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1Department of Statistics, California Polytechnic State University, San Luis Obispo, CA,
93407, USA

2Department of Microbiology, University of Washington, Seattle, WA, 98195, USA
3Department of Microbiology and Immunology, Rega Institute, KU Leuven - University of

Leuven, B-3000 Leuven, Belgium
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Abstract

When estimating a phylogeny from a multiple sequence alignment, researchers often
assume the absence of recombination. However, if recombination is present, then tree
estimation and all downstream analyses will be impacted, because different segments
of the sequence alignment support different phylogenies. Similarly, convergent selective
pressures at the molecular level can also lead to phylogenetic tree incongruence across
the sequence alignment. Current methods for detection of phylogenetic incongruence are
not equipped to distinguish between these two different mechanisms and assume that
the incongruence is a result of recombination or other horizontal transfer of genetic
information. We propose a new recombination detection method that can make this
distinction, based on synonymous codon substitution distances. Although some power
is lost by discarding the information contained in the nonsynonymous substitutions,
our new method has lower false positive probabilities than the comparable recombina-
tion detection method when the phylogenetic incongruence signal is due to convergent
evolution. We apply our method to three empirical examples, where we analyze: 1)
sequences from a transmission network of the human immunodeficiency virus, 2) tlpB
gene sequences from a geographically diverse set of 38 Helicobacter pylori strains, and
3) Hepatitis C virus sequences sampled longitudinally from one patient.
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1 Introduction

The field of phylogenetics aims to describe evolutionary relationships among homologous se-
quences, by inferring a phylogeny, or evolutionary tree (Felsenstein, 2004). In the estimation
of a phylogenetic tree from a molecular sequence alignment, the absence of recombination
is frequently assumed, meaning that every site along the sequence alignment has the same
evolutionary history/phylogeny. Implications of recombination on tree estimation (Posada
and Crandall, 2002; Felsenstein, 2004) and downstream analyses (Schierup and Hein, 2000;
Anisimova et al., 2003) have motivated the development of a plethora of tests for the pres-
ence of recombination (Awadalla, 2003; Martin et al., 2011). Most of these methods try to
test whether there are segments of the sequence alignment that support different phyloge-
nies; if so, such phylogenetic incongruence is used as evidence of recombination (Grassly
and Holmes, 1997; McGuire et al., 1997; Posada and Crandall, 2001). However, another
evolutionary force can produce an observed data pattern similar to the one produced by
recombination. Suppose that the same selective pressure acts upon two sequences to make
them appear more closely related to each other than they are under the true evolution-
ary history. Now, if this phenomenon, known as convergent evolution (Wake et al., 2011),
occurs between these two sequences only at a localized region of the alignment, then it
will appear as if this region has a different evolutionary history than the remainder of the
alignment, leading to an observed phylogenetic incongruency. To our knowledge, no exist-
ing method for detecting phylogenetic incongruence can distinguish between recombination
and convergent evolution. In this paper, we develop one method that can accomplish this
task.

As a starting point, we consider the Dss method proposed by McGuire et al. (1997)
and implemented in the TOPALi software (Milne et al., 2004). Dss, an abbreviation for
“difference in the sum of squares,” is a sliding window approach that scans across the
sequence alignment in question, with the assumption that if a recombination breakpoint
is present within any given window, then the portions of the window on opposite sides of
the breakpoint would have distinct evolutionary trees. The test statistic produced by the
Dss method is based upon the pairwise distance matrices for each half of every window
across the alignment, and an extreme value of the statistic is expected to occur in a window
that contains a recombination event at its center. Our proposed modification is to base
the test statistic on a measure of evolutionary distance that considers only synonymous
substitutions: the codon changes that do not result in amino acid changes. Assuming that
selection predominantly acts on the amino acid level, it follows that selection has mainly
an effect on nonsynonymous substitutions.

Since synonymous substitutions provide ‘neutral’ information about evolutionary rela-
tionships of sequences under study (Lemey et al., 2005; Yang, 2006; O’Brien et al., 2009),
we postulate that using a distance metric which considers only synonymous substitutions
within the Dss framework would still allow for recombination detection, but will avoid
the false positives resulting from convergent evolution. We develop a new statistic, and a
novel parametric bootstrap method to access the distribution of this statistic under the null
hypothesis of no recombination.

To test our new recombination detection method, we first proceed via simulations to
compare its performance to the original Dss statistic, both in terms of their ability to identify
true recombination events, and to avoid false positives due to convergent evolution. We
also examine three real data examples. The first is a human immunodeficiency virus (HIV)
dataset, which comes from nine Belgian patients that belong to a known HIV transmission
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chain (Lemey et al., 2005). This dataset has been of particular interest because phylogenetic
reconstructions can be compared to the known transmission chain, providing a real data
example in which estimation procedures can be validated. In their work, Lemey et al. (2005)
studied two distinct HIV genes: pol and env, and concluded that the pol gene was under
convergent selective pressures, whereas the env gene was not. Here, we revisit this question
with our method, by examining a concatenated alignment of the pol and env genes. Our
second real data example is a sequence alignment of the tlpB gene encoding the methyl-
accepting chemotaxis protein in Helicobacter pylori. The importance of the TlpB protein
lies in its role as a chemoreceptor and also in colonizing the bug to the gastric mucosa of its
host (Croxen et al., 2006). Interestingly, using multiple recombination detection statistics,
we found evidence of recombination in tlpB. Therefore, we choose this important gene to
analyze the distribution of recombination signals across synonymous and nonsynonymous
changes via our Dss statistics, and to determine evidence of actual recombination events.
Finally, we investigate a Hepatitis C virus (HCV) sequence alignment from serum samples
collected over roughly 10 years from one chronically infected individual (Palmer et al.,
2012). In their work, Palmer et al. (2012) examined sequences of the hypervariable region
1 (HVR1) of the HCV genome and found evidence of recombination between two distinct
viral populations residing in the individual. However, HVR1 is subject to selective pressure,
as antibody responses to HCV infection target this region (Zibert et al., 1995). Thus, we
analyze this dataset with our Dss statistics to again test whether the recombination signal
is due to a true recombination, or due to convergent evolution.

