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ABSTRACT OF THE DISSERTATION 
 
 
 

Applications of Multi-Bias Analysis in Studies of the Associations  

between Parkinson’s Disease and Cancer 

 

by 

 

Paul Brendel 

Doctor of Philosophy of Epidemiology 

University of California, Los Angeles, 2019 

Professor Onyebuchi A. Arah, Chair 

 
 
 

Nonrandomized epidemiologic studies face many obstacles in attempting to quantify the 

effect of an exposure on an outcome.  Studies of the associations between Parkinson’s disease 

and cancer may be particularly vulnerable to uncontrolled confounding, information bias, and 

selection bias.  This dissertation provides graphical models and descriptions of how PD-cancer 

studies may be affected by biases.  An overview is also provided of how investigators have 

attempted to control for these biases.  A novel multiple bias modeling method called 

simultaneous multi-bias adjustment is developed to address this problem within a data fusion 

framework.  Simulation studies are used to support the validity of this method and compare it to 

the more traditional approach of sequentially adjusting for multiple biases.  Simultaneous multi-

bias adjustment is then applied to study of the effect of PD on cancer in a retrospective cohort 
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study using Danish population registry data combined with behavioral information collected 

from questionnaires and surveys.  The observed effect of PD on overall cancer in this data set is 

approximately null.  The effect estimate remains null after simultaneous multi-bias adjustment is 

applied, accounting for PD misclassification and selection bias related to participation and 

censoring.  The simulation studies and Danish cohort study reveal computational and 

methodological challenges in performing simultaneous multi-bias adjustment.  An interactive 

website and R package are developed to make this method more accessible to others.  By 

developing and demonstrating how to perform simultaneous multi-bias adjustment, showing its 

validity in simulated data, applying it to real-world data, and making tools for its usage, this 

dissertation aims to make multiple bias adjustment in causal modeling more accessible to other 

investigators.   
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1. INTRODUCTION 
 
1.1 PARKINSON’S DISEASE ETIOLOGY AND RELATIONSHIP WITH CANCER 
 

Parkinson’s disease (PD) is the second most common neurodegenerative disorder behind 

Alzheimer’s disease.  It is characterized by the loss of dopaminergic cells in the substantia nigra 

pars compacta.  PD features both motor and non-motor symptoms.  The cardinal symptoms of 

PD include:  resting tremor, bradykinesia, rigidity, and loss of postural reflexes [1].  PD has an 

estimated overall prevalence of 571 cases per 100,000 people in the total population [2].  PD 

prevalence increases with age; those aged 50-59 years have 156 cases per 100,000 people, 

whereas those aged 80+ experience 2,498 cases per 100,000 people [2].  In the United States, PD 

created an estimated economic burden exceeding $14.4 billion in 2010 [3].  There is currently no 

therapy for the underlying neurodegeneration, but several symptomatic therapies are available to 

help improve patient quality of life.  The therapies stimulate dopamine receptors or increase 

dopamine levels [4].  Levodopa, the precursor to dopamine, is the most effective treatment for 

the motor symptoms of PD [5]. 

The etiology of PD has been studied extensively but is still largely unknown.  Older age 

is a well-established risk factor for PD.  Many epidemiological studies have shown that smokers 

have a reduced risk of PD [6].  This trend initially gave rise to the idea that tobacco has a 

neuroprotective effect; however, recent evidence suggests that it may be more appropriate to 

explain the relationship in terms of differences in nicotinic reward/ease of quitting nicotine 

between those with and without PD (i.e. reverse causality) [7].  The risk of PD is about 1.5 times 

higher in males than in females [8].  The reduced risk in females may be attributed to a 

protective effect of higher circulating levels of estrogen during early reproductive life [9].  
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Genetics also play a role in the pathogenesis of the disease; at least 16 loci (PARK1 – PARK16) 

and 11 genes have been associated with inherited forms of the disease [10].  Several different 

occupational exposures have been studied ever since it was found that 1-methyl-4-phenyl-

1,2,3,6-tetrahydropyridine (MPTP) can lead to pathogenesis resembling PD [11].  A meta-

analysis of pesticides and PD found an increased risk of PD in those exposed to pesticides 

(OR=1.46), but there was substantial heterogeneity among the included studies [12].  Coffee (and 

presumably caffeine) may protect against PD; a meta-analysis of 13 studies found a pooled 

relative risk of PD of 0.69 (95% CI, 0.59-0.80) in coffee drinkers compared to non-coffee 

drinkers [13].  Physical activity may have a protective effect against PD, but this effect is largely 

dependent on age, gender, and type of activity [14].  Some other proposed risk factors needing 

further investigation include:  heavy metals, head trauma, alcohol, and diet. 

Beyond these risk factors, associations between PD and other health conditions have been 

studied.  Inverse associations between comorbidities appear when a lower-than-expected 

probability of certain diseases occurs in individuals diagnosed with other health conditions [15].  

An inverse comorbidity association between PD and cancer was first described by Doshay in 

1954 [16], [17].  Many cohort and case-control studies have since corroborated similar 

associations between PD and many cancers.  Meta-analyses by Bajaj et al. and Catala-Lopez et 

al. report estimates of the effect of PD on overall cancer as a relative risk (RR) of 0.73 (95% CI, 

0.63-0.83) and pooled effect size (ES) of 0.83 (95% CI, 0.76-0.91), respectively [18], [19].  The 

protective effect is slightly stronger in males (RR=0.71, 0.57-0.88) compared to females 

(RR=0.82, 0.68-0.98) [18].  An opposite trend of increased cancer risk in PD patients has been 

observed in melanoma.  A meta-analysis specifically examining the effect of PD on melanoma 

found a pooled odds ratio (OR) of 2.11 (95% CI, 1.26-3.54) [20].  While a consensus has formed 
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regarding the strength of the relationship between PD and different types of cancer, no single, 

concrete causal mechanism has been established to explain how PD might cause cancer. 

1.2 CAUSAL INFERENCE 
 

The objective of most epidemiological studies is to quantify the effect of an exposure on 

an outcome, measured as a risk difference, risk ratio, odds ratio, or hazard ratio.  Using the 

counterfactual framework developed by Neyman, Rubin, and others, the individual effect of an 

exposure occurs when the value of an outcome under one exposure (Ya=0) differs from the value 

the outcome would have under a different exposure (Ya=1) and with all other factors identical in 

both scenarios besides the exposure.  Since the conditions for both effects must be identical, only 

one of these two effects is observable, the other being hypothetical or counterfactual.  It follows 

from this lack of observability that individual effects cannot be estimated.  Using counterfactual 

notation and treating PD and cancer as dichotomous variables, an individual effect of PD on 

cancer would be written as CANCERPD=1 ¹ CANCERPD=0.   

A population effect occurs when the proportion of subjects, all with the same exposure, 

who experience an outcome (P[Ya=1=1]) differs from the proportion of subjects, all with a 

different exposure, who experience that outcome (P[Ya=0=1]) and with all other factors identical 

in both scenarios besides the exposure.  Unlike individual effects, population causal effects can 

be estimated by ensuring that the two subject groups are identical in their distribution of all 

relevant covariates.  Using counterfactual notation and treating PD and cancer as dichotomous 

variables, the population effect of PD on cancer can be written as a risk difference 

(P[CANCERPD=1=1] - P[CANCERPD=0=1] ¹ 0), risk ratio (P[CANCERPD=1=1] / 

P[CANCERPD=0=1] ¹ 1), or odds ratio ((P[CANCERPD=1=1] / P[CANCERPD=1=0]) / 
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(P[CANCERPD=0=1] / P[CANCERPD=0=0]) ¹ 1).  This paper henceforth refers to population 

effects when mentioning causal effects. 

Estimates of the effect of an exposure or intervention on an outcome consist of three 

components:  the true effect, random error, and systematic error.  For effect estimates to 

represent true effects, random error and systematic error must be minimized.  Random error is 

the residual variability of an effect measure that occurs because of a lack of sufficient knowledge 

to perfectly predict events [21].  In epidemiological studies, a major contributor of random error 

is sampling variability, error that results from the inability to include everyone from the target 

population (or a broader conceptual population of everyone with the biological experience) who 

could have been included in the study.  Random error in epidemiological studies can be 

minimized by increasing the study size, efficiently apportioning subjects into study groups, and 

efficiently stratifying the data into covariate subcategories [21].  The random error of an effect 

estimate is usually quantified and reported with a standard error and confidence interval. 

Systematic error or bias includes all the other (nonrandom) forces that harm the internal 

validity of a study.  All epidemiologic biases are generally subsumed under three categories:  

uncontrolled confounding, selection bias, and information bias [21].  Confounding can be 

thought of as the distortion of an exposure-outcome relationship due to a lack of exchangeability 

of external variables among study groups.  More precisely, confounding occurs when the 

conditional expectation (E[Y|X=x]) differs from the controlled expectation (E[Y|do(X=x)]) in the 

marginal measures setting (parallels for the conditional measures setting exist).  Selection bias 

occurs when the observed association in those selected for analysis differs from the association 

in those who are eligible for analysis [22].  Lastly, information bias can occur in epidemiological 

studies when the exposure, outcome, or both are incorrectly classified or measured with error 
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[23].  This misclassification or measurement error can be either independent or dependent, 

depending on whether the measurement error for the exposure is related to the measurement 

error in the outcome [23].  Also, the misclassification can be differential if the measurement 

error in the exposure/outcome is affected by the outcome/exposure, or non-differential if the 

measurement error in the exposure/outcome is not affected by the outcome/exposure [23]. 

Besides assuming a lack of bias, including conditional exchangeability, a few other 

assumptions are needed to identify causal effects.  Consistency is assumed, meaning that a 

group’s potential outcome under an exposure can be observed by measuring that outcome in 

people who experience the exposure.  Positivity is assumed, meaning that all subjects have a 

positive probability of receiving each possible treatment/exposure within strata of the 

confounders.  Lastly, a lack of interference is assumed, known as the stable unit treatment value 

assignment.  This assumption implies that a subject’s potential outcome under a particular 

exposure should not depend on the exposure value of other subjects.   

Causal assumptions made throughout this paper will be depicted using directed acyclic 

graphs (DAGs) [24]–[26].  DAGs consist of nodes, each representing a variable, and arrows 

between the nodes. An arrow from node X to node Y represents a direct, causal effect (of 

unknown strength) of X on Y.  If X has an arrow into Z and Z has an arrow into Y, then X has an 

effect on Y that is causally mediated by Z (an indirect effect).  Causal information travels along 

open paths in the DAG.  A path between two nodes is considered open unless it is closed by 

either:  1) two arrows on the path pointing into the same variable, referred to as a collider; or 2) 

conditioning or selecting on a non-collider along the path, which is represented in the DAG by 

putting brackets around the variable (e.g. [X]).  DAGs are acyclic, thus do not contain cycles (X 

® Y, Y ® X) or self-loops (X ® X). 
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The backdoor criterion is used to assess whether direct and indirect effects of X on Y have 

a causal interpretation [24].  A variable Z satisfies the backdoor criterion for (X, Y) if:  1) no node 

in Z is a descendent of X; and 2) Z blocks every path between X and Y that contains an arrow into 

X.  When a variable Z satisfies the backdoor criterion relative to (X, Y), then the control of Z 

allows for the identification of the causal effect of X on Y.  Otherwise, open, backdoor paths 

create bias between variables.  A biasing path between two variables will create association 

without causation between these variables.  When a covariate Z, in addition to other covariates C, 

removes the confounding of an X-Y relationship after control of (Z, C), and no subset of (Z, C) 

can remove the confounding, Z is referred to as a confounding variable [27]. 

Bias is also present and can be visualized in DAGs when there is conditioning on a 

variable that is a collider or the descendant (consequence) of a collider [22], [28].  Controlling 

for the collider opens a biasing path that would have otherwise been closed.  This type of bias is 

commonly seen in case-control studies, which by design select patients based on values of the 

outcome variable.  Bias is created when this selection is also related to the exposure under study. 

1.3 BIAS ANALYSIS 
 

Conventional results from epidemiologic analyses normally quantify the random error, 

but fail to quantify the systematic error [29].  Researchers typically address potential sources of 

bias through speculative discussion.  Such discussion is often limited by the creativity of the 

researcher and can be influenced by whether the researcher likes his or her results.  A series of 

methods, coined bias analyses, emerged to provide a quantitative and more transparent 

demonstration of how effect estimates are influenced by bias. 

One method, a “simple” sensitivity analysis, involves replacing the sources of uncertainty 

with fixed values [30].  The conventional analysis is then repeated with different values of the 
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uncertainty parameters [30].  This method can be expanded by replacing the fixed values with 

specific probability distributions for each parameter via Monte Carlo risk assessment or Bayesian 

methods.  In Monte Carlo risk assessment, a value is drawn from each parameter and the analysis 

is repeated with multiple draws.  A summary of the resulting distribution of effect estimates is 

then presented.  These methods were initially developed and implemented using population-level 

(marginal) uncertainty parameters that failed to account for the role of measured covariates 

already adjusted for.  However, newer methods have emerged involving record-level parameters.  

A record-level approach allows for more specific representation of bias by allowing for 

uncertainty parameters to vary with individual covariate levels [31]. 

A variety of external adjustment formulas are also commonly used to remove bias. 

Model-specific formulas are used to generate a bias factor, and this bias factor is subtracted from 

the exposure-outcome effect estimate [32].  The resulting effect estimate is then considered free 

of the suspected source of bias, based on the assumptions used to generate the bias factor [32]. 

 When multiple biases arise in epidemiologic studies, the biases are generally analyzed 

sequentially [21], [33].  The order of the corrections will affect the final result; corrections 

should be made in the reverse of the order in which the errors occurred in the data-generating 

process [33].  There is no consistent order in which threats to validity arise, so determining the 

order of corrections may be difficult.  A bias analysis with record-level uncertainty parameters 

could circumvent this problem by allowing for the adjustment of biases simultaneously instead 

of sequentially.  A simultaneous adjustment would also be ideal since biases do not necessarily 

act independently of each other, and these interactions would not be captured in a sequential 

approach. 
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 As improvements in technology lead to larger sources of data, increased study sizes 

should minimize the impact of sampling variation on the total uncertainty in statistical estimates.  

On the other hand, bigger data will inflate the chances of being precisely wrong whenever 

systematic error is substantial.  Bias analysis is therefore most valuable in big data studies that 

report minimal uncertainty with narrow confidence intervals (i.e. higher precision) and are 

susceptible to a limited number of systematic errors [33].  Such misleading, highly precise 

estimates could be used as evidence for policy intervention, so it is imperative that a more 

accurate representation of uncertainty is provided.  A study with many sources of systematic 

error, however, is a good candidate for a new, better designed study as opposed to bias analysis. 

To make valid causal inferences, it is essential that epidemiological investigators go 

beyond a qualitative description of potential error sources and adopt quantitative bias analysis.  

