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This essay illustrates some recent developments to the DiffeRential Evolution Adaptive Metropolis
(DREAM) MATLAB toolbox of Vrugt (2016) to delineate and sample the behavioural solution space of
set-theoretic likelihood functions used within the GLUE (Limits of Acceptability) framework (Beven
and Binley, 1992, 2014; Beven and Freer, 2001; Beven, 2006). This work builds on the DREAM(ABC) algo-
rithm of Sadegh and Vrugt (2014) and enhances significantly the accuracy and CPU-efficiency of Bayesian
inference with GLUE. In particular it is shown how lack of adequate sampling in the model space might
lead to unjustified model rejection.

� 2018 Elsevier B.V. All rights reserved.
1. Introduction and scope

In any analysis of predictive uncertainty associated with the
application of a model a number of decisions have to be made.
We have to decide on the model structure or structures to be con-
sidered; on the prior distributions for the parameters and/or input
data that will be considered uncertain; on how to treat residual
errors and a likelihood (or fuzzy membership) to express the
degree of belief in a model realization; on a sampling method to
generate those realizations; and on a way of combining likelihood
measures if necessary.

None of these choices are simple and some have proven to be
highly contentious in the hydrological literature. All will affect
the outcomes and interpretation of an uncertainty analysis.
Beven (2006) distinguishes between ideal and non-ideal
applications. In ideal cases, where uncertainties can be satisfacto-
rily described as aleatory in nature, it will be possible to define
prior information as joint statistical distributions, it will be possi-
ble to define a likelihood function based on a structural model of
the residuals, it will be possible to update likelihoods using Bayes
equation, and the outcomes will have a formal probabilistic inter-
pretation. In non-ideal cases, where epistemic uncertainties domi-
nate and model residual characteristics may be non-stationary or
arbitrary, it may be much more difficult to define prior informa-
tion, or find a satisfactory structural model of the residuals, and
the use of Bayes with a simple statistical likelihood function can
lead to nonsensical results (Beven, 2015; Beven and Smith, 2015;
Vrugt and Sadegh, 2013a). Thus, it has been suggested that every
uncertainty analysis should be associated with an audit trail of
the many simplifying assumptions on which it is based as a way
of communicating meaning and limitations to potential users
(see Beven et al. (2014) for flood inundation modelling case
studies).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jhydrol.2018.02.026&domain=pdf
https://doi.org/10.1016/j.jhydrol.2018.02.026
mailto:jasper@uci.edu
https://doi.org/10.1016/j.jhydrol.2018.02.026
http://www.sciencedirect.com/science/journal/00221694
http://www.elsevier.com/locate/jhydrol
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In this paper we focus on one particular aspect of the uncer-
tainty estimation process, that of the choice of sampling methodol-
ogy, and its impact on the outcomes of an uncertainty estimation
based on the Generalised Likelihood Uncertainty Estimation
(GLUE) Limits of Acceptability approach (Beven, 2006; Page et al.,
2007; Blazkova and Beven, 2009; Liu et al., 2009; Beven, 2012,
2015). Past applications of GLUE have commonly used brute-
force random sampling techniques across uniform prior distribu-
tions of uncertain parameters lacking better prior information.
But when run times for a single model realisation are large, or
when there are a large number of uncertain parameters and the
dimensionality of the search space is high, then computer limita-
tions can result in a sparse sample of model realisations, many of
which may be rejected as non-behavioural (though it is worth not-
ing that the original presentation of GLUE in Beven and Binley
(1992) was based on a selective sampling algorithm in an attempt
to improve efficiency given the computing limitations at that time,
see also Beven (2015)). We should expect that such sparse sam-
pling will result in relatively poor explorations of the model space
and consequent uncertainty estimates, regardless of the other deci-
sions in the estimation process.

One advantage of statistical uncertainty estimation is that the
formal likelihood assumptions can be closely linked to more effi-
cient search algorithms based on Monte Carlo Markov Chain tech-
niques. In a series of papers from Vrugt et al. (2003) on, efficient
search methods have been developed for a variety of problems
by combining optimisation and adaptive search algorithms. The
latest of these methods, the DiffeRential Evolution Adaptive Metro-
polis (DREAM) algorithm has been designed to simplify Bayesian
inference and speed-up estimation of posterior parameter distribu-
tions significantly. DREAM is an improvement over the Shuffled
Complex Evolution Metropolis (Vrugt et al., 2003) algorithm and
has the advantage of maintaining detailed balance and ergodicity.
Benchmark experiments have shown that DREAM is superior to
other adaptive MCMC sampling approaches (for instance see Lu
et al. (2017)), and in high-dimensional spaces even provides better
solutions than powerful optimisation algorithms (Vrugt et al.,
2008a, 2009; Laloy and Vrugt, 2012a,b, 2013; Linde and Vrugt,
2013; Lochbuhler et al., 2014; Laloy et al., 2015) (see also our
response in Vrugt et al. (2014) to the comment of Chu et al.
(2014)).

In the past few years, DREAM has found widespread applica-
tion and use in many different fields of study, including (among
others) atmospheric chemistry (Partridge et al., 2011, 2012), bio-
geosciences (Scharnagl et al., 2010; Braakhekke et al., 2013;
Ahrens and Reichstein, 2014; Dumont et al., 2014; Sisson and
Kaste, 2014), biology (Coelho et al., 2011; Zaoli et al., 1407),
chemistry (Owejan et al., 2012; Tarasevich et al., 2013;
DeCaluwe et al., 2014; Gentsch et al., 2014), ecohydrology
(Dekker et al., 2010), ecology (Barthel et al., 2011; Gentsch
et al., 2014; Iizumi et al., 2014; Zilliox and Gosselin, 2014), eco-
nomics and quantitative finance (Bauwens et al., 2011; Lise
et al., 2012; Lise, 2013), epidemiology (Mari et al., 2011;
Rinaldo et al., 2012; Leventhal et al., 2013), geophysics
(Bikowski et al., 2012; Linde and Vrugt, 2013; Laloy et al.,
2012b; Rosas-Carbajal et al., 2014; Lochbuhler et al., 2014), geo-
statistics (Minasny et al., 2011; Sun et al., 2013), hydrogeophysics
(Hinnell et al., 2010), hydrologeology (Keating et al., 2010; Laloy
et al., 2013; Malama et al., 2013), hydrology (Vrugt et al.,
2008a, 2009; Schoups et al., 2014), physics (Dura et al., 2011;
Horowitz et al., 2012; Toyli et al., 2012; Kirby et al., 2013; Yale
et al., 2013, 2014), psychology (Turner and van Zandt, 2012), soil
hydrology (Wöhling and Vrugt, 2011), and transportation engi-
neering (Kow et al., 2012). A recent paper by Vrugt (2016)
reviews the basic theory of DREAM and introduces a MATLAB
toolbox of this algorithm.
The development of DREAM in Vrugt et al. (2008a, 2009) was
inspired by an urgent need for sampling methods that can search
efficiently and reliably for the posterior parameter distribution of
dynamic simulation models. An original aim in this and related
work was to improve the efficiency of applying Bayes methods
using likelihood functions derived from simple statistical assump-
tions (Schoups and Vrugt, 2010). But DREAM has much wider
applicability and can solve inference problems involving the use
of discrete/combinatorial search spaces (Vrugt and ter Braak,
2011), summary statistics (Sadegh and Vrugt, 2014), data assimila-
tion (Vrugt et al., 2013b), informal likelihood functions (Blasone
et al., 2008), diagnostic model evaluation (Vrugt and Sadegh,
2013a; Sadegh et al., 2015), model averaging (Vrugt et al., 2008b)
and GLUE Limits of Acceptability Beven (2006).

Within this GLUE framework, behavioural models are defined as
those that satisfy Limits of Acceptability around each observation
or summary statistic defined prior to running any model simula-
tions. These limits should reflect the observational error of the
variable being compared, together with the effects of input error
and commensurability errors resulting from differences in scale
(spatial and/or temporal) between observed and simulated values.
In a previous paper Sadegh and Vrugt (2013) have shown that the
Limits of Acceptability framework of GLUE has important elements
in common with approximate Bayesian computation (ABC), partic-
ularly if each observation of the calibration data record is used as a
summary statistic.

This paper illustrates some recent developments to the DREAM
toolbox of Vrugt (2016) in MATLAB to delineate and sample the
behavioural solution space of set-theoretic likelihood measures
used within the Limits of Acceptability framework (Beven,
2006; Beven and Binley, 2014). The work builds on the
DREAM(ABC) algorithm of Sadegh and Vrugt (2014) and enhances
significantly the efficiency of sampling the model space within
the GLUE methodology. The DREAM algorithm has important
advantages over uniform sampling methods that have commonly
been used in GLUE as it will generally provide a more exact esti-
mate of parameter and model predictive uncertainty. In particu-
lar, it will be shown herein that the use of inferior sampling
methods can lead to erroneous conclusions about model
rejection.

