
UC Berkeley
UC Berkeley Previously Published Works

Title

FlowPM: Distributed TensorFlow implementation of the FastPM cosmological N-body solver

Permalink

https://escholarship.org/uc/item/4bx6p3jr

Authors

Modi, C
Lanusse, F
Seljak, U

Publication Date

2021-10-01

DOI

10.1016/j.ascom.2021.100505

Copyright Information

This work is made available under the terms of a Creative Commons Attribution-
NonCommercial License, available at https://creativecommons.org/licenses/by-nc/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/4bx6p3jr
https://creativecommons.org/licenses/by-nc/4.0/
https://escholarship.org
http://www.cdlib.org/

FlowPM: Distributed TensorFlow Implementation of the FastPM Cosmological N-body

Abstract

We present elerated,
distributed, an on mul-
tiresolution py imulation
on large-scale speed-up
in terms of w smologi-
cal inference th hybrid
PM and neura ailable at
https://github.

Keywords:
PACS: cosmol

1. Introducti

N-Body sim

ake both
h current
dynamic
lications
convolu-
19; Kodi
ften only
itial den-
e the cor-
h end-to-
e models
gical vol-
f interest
lored ex-

nterest in
reasingly
f cosmo-
ne of the

modeling
sed infer-
ysis (Sel-
9). How-
nd multi-
ns, such
rentiable
ng et al.,

one can
s) of cos-
eld, dark

cles under gra
modern day c
are required f
ture (LSS) of
ies, quasars,
body simulatio
been heavily
(Teyssier, 200
rison et al., 20
computational
to run thousan
ally complem
such as Partic
et al., 2013; W
2016; Monaco
proaches, the
particles in the
Transforms on
computational
mating the int
of the grid and
scales.

The next g
Dark Energy S
oration et al.,
Space and Tim
2009), and oth

Solver

Chirag Modia, François Lanusseb, Uroš Seljaka,c

aBerkeley Center for Cosmological Physics, Department of Physics, University of California, Berkeley, CA 94720, USA
bAIM, CEA, CNRS, Université Paris-Saclay, Université Paris Diderot, Sorbonne Paris Cité, F-91191 Gif-sur-Yvette, France

cLawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA

FlowPM, a Particle-Mesh (PM) cosmological N-body code implemented in Mesh-TensorFlow for GPU-acc
d differentiable simulations. We implement and validate the accuracy of a novel multi-grid scheme based
ramids to compute large-scale forces efficiently on distributed platforms. We explore the scaling of the s
supercomputers and compare it with corresponding Python based PM code, finding on an average 10x

allclock time. We also demonstrate how this novel tool can be used for efficiently solving large scale co
problems, in particular reconstruction of cosmological fields in a forward model Bayesian framework wi
l network forward model. We provide skeleton code for these examples and the entire code is publicly av
com/modichirag/flowpm. �

ogy: large-scale structure of universe, methods: N-body simulations

on

ulations evolving billions of dark matter parti-

precedented scales and dynamic range. This will m
the modeling and the analysis challenging even wit
PM simulations. To improve the modeling in terms of
range and speed, many recent works have explored app
of machine learning, with techniques based on deep
tional networks and generative models (He et al., 20
Ramanah et al., 2020). However these approaches o
learn the mapping between input features (generally in
sity field) and final observables and completely replac
rect underlying physical dynamics of the evolution wit
end modeling. As a result, the generalization of thes
across redshifts (time scales), length scales (cosmolo
ume, resolution etc.), cosmologies and observables o
is limited by the training dataset and needs to be exp
haustively to account for all failure modes.

At the same time, there has been a considerable i
exploring novel techniques to push simulations to inc
smaller and non-Gaussian regimes for the purpose o
logical analyses. Recent work has demonstrated that o
most promising approaches to do this is with forward
frameworks and using techniques like simulations ba
ence or reconstruction of cosmological fields for anal
jak et al., 2017; Alsing et al., 2018; Cranmer et al., 201
ever given the highly non-linear forward dynamics a
million dimensionality of the cosmological simulatio
approaches are only tractable if one has access to diffe
forward simulations (Jasche and Wandelt, 2013; Wa
2014; Seljak et al., 2017; Modi et al., 2018) wherein
correctly analytically estimate the response (gradient
mological probes such as final dark matter density fi

vitational forces have become essential tool for
osmology data analysis and interpretation. They
or accurate predictions of the large scale struc-
the Universe, probed by tracers such as galax-

gas, weak gravitational lensing etc. Exact N-
ns can provide very precise predictions and have

optimized and tested over the last two decades
2; Nelson et al., 2015; Springel et al., 2020; Gar-
18). Despite this, they are extremely slow and
ly expensive, especially when one might require
ds of these simulations. As a result they are usu-
ented by fast approximated numerical schemes
le-Mesh (PM) solvers (Merz et al., 2005; Tassev

hite et al., 2014; Feng et al., 2016; Izard et al.,
, 2016; Colavincenzo et al., 2018). In these ap-
gravitational forces experienced by dark matter
 simulation volume are computed by Fast Fourier
 a 3D grid. This makes PM simulations very
ly efficient and scalable, at the cost of approxi-
eractions on small scales close to the resolution
 ignoring the force calculation on sub-resolution

eneration of cosmological surveys such as the
pectroscopic Instrument (DESI) (DESI Collab-

2016), the Rubin Observatory Legacy Survey of
e (LSST) (LSST Science Collaboration et al.,

ers will probe LSS with multiple tracers over un-

matter halos, galaxies etc. with respect to the input cosmology.
To address both of these challenges, in this work we present

FlowPM, a Te
solver. Writte
GPU-accelera
lations, while
the same time
gravitational e
ing room for
nents to devel
machine learn
namics otherw

As they ev
today’s cosmo
memory inten
ing. In FlowPM
novel model p
TF) (Shazeer e
strategies and
tiple processo

The primar
ulations are d
which incur l
for more than
One way to o
scheme for co
1995; Merz e
these schemes
tributed grid a
estimated loca
a novel multi-
(Burt and Ade
require any fi
highly optimiz

In this first
of Feng et al.
as well as oth
turbation theo
Stein et al., 2
ponents, with
FFTs to estim
Thus modifyi
matter of imp
ment. We cho
sons - i) it is
and avoids co
pling linearly
done in schem
in this work,
components c
outline of the
implementatio
consistently. F
curacy of the i
to the original

The structu
outline the ba

scheme for force estimation in Section 3. Then in Section 4, we
introduce Mesh-TensorFlow. In Section 5, we build upon these

accuracy
. At last,
ith a toy

d models
erse. We

particle-
mesh i.e.
sses and
wever in
tation as
ext clear.
ghout the

ith sam-
input lin-
onditions
then used
the parti-
codes (as
perturba-
plements
inn et al.,
the time

that leads
-step. In
very par-

staggered
sition (x)
operators

(1)
(2)

ctors and
ation im-
re modi-
alf time-
steps re-

putation-
he gravi-
First, the
ith a ker-
ery point
d the one
sponding
kney and
to obtain
is related
nsorFlow implementation of an N-Body PM
n entirely in TensorFlow, these simulations are
ted and hence faster than CPU-based PM simu-
also being entirely differentiable end-to-end. At
, they encode the exact underlying dynamics for
volution (within a PM scheme), while still leav-
natural synthesis with machine learning compo-
op hybrid simulations. These hybrids could use
ing to model sub-grid and non-gravitational dy-
ise not included in a PM gravity solver.
olve billions of particles in order to simulate
logical surveys, N-Body simulations are quite

sive and necessarily require distributed comput-
, we develop such distributed computation with a

arallelism framework - Mesh-TensorFlow (Mesh-
t al., 2018). This allows us to control distribution
split tensors and computational graphs over mul-
rs.
y bottleneck for large scale distributed PM sim-
istributed 3D-Fast Fourier Transforms (FFT),

arge amounts of communications and make up
half the wall-clock time (Modi et al., 2019a).
vercome these issues is by using a multi-grid
mputing gravitational forces (Suisalu and Saar,
t al., 2005; Harnois-Déraps et al., 2013). In
, large-scale forces are estimated on a coarse dis-
nd then stitched together with small scale force
lly. Following the same idea, we also propose
grid scheme based on Multiresolution Pyramids
lson, 1983; Anderson et al., 1984), that does not
ne-tuned stitching of scales, and benefits from
ed 3-D convolutions of TensorFlow.
work, we have implemented the FastPM scheme
(2016) for PM evolution. Different PM schemes,
er approximate simulations like Lagrangian per-
ry fields (Tassev et al., 2013; Kitaura et al., 2014;
019), are built upon the same underlying com-
interpolations to-and-from PM grid and efficient
ate gravitational forces being the key elements.
ng FlowPM to include other PM schemes is a
lementation rather than methodology develop-
ose to work with FastPM scheme for two rea-
the closest to a naive particle mesh simulation

smology specific approximations such as decou-
evolving large scales with perturbative models as
es like COLA (Tassev et al., 2013). Therefore

it allows us to focus in detail on the underlying
ommon to all PM schemes while only giving the
full algorithm. ii) It has a differentiable python
n that allows us to compare different experiments
or further technical details on the choices and ac-
mplemented FastPM scheme, we refer the reader
paper of Feng et al. (2016).
re of this paper is as follows - in Section 2 we
sic FastPM algorithm and discuss our multi-grid

and introduce FlowPM. We compare the scaling and
of FlowPM with the Python FastPM code in Section 6
in Section 7, we demonstrate the efficacy of FlowPM w
example by combining it with neural network forwar
and reconstructing the initial conditions of the Univ
end with discussion in Section 8.

Throughout the paper, we use “grid” to refer to the
mesh grid and “mesh” to refer to the computational
the geometry of connections between different proce
distribution of the tensors on them with Mesh-TF. Ho
section 6, we do refer the single grid force implemen
mesh scheme, with the use of scheme making the cont
Unless explicitly specified, every FFT referred throu
paper is a 3D FFT.

