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ABSTRACT 

 
We developed a physiologically based pharmacokinetic model of PCB 153 in women, 

and predict its transfer via lactation to infants.  The model is the first human, population-scale 

lactational model for PCB 153.  Data in the literature provided estimates for model 

development and for performance assessment.  Physiological parameters were taken from a 

cohort in Taiwan and from reference values in the literature.  We estimated partition 

coefficients based on chemical structure and the lipid content in various body tissues.  Using 

exposure data in Japan, we predicted acquired body burden of PCB 153 at an average 

childbearing age of 25 years and compare predictions to measurements from studies in 

multiple countries.  Forward-model predictions agree well with human biomonitoring 

measurements, as represented by summary statistics and uncertainty estimates.  The model 

successfully describes the range of possible PCB 153 dispositions in maternal milk, 

suggesting a promising option for back estimating doses for various populations.  One 

example of reverse dosimetry modeling was attempted using our PBPK model for possible 

exposure scenarios in Canadian Inuits who had the highest level of PCB 153 in their milk in 

the world.  
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INTRODUCTION 

 

Prior to the 1970s, polychlorinated biphenyls (PCBs) had been used rather extensively 

in industries involving the manufacture of transformers, capacitors, and non-carbon copying 

papers.  Despite the subsequent banning of PCBs, due to their chemical stability and 

lipophilicity, PCBs continued to be an environmental and human health concern through 

bioaccumulation and biomagnification.  As humans are at the top of the food chain, it is not 

surprising that PCBs are consistently found in a variety of human tissues. 

One of the most serious human health concerns from environmental contamination of 

PCBs is their presence in breast milk.  Indeed, PCBs have been detected in milk samples 

from lactating mothers in the U.S. (Schechter et al., 1998; Greizerstein et al., 1999), Japan 

(Suzuki et al., 2005; Inoue et al., 2006), Spain (Ramos et al., 1997; Angulo et al., 1999), 

Taiwan (unpublished data), and all over the world (see Figure 4 and Dewailly et al., 1996; 

Vartianen et al., 1997; Glynn et al., 2001; Polder et al., 2003).  It is a serious human health 

concern because milk, with its high lipid contents, represents a “concentrated delivery 

mechanism” of PCBs to infants.  Furthermore, a number of human epidemiological and 

animal experimental studies have established an association between neurodevelopmental 

and neurobehavioral deficits and PCB exposure (Jacobson et al., 1990; Tilson et al., 1990; 

Huisman et al., 1995).  At the cellular and molecular levels, exposure to PCBs during the 

developmental stage is known to disrupt thyroid hormone homeostasis and dopamine levels 

in the brain (Goldey et al., 1995; Seegal et al., 1997).   

Given these human biomonitoring levels in breast milk worldwide, how can we 

effectively utilize such information?  In this paper, we present an approach to render such 

human biomonitoring results useful by using physiologically based pharmacokinetic (PBPK) 

modeling.  We first transformed an earlier PBPK model for lactational transfer of PCB 153 in 
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mice (Lee et al., 2007) to a PBPK model for a non-pregnant human female at an average 

child-bearing age of 25 years.  We focused on PCB 153 because it is the most prevalent 

congener of PCBs detected in human tissue, often representing around 27 to 30% of the total 

detected PCB congeners in human tissues (Kiviranta et al., 2005; Inoue et al., 2006).  We 

then predicted the body burden build up of PCB 153 from birth over a 25-year period based 

on realistic exposure levels found in foods, as reported for the Japanese population (Akutsu et 

al., 2005).  In doing so, we incorporated all age-related physiological changes during the first 

25-year life span of a female person.  Next, we transformed the PBPK model to a lactating 

25-year old woman by incorporating all the physiological changes related to pregnancy and 

child birth.  Using this model, we predict milk levels of PCB 153 using three sets of values 

(minimal, median, maximal) for the most sensitive parameters based on actual data reported 

in the literature.  Model predictions of PCB 153 in mother’s milk were found to bracket the 

human biomonitoring data found worldwide.  Uncertainties and variability were propogated 

through the model but parameter estimation was not conducted.  We were able to use this 

PBPK model to carry out reverse dosimetry modeling to suggest possible exposure scenarios 

leading to the highest concentration of milk level of PCB 153 in the world in Canadian Inuits.   
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MATERIALS AND METHODS 

PBPK Model Development 

We developed a PBPK model to predict the concentration of PCB 153 in human milk. It 

was derived from a model for PCB 153 transfer in pregnant and lactating mice (Lee et al. 

