approximation of tire force elastic properties. We

adopt the second approach at this stage of research and use the tire model by Baraket and Fancher (1989)

in the simulation model. The structure of this tire model is summarized in figure 6.

TIRE DATA

PAVEMENT INFLUENCE

k xp -Peak data value

hi.5 - sliding data value

I
PROCESSING TIRE DATA

Cs - Longitudinal stiffness

C a - Cornering stiffness

a/l - Pressure distribution
L

TIRE CONDITION

Gd - Tread groove

FRICTION MODEL

TIRE MODEL
FY

!

a - Slipangle

Sx - Longitudinal Slip
t

L J

SIMULATION VALUES

Fz - Vertical load

V - Vehicle speed

L

PREDICTION OF TRACTION

Fx - Longitudinal force

Fy - Lateral force

Figure 6: Comprehensive Tire Model (Baraket and Fancher)

To use this tire force model, tire longitudinal slip ratios and lateral slip angles in terms of vehicle states

are calculated for g-wheel tractor-semitrailer vehicles, which are listed in appendix 4.



For the steering controller design purpose, we can simplify the tire model (see figure 7) as

Fzi = CsiXi

Fyi = Cai(& - 6)

(3)
(4)

where

Fzi is the longitudinal traction force;

Fyi is the cornering force;

CS~ is the longitudinal stiffness;

Xi  is the longitudinal slip at i - th wheel;

C,i is the cornering stiffness at i - th wheel;

& is the front wheel steering angle and

<i is the vehicle slip angle at i - th wheel.

Figure 7: Simplified Tire Model

3.2 Suspension Model

By far the majority of commercial vehicle suspensions employ the leaf spring (SAE 1982) as the vertically

compliant element. Instead of using experimental suspension data, we will adopt an analytical approach to

model the suspension as the combination of spring element, damper element and Coulomb friction element.

As shown in figure 8, the vertical force acting on the vehicle sprung mass through the suspension system is

equal to the static equilibrium force plus the perturbation force, F,, from the spring equilibrium point. The

perturbation force can be calculated as

Fsi = F,sgn(e’;) + liei + De’i, (5)



where

ei is the deflection of the i - th spring from its equilibrium position;

F, is the coulumb friction;

Ii is the spring stiffness and

D is the damping ratio.

The expression of each ei is listed in appendix 5.

SPRUNG MASS

Figure 8: Suspension Model

4 Linear Analysis

4.1 Linearization of the Equations of Motion

Since the dynamic model developed in section 2 and section 3 is too complicated for analysis of the system

characteristics and design of a path tracking controller, we will ignore some high frequency dynamics and

linearize the equations of motion. Linearization of the equations of motion is reasonable because the vehicle

lateral and yaw motions are small in normal highway maneuvers. We assume that

l The pitch and roll motions are small and therefore negligible

l The lateral and yaw motions, y, jl, t, i, ef, E>, are small.

l Second and higher order terms involving small quantities can be ignored.

l Forward velocity of the tractor (&)  remains constant.

l Tire cornering force is propotional to the lateral slip angle. ( The propotional constant is the tire

cornering stiffness, Cm.)
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Then, we get a 3 degree of freedom (6 states) control model:

Mi+Ccj+Gi+Kq= D6

where

Y
q= E

iiff

and

M =

ml +?2 -m2(& + d3) -mad3

-mn(dl + d3) I,1 + I,2 + mz(dl + d3)2 I22 + mzdz + mzdlda

-mad3 IL! + m& + m2dld3 I22 + m&

I caj + ccw + cat ZICaj - l2Car - (l3 + &)Gt
9

-l3Cat

c=z hGj - W’,, - (/3 + dl)C,t lTCaj + l;Cn,. + (23 + d1)2Cat Z3(Z3 + dl)C,t

-l3Cat /3(/3  + 4)Gt ~~Gt I

D =

(6)

(7)

(8)

(9)

(10)

(11)

(12)

Please refer to appendix 1 for the nomenclature.