Although adaptation of these methods has been slow, the importance of bias analysis and guides 

to good practice are gaining prominence [32], [34], [35].  Although it is important to expand on 

the comprehensiveness of bias analysis techniques, it is also necessary to create metrics and tools 

that will improve the adoption of these methods, as seen in the E-value and E-value calculator 

[36], [37]. 

 
1.4 SPECIFIC AIMS OF THIS DISSERTATION 
 
 The public health focus of this dissertation is to describe and add clarity to the PD-cancer 

relationship.  This dissertation will provide an overview of the effect estimates seen in the PD-

cancer literature.  It will highlight several biases that may be impacting PD-cancer studies and 

describe how investigators have attempted to control for these biases.  Lastly, a PD-cancer study 

will be conducted that incorporates multiple bias adjustment.  
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 The methodological focus of this dissertation is to develop a method to adjust for 

multiple biases simultaneously.  Simulation studies will be used to confirm the validity of this 

method and demonstrate its advantages over sequential multi-bias approaches.  Lastly, this 

dissertation will develop and provide tools to make simultaneous multi-bias analysis accessible 

to others.    

 

The project is divided into four studies, each with a specific aim: 

 

Study 1:  To review the causal nature of the relationship between Parkinson’s disease and 

cancer, including a summary of the epidemiological and biological evidence and descriptions 

and causal graphs of potential sources of bias.  

 

Study 2:  To develop a method that simultaneously adjusts for any combination of uncontrolled 

confounding, exposure misclassification, and selection bias that serves to “reconstruct” the 

unbiased data. 

 

Study 3:  To apply simultaneous multi-bias analysis to understand the effect of PD on cancer 

using data from the Danish National Hospital Registry. 

 

Study 4:  To create an interactive web application and an R package to assist investigators in 

implementing simultaneous multi-bias analysis. 
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2. STUDY 1 
 
 
CAUSAL REVIEW OF STUDIES OF THE ASSOCIATIONS BETWEEN PARKINSON’S 
DISEASE AND CANCER 
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2.1 ABSTRACT 
 
Introduction: Numerous epidemiological studies have attempted to quantify and to describe the 

causal relationship between PD and cancer; however, there is no clear understanding of the 

causal mechanism relating these variables.  The current study aimed to provide a causal 

overview of the potential biases that could explain some of the published PD-cancer associations 

and to give examples of how investigators have attempted to adjust for these biases to help guide 

future study designs. 

Methods: Peer-reviewed literature on PD-cancer connections was obtained from PubMed.  

DAGs were used to depict the plausible causal and non-causal connections between PD and 

cancer based on the published literature and best available knowledge. 

Results: Across a variety of study designs, PD-cancer studies show a consistent, protective 

effect of PD on the occurrence of most non-melanoma cancers.  The inverse relationship 

between PD and cancer may be susceptible to a variety of biases including uncontrolled 

confounding, information bias, and selection bias.  Differences in disease onset and survival may 

contribute to the heterogeneity in PD-cancer vs. cancer-PD estimates and the differences 

observed among specific cancer subtypes. 

Conclusion: Insufficient bias adjustment in epidemiological studies and incomplete knowledge 

of biological processes impede the understanding of the true causal link between PD and cancer, 

if any.  
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2.2 INTRODUCTION 
 

Numerous epidemiological studies have found PD patients to be at a decreased risk of 

developing many types of cancer [18].  This inverse relationship has been studied for decades 

because there is still no biological mechanism to explain the relationship and because most 

studies do not produce an adequately unbiased estimate of the effect of PD on cancer.  Truly 

understanding this relationship could provide insight into the underlying etiologies of these two 

diseases.  Such insight is crucial considering both diseases are highly prevalent among the 

elderly and lead to significant physical and economic burden. 

In order to provide additional support for an exposure-outcome relationship, 

Epidemiologists generally conduct several studies of the relationship using different study 

populations, study designs, and analysis methodologies.  Presumably, each additional study 

identifies a weakness of a previous study and attempts to improve on the weakness.  To identify 

potential areas of improvement an investigator needs to thoroughly review the literature on the 

particular relationship for unaddressed sources of systematic error.  What if, instead, this 

information was detailed in a single review? 

This paper provides a causal overview of the PD-cancer relationship.  It summarizes the 

effect estimates seen in the literature.  Potential sources of bias due to uncontrolled confounding, 

information bias, and selection bias are described and modeled with DAGs.  Examples of how 

investigators have attempted to control for these biases are provided.  Lastly, additional factors 

influencing this relationship related to disease onset and survival are discussed.  By providing a 

causal review of PD-cancer, this paper should help guide the design and analysis of future PD-

cancer studies.   

2.3 METHODS 
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 The PD-cancer publication search strategy is described as follows.  PD-cancer studies 

were initially identified from the meta-analysis by Baja et al. [18].  Additional studies from 

November 2009 until April 2019 were collected from PubMed searching the keywords: 

‘parkinson’s’, ‘cancer’, ‘neoplasm’, ‘melanoma’, and ‘inverse’.  The reference list of each paper 

was manually reviewed for any additional, relevant studies.  

2.4 PD-CANCER STUDY RESULTS 
 

Meta-analyses examining PD preceding cancer by Bajaj et al. and Catala-Lopez et al. 

report overall cancer risk estimates in PD patients as a relative risk (RR) of 0.73 (95% C.I. 0.63-

0.83) and pooled effect size (ES) of 0.83 (95% C.I. 0.76-0.91), respectively (Table 2.1) [18], 

[19].  Estimates of overall cancer risk may not be very meaningful considering that the strength 

and direction of the effect of PD on cancer seems to vary based on the type of cancer.  For 

example, PD had a stronger protective effect on lung cancer relative to overall cancer, whereas 

PD was reported to be a risk factor for melanoma.  When Bajaj et al. exclusively analyzed 

studies where melanoma and other skin cancers could be excluded, the overall effect estimate 

barely changed (RR=0.71; 95% C.I. 0.63-0.79). 

 

Table 2.1 PD-cancer meta-analysis results 
Meta-analysis Overall cancer 

risk 
# of 
studies 

Lung cancer 
risk 

# of 
studies 

Melanoma risk # of 
studies 

Bajaj, 2010 0.73;  
0.63-0.83a 

29 0.46;  
0.41-0.51a 

10 1.41;  
0.90-2.19a 

8 

Cátala-Lopez, 2014 0.83;  
0.76-0.91b 

10 0.44;  
0.35-0.55b 

8 1.65;  
1.39-1.96b 

6 

a Risk ratio, 95% confidence interval 
b Pooled effect size, 95% confidence interval 
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Fewer studies have investigated the opposite direction of effect, cancer preceding PD.  

Evidence from five case-control studies is less conclusive but suggests similar results to those of 

PD preceding cancer (Table 2.2) [38]–[42]. 

 

Table 2.2 Estimates of the effect of cancer on PD 
Study Odds ratio; 95% CI 
Cui, 2019 
 

Overall cancera: 
1.14; 0.89-1.46 
 

Smoking-related cancera: 
0.75; 0.46-1.22 

Non-smoking-related 
cancera: 
0.97; 0.61-1.56 

D’Amelio, 2004 Malignant neoplasmsb: 
0.5; 0.1-2.1 

Non-malignant 
neoplasmsb: 
0.3; 0.1-0.7 
 

 

Driver, 2007 Overall cancerc: 
0.83; 0.57-1.21 

Smoking-related cancerc: 
0.74; 0.35-1.57 

Non-smoking-related 
cancerc: 
0.88; 0.59-1.32 
 

Elbaz, 2002 
 

Overall cancerd: 
0.79; 0.49-1.27 

Lung cancerd: 
1.00; 0.14-7.10 

Melanomad: 
1.50; 0.25-8.98 
 

Olsen, 2006 Overall cancerd:  
1.04; 0.96-1.12 

Lung cancerd:  
0.42; 0.22-0.80 

Melanomad:  
1.44; 1.03-2.01 
 

a Adjusted for age at PD diagnosis or index date, sex, urbanization, SES, Charleston Comorbidity Index; cases and controls matched by age and 
sex 
b Adjusted for smoking, alcohol, and coffee consumption; cases and controls matched by age and sex 
c Adjusted for smoking status, alcohol use, BMI, and exercise; cases and controls matched by age 
d Cases and controls matched by age and sex 

 

Two studies examined the PD-cancer relationship in both directions (Table 2.3).  Both 

studies reported a stronger protective effect in PD preceding cancer versus cancer preceding PD.  

Freedman et al. used data from the Surveillance, Epidemiology, and End Results-Medicare 

(SEER) linked database for both a cohort (cancer ® PD) and case-control study (PD ® cancer) 

[43].  The cohort and case-control study each used the same source population, diagnostic 

criteria for PD/cancer, and outcome models with the same adjustments (sex, race, age, cancer 

registry, and frequency of physician visits).  Despite these similarities in design and analysis, a 

lack of PD-overall cancer association was seen in the cohort study, but PD was associated with 
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reduced subsequent overall cancer in the case-control study.  Similar estimates were seen for the 

cohort and case-control designs for overall cancer when automobile injuries were evaluated in 

place of PD.  These inconsistencies led Freedman et al. to believe that the true relationship 

between PD and cancer is likely non-causal and that any non-null association could be explained 

by bias, notably detection bias (fewer screening and diagnostic tests in those with PD). 

 

Table 2.3 Results of studies that assessed the PD-cancer relationship in both directions 
Study PD ® Cancer Cancer ® PD 

Overall Lung Melanoma Overall Lung Melanoma 
Fois, 2009 0.61; 

0.53-0.70a 
0.5; 
0.4-0.8a 

0; 
0-1.01a 
 

0.76; 
0.70-0.82a 

0.5; 
0.4-0.7a 

0.5; 
0.2-0.9a 

Freedman, 
2016 

0.77; 
0.71-0.82b 

0.69; 
0.62-0.76b 

1.03; 
0.88-1.21b 
 

0.97; 
0.92-1.01c 

0.81; 
0.72-0.92c 

1.12 
0.95-1.31c 

a Rate ratio, 95% confidence interval 
b Odds ratio, 95% confidence interval 
c Hazard ratio, 95% confidence interval 

 
 
 

Fois et al. used the Oxford Record Linkage Study to study the occurrence of cancer in 

people admitted with PD before and after an admission of cancer [44].  Reference cohorts were 

established by including those admitted for common orthopedic, dental, ENT, and other minor 

disorders. Similar results were seen in cancer before and after PD; there were decreased rate 

ratios for overall cancer, smoking-related cancers, and some non-smoking-related cancers.  

These significant differences were not seen when motor neuron disease and multiple sclerosis 

were examined instead of PD.  The authors suggest that biological processes may explain these 

results, pointing to a neuroprotective effect of smoking (i.e. PD patients are less likely to smoke, 

thus less likely to have cancer) and genetic factors that are common in both diseases, such as 

parkin mutations. 
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A recent cohort study by Lin et al. is the first epidemiological study to report PD-cancer 

estimates of effect in stark contrast to those reported in previous studies [45].  This study, which 

followed a Taiwanese cohort, is also one of the first cohort studies to examine this relationship in 

a non-Western population.  The study reports the following hazard ratios for cancer in PD 

patients: overall (1.58; 95% CI 1.50-1.65), lung (1.56; 95% CI 1.38-1.76), melanoma (2.75; 95% 

CI 1.35-5.59).  The estimates for overall and lung cancer are in the opposite direction of those 

estimates reported in other Western studies.  The authors attribute their opposing results to the 

different genetic background and environmental exposures of the Taiwanese population. 

A meta-analysis by Liu et al. looked specifically at the relationship between PD and 

melanoma [20].  Their analysis of 12 studies resulted in a pooled PD-melanoma OR of 2.11 

(95% CI 1.26-3.54).  The analysis had a couple of key concerns.  First, there was significant 

heterogeneity across studies.  Second, eight of the studies had fewer than ten cases with PD and 

melanoma, which brings into question issues of sufficient statistical power.  Despite these issues, 

three other reviews of the PD-melanoma relationship each confirm the increased risk of 

melanoma in PD patients [46]–[48].  While the exact causal nature is unclear, the reviews agree 

that levodopa use does not contribute to the causal effect, as had previously been hypothesized.  

2.5 BIAS IN THE PD-CANCER LITERATURE 
 

Biological explanations may not fully explain the PD-cancer effect estimates seen in the 

literature.  There could be various sources of systematic error contributing to a non-causal 

relationship.  In this section, we will introduce these biases, describe how they may be distorting 

the PD-cancer relationship, and explain how investigators of the PD-cancer relationship have 

attempted to account for these biases in their studies. 

2.5.1 UNCONTROLLED CONFOUNDING 
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Uncontrolled confounding occurs when a common cause of both exposure and outcome 

is not appropriately controlled for in the study design or analysis, resulting in a spurious 

association between the exposure and outcome (Figure 2.1).  Randomized controlled trials are 

often considered the “gold standard” because randomization into exposure groups helps prevent 

confounding since the randomization scheme is the only factor influencing the exposure.  Until 

researchers completely understand the etiology of PD and cancer, it is impossible to confirm all 

the common causes of both diseases.  Therefore, to prevent uncontrolled confounding 

investigators must choose adjustment variables based on the best available knowledge and 

acknowledge the possibility that there may be uncontrolled, unknown common causes.  At a 

minimum, studies of PD-cancer should adjust for age and sex. 

 

 
Figure 2.1 Uncontrolled confounding in the PD-cancer relationship (assuming a causal link) 
 

 

Smoking is also an important confounder when examining any of the several cancer 

subtypes known to be affected by smoking (Figure 2.1).  Many epidemiological studies have 

shown that smokers have a reduced risk of PD [6].  Uncertainty exists regarding the exact causal 

nature and direction of the smoking-PD relationship [7].  However, unless one argues that 

smoking acts as a mediator between PD and smoking-related cancer, smoking must be controlled 

for in the study design or analysis. 

PD Lung cancer

Smoking
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A common problem that contributes to uncontrolled confounding in studies of PD-cancer 

is the study’s inability to obtain smoking or other behavioral data.  Many studies use large, 

population-based registries or health insurance claims data, which do not contain information 

regarding behavioral variables.  Furthermore, studies that do have smoking data typically have 

imprecise measurements (e.g. never smoker, past smoker, current smoker), and smoking control 

could still lead to residual confounding.  Several studies acknowledge that their estimates may be 

biased from the confounding that results from the inability to obtain smoking measurements 

[43]–[45].  Investigators lacking smoking information may compare estimates from “smoking-

related” and “not smoking-related” cancers.  In their PD-cancer meta-analysis, Bajaj et al. found 

that smoking-related cancers had the stronger inverse relationship with PD (RR=0.61, 95% 

CI=0.58-0.65), but that nonsmoking-related cancers still had a significant inverse relationship 

(RR=0.80, 95% CI=0.77-0.84) [18].  This stratification helps bypass the need for smoking 

adjustment when the outcome is non-smoking related, but still results in a biased estimate for 

smoking-related cancer. 

The strategy used by most investigators to select covariates for confounding control in 

PD-cancer studies is not ideal and likely results in effect estimates with residual confounding.  