2. Particle Mesh N-body solver

A cosmological particle mesh simulation starts w
pling a Gaussian white-noise. This is scaled with the
ear power spectrum to generate the Gaussian initial c
for the matter density field at high redshift. These are
to generate the initial displacements and velocities of
cles at a very high redshift. This is usually done in PM
in FastPM and FlowPM) with 2nd order Lagrangian
tion theory (LPT). Schematically, a PM solver then im
a symplectic series of Kick-Drift-Kick operations (Qu
1997), following a leapfrog integration scheme, to do
integration for gravitational evolution of the particles
to the observed large scale structures at the final time
the Kick stage, we estimate the gravitational force on e
ticle and update their momentum (p). Next, in the
Drift stage, we displace the particle to update their po
with the current velocity estimate. The drift and kick
can thus be defined as (Quinn et al., 1997) -

x(t1) = x(t0) + p(t0)DPM

p(t1) = p(t0) + f (t0)KPM,

where DPM and KPM are the scalar drift and kick fa
f (t0) is the gravitational force. For the leapfrog integr
plemented in FlowPM (and FastPM), these operators a
fied to include the position and velocity at staggered h
steps instead of the initial time (t0) in kick and drift
spectively.

Estimating the gravitational force is the most com
ally intensive part of the simulation. In a PM solver, t
tational force is calculated via 3D Fourier transforms.
particles are interpolated to a spatially uniform grid w
nel W(r) to estimate the mass overdensity field at ev
in space. The most common choice for the kernel, an
we implement, is a linear window of unit size corre
to the cloud-in-cell (CIC) interpolation scheme (Hoc
Eastwood, 1988). We then apply a Fourier transform
the over-density field δk in Fourier space. This field

2

to the force field via a transfer function (∇∇−2).

Once the force
lated back to t
as was used to

There are v
in a discrete F
and Eastwood
naive Green’s
kernels (∇ =

also implemen
FastPM. This
correlation wi
steps (see app

where x0 is th
that goes from

In the curre
with the Fast

PM force is e
resolution. U
per grid cell a
the grid size.
scheme results
full N-Body (T
up to k=1 h/M
et al., 2016).

3. Multi-grid

Every step
to estimate th
inverse FFTs
tion. The sim
vidual 1D Fou
However in a
distributed on
erations and e
processor send
in order to ge
process. This
in the simulat
to make this f
tipole method
schemes (Mer
FlowPM, we i

The basic id
ent resolutions
scales which

approach for a 2 level multi-grid scheme, since that is imple-
mented in FlowPM and the extension to more levels is similar.

a global
the other
igher res-
ge forces

by indi-
omputed
rid com-

unication
umber of
rge grids

mall sim-
ulti-grid

rid force
freedom

pyramids
tation for
gnal pro-
cale rep-
ve reduc-
on, 1983;
a combi-

by con-
to avoid

he signal,
sually by
ata. This
generate
the orig-
pyramid

(6)

s a Gaus-

are inter-
es. This
ulti-scale
ependent
case, one
he image
ixels and
g it with
e g′l

(7)

ur pyramid
underlying
f (k) = ∇∇−2δ(k) (3)

field is estimated on the spatial grid, it is interpo-
he position of every particle with the same kernel
generate the density field in the first place.

arious ways to write down the transfer function
ourier space, as explored in detail in Hockney
(1988). The simplest way of doing this is with a
function kernels (∇−2 = k−2) and differentiation
ik). In FlowPM, in addition to this kernel, we
t a finite differentiation kernel as implemented in
provides a sharper density fields and better cross-
th N-Body simulations for small number of time
endix of (Feng et al., 2016) for comparison)

∇−2 =
∑

d=x,y,z

(
x0ω0sinc

ωd

2

)2
)−1

(4)

∇ = D1(ω) =
1
6

(
8sinω − sin2ω) (5)

e grid size and ω = kx0 is the circular frequency
(−π, π].

nt version, FlowPM implements this PM scheme
PM kernels with force resolution of one i.e. the
stimated on the same grid resolution as particle
nless otherwise specified, we have one particle
nd hence the number of particles is the same as
At this force resolution, a 10 time-step FastPM

in dark matter field which is 99% correlated with
reePM) simulations (of same particle resolution)
pc and loose 5% power up to k=0.6 h/Mpc (Feng

PM Scheme

in PM evolution requires one forward 3D FFT
e overdensity field in Fourier space, and three
to estimate the force component in each direc-
plest way to implement 3D FFTs is as 3 indi-
rier transforms in each direction (Pippig, 2013).
distributed implementation, where the tensor is
different processes, this involves transpose op-

xpensive all-to-all communications wherein each
s an individual message to every other processor
t the dimension being transformed on the same
makes these FFTs the most time-intensive step

ion (Modi et al., 2019a). There are several ways
orce estimation more efficient, such as fast mul-
s (Greengard and Rokhlin, 1987) and multi-grid
z et al., 2005; Harnois-Déraps et al., 2013). In
mplement a novel version of the latter.
ea of a multi-grid scheme is to use grids at differ-
, with each of them estimating force on different

are then stitched together. Here we discuss this

The long range (large-scale) forces are computed on
coarse grid that is distributed across processes. On
hand, the small scale forces are computed on a fine, h
olution grid that is local, i.e. it estimates short ran
on smaller independent sections that are hosted locally
vidual processes. Thus, the distributed 3D FFTs are c
only on the coarse grid while the higher resolution g
putes highly efficient local FFTs.

This force splitting massively reduces the comm
data-volume but at the cost of increasing the total n
operations performed. Thus while it scales better for la
and highly distributed meshes, it can be excessive for s
ulations. Therefore in FlowPM we implement both, a m
scheme for large simulations, and the usual single-g
scheme for small grid sizes, with the user having the
to choose between the two.

3.1. Multiresolution Pyramids

In this section we briefly discuss multiresolution
that will later form the basis our multi-grid implemen
force estimation. As used in image processing and si
cessing communities, image pyramids refer to multi-s
resentations of signals and image built through recursi
tion operations on the original image (Burt and Adels
Anderson et al., 1984). The reduction operation is
nation of - i) smoothing operation, often implemented
volving the original image with a low-pass filter (G)
aliasing effects by reducing the Nyquist frequency of t
and ii) subsampling or downsampling operation (S), u
a factor of 2 along each dimensions, to compress the d
operation can be repeatedly applied at every ‘level’ to
a ‘pyramid’ structure of the low-pass filtered copies of
inal image. Given a level gl of original image g0, the
next level is generated by

gl+1 = REDUCE(gl) = S[G ? gl]

where ? represents a convolution. If the filter G used i
sian filter, the pyramid is called a Gaussian pyramid.

However, in our multi-grid force estimation, we
ested in decoupling the large and small scale forc
decoupling can be achieved by building upon the m
representation of Gaussian pyramids to construct ind
band-pass filters with a ‘Laplacian’ pyramid1. In this
reverses the reduce operation by - i) upsampling (U) t
at level gl+1, generally by inserting zeros between p
then ii) interpolating the missing values by convolvin
the same filter G to create the expanded low-pass imag

g′l = EXPAND(gl+1) = G ?U[gl+1]

1Since we will not use the Gaussian kernel for smoothing, o
structure is not a Laplacian pyramid in the strictest sense, but the
idea is the same.

3

A Laplacian representation at any level can then be constructed
by taking the difference of the original and expanded low-pass
filtered image

In Figure 1, w
structed for an
these operatio

Figure 1: An exam
cian pyramid. Th

Figure 2: Laplaci
the upsampled low
taking the differen
demonstrate that t
pass filter fields.
resolution and the
again is at 323.

Lastly, give
(gN) and the L
we can exactly
the series of fo

gl =

2Image taken
http://graphics.cs.

s shown in
s negligible

se opera-
the result
-pass fil-
ved as is
how that
we show
onstrate

ply these
evel grid.

odel par-
e N-body

e adopt
ework to
amework
a general
it, it goes
nd gener-
putations
cessors.
of Mesh-
(2018) 3

sors with

epending
uted/split
. Hence
e dimen-
hich will
erations.
at that level

Ll = gl − g′l (8)

e show the Gaussian and Laplacian pyramid con-
example image, along with the flow-chart for

ns.

ple of Gaussian image pyramid and the corresponding Lapla-
e arrows and small boxes mark the operations involved2.

an pyramid for matter density field - the top row represents
-pass filtered field and the high-pass filter field generated by
ce with the true field (bottom left). Residuals (bottom right)
he original field is reconstructed perfectly with low and high-
The results are for a 400 Mpc/h box with 1283 grid at high
coarse grid generated with low-pass filter before upsampling

n the image at the highest level of the pyramid
aplacian representation at every level (L0...LN−1),

recover the original image by recursively doing
llowing inverse transform-

Ll + EXPAND(gl+1) ∀l ∈ [N − 1...0] (9)

from
cmu.edu/courses/15-463/2012 fall/hw/proj2g-eulerian/

Figure 3: The power spectrum corresponding to the density field
Figure 2. The red line is outside the scale for the residual field ha
power, as expected.

In Figure 2, we show the resulting fields when the
tions are applied on the matter density field. We show
of upsampling the low-pass filtered image and the high
tered image with the low-pass filtered component remo
done in Laplacian pyramid. The negligible residuals s
the reconstruction of the fields is exact. In Figure 3,
the power spectra of the corresponding fields to dem
which scales are contributed at every level. We will ap
operations in Section 5.2 to estimate forces on a two-l

4. Mesh-TensorFlow

The last ingredient we need to build FlowPM is a m
allelism framework that is capable of distributing th
simulation over multiple processes. To this end, w
Mesh-TensorFlow (Shazeer et al., 2018) as the fram
implement our PM solver. Mesh-TensorFlow is a fr
for distributed deep learning capable of specifying
class of distributed tensor computations. In that spir
beyond the simple batch splitting of data parallelism a
alizes to be able to split any tensor and associated com
across any dimension on a computational mesh of pro

We only summarize the key component elements
TensorFlow here and refer the reader to Shazeer et al.
for more details. These are:

• a mesh, which is a n-dimensional array of proces
named dimensions.