The remainder of this paper is organised as follows. Section 2
summarises the GLUE Limits of Acceptability methodology. In Sec-
tion 3, the connection between the Limits of Acceptability frame-
work and approximate Bayesian computation is discussed.
Section 4 then reviews briefly the DREAM(ABC) algorithm of
Sadegh and Vrugt (2014) and introduces DREAMðLOAÞ which is
designed to sample efficiently the behavioural parameter space
within the Limits of Acceptability framework. In this section we
are particularly concerned with the definition of the likelihood
function and Metropolis acceptance probability so as not to violate
detailed balance and to make sure that the behavioural parameter
and simulation space, which satisfy the Limits of Acceptability, are
accurately and efficiently sampled. Section 5 then documents the
results of three different case studies involving surface hydrology
and vadose zone modelling. In this section we benchmark the sam-
pling efficiency of the DREAM(ABC) algorithm against rejection sam-
pling used within GLUE. Finally, Section 6 concludes this paper
with a summary of the main findings.
2. Model formulation

Consider a n-vector of measurements, ey ¼ fey1; . . . ; eyng,
observed at discrete times, t ¼ f1; . . . ;ng, which summarizes the
response of some (spatially distributed) real-world system, I, sub-
ject to q control inputs, b ¼ fb1; . . . ; bqg, that may be time and/or
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space variant. We can use a computer model,Mð�Þ, to emulate I
and explain the experimental data

ey  Mðx;a; ew0; eA; eBÞ þ e; ð1Þ
where x ¼ fx1; . . . ; xdg is a 1� d-vector of parameters, a signifies a
vector with fundamental constants (e.g. gravitational acceleration,
light velocity) and/or measurable invariant quantities (surface ten-

sion), ew0 stores the values of the state variables at the start of sim-

ulation, matrix eA characterizes distributed system properties (e.g.

subsurface heterogeneity, topography), eB is the control matrix with
(spatio) temporal measurements of the q forcing variables, and
e ¼ fe1; . . . ; eng is a vector of residuals. The residuals may constitute
measurement errors on ey , or the effects of model structural errors

in Mð�Þ, or the effects of input data errors in ew0;
eA, and eB (these

are processed through the model to contribute to the residual),
or a combination thereof, in which case we can write
et ¼ e1t þ e2t þ e3t . The index t for time takes on strictly positive
integer values in the remainder of this paper, t 2 Nþ, yet may take
on real values, t 2 ð0;n� 2 Rþ, inMð�Þ to simulate continuous-time
processes.

The aim of this paper is to determine our posterior beliefs about
the model parameters, x, in light of the computer model, Mð�Þ,
transient control variables, eA, input data, eB, experimental data, ey,
prior beliefs about the parameters, PðxÞ and measurement and
modelling errors, e. The prevailing Bayesian approach would
require a statistical model of the measurement errors of the tran-

sient control variables, eA, and other model inputs, eB, and demand
assumptions about measurement errors of ey, in pursuit of an ade-
quate likelihood function (Kavetski et al., 2006; Kavetski et al.,
2006; Vrugt et al., 2008a, 2009). Instead, we adopt an alternative
approach and quantify our posterior beliefs of x via Limits of
Acceptability on the observed data. These limits are defined a priori
by the modeller and summarize the cumulative impacts of mea-

surement errors of eA; eB and ey on the simulated output. The second
author of this paper is a strong proponent of this methodology,
with philosophy, arguments, justification and methodology well
rehearsed in past papers for over a decade and discussed briefly
in the next section. Without loss of generality, we restrict the
model parameters to a closed space, v, equivalent to a d-
dimensional hypercube, x 2 v#Rd, called the feasible parameter
space. Furthermore, as the simulation models used herein exhibit
degenerative (negative) feedbacks, we take advantage of a spin-
up period of T days to gravitate the moisture status to a stable state
and remove the impact of state initialization errors on the model

output, limt!T Mtðx;a; ew0; eA; eBÞ �Mtðx;a;w0;
eA; eBÞ� �

! 0.

3. The Generalised Likelihood Uncertainty Estimation (GLUE)
methodology

The GLUE methodology has been applied widely to many differ-
ent modelling problems in different fields of study where the prob-
lems of epistemic uncertainties are significant and formal
statistical likelihoods functions difficult to justify when residual
characteristics are non-stationary and non-traditional (Beven and
Binley, 1992; Beven and Freer, 2001; Beven, 2006; Beven, 2009;
Beven, 2015). These are the non-ideal cases that are difficult to rep-
resent using statistical residual models and that require a different
philosophical approach to model evaluation to traditional statisti-
cal methods (Beven, 2015; Beven and Smith, 2015).

The GLUE methodology aims to find a set of model representa-
tions (model inputs, model structures, model parameter sets,
model errors) that are behavioural in the sense of being acceptably
consistent with the (non-error-free) observations. Such models are
not necessarily limited to a small region of the model space. This is
the equifinality thesis (Beven, 2006, 2012). Predictions are made
using this ensemble of behavioural models, weighted according
to some likelihood measure supporting a degree of belief. Given
an expectation of complex error structures in hydrological mod-
elling (Beven, 2015), the likelihood weight need not be defined
by a simple statistical error model. Here it is based on performance
relative to Limits of Acceptability defined prior to making any
model runs, which allows the residuals to be treated implicitly.
This approach was originally inspired by the Hornberger and
Spear (1981) method of sensitivity analysis and operates within
the context of Monte Carlo analysis coupled with Bayesian or fuzzy
inference and propagation of uncertainty.

In the manifesto for the equifinality thesis, Beven (2006) sug-
gested that a more rigorous approach to model evaluation would
involve the use of Limits of Acceptability for each individual obser-
vation. These Limits of Acceptability are defined prior to running
the model, and should reflect the observational error of the vari-
able being compared, together with the effects of input error and
commensurability errors resulting from time or space scale differ-
ences between observed and predicted values (Beven, 2015). To
allow for the fact that different observations might have quite dif-
ferent scales, the Limits of Acceptability can be expressed as a nor-
malised scale (-1 at the lower limit, 0 at the observed value, +1 at
the upper limit). Performance weightings within the limits can also
be specified as appropriate (Beven, 2006).

The GLUE Limits of Acceptability method proceeds as follows.
The index i is used to mean ‘for all i 2 f1; . . . ;Ng’.

1. Draw at random N samples from the prior parameter distribu-
tion, PðxÞ, and store these realizations in a N � d matrix
X ¼ fxð1Þ; . . . ;xðNÞg.

2. Evaluate the model, yðiÞ  MðxðiÞj�Þ, and compute the minimum
absolute normalised score for the simulation,

yðiÞ ¼ fyðiÞ1 ; . . . ; yðiÞn g, to be acceptable.
3. Rank the N parameter vectors by their minimum scores, and

select as behavioural the top R realisations above some accept-
ability threshold. This threshold would normally be an absolute
value of 1 on the normalized scale, indicating that all observa-
tions are reproduced within the specified Limits of Acceptabil-
ity. All other realisations are given a likelihood value of zero.

4. Collect the behaviorial solutions in a R� d matrix B and store in
a matrix Y of size R� n their corresponding simulations.

5. Calculate a likelihood value, LðxðiÞjeyÞ, of the simulated values,
yðiÞ, based on the performance weightings within the Limits of
Acceptability. The way in which this is done will depend on
the nature of the application (see the suggestions in Beven
(2006)).

6. Normalize the likelihood of each sample of B
LðBrjeyÞ ¼ L Br jey� �.XR
r¼1

L Br jey� �
; ð2Þ

where r ¼ f1; . . . ;Rg so that
PR

r¼1LðBrjeyÞ ¼ 1.
7. Compute the likelihood-weighted cumulative density function

(cdf) by assigning each rth row of Y the likelihood LðBrjeyÞ,
where r ¼ f1; . . . ;Rg.