2 Methods

2.1 Evolutionary Distances

Let Y be a matrix that represents a DNA sequence alignment, composed of row vectors
y1, . . . ,yn, where n is the number of taxa/species/sequences. Then, yk = (yk1, . . . , ykL),
where L is the length, or number of sites in the sequence alignment. For a given DNA
sequence alignment, one common summary of the data is the distance matrix d = {dkl},
where each element dkl is the distance between sequences k and l, for k, l ∈ (1, . . . , n).
Intuitively, each pairwise distance simply indicates how different two sequences are from
each other. For example, two sequences that are identical at every site along the alignment
would have a distance of 0, under most sensible measures of distance.

Typically, one assumes a substitution model that is defined by the rates of change
between the possible states. For a pair of taxa, the evolution of each site (yks, yls) for
s ∈ (1, . . . , L) can thus be described by a continuous-time Markov chain (CTMC) with
infinitesimal generator Λ = {λij} for i, j ∈ (1, . . . ,M), where M is the number of states
(e.g. for DNA nucleotide data, M = 4 as the state space is {A,C,G, T}; for DNA codons,
M = 64 as the state space is {A,C,G, T}3), and the rate of leaving state i is λi ≡

∑M
j 6=i λij .

With stationary distribution π ≡ (π1, . . . , πM ), we then can calculate distances for each
pair (k, l) as

d̂kl =
M∑
i=1

π̂iλ̂i, (1)

with the necessary parameter estimates being calculated from the data. As this quantity
is equal to the average number of jumps in a stationary continuous-time Markov chain,
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evolutionary distances are thus defined as the expected number of substitutions per site,
according to the given continuous-time Markov chain model.

The notion of an evolutionary distance can be generalized to consider certain subsets of
substitutions. For example, it is sometimes of biological interest to count only transitions
(A 
 G and C 
 T ), or transversions (A 
 T , A 
 C, G 
 T , and G 
 C). A
variety of ad-hoc strategies could be used to account for this (Felsenstein, 2004), but it can
also be formally incorporated into the framework of CTMC models of DNA evolution as
was demonstrated by O’Brien et al. (2009). First, we define the set L to be the subset of
the lattice {1, . . . ,M}2 that indicates the substitutions which we wish to count; that is,
(i, j) ∈ L if i → j is a substitution of interest. Then, we can express distances for any
labeled subset of substitutions as

d̂L =
M∑
i=1

π̂i

M∑
j 6=i

λ̂ij1{(i,j)∈L}, (2)

for each pair of sequences (k, l). The indicator function 1{(i,j)∈L} in (2) is equal to 1 if i→ j
is a substitution of interest, and 0 if it is not. In this manner, the labeled distance metric
does not count the substitutions that are not of interest. In this work, we specifically appeal
to the labeled subset known as synonymous substitutions: the changes in codon state which
do not result in a change in amino acid.

2.2 Distance-Based Recombination Detection: Dss Statistic

The Dss method for the detection of recombination is based upon evolutionary distances.
First, with an estimated distance matrix, one can infer a phylogeny, which consists formally
of a topology τ and branch lengths b. The tree distance tkl(τ ,b) between taxa k and
l is then the sum of the branch lengths between them on any particular topology. With
d̂kl estimated from DNA sequence data as above, least squares phylogenetic inference then
proceeds by finding

argmin
τ ,b

∑
k,l

[
d̂kl − tkl(τ ,b)

]2
, (3)

which is the usual least squares criterion. The solution (τ̂ , b̂) to (3) then gives the least
squares phylogeny.

Now, we define recombination as an exchange of genetic material between two taxa that
results in different evolutionary histories for the different respective parts of the sequence
alignment. The Dss method then uses a sliding window approach (McGuire et al., 1997;
McGuire and Wright, 2000; Milne et al., 2004), as illustrated in Figure 1, where the two
panels show a window (in red) moving across a sequence alignment.