• the dimensions of every tensor are also named. D
on their name, these dimensions are either distrib
across or replicated on all processors in a mesh
every processor holds a slice of every tensor. Th
sions can thus be seen as ‘logical’ dimensions w
be split in the same manner for all tensors and op

3https://github.com/tensorflow/mesh

4

• a user specified computational layout to map which tensor
dimension is split along which mesh dimension. The un-
specified
While the
performa

The user bu
in Python. Th
transforming
crete tensors a
of the mesh. It
and operations
based on the c
several implem
devices. On G
TensorFlow p
tion, referred t
(Single Instruc
Flow operatio
from the persp
on every TPU
forms the sam
not currently p
Data) impleme
on TensorFlow
the same grap
PlacementMes
TensorFlow p
which can con
proach is that
of the graph m
more than 16
time required
for each indivi
tation is under
these scaling i

Returning t
Mesh-TF tens
which case the

Figure 4 sho
which form th
code also sets
tions of the PM
direction is sp
batch of simu
ting will almo
mension. Whi
forth fix the b
lelism of large

5. FlowPM: Fa

Finally, in
technical detai
We have alrea
ing PM schem
tions, kick and

import mesh_tensorflow as mtf

import tensorflow.compat.v1 as tf

8 GPUs,

and cols

mpl(

")],

8)])

ze 128 on a
oss 4 and 2

ction, we
ifferently,
for force

ry tensor.
grid spa-
old only

hat phys-
ossibility
the phys-
s on any

operating
ation be-
s called a
ing every
between
e choice

increased

high reso-
ctor for the
tensor dimensions are replicated on all processes.
layout does not affect the results, it can affect the

nce of the code.

ilds a Mesh-TensorFlow graph of computations
is graph is then lowered, which corresponds to

the symbolic Mesh TensorFlow graph into con-
nd operations to be located on individual GPUs
is at this stage that the defined tensor dimensions
are split amongst different processes on the mesh

omputational layout. Mesh TensorFlow supports
entations of the computation mesh onto physical
oogle’s TPUs (Tensor Processing Units), Mesh

rovides a highly efficient parallel implementa-
o as SimdMeshImpl, based on an SIMD paradigm
tion Multiple Devices). In this approach, Tensor-
ns (and communication collectives) are emitted
ective of one TPU, and this same program runs
, relying on the fact that each core actually per-
e operations. However, Mesh TensorFlow does
rovide a similar SPMD (Single Program Multiple
ntation for GPU/CPU clusters, and instead relies
’s native ability to incorporate several GPUs into

h over network. In this approach, referred to as
hImpl, Mesh TensorFlow will rely on a single

rocess to run the lowered computational graph,
tain many GPUs. The disadvantage of this ap-

as the number of GPUs increase, so does the size
anaged by the single process, this translates for

GPUs into prohibitively long lowering times (i.e.
to create all the concrete tensors and operations
dual GPU). A new GPU SPMD mesh implemen-
active development and will ultimately alleviate

ssues for GPU clusters.
o Mesh-TF computations, at the last step, the
ors to be evaluated are exported to TF tensors in
y are gathered on the single process.
ws an example code to illustrate these operations

e starting elements of any Mesh-TensorFlow. The
up context for FlowPM, naming the three direc-

simulation grid and explicitly specifying which
lit along which mesh-dimension. Note that for a
lations, computationally the most efficient split-
st always maximize the splits along the batch di-
le FlowPM supports that splitting, we will hence-
atch size to 1 since our focus is on model paral-
scale simulations.

stPM implementation in Mesh-Tensorflow

this section, we introduce FlowPM and discuss
ls about its implementation in Mesh-TensorFlow.
dy discussed the basic operations of the underly-
e implemented - the generation of initial condi-
drift operations, force estimation and associated

Setup graph and associated mesh

graph = mtf.Graph()

mesh = mtf.Mesh(graph, "my_mesh")

Define named dimensions for defining a 3D volume

x_dim, y_dim, z_dim = (mtf.Dimension("ncx", 128),

mtf.Dimension("ncy", 128),

mtf.Dimension("ncz", 128))

batch_dim = mtf.Dimension("batch", 1)

Sample a batched random normal 3D volume

field = mtf.random_normal(mesh,

[batch_dim, x_dim, y_dim, z_dim])

[...] Other mtf operations can be added here

Define a concrete implementation as a 2D mesh on

splitting `ncx` and `ncy` dimensions along rows

mesh_impl = mtf.placement_mesh_impl.PlacementMeshI

mesh_shape=[("row", 4), ("col", 2)],

layout_rules=[("ncx", "row"), ("ncy", "col

devices=["device:GPU:%d"%i for i in range(

#Lower the graph onto computational mesh

lowering = mtf.Lowering(graph, {mesh:mesh_impl})

Retrieve mtf tensor as TensorFlow tensor

tf_field = lowering.export_to_tf_tensor(field)

Evaluate graph

with tf.Session as sess:

sess.run(tf_field)

Figure 4: Sample code to generate random normal field of grid si
2D computational mesh of 8 GPUs with x and y directions split acr
processors respectively

kernels as modified in FastPM - in Section 2. In this se
focus on the two aspects of FlowPM which are done d
the domain decomposition and the multi-grid scheme
estimation, the latter of which is novel to FlowPM.

5.1. Domain decomposition and Halo Exchange
In Mesh-Tensorflow, every process has a slice of eve

Thus for our PM grid, where we split the underlying
tially along different dimensions, every process will h
the physical region and the particles corresponding to t
ical region. However at every PM step, there is a p
of particles moving in-and-out of any given slice of
ical region. At the same time, convolution operation
slice need access to the field outside the slice when
on the boundary regions. The strategy for communic
tween neighboring slices to facilitate these operations i
halo-exchange. We implement this exchange by padd
slice with buffer regions of halo size (h) that are shared
the slices on adjacent processes along the mesh. Th
of halo size depends on two factors4, apart from the

4In case of the pyramid scheme, the halo size is defined on the
lution grid and we reduce it by the corresponding downsampling fa
coarse grid.

5

memory cost. Firstly, the halo size should be large enough to
ensure an accurate computation of smoothing operations, i.e.
larger than ha
communicatio
rent implemen
ing processes
process. This
than the expec
entire period
currently used
tions (from 0.
matter simulat

Our halo-ex
illustrated for
tivated by the
independent,
wise operation
Thus we can
CIC interpola
and local FFT
for a typical s
about distribu
also implemen
ing any extern
by reshaping
dimension) to
the tensor acco
indices are no
correspond to
shown in Figu
in split over n
shaped to a 2
over processe
dimension is
size along the
is followed by
physical volum

After the s
same steps are
exchanged aga
from adjacent
and the tensor

5.2. Multi-gri

To implem
pyramids, we
tion. While tra
Fourier space
ations in local
tween the size
compact the c
Our main con
component of
Nyquist scale
sample this lo
larger kernels

z

sz + 2h))

m neigh-

exchange
lf the smoothing kernel size. Secondly, to keep
ns and book-keeping to a minimum, in the cur-
tation particles are not transferred to neighbour-
if they travel outside of the domain of a given
means that we require halo regions to be larger
ted maximum displacement of a particle over the
of the simulation. In our tests, we find that the

50 Mpc/h halo size works well across resolu-
5 Mpc/h-10 Mpc/h grid resolution) for cold dark
ions.
change algorithm is outlined in Algorithm 1 and
a 1-dimension grid in Figure 5. It is primarily mo-
fact that Mesh-TensorFlow allows to implement
local operations simply and efficiently as slice-
s along the dimensions that are not distributed.
implement all of the operations - convolutions,
tions, position and velocity updates for particles
s - on these un-split dimensions as one would
ingle-process implementation without worrying

ted strategies. Similarly, the distributed FFTs are
ted directly as Mesh-TF operations, without us-
al libraries. To take advantage of this, we begin
our tensors from 3 dimensions (excluding batch
6 dimensions such that the first three indices split
rding the computational layout and the last three

t split, but replicated across all the processes and
the local slice of the grid on each process. This is
re 5, where an original 1-D tensor of size N = 12
x = 2 processes. In the second panel, this is re-
-D tensor with the first dimension nx = 2 split
s and sx is the un-split dimension. The un-split
then zero-padded with halo size resulting in the
un-split dimension to be sx = N/nx + 2h. This
an exchange with the neighboring slices over the
e common to the two adjacent processes.

licewise operation updates the local slices, the
followed in reverse. The padded halo regions are
in to combine updates in the overlapping volume
processes. Then the padded regions are dropped
is reshaped to the original shape.

d Scheme with Multiresolution Pyramids

ent the multi-grid scheme with multiresolution
need a smoothing and a subsampling opera-

ditionally smoothing operations are performed in
in cosmology, here we are restricted to these oper-
, pixel space. However this leads to a tradeoff be-
of the smoothing kernel in pixel space, and how
orresponding low pass filter is in Fourier space.
sideration is to ensure that the low-resolution
the pyramid is sufficiently suppressed at half the
of the original field, so as to be able to down-

w resolution field with minimum aliasing. Using
improves the Fourier drop-off but implies an in-

Algorithm 1 Halo Exchange

global variables
N - size of the global grid
h - halo size, to be padded
nx, ny, nz - #splits along three directions
sx, sy, sz - size of local slice after split
nx, ny, nz - Name of dimension along nx, ny, n
sx, sy, sz - Name of dimension along sx, sy, sz

end global variables

procedure Reshape Expand(G)
assert(G.shape == (N,N,N))
G ⇐ G.reshape(nx, ny, nz, sx, sy, sz)
for axis ∈ sx, sy, sz do

G ⇐ ZeroPad(G, size = h, axis = axis)
end for
return G

end procedure

procedure Reshape Reduce(G)
assert(G.shape == (nx, ny, nz, sx + 2h, sy + 2h,
for axis ∈ sx, sy, sz do

G ⇐ RemovePad(G, size = h, axis = axis)
end for
G ⇐ G.reshape(N,N,N)
return G

end procedure

procedure Exchange(G)
Add updates in overlapping padded regions fro

boring processes
end procedure

procedure HaloExchangeOp(G, S licewiseOp)
. Strategy for operating slicewise op with halo
assert(G.shape == (N,N,N))
G ⇐ Reshape Expand(G)
G ⇐ Exchange(G)
G ⇐ SlicewiseOp(G)
G ⇐ Exchange(G)
G ⇐ Reshape Reduce(G)
return G

end procedure

6

Figure 5: An illus
1 for a simple 1-
Reshape Expand
process, with ligh
changed. In the s
first, nx dimensio
panel, the regions
ary conditions).

creased comp
be performed

In our exper
6 balances the
percent accura
we take advan
and implemen
tions together
bspline kernel
lutions with s
grid points. In
erations twice
resolution grid
nication for gl
operation is o
in Section 3.1
PAND method

Finally we
scheme for fo
3. Schematic
grid to genera
components in
key difference
on a global gr
cess performs
grids. To reco
these long and
pand the long

Algorithm 2 Methods for pyramid scheme

procedure REDUCE(H, f = 2, n = 6, S = 2)
ne kernel

kernel of

from the
on, simi-

yramid in
ort range
with the

ure 6 and
cross all

PM evo-
modified,
operates

accuracy
spects of
entation

r around
thon im-

nderlying
espect to
mics, we
eng et al.