8. Derive the 95% simulation uncertainty ranges of Mðxj�Þ from
the likelihood-weighted cdf.

Past work has applied the Limits of Acceptability approach
applied to both individual observations and summary output
statistics has been used by various authors (Blazkova and Beven,
2009; Dean et al., 2009; Krueger et al., 2009; Liu et al., 2009;
McMillan et al., 2010; Westerberg et al., 2011; Westerberg and



J.A. Vrugt, K.J. Beven / Journal of Hydrology 559 (2018) 954–971 957
McMillan, 2015; Gupta et al., 2008; Vrugt and Sadegh, 2013a;
Sadegh and Vrugt, 2014; Sadegh et al., 2015). Some earlier publica-
tions used similar ideas within GLUE based on fuzzy measures, for
which the support also acted as Limits of Acceptability (Page et al.,
2003; Freer et al., 2004; Page et al., 2004; Page et al., 2007;
Pappenberger et al., 2005, 2007). The set-theoretic approach used
by Keesman (1990) and van Straten and Keesman (1991) is a sim-
ilar method of model evaluation. The Limits of Acceptability frame-
work might be considered more objective than the standard GLUE
thresholding of a goodness-of-fit measure in defining behavioural
models, as the limits should be defined on the basis of best avail-
able hydrological knowledge.

Two primary sources of epistemic uncertainty will influence the
Limits of Acceptability: uncertainty in the evaluation observations,ey (e.g. discharge, water table or soil moisture observations), and

uncertainty in the model input data, eA and eB. The former is gener-
ally easiest to handle in that there will be a direct relationship
between observed and predicted variables. For example, the mea-
sured discharge will be subject to considerable uncertainty due to
imperfect knowledge of the rating curve. Fortunately, this curve
can be reasonably well estimated via statistical regression
(Krueger et al., 2009; McMillan et al., 2012), fuzzy regression
(Blazkova and Beven, 2009), or other approaches such as the Monte
Carlo based voting point method of McMillan and Westerberg
(2015), with or without a water balance constraint (Hollaway
et al., 2017).

It remains difficult and subjective how errors in the input data,eA and eB, should affect the Limits of Acceptability (Beven and
Smith, 2015). Not only are such errors difficult to estimate a priori,
but their effect will also accumulate in the modeled state variables
and produce a complex, non-traditional, time series of residuals.
The Limits of Acceptability should be extended to account for input
data errors, but at present there is no commonly accepted frame-
work for doing so beyond special synthetic cases with a priori
known error sources and properties. Thus, the degree of extension
remains necessarily subjective, and possibly guided by the require-
ments of an application in evaluating model simulations as fit-for-
purpose (Beven, 2018). This may purport a methodological flaw,
yet is the consequence of the inexact nature of hydrological
science.

This paper is not about whether GLUE is a valid choice of
methodology, only about the efficiency of applying that methodol-
ogy. We recognise that all estimates of predictive uncertainty will
be conditional on the assumptions made, and therefore care should
be exercised when interpreting and communicating the resulting
prediction estimates, for example using the condition tree proposal
of Beven et al. (2014).

The GLUE approach has mostly used simple randomised sam-
pling of the prior parameter space to create an ensemble of N dif-
ferent parameter combinations for evaluation. This Monte Carlo
simulation approach is not particularly efficient and may only pro-
vide a sparse sample of the behavioural solution space in high
parameter spaces (large d) even after many millions of simulations
(Iorgulescu et al., 2005; Blasone et al., 2008; Vrugt et al., 2009),
depending on the degree of equifinality in the model space. This
is especially the case when there is little information about the
prior distributions of the parameters and only feasible ranges can
be specified. Uniform random sampling over the hypercube
defined by the parameter ranges will not only be very inefficient,
it can also provide misleading results where the behavioural
parameter space is highly localised. While each behavioural sam-
ple is likelihood-weighted in representing the posterior distribu-
tion in GLUE, the number of samples that fall within the
behavioural space will be small. In the original GLUE paper,
Beven and Binley (1992) used a nearest neighbour resampling
method to replace samples with low likelihoods, nevertheless, this
approach lacks statistical rigor.

Blasone et al. (2008) have demonstrated how the efficiency of
GLUE can be enhanced in such cases, sometimes dramatically, by
the use of Markov Chain Monte Carlo (MCMC) simulation. This
paper has received a significant number of citations but the pro-
posed MCMC sampling framework has found little use in the GLUE
community, despite source code availability. In this paper we revi-
sit the use of MCMC simulation for approximate Bayesian inference
but consider instead the extended GLUE approach involving the
Limits of Acceptability (GLUE_LoA) framework. This extension
demands changes to the sampling approach of Blasone et al.
(2008) to satisfy efficiently the Limits of Acceptability in pursuit
of the behavioral parameter space. A simple adaptation of the
DREAM(ABC) algorithm of Sadegh and Vrugt (2014) developed in
the context of diagnostic model evaluation will suffice to solve
set-theoretic membership functions such as those used in the Lim-
its of Acceptability methodology.

4. GLUE_LoA and approximate Bayesian computation

Lets assume the case of a prior distribution, PðxÞ � Udða;bÞ, that
is multivariate uniform between some d-vector of values a and b.
For a proposal, x�, to be deemed acceptable, yðx�Þ should be con-
tained exclusively within the interval ½eyt � �t ; eyt þ �t � at each time
t ¼ f1; . . . ;ng. This so called ”behavioural simulation space”

belongs to the set bXðyÞ and can be defined as (Keesman, 1990)

bXðyÞ ¼ y 2 Rn : yt ¼Mtðxj�Þ ; x 2 bXðxjeyÞ; t ¼ 1; . . . ;n
n o

;

ð3Þ

where bXðxjeyÞ constitutes the posterior (behavioural) parameter set

bXðxjeyÞ ¼ XðxjeyÞ: ð4Þ

The conditional parameter set, XðxjeyÞ, is defined as follows

XðxjeyÞ ¼
n
x 2 v 2 Rd : eyt �Mtðxj�Þ ¼ et ;

et 2 ½��t; �t �; t ¼ 1; . . . ;n
o
; ð5Þ

and contains solutions that satisfy the Limits of Acceptability of

each observation, and x� 2 bXðxjeyÞ. If an informative prior distribution

is used then the behavioural (posterior) parameter set, bXðxjeyÞ, is
computed as the intersection of the prior parameter set, XðxÞ, and
conditional parameter set, XðxjeyÞ, or
bXðxjeyÞ ¼ XðxÞ \XðxjeyÞ: ð6Þ

Fig. 1 summarises graphically four different outcomes of the
Limits of Acceptability framework. The behavioural solution space
exists, if and only if, the conditional parameter set,XðxjeyÞ, intersects
the prior parameter set, XðxÞ. If an informative prior distribution is
used, then a sufficient condition for the posterior (behavioural)
parameter set to exist is that the conditional parameter set,
XðxjeyÞ, is non-empty.

The Limits of Acceptability approach has many elements in
common with likelihood-free inference (Sadegh and Vrugt, 2013).
This approach was introduced in the statistical literature about
three decades ago (Diggle and Gratton, 1984) (coincidentally in dif-
ferent departments of Lancaster University where, quite indepen-
dently, the first GLUE experiments were being carried out). It is
especially useful in situations where evaluation of the likelihood
is computationally prohibitive, or for cases when an explicit



Fig. 1. Set-theoretic approach to quantification of parameter uncertainty. The blue, green, and red colours delineate the prior, XðxÞ , conditional, XðxjeyÞ , and posterior, bXðxjeyÞ
parameter set respectively, whereas the grey ellipsoidal defines the feasible parameter space, x 2 v#Rd . The four examples each portray a different outcome, (A) the
conditional parameter set intersects fully the prior parameter set, (B) the conditional parameter set intersects only partially the prior parameter set, (C) the conditional and
prior parameter set are disjoint (have no elements in common), and (D) the conditional parameter set is empty (no solutions exist that satisfy the Limits of Acceptability). For
the last two examples there does not exist a behavioural solution space.
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likelihood (objective) function cannot be formulated. This class of
methods is also referred to as approximate Bayesian computation
(ABC) and is currently receiving a surge of interest in statistics
(Marjoram et al., 2003; Sisson et al., 2007; Joyce and Marjoram,
2008; Grelaud et al., 2009; Del Moral et al., 2012) with common
applications in genetics (Pritchard et al., 1999; Tanaka et al.,
2006; Ratmann et al., 2009; Beaumont et al., 2002), epidemiology
(Blum and Tran, 2010), population biology (Bertorelle et al.,
2010), (evolutionary) ecology (Beaumont, 2010; Csilléry et al.,
2010), and psychology (Turner and van Zandt, 2012).

A schematic overview of the ABC method appears in Fig. 2 using
as example the fitting of a hydrograph. The premise behind ABC is
that x� should be a sample from the posterior distribution if its
simulated output matches closely and consistently the observed
data. Or in ABC-terminology, the distance, q ey; yðx�Þ� �

, between
the simulated and observed data must be less than some nominal
Fig. 2. Conceptual overview of approximate Bayesian computation (ABC) for a hypothe
(2013)). First, N samples are drawn from a user-defined prior distribution, xðiÞ � PðxÞ, w
corrupted with a residual time series, e, drawn randomly from Peð�Þ. This creates an ense
data, q ey; yðxðiÞÞ� �

is smaller than or equal to some nominal positive value, � then xðiÞ is ret
approximate the posterior parameter distribution, PðxjeyÞ. For complex models and large
the observations will be very small. Therefore, q ey; yðxðiÞÞ� �

is usually defined as a distanc
respectively.
value, � (Marjoram et al., 2003; Sisson et al., 2007). Thus, ABC
methods do not use a formal likelihood function to infer the poste-
rior parameter distribution, but instead retain a proposal, x�, if

q ey; yðx�Þ� �
6 �; ð7Þ

where qða; bÞ ¼ ja� bj is the distance function and j � j signifies the
modulus (absolute value) operator. The most basic ABC algorithm
(rejection sampling) then proceeds in the following steps

1. Draw a proposal, x�, from the prior distribution, PðxÞ.
2. Simulate the model output, y Mðx�j�Þ
3. Accept x� if q ey; yðx�Þ� �

6 �

The accepted samples will approximate the posterior distribu-
tion, Pðxjq ey; yðx�Þ� �

6 �Þ. When � ! 0 the rejection algorithm
tical one-dimensional parameter estimation problem (inspired by Sunnåker et al.
here i ¼ f1; . . . ;Ng. Then, each parameter vector is evaluated with the model and

mble of N different simulations. If the distance between the observed and simulated
ained, otherwise the simulation is discarded. The accepted samples are then used to
data sets the probability of happening upon a simulation run that describes exactly
e between summary statistics of the simulated, S yðxðiÞÞ� �

, and observed, S ey� �
, data,
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provides samples from the exact posterior distribution, PðxjeyÞ,
whereas if � ! 1 the algorithm would generate draws from the
prior distribution, PðxÞ. The tolerance, �, can therefore be consid-
ered a trade-off between computational tractability and accuracy
(Wilkinson, 2013).

The probability of stumbling upon a simulation that satisfies
exactly all n data points of ey within a small tolerance, �, decreases
rapidly with increasing model complexity and length of the data
set. To mitigate this problem, it is common practice to replace ey
with one or more summary statistics, SðeyÞ, of the data. These statis-
tics summarize in much lower dimensions the relevant informa-
tion in ey. Samples are retained if their simulated statistics reside
within � of their observed values, or q S ey� �

; S yðx�Þð Þ� �
6 � (Vrugt

and Sadegh, 2013a; Sadegh and Vrugt, 2014; Sadegh et al., 2015).
If the summary statistics are sufficient and contain as much infor-
mation as the data, ey, itself then this approach does not introduce
errors. However, in practice, models and data of complex systems
rarely admit sufficient statistics.

One attractive feature of summary statistics is that they can
reduce significantly the impact of poorly known error sources on
model and parameter estimation. A textbook example is the runoff
index of a catchment. This metric is hardly sensitive to precipita-
tion data measurement errors that otherwise would lead to a com-
plex, non-traditional, time series of discharge residuals (Vrugt and
Sadegh, 2013a). What is more, summary statistics are useful for
hypothesis testing, and temporal analysis of their values can help
detect system (catchment) nonstationarity (Sadegh et al., 2015).

In a previous paper, Sadegh and Vrugt (2013) have shown an
equivalence of the Limits of Acceptability framework of Beven
(2006) and ABC if each observation of the calibration data set is
used as a summary metric. This proposition is perhaps more obvi-
ous if the following notation is used

q S ey� �
; S yðx�Þð Þ� � ¼Yn

t¼1
I jeyt � ytðx�Þj 6 �tð Þ; ð8Þ

where IðaÞ is an indicator function that returns one if the condition
a is satisfied and zero otherwise, �t constitutes the Limits of Accept-
ability of the tth observation, and � ¼ f�1; . . . ; �ng.

Nevertheless, a fundamental difference between ABC and the
Limits of Acceptability framework is that ABC assumes use of a
stochastic model so that repeated runs with the exact same param-
eter values will produce a range of possible simulations. Otherwise,
the posterior distribution, Pðxjq ey; yðx�Þ� �

6 �Þ cannot converge to a
stable distribution in the limit of � ! 0, and instead would con-
verge to a single solution (if it existed). For ABC to work with a
deterministic model, we must corrupt the simulated output with
a draw from Peð�Þ, a n-variate distribution with probabilistic prop-
erties (e.g. mean, variance, correlation structure, bias) equivalent
to the residual time series, e, in Eq. (1). Thus, while traditional
Bayesian approaches draw inferences on the posterior beliefs of x
via a prior distribution, PðxÞ, and likelihood function, LðxjeyÞ, which
summarises the expected statistical properties of the residuals,
ABC methods approximate the likelihood function by repeated
stochastic simulation, the outcomes of which are compared with
the observed data (Beaumont, 2010; Bertorelle et al., 2010;
Csilléry et al., 2010). If, the Limits of Acceptability are rather large
in comparison to the residuals as in Sadegh and Vrugt (2013) then
perturbation of the simulated values will have only a minimal
impact on the posterior parameter distribution.
5. The DREAM(ABC) algorithm

Application of likelihood-free inference with ABC requires the
availability of a sampling method that can efficiently search the
parameter space in pursuit of the set of behavioural model realisa-

tions, bXðxjeyÞ that satisfies q a; bð Þ ¼ 1 in Eq. (8). Commonly used

(population Monte Carlo) rejection sampling methods are rather
inefficient in locating behavioural solutions. The chance that a ran-
dom sample from the prior distribution satisfies the Limits of
Acceptability of each observation is disturbingly small, particularly
if the prior parameter space is large compared to the posterior
(behavioural) solution space and the number of observations, n is
large. Fortunately, an efficient MCMC sampling method, the
DREAM(ABC) algorithm, has been developed by Sadegh and Vrugt
(2014) to explore efficiently set-theoretic functions such as Eq. (5).

In DREAMðABCÞ; N (N > 2) different Markov chains are run
simultaneously in parallel, and multivariate proposals are gener-
ated on the fly from the collection of chain states,

X ¼ fxð1Þt�1; . . . ;x
ðNÞ
t�1g (matrix of N � d with each chain state as row

vector) using differential evolution (Storn and Price, 1997; Price
et al., 2005). If A is a subset of d�-dimensional space of the original
parameter space, Rd� # Rd, then a jump in the ith chain,
i ¼ f1; . . . ;Ng, at iteration t ¼ f2; . . . ; Tg is calculated using

DxðiÞA ¼ fd� þ ð1d� þ kd� Þcðd;d�Þ
Xd

j¼1
Xr1j

A � Xr2j
A

� �
DxðiÞ–A ¼ 0;

ð9Þ

where cðd;d�Þ ¼ 2:38=
ffiffiffiffiffiffiffiffiffiffi
2dd�
p

is the jump rate, d denotes the number of
chain pairs used to generate the jump, and r1 and r2 are d-vectors
with integer values drawn without replacement from
f1; . . . ; i� 1; iþ 1; . . . ;Ng. The values of kd� and fd� are sampled inde-
pendently from the multivariate uniform distribution, Ud� ð�c; cÞ
and multivariate normal distribution, N d� ð0; c�Þ with, typically,
c ¼ 0:1 and c� small compared to the width of the target distribu-
tion, c� ¼ 10�12 say. Every fifth generation the value of k is set to
unity to enable direct jumps from one mode of the target distribu-
tion to another.

The candidate point of the ith chain at iteration t then becomes

xðiÞp ¼ xðiÞ þ DxðiÞ; ð10Þ
and a modified selection rule is used to determine whether to
accept this proposal or not. This selection rule is defined as

Pacc

�
xðiÞt�1 ! xðiÞp

�
¼ I f ðxðiÞp ÞP f ðxðiÞt�1Þ

� �
if f ðxðiÞp Þ < n

1 if f ðxðiÞp Þ ¼ n

8<
: ; ð11Þ

where the fitness function, f ð�Þ, is calculated as follows

f ðxÞ ¼
Xn
t¼1

Iðjeyt � ytðxÞj 6 �tÞ: ð12Þ

If the proposal is accepted, then the ith chain moves to this new

position, xðiÞt ¼ xðiÞp , otherwise it remains at its current location, that

is xðiÞt ¼ xðiÞt�1.
The fitness of a parameter vector thus equates to the number of

observations its simulation satisfies within the Limits of Accept-

ability. A proposal, xðiÞp , in chain i is accepted, PaccðxðiÞt�1 ! xðiÞp Þ ¼ 1,
if its fitness is higher than, or equal to, that of the current state

of the ith chain, xðiÞt�1, or, if its fitness is equal to n, and thus,

yðxðiÞp Þ is contained in the interval ½eyt � �t ; eyt þ �t � for all

t 2 f1; . . . ;ng, otherwise xðiÞp is rejected. After a burn-in period in
which f ðxÞ < n, the convergence of DREAM(ABC) can be monitored

with the univariate, bR, and multivariate, bRd, scale reduction factors
of Gelman and Rubin (1992) and Brooks and Gelman (1998),
respectively. The weight of each simulation in the behavioral

space, bXðyÞ, is thus proportional to the number of times its
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parameter vector appears in the posterior distribution sampled by
the joint chains. Interested readers are referred to Sadegh and
Vrugt (2014) for a full description of the DREAM(ABC) algorithm.