First, the average of all estimated pairwise distances from the entire sequence alignment
is recorded as d. Next, the distance matrix is estimated with a DNA substitution model for
the first half of a given window, along with its mean, w{1}. This distance matrix is then
standardized by multiplying each entry by d/w{1}, and the resulting standardized distance

matrix for the first half of the window is recorded as d̂{1} = {d̂{1}kl }. Using phylogenetic
least squares as described above, we then calculate

argmin
τ ,b

∑
k,l

[
d̂
{1}
kl − tkl(τ ,b)

]2
. (4)
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Taxa 1   TACACACGTAGATTAGCCCCTAACAATGACCCCCGGCTGATTGCTTG
Taxa 2   TACACATGTAGATTAGCCCCTAACAATGACCCCCGGCTGATTGCTTG
Taxa 3   TACACATGTAGATTAGCTCCTAACAATGGCCCCCAGCTGACTGCTTG
Taxa 4   TACACATGTAGATTAGCTCCTAACAATGGCCCCCAGCTGACTGCTTG

Taxa 1   TACACACGTAGATTAGCCCCTAACAATGACCCCCGGCTGATTGCTTG
Taxa 2   TACACATGTAGATTAGCCCCTAACAATGACCCCCGGCTGATTGCTTG
Taxa 3   TACACATGTAGATTAGCTCCTAACAATGGCCCCCAGCTGACTGCTTG
Taxa 4   TACACATGTAGATTAGCTCCTAACAATGGCCCCCAGCTGACTGCTTG

Figure 1: Illustration of two overlapping sliding windows, shown as red boxes, across a
sequence alignment of four taxa. The vertical grey lines divide each window in half.

The estimated topology is recorded as τ̂ {1}, and the minimized value of the sum of squares
in (4) is recorded as SSaFw .

For the second half of the window, again the distance matrix is estimated, with its mean
stored as w{2} and again the standardized distance matrix is calculated by multiplying each

entry by d/w{2} to obtain d̂{2} = {d̂{2}kl }. Now, we calculate

SSbFw = min
b

∑
k,l

[
d̂
{2}
kl − tkl(τ̂

{1},b)
]2
. (5)

That is, the topology from the first half is imposed as fixed in (5), and only the branch
lengths are optimized according to the sequence alignment of the second half of the window.

For each window, we then have DssFw = (SSaFw − SSbFw). The entire procedure is
repeated in the reverse direction, by starting with a window at the end of the alignment,
swapping the roles of each half of the window, and then sliding it backwards across the
sequence alignment; this gives DssBw for each window. Then, Dssw = max(DssFw , Dss

B
w).

Finally, here we consider only the maximum Dss statistic from all windows, giving us
Dssmax = max

w
(Dssw).

Our modification of the Dss statistic uses estimates of labeled distances for synonymous
substitutions, estimated by the method developed by O’Brien et al. (2009), replacing d

and d̂
{·}
kl in the calculation of Dssmax above. The original Dss method tests for discrepant

phylogenies throughout windows across the sequence alignment. However, it cannot distin-
guish between the case where the discrepancies are actually due to an exchange of genetic
material, as opposed to convergent selective pressure. In other words, with the Dss method,
the null hypothesis is that the sequence alignment has one true evolutionary history that
has been affected neither by recombination nor convergent evolution, and evidence against
the null hypothesis may be due to either recombination or convergent evolution, or due to
the presence of both of these events.

With our new synonymous Dss statistic, our null hypothesis remains the same, but our
aim is that our new test will detect only departures from the null that are due to an exchange
of genetic material. Under the assumption that selective pressure acts on the amino acid
level, synonymous substitutions are presumed to be neutral, and therefore distances based
upon them would ignore selective pressures. In this manner, potential false positive signals
for recombination due to selection can be avoided.
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2.3 Modified Parametric Bootstrap

To assess statistical significance, McGuire and Wright (2000) propose a parametric boot-
strap to generate the null distribution of the test statistic. Under this parametric bootstrap,
the distribution of Dssmax is simulated under the null hypothesis as follows: first, the Or-
dinary Least Squares tree for the entire sequence alignment is obtained, under the chosen
model of substitution. In this manner, the data are treated as if the sequences were inher-
ited through one true tree and substitution model, in accordance with the null hypothesis.
Next, sequence data are simulated under this tree, B times. Finally, the Dss values are
calculated under the same procedure as outlined above for each simulated sequence align-
ment, and saving only the maximum from each simulated realization. Thus, one obtains
the distribution of the maximum Dss statistic under the null hypothesis. This gives the
basis for determining how extreme an observed Dss statistic is, and we calculate the Monte
Carlo estimate of the p-value as the proportion of simulated null Dss values that are more
extreme than our observed value in question.

However, we must make important modifications to the parametric bootstrap for as-
sessing statistical significance of the Dss statistic as first proposed by McGuire and Wright
(2000). First, we estimate the distances between sequences on the codon scale (e.g. the
expected number of substitutions per codon site). Using this distance matrix, we then
estimate the least squares tree, which represents the null hypothesis of the evolutionary
history of the sequences: with no recombination or convergent evolution. Next, we estimate
codon substitution parameters from the codon model proposed by Nielsen and Yang (1998):
κ (the transition/transversion ratio) and Ω = (Ω1,Ω2,Ω3) where each Ωi is a nonsynony-
mous/synonymous rate ratio, with corresponding proportions p = (p1, p2, p3) where each
pi represents the probability that Ωi will be selected as the nonsynonymous/synonymous
rate ratio for any given site. This mixture of three codon models allows for estimation
of variable nonsynonymous/synonymous rate ratios at each site, to simulate the bootstrap
data as similarly as possible to the evolutionary process that created the original data.
With the null evolutionary history, κ, Ω and p estimated from the sequence data, we then
simulate our parametric bootstrap sequence alignment datasets. Using these, we calculate
the original Dss statistic and the synonymous Dss statistic in the manner described above,
to then obtain the distribution of the maximum, for each.