Cori su-
NVIDIA
ory and

ur results
on Cori-
ard mod-
tration of the halo exchange strategy as outlined in Algorithm
D tensor of size N = 12 and halo size h = 2, specifically
operation. The red and blue regions are to be split on two
t regions indicating the overlapping volume that will be ex-
econd panel, the tensor is reshaped with the split along the
n and the second un-split sx that is zero-padded. In the third
are exchanged (here under the assumption of periodic bound-

utational and memory cost of halo-exchanges to
at the boundaries.
iments, we find that a 3-D bspline kernel of order
se trade-offs well and allows us to achieve sub-
cy, as we show later. Furthermore in FlowPM,
tage of highly efficient TensorFlow operations
t both, the smoothing and subsampling opera-
by constructing a 3D convolution filter with this
and convolving the underlying field with convo-

tride 2 i.e. the convolution filter is moved by 2
our default implementation, we repeat these op-
and our global grid is 4x coarser than the higher
, resulting in 64x reduction in volume of commu-
obal FFTs. The full algorithm for this REDUCE
utlined in Algorithm 2. Based on the discussion
, we also outline the reverse operation with EX-
.
are in the position to outline the multi-grid

rce computation. This is outlined in Algorithm
ally, we begin by reducing the high resolution
te the coarse grid. Then we estimate the force
all three directions on both the grids, with the
that the coarse grid performs distributed FFT

id while for the high resolution grid, every pro-
local FFTs in parallel on the locally available
ver the correct total force, we need to combine
the short range forces together. For this, we ex-

-range force grid back to the high resolution. At

. Downsample field H by convolving with a bspli
of order n consecutively f times with stride S

K ⇐ BSpline(n)
D⇐ H
for i ∈ 0 . . . f do

D⇐ Conv3D(D,K, S)
end for
return D

end procedure

procedure EXPAND(D, f = 2, n = 6, S = 2)
. Upsample field D by convolving with a bspline

order n consecutively f times with stride S
K ⇐ BSpline(n) x 8
H ⇐ D
for i ∈ 0 . . . f do

H ⇐ TransposedConv3D(H,K, S)
end for
return H

end procedure

the same time, we remove the long-range component
high-resolution grid with a reduce and expand operati
lar to the band-pass level generated in the Laplacian p
Section 3.1. In the end, we combine these long and sh
forces to recover the original force. We compare this
particle-mesh forces evaluated on a single grid in Fig
show that we recover the original force accurately a
scales without any fine-tuning.

Note that in implementing a multi-grid scheme for
lution, only the force calculation in the kick step is
while the rest of the PM scheme remains the same and
on the original high-resolution grid.

6. Scaling and Numerical Accuracy

In this section, we will discuss the numerical
and scaling of these simulations. Since the novel a
FlowPM are a differentiable Mesh-Tensorflow implem
and multigrid PM scheme, our discussion will cente
comparison with the corresponding differentiable Py
plementation of FastPM which shares the same u
PM scheme. We do not discuss the accuracy with r
high resolution N-Body simulations with correct dyna
touch upon this in Section 2 and refer the reader to F
(2016) for further details on such a comparison.

Our tests are performed primarily on GPU nodes on
percomputer at NERSC, with each node hosting 8
V100 (’Volta’) GPUs each with 16 GB HBM2 mem
connected with NVLink interconnect. We compare o
and scaling with the differentiable Python code run
Haswell nodes. This consists of FastPM code for forw

7

Figure 6: Compa
a 1283 grid, 200
small and large sc
total force in the p
grid resolutions o
grids respectively

eling, vmad5 f
mization.

To distingu
mentation in t
mesh scheme

6.1. Accuracy

We begin b
mesh and the
simulation. W
1283 grid for 1
of 1. The initia
grangian pertu
run on a single
different mesh
mentations. W
a physical size
that increasing
for all configu
ory constraint
64-bit precisio
bit precision.

Figure 7 co
fields. For the
run on 4 GPU
tion each. We
implementatio
field level.

In Figure 8
tatively by me

5https://github
6https://github

Algorithm 3 Force computation in Muti-grid pyramid method

procedure ForceGrids(G,mode)
3D FFT

e meshes

on which

(10)

ases and

(11)

s.
re within
o deviate
terms of
nd other
ively ex-

We an-
ent, and
ological

osmolog-
ikely use

r varying
ng of the
ring the accuracy of PM forces with the multi-grid forces for
Mpc/h box wherein the x-direction is split over 2 GPU. The
ale forces estimated with multi-grid scheme add to give the
yramid implementation. Red and black vertical lines are the

f the high resolution (also the original resolution) and coarse
.

or automated differentiation and abopt6 for opti-

ish between a single grid and multi-grid imple-
he subsequent text, we will refer to the former as
and the latter as the pyramid scheme.

of the simulations

y establishing the accuracy of FlowPM for both
pyramid scheme with the corresponding FastPM

e run both the simulations in a 400 Mpc/h box on
0 steps from z = 9 to z = 0 with force-resolution
l conditions are generated at the 2nd order in La-
rbation theory (LPT). The FastPM simulation is
process while the FlowPM simulations are run on
-splits to validate both the multi-process imple-
e use halo size of 16 grids cells, corresponding to
of 50 Mpc/h in the current experiments, and find
the halo size increases the accuracy marginally

rations. Moreover, given the more stringent mem-
s of GPU, we run the FastPM simulation with a
n while the FlowPM simulations are run with 32-

mpares the two simulations at the level of the
FlowPM simulations, we show the configuration

s, with the grid split in 2 along the x and y direc-
find that both, the single grid and the pyramid

n are accurate with sub-percent residuals at the

we compare the two simulations more quanti-
asuring their clustering properties. To compare

.com/rainwoodman/vmad

.com/bccp/abopt

. Estimate the component force grids with
G̃ ⇐ FFT3D(G,mode)
for i ∈ x, y, x do

Fi ⇐ iFFT3D(∇i∇−2G̃,mode)
end for
return [Fx, Fy, Fz]

end procedure

procedure Force(H, f = 2, n = 6, S = 2)
. Pyramid scheme to estimate forc

D⇐ REDUCE(H, f , n, S)
FL ⇐ ForceGrids(D,mode = distributed)
FS ⇐ ForceGrids(H,mode = local)
for i ∈ x, y, x do

Fi,L ⇐ EXPAND(Fi,L, f , n, S)
Fi,l ⇐ REDUCE(Fi,S , f , n, S)
Fi,l ⇐ EXPAND(Fi,l, f , n, S)
Fi,S ⇐ Fi,S − Fi,l

Fi ⇐ Fi,L + Fi,S

end for
return [Fx, Fy, Fz]

end procedure

their 2-point functions, we measure the transfer functi
is the ratio of the power spectra (P(k)) of two fields

T f (k) =

√
Pa(k)
Pb(k)

and their cross correlation which compares the ph
hence is a measure of higher order clustering

rc(k) =
Pab(k)√

Pa(k) × Pb(k)

with Pab being the cross power spectra of the two field
Both the transfer function and cross correlation a

0.01% across all scales, with the former starting t
marginally on small scales. Thus the choices made in
convolution filters for up-down sampling, halo size a
parameters in multi-grid scheme, though not extens
plored, are adequate to reach the requisite accuracy.
ticipate this to be a grid resolution dependent statem
the resolution we have chosen is fairly typical of cosm
simulations that will be run for the analysis of future c
ical surveys and the analytic methods that will most l
these differentiable simulations.

6.2. Scaling on Cori GPU

We perform the scaling tests on the Cori GPUs fo
grid and mesh sizes, and compare it against the scali
Python implementation of FastPM.

8

Figure 7: Compar
left) and Pyramid
same initial condi
and third right im
400 Mpc/h in size
simulations are ru
direction. Third a

6.2.1. FFT Sc

Since 3D FF
sive part of a P
For the Mesh-
these operatio
show the time
grids, the tim
the time spent
ations. As a re
as we increase
grids, i.e. N ≥
tion cost for s
up to 8 proce
node. Howev
cesses leads to
communicatio
in mesh layou
rections are sp
the best timing
than a balance
larger for large

We compar

esh (solid)
e level of 2
). Configu-
astPM sim-
on different
ectively, as
ed between

3D FFTs
sely) lin-
er due to
of mag-

rable for

more rel-
other op-
the scal-
ological
involves

ick, drift,
aling for
multiply-
ime-steps
enerated

acements
ulations
e opera-

orce

ck

r both the
pyramid
ison of the accuracy of FlowPM simulation for Mesh (second
(third left) scheme with FastPM simulation (top right) for the
tions at the level of fields. The residuals are shown in second
age. Configuration is 10 step simulation with 1283 grid and
. FastPM simulation is run on single process while FlowPM

n on 4 processes with nx=2 and ny=2, the splits in x and y
xis is summed over the box for the projections.

aling

Ts are typically the most computationally expen-
M simulation, we begin with their time-scaling.