The DREAM(ABC) algorithm was originally designed to speed up
ABC inference. In our present application, we use the algorithm to
sample efficiently the behavioural parameter space conditional on
the Limits of Acceptability. To be comparable to GLUE (Section 3)
this necessitates use of a deterministic model in DREAM(ABC). To
make this distinction obvious, we therefore introduce a new mem-
ber of the DREAM family, coined DREAMðLOAÞ, which is equivalent
to DREAM(ABC) but with the use of a deterministic model.

Appendix A presents a basic implementation of the DREAMðLOAÞ
algorithm in MATLAB. The results presented herein are derived
from the MATLAB toolbox of DREAM, which includes a much wider
arsenal of options and capabilities (such as postprocessing and
multi-core computation). A detailed description of this toolbox
appears in Vrugt (2016).

6. Numerical examples

Three different numerical examples are considered to illustrate
the ability of the DREAMðLOAÞ algorithm to sample efficiently the

behavioural parameter, bXðxjeyÞ, and simulation, bXðyÞ, space that sat-

isfy the prior parameter distribution and Limits of Acceptability of
each observation. All the examples assume a non-informative and
independent prior distributions, and default values of the algorith-
mic parameters of DREAM(ABC) listed by Sadegh and Vrugt (2014).

6.1. Unit hydrograph

The first case study considers the modelling of the instanta-
neous unit hydrograph using the ordinates of Nash (1960)
defined as

Qt ¼
1

kCðmÞ
t
k

� �ðm�1Þ
exp � t

k

� �
; ð13Þ

where Qt (mm day�1) is the simulated streamflow at time t (days),
m 2 ½1;1Þ (–) denotes the number of reservoirs, k > 0 (days) signi-
fies the recession constant, and Cð�Þ is the gamma function

CðmÞ ¼
Z 1

0
xm�1 expð�xÞdx 8m 2 Zþ ð14Þ

which satisfies the recursion Cðmþ 1Þ ¼ mCðmÞ.
A n ¼ 25-day period with synthetic daily streamflow data was

generated by driving Eq. (13) with an artificial precipitation record
using m ¼ 2 reservoirs, and a recession constant of k ¼ 4 days. This
artificial data set is subsequently perturbed with a heteroscedastic
measurement error (non-constant variance) with standard devia-
tion equal to 10% of the original simulated discharge values. In this
case study forcing data and model structure are assumed to be
known accurately. The DREAMðLOAÞ algorithm then uses the
Fig. 3. Results of case study I: Nash-Cascade series of reservoirs. (A) Comparison of the
original and corrupted data record, respectively, and the gray region is made up of b
observation. (B), (C) histograms of the marginal posterior distribution of the model param
record are separately indicated with the red cross (’X’) symbols.
observed discharge record, ey ¼ fey1; . . . ; ey25g to estimate the beha-
vioural solution space of m and k using the Limits of Acceptability,

�t ¼ 0:2y
�
t 8t 2 f1; . . . ;25g. A bivariate uniform prior distribution,

U2½1;10� was used for m and k in the calculations. Appendix B pre-
sents a MATLAB implementation of Eq. (13) and lists an input file of
the DREAMðLOAÞ algorithm with the setup and data used in this case
study.

Fig. 3 summarises the results of the analysis. The graph at the
left-hand-side presents a time series plot of the observed (red dots)
and simulated discharge data (grey). These simulated data satisfy
the Limits of Acceptability of each observation and thus belong

to the behavioural set, bXðyÞ. The two Figures at the right-hand-
side plot histograms of the behavioural parameter space of m
and k respectively. The true parameter values used to generate
the synthetic data are separately indicated with the red ’X’ symbol.
The behavioural simulation space satisfies the Limits of Acceptabil-
ity of the entire hydrograph, but fails to bracket the discharge mea-
surements on days 6, 9 and 13. This is not unexpected given that
the Limits of Acceptability were defined a priori to give 95% cover-
age of the known stochastic variation. The posterior histograms
centre around their ”true” values but appears a little biased (to
the left) for parameter m.

To provide insights into the convergence rate of DREAMðLOAÞ
to the posterior set, bXðxjeyÞ, Fig. 4 plots trace plots of thebR-convergence diagnostic of Gelman and Rubin (1992) computed
using the samples in the second half of the N ¼ 8 different Markov
chains. About 2000 function evaluations are required to satisfy the
convergence threshold of bR 6 1:2. The acceptance rate of proposals
is equivalent to about 33% (not shown herein), which means that,
on average, every third proposal of DREAMðLOAÞ satisfies the Limits
of Acceptability. This acceptance rate would be orders of magni-
tude lower if uniform random sampling were used, particularly
since there is a nearly linear correlation of �0.93 between the pos-
terior parameter samples of k and m (see Fig. 5). This conjecture is
confirmed by numerical simulation. Only 28 samples (indicated
with blue dots) were deemed behavioural out of 20,000 draws
from the prior distribution. The resulting acceptance rate of
approximately 0.14% is more than two orders of magnitude lower
than its counterpart derived from MCMC simulation with
DREAMðLOAÞ. This difference in sampling efficiency between
DREAMðLOAÞ and uniform random (rejection) sampling is clearly
evident in Fig. 5. Not only does DREAMðLOAÞ produce many diverse
samples of bXðxjeyÞ, the posterior parameter set, the algorithm also
sharply delineates the behavioural solution space.

In this trivial example it is quite easy to do generate many mil-
lions of samples from the uniform prior distribution to compensate
for a poor sampling efficiency, nevertheless, the prospects for
much higher dimensional search spaces with much more complex
parameter interactions are not very encouraging. The use of a
proper sampling method is of crucial importance for correct GLUE
inference and the DREAMðLOAÞ can help to avoid the rejection of
observed and simulated hydrograph. The solid black line and red dots denote the
ehavioural simulations that satisfy the Limits of Acceptability at each discharge
eters k and m in Eq. (13). The parameter values of the (uncorrupted) synthetic data



Fig. 4. Results of case study I: Nash-Cascade series of reservoirs. Evolution of the bR-diagnostic of Gelman and Rubin (1992) used to judge when convergence of the N ¼ 8
Markov chains to a limiting distribution has been achieved. The two parameters are coded with a different colour. About 2000 function evaluations are required to satisfy the

convergence threshold of bRj 6 1:2; j 2 f1;2g.
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Fig. 5. Results of case study I: Nash-Cascade series of reservoirs. Bivariate scatter
plot of the behavioural (posterior) samples of k and m derived from MCMC
simulation with DREAMðLOAÞ (dark red) and uniform random sampling (blue dots).
The dashed black line plots the least-squares fit to the DREAMðLOAÞ sample of points.
The correlation coefficient equals �0.93. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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models in high-dimensional parameter spaces as a result of sparse
and inadequate sampling. Past work has also shown how the
DREAMðLOAÞ methodology can be successful in identifying multiple
regions of behavioural models (Sadegh et al., 2015).

6.2. Rainfall-runoff modelling

The second case study involves the modelling of the rainfall-
runoff transformation of the Leaf River watershed in Mississippi.
This temperate 1944 km2 watershed has been studied extensively
in the hydrological literature which simplifies comparative analy-
sis of the results. A 10-year historical record (1/10/1952–
30/9/1962) with daily data of discharge (mm day�1), mean areal
precipitation (mm day�1), and mean areal potential evapotranspi-
ration (mm day�1) is used herein for model calibration and evalu-
ation. A 65-day spin-up period is used to reduce sensitivity of the
model to state-value initialisation.

The rainfall-discharge relationship of the Leaf River basin is
simulated using the Sacramento soil moisture accounting (SAC-
SMA) model of Burnash et al. (1973). This lumped conceptual
watershed model is used by the National Weather Service for flood
forecasting throughout the United States. The SAC-SMAmodel uses
six reservoirs (state variables) to represent the rainfall-runoff
transformation. These reservoirs represent the upper and lower
part of the soil and are filled with ”tension” and ”free” water,
respectively. The upper zone simulates processes such as direct
runoff, surface runoff, and interflow, whereas the lower zone is
used to mimic groundwater storage and the baseflow component
of the hydrograph.

Fig. 6 provides a schematic overview of the SAC-SMA model.
Nonlinear equations are used to relate the absolute and relative
storages of water within each reservoir and their states control
the main watershed hydrological processes such as the partition-
ing of precipitation into overland flow, surface runoff, direct runoff,
infiltration to the upper zone, interflow, percolation to the lower
zone, and primary and supplemental baseflow. Saturation excess
overland flow occurs when the upper zone is fully saturated and
the rainfall rate exceeds interflow and percolation capacities. Per-
colation from the upper to the lower layer is controlled by a non-
linear process that depends on the storage in both soil zones.

The SAC-SMA model has thirteen user-specifiable (and three
fixed) parameters and an evapotranspiration demand curve (or
adjustment curve). Inputs to the model include mean areal precip-
itation (MAP) and potential evapotranspiration (PET) while the
outputs are estimated evapotranspiration and channel inflow. A
Nash-Cascade series of three linear reservoirs is used to route the
upper zone channel inflow while the baseflow generated by the
lower zone recession is passed directly to the gauging point. This
configuration adds one parameter and three state variables to the
SAC-SMA model. The use of the three reservoirs improves consid-
erably the CPU-efficiency as it avoids the need for computationally
expensive convolution (though see the data-based modelling of
Young (2013) that suggests a longer routing kernel might be
appropriate for the Leaf River data set). Our formulation of the
model therefore has fourteen time-invariant parameters which
are subject to inference using observed discharge data. Table 1
summarises the fourteen SAC-SMA parameters and six main state
variables, and their ranges.

In this case study there is no information about the uncertain-
ties associated with either the forcing rainfall data of each dis-
charge observation. To define the Limits of Acceptability we
follow the approach of Sadegh and Vrugt (2013) and use a multiple
of an estimated discharge measurement error, hereafter referred to
as brey ¼ fbrey1 ; . . . ; breyng. The n-values of brey were derived using the

nonparametric estimator by Vrugt et al. (2005) and shown to be on
the order of 0:1eyt . The Limits of Acceptability in Eq. (8) are now
computed as multiple of brey or � ¼ /brey using / ¼ 4. This leads to

effective observation errors on the order of �t ¼ 0:4eyt .
Fig. 7 plots traces of the sampled fitness values in a selected set

of ten Markov chains simulated with DREAMðLOAÞ. The different



Fig. 6. Schematic representation of the Sacramento soil moisture accounting (SAC-SMA) conceptual watershed model. The parameters of the SAC-SMA model appear in
Comic Sans font type (black), whereas Courier font type is used to denote the individual fluxes computed by the model. Numbers are used to denote the different SAC-SMA
state variables, (1) ADIMC, (2) UZTWC, (3) UZFWC, (4) LZTWC, (5) LZFPC, and (6) LZFSC. The ratio of deep recharge to channel base flow (SIDE) and other remaining SAC-SMA
parameters RIVA and RSERV are set to their default values of 0.0, 0.0 and 0.3, respectively.

Table 1
Parameters and state variables of the SAC-SMA model and their ranges.

Parameter Symbol Lower Upper Units

Upper zone tension water maximum storage UZTWM 1.0 150.0 mm
Upper zone free water maximum storage UZFWM 1.0 150.0 mm
Lower zone tension water maximum storage LZTWM 1.0 500.0 mm
Lower zone free water primary maximum storage LZFPM 1.0 1000.0 mm
Lower zone free water supplemental maximum storage LZFSM 1.0 1000.0 mm
Additional impervious area ADIMP 0.0 0.40 –
Upper zone free water lateral depletion rate UZK 0.1 0.5 day�1

Lower zone primary free water depletion rate LZPK 0.0001 0.025 day�1

Lower zone supplemental free water depletion rate LZSK 0.01 0.25 day�1

Maximum percolation rate ZPERC 1.0 250.0 –
Exponent of the percolation equation REXP 1.0 5.0 –
Impervious fraction of the watershed area PCTIM 0.0 0.1 –
Fraction from upper to lower zone free water storage PFREE 0.0 0.6 –
Recession constant three linear routing reservoirs RQOUT 0.0 1.0 day�1

State variables

Upper-zone tension water storage content UZTWC 0.0 150.0 mm
Upper-zone free water storage content UZFWC 0.0 150.0 mm
Lower-zone tension water storage content LZTWC 0.0 500.0 mm
Lower-zone free primary water storage content LZFPC 0.0 1000.0 mm
Lower-zone free secondary water storage content LZFSC 0.0 1000.0 mm
Additional impervious area content ADIMC 0.0 650.0 mm
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chains are coded with a different colour and/or symbol. The chains
converge to a stable fitness value of Eq. (12) of around 2,800 after
about 80,000 function evaluations. That is about 76% of the dis-
charge observations are fitted within their Limits of Acceptability.
In the philosophy of GLUE the SAC-SMA model should be rejected
as it does not satisfy all the prior estimates of the Limits of Accept-
ability, even though the model describes accurately a significant
portion of the discharge data (see Fig. 8).



Fig. 7. Results of case study II: The SAC-SMA conceptual watershed model. Trace plot of the sampled fitness values of Eq. (12) in a randomly selected set of the N ¼ 20
different Markov chains of the DREAMðLOAÞ algorithm. Each chain is coded with a different colour and/or symbol. The computed fitness is equivalent to the number of times
the simulated value honors the Limits of Acceptability, � ¼ 0:4ey of the observed discharge data. The SAC-SMA model can only fit a portion of the n ¼ 3;652 discharge
observations of the calibration data set, and is thus rejected as not fit-for-purpose. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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To benchmark the results of the DREAMðLOAÞ algorithm, a total of
100,000 samples were drawn randomly from the ranges listed in
Table 1. While this is a small number for d ¼ 14 and some past
GLUE applications of hydrological models, it is still a large number
of model runs and we use it here to make a point. The maximum
value of the fitness of this sample is equivalent to 2401, much
lower than its counterpart of 2800 derived from the DREAMðLOAÞ
algorithm. This therefore gives further weight to the argument that
adequate sampling is essential to inference using a GLUE_LoA
approach but does not alter the conclusion that the SAC-SMA
model should be rejected based on these limits.

Further detailed inspection of the complete time series demon-
strates that the SAC-SMA model fits most of the recession periods
adequately well and that the limits are being exceeded predomi-
nantly during a substantial number of storm events. The misfit
during these events cannot be contributed solely to model struc-
tural error but suggests that there are important epistemic errors
associated with the rainfall inputs such that some events may be
disinformative for model evaluation (see Beven and Smith
(2015)). Such errors not only propagate nonlinearly through the
SAC-SMA model but also accumulate in the resolved state-
variables, hence their impact might be seen in consequent events.
What is more, rainfall data errors exhibit non-stationarity. These
effects (nonlinearity, non-stationarity and memory) are difficult
to encapsulate in Limits of Acceptability unless detailed prior
knowledge is available about the error characteristics of individual
Fig. 8. Results of case study II: The SAC-SMA conceptual watershed model. (A) Compariso
500-day portion of the calibration data period. The simulated values correspond to the D
daily score of unity signifies that the simulated value satisfies the Limits of Acceptabili
behavioural solution.
storm events. For instance, consider in Fig. 8 the model-data mis-
match observed between days 2180–2200 and days 2350–2375
of the calibration data record. This discrepancy is likely due to
errors in the precipitation data (too much and too little recorded
rainfall, respectively). No conceptual watershed model will be able
to describe these events using reasonable Limits of Acceptability or
with a simple statistical error model since the same issues apply.
One of the advantages of the Limits of Acceptability approach is
that it highlights events with problems (rather than just allowing
the error variance or event rainfall multiplier distribution to
expand to cover such event). Indeed, what is ideally needed is a
careful analysis of the errors of each individual storm event. In
addition, such errors can have an important effect in prediction
since it is not known a priori whether the next prediction event
has well-estimated forcing data or not (as demonstrated in Beven
and Smith (2015), for example).