2.4 Implementation

All analyses have been performed using the R package synDss, in which we implemented
the proposed methodology. The package contains our implementation of the original Dss
method, our synonymous Dss method, and modified parametric bootstrap. The source code
and binaries are available at http://evolmod.r-forge.r-project.org/#synDss.

3 Results

3.1 Simulations: Power and Type I Error

To assess performance of each statistic, we simulate sequences under a codon model using
the software package PAML (Yang, 2007). Three basic scenarios are considered: 1) null; 2)
true recombination event; 3) localized convergent evolution. For each scenario, we consider
a sequence alignment with five taxa, and we set κ = 2 (transition/transversion ratio), and
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sample Ω (nonsynonymous/synonymous rate ratio) from a discrete mixture model with val-
ues Ω = (0.1, 0.8, 3.2). We used three sets of sampling probabilities: p1 = (0.74, 0.24, 0.02),
p2 = (0.85, 0.14, 0.01) and p3 = (0.99, 0.009, 0.001) to produce average synonymous substi-
tution proportions of 50%, 60% and 75% respectively.

Under the null scenario, we assume that every site along the sequence alignment is
inherited according to one true evolutionary history. To simulate this, we provide PAML
with one true phylogeny with five tips (shown in panel A of Figure 2), and simulate codon
sequences along this phylogeny. Each codon sequence consists of 1032 codon sites (or 3096
nucleotides).

For the scenario with a true recombination event, we use two phylogenies corresponding
to each side of the recombination breakpoint (shown in panels A and B of Figure 2, which
are identical except that taxa 2 and taxa 5 are swapped). Partial sequence alignments of
length 400 and 632 codons are simulated according to each phylogeny respectively, and then
concatenated to form one mosaic sequence alignment that is 1032 codons in length.

For the scenario of localized convergent evolution, we simulate codon sequences along
one true phylogeny, and then choose a region upon which to have selection act. Specifically,
we use the latter 632 codons as this region (as in the recombination scenario). In this region,
we again target taxa 2 and taxa 5, but here we make substitutions to change differing amino
acids each into another (concordant) amino acid. We choose only codon sites in which this
convergent evolution could occur with one nucleotide change in each of the sequences, and
select a proportion of these sites, uniformly at random, in which to make this change. To
make scenarios comparable, we convert the same proportion, on average, of all sites that
have codon variations initially: we set this proportion to 25% in all cases. Noting that our
convergent evolution scheme can only act on sites which had nonsynonymous substitutions
initially (since some sequences at these sites must be in different amino acid states), the
proportion of eligible sites which get converted at random must be adjusted according to
the percentage of nonsynonymous substitutions in each scenario (described above), in order
to maintain the overall proportion of 25% of all variable sites that will be converted.

Finally, for every scenario, we also vary the branch lengths, to effectively vary the number
of substitutions, or diversity, in each simulation. The branch lengths shown in Figure 2 are
the original set of branch lengths. We consider the original branch lengths, and also branch
lengths that are scaled by 0.80 and 0.67 relative to the original branch lengths, to result in
scenarios of “high diversity,” “medium diversity,” and “low diversity,” respectively.

With α = 0.05, Type I error probabilities under 1000 replicates of a simulated null
scenario appear to be well-behaved, with estimated Type I error probabilities of 6.6% and
6.3% for the original Dss and synonymous Dss tests, respectively. Distributions of the
p-values resemble a uniform distribution, as shown in Supplementary Figure S1.

Next, we examine power to detect recombination, under the scenario with a true recom-
bination event. We vary the expected number of substitutions (diversity) and proportion
of synonymous substitutions, and examine the corresponding effect on the power of each
version of the test statistic. Histograms of p-values from the original Dss statistic and syn-
onymous Dss statistic from one scenario are shown in Supplementary Figure S2, where we
observe 90% power with the original Dss test statistic, and 76% power with our synonymous
Dss test statistic. The results from all scenarios are shown in Table 1. Our synonymous Dss
statistic has reduced power in every case, which is to be expected since we have reduced
the amount of information used. The reduction in power is less dramatic in the scenarios
where a greater proportion of the substitutions are synonymous (bottom row of Table 1),
since less information is being discarded in these cases.
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A

0.032

0.018

0.046
0.033

0.018

0.0043

0.0043

t2
t4

t3
t5

t1

B

0.032

0.018

0.046
0.033

0.018

0.0043

0.0043

t5
t4

t3
t2

t1

Figure 2: Phylogenies used for simulations. Numbers indicate branch lengths, in expected
number of substitutions per site between two nodes.

Table 1: Power of each test under the recombination scenario. Each column represents one
set of branch lengths (equivalently, the diversity), which correspond to each average power
of the original Dss test. Each cell represents the power of the synonymous Dss statistic,
with 95% confidence intervals in parentheses. In each scenario, 100 simulated replications
were analyzed.

Power of original Dss
99% 90% 85%

50% syn 66 (56.6, 75.4) 38 (28.4, 47.6) 20 (12.1, 27.9)
60% syn 79 (70.9, 87.1) 48 (38.1, 57.9) 34 (24.6, 43.4)
75% syn 87 (80.3, 93.7) 76 (67.5, 84.5) 62 (52.4, 71.6)

Under the scenario of convergent evolution, we compare the false positive probabili-
ties under the original Dss statistic and the synonymous Dss statistic. That is, while the
Dss statistic detects phylogenetic incongruence from any cause, we want to determine if
the synonymous Dss statistic can avoid giving a significant p-value when the phylogenetic
incongruence is due to convergent evolution. Under every scenario, we observe that the
false positive probability of the synonymous Dss method is substantially lower than that
of the original Dss statistic, as shown in Figure 3. For example, under high diversity and
50% synonymous substitutions, the estimated false positive probability for the original Dss
statistic is 33%, vs. 9% for the synonymous Dss statistic. Results from all scenarios are
shown in Figure 3, labeled as “Orig” and “Syn” respectively.