TF implementation, where we have implemented
ns as low-level Mesh-TensorFlow operators. We
scaling for these operations in Figure 9. For small
ing for FFT is almost completely dominated by
in all-to-all communications for transpose oper-

sult, the scaling is poor with the timing increasing
the number of processes. However for very large
512, the compute cost approaches communica-

mall number of process and we see a slight dip
sses, which is the number of GPUs on a single
er after that, further increase in number of pro-

a significant increase in time due to inter-node
ns. We show the results only for balanced splits
t in x and y directions i.e. where the x and y di-
lit in equally or comparably since these lead to
s. Unbalanced splits lead to worse performance
d split, with the difference in timings becoming
grid sizes.

e the timing of FFT with that implemented in

Figure 8: Compare the accuracy of FlowPM simulation for single m
and Pyramid (dashed lines) scheme with FastPM simulation at th
point functions, cross-correlation (left) and transfer-function (right
ration is 5 step simulation with 1283 grid and 400 Mpc/h in size. F
ulation is run on single process while FlowPM simulations are run
number of processes with nx and ny as splits in x and y direction resp
indicated in the legends with different colors. The legends are shar
two subplots the lines not distinctly seen are overlapping.

FastPM which implements the PFFT algorithm for
(Pippig, 2013). The scaling for PFFT is close to (inver
ear with the increasing number of processes. Howev
GPU accelerators, the Mesh-TF FFTs are still orders
nitudes faster in most cases, with only getting compa
small grid sizes and large mesh sizes.

6.2.2. PM Step Scaling
While the scaling of FFTs is sub-optimal, what is

evant for us is the scaling of 1 PM step that involves
erations in addition to FFTs. Thus, next we turn to
ing of generating initial conditions (ICs) for the cosm
simulation. It provides a natural test since this step
all the operations that enter a single PM step i.e. k
force evaluation and interpolation. To estimate the sc
an entire simulation, a good approximation is simply
ing the time taken for this step with the number of t
in the simulation. In this experiment, our ICs are g
as first-order LPT displacements i.e. Zeldovich displ
Zel’Dovich (1970) (though the default code for the sim
uses second order displacements). Schematically, th
tions involved in this are outlined in Algorithm 4.

Algorithm 4 Generating IC

procedure Gen-IC(N, pk)
g⇐ sample 3D normal random field of size N
δL ⇐ Scale g by power spectrum pk
F ⇐ Estimate force at grid-points from δL i.e. F
d ⇐ Scale F to obtain displacement
X ⇐ Displace particles with d, i.e. Drift
V ⇐ Scale to obtain velocity of particles i.e. Ki
δ⇐ Interpolate particles at X to obtain density
return δ

end procedure

We establish the scaling for this step in Figure 10 fo
implementations in FlowPM- the single grid as well as

9

Figure 9: Compa
mented in FlowPM

FastPM for differ
mentation, we sh
and ny in the two
pending on the to
is inversely propo

scheme. First
tionally intens
nication inten
step generally
ing as we inc
that roughly e
operation, wh
grid points to
scatter operati
to the particle
ities take negli
a communicat
node to multi-
pected, given t
mid scheme a
single-mesh im
However its s
is ∼ 20% faste

In Figure 10
Python implem
faster than Fa

all sizes (exce
mesh size). M
efit with incre
will be hard t
increasing the

th 1st order
s and num-

lementation
Tensorflow.

in python

l condi-

f cosmo-
, over the
l probes.
forward

jak et al.,
nce tech-
om these
ill make
the chal-
nd hence

one such
attention.
ns of the
ng et al.,
odi et al.,
r-density
odel and

ly extract
gical sur-
wn to be
spectrum
itial den-
roach for
e recon-
ate other
r supple-
re scaling for a single forward+backward 3D FFT imple-
in Mesh-Tensorflow, with PFFT implementation in Python-

ent grid sizes and number of processes. For Mesh-TF imple-
ow only the balanced layouts where the number of splits nx
directions is the same (circles) or comparable (arrows), de-

tal number of processes (N). In ideal scaling, wall clock time
rtional to the number of processes.

ly, note that since this step combines computa-
ive operations (like interpolation) with commu-
sive operations (like FFT), the scaling for a PM
has the desirable slope with the timings improv-

rease the number of processes. In fact, we find
qual time is spent in FFT operations as in gather
ich collects the interpolates the particles on the
mass density for force calculation, as well as the
on which gathers the force from grid points back
positions. Updating particle positions and veloc-
gible time in comparison. There is, however, still
ion overhead as we move from GPUs on a single
nodes (see for grid size of 128). Secondly, as ex-
he increase in number of operations for the pyra-
s compared to single-mesh implementation the
plementation is more efficient for small grids.

caling is poorer than the pyramid scheme which
r for grid size of N = 1024.

, we also compare this implementation with the
entation. We find that FlowPM is atleast 10x

stPM for the same number of processes, across
pt the combination of smallest grid and largest
oreover, since the both FlowPM and FastPM ben-
asing the number of processes, we expect that it
o beat the performance of FlowPM with simply
number of processes in FastPM.

Figure 10: Compare the scaling for generating initial conditions wi
LPT in Mesh-Tensorflow with Python-FastPM for different grid size
ber of processes. We show the scaling for both, single mesh imp
(blue) and pyramid implementation (green) in FlowPM in Mesh-
Missing points in expected configurations, for example 1024 grid
implementation, run out of memory.

7. Example application: Reconstruction of initia
tions

With the turn of the decade, the next generation o
logical surveys will probe increasingly smaller scales
largest volume available, with different cosmologica
As a result, there is a renewed interest in developing
modeling approaches (Jasche and Wandelt, 2013; Sel
2017; Elsner et al., 2019) and simulations based infere
niques to optimally extract and combine information fr
surveys. Differentiable simulators such as FlowPM w
these approaches tractable in cosmology, especially in
lenging regime of big data volumes of future surveys, a
play an important role in their analysis.

Here we demonstrate the efficacy of FlowPM with
analytic approach that has recently received a lot of
We are interested in reconstructing the initial conditio
Universe (s) from the late-time observations (d) (Wa
2014; Jasche and Wandelt, 2013; Seljak et al., 2017; M
2018; Schmittfull et al., 2018). The late time matte
field is highly non-Gaussian which makes it hard to m
do inference. Hence the current analysis methods on
a fraction of the available information from cosmolo
veys. On the other hand, the initial conditions are kno
Gaussian to a very high degree and hence their power
(S) is a sufficient statistic. Thus reconstructing this in
sity field provides a way of developing optimal app
inference (Seljak et al., 2017). At the same time, th
structed initial field can be forward modeled to gener
latent cosmological fields of interest that can be used fo

10

mentary analysis (Modi et al., 2019b; Horowitz et al., 2019a).
We approach this reconstruction in a forward model

Bayesian fram
Modi et al. (2
technical deta
servations of
verse (s) and
a likelihood m
Gaussian prio
posterior - P(
maximum-a-p
or alternativel
Jasche and Wa
the multi-mill
essary to use
sampling and
sary. Particle-
to the final ma
models for mo
demonstrate in
entiability and
developing su

7.1. Reconstr

In the first to
tial matter den
density field (
rian dark matt
weak lensing s
ter density fiel
model is only
modeled dens
tic observation

We assume
variance σ2 i
posterior of th

− log

where the first
the second term
spectrum s of i
trum S.

To reconstr
the negative
TensorFlow co
(Cheng et al.,
of brevity, we
larations, data
the logic direc
Estimators cla
tion as an opti
treated as the u
is the loss fu
to naturally re
ing but not lim

various inbuilt optimization algorithms, restarting optimization
from checkpoints and others. Thematically, the entire code can

graph for
near field
d model,
ompared
rior term,
s the loss
ework based most directly on Seljak et al. (2017);
018, 2019b). We refer the reader to these for
ils but briefly, we forward model (F) the ob-
interest from the initial conditions of the Uni-
compare them with the observed data (d) under
odel - L(d|s). This can be combined with the

r on the initial modes to write the corresponding
s|d). This posterior is either optimized to get a
osteriori (MAP) estimate of the initial conditions,
y it can be explored with sampling methods as in
ndelt (2013). However in either approach, given

ion dimensionality of the observations, it is nec-
gradient-based approaches for optimization and
hence a differentiable forward model is neces-
mesh simulations evolving the initial conditions
tter field will form the first part of these forward
st cosmological observables of interest. Here we
action with two examples how the inbuilt differ-
interfacing of FlowPM with TensorFlow makes

ch approaches natural.

uction from Dark Matter

y problem, consider the reconstruction of the ini-
sity field (s) from the final Eulerian dark matter
d = δe) as an observable. While the 3D Eule-
er field is not observed directly in any survey, and
urveys only allow us to probe the projected mat-
d, this problem is illustrative in that the forward
the PM simulation i.e. F = FlowPM with the

ity field δm = F (s). We will include more realis-
and complex modeling in the next example.

a Gaussian uncorrelated data noise with constant
n configuration space. Then, the negative log-
e initial conditions is:

p(δm|δe) =
(δe − δm)2

2σ2 +
1
2

s†S−1s + cst (12)

term is the negative Gaussian log-likelihood and
is the negative Gaussian log-prior on the power

nitial conditions, assuming a fiducial power spec-

uct the initial conditions, we need to minimize
log-posterior Eq. 12. The snippet of Mesh-
de for such a reconstruction using TF Estimators
2017) is outlined in Listing 11. In the interest
have skipped variable names and dimension dec-
I/O and other setup code while focusing only on

tly relevant to reconstruction. Broadly, we use the
ss defined TensorFlow to implement reconstruc-
mization problem where the initial density field is
nderlying variable and the negative log-posterior

nction of interest. Using Estimators allows us
use the entire machinery of TensorFlow includ-
ited to monitoring optimization, choosing from

be split into three components:

• recon model : this generates the computational
the optimization problem. It creates a variable li
(initial conditions) that is the input to the forwar
which is FlowPM, to generate our model that is c
with the input data to construct a likelihood and p
hence defining the negative log-posterior which i
metric to optimize for reconstruction

11

def recon_model(mesh, data, x0):

[...] some code initialisation

#Define i

var=mtf.g

#Forward

model=FLO

#Define m

#"sigma"

chisq=mtf

prior=mtf

loss =chi

return va

def model_fn(

[...] s

var, mode

#Construc

if mode =

var_g

for v

optim

updat

#Lower me

lowering=

tf_init=l

tf_model=

tf_loss=l

#If predi

if mode =

tf.su

predi

retur

mod

pre

#If train

if mode =

tf_up

train

...

retur

def main():

[...]