2006).  We limited the complexity of the human PBPK model to a five-compartment model 

consisting of four well-mixed tissue groups – liver, fat, mammary tissue and rest of the body 

– and a mixed blood compartment (Figure 1) because available human data did not justify a 

more refined model, nor needed for population-scale, multi-year model 

assessments/predictions. 

All tissues in the model are flow-limited.  PCB 153 is input directly into the liver.  

Metabolism occurs in the liver with a first-order metabolic coefficient allometrically-

extrapolated from the mouse value found in Lee et al. (2006).  Post-delivery body weight was 

taken from a study done at Taizhong hospital in Taiwan, which involved determining PCB 

concentration in milk, cord blood and maternal venous blood, using the mean body weight of 

20 subjects.  Postpartum weight loss was modeled via formulae from Haiek et al. (2000).  

Physiological parameters for nursing women were taken from Gentry et al. (2003), Fisher et 

al. (1997) and Byczkowski et al. (1995) (Tables 1 and 2). 

 Akutsu et al. (2005) reported daily intakes of PCB 153 in Japan between 0.00125 to 

0.13 µg/kg/hr (median of 0.0068 µg/kg/hr).  De Amici et al. (2005) and Fisher et al. (1997) 

report milk production rates between 0.0033 to 0.06 l/hr (median of 0.0317 l/hr).  We 

simulated population scale exposure by uniformly sampling from this range in intakes and 

milk production rates. 

 Our final model was coded in the statistical software R (www.r-project.org) to facilite 

the data and statistical analyses. 
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Calculation of partition coefficients 

 

Partition coefficients (Table 1) were calculated using methods from Parham et al. 

(1997).  Parham et al. described calculations to determine the adipose:plasma and 

adipose:blood coefficients for any PCB using the structural properties of that PCB.  

Coefficients for other tissues were determined by multiplying the adipose:blood coefficient 

by an adjustment factor related to the lipid composition of the target tissue.  Adjustment 

factors, defined as Ltottissue/Ltotfat where Ltot = fraction of neutral lipids +0.3*fraction of 

non-neutral lipids in a tissue, were either listed in Parham et al. (1997) or calculated from 

Krishnan et al. (2007).  The partition coefficient for the Body compartment was the average 

of the partition coefficients for brain, skin and muscle.  The distribution of lipids of 

mammary tissue was obtained from Sakai et al. (1992).  The adjustment factor was then 

calculated for mammary tissue.  

 

Model Simulations to Build Up Body Burden Through Different Developmental Stages and to 

Incorporate Physiological Changes of  Lactating Women 

  

We simulated individuals beginning at age 0.  Body weight, blood volume, fat volume 

and cardiac output were given five different values according to developmental stages: for a 

female aged 0-1 year, 1-5 year, 5-10 year, 10-15 years and 15+ years.  Values were taken 

from Haddad et al. (2001) and from Price et al. (2003).  Mammary tissue volume was given a 

very low, estimated value for age less than 13 years – an average value for the onset of 

puberty – and its final lactational value past age 13.  We assumed age 25 as an average 

childbearing age, and thus lactation begins at this age in the simulations. 

The exposure input for our PBPK modeling of a 25-year old woman throughout her 

life is derived as shown in Figure 2.  Akutsu et al. (2005) reported that the exposure of 
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Japanese to PCBs was in the range of 0.7 to 4.4 µg/person/day of which the dominant 

congener was PCB 153 accounting for 9-15% of total PCBs.  Thus, we derived an estimation 

of 0.063 to 0.66 µg/person/day exposure of PCB 153 in human, as shown in Figure 2.  We 

assume further that this daily dose is divided evenly in the three meals and each meal takes 

15 minutes (0.25 hr) to consume.  Taking into consideration an average body weight of a 25-

year old woman to be 63 kg, we finally derived the body-weight dependent intake rate of 

PCB 153 to be 0.00125 to 0.013 µg/kg BW/hr (Figure 2).   

 Uncertainties and variability in our PBPK model for lactational transfer of PCB 153 in 

women were propagated using Latin Hypercube sampling.  No parameter estimation was 

performed in the model to data comparisons shown in Figures 3-5.  Our focus of this work is 

to observe and comment on the fidelity of a population-scale forward model derived from 

independent sources of information compared to worldwide measurements of PCB 153. 
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RESULTS 

 

PBPK Model Simulations of PCB 153 Contents in Serum, Plasma, Whole Blood, and Milk in 

Comparison With Worldwide Human Biomonitoring Data  

Blood and tissue concentrations for a 25-year old woman generated by this model 

were found to be within ranges found in the literature.  Figure 3 shows an example of one of 

the 1000 individuals simulated.  The apparent jaggedness in the curves is caused because 

body parameters are re-scaled by body weight at the above mentioned times, and when 

mammary tissue develops.  Figure 4 shows adult blood PCB 153 concentrations in various 

geographic locations in the world compared to simulation values.  

Figure 5 shows a histogram of PCB 153 predicted in lactated milk compared to global 

measurements reported in the literature.  The range and spread in the model simulations, 

caused by uncertainty only in intake and lactation rate, spans the range in the measurements.  

The mean model prediction, indicated by the open circle within the histogram, also appears to 

be quite close to many of the means reported in the literature. 

Reverse Dosimetry Modeling 

 Another application of a PBPK model is to reconstruct, from a given tissue level of 

PCB 153, a possible exposure scenario.  By varying or sliding the intake dose – or other 

relevant physiological parameter – we can obtain the PCB 153 milk concentration of interest.  

For example a group of Canadian Inuits was found to have a particularly high level of milk 

PCB 153 (16.59 µg/L) (Griezerstein et al., 1999).  In fact, the milk content of PCB 153 

among these Canadian Inuits are among the highest in the world (Figure 5).  Similarly, the 

serum PCB 153 concentration of a group of fishermen from the same region is 2457 ng/g 

lipid (DeWailly et al., 1994), or 14.7 µg/L in their blood if we assume that blood is 0.6% 

lipid (Sakai et al., 1992).  We raised the oral intake dose of PCB 153 of the model until we 
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obtained mean milk levels and blood levels of PCB 153 close to those reported in Dewailly et 

al., (1994) (Figure 6).  More sophisticated approaches to exposure reconstruction are 

available (see for example Sohn et al. 2004 and Allen et al. 2007) but where not needed for 

this work and are beyond the scope of this paper.  We were able to postulate an estimate of 

the daily intake dose of PCB 153 in this particular population: an intake rate of 0.374 

µg/hr/kg bw yielded a mean PCB 153 milk concentration of 16.18 µg/L and a blood 

concentration of 15.7µg/L.  Since all other factors were held constant, the postulated dose is a 

rough estimate.  However, this intake rate generates blood and milk levels in the same 

vicinity as those reported for populations in this region of Canada. 
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DISCUSSION 

Based on actual human exposure data and parameter values reported in the literature, 

Our PBPK model generates a range of results that encompasses human biomonitoring data of 

milk content of PCB 153 from all over the world.   Therefore, the model has good predictive 

capability.  Human biomonitoring data are increasingly being collected in the U.S., Canada, 

and other countries in large-scale field studies.  These studies are modeled after the efforts of 

the U. S. Centers for Disease Control and Prevention (CDC), which released its Third 

National Report on Human Exposure to Environmental Chemicals in the summer of 2005 

(CDC, 2005).  The Third Report, similar to its two predecessors but with expanded effort, 

contains biomonitoring data for the U. S. population for 148 environmental chemicals, 

grouped into 14 classes, over the period 2001-2002.  Given so many chemicals are detected 

in our body at very low levels, an interesting question to ask is “What is the health 

significance of these chemicals and what can we do about these data?  The application of 

PBPK modeling and reverse dosimetry modeling in the present study may offer a glimpse of 

the utility of human biomonitoring data collected by CDC and others.    

This model was concerned with incorporating as realistic parameters and exposure 

scenarios as possible.  Though simplified from the mouse model (Lee et al., 2006), the most 

relevant compartments (fat, mammary tissue for lactation, liver for metabolism) are 

maintained.  The first-order rate constant for PCB 153 metabolism was allometrically scaled 

from the mouse value given in Lee et al. (2006) since no literature values for PCB 153 

metabolism in humans were found.  Oral dose of PCB 153, given as a single daily dose in the 

literature (Akutsu et al., 2005), was divided into three meals to more accurately represent 

intake. 

 Appropriate age-dependent physiological values (body weight, blood volume, fat 

volume, mammary tissue volume and cardiac output) were used to simulate the period during 
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which body burden of PCB 153 was acquired.  Time intervals of five years were chosen as 

small enough to convey the changes brought on by growth, but large enough to obtain 

literature-based values.  The exception was mammary tissue volume and growth, for which 

no accurate values could be found in the literature.  Mammary tissue volume was assigned 

pre- and post-puberty values, with post-puberty values given those of a lactating woman.  