We next examine whether this reduction in false positive probability might simply be due
to the fact that the synonymous Dss statistic uses less information; that is, it considers only
synonymous substitutions. To answer this question, we first examine the effect of removing
a proportion of sites, corresponding to the proportion of synonymous substitutions. For
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example, under the scenario with 75% synonymous substitutions, we retain 75% of the
alignment sites at random, and then obtain the original Dss statistic. We observe that the
false positive rate under these simulations are similar to that of the original Dss statistic,
as shown in Figure 3, labeled as “Del 1.”

However, this effort suffers from the fact that, while the sequence alignments are shorter,
our window size has remained the same, thus resulting in fewer windows across the align-
ments. In our exploration of the Dss statistic behavior, we have noticed trends between
window count and Power / Type I error (not shown) indicating that the “Del 1” regime is
probably anti-conservative. Thus, we perform another validation experiment in which we
also shrink the window size by the corresponding proportion; that is, if we removed 50%
of the sites, we also shrink the window size by 50%. This is shown in Figure 3 as “Del 2.”
Based on our experimentation with the relationship between window size and power (not
shown), we believe this to be a conservative effort, and yet in all nine scenarios, we still
obtain higher Type I error probabilities under this regime than that of the synonymous Dss
statistic.

Finally, for the scenarios with 50% synonymous substitutions, we perform one addi-
tional set of experiments. Noting that in these scenarios, a nonsynonymous Dss statistic
would have, on average, the same loss of information as our synonymous Dss statistic, we
thus create a nonsynonymous Dss statistic in an analogous manner to which we created our
synonymous Dss statistic, using labeled distances for nonsynonymous substitutions. We
then run this nonsynonymous Dss statistic on the same set of data for each of the 50%
synonymous substitution scenarios. In the high diversity case, we obtain a false positive
probability of 19%, which is substantially higher than the synonymous Dss statistic’s false
positive probability of 7%. For medium and low diversity, we obtain false positive proba-
bilities of 13% and 7% respectively, which are identical to their respective estimated false
positive probabilities from the synonymous Dss statistic.

For our simulation studies, we set the number of bootstrap replicates to B = 100. We
are able to use B = 500 for the real data analyses, but it would have been prohibitively time
consuming to do this for the simulations. Although the resulting accuracy of significance
level thresholds may thus be of some concern, we found through a brief examination that
the value of the 95% significance level threshold does not move substantially with B = 100
on different parametric bootstrap runs with the same original datasets.

3.2 Data Analysis I: Belgian HIV Transmission Chain

Phylogenetic analyses of HIV sequences are useful in characterizing its transmission and
spread, and these analyses are particularly relevant to elucidating the development of HIV
drug resistance (Lemey et al., 2005). However, while the typically high mutation rates
and short generation times for HIV are conducive towards a phylogenetic reconstruction,
phylogenetic inference can be confounded by the high recombination rates, and selective
pressures imposed by antiretroviral therapy and the host immune system (Rambaut et al.,
2004). Our method is the first to address the important issue of distinguishing between
recombination and convergent evolution, and thus we apply it here.

Of particular interest are the pol and env genes of HIV-1, which are responsible for
replication (Hill et al., 2005) and cell entry (Coffin et al., 1997), respectively. These two
genes were studied through a transmission chain of nine Belgian HIV-positive patients
(Lemey et al., 2005), in which it was found that a phylogenetic reconstruction using the
sequenced env gene was compatible with the known transmission history among these nine

9



●

●

●

●

●

●

●

●

●

●

● ●

0
0.

1
0.

2
0.

3
0.

4

Fa
ls

e 
P

os
iti

ve
 P

ro
ba

bi
lit

y
50

%
 s

yn
on

ym
ou

s 
su

bs
tit

ut
io

ns

high diversity medium diversity low diversity

●

●

●

●

● ●

●

●

● ●

● ●

0
0.

1
0.

2
0.

3
0.

4

Fa
ls

e 
P

os
iti

ve
 P

ro
ba

bi
lit

y
60

%
 s

yn
on

ym
ou

s 
su

bs
tit

ut
io

ns

●

●

●
●

●

●

●

●

●

●

●

●

0
0.

1
0.

2
0.

3
0.

4

Orig Del 1 Del 2 Syn Orig Del 1 Del 2 Syn Orig Del 1 Del 2 Syn

Fa
ls

e 
P

os
iti

ve
 P

ro
ba

bi
lit

y
75

%
 s

yn
on

ym
ou

s 
su

bs
tit

ut
io

ns

Figure 3: False positive probability of each test under the convergent evolution scenario.
Using the same branch length sets (diversity) and synonymous substitution proportions as
in the recombination scenarios, we induce convergent evolution on the alignment instead of
a true recombination. “Orig” refers to the original Dss statistic; “Del 1” refers to the case
in which we remove a proportion of substitutions corresponding to the non-synonymous
substitution proportion (and thus keeping a proportion corresponding to the synonymous
substitution proportion); “Del 2” is similar to “Del 1” except that we also shrink the window
size by the corresponding proportion; “Syn” refers to the synonymous Dss statistic. Error
bars represent 95% confidence intervals based on the asymptotic binomial variance, using
the observed false positive probability as p̂ to obtain standard errors. In each scenario, 100
simulated replications were analyzed.
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patients; on the other hand, the phylogenetic reconstruction using the pol gene sequences
was not compatible with the transmission history. This raised the question of whether
selective pressures might be the cause of this incongruity.

Specifically, Lemey et al. (2005) explored whether the selective pressure may have been
due to antiretroviral drug therapies applied to HIV-positive patients in the transmission
chain. They hypothesized that patients on similar antiretroviral drug treatments may invoke
convergent evolution on their HIV strains, due to the fact that their respective HIV viruses
may develop the same drug resistance-associated mutations. By examinating known drug
resistance-associated mutations within the pol gene, they found this was in fact the case
with two of their individuals: “Patient A” and “Patient I.” That is, these two individuals
shared specific amino acid substitutions that have been identified by the International AIDS
Society as being associated with clinical resistance to HIV antiretroviral drugs (Johnson
et al., 2003).

Following this observation, Lemey et al. (2005) then constructed phylogenetic trees for
the pol gene based on synonymous distances and nonsynonymous distances separately, using
the Syn-SCAN software (Gonzales et al., 2002). The synonymous tree was compatible with
the transmission history, while the nonsynonymous tree was not, and showed Patient A’s
strains clustering with those of Patient I. For an illustration, see Figure 4 from the work
by Lemey et al. (2005). Thus, they concluded that the pol gene was under convergent
selective pressure. Here, we revisit this question by examining the behavior of each Dss
statistic on a concatenated pol-env sequence alignment. That is, if we join the two sequence
alignments together as one, will either recombination detection method indicate the presence
of intergenic or intragenic recombination?

The dataset consists of nine individuals, with multiple samples taken longitudinally from
some of them, for a total of 13 sequences. Results from our analyses are shown in Figure
4. Our analysis used a window size of 636 nucleotides (or 212 codons) and a step size of 9
nucleotides (or 3 codons). To assess statistical significance, we used a parametric bootstrap
with the number of replications set to B = 500. We observe that both the original Dss
statistic and the synonymous Dss statistic cross their 95% bootstrap significance thresholds,
suggesting the presence of a recombination event, as opposed to convergent evolution.

3.3 Data Analysis II: H. pylori tlpB gene

One of the most common diseases in the world is chronic gastritis. The human-adapted
motile Gram-negative bacteria Helicobacter pylori is the major causative agent of chronic
gastritis, in addition to causing stomach and duodenal ulcers and gastric cancer, thereby
infecting about half of worlds populations (Feldman et al., 1998). Infection by H. pylori
is typically acquired by ingestion, with person-to-person transmission occurring most com-
monly through vomit, saliva or feces (Feldman, 2001; Parsonnet et al., 1999). Due to the
emergence of antibiotic-resistant strains, treatment of H. pylori has begun to fail in roughly
20–30% of cases (Graham, 2009), which points to the need for a better understanding of
the evolutionary processes that drive H. pylori diversity and survival.

Here, we focus on tlpB, the gene that encodes the TlpB methyl-accepting chemotaxis
protein. This protein is crucial to H. pylori ’s ability to colonize the stomach of its host, as it
is responsible for its pH taxis, or movement in response to high acidity (Croxen et al., 2006).
TlpB allows the bacterium to sense the pH of its surroundings, and move toward an optimal
pH zone. Due to these functional roles, TlpB is a potential target of the immune response by
the infected host. Thus, recombination is a potential diversification mechanism that could
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Figure 4: Dss statistic landscapes for pol-env concatenation. Dotted horizonal lines
represent the 95% significance level for each test, from a parametric bootstrap with B = 500.
The red vertical lines represent the boundary between the two genes, with pol on the left,
and env on the right.

be used by TlpB to avoid elimination by the host’s immune response. To investigate this,
we selected tlpB gene sequences from 38 completely sequenced H. pylori genomes of globally
representative isolates. Recombination detection analyses by PhiPack (Bruen et al., 2006)
involving three different statistics – Pairwise Homoplasy Index (p<0.0001), Maximum χ2

(p=0.005) and Neighbor Similarity Score (p<0.0001) – detected evidence of recombination
in this gene.

However, there remained a possibility that this recombination signal was actually a result
of convergent evolution. Especially for H. pylori that shows extensive genomic diversity, it
could be a common scenario that an excess of convergent mutations created an illusion of
recombination, thereby confusing traditional recombination detection algorithms. With the
same tlpB sequence alignment dataset from 38 isolates, our aim is to determine whether our
Dss analysis concludes that there is truly a recombination signal, or whether it was actually
due to convergent evolution.