The most common approach involves basing the adjustment set on the variables that will control 

confounding between PD and overall cancer.  This same adjustment set (or no adjustment) is 

then used in the analyses of PD and specific cancers.  However, different cancers have distinct 

risk factors, so different cancers will commonly require different adjustment sets to control for 

confounding.  For example, estrogen level will be an important confounder on the effect of PD 

on breast cancer, but not a confounder for the effect of PD on lung cancer.  Using the prevailing 
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approach for covariate selection, different PD-cancer effect measures may have different degrees 

of residual confounding. 

Nine cohort studies and seven case-control studies were used in the Bajaj et al. PD-cancer 

meta-analysis (Table 2.4) [18].  Every study appropriately controlled for age and most controlled 

for sex.  There was not a single study that used different adjustment sets for different cancer 

subtypes.  The two studies by Driver et al. made the strongest effort to address the problem of 

inadequate confounding control in PD-cancer studies.  These two studies, both using data from 

the Physician’s Health Study, obtained lifestyle factors, including smoking status, alcohol use, 

BMI, and exercise frequency from a questionnaire mailed to study participants [40], [49].  Both 

studies provide crude and multivariable adjusted estimates of PD-overall cancer, but neither 

study uses this rich covariate data to adjust for the PD effect on specific cancers.  The scarce 

number of outcomes within each cancer subtype probably explains why such estimates are 

absent. 

 

Table 2.4 Studies incorporated in the Bajaj et al. meta-analysis and their respective adjustment 
sets 

Cohort studies Adjustment set 
Barbeau, 1963 Age 
Driver, 2007 Age, sex, smoking, alcohol, BMI, exercise 
Elbaz, 2005 Age, sex, smoking 
Fois, 2009 Age, sex, year of first hospital admission, 

region 
Guttman, 2004 Age, sex 
Jansson, 1985 Age 
Minami, 2000 Age 
Olsen, 2005 Age, sex 
Pressley, 2003 Age 
Case-control studies Adjustment set 
D’Amelio, 2004 Age, smoking, alcohol, coffee 
Driver, 2007 Age, sex, smoking, alcohol, BMI, exercise 
Elbaz, 2002 Age, sex 
Levine, 1992 Age, sex 
Olsen, 2006 Age, sex 
Powers, 2006 Age, smoking, ethnicity, education 
Rajput, 1987 Age, sex 
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2.5.2 INFORMATION BIAS 
 

Information bias can occur in epidemiological studies when the exposure, the outcome, or 

both are incorrectly classified [21].  The misclassification can be either independent or 

dependent, depending on whether the measurement error for the exposure is related to the 

measurement error of the outcome [23].  Also, the misclassification can be either differential, if 

the measurement error of the exposure/outcome is affected by the outcome/exposure, or non-

differential, if the measurement error of the exposure/outcome is not affected by the 

outcome/exposure [23].  In the case of PD-cancer, it seems likely that errors in classification are 

independent, since distinct diagnostic methods are used for PD and cancer, but different 

circumstances can arise and lead to both differential and non-differential misclassification 

(Figure 2.2). 

 

 
Figure 2.2 Information bias in PD-cancer (* represents misclassified variable, () represents 
missing variable, UA represents all factors other than A that determine the value of A*) 
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PD is a particularly difficult condition to diagnose, with the only definite diagnosis 

requiring pathological examination post-autopsy [1].  Clinicians normally rely on the presence of 

multiple motor symptoms to make a diagnosis, with the cardinal symptoms including resting 

tremor, bradykinesia, rigidity, and loss of postural reflexes [1].  A recent meta-analysis examined 

11 studies that included diagnostic parameters regarding clinical diagnosis of PD and found that 

these studies had a pooled diagnostic accuracy of 80.6% [50].  Having one in five subjects have 

an incorrect PD diagnosis due to clinical error can introduce independent, non-differential 

misclassification in PD-cancer studies (Figure 2.2). 

Available statistics for cancer misclassification and misdiagnosis are generally lacking 

despite the huge financial and medical implications.  A study of malpractice claims from a large 

risk management database found that 59% of claims related to diagnostic errors pertained to 

cancer diagnosis [51].  Another study analyzed cancer diagnosis error rate by comparing patient 

same-site cytologic and histologic specimens and found an error rate of 11.8% [52]. 

To address issues of independent, non-differential misclassification, Elbaz et al. assessed 

the reliability of their PD classification through a validation sub-study [39].  PD was initially 

classified as parkinsonism with three additional criteria: (1) no other cause, (2) no documentation 

of unresponsiveness to levodopa at doses of at least 1 gram/day in combination with carbidopa, 

and (3) no prominent or early signs of more extensive involvement not explained otherwise.  The 

investigators validated the PD classification via evaluation by one of three movement disorder 

specialists.  The specialists did not have access to patient medical records during the 

assessments.  They found that 96.6% (57/59) of those initially classified as PD fulfilled the PD 

diagnostic criteria at direct examination.  None of the non-PD patients were found to have PD or 
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parkinsonism (0/58).  The results of these clinical examinations provide evidence suggesting that 

independent, non-differential PD misclassification was negligible. 

Surveillance bias, a type of independent, differential misclassification bias, can occur 

when the exposure, or factors related to the exposure, influences the amount or duration of effort 

used in detecting the outcome (Figure 2.2) [21].  An outcome is more likely to be detected if 

medical professionals spend more time looking for it.  A positive exposure-outcome relationship 

could then merely result from the exposure’s ability to increase medical surveillance. 

PD patients may experience increased cancer surveillance upon immediate diagnosis.  

The patient will present to the physician with motor and/or cognitive deficits, and the physician 

may order multiple tests, including cancer screenings, to find a clinical explanation for the 

symptoms.  PD patients may later experience decreased cancer surveillance as their symptoms 

progress and their quality of life decreases.  There is less urgency to detect/treat cancer if the 

patient already has a very limited quality of life due to the PD symptoms.  It may seem that PD 

patients are experiencing less cases of cancer when, in fact, they are experiencing no difference 

in cancer rate and their cancer is simply not being diagnosed.  In addition, PD patients are more 

likely to be institutionalized than age and sex-matched controls [53].  This difference could result 

in increased medical contacts and additional opportunities for detection of certain cancers in PD 

patients. 

Becker et al. acknowledged the potential for surveillance bias in PD-cancer studies and 

attempted to account for this error in their analysis of the UK General Practice Research 

Database [54].  Within their longitudinal study, the investigators performed a nested case-control 

analysis (cases corresponded to those with incident cancer) and adjusted for the number of 

medical contacts prior to the index date.  They found that PD patients had more physician visits 
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than PD-free patients (53% vs. 39% with more than 10 healthcare contacts), but that adjusting 

for medical contacts further moved the PD-cancer relative risk away from the null. 

Freedman et al. expand on these attempts to control for surveillance bias [43].  Their PD-

cancer study likewise adjusts for the frequency of physician visits.  In addition, this study 

employs a negative comparison control, automobile injuries, to determine if a health outcome 

with no biological relationship to cancer could be found to affect cancer risk, presumably by 

influencing screening or diagnostic tests for cancer.  The study found a reduced risk of cancer 

following both PD and automobile accidents, which is consistent with the idea that any 

significant medical incident could lead to under-ascertainment of cancer (i.e. an inverse 

exposure-outcome relationship). 

2.5.3 SELECTION BIAS 
 

Selection bias occurs when the effect estimate seen in those selected for analysis differs 

from that of the target population [22].  This bias occurs in case-control studies due to the 

inappropriate selection of controls and occurs in cohort studies due to differential censoring 

between the exposed and unexposed [22].  The key causal mechanism shared by all forms of 

selection bias is collider stratification, which involves conditioning on a variable, termed a 

collider, that is a shared common effect of two other variables. 

In case-control studies, selection bias occurs when the outcome influences study selection 

(per study design) and the exposure is also related to selection (Figure 2.3).  A collider 

stratification bias ensues due to the study inherently examining only those subjects that were 

selected for participation.  This bias can be avoided by designing a study such that controls are 

sampled in a manner to ensure that their exposure distribution is comparable to that of the source 

population (or ensure that exposure is not related to selection other than through the outcome or a 
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covariate that can be adjusted for at the analytical stage).  Selection bias can affect PD-cancer 

case-control studies due to PD causing a variety of factors known to affect study participation 

(Figure 2.3).  Specific health problems in older adults affect recruitment and retention [55].  

Some of these problems that are affected by PD include:  cognitive slowing, dementia, manual 

dexterity difficulties, fall risk, and limited life expectancy.  Failure to adjust for these health 

problems could lead to biasing paths through study selection. 

 

 
Figure 2.3 Selection bias in PD-cancer case-control studies 
 
 
 

A specific type of selection bias, known as survivor bias, can also occur in case-control 

studies [21].  In addition to conditioning on selection, case-control studies inherently condition 

on those who have survived until an age old enough to experience the outcome.  A biasing path 

can form when the exposure affects survival to outcome diagnosis and when survival is related to 

the outcome via a shared common cause (Figure 2.3).  Survivor bias may influence the inverse 

PD-cancer relationship due to PD patients selected for studies having “survival” qualities, 

making them less likely to get cancer compared to those less healthy PD patients who didn’t 

survive long enough to make it into the study.  Specifically, this bias can be seen in PD-cancer 

case-control studies due to the lack of adjustment for factors that affect both cancer and survival 
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to cancer diagnosis (Figure 2.3).  These factors may include: chronic inflammation, 

immunosuppression, diet, and obesity. 

Selection bias occurs in cohort studies when those with the exposure participate or are 

lost to follow-up at a different rate than those without the exposure (Figure 2.4).  Cohort studies 

inherently select on those who are not lost to follow-up.  Study follow-up, or the lack of 

censoring, is therefore a potential point of collider stratification.  In PD-cancer cohort studies, 

collider stratification can occur when PD and cancer affect censoring through health problems 

known to affect retention (Figure 2.4).  Health problems caused by cancer that may affect 

retention include:  major emotional decline, frequent hospitalizations, easy fatigability, and 

limited life expectancy [55]. 

 

 
Figure 2.4 Selection bias in PD-cancer cohort studies 
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follow-up, the investigators attempted to remove any causal relationship between PD and 

survival to cancer diagnosis, thus preventing the collider stratification bias through survival. 

Cui et al. used inverse probability weighting methods to adjust for potential selection bias 

in the PD-cancer relationship [42].  This technique involves calculating the probability of 

selection for each individual included in the analysis and then incorporating the inverse of this 

probability as a weight in the outcome regression [22], [57].  The selection model incorporated 

both study participation and survival.  Probabilities were obtained from logistic regression 

models with predictors including PD, cancer, smoking, age, sex, SES, urbanization, and previous 

cancer history. 

2.6 DISEASE ONSET AND SURVIVAL CONSIDERATIONS 
 

Different onset and survival patterns within PD and cancer could contribute to the 

different effect estimates seen in PD preceding cancer versus cancer preceding PD.  Onset of PD 

typically occurs after age 60 and is rarely diagnosed before age 50 [6].  Cancer, on the other 

hand, is much more likely to occur before age 60.  In 2014, cancer was the leading cause of death 

in Americans aged 45-54 and the second leading cause of death in Americans aged 35-44 [58].  

A meta-analysis found that those with PD experience an approximate decrease in survival of 5% 

per year of follow-up, while SEER reports an age-adjusted 5-year survival rate for overall cancer 

of only 66.9% [59], [60].  As a result of these differences in onset and survival, it is easier for PD 

patients to survive long enough to receive a cancer diagnosis compared to cancer patients 

surviving long enough to receive a PD diagnosis.  Discrepancies will also be seen when studies 

allow for different follow-up periods. 

Similarly, different onset and survival patterns among cancer subtypes could help explain 

the heterogeneity of effects of PD on specific cancers.  Melanoma and lung cancer are notably 
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different in this regard.  Melanoma has a median age of diagnosis of 57 and is one of the most 

common cancers in young adults [61].  It has a high 5-year survival rate:  89.5% for males, 

94.0% for females [60].  On the other hand, lung cancer has a median age of diagnosis of 71 with 

approximately 0.2% of lung cancers diagnosed in patients aged 20-34 [62].  It has a much lower 

5-year survival rate than melanoma:  14.9% for males, 20.8% for females [60]. 

These differences between melanoma and lung cancer could have significant implications 

in PD-cancer studies.  Due to its younger age of onset and its high survival rate, it may be easier 

to find melanoma in PD patients, unless the study is restricting its classification criterion to 

subjects whose first cancer appeared after PD.  Based on average age of onset, a person 

diagnosed with PD would have to wait approximately 10 years for lung cancer onset, making it 

difficult for lung cancer cases to be detected in a cohort study.  These variations highlight the 

importance of varying the study design, the window between exposure and outcome, and the 

cancer classification (e.g. “first cancer” vs. “any cancer”) in studies of the effect of PD on 

cancer. 

2.7 DISCUSSION 
 

This review sought to describe the PD-cancer relationship and to explore various non-

causal paths that could be contributing to the observed relationship.  Investigators have explored 

this relationship across a variety of study designs and data sources.  The consensus from 

observational studies suggests that most cancers appear less frequently in PD patients, with the 

notable exception of melanoma.  Many studies focused primarily on the effect of PD on overall 

cancer; results from specific cancers were consequently under-powered.  Most of the studies 

examined a Western, white population.  A greater variety of populations under analysis could 
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help explain the role of genetics in this relationship.  Lastly, this review described the importance 

of considering onset and survival when studying the effect of one disease on another. 

PD-cancer effect or association estimates may be susceptible to a variety of biases.  

Potential confounders may not be controlled in the analysis due to an inability to obtain the 

necessary data, as occurs with smoking, or because we simply don’t have a complete 

understanding of the etiologies of PD and cancer.  Surveillance bias (independent, differential 

misclassification) may have a positive or negative effect; PD may lead to decreased cancer 

detection due to the burden of motor/cognitive symptoms or may lead to increased cancer 

detection through the increased medical contacts that come with institutionalization.  Selection 

bias may occur due to the symptoms of PD and cancer that negatively affect recruitment and 

retention.  By selecting on a study population aged 65+, a survivor bias may be observed since 

these subjects have characteristics that allowed them to survive until an old age and may be less 

likely to acquire future disease.  Each of these biases was individually addressed to some extent 

in a PD-cancer study, but no single study did an adequate job of adjusting for all the biases.  

Even if the two diseases are completely independent of each other, some instances of PD-

cancer comorbidity will occur simply due to chance.  For a person aged 65-69, the estimated 

incidence rate for PD is 134.03 per 100,000 people [63] and is 1,691.6 per 100,000 people for 

(overall) cancer [60].  Using these rates, about two cases of PD-cancer comorbidity would be 

expected to occur by chance per 1,000,000 people aged 65-69. 

Methodological inconsistencies among PD-cancer studies can impede the ability to make 

between-study comparisons.  Studies often apply different adjustment sets for confounding 

control.  Heterogeneity is also seen in the PD classification criteria.  A study may include 

patients with all types of parkinsonism [17] or exclusively PD [49].  A study may create a unique 
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diagnostic criteria [64] while others relied on the ICD standard [65].  Lastly, studies will allow 

for different windows of detection for cancer after PD.  A narrower window should make it less 

likely for patients to receive a cancer diagnosis. 

Future PD-cancer investigations could benefit by considering all the causal pathways that 

are incorporated in the effect estimates of previous studies.  The causal review provided by this 

paper can help guide future study designs and analyses by providing a comprehensive overview 

of the potential for biases and examples of how investigators have attempted to control for these 

biases.  Investigators can compare their idea of the PD-cancer causal model to those in the 

review to see if any biasing paths had not been considered.  They may also see how their model 

compares to those of the investigators that have already studied this relationship, which can be 

particularly helpful when explaining why drastically different effect estimates are found between 

studies. 

This paper highlights several key areas in which investigators should work to reduce bias 

in PD-cancer studies.  However, the inaccessibility of data with rich covariate information and 

the number of potential biases likely make it impossible to conduct a perfectly unbiased study.  

Future analyses should therefore consider adjusting for these biases using quantitative bias 

analysis.  Presenting PD-cancer estimates under a variety of plausible bias scenarios will provide 

more insight into this relationship than continually relying on qualitative discussion of the biases. 
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3. STUDY 2 
 
 
SIMULTANEOUS ADJUSTMENT OF UNCONTROLLED CONFOUNDING, 
SELECTION BIAS, AND EXPOSURE MISCLASSIFICATION IN MULTIPLE-BIAS 
MODELING   
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3.1 ABSTRACT 
 
Introduction: Adjusting for multiple sources of bias usually involves adjusting for one bias at a 

time, with careful attention to the order in which these biases are adjusted.  An alternative 

approach to multiple-bias adjustment involves the simultaneous adjustment of all biases via 

imputation or regression weighting.  This method corresponds to treating the sources of bias as 

sources of missing data and serves to “reconstruct” the unbiased data that would have been 

observed based on the assumed nature and degree of connections between the sources of bias and 

the observed, incomplete data. 

Methods: Causal diagrams and probabilistic expressions are used to develop a missing data 

approach to bias analysis, outlining the steps to performing simultaneous multi-bias analysis.  A 

simulation study was performed to confirm the validity of this method and assess the sensitivity 

of bias-adjusted effect estimates to misspecification of the bias parameters.  An additional 

simulation study was conducted to compare the simultaneous approach to the sequential 

adjustment of multiple biases when the correct order of biases is unknown. 

Results: Using data affected by uncontrolled confounding, exposure misclassification, and 

selection bias, the first simulation study revealed that a non-biased effect estimate can be 

obtained using simultaneous multi-bias adjustment when correct bias parameters are applied.  

Incorrect specification of every bias parameter by +/- 25% still produced an effect estimate with 

less bias than the observed, biased effect.  The second simulation study resulted in non-biased 

effect estimates when multiple biases were adjusted simultaneously, but the sequential approach 

to multiple bias adjustment resulted in biased or non-biased results, depending on whether the 

correct sequence of adjustments was applied.   
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Conclusion: Simultaneous multi-bias analysis is a useful tool to help understand how multiple 

biases could affect an observed effect estimate. 
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3.2 INTRODUCTION 
 

Although qualitative discussion of potential biases remains common in epidemiological 

discussions, researchers are increasingly embracing bias analysis as a key to quantifying threats 

to validity [33].  Methods for adjusting for single biases have grown substantially [30], [31], 

[66]–[69].  These methods have included simple sensitivity analysis, Monte Carlo risk analysis, 

Bayesian uncertainty assessment, and external adjustment formulas among others.  Variations in 

these methods include which bias parameters are needed, whether bias parameters are fixed or 

probabilistic, and whether the bias parameters are applied to the data (i.e. a missing data 

approach) or to the observed effect estimate (i.e. external adjustment). 

On the other hand, the development of methods for the adjustment of multiple biases has 

been comparatively stagnant [70], [71].  Instruction from Greenland and Lash et al. both describe 

an approach in which biases are adjusted sequentially [21], [29], [33].  To implement this 

method, attention must be paid to the order in which the biases are adjusted.  As described by 

Greenland: “One can imagine each correction moving a step from the biased data back to the 

unbiased structure, as if hypothetically ‘unwrapping the truth from the data package’ [29].”  Such 

an approach can be difficult if the true sequence of biases is hard to ascertain.  In addition, these 

adjustments can be time-consuming and prone to error if many biases are to be evaluated. 

This chapter introduces a method to adjust for multiple biases simultaneously.  This 

method generalizes the concept of combining inverse probability of selection weighting (IPSW) 

with predictive value weighting, as introduced by Johnson et al. [22], [72], [73].  It relies on 

predicting the probability of the missing data (uncontrolled confounders, misclassified exposure, 

or selection) using the available data and externally obtained information or assumptions of the 

effect of this data on that which is missing (i.e. bias parameters).  These predicted probabilities 
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are then incorporated as simulated values or weights in the outcome regression.  This chapter 

provides steps for performing simultaneous multi-bias adjustment on any combination of 

uncontrolled confounding, exposure misclassification, and selection bias.  A simulation study 

was performed to demonstrate the validity of this method and explore the sensitivity of effect 

estimates to misspecified bias parameters.  Lastly, a second simulation study was conducted to 

compare the simultaneous and sequential approaches to multiple bias adjustment. 

3.3 METHODS 
 
 3.3.1 SIMULTANEOUS MULTI-BIAS ADJUSTMENT 
 
 The following binary variables are defined: X = exposure, Y = outcome, C = vector of 

known confounders, X* = misclassified exposure, S = selection.  These variables are used to 

represent potential multi-bias scenarios in DAGs (Figure 3.1).  Bias can be evaluated in DAGs 

using the backdoor criterion and other rules [22], [25], [26], [74], [75].  The direct effect of X on 

Y in these causal models is distorted by backdoor paths stemming from uncontrolled 

confounding (X¬U®Y), information bias in the form of exposure misclassification 

(X*¬(X)®Y), and selection (i.e. collider stratification) bias (X®|S|¬Y).  Values of variables U 

and X are unknown and observations with S=0 are missing.  An overlined variable refers to a 

variable whose value is assigned by the investigator.  In the multi-bias analysis,	"# and $% 

represent assigned values of exposure and uncontrolled confounder and XSIM and USIM represent 

imputed values of exposure and uncontrolled confounder. 
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Figure 3.1 Four possible multi-bias scenarios:  uncontrolled confounding and selection bias (A), 
uncontrolled confounding and exposure misclassification (B), exposure misclassification and 
selection bias (C), and uncontrolled confounding, selection bias, and exposure misclassification 
(D). 
 
 
 
 

Simultaneous multi-bias analysis combines subject-level data with assumptions of causal 

strengths to recreate an unbiased dataset.  There are 8 steps to performing this adjustment (Table 

3.1).  Steps 1-5 lead to the calculation of the predicted probabilities of the unknown variables.  

After these probabilities are established, the investigator can choose to incorporate these 

probabilities into the data through imputed values, a regression weight, or a mixture of both.  

Table 3.1 outlines these steps using the weighting approach under various combinations of 

uncontrolled confounding, exposure misclassification, and selection bias.  We detail these steps 

below. 

  

X Y

(U)C
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(X) Y
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X*(X) Y
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X*
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Table 3.1 Weighting approach to performing simultaneous multi-bias analysis 

Step Uncontrolled 
confounding & 
selection bias 

Uncontrolled 
confounding & 

exposure 
misclassification 

Selection bias & 
exposure 

misclassification 

All three biases 

1. Determine the 

observed probability 

and the desired joint 

probability. 

Observed: 

!(#, %, &|( = 1) 
Desired: 

!(#, %, &, ,) 

Observed: 

!(#∗, %, &) 
Desired: 

!(#, %, &, ,) 

Observed: 

!(#∗, %, &|( = 1) 
Desired: 

!(#, %, &) 

Observed: 

!(#∗, &, %|( = 1) 
Desired: 

!(#, %, &, ,) 
2. Find the probability 

that when multiplied by 

the observed joint 

probability equals the 

desired joint probability. 

!(,|#, %, &)
!(( = 1|#, %) 

!(#, ,|#∗, %, &) !(#|#∗, %, &)
!(( = 1|#∗, %, &) 

!(#, ,|#∗, %	&)
!(( = 1|#∗, %, &) 

 

3. Write this bias-

adjusting expression 

into corresponding 

statistical models:  one 

for exposure or 

confounder (the 

predictive value) and 

one for selection (the 

IPSW). 

/01234!(5 = 1)6 = 

78 +	7:; +	7<= +	>?@ 
/01234!(( = 1)6 = 

A8 +	A:; +	A<= 

log E
!(; = 1, 5 = 1)
!(; = 0, 5 = 0)G = 

H:,8	+H:,:;∗ + H:,<	= + 	I:,J	@ 

log E
!(; = 1, 5 = 0)
!(; = 0, 5 = 0)G = 

H<,8	+H<,:;∗ + H<,<	= + 	I<,J	@ 

log E
!(; = 0, 5 = 1)
!(; = 0, 5 = 0)G = 

HJ,8	+HJ,:;∗ + HJ,<	= + 	IJ,J	@ 

/01234!(; = 1)6 = 

K8 +	K:;∗ +	K<= +	L?@ 
/01234!(( = 1)6 = 

A8 +	A:;∗ +	A<= +	M?@ 

log E
!(; = 1, 5 = 0)
!(; = 0, 5 = 0)G = 

H:,8	+H:,:;∗ + H:,<	= + 	I:,J	@ 

log E
!(; = 0, 5 = 1)
!(; = 0, 5 = 0)G = 

H<,8	+H<,:;∗ + H<,<	= + 	I<,J	@ 

log E
!(; = 1, 5 = 1)
!(; = 0, 5 = 0)G = 

HJ,8	+HJ,:;∗ + HJ,<	= + 	IJ,J	@ 
/01234!(( = 1)6 = 

A8 +	A:;∗ +	A<= +	M?@ 

4. Externally obtain the 

regression coefficients 

for the predictive value 

and IPSW (i.e. the bias 

parameters). 
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5. Using the bias 

parameters and 

individual-level data, 

compute the predictive 

value and IPSW. Save 

the resulting 

probabilities. 

 

6. Replicate the data and 

assign values for 

exposure and/or 

uncontrolled 

confounder. 

In first replicate: 

5N = 1 

In second replicate: 

5N = 0 

In first replicate: 

;O = 1, 5N = 1 

In second replicate: 

;O = 1, 5N = 0 

In third replicate: 

;O = 0, 5N = 1 

In fourth replicate: 

;O = 0, 5N = 0 

In first replicate: 

;O = 1 

In second replicate: 

;O = 0 

In first replicate: 

;O = 1, 5N = 1 

In second replicate: 

;O = 1, 5N = 0 

In third replicate: 

;O = 0, 5N = 1 

In fourth replicate: 

;O = 0, 5N = 0 

7. Create individual 

weights based on the 

predictive value 

corresponding to the 

assigned ;O	and/or 5N 

divided by the IPSW. 

When 5N = 1: 

Weight = 
P(QR:)
P(SR:)

 

When 5N = 0: 

Weight = 
P(QR8)
P(SR:)

 

When ;O = 1, 5N = 1: 

Weight = !(; = 1,5 = 1) 
When ;O = 1, 5N = 0: 

Weight = !(; = 1,5 = 0) 
When ;O = 0, 5N = 1: 

Weight = !(; = 0,5 = 1) 
When ;O = 0, 5N = 0: 

Weight = !(; = 0,5 = 0) 

When ;O = 1: 

Weight = 
P(TR:)
P(SR:)

 

When ;O = 0: 

Weight = 
P(TR8)
P(SR:)

 

When ;O = 1, 5N = 1: 

Weight = 
P(TR:,QR:)
P(SR:)

 

When ;O = 1, 5N = 0: 

Weight = 
P(TR:,QR8)
P(SR:)

 

When ;O = 0, 5N = 1: 
Weight = 

P(TR8,QR:)
P(SR:)

 

When ;O = 0, 5N = 0: 
Weight = 

P(TR8,QR8)
P(SR:)

 

8. Perform weighted 

outcome regression. 

/01234!(= = 1)6 =	 
V8 + V:; +	V<5N +	W?@ 

/01234!(= = 1)6 = 

V8 + V:;O +	V<5N +	W?@ 

/01234!(= = 1)6 =	 
V8 + V:;O +	WX@ 

/01234!(= = 1)6 = 

V8 + V:;O +	V<5N +	W?@ 
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First, the investigator must establish statements for the observed (biased) joint probability 

and the joint probability for the desired (non-biased) causal model.  Using these two 

probabilities, a bias-adjusting probability is found by the following equation: 

 

bias-adjusting weight = desired joint probability / observed joint probability 
 
 
 

This probability derivation is not unlike that seen in inverse probability of treatment 

weighting, where the weight may have a numerator with the probability of the treatment 

conditional on previous treatments (i.e. that which is desired) and the denominator would have 

the probability of the treatment conditional on previous treatments and the bias-inducing 

covariates (i.e. that which is observed) [76].  Adjustments for selection bias will include a bias-

adjusting probability whose denominator is equal to the probability of selection, as seen in 

single-bias IPSW [22]. 

The bias-adjusting weight or expression is then expressed as regression models for the 

bias-adjusting probability’s numerator (the predictive value(s)) and for the bias-adjusting 

weight’s denominator (the IPSW).  In the case of both uncontrolled confounding and exposure 

misclassification, two logistic regression models or a single multinomial logistic regression can 

be used for the predictive values.  In the latter case, the joint probability is represented by the 

four potential values of the X, U combination. 

  Regression coefficients for the predictive value and selection models (i.e. bias 

parameters) are then externally obtained.  Plausible parameter values can derive from a variety of 

sources:  previous studies, a validation sub-study, an expert opinion, or simply the investigator’s 

best estimate.  As with all bias analyses, it is important to clearly communicate the derivation of 
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each parameter and to consider assessing a range or distribution of values for each parameter 

[34].  Once these values are obtained, they are combined with the individual-level data to solve 

for the selection and the predictive value probabilities of each subject. 

The investigator may choose an imputation approach or weighting approach to 

incorporate the predictive value probabilities of X or U.  With the imputation approach, the new 

value (XSIM or USIM) is simulated using the predictive value probabilities.  In the weighting 

approach, subjects are first assigned each potential value of exposure and/or unobserved 

confounder.  Thus, the data is replicated 2 times (if X or U is missing) or 4 times (if X and U are 

missing) and variable !"	and/or $%	is created, with each replicate containing a different value of 

the assigned variable(s).  The weight is then assigned according to the value of !"	and/or $%; if 

!"	and/or $% = 1, then the weight equals the predictive value, if !"	and/or $% = 0, then the weight 

equals 1 – the predictive value.  The selection probability is incorporated as an IPSW. 