This also demonstrates, however, why it is important that the
Limits of Acceptability should be set prior to running the model.
Otherwise it would be rather too easy to exclude those events for
which the model does not satisfy those limits as subject to epis-
temic input errors. In that case no model would be rejected. As
Beven (2012) points out, the science will not progress if we are
not prepared to reject models and explore the reasons for such fail-
ures. In this case it could be either a failure of the model structure,
or of epistemic uncertainty in the forcing data. It poses the ques-
tion as to just how good do we expect our models to be, in both
n of the observed (red dots) and simulated (black line) discharge data for a selected
REAMðLOAÞ sample with highest fitness. (B) score plot of the Limits of Acceptability. A
ty of the corresponding observation, whereas a daily score of zero denotes a non-
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calibration and prediction, when we suspect that there are non-
stationary input errors. An advantage of the use of summary statis-
tics within the GLUE or DREAMðLOAÞ framework is that the sum-
mary statistics are not so readily affected by outliers as the
residuals associated with individual observations. Indeed, Sadegh
et al. (2015) show how such metrics can help to diagnose and
detect catchment non-stationarity. The equivalent disadvantage
is that summary statistics may conceal some of the prediction
problems revealed in this case study with the possibility of making
both Type I and Type II errors in testing models as hypotheses.
OBSERVATION DEPTH

Fig. 9. Schematic representation of the HYDRUS-1D model setup for the experi-
mental field plot near Jülich, Germany.
6.3. Vadose zone modelling

The third and last case study considers the modelling of the
soil moisture regime of an agricultural field near Jülich, Germany.
Soil moisture content was measured with Time Domain Reflec-
tometry (TDR) probes at 6 cm deep at 61 locations in a 50� 50
m plot. The TDR data were analysed using the algorithm
described in Heimovaara and Bouten (1990) and the measured
apparent dielectric permittivities were converted to soil moisture
contents using the empirical relationship of Topp et al. (1980).
Measurements were taken on 29 days between 19 March and
14 October 2009, comprising a measurement campaign of 210
days. For the purpose of the present study, the observed soil
moisture data at the 61 locations were averaged to obtain a single
time series of water content. Precipitation and other meteorolog-
ical variables were recorded at a meteorological station located
100 m west of the measurement site. Details of the site, soil prop-
erties, experimental design and measurements are given by
Scharnagl et al. (2011) and interested readers are referred to this
publication for further details.

The HYDRUS-1D model of Šimunek et al. (2008) was used to
simulate variably saturated water flow in the agricultural field
(see Fig. 9). This model solves Richards’ equation for given (mea-
sured) initial and boundary conditions

@h
@t
¼ @

@z
KðhÞ @h

@z
þ 1

� �	 

ð15Þ

where h (cm3 cm�3) here denotes soil moisture content, t (days)
denotes time, z (cm) is the vertical (depth) coordinate, h (cm)
signifies the pressure head, and KðhÞ (cm day�1) the unsaturated
soil hydraulic conductivity.

To solve Eq. (15) numerically the soil hydraulic properties need
to be defined. Here the van Genuchten–Mualem (VGM) model (van
Genuchten, 1980) was used:

hðhÞ ¼ hr þ ðhs � hrÞ½1þ ðajhjÞn��m

KðhÞ ¼ KsSeðhÞk½1� ð1� SeðhÞ1=mÞ
m�2;

ð16Þ

where hs and hr (cm3/cm3) signify the saturated and residual soil
water content, respectively, a (cm�1), n (-) and m ¼ 1� 1=n (–)
are shape parameters, Ks (cm day�1) denotes the saturated hydrau-
lic conductivity, and k ¼ 1=2 (–) represents a pore-connectivity
parameter. The effective saturation, Se (–) is defined as

SeðhÞ ¼ hðhÞ � hr
hs � hr

: ð17Þ

Observations of daily precipitation and potential evapotranspira-
tion were used to define the upper boundary condition. In the
absence of direct measurements, a constant head lower boundary
condition was assumed, hbot (cm), whose value is subject to infer-
ence within the GLUE_LOA framework using DREAMðLOAÞ. The aim
here is to obtain a simulation of the mean behaviour of the field soil
moisture, as constrained by the observed soil moisture contents.
Table 2 lists the parameters of the HYDRUS-1D model and their
prior uncertainty ranges which are subject to inference using the
210-day period of the averaged observed soil moisture measure-
ments. The prior ranges are taken deliberately large so as not to
constrain too much our field scale soil moisture simulations. In this
study the Limits of Acceptability, � ¼ f�1; . . . ; �ng, are based on the
observed spatial variability of the soil moisture data in the 2,500
m2 field plot. Scharnagl et al. (2011) depict in their Fig. 8 (p.
3055), the 95% ranges of the observed soil moisture data at each
measurement time. From these, the 95% confidence in the mean
soil moisture content could also be derived, but given the nonlin-
earity inherent in the soil water flux process and the expected
heterogeneity of the boundary conditions, this would be expected
to underestimate the potential uncertainty in modelling the mean
field water content and soil water fluxes. Thus, for the purpose of
this study, the Limits of Acceptability, � ¼ f�1; . . . ; �ng, are set equal
to half the width of the 95% interval (= 2�) of the distributed mois-
ture content observations. This equates to an average value of epsi-
lon, � ¼ 0:047 (cm3/cm3). Thus, a HYDRUS-1D run is classified as
behavioural if the simulated moisture contents lie within
½eyt � �t ; eyt þ �t � for t ¼ f1; . . . ;ng. The behavioral range thus
matches exactly the 95% ranges of the distributed moisture content
observations at each time. To speed-up posterior exploration, the
N ¼ 8 different chains are ran on different processors using the
MATLAB parallel computing toolbox.

Fig. 10 presents histograms of the marginal posterior distribu-
tion of the six HYDRUS-1D model parameters considered in this
study. The bottom panel presents a time series plot of the beha-

vioural simulation set, bXðyÞ. The observed soil moisture data are
indicated separately with red dots. The behavioural HYDRUS-1D
model nicely tracks the observed average soil moisture measure-
ments within behavioural simulation space defined in this way.
The root mean square error (RMSE) of the behavioural (poste-
rior) mean simulation equates to about 0.0149 cm3/cm3, a value
somewhat larger than derived separately using Bayesian



Table 2
Parameters of the HYDRUS-1D model and their prior uncertainty ranges.

Parameter Symbol Lower Upper Units

Residual soil moisture content hr 0.00 0.10 cm3 cm�3

Saturated soil moisture content hs 0.30 0.55 cm3 cm�3

Reciprocal of air-entry value a 0.02 0.50 cm�1

Curve shape parameter n 1.05 2.50 –
Saturated hydraulic conductivity Ks 0.24 100.00 cm day�1

Pressure head at the lower boundary hbot �500 �10 cm
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inference with a Gaussian likelihood function (Vrugt, 2016). The
behavioural parameter space of most parameters extend across a
large part of their respective prior ranges with marginal distribu-
tions that deviate markedly from normality. The VGM parame-
ters hr and Ks and the lower boundary condition, hbot, are not
well defined. The poor sensitivity of the simulated moisture con-
tents to hr is well understood in the absence of a sustained dry
period with low soil moisture contents. Indeed, the information
for hr appears outside the range of measured soil moisture con-
tents (Vrugt et al., 2001). The large posterior uncertainties of hs
and Ks are explained by the imposed Limits of Acceptability
which promote considerable variation in the hydraulic functions.
Furthermore, inference of hbot suffers from a lack of soil moisture
observations in the deeper parts of the profile. Interestingly, the
behavioral values of a and n are in excellent agreement with
their values derived separately from ROSETTA (Schaap et al.,
2001) using soil textural data as main input variables
(Scharnagl et al., 2011). Pedotransfer functions are, however,
derived from small volume sample measurements and may not
always be appropriate in simulating field scale behaviour
(Beven and Germann, 2013).

The acceptance rate of DREAMðLOAÞ averages about 15.1%. Thus
every sixth proposal generated with DREAMðLOAÞ satisfies the Limits
of Acceptability of the soil moisture observations. This efficiency is
considerably higher than derived from rejection sampling. Out of
10,000 samples drawn from the prior distribution in Table 2 only
47 were deemed behavioural. This equates to an acceptance rate
of approximately 0.47%. This efficiency, is about 35 times lower
than DREAMðLOAÞ, and expected to deteriorate further with increas-
ing dimensionality and size of the parameter space.
Fig. 10. Results of case study III: The HYDRUS-1D variably saturated flow model. (A) Hist
hr, (B) hs , (C) a, (D) n, (E) Ks, and (F) hbot. Each x-axis matches exactly the (uniform) prio
(grey region) soil moisture content. (For interpretation of the references to colour in thi
To provide further insights into the convergence speed of

DREAMðLOAÞ, Fig. 11 plots the evolution of the bR-diagnostic for the
six HYDRUS-1D model parameters in the top panel and traces of
the sampled fitness values of the N ¼ 8 different chains simulated

with DREAMðLOAÞ in the bottom panel. The bR-diagnostic of Gelman
and Rubin (1992) satisfies the convergence threshold (black line)
after about 4800 function evaluations. This means that the last
50% of the chains, between function evaluations 2400–4800 and
their corresponding sample numbers 300–600 satisfy convergence.
This conclusion is confirmed in the bottom panel which demon-
strates that about 300 samples are needed in each chain to satisfy
the Limits of Acceptability of each observation (fitness score of 29).
The subsequent 300 samples are used for the chains to explore
fully the behavioural parameter space. It is interesting to observe
that the two diagnostics, albeit quite different proxies for conver-
gence, provide remarkably similar results.

One should however be particularly careful to judge conver-

gence based on the bR-statistic. This convergence diagnostic is only
meaningful if all the chains satisfy reversibility. This condition is
however not satisfied in the present case with the use of the accep-
tance probability in Eq. (11). This selection rule of proposals directs

the DREAMðLOAÞ algorithm to the posterior parameter set, bXðxjeyÞ but
violates detailed balance to do so in the first part of the chain until
the target distribution is reached. Of course, in the case that the
behavioural solution set is empty and the model is rejected (as
with the SAC-SMA model in previous study), the DREAMðLOAÞ algo-
rithm cannot converge formally.

Finally, Fig. 12 shows how the posterior parameter set
translates into uncertainty of the soil water retention (left) and
ograms of the behavioural parameter set, bXðxjeyÞ of the soil hydraulic parameters, (A)
r distribution. (G) Comparison of observed (red dots) and posterior simulated, bXðyÞ
s figure legend, the reader is referred to the web version of this article.)



Fig. 11. Results of case study III: The HYDRUS-1D variably saturated flow model. Trace plots of the (A) bR-convergence diagnostic of Gelman and Rubin (1992), and (B)
sampled fitness values in each of the different Markov chains simulated with DREAMðLOAÞ. The parameters and chains are coded with a different symbol and colour.
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unsaturated soil hydraulic conductivity (right) functions. The light
grey region corresponds to the range of the prior parameter set
whereas the dark grey is used to denote the behavioural (posterior)
solution set. The posterior mean soil hydraulic functions are indi-
cated with the solid black line. The posterior uncertainty of the soil
hydraulic functions appears rather large in response to the limited
constraints provided by a single depth of measurement, with
uncertain upper and lower boundary conditions (see also Binley
and Beven (2003)).
7. Summary and conclusions

In the manifesto for the equifinality thesis, Beven (2006) sug-
gested that a more rigorous approach to hydrological model eval-
uation would involve the use of Limits of Acceptability for each
Fig. 12. Results of case study III: The HYDRUS-1D variably saturated flow model. Compa
retention, and (B) unsaturated soil hydraulic conductivity function. The black line plots
individual observation against which model simulated values are
compared. Within this framework, behavioural models are defined
as those that satisfy the Limits of Acceptability for each observa-
tion. Ideally, the Limits of Acceptability should reflect the observa-
tional error of the variable being compared, together with the
effects of input error and commensurability errors resulting from
time or space scale differences between observed and predicted
values (Beven, 2015). In the GLUE: 20 years on paper, Beven and
Binley (2014) argue that the Limits of Acceptability framework
might be considered more objective than the standard GLUE
approach advocated in Beven and Binley (1992) as the limits are
defined before running the model on the basis of best available
hydrological knowledge.

This then raises the issue of how to identify efficiently the beha-
vioural parameter sets that satisfy the Limits of Acceptability. In
most GLUE applications, random sampling from the prior distribu-
rison of the prior (dark grey) and posterior (light grey) ranges of the (A) soil water
the posterior (behavioural) mean hydraulic functions.
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tion has been used to delineate the behavioural parameter space.
This method, known as rejection sampling when combined with
a membership-set likelihood function, is not particularly efficient
and if applied with an inadequate sampling density might result
in a misrepresentation of the posterior parameter distribution. It
is also possible that when no behavioural simulations are found
because of inadequate sampling, models might be wrongly
rejected. Thus inadequate sampling alone can increase the possi-
bility rejecting a model that would be useful in prediction. In this
paper the reversible chain MCMC simulation with the DREAMðLOAÞ
algorithm has been used to enhance, sometimes dramatically, the
accuracy and efficiency of Limits of Acceptability sampling.

Three different case studies have been used to demonstrate the
usefulness and practical application of MCMC simulation with
DREAMðLOAÞ within the GLUE_LoA framework. The most important
results are as follows.

(1) The DREAMðLOAÞ algorithm achieves equivalent results to the
Limits of Acceptability approach of GLUE if all observations
are used as summary statistics and the values of � are set
equal to the effective observation error.

(2) Reversible MCMC simulation with DREAMðLOAÞ is orders of
magnitude more efficient than rejection sampling used
within the GLUE_LoA framework.

(3) The DREAMðLOAÞ algorithm provides a diverse and dense
sample of the behavioural parameter set.

(4) The DREAMðLOAÞ algorithm delineates sharply the beha-
vioural parameter space.

(5) The use of inferior sampling methods can lead to inexact
inference about the behavioural parameter set and erro-
neous conclusions about model rejection.
We should expect that the problems with any sampling method
become increasingly problematic with increasing dimensionality
of the parameter space, increasing numbers of local regions of
behavioural models, and increasing model run times. The only
way around these issues is to use efficient sampling methods such
as the DREAMðLOAÞ algorithm. Depending on the initial set of chains,
this may still not identify all areas of behavioural models in com-
plex model spaces, but will still be expected to identify regions
of behavioural models with much greater reliability and efficiency.
This should therefore lead to more reliable and robust inference
based on the GLUE methodology.
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Appendix A

This Appendix presents a core implementation of the
DREAMðLOAÞ algorithm in MATLAB. This code can serve as template
for users to delineate the behavioural parameter space for set-
theoretic likelihood functions and Limits of Acceptability sampling.
Symbols and notation match, in so far possible, variables used in
the main text. The variable x stores the parameter vector, and X

signifies the N � d matrix with the state of the chains,

fxðiÞt�1; . . . ;xðNÞt�1g at iteration t � 1. Built-in functions are highlighted

with a low dash.
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The dream_LOA function has five input arguments, including
prior, an anonymous function handle of the prior distribution,
N, the number of chains, T, the number of generations, d, the
dimensionality of the target distribution, and problem, a structure
array with data containers called fields which are required to com-
pute the fitness of each proposal (more of which later). Based on
these input arguments the code creates a three-dimensional
matrix, chains of size T by d + 1 by N with T parameter vectors
and corresponding fitness values in the N different Markov chains.
randsample draws with replacement (’true’) the value of the jump
rate, gamma from the vector [g_RWM 1] using selection probabilities
[0.8 0.2]. ones() returns a unit vector of size nCR, and randn()

draws d_star values from a standard normal distribution. deal()
assigns default values to the algorithmic variables of DREAM. sum
() computes the sum of the columns A of the chain pairs r1 and
r2. The function outlier() is a patch for outlier chains (Vrugt,
2016). The jump vector, dx(i,1:d) of the ith chain contains the
desired information about the scale and orientation of the proposal
distribution and is derived from the remaining N-1 chains. The
remaining functions nan(), reshape(), setdiff(), sort(),
zeros), find(), numel(), sqrt(), and ceil() are explained in
introductory textbooks and/or the MATLAB ”help” utility. Note that
this basic code of DREAMðLOAÞ does not monitor convergence of the
sampled chains, does not enforce parameter constraints (to honor
prior ranges), and does not adapt the selection probabilities of the
crossover values.prior() is an anonymous function that draws N
samples from a d-variate prior distribution. For the instantaneous
unit hydrograph (first case study), the prior distribution would
equate to

prior ¼ @ðN;dÞ unifrndð1;10;N;dÞ ð18Þ
where the @ operator creates the function handle. The prior dis-
tribution determines the initial state of the N Markov chains.
fitness() is a function which evaluates the fitness of Eq.
(12) for each proposal, x. We provide a template of this function
for the first case study with a call to the Nash_Cascade() func-
tion of Eq. (13).
This function demands as second input argument the structure
problem with fields y_obs and epsilon, which store the observed
data and their Limits of Acceptability, respectively. This structure
also allows the user to pass additional arguments (in fields) to their
forward model.

The reader is referred to Vrugt (2016) for a detailed introduc-
tion to the MATLAB toolbox of DREAM and related algorithms.

Appendix B

This Appendix presents a MATLAB implementation of the
Nash_Cascade() forward model used in Section 6.1 of this paper.
The problem setup is defined in the following MATLAB script
and used to execute the dream_LOA algorithm.
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