If recombination has indeed occurred, then we would expect that both the original
Dss statistic and the synonymous Dss statistic would find a statistically significant signal
for recombination. In contrast, if the recombination signal is actually due to convergent
evolution, then we would expect that the original Dss test and the nonsynonymous Dss test
would find a statistically significant signal for recombination, whereas our synonymous Dss
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Figure 5: Dss statistic landscape for H. pylori tlpB gene. Dotted horizonal line represents
the 95% significance level for each test, from a parametric bootstrap with B = 500.

test would not, as in the HIV example.
Here, we perform analyses with a window size of 600 nucleotides (200 codons), and step

size of 9 nucleotides (3 codons). The sequence alignment was 1695 nucleotides (565 codons),
yielding approximately 122 windows across the alignment. To obtain significance threshold
levels, we use the parametric bootstrap with the number of replications set at B = 500.
Results from our analyses are shown in Figure 5. We observe that neither the original Dss
statistic nor the synonymous Dss statistic crosses its respective 95% bootstrap significance
threshold. However, the original Dss statistic was very close, and in fact gave a bootstrap
p-value of 0.058. In contrast, the synonymous Dss statistic did not come quite as close to
its 95% bootstrap significance threshold, and gave a bootstrap p-value of 0.14.

It might be a possibility that the lack of signal with the synonymous Dss statistic was
due to a loss of power. However, we found that the nonsynonymous Dss statistic did cross its
95% bootstrap significance threshold, with a bootstrap p-value of 0. Also, an examination of
the sequence alignment revealed that there was approximately a 1.5:1 ratio of synonymous
substitutions to nonsynonymous substitutions. Therefore, any loss of power observed with
the synonymous Dss statistic should also be observed with the nonsynonymous Dss statistic.
More importantly, these results demonstrated that the recombination signal was driven
primarily by nonsynonymous substitutions. Absence of any such signal with the synonymous
Dss statistic strongly suggests that the recombination signal in the nonsynonymous changes
was actually due to convergent evolution, most likely in response to adaptive selection
pressures.
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3.4 Data Analysis III: HCV

HCV is an RNA virus that is estimated to infect roughly 3% of the human population
worldwide, and is a leading cause of liver disease and liver cancer (WHO, 2003). Overall,
treatment success has been limited, and thus it has been recognized that a greater under-
standing of the virus’ evolutionary behavior is crucial to effective prevention and treatment
of HCV infection (Gray et al., 2012). Indeed, specifically the matter of whether genetic
recombination occurs in HCV has important implications regarding resistance development
against antiretroviral treatments used against the diseases that are caused by HCV infection
(Morel et al., 2011).

Similar to HIV, HCV mutates very rapidly within an infected host, which makes treat-
ment difficult, but also should reveal patterns that will lead to a greater understanding
of the link between the evolution of the virus and progression of disease (Okamoto et al.,
1992; Smith et al., 1997). Curiously, however, there have been few reports of recombination
occuring in HCV, despite the fact that recombination can be an important diversification
mechanism in positive sense RNA viruses (González-Candelas et al., 2011). One potential
reason is that simultaneous infection by two or more HCV types might be rare (Viazov
et al., 2000; Tscherne et al., 2007). Additionally, it has been postulated that the viability
of recombinant strains is poor in vivo (Prescott et al., 1997).

Here, we investigate a sequence alignment of the hypervariable region 1 (HVR1) of HCV,
from serial samples taken over 9.6 years from a single infected patient (Palmer et al., 2012).
In the initial study, Palmer et al. (2012) found evidence of recombination between two
HVR1 subpopulations within the patient. However, this genetic region is subject to strong
selective pressures as the envelope glycoprotein is targeted by the host antibody responses
(von Hahn et al., 2007). Thus, we analyze this sequence alignment with our Dss statistics,
to determine whether our analysis corroborates the original findings of Palmer et al. (2012),
or whether this recombination signal is confounded by convergent evolution.

We perform analyses with a window size of 144 nucleotides (48 codons) with a step size
of 6 nucleotides (2 codons). The sequence alignment was 324 nucleotides long (108 codons),
which gives 31 windows across the alignment. Results from our analyses are shown in
Figure 6, with significance threshold levels obtained from the parametric bootstrap with
B = 500. We observe that the original Dss statistic crosses its 95% bootstrap significance
threshold, whereas the synonymous Dss statistic does not. Additionally, the nonsynonymous
Dss statistic crosses its 95% bootstrap significance threshold, suggesting that the lack of
signal with the synonymous Dss statistic was not simply due to a loss of power. This is
further supported by an examination of the raw counts of synonymous vs. nonsynonymous
substitutions in this sequence alignment, as there are in fact slightly more synonymous
substitutions than nonsynonymous substitutions. Thus, we find statistically significant
evidence that the recombination signal in HVR1 sequences is actually due to convergent
evolution.

4 Discussion

In this work, we have introduced the synonymous Dss statistic, developed to give a statistical
method which allows us to distinguish between recombination and convergent evolution.
Our simulations show that while our synonymous Dss statistic loses some power compared
to the original Dss statistic, it does have a lower false positive probability when the signal
is due to convergent evolution. Furthermore, we provide some verification that this lower
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Figure 6: Dss statistic landscapes for HVR1 of HCV alignment. Dotted horizonal lines
represent the 95% significance level for each test, from a parametric bootstrap with B = 500.

false positive probability is not simply due to the loss of power, as suggested by the false
positive probabilities of the various scenarios in which we remove a comparable portion of
the information in the sequences, shown in Figure 3.

Our real data analyses highlight the usefulness of our methodology when dealing with
situations where both recombination and convergent evolutionary may be participating in
the evolution of molecular sequences. We find evidence contrary to the conclusion by Lemey
et al. (2005) that convergent evolution has occurred in the pol gene lineage of HIV; instead,
we find evidence for the occurrence of a recombination event. The benefit of using our
method is that we have created a statistical testing framework for addressing precisely this
question. In contrast, Lemey et al. (2005) examined phylogenies constructed with syn-
onymous and nonsynonymous substitutions separately, basing their conclusion on whether
each phylogeny matched the known transmission chain. However, Lemey et al. (2005) had
difficulty providing a measure of statistical significance for their findings; in contrast, our
method naturally assigns statistical significance to our individual findings. Furthermore,
Lemey et al. (2005) implicitly assumed that the entire pol gene had one evolutionary his-
tory, and likewise for the env gene. If recombination had occurred within either gene, then
this assumption would be violated. Similarly, Lemey et al. (2005) compared the synony-
mous and nonsynonymous trees of the entire pol gene, while convergent evolution is most
likely to be localized to a subset of sites, making it difficult to detect using distances based
on the whole alignment. In contrast, our sliding window method is able to separate the
contributions of synonymous and nonsynonymous substitutions to the local phylogenetic
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incongruence signal, which we believe to be an important advantage.
Croxen et al. (2006) found that tlpB mutant strains were deficient in colonization due to

their inability to respond to the pH gradient. More recently, engineered mutational analysis
showed the disruption in urea-binding and thermal stabilization of the mutational variants
(Sweeney et al., 2012). Also, the work demonstrated reduced chemotactic responses of
urea-binding variants to acid. These experimental results suggested the possibility that
the natural mutational variations in the TlpB protein could arise from adaptive selection
pressures. While the gene showed recombination signals via traditional statistics, our novel
approach detected the signal to be due to the presence of convergent nonsynonymous (i.e.
amino acid replacement) mutations. Such events of repeated, independent (i.e. phyloge-
netically unlinked) accumulation of mutations at specific amino acid positions of encoded
proteins represents powerful evidence of adaptive events (Christin et al., 2012; Tenaillon
et al., 2012). Taken together, our results, on one hand, indicated the presence of adaptive
evolution of the H. pylori tlpB gene via convergent nonsynonymous mutations. On the
other hand, this study depicted the promise of our approach to differentiate convergent
mutational events from recombination.

As noted by González-Candelas et al. (2011), there has been some debate regarding the
occurrence of recombination as a diversification mechanism in HCV. The reports of in vivo
recombination have been questioned as being due to either PCR artifacts or misidentification
due to convergent evolution. Here, we find evidence that the recombination signal found by
Palmer et al. (2012) in their HVR1 sequence alignment is due to convergent evolution. As
the occurrence of recombination in HCV continues to be called into question, our results
side with the notion that empirical evidence of recombination of HCV sequences should
be interpreted with caution, because of a possibility of false positives due to convergent
evolution.

A fundamental question that one might ask is how our method is advantageous over
simply removing sites that contain nonsynonymous substitutions during a recombination
detection analysis. An illustration of the answer can be observed by considering an align-
ment containing a large number of sequences, in which multiple substitutions per site would
not be uncommon. Thus, if two substitutions had occurred at a particular site, then one
substitutions could be synonymous and the other could be nonsynonymous. To use the
brute-force approach of removing sites that contain nonsynonymous substitutions would
necessarily remove the information contained in the synonymous substitution that had oc-
curred at that site; that is, to remove the site means to remove the entire column from the
sequence alignment, so all of the information contained in that site is lost. In contrast, our
approach of counting synonymous substitutions under the framework laid out by O’Brien
et al. (2009) removes the nonsynonymous mutation information in a more elegant manner,
avoiding the total loss of information that would result from removing entire sites.

A potential future development would be to create a coherent method to disintangle
recombination and convergent evolution without a convoluted three-way comparison, be-
tween the original Dss statistic, the synonymous Dss statistic, and the nonsynoymous Dss
statistic. That is, in this study, we would conclude that there is evidence for recombination
if both the original Dss statistic and the synonymous Dss statistic show a positive signal.
If the original Dss statistic shows a positive signal but the synonymous Dss statistic does
not, then we would conclude that this is evidence of convergent evolution, further validated
if the nonsynonymous Dss statistic also showed a positive signal. It would be preferable
if a methodology could produce one coherent statistic to evaluate in order to answer this
question, instead of two or three.
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Finally, there is the potential that our concept could be implemented in other recombi-
nation detection regimes, specifically those that are likelihood-based. It is well documented
that sliding window recombination detection methodology, such as that of the Dss statistic,
has drawbacks. For example, the behavior of the test statistic is somewhat influenced by
the window size chosen, and there are few guidelines on how to select this tuning parameter
(McGuire and Wright, 2000). Also, a multiple comparisons issue exists, since each window
produces a value of the test statistic. Although this issue is handled by considering only
the maximum statistic value from the alignment and performing an appropriate paramet-
ric bootstrap test for statistical significance, this strategy prevents estimating locations of
recombination break-points with confidence. Thus, it may be advantageous to import our
concept of synonymous recombination detection into a likelihood-based framework, such as
those proposed in (Husmeier and Wright, 2003), or in (Minin et al., 2005; Suchard et al.,
2003).
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Figure S-1: Distribution of p-values of the original and synonymous Dss tests when the data
are simulated under the null hypothesis of no recombination and no convergent evolution.
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Figure S-2: Distribution of p-values of the original and synonymous Dss tests when the
data are simulated under a model with recombination.
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