#Define e

def input

retur

recon_est

m

m

Train (

recon_est

#and eval

eval_resu

Figure 11: (Listin
served matter den

• model fn
the TF E
the gradi
con mod

passes it to the optimzation algorithm and updates the vari-
ables. If the mode is predict, it takes in the current estimate

l predic-
requires
abstract

construc-
do opti-

ur recon-

e 12 and
in a 400
. the PM

icle reso-
based op-

e as de-
) to assist
moothing
and then
y smaller
ere in the
raightfor-
ng spec.
struction

enceforth
tructions
e conver-
8); Feng
scent al-

including
4.6 sec-

RSC. We
nverged,
parison,

ent algo-
a and Ba,
, without

runs for
conds on
otal opti-
e. These
e with a
we have

eld along
ig 13, we
en the re-
final data
l field for
ard mod-
tructs the
imization

BFGS (L-
nitial conditions as variable

et_variable(mesh,

'linear',
shape,

tf.constant_initializer(x0))

model here with FlowPM

WPM(var, ...)

etrics for loss with data noise variance

and prior power spectrum "power"

.reduce_sum(((model-data)/sigma)^2)

.reduce_sum(r2c(var)^2/power)

sq + prior

r, model, loss

x0, data, mode, params):

ome code initialisation

l, loss=recon_model(mesh, data, x0)

t optimizer for reconstruction

= tf.estimator.ModeKeys.TRAIN:

rads=mtf.gradients([loss],[v.outputs

in graph.trainable_variables])

izer=mtf.optimize.AdamOptimizer(0.1)

e_ops=optimizer.apply_grads(var_grads,

graph.trainable_variables)

sh tensorflow variables and ops

mtf.Lowering(graph,{mesh:mesh_impl})

owering.export_to_tf_tensor(var)

lowering.export_to_tf_tensor(model)

owering.export_to_tf_tensor(loss)

ct, return current reconstruction

= tf.estimator.ModeKeys.PREDICT:

mmary.scalar("loss", tf_loss)

ctions={"ic":tf_init,"data":tf_data}

n tf.estimator.EstimatorSpec(

e=tf.estimator.ModeKeys.PREDICT,

dictions=predictions)

, optimize for reconstruction

= tf.estimator.ModeKeys.TRAIN:

_op=[lowering.lowered_operation(op)

for op in update_ops]

_op=tf.group(tf_up_op)

checkpoint hooks...

n tf.estimator.EstimatorSpec(

tf.estimator.ModeKeys.TRAIN,

loss=tf_loss, train_op=train_op)

some code initialisation

stimator for reconstruction

_fn():

n x0, datafea

imator = tf.estimator.Estimator(

odel_fn=model_fn,

odel_dir='./tmp/')
Reconstruct)

imator.train(input_fn, max_steps=100)

uate model.

lts = recon_estimator.predict(input_fn)["ic"]

g 7.1) Code to reconstruct the initial conditions from the ob-
sity field with FlowPM and TensorFlow Estimator API

: this creates the train and predict routines for
stimator. If the mode is training, it estimates

ents of the objective function returned by the re-
el with respect to the variable defined therein,

of the underlying variable and returns the mode
tion. As previously mentioned, in MeshTF, one
to lower these tensors which converts them from
objects to objects which can be evaluated.

• main : this calls the Estimator class to first do re
tion by running the estimator in training mode (to
mization) and then in predict mode to evaluate o
struction

We show the results of this reconstruction in Figur
13. Here, the forward model is a 5-step PM simulation
Mpc/h box on 1283 grid with force resolution of one i.e
force is estimated on the same grid resolution as part
lution (in this case 1283. We supplement the gradient-
timization outlined in Listing 11 with annealing schem
scribed in Feng et al. (2018); Modi et al. (2018, 2019b
reconstruction of large scales. Briefly, this involves s
the residual on small scales to fit the large scales first,
we keep reducing the smoothing scale to fit increasingl
scales of the density field. We skip technical details h
code for the sake of simplicity, but they are included st
wardly in this API as a part of recon model and traini

We compare our results with the previous recon
code in Python based on FastPM, vmad and abopt (h
referred to as FastPM reconstruction). Both the recons
follow the same five step annealing schedule to promot
gence on large scales as described in Modi et al. (201
et al. (2018). FastPM reconstruction uses gradient de
gorithm with single step line-search. Every iteration (
gradient evaluation and line search) takes roughly ∼
onds on 4 nodes i.e. 128 cores on Cori Haswell at NE
reconstructed for 500 steps, until the large scales co
in total wall-clock time of ∼ 2300 seconds. In com
for FlowPM reconstruction we take advantage of differ
rithms in-built in TensorFlow and use Adam (Kingm
2014) optimization with initial learning rate of 0.01
any early stopping or tolerance. Every annealing step
100 iterations wherein every iteration takes ∼ 1.1 se
a single Cori GPU and the 500 iterations done for t
mization clock in at ∼ 550 seconds in wallclock tim
numbers, except time per iteration, will likely chang
different learning rate and optimization algorithm and
not explored these in detail for this toy example.

In Figure 12, we show the true initial and data fi
with the reconstructed initial field by both codes. In F
show the cross correlation and transfer function betwe
constructed and true initial fields (blue) as well as the
field (orange) for FlowPM. Here the reconstructed fina
comparison with the final data field is obtained by forw
eling the reconstructed initial field. FastPM recons
fields comparably, even though we use a different opt
algorithm.7

7abopt also provides the flexibility to use Limited-memory

12

Figure 12: Recon
able. Top row sh
(right). Bottom r
FastPM and Flow

ilar on large scale
small scales due t
reconstructs more
sharper.

Figure 13: Two p
field observable.
function (right) fo
final dark matter
on the large scale

7.2. Reconstr
In the next

struction of th
a more compl
masses are no
proxy for gala
large scale str
posed by gala
underlying ma
biased version
ated density fi
Schmittfull et

BFGS) algorithm
slightly with a litt
tion.

the observables at the field level, Modi et al. (2018) proposed
using neural networks to model the halo masses and positions

cate their
the halo

n is sup-
rks, NNp
redicts a
the grid
Nm pre-
ombined

th the ob-
r density.
ired from
observed

(13)

with op-
ussian of
standard

om simu-

in 11 by
NNm in

onstrates
n model

o modify

simula-
sity n̄ =

box. At
id points
forward

two fully
l of 5000
ils can be
s in non-
lemented

in Figure
stPM re-
arily in-
eld with
standard
ich have
l., 2018).
on small
is can be
l. (2017);
yond the
k.
structing initial conditions from the dark matter field observ-
ows the true initial conditions (left) and the dark matter data
ow shows the reconstructed MAP initial density field with
PM respectively. The reconstructed fields and power is sim-
s, which are the scales of primary interest, but different on
o different optimizers being used in different codes. FlowPM
power on small scales than FastPM and hence looks visually

oint statistics for the reconstructed fields from the dark matter
We show the cross correlation coefficient (left) and transfer
r the reconstructed initial field (orange) and the corresponding
field (blue) with FlowPM. The reconstruction is near perfect
s.

uction from Halos with a Neural Network model
example, we consider a realistic case of recon-
e initial conditions from dark matter halos under
ex forward model. Dark matter halos and their
t observed themselves. However they are a good
xies which are the primary tracers observed in

ucture surveys, since they capture the challenges
xies as a discrete, sparse and biased tracer of the
tter field. Traditionally, halos are modeled as a
of the Eulerian or Lagrangian matter and associ-
eld (Sheth and Tormen, 1999; Matsubara, 2008;
al., 2018). To better capture the discrete nature of

(Nocedal, 1980) which improves the FastPM reconstruction
le increase in wall clock of time, up to 4.8 seconds per itera-

from the Eulerian matter density field. Here we repli
formalism and reconstruct the initial conditions from
mass field as observable.

In Modi et al. (2018), the output of PM simulatio
plemented with two pre-trained fully connected netwo
and NNm. NNp is a fully connected network that p
binary mask on the grid with ones corresponding to
points where a halo is predicted to be present, and N
dicts halo masses at every grid point. These are then c
to predict a halo-mass field (MNN) that is compared wi
served halo-mass field (Md) up to a pre-chosen numbe
They propose a heuristic likelihood for the data insp
the log-normal scatter of halo masses with respect to
stellar luminosity. Specifically,

L =
µ + log(MR

d + M0) − log(MR
NN + M0))

2σ2

where M0 is a constant varied over iterations to assist
timization, MR are mass-fields smoothed with a Ga
scale R and µ and σ are mass-dependent mean and
deviations of the log-normal error model estimated fr
lations.

The code snippet in Listing 14 modifies the code
including these pre-trained neural networks NNp and
the forward model to supplement FlowPM. It also dem
how to include associated variables like M0 in the reco
function that can be updated with ease over iterations t
the model and optimization.

In this experiment, we do reconstruction with a
tion data of the halo mass field with number den
10−3 (Mpc/h)−3 on the 1283 grid for a 400 Mpc/h
this resolution and number density, only 17.5% of gr
are non-zero, indicating the sparsity of our data. The
model is a 5 step FastPM simulation followed by the
connected networks outlined above, NNp with a tota
weights and NNm with 600 weights in it. Further deta
found in Modi et al. (2018). The position network take
local features as a flattened array that can also be imp
as a convolution kernel of size 3 in TensorFlow.