This parameter is probably subject to a certain inaccuracy since it is unlikely that upon 

puberty women acquire a mammary tissue volume equal to that observed during lactation.  

Pregnancy was not modeled separately.   

Lactation, in this model, was considered to be a uniform phenomenon for simplicity.  

Even though the literature suggests that milk production and content varies throughout the 

day, as well as throughout lactation (Mitoulas et al., 2002), for the purposes of a PBPK 

model, lactational performance is maintained constant, even over a wide range of maternal 

states (Butte et al., 2006).  Most PBPK lactational models make similar assumptions with 

regard to the modeling of lactation (Fisher et al., 1997; Gentry et al., 2003, Lee et al., 2006). 

A number of data sets were used for validation of this model (Figure 7): a pseudo-

time course (from different individuals) from different populations of one country (Inoue et 

al., 2006), a pseudo-time course from different mothers of one geographical location 

(Greizerstein et al., 1999, Taizhong hospital data) and actual time courses from individual 

mothers (Ramos et al., 1996, Abraham et al., 1997, Schechter et al., 1998).  Validation data 

were useful in verifying ranges of values but not necessarily in identifying trends of PCB 153 

concentrations in milk.  There is no clear trend in either the individual time courses or the 

population-based pseudo-time courses.  This is not wholly unexpected in a population-based 

study, as values are usually mean values and because such a cohort is subject to great inter- 

and intra-individual differences.  Similarly, mean values and ranges of PCB 153 milk 

concentrations in different areas of the world are of limited use since diet and physiological 
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attributes differ throughout these areas and because sample collection times and methods 

were not controlled.  However, they are able to validate the ranges and mean values of our 

simulation. 

The agreement between model predictions and data in Figure 5 helps to support the 

level of complexity employed in this PBPK model.  We condensed the Lee et al., (2006) 

PBPK model for PCB 153 in mice because the available data to parameterize an equivalent 

human model were unwarranted.  We also felt that they were not needed to make predictions 

at the global scale.  Uncertainties in intake and lactation rates alone are shown to cause model 

predictions as wide or wider than the range of concentrations reported in the literature.  This 

suggests that the limiting factor in improving the fidelity of the PBPK model lies more on 

understanding the inputs of the existing model (e.g., intake, lacration) than in increasing the 

complexity of the model by adding tissue compartments. 

While this model is useful in its ability to describe the distribution, absorption, 

metabolism and elimination of PCB 153 in a nursing woman, it is also useful in its capacity 

to provide an estimate of intake dose given a certain tissue (or in this case, milk) level of PCB 

153.  From our model simulation, the PCB level found in the milk of the Canadian Inuits 

suggests an intake dose almost fifty times higher than the median value of Akutsu et al. 

(2005): 0.374 µg/kg/hr versus 0.0068 µg/kg/hr.  This is probably a reflection of a high rate of 

consumption of fish in the Inuit diet.  Similar estimations can be made if other parameters are 

known for a certain population/individual.  Additionally, the model can be expanded to 

include an infant which simulates absorption, distribution, metabolism and elimination in a 

nursing child, such as the approach discussed by Clewell and Gearhart (2002).  Finally, 

because this model calculated the partition coefficients for PCB 153 based on structural 

properties of the PCB, the model can be expanded to other PCBs.  Using the formulas 

described in Parham et al., (1997), partition coefficients can be calculated for any PCB.  
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Table 1: Parameters used for lactating mother 
 

Physiological values 
 
Body weight (kg)  
Body height (cm) 
Cardiac output fraction 
Blood volume 
 
 
Tissue volume fractions of body weight  
     VL (Liver)  
     VF (Fat)  
     VMt (Mammary Tissue) 
     VR (Body) 
 
Blood flows (fraction of cardiac output)  

QL (Liver) 
QF (Fat) 
QMt (Mammary Tissue) 
QR (Body)  

 
Milk volume (Vmilk) (L) 
Milk production rate, Kmilk (L/hr) 

 
Metabolic rate for PCB 153 (L/hr) 
 
 
Partition coefficients 
 
Fat partition coefficient PF 
Mammary Tissue coeffient PMt 
Liver partition coefficient PL 
Body (average of partition coefficients 
for brain, muscle and skin) 
 
 
a 0.91 is used instead of 1 to take into account parts 
of the body not included in the model, such as 
skeleton, hair, etc 

 
 
63.9 
167  
18.0 
35.5*BH+2.278*BW-
3382)*0.001/0.6178 
 
 
0.04 
0.2 
0.02 
0.91a-(VLC+VFC+VMt) 
 
 
0.25 
0.1 
0.07 
1-(QL+QF+QMt) 
 
0.25 
0.0323 
 
0.000163 
 
 
 
 
303 
302 
17.9 
16.3 
 
 

 
 
Taizhong hospital 
Taizhong hospital 
Byczkowski et al. 1995 
Price et al. 2003 
 
 
 
Byczkowski et al. 1995 
Byczkowski et al. 1995 
Gentry et al. 2003 
 
 
 
Byczkowski et al. 1995 
Fisher et al. 1997 
Fisher et al.1997 
 
 
Gentry et al. 2003 
Gentry et al. 2003 
 
Extrapolated from mouse value 
 
 
 
 
Calculated from Parham et al. 1997 
Calculated from Parham et al. 1997 
Calculated from Parham et al. 1997 
Calculated from Parham et al. 1997 
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Table 2: Parameters used for female age 0-25  
 
 
Body weight (kg) 

0-1 year 
1-5 years 
5-10 years 
10-15 years 
15+ years 

 
Blood volume (L) 

0-1 year 
1-5 years 
5-10 years 
10-15 years 
15+ years 

 
Cardiac output (L/hr) 

0-1 year 
1-5 years 
5-12 years 
12-21 years 
21+ years 

 
Fat volume fractiona 

0-1 year 
1-5 years 
5-10 years 
10-25 years  
 

Mammary Tissue volume 
   0-13 years 
   13+ years 
 
All other parameters and partition coefficients 
are the same as those listed in Table 1 

 
 
9.8 
18.8 
31.9 
51.5 
54.4 
 
 
0.3 
1.33 
2.49 
3.0 
4.2 
 
 
84 
318.6 
310.8 
385.2 
439.8 
 
 
0.22 
0.157 
0.198 
0.33 
 
 
0.0001 
0.02 

 
 
Haddad et al. 2001 
Haddad et al. 2001 
Haddad et al. 2001 
Haddad et al. 2001 
Haddad et al. 2001 
 
 
Haddad et al. 2001 
Haddad et al. 2001 
Haddad et al. 2001 
Estimate 
Haddad et al. 2001 
 
 
Price et al. 2003 
Price et al. 2003 
Price et al. 2003 
Price et al. 2003 
Price et al. 2003 
 
 
Haddad et al. 2001 
Haddad et al. 2001 
Haddad et al. 2001 
Haddad et al. 2001 
 
 
Estimate 
Gentry et al. 2003 

a Obtained by dividing adipose tissue weight by age-appropriate body weight 
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Figure 1:  Five-compartment model of PCB153 transfer during lactation. 
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The estimated daily intake of total PCBs (sum of tri- to heptaCBs) [in Japan] was in 
the range of 0.7-4.4 £ gg/person/day. [Akutsu et al. 2005] 

The dominant congener was 2,2',4,4',5,5'-hexachlorobiphenyl (#153), which 
accounted for 9-15% of total PCB. [Akutsu et al. 2005] 

Oral Dose: Daily PCB 153 intake

Range of 0.063 µg/day (9% of 0.7 µg) to 0.66 µg/day (15% of 4.4 µg)

Intake per meal range: 0.021-0.22 µg

÷3 (three meals per day)

Intake rate (assuming meal lasts 0.25 hours): 0.084-0.88 µg/hr

X4 [Transform meal time (0.25 hr to hourly rate)]

Body weight-dependent intake rate: 0.00125-0.013µg/kg BW/hr

÷BW (63kg)

 
 
 
Figure 2.  Derivation of input exposure dose for PBPK modeling of loading body burden of 
PCB 153 in a 25-year old woman.
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Figure 3: PCB 153 body-burden predictions for one of the 1000 model simulations.  
Mammary tissue develops at age 13.  Lactation begins at age 25. 
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Belgium : Covaci et al. 2002 
India : Rusiecki et al. 2005 
All other data taken cited in Minh et al. 2005 
 
Figure 4: Range and mean concentrations of PCB 153 in plasma (*), serum (**) and whole 
blood (***) of populations from worldwide geographic locations 
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Figure 5: Histogram of model simulations compared to global measurements of PCB 153 in 
lactated milk.  The uncertainty in the model predictions results from uncertainty in the daily 
PCB 153 intake and in milk lactation rate.  The open circle is the mean prediction. 
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Figure 6: Blood and milk PCB 153 concentrations from Canadian inuit populations compared 

to simulation PCB 153 milk and blood concentrations generated with varying oral intake dose 

of PCB 153
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Figure 7: PCB 153 concentrations in milk from mothers reported in the literature 