The final outcome regression therefore includes: (1) the imputed values, XSIM or USIM, 

with the IPSW or (2) the assigned values, !"	and/or $%, with a weight equaling the predictive 

value weight divided by the selection probability weight.  The exponential of the coefficient of X 

(or !") represents the bias-adjusted odds ratio of the direct effect of X on Y. 

Imputation and weighting serve to reconstruct the data that would have been observed in 

the absence of bias given the assumptions implicit in the bias parameters.  In the case of selection 

weighting, observations with a lower probability of selection are given a greater weight in the 

analysis and vice versa, which serves to restore the initial variable distributions seen in the 

source population [22].  In the case of predictive value weighting, subjects are assigned each 

potential value of exposure and/or unobserved confounder and the values that are most probable 

are given the most weight.  Using !"	and $%	along with the predictive value weights essentially 
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recreates a data set in which the correctly classified exposure and unobserved confounder are 

both included [67]. 

3.3.2 SIMULATION STUDY 1: PROOF OF CONCEPT 
 

A simulation study was performed to demonstrate the validity of the simultaneous multi-

bias analysis.  The method was evaluated using two simulated data sets of binary variables 

whose causal relations were based off Figure 3.1 DAG D – the triple bias scenario.  Monte Carlo 

simulations generated two data sets of 100,000 rows each (nobs = 100,000) (Table 3.2).  One has 

strong individual biasing paths (Simulation A) and one has weak individual biasing paths 

(Simulation B). 

 

Table 3.2 Data generating mechanism for the binary variables in Simulations A and B 
Variable Description Probability 

C Known 
confounder 

 

0.5 

U Unknown 
confounder 

 

0.5 

X Unknown, true 
exposure 

 

)*+,-(−2	 + 	234(1.5)8	 +	y9$) 

Y Outcome 
 
 

)*+,-(−2.5	 + 	234(2)!	 + 	234(1.5)8	 +	y9$) 
 

S Selection 
 
 

)*+,-(y9!	 +	y9:) 
 

X* Misclassified 
exposure 

)*+,-(y; 	+	y<!	 + 	234(1.25):) 

 

 

In Simulation A, y1= log(2), y2= -1, and y3= log(5).  These values were intended to 

create strong confounding by U and strong effects of X and Y on selection.  The resulting 

misclassified exposure has P(X* = 1) = .65 or .70 when X = 1 and P(X* = 1) = .27 or .32 when X 
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= 0.  Intercepts were selected to keep the probabilities of true exposure, outcome, and selection 

bound within (.12, .29), (.076, .33), and (.50, .80), respectively.  In Simulation B, y 1= log(1.25), 

y2 = -1.5, and y3 = log(15).  These values were intended to create weak confounding by U and 

weak effects of X and Y on selection.  The resulting misclassified exposure has P(X* = 1) = .77 

or .81 when X = 1 and P(X* = 1) = .18 or .22 when X = 0.  Intercepts were selected to keep the 

probabilities of true exposure, outcome, and selection bound within (.12, .20), (.076, .24), and 

(.50, .61), respectively. 

The following regression model (equation 1) represents the triple-bias scenario in which 

values of true exposure, confounder U, and selection are unknown to the investigator: 

 

(1)			234,-(=(: = 1|!∗, 8)) 	= 	aA 	+	aAB∗!∗ 	+	aAC8 

 

Here the biased ORYX = exp(aYX*) will not equal the unbiased ORYX	≈ 2, which is known 

based on the simulation of Y in both data sets. 

The analysis began by identifying the observed (biased) joint probability, 

(X*=x*, C=c, Y=y | S=1), and the desired (bias-free) joint probability, P(X=x, C=c, U=u, Y=y).  

Since P(x, c, u, y) = SX*P(x, u | x*, c, y)P(x*, c, y | S=1)P(S=1) / P(S=1 | x*, c, y), the bias-

adjusting probability was determined to be P(x, u | x*, c, y) / P(S=1 | x*, c, y) .  The numerator 

was simplified as follows: P(x, u | x*, c, y)	=	P(u	D	x,	x*,	c,	yEPFx	D	x*,	c,	yE	=  

P(u	|	x,	y)PFx	D	x*,	c,	yE.  The three probabilities for U, X, and S were rewritten as the predictive 

value and selection probabilities (equations 2-4): 

 

(2)			234,-(=($ = 1|!, :)) 	= 	aG 	+	aGB! +		aGA: 
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(3)			234,-(=(! = 1|!∗, :, 8)) 	= 	 IJ 	+	IJB∗!∗ 	+	IJA:	 +	IJC8 

(4)			234,-(=(L = 1|!∗, :, 8)) 	= 	MJ 	+	MJB∗!∗ 	+	MJA:	 +	MJC8 

 

Having U, X, and S in the data allowed for the fitting of these models to obtain the correct 

bias parameters, which, although impossible in real-world practice, is necessary for proper 

evaluation of the bias-adjustment method.  To get the 11 parameters, models 2-4 were fit using 

iteratively reweighted least squares using data from Simulations A and B.  As a reminder, real-

world strategies for obtaining bias parameters do not involve calculating these parameters from 

within the sample data but require obtaining the parameters from external sources. 

The imputation approach was used for incorporating the predicted probabilities of X and U.  XSIM 

was simulated using the probabilities obtained from combining the bias parameters with the 

individual data for X*, C, and Y, as in equation 3.  USIM was simulated using the probabilities 

obtained from combining the bias parameters with the individual data for XSIM and Y, as in 

equation 2.  The probability of selection was calculated using the bias parameters and individual 

data for X*, C, and Y, as in equation 4.  Lastly, the outcome regression weighted by the inverse 

probability of selection was fit (equation 5): 

 

(5)			234,-F=(: = 1|!JNO, 8, $JNO)E = 	fA 	+	fAB!JNO 	+	fAC8	 +	fAG$JNO 

 

To evaluate if bias was appropriately corrected, expFfYXE	=	ORYX should approximately 

equal 2, corresponding to the bias-free ORYX seen in the derivation of Y (Table 3.2).  To account 

for the uncertainty of Monte Carlo procedures and to obtain the sampling distribution and 

confidence interval for ORYX, the analysis was performed on nsim =1,000 bootstrap samples.  The 
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median, 2.5th percentile and 97.5th percentile from the distribution of nsim ORYX estimates were 

used for the point estimate and 95% simulation interval.  Every sampled observation had a value 

of S=1, thus incorporating selection bias into the data. 

In real-world applications, an investigator will not know if the bias parameters he/she 

obtained are correct, so understanding the sensitivity and resilience of ORYX to misspecification 

of the bias parameters is essential.  The above analyses were therefore repeated using different, 

incorrect bias parameters to assess changes in ORYX in response to changes in the bias 

parameters.  These parameters were exponentiated so that misspecification could occur on a 

linear scale instead of a log scale.  The effect of distortions to bias parameter(s) on the estimate 

of ORYX were assessed based on the bias and RMSE, which incorporates both the bias and 

standard error of the estimate.   

The analysis was run using R version 3.2.2.  By default, R operates using one CPU core.  

To significantly increase the speed of bootstrapping, multiple CPU cores were utilized via 

parallel processing. 

3.3.3 SIMULATION STUDY 2: SIMULTANEOUS VERSUS SEQUENTIAL 
ADJUSTMENT OF MULTIPLE BIASES 

 
 A second simulation study was performed to demonstrate the advantage of simultaneous 

multi-bias adjustment to the sequential adjustment of multiple biases.  The sequential method is 

only valid when biases are adjusted in the correct order, whereas the simultaneous method 

should be valid regardless of the order in which threats to validity occurred.  Using data sets 

affected by different bias sequences, this study aims to show that simultaneous multi-bias 

adjustment with correct bias parameters will always lead to a non-biased effect estimate, whereas 

the sequential approach only results in a non-biased effect estimate when the correct sequence of 

adjustments is applied. 
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 Two data sets were simulated (nobs = 500,000), each having a different order in which 

uncontrolled confounding, exposure misclassification, and selection bias occurred (Table 3.3).  

In both data sets, the first bias to occur was uncontrolled confounding; uncontrolled confounding 

is a population-level phenomenon that always occurs first in the data-generating process [21].  

Simulation C has the following order of biases:  1. uncontrolled confounding, 2. exposure 

misclassification, 3. selection bias.  Simulation D has the following order of biases:  1. 

uncontrolled confounding, 2. selection bias, 3. exposure misclassification.  The binary variables 

in both simulations are defined as follows:  X = true exposure, Y = outcome, U = uncontrolled 

confounder, X* = misclassified exposure, S = selection.  As seen in the generation of Y, X has a 

protective effect on Y (ORYX = 0.5) in both simulations.  In practice, variables X, U, and S would 

be unknown to the investigator, therefore contributing to bias.  The key difference between the 

simulations can be seen in the generation of S.  In Simulation C, S is dependent on X and Y, 

meaning that the selection bias preceded the exposure misclassification.  In Simulation D, S is 

dependent on X* and Y, meaning that the exposure misclassification preceded the selection bias.  

Besides this difference, the data-generating mechanisms are identical in both simulations. 

 

Table 3.3 Data generating mechanism of binary variables for Simulations C and D 
Variable Description Probability 

U Unknown 
confounder 

 

0.5 

X Unknown, true 
exposure 

 

)*+,-(−1 + log(1.5)$) 

Y Outcome )*+,-(−1 + log(0.5)! + log(1.5)$) 
 
 

X* Misclassified 
exposure 

 
 
 
 

=(!∗ = 1|! = 1, : = 1) 	= 	0.8 
=(!∗ = 1|! = 1, : = 0) = 	0.7 
=(!∗ = 1|! = 0, : = 1) = 	0.2 
=(!∗ = 1|! = 0, : = 0) 	= 	0.3 
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S Selection Simulation C: 
)*+,-(−0.5	 + 	log	(1.5)!	 + 	log	(1.5):)) 

 

Simulation D: 
)*+,-(−0.5	 + 	log	(1.5)!∗ 	+ 	log	(1.5):)) 

 
 

The analysis will mimic the scenario in which data for X and U are missing and records 

are only available for subjects with S=1.  Despite the missing and incomplete information, bias 

analysis can allow for an unbiased ORYX to be obtained if the correct bias parameters are used.  

Knowledge of the complete data with X, U, and S, which is otherwise assumed to be missing in 

the analysis, will be used to obtain the correct values of the bias parameters 

 The weighting approach for simultaneous multi-bias analysis was applied, as explained in 

Section 3.3.1, with weight equal to E(X, U | X*, Y) / P(S=1 | X*, Y).   This study used the simple  

approach to sequential multi-bias adjustment shown by Lash, Fox, and Kink [33].  To start, a 2x2 

table was set up with the observed exposure-outcome frequencies.  A simple bias adjustment is 

applied to the data, a new frequency table is obtained, and this new table is carried forth to the 

next simple bias adjustment until all biases are accounted for.  These simple adjustments require 

knowledge of the probability of the uncontrolled confounder within exposure-outcome 

combinations, the probability of selection within exposure-outcome combinations, and the 

sensitivity and specificity within each outcome as the bias parameters.  The adjustment for 

uncontrolled confounding results in multiple tables across each strata of the confounder, so a 

pooling method (e.g. Mantel-Haenszel) is needed to obtain the marginal effect estimate.  

The value of interest was the bias-adjusted exposure-outcome odds ratio, ORYX.  Three 

values of ORYX were obtained from Simulations C and D: one adjusted sequentially in the correct 

order, one adjusted sequentially in the incorrect order (inverting selection bias and exposure 

misclassification adjustment), and one adjusted simultaneously.  Since both data sets were 

simulated such that the unbiased ORYX = 0.5, the bias-adjusted estimate should approximate this 
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value.  Performance was measured by the bias as the difference between 0.5 and the bias-

adjusted odds ratio.  Both methods bootstrapped over nsim=1,000 samples to obtain a simulation 

interval.  Every sampled observation had a value of S=1, incorporating selection bias into the 

data. 

The analysis was run using R version 3.2.2.  By default, R operates using one CPU core.  

To significantly increase the speed of bootstrapping, multiple CPU cores were utilized via 

parallel processing. 

3.4 RESULTS 
 

3.4.1 SIMULATION STUDY 1: PROOF OF CONCEPT 
 

Both data sets were sampled with replacement over S=1 and fit to equation 1 to obtain 

ORYX estimates biased from uncontrolled confounding, exposure misclassification, and selection 

bias: Simulation A biased ORYX = 1.46 (95% CI: 1.41, 1.50), Simulation B biased ORYX = 1.54 

(95% CI: 1.48, 1.60). 

Results from the simultaneous multi-bias analysis are provided in Table 3.4.  As 

expected, when correct bias parameters were used, bias-adjusted ORYX ≈ 2.  Modifying single 

bias parameters by +/- 25% while leaving the other parameters at the correct value usually 

resulted in |Bias| less than 0.1.  However, misspecification of )UVW was particularly impactful in 

creating bias in ORYX, with |Bias| between 0.3 and 0.5.  Larger bias was observed when multiple 

bias parameters were distorted compared to single parameter misspecification. 

 

Table 3.4 Simultaneous multi-bias analysis in Simulations A and B 
 

Simulation A 
 

 
Misspecified parameter(s) 

Degree of 
Misspecification 

(%) 

 
Bias-adjusted ORYX 

 
Bias 

 
RMSE 
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none 0 2.03 (1.96, 2.11) -0.0326 0.0491 
)aX +25 2.04 (1.97, 2.12) -0.0433 0.0568 
)aX -25 2.03 (1.95, 2.10) -0.0257 0.0455 
)aYV +25 1.97 (1.90, 2.04) 0.0306 0.0473 
)aYV -25 2.13 (2.05, 2.21) -0.1272 0.1329 
)aYW +25 1.98 (1.90, 2.05) 0.0247 0.0446 
)aYW -25 2.11 (2.05, 2.19) -0.1135 0.119 
)UX +25 2.02 (1.95, 2.09) -0.0178 0.0392 
)UX -25 2.05 (1.98, 2.13) -0.0543 0.0659 
)UVV∗  +25 2.02 (1.95, 2.09) -0.0185 0.0409 
)UVV∗  -25 2.04 (1.96, 2.12) -0.0365 0.0531 
)UVW +25 2.47 (2.38, 2.56) -0.4680 0.4701 
)UVW -25 1.58 (1.52, 1.64) 0.4215 0.4226 
)UVZ +25 2.02 (1.96, 2.10) -0.0242 0.0443 
)UVZ -25 2.04 (1.97, 2.12) -0.0411 0.0553 
)[X +25 2.03 (1.96, 2.10) -0.0302 0.0478 
)[X -25 2.03 (1.96, 2.11) -0.0330 0.0499 
)[\V∗  +25 2.06 (1.99, 2.13 -0.0608 0.0717 
)[\V∗  -25 2.00 (1.92, 2.07) 0.0044 0.0372 
)[\W +25 2.04 (1.97, 2.12) -0.0404 0.0554 
)[\W -25 2.03 (1.95, 2.10) -0.0228 0.0434 
)[\Z +25 2.03 (1.97, 2.10) -0.0326 0.0483 
)[\Z -25 2.03 (1.96, 2.11) -0.0333 0.0503 

)aX, )aYV, )aYW +25 1.92 (1.85, 1.99) 0.0781 0.0856 
)aX, )aYV, )aYW -25 2.18 (2.10, 2.25) -0.1762 0.1806 

)UX, )UVV∗ , )UVW, )UVZ  +25 2.40 (2.32, 2.48) -0.3958 0.3978 
)UX, )UVV∗ , )UVW, )UVZ  -25 1.57 (1.50, 1.65) 0.4250 0.4266 
)[X, )[\V∗ , )[\W, )[\Z +25 2.06 (2.00, 2.14) -0.0630 0.0734 
)[X, )[\V∗ , )[\W, )[\Z  -25 2.00 (1.93, 2.07) 0.0017 0.0362 

 
Simulation B 

 
 

Misspecified parameter(s) 
Degree of 

Misspecification 
(%) 

 
Bias-adjusted ORYX 

 
Bias 

 
RMSE 

none n/a 2.01 (1.93, 2.10) -0.0149 0.0466 
)aX +25 2.01 (1.93, 2.10) -0.0108 0.0456 
)aX -25 2.01 (1.92, 2.10) -0.0106 0.0483 
)aYV +25 1.99 (1.90, 2.08) 0.0147 0.0475 
)aYV -25 2.04 (1.96, 2.14) -0.0447 0.0651 
)aYW +25 1.99 (1.91, 2.08) 0.0082 0.0445 
)aYW -25 2.04 (1.94, 2.12) -0.0377 0.0589 
)UX +25 1.98 (1.91, 2.07) 0.0182 0.0448 
)UX -25 2.05 (1.97, 2.15) -0.0467 0.0666 
)UVV∗  +25 1.98 (1.90, 2.07) 0.0151 0.0460 

)UVV∗  -25 2.03 (1.94, 2.12) -0.0305 0.0563 

)UVW +25 2.35 (2.25, 2.46) -0.3546 0.3583 

)UVW -25 1.63 (1.56, 1.71) 0.3704 0.3724 

)UVZ +25 2.00 (1.91, 2.07) 0.0044 0.0412 
)UVZ -25 2.03 (1.94, 2.12) -0.0306 0.0555 
)[X +25 2.01 (1.93, 2.10) -0.0093 0.0447 
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)[X -25 2.01 (1.93, 2.10) -0.0106 0.0454 
)[\V∗  +25 2.03 (1.93, 2.12) -0.0271 0.0539 
)[\V∗  -25 1.99 (1.91, 2.07) 0.0139 0.0461 
)[\W +25 2.02 (1.93, 2.11) -0.0181 0.0491 
)[\W -25 2.00 (1.92, 2.10) -0.0023 0.0463 
)[\Z +25 2.01 (1.92, 2.10) -0.0094 0.0473 
)[\Z -25 2.01 (1.92, 2.10) -0.0143 0.0464 

)aX, )aYV, )aYW +25 1.95 (1.86, 2.03) 0.0521 0.0675 
)aX, )aYV, )aYW -25 2.03 (1.94, 2.12) -0.0295 0.0551 

)UX, )UVV∗ , )UVW, )UVZ  +25 2.24 (2.16, 2.33) -0.2442 0.2484 
)UX, )UVV∗ , )UVW, )UVZ  -25 1.64 (1.55, 1.72) 0.3637 0.3665 
)[X, )[\V∗ , )[\W, )[\Z  +25 2.04 (1.96, 2.13) -0.0437 0.0633 
)[X, )[\V∗ , )[\W, )[\Z  -25 2.01 (1.92, 2.09) -0.0064 0.0441 

 

 

The sensitivity of ORYX to changes in the bias parameters when all 11 bias parameters 

were misspecified by a common factor was assessed (Figure 3.2).  The degree of 

misspecification and the amount of bias were positively related.  In both simulations, it was 

found that the odds ratio resulting from multi-bias adjustment in which each bias parameter was 

misspecified by +/- 25% still produced an odds ratio estimate that better approximated the true 

effect when compared to the odds ratio with no bias adjustment. 
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Figure 3.2 Multi-bias analysis results in Simulations A and B under misspecification of all bias 
parameters. 
*Dotted lines represent the non-biased ORYX (2.00), the biased ORYX in Simulation A (1.46), and the biased ORYX in 
Simulation B (1.54) 
 
 
 

3.4.2 SIMULATION STUDY 2: SIMULTANEOUS VERSUS SEQUENTIAL 
ADJUSTMENT OF MULTIPLE BIASES 

 
Both data sets were sampled with replacement over S=1 and fit to the logistic regression 

of Y on X* to obtain ORYX estimates biased from uncontrolled confounding, exposure 

misclassification, and selection bias: Simulation C biased ORYX = 0.66 (95% CI: 0.64, 0.68), 

Simulation D biased ORYX = 0.67 (95% CI: 0.65, 0.69). 
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The six bias-adjusted ORYX estimates are provided in Table 3.5.  In Simulation C 

sequential multi-bias adjustment led to an unbiased ORYX estimate (0.50, 95% CI: 0.48, 0.51) 

when the correct order of adjustments (1. exposure misclassification, 2. selection bias, 3. 

uncontrolled confounding) was applied but otherwise led to a biased ORYX estimate (0.58, 95% 

CI: 0.57, 0.60).  Likewise, sequential multi-bias adjustment in Simulation D led to an unbiased 

ORYX estimate (0.51, 95% CI: 0.50, 0.52) when the correct order of adjustments (1. selection 

bias, 2. exposure misclassification, 3. uncontrolled confounding) was applied but otherwise led 

to a biased ORYX estimate (0.43, 95% CI: 0.42, 0.44).  Simultaneous multi-bias adjustment 

resulted in unbiased ORYX estimates in both Simulations C (0.50, 95% CI: 0.50, 0.51) and D 

(0.50, 95% CI: 0.50, 0.51). 

 

Table 3.5 Multi-bias analysis results in Simulations C and D 
 Bias-adjusted ORYX 
Multi-bias 
adjustment 
method 

Sequential 
(1) exposure misclassification  
(2) selection bias  
(3) uncontrolled confounding  

Sequential 
(1) selection bias 
(2) exposure misclassification 
(3) uncontrolled confounding 

Simultaneous 

Simulation C 
 

0.50 (0.48, 0.51) 0.58 (0.57, 0.60) 0.50 (0.50, 0.51) 

Simulation D 0.43 (0.42, 0.44) 0.51 (0.50, 0.52) 0.50 (0.50, 0.51) 
 
  

3.5 DISCUSSION 
 

This paper introduced a novel, simultaneous approach to multiple bias adjustment.  A 

tutorial on how to perform this method on any combination of epidemiological biases was 

provided.  A simulation study using data with an exposure-outcome relationship biased by 

uncontrolled confounding, selection bias, and exposure misclassification confirmed that an 

estimate with near-zero bias was obtained when the correct bias parameters were applied.  The 

robustness of effect estimates to distortions in the bias parameters was assessed.  Single 



 51 

parameter misspecification of +/-25% generally led to |Bias| < 0.10.  In both simulations, it was 

found that +/- 25% misspecification of all bias parameters produced a bias-adjusted effect 

estimate with less bias than the observed effect estimate with no bias adjustment. Thus, one can 

be confident that a biased effect estimate adjusted via simultaneous multi-bias analysis with 

near-accurate bias parameters is more valid than the estimate without bias adjustment, assuming 

biases were correctly identified in the DAG. 

A second simulation study compared the sequential and simultaneous approaches to 

multiple bias adjustment.  The analyses were performed in data sets that could both be 

represented by the same DAG, but with biases that occurred in different orders.  The sequential 

multi-bias adjustment only resulted in non-biased odds ratios when adjustments were made in the 

reverse order in which they occurred in the data.  The simultaneous approach, on the other hand, 

successfully produced non-biased estimates in both data sets without having to consider the order 

the biases.  With this approach, the same steps were applied to both data sets, the only difference 

was the values of the bias parameters.  This simulation study highlights a key advantage of the 

simultaneous approach; the investigator no longer must worry about obtaining substantially 

different results based on the order of bias adjustments.  Determining the order in which biases 

occurred can be challenging, particularly when working with secondary data. 

This advantage of simultaneous multiple-bias adjustment comes with a cost – deriving a 

larger number of potentially less intuitive bias parameters.  The usual strategies of obtaining 

parameter estimates from the literature or from expert opinion may be applied [21].  A more 

efficient strategy would be to use data from a sub-study to inform the bias parameters.  For 

example, a subset of the data may have information for the uncontrolled confounder or a better-

classified exposure.  In this case, models for U and X may be fitted to the data subset to obtain 



 52 

bias parameters.  A similar approach may be used to obtain the selection bias parameters if 

information is present for subjects who were invited but chose not to participate.  Lastly, more 

advanced simulation strategies may be used to avoid having to reason about the bias parameters 

backwards (e.g. from X and C to U) [32].  For example, all the observed relationships may be 

combined with the hypothesized effects of U on X and Y to simulate a new dataset.  This new 

data could then be fit to a model for U to obtain the bias parameters. 

While coming up with values for all the bias parameters may seem like an arduous task, it 

is important to consider that every study inherently makes assumptions regarding these bias 

parameters [29].  Studies without bias adjustment inherently assume that if all models are 

correctly specified all estimates are valid and that the only source of uncertainty in these 

estimates is random error.  Such assumptions are generally lazy and incorrect.  Any attempt to 

improve on these implausible assumptions is worth the effort of the investigator.  Multiple effect 

estimates that derive from different DAGs or different bias assumptions can and should be 

presented [34].  This transparency allows the reader to understand the resilience of the effect 

estimate to various bias scenarios and can also help editors identify key areas of improvement 

[35].  It is possible and advisable to incorporate uncertainty into each bias parameter.  Bias 

parameters may be represented by probability distributions instead of fixed values (i.e. 

probabilistic bias analysis) [21].  This semi-Bayesian approach allows for the simulation interval 

of the effect estimate to incorporate uncertainty due to both random error and systematic error 

[21]. 

 It is important to consider other applications of bias analysis besides attempting to 

produce the best bias-adjusted effect estimate with the best bias parameters.  One can also 

perform the exercise of evaluating bias strengths that would lead to a null effect estimate or an 
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effect estimate whose confidence interval includes the null, as in the E-value [36].  By 

understanding the bias strengths that would “explain away” the observed effect, one gets a better 

idea of how likely the effect is non-null.  Existing tools for these analyses focus on the case of 

uncontrolled confounding; corresponding tools for multiple biases have yet to be developed. 

The multi-bias analysis presented here is limited to binary exposures and outcomes.  

Future work should expand on this method to include other variable types, model families, and 

measures of effect (e.g. risk differences).  More complex scenarios with multiple biasing paths 

should also be considered.  The simulation studies conducted here only evaluated the case of a 

single uncontrolled confounder and a single selection bias mechanism.  Lastly, considering the 

computational complexity of these methods, additional work is needed to make simultaneous 

bias-adjustment more accessible to researchers across disciplines.  Analytical tools should be 

created that can assist with performing the bias adjustment. 
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4. STUDY 3 
 
 
QUANTIFYING THE EFFECT OF PD ON CANCER WITH SIMULTANEOUS MULTI-

BIAS ANALYSIS USING DATA FROM THE DANISH NATIONAL HOSPITAL 

REGISTRY 

 
  



 55 

4.1 ABSTRACT 
 
Introduction: Studies of the relationship between PD and cancer have mostly showed that PD 

has a protective effect on cancer.  There are a variety of biases that could influence this 

relationship including uncontrolled confounding, information bias, and selection bias.  

Simultaneous multi-bias analysis was used with data from PASIDA to obtain a bias-adjusted PD-

cancer effect estimate.  

Methods: A retrospective cohort study was designed to quantify the effect of PD on cancer 

within five years.  The observed crude and multivariable-adjusted effect estimates were 

determined for overall, smoking-related, and non-smoking-related cancer.  Simultaneous multi-

bias adjustment for PD misclassification and collider stratification at study participation and 

censoring was used to obtain a bias-adjusted PD-cancer effect estimate. 

Results: The observed multivariable-adjusted effect of PD on subsequent overall cancer had an 

OR of 1.07 (95% CI: 0.83-1.39).  Estimates differed substantially when considering smoking-

related versus non-smoking-related cancers.  After bias adjustment for both exposure 

misclassification and selection bias, the PD-overall cancer effect estimate remained consistent 

(OR = 1.07; 95% CI: 0.80-1.47). 

Conclusion: Parkinson’s disease had a null effect on overall cancer within a five-year window in 

this Danish study population.  Neither selection bias nor exposure misclassification had a major 

impact on effect estimates of PD on overall cancer. 
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4.2 INTRODUCTION 
 

A potential inverse relationship between PD and cancer was first described by Doshay in 

1954 [16], [17].  Numerous observational studies have since attempted to quantify this 

relationship.  Meta-analyses by Bajaj et al. and Catala-Lopez et al. report estimates of the effect 

of PD on overall cancer as a relative risk of 0.73 (95% CI: 0.63-0.83) and pooled effect size of 

0.83 (95% CI: 0.76-0.91), respectively [18], [19].  There is currently no concrete biological 

model to account for this relationship, but proposed mechanisms involve common genes between 

the two diseases, disruption of the ubiquitin-proteasome system, inflammation, and the 

microbiome.  Both conditions have a significant public health and economic burden in developed 

countries, so understanding their relationship and etiologies is imperative. 

PD-cancer studies commonly suffer from various potential sources of bias.  These studies 

commonly rely solely on electronic medical records.  Consequently, behavioral variables are 

unknown to the investigator.  Uncontrolled confounding may occur due to the lack of adjustment 

for smoking and caffeine and alcohol consumption.  Information bias can occur due to inaccurate 

PD diagnoses.  The only gold standard diagnosis for PD involves examining the brain post-

autopsy [1].  Relying on the presence or absence of motor features makes PD a difficult 

condition to diagnose; a recent meta-analysis found a pooled diagnostic accuracy for PD of 

80.6% [50].  Selection bias may occur as a result of studies inherently conditioning on those who 

participate and were not lost to follow-up and if participation or loss-to-follow-up is associated 

with uncontrolled PD/cancer risk factors [22].  An open, biasing path between PD and cancer 

may exist if there is collider stratification at the points of study participation and censoring.  PD 

and cancer are both burdensome conditions, and their presence may affect whether a patient 

wants to join a study or stay in the study. 
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A retrospective cohort study was used to determine the effect of PD on subsequent cancer 

within five years using data from the Danish National Hospital Registry and the Danish Cancer 

Registry and information from interviews or surveys of the study participants.  The PD-cancer 

association in this data may suffer from selection bias and exposure misclassification.  

Simultaneous multi-bias adjustment was used to obtain an unbiased effect estimate.  Medical 

data for non-participants and censoring information for participants were used to inform 

selection bias adjustment.  PD diagnosis sensitivity and specificity were combined with 

assumptions of the impact of covariates on PD diagnosis accuracy to determine the parameters 

used for exposure misclassification adjustment.  PD-cancer estimates under different bias 

adjustments showed which, if any, biases contributed most. 

4.3 METHODS 
 

PASIDA (Parkinson’s in Denmark Study) is a population-based case-control study 

conducted in Denmark to identify environmental and genetic risk factors for PD.  Study details 

have been described elsewhere [7], [77].  Patients over 35 years of age were identified from the 

Danish National Hospital Register files between 1996 and 2009 at ten major neurological 

departments with a PD diagnosis (ICD-10 code: G20) assigned by at least one neurologist.  

Reference subjects were selected from the Danish Central Population Registry matched on birth 

year and sex, being alive and without a PD diagnosis at the time of PD identification.  Complete 

medical record review was conducted to verify idiopathic PD (iPD) diagnosis for all PD patients 

who responded to the study invitation and 378 of these patients were excluded due to non-iPD.  

Among 2,718 eligible subjects with PD, 1,815 were enrolled. Of 3,626 controls initially 

contacted, 1,885 were enrolled. 



 58 

Structured telephone interviews or self-administered questionnaires were conducted 

between 2007 and 2009 to obtain lifestyle and behavioral information.  Variables that were 

collected and used in this study include:  education, urbanization, physical activity, smoking, and 

family history of PD.  The degree of urbanization was based on population density of the 

participants’ community.  Physical activity was defined as any vigorous leisure time physical 

activity during the young, adult, or older adult periods (15–25, 25–50 or > 50 years).  Cigarette 

smoking was condensed to a binary variable based on whether the subject smoked >= 1 cigarette.  

The Danish Cancer Registry is a nationwide population-based registry containing data on each 

primary cancer in all residents in Denmark since 1943 and had data through 2016.  This registry 

was used to identify cancer diagnoses before and after the start of follow-up classified by Danish 

Cancer Society diagnosis code [78], [79]. 

A retrospective cohort study was implemented to assess the effect of PD on cancer within 

a five-year window.  The start of follow-up was classified as the date of PD diagnosis for PD 

subjects.  Non-PD subjects had the same start of follow-up as their matched PD subject.  Logistic 

regression models were used to estimate the risk of cancer in five years in those with and without 

PD.  Here the odds ratio approximates the risk ratio due to a low incidence of the outcome.  

Separate models were fit with and without confounder adjustment.  The following variables were 

considered as potential confounders:  age, sex, urbanization, physical activity, smoking, family 

history of PD, and cancer preceding follow-up.  The analysis examined overall cancer, smoking-

related cancer, and non-smoking-related cancer as outcomes. 

These PD-cancer effect estimates may be distorted due to exposure misclassification and 

selection bias (Figure 4.1).  Although diagnoses were conducted by neurological specialists, PD 

is a difficult disease to diagnose.  The only definite diagnosis requires pathological examination 
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post-autopsy and diagnoses are generally made based on the presence of multiple motor 

symptoms [1].  Potential factors that may influence the variability of the PD diagnosis accuracy 

include age, PD family history, urbanization, and education.  Two different processes may 

contribute to selection bias.  Collider stratification may occur due to the study inherently 

conditioning on those who agreed to participate (Participation = 1) and those not lost to follow-

up (Censoring = 0).  The exposure (PD), outcome (cancer within five years of follow-up), or any 

of the confounders may affect censoring.  It is assumed that PD and cancer before follow-up may 

affect study participation. 

 

Figure 4.1 PASIDA causal model 

 

Simultaneous multi-bias adjustment was used to adjust for exposure misclassification and 

selection bias.  This method is described in detail in Chapter 2.  The imputation approach was 

applied with the following model representing the probability of the true exposure: 

(PD) Cancer within 
5 years of follow-up

Age, PD Family History, 
Urbanization, EducationPD*

Sex,
Physical activity 

|Participation = 1| |Censoring = 0|

Cancer before 
follow-up

Smoking 
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234,-(=(=] = 1|=]∗, ^4), L)*, L_`, ab, =^, $cd, efg, =8)) = 

hi +	hjk∗=]∗ +	hlmn^4) +	hJnoL)* + 	hJpqL_` +	hrsab + hjl=^	 + 	hGtu$cd +	hvwxefg + hjC=8 

 

where PD = true, missing Parkinson’s disease status, PD* = misclassified PD status, Sex = sex 

(female = 1), Smk = smoking, FH = PD family history, PA = physical activity, Urb = 

urbanization (1 = capital city, 0 = provincial, rural, or peripheral region), Edu = education (1 = 

grade 7-10, 0 = past grade 10), and PC = previous cancer. 

Bias parameters for the exposure model were derived from a simulated data set.  The 

eight confounders were simulated based on their frequency in PASIDA.  Using the PASIDA 

data, PD was regressed on the eight confounders.  The (true) PD was simulated using the 

regression coefficients from this model.  Next, the literature was reviewed to obtain the 

sensitivity and specificity of PD diagnoses.  A meta-analysis by Rizzo et al. found a sensitivity of 

81.3% and specificity of 83.5% for PD diagnosed by experts [50].  The (misclassified) PD was 

simulated using these values of the sensitivity and specificity in addition to some additional 

assumptions: a positive family history increases the probability of a correct diagnosis by 2%; 

urbanization (i.e. living in a capital city) increases the probability of a correct diagnosis by 2%; 

higher education increases the probability of a correct diagnosis by 2%; every ten year increase 

in age from the average age decreases the probability of a correct diagnosis by 1%; every ten 

year decrease in age from the average age increases the probability of a correct diagnosis by 1%.  

Using these simulated values, the exposure model was fit, and the resulting coefficients represent 

the bias parameters.  

To account for selection bias, the following IPSW was used as a weight in the outcome 

regression: 
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1
=(L9 = 1|=]∗, =8)=(L; = 0|=]∗, 8yz{)c, ^4), L_`, L9 = 1)

 

 

where S1 = participation, S2 = censoring, and Cancer = cancer that occurred after follow-up but 

before censoring.  

The following models were used to obtain the probability of participation and censoring 

for each subject:   

 

234,-F=(L9 = 1|=]∗, =8)E = 	Mi +	Mjk∗=]∗ +	MjC=8 

234,-(=(L; = 1|=]∗, 8yz{)c, ^4), L_`, L9 = 1) = 	Ii +	Ijk∗=]∗ +	IC|}~nt8yz{)c +	Ilmn^4) +	IJpqL_` 

 

The participation model was fit using data for all the subjects who were invited to 

participate in PASIDA.  PD and previous cancer status were known for all invitees.  Data on 

censoring events (death, emigration, or disappearance) was available for all participants.  

Censoring was initially regressed against PD, cancer (after follow-up but before censoring), and 

all the confounders.  Only four variables were found to be significant predictors of censoring: 

PD, cancer, age, and smoking.        

Probabilistic bias parameters with a normal distribution were used to incorporate 

uncertainty in the bias parameters.  Bootstrapping with parallel processing was used to obtain a 

valid simulation interval.  The analysis was performed using R version 3.5.1. 

4.4 RESULTS 
 

The PASIDA subject demographics are presented in Table 4.1.  PD patients and 

reference subjects were similar regarding most variables.  There was less smoking observed in 
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the PD patients.  There was also a greater prevalence of PD family history within the PD 

patients. 

 
 
Table 4.1 PASIDA study population 

Characteristic PD patients 
(N = 1815) 
n (%) 

Reference subjects 
(N = 1885) 
n (%) 

Age at start of follow-up (years), 
mean (SD) 

62.3 (9.3) 62.4 (9.5) 

Sex   
  Male 1072 (59.1) 1119 (59.4) 
  Female 743 (40.9) 766 (40.6) 
Education   
  7th-10th grade 1405 (77.4) 1474 (78.2) 
Ordinary/extended technical       
preparation exam or higher 
commercial exam 

86 (4.7) 98 (5.2) 

High school certificate or HF 
exam 

306 (16.9) 293 (15.5) 

  Unknown or unspecified 18 (1.0) 20 (1.1) 
Degree of Urbanization   
  Capital 444 (24.5) 563 (29.9) 
  Provincial cities 1119 (61.7) 964 (51.1) 
  Rural areas 167 (9.2) 209 (11.1) 
  Peripheral regions 82 (4.5) 148 (7.9) 
  Unknown or unspecified 3 (0.2) 1 (0.1) 
Physical activitya   
  Ever 1337 (73.7) 1453 (77.1) 
  Never 400 (22.0) 406 (21.5) 
  Unknown or unspecified 78 (4.3) 26 (1.4) 
Smokingb   
  Ever 901 (49.6) 1207 (64.0) 
  Never 909 (50.1) 667 (35.4) 
  Unknown or unspecified 5 (0.3) 11 (0.6) 
Family history of PD   
  Yes 251 (13.8) 99 (5.3) 
  No 1564 (86.2) 1786 (94.7) 
Any cancer preceding follow-up   
  Yes 201 (11.1) 214 (11.4) 
  No 1614 (88.9) 1671 (88.6) 

a Defined as any strenuous leisure physical activity during 15-25, 25-50, or >50 age period. 
b Defined as >= 1 cigarette smoking. 

 
 
 

Estimates of the effect of PD on subsequent cancer are presented in Table 4.2.  When 

analyzing the effect of PD on overall cancer, the effect is close to null (OR=1.07; 95% CI: 0.83-

1.39).  A strong protective effect was observed for the effect of PD on smoking-related cancer 
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(OR=0.41; 95% CI: 0.24-0.72), whereas PD was a moderate risk factor for non-smoking-related 

cancer (OR=1.37; 95% CI: 1.03-1.83).  Multivariable adjustment for eight confounders (age at 

start of follow-up, sex, education, urbanization, physical activity, smoking, family history of PD, 

and previous cancer) did not have a major impact on any of the estimates. 

 
 
Table 4.2 Crude and adjusted association between PD and subsequent cancer in PASIDA 

 PD  
patients 
(N= 1815) 
n (%) 

Reference  
subjects 
(N = 1885) 
n (%) 

Crude OR  
(95% CI) 

Multivariable 
adjusted OR 
(95% CI)a 

Overall cancer (n = 303)  155 (8.5) 148 (7.8) 1.10 (0.87, 1.39) 1.07 (0.83, 1.39) 
Smoking-related cancerb (n = 73) 22 (1.2) 51 (2.7) 0.44 (0.27, 0.73) 0.41 (0.24, 0.72) 
Non-smoking-related cancer (n = 238) 135 (7.4) 103 (5.5) 1.39 (1.07, 1.81) 1.37 (1.03, 1.83) 

a Multivariable analysis adjusted for age, sex, education, urbanization, physical activity, smoking, family history of PD, and previous cancer. 
b Included pharynx, oesophagus, stomach, colon incl. rectosigmoideum, rectum and anus, liver, pancreas, nasal cavities, middle ear and sinuses, 
larynx, lung, bronchus and trachea, cervix uteri, ovary, fallopian tube and broad ligament, kidney, renal pelvis and ureter, urinary bladder, 
myeloid leukemia. 

 
 
 

The bias parameters for the PD imputation model were: a0 ~ N(-1.13, 0.34), aPD* ~ 

N(2.92, 0.09), aAge ~ N(0.0056, 0.0046), aSex ~ N(-0.20, 0.09), aSmk ~ N(-0.66, 0.09), aFH ~ 

N(1.26, 0.16), aPA ~ N(-0.15, 0.10), aUrb ~ N(-0.29, 0.10), aEdu ~ N(-0.19, 0.11), aPC ~ N(-0.06, 

0.14).  The bias parameters for the participation model were: b0 ~ N(0.09, 0.04), bPD* ~ N(0.61, 

0.05), bPC ~ N(-0.04, 0.06).  The bias parameters for the censoring model were d0 ~ N(-15.42, 

1.29), dPD* ~ N(0.84, 0.23), dCancer ~ N(1.07, 0.25), dAge ~ N(0.16, 0.02), dSmk ~ N(0.42, 0.23). 

Table 4.3 shows the PD-overall cancer effect estimate under different forms of bias 

adjustment.  The most thorough analysis, which accounts for selection bias, PD misclassification, 

and eight observed confounders, produced an odds ratio of 1.07 (95% SI: 0.80-1.47).  The PD-

overall cancer odds ratio stayed within the range of 1.00-1.15 in each of the bias adjustment 

scenarios.  
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Table 4.3 Association between PD and subsequent overall cancer in PASIDA, adjusted for 
different combinations of biases 

Model Conventional analysis Probabilistic bias analysis  
 OR 95% CI Median OR 95% SI 
Unadjusted 
 

1.10 0.87, 1.39   

Observed confounding 
 

1.07 0.83, 1.39   

Selection bias & 
Observed confounding 
 

  1.14 0.85, 1.65 

Exposure misclassification & 
Observed confounding 
 

  1.02 0.79, 1.34 

Selection bias &  
Exposure misclassification & 
Observed confounding 

  1.07 0.80, 1.47 

 
 
 
4.5 DISCUSSION 
 

This study attempted to apply a novel method for multiple bias adjustment to better 

understand the relationship between Parkinson’s disease and cancer.  In PASIDA the unadjusted 

effect of PD on overall cancer within a five-year window was found to be OR=1.10 (95% CI: 

0.87-1.39).  This result differs from the general pattern in the literature of a protective effect of 

PD on overall cancer.  The crude estimates were in opposite directions when assessing only 

smoking-related (OR = 0.44; 95% CI: 0.27-0.73) and non-smoking-related cancers (OR = 1.39; 

95% CI: 1.07-1.81).  Although past studies typically show a greater protective effect in smoking-

related versus non-smoking-related cancer, a difference of this magnitude between the two 

estimates was not expected.   

Estimates were obtained with bias adjustment for exposure misclassification, selection 

bias, and both.  The effect estimate adjusted for both biases (OR = 1.07; 95% CI: 0.80-1.47) was 

nearly identical to the estimate without bias adjustment.  The estimates with single bias 

adjustment indicate that exposure misclassification and selection bias may be acting equally in 
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opposite directions with exposure misclassification leading to a smaller odds ratio towards the 

null and selection bias leading to a larger odds ratio away from the null.  This PD 

misclassification follows the general convention that non-differential misclassification with 

independent errors tends to bias effect estimates towards the null [80].  The results of selection 

bias adjustment indicate that more PD patients would be diagnosed with cancer if study 

participation and censoring was the same for those with and without PD and cancer.  

The fitted model for participation showed that cancer before follow-up had a very weak 

effect on participation (OR = 0.96).  As a result, collider stratification bias due to participation 

was likely non-impactful.  The fitted model for censoring showed that Parkinson’s disease and 

cancer after follow-up both had strong effects on subsequent loss to follow-up (OR = 2.31 and 

2.92, respectively).  A person without PD and cancer was therefore much more likely to have 

been followed for the entire five-year duration.  This selection bias mechanism may play a role 

in explaining the differences observed in the effect estimates among different cancers.  For 

example, suppose that PD increases the risk of melanoma, as is currently hypothesized [20], 

[46]–[48].  A patient with PD and melanoma would consequently have a lower chance of being 

diagnosed with a “late detection cancer” (cancer occurring after melanoma but before the end of 

follow-up) compared to a subject without PD since this patient is more likely to be censored 

following the melanoma diagnosis.  In other words, the effect of PD on specific cancers may be 

influenced by the timing in which cancers appear, are symptomatic, and are diagnosed due to 

differential censoring. 

The bias adjustment in this study demonstrates an important technique that is applicable 

to any bias analysis method: bias parameters can be derived from a simulated data set that brings 

together information from different sources to construct the assumed data generating process or 
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causal model.  The PD misclassification parameters in PASIDA were obtained in this fashion.  A 

simulated data set that was generated through assumptions of how variables are distributed in 

PASIDA, PD sensitivity and specificity found in the literature, and opinions of the investigators 

regarding how some confounders could impact PD misdiagnosis.  This technique was the best 

approach because no available data or literature source could have provided all the parameters.    

A key strength of this study was the thorough attention to systematic error via multiple 

bias modeling and the presentation of results under different bias adjustments.  Nevertheless, a 

potentially impactful source of bias, surveillance bias, was not accounted for.  Surveillance bias, 

a form of differential misclassification, can occur when subjects in one exposure group have a 

higher probability of having the outcome detected as a result of increased frequency or duration 

of attention [21].  Studies attempting to determine the relationship among diseases of aging may 

be vulnerable to this bias [43].  To adjust for this bias, the number of neurological examinations 

and/or cancer screenings would have to be obtained and balanced between the exposure groups.    

Additionally, this study had rich data available for each subject on variables associated 

with PD, including PD family history, urbanization, education, exercise, and smoking.  However, 

it was observed that the effect estimates changed minimally after adjustment for confounders.  

This result may be explained by residual confounding.  In this study, smoking was defined as ³ 1 

cigarette ever smoked.  This categorization serves to distinguish smokers versus non-smokers in 

a broad sense but does not capture the variability in the duration and quantity of cigarettes 

smoked among smokers.  Thus, some, but not all, of the confounding by smoking is accounted 

for in the analysis.  This residual confounding may also apply to physical activity. 

This study was not able to obtain effect estimates under longer windows of examination 

than five years.  The sensitivity of results under varying lengths of follow-up would be helpful to 
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include.  A larger sample size would help to minimize random error.  It would also provide 

sufficient power to detect effects of PD on specific cancers.  Future studies should examine the 

effect of PD on specific cancers, with consideration of whether the cancer is smoking-related or 

not and whether the cancer is generally detected earlier or later relative to other cancers.  

Smoking should be obtained and balanced between PD groups by a detailed measure, such as 

pack years, which accounts for both the duration and intensity of smoking.  Studies in non-

European and less homogenous populations will assist with generalizability and may add insight 

to the role of genetics in the PD-cancer association.  
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5. STUDY 4 
 
 
INTERACTIVE WEBSITE AND R PACKAGE FOR SIMULTANEOUS MULTI-BIAS 
ADJUSTMENT 
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5.1 ABSTRACT 
 
Introduction: Simultaneous multi-bias adjustment has been described in detail, validated in a 

simulation study, and applied to real-world data.  However, various barriers exist that prevent 

wide-spread adaptation of this method, including insufficient understanding of the methodology 

and inadequate statistical programming skills.  By creating tools such as an interactive website 

and an R package that assist in bias analysis, the incorporation of multiple bias adjustment will 

become more accessible to investigators.  

Methods: R version 3.5.1 was used to create two tools to assist with simultaneous multi-bias 

adjustment.  An interactive web application was created using the Shiny package version 1.2.0 in 

R.  The “multibias” R package for simultaneous multi-bias adjustment was built using the 

“devtools” package version 2.1.0 and documented using the “roxygen2” package version 6.1.1.   

Results: The web application for simultaneous multi-bias adjustment 

(https://pcbrendel.shinyapps.io/multibias/) includes the following sections: instructions, data 

import, classifying variables, and quantifying bias parameters and viewing results.  The 

“multibias” R package for simultaneous multi-bias adjustment 

(https://github.com/pcbrendel/multibias) includes functions that adjust for any combination of 

uncontrolled confounding, exposure misclassification, and selection bias.  It also includes four 

simulated data sets with biased exposure-outcome relationships and data from the Evans County 

Heart Study.  Documentation is provided to describe the package, functions, and data.  

Conclusion: An R package and a Shiny app were created to help facilitate easier implementation 

of simultaneous multi-bias analysis.  The Shiny app is recommended for non-R users with data 

available in comma, semicolon, or tab-separated values; whereas the R package is recommended 

for R users who would like to expand their analyses beyond the capabilities of the Shiny app.  
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5.2 INTRODUCTION 
 

Quantitative bias analysis should be a key component of epidemiological investigations 

that attempt to quantify the effect of an exposure on an outcome.  It demonstrates how the 

validity of an estimate can be susceptible to various sources of systematic error and how the 

uncertainty is affected by both random error and systematic error.  Despite these benefits, bias 

analyses are often absent in epidemiological publications due to a lack of understanding of the 

methodology, an inability to program the analysis, and minimal demand from the reviewer.  To 

overcome these first two barriers, bias-adjustment tools can be created to help facilitate the 

analysis [37].  Two such tools can be created with R software – an interactive web application to 

assist those with minimal programming skills and an R package to allow for more features and 

customizability beyond the web app. 

As an open-source software, R code can easily be created and shared with others.  In R, 

the fundamental unit of shared code is the package [81].  A package includes code, data, 

documentation, and tests.  The coding functions included in packages help others automate 

repetitive or complex tasks.  Packages can be distributed in a variety of ways, such as through 

the Comprehensive R Archive Network (CRAN) or GitHub. 

Shiny is an R package that is used to build interactive web applications straight from R.  

These apps can be deployed on the web for free via the RStudio hosting service.  Shiny apps are 

built upon a reactive programming model.  There are three kinds of reactive programming 

objects: reactive sources, reactive conductors, and reactive endpoints.  Reactive sources 

(typically accessed as input objects in Shiny) provide the signal to downstream objects to re-

execute.  Reactive endpoints (typically accessed as output objects in Shiny) are told to re-execute 

by the reactive environment.  Reactive conductors are placed between sources and endpoints.  
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They are used to improve slow or computationally intensive operations and can be implemented 

with the reactive() function in Shiny.   

5.3 METHODS 
 

An interactive web application was created using the “Shiny” R package version 1.2.0.  

The “multibias” R package for simultaneous multi-bias adjustment was built using the 

“devtools” R package version 2.1.0.  The “devtools” package also assisted in testing the 

functionality of the “multibias” package as it was under development and allows others to load 

the “multibias” package from any location.  The “roxygen2” R package version 6.1.1 provided 

convenient features for documenting all aspects of the package, including the main description, 

functions, and data.  All coding was done in R version 3.5.1. 

5.4 RESULTS 
 

The web application (https://pcbrendel.shinyapps.io/multibias/) is organized in four 

different sections that can be selected via tabs at the top of the page.  The first section provides 

instructions regarding how to use the app and how variables are defined.  It also provides a brief 

description of the bias adjustment methodology.  The next section allows the user to upload data 

that is comma, semicolon, or tab-separated.  The user can select whether to display all of the data 

or just the head.  The third section provides inputs for the user to classify which variables 

correspond to the exposure, outcome, and confounder(s).  After these variables are identified, 

results of the logistic regression of the outcome on the exposure and confounder(s) are displayed.  

Here, the user can see the exposure-outcome odds ratio and confidence interval corresponding to 

the estimate with no bias-adjustment.  The last section provides the tools for bias adjustment.  

The user selects which combination of multiple biases is present: (1) uncontrolled confounding 

and selection bias, (2) uncontrolled confounding and exposure misclassification, (3) exposure 
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misclassification and selection bias, (4) or all three biases.  The appropriate bias models are 

displayed depending on which biases are identified.  The user can also choose whether to use 

fixed or probabilistic bias parameters.  If probabilistic bias parameters are desired, the user must 

then select whether to use parameters with a Normal or Uniform distribution.  The user then 

inputs the values for the bias parameters as the fixed value, the mean and standard deviation (of 

the Normal distribution), or the minimum and maximum (of the Uniform distribution).  The bias 

models serve as the reference for interpreting each bias parameter.  Lastly, the user selects the 

range of the confidence interval and how many bootstrap samples are desired.  To begin the 

analysis, the user must press the action button.  After this button is pressed, the screen will 

display the bias-adjusted exposure-outcome odds ratio, the confidence interval of the estimate, 

and a histogram of the distribution of estimates from each bootstrap sample.  The amount of time 

needed to perform the analysis will vary depending on the size of the data and the number of 

bootstrap samples.  If probabilistic bias parameters are used, the confidence interval will 

incorporate uncertainty in both the random error and the systematic error.  

The “multibias” R package includes functions for adjusting for the various combinations 

of uncontrolled confounding, exposure misclassification, and selection bias.  Each function 

requires the same set of arguments:  the data frame, the variable in the data corresponding to the 

exposure, the variable in the data corresponding to the outcome, the variable(s) in the data 

corresponding to the confounder(s), and the bias parameters.  A series of simulated data sets with 

each bias combination are also included in the package.  Each of these data sets has a true 

exposure-outcome OR= 2, so the user can use this data to practice multiple bias adjustment.  In 

addition, data is included from the Evans County cohort study in which white males were 

followed for seven years, with coronary heart disease as the outcome of interest [82].  The 
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functions and data sets are all documented, and this documentation can be viewed in the “Help” 

tab of RStudio.  The function documentation provides the bias models that are needed to inform 

the bias parameter input.  The package home page (https://github.com/pcbrendel/multibias) 

provides key details on how to install and use the package and version updates. 

5.5 DISCUSSION 
 

An R package and Shiny interactive web application were developed to help investigators 

perform simultaneous multi-bias analysis.  While these tools help overcome some key barriers to 

implementing bias analysis, they are still predicated on the investigator having a firm 

understanding of causal reasoning.  One needs appropriate causal assumptions in order to draw 

causal conclusions.  If the investigator has data whose causal relationships are not correctly 

reflected in the bias models, then the estimates drawn from the bias analysis will be invalid.  It is 

therefore recommended that anybody using these tools has read the contents of Chapter 3, which 

explains the derivation of simultaneous multi-bias analysis, and its papers cited within. 

While the Shiny app has the significant benefit of not requiring any R programming 

skills, the “multibias” R package can allow for customization beyond the features of the Shiny 

app.  The R package allows the user to work with any kind of data format that can be loaded into 

R.  The user is also not restricted to having all bias parameters being a fixed value or 

Normal/Uniform probability distribution; each parameter can come from any kind of probability 

distribution or fixed value.  Lastly, the R package user has the benefit of performing additional 

summaries and data visualization with the vector of bootstrap estimates. 

Both tools can be developed in the future to allow for greater flexibility.  The tools 

should be able to accommodate data represented by more complex DAGs, types of information 

bias beyond exposure misclassification, and data that is not restricted to binary variables and 



 74 

logistic regression models.  The Shiny app can be improved to allow for a detailed progress bar 

while the bootstrap estimates are being generated and the ability to download the results as a .csv 

or summary report.  Future directions for the R package include expanding the warning and error 

messages and submitting the package to the CRAN, which “provides discoverability, ease of 

installation, and a stamp of authenticity [81].”   
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6. CONCLUSIONS 
 
 Any study that attempts to infer causation from observational data (i.e. a natural 

experiment) will have to account for potential sources of bias before a causal conclusion can be 

reached.  Investigators can speculate on potential sources of bias that weren’t controlled for in 

the design or analysis, but this isn’t helpful for understanding how the estimate would change 

under the control of bias.  In the epidemiological literature, it is becoming more commonplace to 

see the quantitative adjustment of a single bias source by bringing in causal assumptions related 

to the bias.  This effort represents a significant step forward in improving the validity and 

interpretability of causal estimates.  Building on this progress, the next step forward involves 

quantitative bias adjustment of every suspected source of bias.  The studies in this dissertation 

help to achieve this goal. 

 Study 1 demonstrates how to dissect the biases influencing a cause-effect relationship, in 

this case, the PD-cancer relationship.  This process involves reading the literature to understand 

the consensus on the strength of the effect, the hypothesized sources of bias, and which biases 

are generally controlled for or not controlled for.  Directed acyclic graphs are an essential tool 

here for illustrating the causal model that incorporates each of these biases.  This overall process, 

called a causal review, is necessary to inform multiple bias modeling.  Study 1 discusses many 

potential biases of the PD-cancer relationship including uncontrolled confounding by smoking, 

PD misclassification due to inaccurate diagnoses from clinical examinations, and selection bias 

due to PD and cancer each affecting whether a subject will participate and stay in the study. 

 Study 2 introduces a new approach to multiple bias modeling.  This method, called 

simultaneous multi-bias adjustment, involves the use of imputation and/or regression weighting 

to create an unbiased representation of the data.  Analytical tools to assist other investigators in 
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performing this method are provided in Study 4.  This bias adjustment technique is more 

generalizable than the current method of sequentially adjusting for each bias and does not require 

the investigator to know whether selection biases preceded any variable misclassification.  The 

trade-off for using simultaneous multi-bias adjustment is that several less-intuitive bias 

parameters may be required.  As was seen in the exposure misclassification adjustment in the 

PASIDA analysis of Study 3, some complex reasoning and data simulation may be required to 

derive the necessary bias parameters. 

 A retrospective cohort study within a Danish population was used to quantify the effect 

of PD on cancer in Study 3.  The analysis incorporated the simultaneous multi-bias analysis 

method developed in the previous study.  This study does not purport to have reached a decisive 

conclusion on the strength of the effect of PD on cancer nor to have explained why PD causes 

cancer.  Both answers will depend on future research into the underlying biology of these 

diseases, including the role of genetics and the microbiome, and additional epidemiological 

investigation.  The results of Study 3, however, provide evidence that Parkinson’s disease and 

overall cancer may be independent of each other, in contrast to what most epidemiological 

studies suggest.  It also shows that the relationship could be impacted by exposure 

misclassification and selection bias in equal and opposite directions under plausible bias models 

and parameters.  It is suggested that future studies narrow the focus to specific cancers instead of 

overall cancer because different cancer types may have unique biological mechanisms, may 

require distinct adjustment sets for confounding, and may be impacted by censoring-related 

selection bias in unique ways depending on the time to diagnosis relative to other cancers. 

 This dissertation demonstrates the challenges associated with making causal inference 

tools generalizable across studies.  The multi-bias adjustment in Study 3 was not able to be 
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performed using the bias adjustment tools created in Study 4 because these tools do not 

accommodate nested selection bias models or bias models with more than three confounders.  

Additional work is needed to make an all-encompassing tool for bias analysis that has no 

restrictions on the number of variables or biases and that supports several bias adjustment 

techniques.  The ability of bias analysis to scale to wide-spread adaptation will depend on the 

quality of the tools available to perform the analysis.   
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