The results for FlowPM reconstruction are shown
15 and 16 and the results are consistent with the Fa

construction shown in Modi et al. (2018). We are prim
terested in the cross-correlation of the reconstructed fi
the true initial field and for that we improve over the
reconstruction methods (Eisenstein et al., 2007) wh
cross-correlation of ∼90% at k=0.2 h/Mpc (Modi et a
Though FlowPM reconstructed field has more power
scales than the true field or FastPM reconstruction, th
corrected with simulations as pointed out in Seljak et a
Modi et al. (2018); Horowitz et al. (2019b) but it is be
scope and also tangential to the main point of this wor

13

def recon_model(mesh, data, x0, M0):

[...] some code initialisation

Load pr

Define

var = mtf

s

Forward

final_fie

Supplem

position

mass = NN

model = p

#Define m

#"sigma"

chisq = m

(

m

prior = m

loss = ch

return va

def model_fn(

[...] s

var, mode

f

same as

def main():

[...] s

Estimat

def input

ft =

retur

same as

recon_est

m

Train (

recon_est

m

and eva

eval_resu

i

Figure 14: (Listin
forward model an
struction

In addition
FlowPM, the
the speed of i
is ∼ 1.7 secon
reconstruction
FastPM iterati
implementatio
as required by
efficiently imp
plexity in the
does not conv
use L-BFGS o
Since it is a ps
ent descent an
iterations. Sin
implemented,
before and do
ing to 1500 ite

mass field
e halo mass
ty field with

e halo mass
nd transfer

rresponding

on a sin-
hours on

l N-body
elerated,
unprece-
next gen-

nderlying
estimated
ation, we
amework
utational

e the bot-
e and im-
based on
fine tun-
cy while
e-trained variables of NN

initial conditions as variable

.get_variable(mesh, 'linear',
hape, tf.constant_initializer(x0))

model here with FlowPM

ld = FLOWPM(var, ...)

ent FlowPM with NN models

= NNp(field_field)

m(final_field)

osition*mass

etrics for loss with data noise variance

and prior power spectrum "power"

tf.reduce_sum(

(mu + mtf.log(model+M0) -

tf.log(data+M0))/sigma)^2)

tf.reduce_sum(r2c(var)^2/power)

isq + prior

r, model, loss

ft, data, mode, params):

ome code initialisation

l, loss = recon_model(mesh, data,

t['x0'], ft['M0'])
Figure 12 from here

ome code initialisation

or with dict input

_fn():

{'x0':x0, 'M0':M0}
n ft, data

Figure 12 from here

imator = tf.estimator.Estimator(

odel_fn=model_fn,model_dir=./tmp/)

Reconstruct)

imator.train(input_fn=input_fn,

ax_steps=100)

luate model.

lts = recon_estimator.predict(

nput_fn=input_fn)["ic"]

g 7.2) Update Listing 11 to include neural networks in the
d associated variables to be changed over iterations of recon-

to the ease of implementing reconstruction in
most significant gain of FlowPM is in terms of
teration. The time taken for 1 FlowPM iteration
d while the time taken for 1 iteration in FastPM

in ∼ 15 seconds. The huge increase in time for
ons as compared to FlowPM is due to the Python
n of single convolution kernel and its gradients

the neural network bias model, which is very
lemented in TensorFlow. Due to increased com-

forward model, gradient descent with line search
erge at all. Thus for FastPM reconstruction, we
ptimization with line search in abopt package.
eudo second order scheme, it outperforms gradi-
d Adam with the optimization converging in 450
ce Mesh-TF does not have L-BFGS optimization
FlowPM implementation uses Adam algorithm as
es 100 iterations at every annealing step, total-
rations. Despite the difference in the number of

Figure 15: Reconstructing initial conditions from the discrete halo
observable. Top row shows the true initial conditions (left) and th
field (right). Bottom row shows the reconstructed MAP initial densi
FastPM and FlowPM respectively.

Figure 16: Two point statistics for the reconstructed fields from th
field observable. We show the cross correlation coefficient (left) a
function (right) for the reconstructed initial field (orange) and the co
halo mass field (blue) with FlowPM.

iterations, FlowPM implementation takes only 1 hour
gle GPU while FastPM reconstruction takes roughly 2
128 CPUs (MPI processes).

8. Conclusion

In this work, we present FlowPM - a cosmologica
code implemented in Mesh-TensorFlow for GPU-acc
distributed, and differentiable simulations to tackle the
dented modeling and analytic challenges posed by the
eration of cosmological surveys.
FlowPM implements FastPM scheme as the u

particle-mesh gravity solver, with gravitational force
with 3D Fourier transforms. For distributed comput
use Mesh-TensorFlow as our model parallelism fr
which gives us full flexibility in determining the comp
layout and distribution of our simulation. To overcom
tleneck of large scale distributed 3D FFTs, we propos
plement a novel multi-grid force computation scheme
image pyramids. We demonstrate that without any
ing, this method is able to achieve sub-percent accura

14

reducing the communication data-volume by a factor of 64x.
At the same time, given the GPU accelerations, FlowPM is 4-
20x faster tha
depending on

However th
ity of the sim
ing framework
are differentia
lows for devel
tions based inf
which rely on
(gradients) of
ter field for pr
derlying initia
umes and mul
lems. We dem
cal code-snipp
by using Tens
dimensional s
machine learn
this reconstruc
comparable ac
lower wall-clo
times lower co
dark matter fie
FlowPM is o

repo at https:/
ample code to
multi-grid forc
construction w
per. We hope
this novel tool
generation of

Acknowledge

We would l
at NERSC an
in developing
gracious dona
was instrumen
Mesh implem
ported by the
bers 1814370
Number 80NS
the National
(NERSC), a U
Facility operat

References

Alsing, J., Wand
pression and d
cosmology.
arXiv:1801.

Anderson, C.H., B
in image proce

Burt, P., Adelson, E., 1983. The laplacian pyramid as a compact image code.
IEEE Transactions on Communications 31, 532–540.

osukhin, I.,
Tucker, P.,
aging Sim-

orks. arXiv

., Lippich,
Balaguera-
., Fosalba,

Vakili, M.,
mock cata-
ly Notices
L: https:

/sty2964,
/482/4/4883/26822202/sty2964.pdf.
ation-based
9.
, S., Allen,

, 2016. The
. ArXiv e-

Improv-
ion of the
6/518712,

Cosmology
. arXiv e-

ew scheme
2273–2286.

r surface of
and Astro-
8/07/043,

P.A., Wein-
ological N-
5/aabfd3,

cle Simula-
:10.1016/

J.D., Des-
P3M. MN-
08.5098.
s, B., 2019.
ceedings of
073/pnas.

g Particles.

. TARDIS.
∼ 2.5 Cos-
:10.3847/

reconstruc-
J. Cosmol-
9/10/035,

nd accurate
. MNRAS
04685.
tion of ini-
, 894–913.

timization.

oscillations
439, L21–
n the corresponding Python FastPM simulation
the resolution and compute distribution.
e main advantage of FlowPM is the differentiabil-
ulation and natural interfacing with deep learn-
s. Built entirely in TensorFlow, the simulations
ble with respect to every component. This al-
opment of novel analytic methods such as simula-
erence and reconstruction of cosmological fields
being able to analytically estimate the response

the cosmological observables (evolved dark mat-
oxy) with respect to the input cosmology and un-
l density field, especially in the large data vol-
ti-million dimensionality of cosmological prob-
onstrate with two examples, providing the logi-
ets, how FlowPM makes the latter straightforward
orFlow Estimator API to do optimization in 1283

pace. It is also able to naturally interface with
ing frameworks as a part of the forward model in
tion. Lastly, due to its speed, it is able to achieve
curacy to FastPM based reconstruction in 5 times
ck time (550 seconds vs 2300 seconds), and 640
mputing time (single GPU vs 128 processes) for
ld observables.
pen-source and publicly available on our Github

/github.com/modichirag/flowpm. We provide ex-
do forward PM evolution with single-grid and
e computation. We also provide code for the re-
ith both the examples demonstrated in the pa-
that this will encourage the community to use
and develop scientific methods to tackle the next

cosmological surveys.

ments

ike to thank Mustafa Mustafa and Wahid Bhimji
d Thiru Palanisamy at Google for the support
this. We would also like to acknowledge the

tion of TPU compute time from Google which
tal in developing and testing FlowPM for SIMD

entation. This material is based upon work sup-
National Science Foundation under Grant Num-
and NSF 1839217, and by NASA under Grant
SC18K1274. This research used resources of

Energy Research Scientific Computing Center
.S. Department of Energy Office of Science User
ed under Contract No. DE-AC02-05CH11231.

elt, B., Feeney, S., 2018. Massive optimal data com-
ensity estimation for scalable, likelihood-free inference in

MNRAS 477, 2874–2885. doi:10.1093/mnras/sty819,
01497.
ergen, J.R., Burt, P.J., Ogden, J.M., 1984. Pyramid methods

ssing.

Cheng, H.T., Haque, Z., Hong, L., Ispir, M., Mewald, C., Pol
Roumpos, G., Sculley, D., Smith, J., Soergel, D., Tang, Y.,
Wicke, M., Xia, C., Xie, J., 2017. TensorFlow Estimators: Man
plicity vs. Flexibility in High-Level Machine Learning Framew
e-prints , arXiv:1708.02637arXiv:1708.02637.

Colavincenzo, M., Sefusatti, E., Monaco, P., Blot, L., Crocce, M
M., Sánchez, A.G., Alvarez, M.A., Agrawal, A., Avila, S.,
Antolı́nez, A., Bond, R., Codis, S., Dalla Vecchia, C., Dorta, A
P., Izard, A., Kitaura, F.S., Pellejero-Ibanez, M., Stein, G.,
Yepes, G., 2018. Comparing approximate methods for
logues and covariance matrices – III: bispectrum. Month
of the Royal Astronomical Society 482, 4883–4905. UR
//doi.org/10.1093/mnras/sty2964, doi:10.1093/mnras
arXiv:https://academic.oup.com/mnras/article-pdf

Cranmer, K., Brehmer, J., Louppe, G., 2019. The frontier of simul
inference. arXiv e-prints , arXiv:1911.01429arXiv:1911.0142

DESI Collaboration, Aghamousa, A., Aguilar, J., Ahlen, S., Alam
L.E., Allende Prieto, C., Annis, J., Bailey, S., Balland, C., et al.
DESI Experiment Part I: Science,Targeting, and Survey Design
prints arXiv:1611.00036.

Eisenstein, D.J., Seo, H.J., Sirko, E., Spergel, D.N., 2007.
ing Cosmological Distance Measurements by Reconstruct
Baryon Acoustic Peak. ApJ 664, 675–679. doi:10.108
arXiv:astro-ph/0604362.

Elsner, F., Schmidt, F., Jasche, J., Lavaux, G., Nguyen, N.M., 2019.
Inference from Biased Tracers using the EFT-based Likelihood
prints , arXiv:1906.07143arXiv:1906.07143.

Feng, Y., Chu, M.Y., Seljak, U., McDonald, P., 2016. FASTPM: a n
for fast simulations of dark matter and haloes. MNRAS 463,
doi:10.1093/mnras/stw2123, arXiv:1603.00476.