We see from this simplified model that M is a symmetric positive definite matrix which contains all of

the inertial information of the vehicle system. This property can be utilized in controller design. Also, the

C matrix can be interpreted as a damping matrix. Each element of the C matrix contains the tire cornering

stiffness. If the cornering stiffness is small, the vehicle system will become less damped and more oscillatory;

for example, if the vehicle is operated on an icy road, the vehicle stability will decrease. We also see that

the vehicle’s longitudinal velocity i appears in the denominator of the damping matrix; therefore the system

damping is inversely propotional to the vehicle longitudinal velocity, which also agrees with our physical

experience. Another interesting observation is that this system contains a skew-symmetric matrix G; thus

this system can be classified as a gyroscopic system. We see that the gyroscopic effect is propotional to the

product of the longitudinal velocity and the mass of the semitrailer.

11



4.2 Change of Local Reference Coordinate

The above linearized model is referenced by the tractor’s local unsprung mass coordinate. To design a

lane following controller, we need to change the local reference coordinate from the tractor’s unsprung mass

coordinate to the coordinate sitting on the road center line. Thus the lateral displacement and relative yaw

angle with respect to road center can be explicitly expressed. The road center coordinate X,Y,Zr  is defined

uniquely such that the X, axis is tangent to the road center line and the Y,.  axis passes through the tractor’s

center of mass as in figure 9, where yr is the relative lateral displacement from the tractor’s center of mass

to the road center line and E, is the relative yaw angle of the tractor to the road center.

Road Centerline

Figure 9: Local Reference Coordinate Transformation

Assume again that y,., $., e,. and <r are small. Some coordinate transformation analysis shows that

y = yjf. - ix,

i = E, + id

and

i’ = i, + id

Substituting equations (13) (14) (15) (16) into (6), we get

Mcj, + C,pl- + K,q,. = D6 + E& + Fib

(13)

(14)

(15)

(16)

(17)
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where

(18)

2(4~C,f  + k!Car + (Z3 + dl)Cat)
E=; -2(-Q&  + z;c,r + (/3 + dl)2Gt)

m2d3i2 - 2k(dl + b)Gt

(21)

and

mz(d1  + d3)
F = -(I,1 + 122 + mn(d: + d:) + 2mdlda) (22)

-(I,2  + mzd$  + m&da)

We can further transform equation (17) into state space form. Defining zsxi  = (qT, i’)T,  then equation

(17) can be written as

0 I 9
-M-lK,. -M-%‘, )O

+ M - ‘D S  +M-‘E& + M-lFi>
P (23)

A +BS +M-‘E& + M-IF&

The state space form will be used in the design of linear controllers.

4.3 Open Loop Simulation

Figures 10, 11, 12 show the open loop responses of the linearized model (dotted line) and those of the complex

nonlinear model (solid line). The longitudinal speed is fixed at 26.4 m/s (60 MPH) in these simulations,

while the front wheel steering is a 3 degrees step input in figure 10, a 0.2 Hz sinusoidal input in figure 11, and

a 0.3 Hz sinusoidal input in figure 12. In figure 10, the relative yaw angle between tractor and semitrailer

achieves a steady state angle of 2 degrees when the steering is a step input. We also see from figure 11 and

12 that the vehicle performs a “lane change” when the sinusoidal steering input completes a cycle, which

agrees with our driving experience.
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Figure 10: Step input response with the longitudinal vehicle speed 60 MPH
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Figure 11: 0.2 Hz sinusoidal input response with the longitudinal vehicle speed 60 MPH
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Figure 12: 0.3 Hz sinusoidal input response with the longitudinal vehicle speed 60 MPH

5 Concluding Remarks and Future Research

A nonlinear complex model for a tractor-semitrailer vehicle was formulated. This model was derived by

applying Lagrangian mechanics and has an advantage over a Newtonian mechanics formulation in that

our model eliminates the holonomic constraints at the fifth wheel by carefully choosing the generalized

coordinates. Since there is no constraint involved in the equations of motion, it is easier to design control

algorithms and to solve the differential equations numerically. Other configurations of articulated vehicles,

for example tractor/three trailer combination, can also be modeled with the same approach. A linear

control model was simplified from the complex nonlinear model. Linear quadratic optimal controller as well

as nonlinear robust controllers will be designed based on this linear model in the near future.

16



6 Acknowledgment

This work is performed as part of Partners for Advanced Transit and Highways (PATH) program, prepared

under the sponsorship of the State of California Business, Transportation, and Housing Agency, Department

of Transportation.

17



Appendix 1
Nomenclature

S : Tractor front wheel steering input.

kc:  Longitudinal velocity of tractor unsprung mass coordinate relative to inertial reference coordinate.

rj: Lateral velocity of tractor unsprung mass coordinate relative to the inertial reference coordinate.

yr, &:  Lateral displacement and lateral velocity of tractor unsprung coordinate relative to the road

centerline coordinate.

z, i: Vertical displacement and velocity of tractor unsprung mass relative to inertial reference coordinate.

d,$:  Roll angle and roll rate of tractor sprung mass coordinate relative to unsprung mass coordinate.

8,8: Pitch angle and pitch rate of tractor sprung mass coordinate relative to unsprung mass coordinate.

i: Yaw rate of tractor unsprung mass coordinate relative to the inertial reference coordinate.

t>: Desired yaw rate of the vehicle at curved section. If the radius of the curve is constant and equals to

p, t h e n  id = 5

fr, E;: Yaw angle and yaw rate of the tractor relative to the road centerline coordinate, where t, = i - E>.

Of, if: semitrailer pitch angle and pitch rate relative to tractor sprung mass coordinate.

61,  ei: semitrailer yaw angle and yaw rate relative to tractor sprung mass coordinate.

LYE:  Lateral slip angle at i - th wheel.

Figure 13: Vehicle Parameters

Vehicle parameters :

Mi : tractor’s mass.

ISi, &i,  1=i:  tractor mass of inertia.

Mz: semitrailer’s mass.

Izz, 1,2, Iz2 : semitrailer mass of inertia.

Li  : distance from tractor C.G. to front wheel.

18



L2 : distance from tractor C.G. to rear wheel.

L3 : distance from fifth wheel to semitrailer wheel.

D1, &: relative position between tractor’s C.G. to fifth wheel.

Ds,D4 : relative position between semitrailer’s C.G. to fifth wheel.

7%~: tractor front axle track width.

Tw2: tractor rear axle track width.

TWO:  semitrailer rear axle track width.

Swr : distance between the locations of tractor front axis suspension spring.

Sw2: distance between the locations of tractor rear axis suspension spring.

Sws: distance between the locations of semitrailer axis suspension spring.

Ha: distance from tractor roll center to C.G.

Hq,  Hg:  relative position between tractor pitch center and C.G.

Tire parameters :

Caj:  cornering stiffness of tractor front wheel.

Car:  cornering stiffness of tractor rear wheel.

Colt:  cornering stiffness of semitrailer rear wheel.

Szj  : longitudinal stiffness of tractor front wheel.

Sz, : longitudinal stiffness of tractor rear wheel.

5’~ : longitudinal stiffness of semitrailer rear wheel.

Appendix 2
Transformation Matrices and Equations of Motion

R; =

&‘-‘f Is

Ryf =Pf

1 0 -0

0 1 4

L9 -c#J 1 1
1 0 -fIj

0 1 0

oj 0 1 I
COSE j simj 0

-sine j coscj 0

0 0 1 1

(24)

(25)

(26)
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Tl = fml X (ci + h,e + &i542

+ +nl x (i + hz& - h2ij2
+ fm1 x (i - h,e)2
+ iI,1 x (i - Bq2
+ $Iy1 x (4 + 4;)”
+ $1 x (t)”

Vl = m1g(z  -h5Q)

(27)

(28)

2(Li + h&4 + h3c$i  - (e + Bj)i - h7(8 + 8j)i - eej+ostj
T2 = $rnz x +(fj + hjei - dli - h& + qLi + h&+in~f

+d4(i + 4; + e;, coscj - d4(~ - Bi - 8ji)sincj
2

+ irn.2 x

i

-(Li + hfjB + h+#G - (e + Bj).i - h7(8 + 8,)s - eej~)sintj
+(?j + hfj& - dli - h& + $i + h,~i)COS~j - d38jd - d3(i + Ef)

-d&j + 4; + if) SirMj - dd($fJ - ei - Bji)COSCj (29)

(

2
;+h7e-~Y+dl~i+h3~~+hs(e+ej)8,+(e+ej)~

i- fmz x
+d3(i + 4; + ij) coscj - d3(q5 - 6% - L9ji)Si?Mj

+ &((4 - (e + 8j)i)COSCj  + (q5i + e + B;)Sintj)2

+ +I,z(-(4 - (0 + 0f)i)sincj + (4; + i + B;)~os~j)~

+ $a2(8f$+i+tf)2

V2 = m2g(z + h70 + d3(0 + ej)COSfj - d3dSin~f)

L=T-V

From Lagrange’s equation, we get:

d aL aL- - -
dt ai1

- = F,
8x1

d aL aL F----=
dt ag ayl y

d aL aL F
----= zdt az’l azl

d aL aL _ M-7---
dt a4, ah ’

d aL aL-7----=
dt de1 do1

MO

d aL aL = M- - - -
dt de; acl L

(30)

(31)

(32)

(33)

(34)

(35)

(36)

(37)
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d aL aL-7-----=
dt a8j de, M@.f

d aL aL = M--_-
dt a+ aff

tr

Appendix 3
Generalized Forces for the Equations of Motion

Fy= FB~+FB~+FB~+FB~+FB~+FB~

Fz = FPI +-Fp2-kFPS+  FP~+FP~+FP~

M4 = (~;=PB~)(GI  - h2)+ (FPI -FPz,~+  (Fp3- Fpq)y

+FP~(~cosE~  -l3sinej)+ FP~(-~COSE~ -Zssincj)

M@ = -(,%FAI)(zo  - '54) - (FPI + FPZ)(~I  + h5)f(Fp3+  Fp4)(l2 - h5)

+FP~(~BCOSE~ + vsinrj + h7) + Fm(l3cos~j - ysincj + h7)

Me= (FA~-FAI)~+(FA~-FA~)~+FA~(-~cos~~  +Z3sin.cj)

+F~6(yCosEj + lssintj)+  (FBI + FB~)~I  - (FB~ + FB~)/~

-kF~~(-ysin~j -13cosfj - dl)+FBs(ysimj -ZScoscf  - dl)

Me, = -(FA~+F~6)( 20 - d2)+ F~5(~3cos~j  + ysincf)+ Fp6(23coscf  - Fsincj)

Me, = FAs(k+inEf - +ostj) + F/&SilZEj  + +mf)

+FBs(-~~cos~~  - ysincj)+ FB~(-~~cosE~  + y.sincf)

Appendix 4

(38)

(39)

(40)

(41)

(42)

(431

(44)

(45)

(46)

(47)

Tire Longitudinal Slip Ratios and Lateral Slip Angles for (i-wheel
tractor-semitrailer vehicle

The longitudinal slip ratio, Xi, is equal to

A. = vz-{zrc  for brakingz

and

Xi  = “‘L:,“L  for traction

where Vi is the forward velocity, wi  is the angular velocity and pi is the radius of the i - th wheel.

The lateral slip angle, ui,  is equal to

(~1 = S - tan-l $Slli( 1i Twl; '
2

21

(48)



a2 = 6 -tan-l

~3 = -tan-’

cy4 = --tan-l

(~5 = -tan-l
-ksincj + (6 - dli)cose - /3(i + ej)

icostj + ($ - dle)sincj  - v(f + ej)

and

(Yij = -tan-l -ksincf + ($ - dli)cosr - /3(i + ti)
icoscf + (?j - dle)sincf + Y(c + Ef)

Appendix 5
Suspension Deflections

el =zle- yp+z

e2 = zle + q&h+,

SW2e3 = -z2e - -2 4+z

SW1e4 = -12e + -2 4+z

e5 = -(z3(e+ef)+ 5g4)COSCj  - (ye - z34 + yo,) sincj - h78 - z

SW3 SW3
e6=-(z3(8+8j)-~4)cosEj+(28+/34+2Isw3 8j)sincf - h78 + z

(49)

(50)

(51)

(52)

(53)

(54)

(55)

(56)

(57)

(58)

(59)
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