Feng, Y., Seljak, U., Zaldarriaga, M., 2018. Exploring the posterio
the large scale structure reconstruction. Journal of Cosmology
Particle Physics 2018, 043. doi:10.1088/1475-7516/201
arXiv:1804.09687.

Garrison, L.H., Eisenstein, D.J., Ferrer, D., Tinker, J.L., Pinto,
berg, D.H., 2018. The Abacus Cosmos: A Suite of Cosm
body Simulations. ApJS 236, 43. doi:10.3847/1538-436
arXiv:1712.05768.

Greengard, L., Rokhlin, V., 1987. A Fast Algorithm for Parti
tions. Journal of Computational Physics 73, 325–348. doi
0021-9991(87)90140-9.

Harnois-Déraps, J., Pen, U.L., Iliev, I.T., Merz, H., Emberson,
jacques, V., 2013. High-performance P3M N-body code: CUBE
RAS 436, 540–559. doi:10.1093/mnras/stt1591, arXiv:12

He, S., Li, Y., Feng, Y., Ho, S., Ravanbakhsh, S., Chen, W., Póczo
Learning to predict the cosmological structure formation. Pro
the National Academy of Science 116, 13825–13832. doi:10.1
1821458116, arXiv:1811.06533.

Hockney, R.W., Eastwood, J.W., 1988. Computer Simulation Usin
Taylor & Francis, Inc., Bristol, PA, USA.

Horowitz, B., Lee, K.G., White, M., Krolewski, A., Ata, M., 2019a
I. A Constrained Reconstruction Approach to Modeling the z
mic Web Probed by Lyα Forest Tomography. ApJ 887, 61. doi
1538-4357/ab4d4c, arXiv:1903.09049.

Horowitz, B., Seljak, U., Aslanyan, G., 2019b. Efficient optimal
tion of linear fields and band-powers from cosmological data.
ogy Astropart. Phys. 2019, 035. doi:10.1088/1475-7516/201
arXiv:1810.00503.

Izard, A., Crocce, M., Fosalba, P., 2016. ICE-COLA: towards fast a
synthetic galaxy catalogues optimizing a quasi-N-body method
459, 2327–2341. doi:10.1093/mnras/stw797, arXiv:1509.

Jasche, J., Wandelt, B.D., 2013. Bayesian physical reconstruc
tial conditions from large-scale structure surveys. MNRAS 432
doi:10.1093/mnras/stt449, arXiv:1203.3639.

Kingma, D.P., Ba, J., 2014. Adam: A Method for Stochastic Op
ArXiv e-prints arXiv:1412.6980.

Kitaura, F.S., Yepes, G., Prada, F., 2014. Modelling baryon acoustic
with perturbation theory and stochastic halo biasing. MNRAS
L25. doi:10.1093/mnrasl/slt172, arXiv:1307.3285.

15

Kodi Ramanah, D., Charnock, T., Villaescusa-Navarro, F., Wandelt, B.D., 2020.
Super-resolution emulator of cosmological simulations using deep physical
models. arXiv

LSST Science Co
J.R., Angel, J.R
2009. LSST Sc

Matsubara, T., 20
space distortio
doi:10.1103/

Merz, H., Pen, U
codes: PMFA
02.001, arXi

Modi, C., Castor
with neutral h
, arXiv:1904.1

Modi, C., Feng, Y
light: neural n
and Astro-Part
028, arXiv:1

Modi, C., White
large-scale str
arXiv:1907.02

Monaco, P., 2016
catalogs in the
www.mdpi.co

Nelson, D., Pillep
Rodriguez-Go
Blecha, L., Sa
Public data rel
j.ascom.201

Nocedal, J., 1980
ematics of Co
stable/2006

Pippig, M., 2013.
SIAM Journal
120885887.

Quinn, T., Katz, N
tions. arXiv e-

Schmittfull, M., S
Biased Tracers

Seljak, U., Aslany
of cosmologic
and Astro-Par
12/009, arXi

Shazeer, N., Che
P., Hawkins,
man, B.A., 20
CoRR abs/181
arXiv:1811.

Sheth, R.K., Torm
split. MNRAS
x, arXiv:ast

Springel, V., Pak
mic structure
arXiv:2010.03

Stein, G., Alvarez
fast generation
validation. M
arXiv:1810.

Suisalu, I., Saar,
cosmological s
274.1.287, a

Tassev, S., Zaldar
in ten easy ste
doi:10.1088/

Teyssier, R., 200
ment. A new h
doi:10.1051/

Wang, H., Mo, H.
the Local Univ
tonian Markov

ApJ 794, 94. doi:10.1088/0004-637X/794/1/94, arXiv:1407.3451.
White, M., Tinker, J.L., McBride, C.K., 2014. Mock galaxy catalogues using

ravitational
ons. A&A
e-prints , arXiv:2001.05519arXiv:2001.05519.
llaboration, Abell, P.A., Allison, J., Anderson, S.F., Andrew,
.P., Armus, L., Arnett, D., Asztalos, S.J., Axelrod, T.S., et al.,
ience Book, Version 2.0. ArXiv e-prints arXiv:0912.0201.

08. Nonlinear perturbation theory with halo bias and redshift-
ns via the Lagrangian picture. Phys. Rev. D 78, 083519.
PhysRevD.78.083519, arXiv:0807.1733.
.L., Trac, H., 2005. Towards optimal parallel PM N-body

ST. New A 10, 393–407. doi:10.1016/j.newast.2005.
v:astro-ph/0402443.
ina, E., Feng, Y., White, M., 2019a. Intensity mapping
ydrogen and the Hidden Valley simulations. arXiv e-prints
1923arXiv:1904.11923.
., Seljak, U., 2018. Cosmological reconstruction from galaxy
etwork based light-matter connection. Journal of Cosmology
icle Physics 10, 028. doi:10.1088/1475-7516/2018/10/
805.02247.
, M., Slosar, A., Castorina, E., 2019b. Reconstructing
ucture with neutral hydrogen surveys. arXiv e-prints ,
330arXiv:1907.02330.
. Approximate methods for the generation of dark matter halo

age of precision cosmology. Galaxies 4. URL: https://
m/2075-4434/4/4/53, doi:10.3390/galaxies4040053.
ich, A., Genel, S., Vogelsberger, M., Springel, V., Torrey, P.,
mez, V., Sijacki, D., Snyder, G.F., Griffen, B., Marinacci, F.,
les, L., Xu, D., Hernquist, L., 2015. The illustris simulation:
ease. Astronomy and Computing 13, 12–37. doi:10.1016/
5.09.003, arXiv:1504.00362.
. Updating quasi-newton matrices with limited storage. Math-
mputation 35, 773–782. URL: http://www.jstor.org/
193.
Pfft - an extension of fftw to massively parallel architectures.
on Scientific Computing 35, C213 – C236. doi:10.1137/

., Stadel, J., Lake, G., 1997. Time stepping N-body simula-
prints , astro–ph/9710043arXiv:astro-ph/9710043.
imonović, M., Assassi, V., Zaldarriaga, M., 2018. Modeling
at the Field Level. arXiv e-prints arXiv:1811.10640.
an, G., Feng, Y., Modi, C., 2017. Towards optimal extraction
al information from nonlinear data. Journal of Cosmology
ticle Physics 2017, 009. doi:10.1088/1475-7516/2017/
v:1706.06645.
ng, Y., Parmar, N., Tran, D., Vaswani, A., Koanantakool,
P., Lee, H., Hong, M., Young, C., Sepassi, R., Hecht-
18. Mesh-tensorflow: Deep learning for supercomputers.
1.02084. URL: http://arxiv.org/abs/1811.02084,
02084.

en, G., 1999. Large-scale bias and the peak background
308, 119–126. doi:10.1046/j.1365-8711.1999.02692.
ro-ph/9901122.
mor, R., Zier, O., Reinecke, M., 2020. Simulating cos-
formation with the GADGET-4 code. arXiv e-prints ,

567arXiv:2010.03567.
, M.A., Bond, J.R., 2019. The mass-Peak Patch algorithm for
of deep all-sky dark matter halo catalogues and its N-body
NRAS 483, 2236–2250. doi:10.1093/mnras/sty3226,
07727.
E., 1995. An adaptive multigrid solver for high-resolution
imulations. MNRAS 274, 287–299. doi:10.1093/mnras/
rXiv:astro-ph/9412043.
riaga, M., Eisenstein, D.J., 2013. Solving large scale structure
ps with COLA. J. Cosmology Astropart. Phys. 2013, 036.
1475-7516/2013/06/036, arXiv:1301.0322.
2. Cosmological hydrodynamics with adaptive mesh refine-
igh resolution code called RAMSES. A&A 385, 337–364.
0004-6361:20011817, arXiv:astro-ph/0111367.
J., Yang, X., Jing, Y.P., Lin, W.P., 2014. ELUCID—Exploring
erse with the Reconstructed Initial Density Field. I. Hamil-
Chain Monte Carlo Method with Particle Mesh Dynamics.

the quick particle mesh method.
Zel’Dovich, Y.B., 1970. Reprint of 1970A&A.....5...84Z. G

instability: an approximate theory for large density perturbati
500, 13–18.

16

High

-

-

-

-

-

lights

End-to-end differentiable cosmological N-Body simulations

GPU based simulations with 10x speed gain over current CPU simulations

First N-body simulation written in TensorFlow interfacing with ML and DL components

Novel multi-grid force algorithm for distributed computing of large scale forces.

Support for large-scale distribution on supercomputers with Mesh TensorFlow

Author Contribution

Chir

Valid ;

Form

Writi ;

Supe
ag Modi: Conceptualization; Formal analysis; Investigation; Methodology; Software;

ation; Visualization; Roles/Writing - original draft; Francois Lanusse: Conceptualization

al analysis; Investigation; Methodology; Resources; Software; Supervision; Validation;

ng - review & editing Uros Seljak: Conceptualization; Project administration; Resources

rvision; Writing - review & editing

Decla

X Th ps
that

☐Th ed
as po
ratio if ioterettt

e authors declare that they have no known competnn nancial interests or personal relatonshi
could have appeared to infuence the work reported in this paper.

e authors declare the followinn nancial interestsppersonal relatonships which may be consider
tental competnn interests:

