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ATTENTION-DEFICIT DISORDER (A ROSTAIN, SECTION EDITOR)

Use of EEG to Diagnose ADHD

Agatha Lenartowicz & Sandra K. Loo

# Springer Science+Business Media New York 2014

Abstract Electroencephalography (EEG) has, historically,
played a focal role in the assessment of neural function in
children with attention deficit hyperactivity disorder
(ADHD). We review here the most recent developments
in the utility of EEG in the diagnosis of ADHD, with
emphasis on the most commonly used and emerging EEG
metrics and their reliability in diagnostic classification.
Considering the clinical heterogeneity of ADHD and the
complexity of information available from the EEG signals,
we suggest that considerable benefits are to be gained
from multivariate analyses and a focus towards under-
standing of the neural generators of EEG. We conclude
that while EEG cannot currently be used as a diagnostic
tool, vast developments in analytical and technological
tools in its domain anticipate future progress in its utility
in the clinical setting.
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Introduction

The use of electroencephalography (EEG) in ADHD began
more than 75 years ago with Jasper et al. [1] reporting a
slowing of the EEG rhythms at fronto-central sensors, a puta-
tive indicator of abnormal brain function in a group of “be-
havior problem children” – described as hyperactive, impul-
sive, and highly variable. The relative maturity of this finding
when compared with recency of other major advances in
neuroimaging [2, 3], underscores the potential for clinical
utility of EEG. EEG is readily accessible and inexpensive,
and measures with millisecond temporal resolution, the elec-
trical activity produced by neuronal ensembles of the cerebral
cortex. Yet, 75 years later, clinical applications of EEG in
psychiatry are extremely controversial, with the primary ques-
tion being whether the knowledge gained from EEG has any
practical diagnostic value [4–6]. A number of excellent recent
reviews have discussed methodological limitations, from a
clinical standpoint, of using EEG as a diagnostic [6], as well
as pointing to a relative lack of diagnostic studies [5, 7•].

In this review, we focus instead on the current state of EEG
metrics that have potential for application in diagnosis of
ADHD. We first summarize the most recent progress in two
classes of neurophysiological features that have been associ-
ated with group differences between ADHD and other popu-
lations, the slow EEG rhythms described by Jasper et al. [1]
and event-related potentials (ERP). Second, we evaluate new
developments that more directly address the links between
EEG features and clinical heterogeneity in ADHD — signif-
icant factors that may have limited past utility of EEG in
ADHD diagnosis. We cautiously conclude that these new
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developments, which include multivariate analyses and reso-
lution of EEG signals into their neural generators, place EEG
on a path to transition from a research tool to an aid in clinical
evaluation of ADHD.

Neurophysiological Candidates for Biomarkers of ADHD

The signal measured by each EEG sensor is a time course
representing, in amplitude, the amount of summed electrical
activity occurring somewhere in the cortex. This signal is rich
in information that can be extracted using a variety of different
techniques. In Fig. 1, we summarize common techniques for
extracting information from the EEG time course that can be
used to diagnose ADHD. Meaningful information content is
extracted from such a signal, typically, in one of two ways: by
quantifying the power (absolute magnitude) of oscillations of
the signal spanning an interval of minutes (typically during
resting conditions, [Fig. 1a, lower left]), and, by computing
the average change in latency or amplitude of the electrical
potential in the range of hundreds of milliseconds following or
preceding some event (e.g., event-related potential, ERP,
[Fig. 1a, upper right). The former is broadly compatible with
a measure of brain state, whereas the latter measures transient
cortical dynamics. A combination of these techniques can be
used to quantify event-related changes in power (and therefore
brain state, [Fig. 1a, lower right]). Since EEG signals are
collected from many spatial locations on the scalp,
representing the contributions of many sources in the cortex,
these spectral (i.e., power) and temporal metrics can be com-
puted for different electrodes (Fig. 1b). The EEG dataset is
therefore a combination of temporal, spectral, and spatial (e.g.,
electrodes) “features”, all of which can be used to assist
diagnosis (Fig. 1c). In the following discussion we review
recent developments in common metrics used in ADHD
diagnosis.

Theta: Slowed Brain Rhythms

The most robust EEG feature associated with ADHD is ele-
vated power of slow waves (4-7 Hz “theta”) and/or decreased
power of fast waves (14-30 Hz “beta”), typically recorded
over fronto-central electrodes, which are sometimes combined
and quantified by the theta/beta ratio (TBR) [8, 9]. This
conclusion was bolstered by early reports of medium to large
effect sizes, ranging from .62 and 3.08 [10, 11, 12••], for group
differences in TBR and of diagnostic sensitivities and speci-
ficities in excess of 90 % in multiple reports [13–15]. The
relevance of TBR to ADHD was further strengthened by
initial hypotheses linking the increases of slow wave activity
contributing to this ratio with hypoarousal [9, 16], one of the
earliest characterizations of the disorder [17]. The combina-
tion of a clear theoretical rationale and significant statistics

inevitably contributed to the July 15, 2013 news release
( h t t p : / / www. f d a . g o v / n ew s e v e n t s / n ew s r o om /
pressannouncements/ucm360811.htm), by the Food and Drug
Administration, of approval for a Neuropsychiatric EEG-
Based Assessment Aid (NEBA) System for the diagnosis of
ADHD — rooted in TBR.

The timing of the NEBA news release coincides with rising
concern over the accuracy and reliability of TBR as a diag-
nostic [4] (Table 1). At least five recent studies have failed to
replicate theta or TBR differences in ADHD versus non-
ADHD, between groups of children [18] and adults [19, 20],
as well as cross-sectionally across age [21, 22, 23•]. In a study
of 101 children (62 diagnosed with ADHD), Ogrim et al. [18]
reported sensitivity of 63 % and specificity of only 58 % in
differentiating between children with and without ADHD
based on TBR, to contrast with an accuracy of 85 % based
on classification by omission errors alone. In a cross-sectional
analysis, using logistic regression, Buyck and Wiersema [21]
reported accuracy of 89.8-96.5 % in TBR predicting age (theta
decreased with age), but only 49.2-54.8 % accuracy in
predicting whether an individual has ADHD. Similarly,
Liechti et al. [22] found 81% accuracy in predicting age based
on TBR, but only 53 % accuracy in predicting diagnosis. In
the largest study of the TBR to date, no significant differences
were found between 562 children, adolescents, and adults
with ADHD compared to 309 non-ADHD controls, although
modest heterogeneity was attributed to ADHD subtype and
psychiatric co-morbidity [23•]. These null results were con-
firmed in a recent meta-analysis by Arns et al. [12••], who
reported a diminishing, non-significant TBR effect size that
was significantly associated with year of study publication
(r=-0.96, p=0.002). Notably the TBR for the ADHD group
has remained fairly stable, however, the control group TBR
has steadily risen over the years between 2006 and 2013
[12••]. Furthermore, in two recent attempts to explicitly test
the posited [16] association between TBR and arousal, Clarke
et al. [24] and Barry et al. [25] have reported no significant
relationship between TBR and skin conductance level (SCL).
Rather, they replicated their previously reported associations
between SCL and power in the “alpha” (8-14 Hz) frequency
range [26, 27]. The absence of a TBR-SCL correlation was
despite detection of significant group differences in SCL and
theta power, indicating that lack of power was not the medi-
ating factor in the null result. It therefore remains unclear with
what cortical activity, cognitive functions and behavioral
symptomatology the TBR is associated. These studies do
suggest, however, that TBR is not reliable in discriminating
between individuals with and without ADHD.

Event-Related Potentials: Abnormal Cortical Processing

The transient neural dynamics captured by ERPs have also
been explored for distinguishing features of ADHD. An
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advantage of ERPs is that, because they capture the temporal
evolution of neural activity following a prescribed event, they
can be linked with specific stages of processing. They can be

used to distinguish, for instance, between deficits of sensory
processing (e.g., expected to occur within the first 100 ms or
so following a tone) and post-sensory discrimination (e.g.,

Fig. 1 Diagnosis of ADHD can be based on temporal (a), spectral (a)
and spatial (b) features of EEG, either alone or in combination (c). Raw
EEG (a, top left), can be decomposed into spectral components that are
quantified by power, which represents the amplitude of oscillations of
varying frequencies that are present in the continuous signal. These
measures capture the background “state” of brain activity. Alternatively,
the data can be segmented (or epoched) around an event of interest (x).
The epochs are averaged and normalized by pre-stimulus activity, to
produce the event-related potential. These measures quantify temporal
dynamics of information processing. By combining spectral analysis with
event-related averaging, one can analyze event-related spectral power,
changes in synchronization that may represent changes in the brain state
during information processing. Spatial features (b) of EEG are scalp

topography maps (spectral and time-domain values across electrodes)
and their estimated cortical sources. Any of the spatial, temporal and
spectral features of the EEG signal may be used to distinguish between
patients with and without ADHD. Diagnosis based on EEG features
therefore benefits from multivariate approaches that use patterns across
features to classify patients (c). The lower panel shows an extreme
example of the benefit of multivariate classification. Whereas each mea-
sure alone shows only weak trend differences between the two popula-
tions (e.g., red = ADHD, blue = Control), the combination of the two
metrics (middle scatter plot) produces a linear function that dissociates
between the two groups (e.g., ADHD fall above and Control fall below
the line). Such an approach is likely to be of value in ADHD, known to
exhibit significant variability in EEG measures

Curr Psychiatry Rep (2014) 16:498 Page 3 of 11, 498



expected only after sensory processing has completed), thus
potentially allowing for a more refined diagnostic.

In practice, classification success using features of
ERPs has been modest, hovering in the range of 70-
80 % [8, 30]. In a review of a decade of ERP research
(2002-2012), Johnstone et al. [7•] pointed to group differ-
ences between ADHD and controls in a variety of ERP
features related to executive functions such as selective
attention (P2, P3), response inhibition (N2, P3), error
detection (ERN, Pe), and feedback processing (FRN),
but noted that the results were quite variable, and that
systematic studies of diagnostic success were largely ab-
sent from the literature. We are aware of only one recent
meta-analysis [31] of the P3, a positive voltage deflection
around 300 ms that has been associated with stimulus
evaluation and response selection [32, 33], conducted
across six studies in adults. This analysis revealed a large
effect size (Cohen’s d= -0.55) for distinguishing adults
with and without ADHD, which is consistent with the
conclusions of Johnstone et al. [7•] but requires further
research and reporting of sensitivity and specificity. The
calculation of ERP features such as peak amplitudes or
latencies, however, can be susceptible to high variance
when relatively few trials are averaged (<50), especially
when only one sensor is considered. This may have lim-
ited the efficacy of ERP features in predicting ADHD
diagnosis in prior studies.

Partially in response to this limitation, there has been a rise
in the use of multivariate analyses that exploit the co-variation
betweenmeasures frommany time points andmany sensors to
characterize group differences (Fig. 1c, Table 2). The gain in
power from these approaches is evident in studies by Mueller

et al. [34••] and Nazvahani et al. [35], who used machine
learning algorithms and a combination of ERP-derived met-
rics to achieve classification accuracy in excess of 90 %.
Mueller et al. [34••] reported sensitivity and specificity of
91 % in predicting diagnosis in a sample of 150 adults (75
with ADHD), exploiting a combination of five response-
inhibition ERP features identified using independent compo-
nent analysis. In a smaller sample (n=36), focusing on visual
evoked responses to flashes of light, Nazhvani et al. [35]
developed an algorithm that identified the combination of time
points at which the ERP amplitude maximized the accuracy of
group discrimination. Using this approach they reached an
accuracy of 94.6 % in discriminating adults with ADHD from
controls and also an accuracy of 92.9 % in distinguishing
adults with ADHD from those with bipolar mood disorder.
Similarly, three recent applications of machine learning ap-
proaches to predict diagnostic category based on spectral
power across a range of frequency bands and higher-order
descriptors, accuracy ranged from 86 % to 97 %. Using a
combination of spectral power and fractal features (see glos-
sary) of EEG time series, one study reported diagnostic accu-
racy to be 86.4 %, with fractal features showing the strongest
discrimination [36]. Ahmadlou and Adeli [37] reported max-
imal accuracy of 95.6 % based on the combination of theta
band synchronization at electrodes O2/P4 and frontal elec-
trodes, and delta band synchronization at electrode T5 and
frontal electrodes. Similarly, Abibullaev and An [38] obtained
a maximal accuracy of 97 %, using relative theta measures
recorded from nine frontal scalp electrodes. Based on these
accuracy rates, we may conclude that the potential of multi-
variate machine learning tools in EEG-based diagnostics is
intriguing but, as such studies remain sparse and the results

Table 1 Studies examining the diagnostic utility of theta/beta ratio in ADHD

Author Year N Measures ACC SEN/SPEC Percent increase
in TBR in
ADHD

Buyck [14] 2014 62ADHD, 55CON Cz, θ/β ratio 49-55 % N/A NA

Liechti [22] 2013 54ADHD, 51CON Cz, θ/β ratio 53 % 38 % / 70 % -4 %

Loo [23•] 2013 390ADHD, 100CON Cz, θ/β ratio 38 % 26 % / 85 % 8 %

Ogrim [18] 2012 62ADHD, 39CON Cz, abs. θ and β power, θ/β ratio θ/β 63 %; theta 58 %;
GNG OE 85 %

N/A 26 %

Nazari [28] 2011 16ADHD, 16CON θ/β ratio (9 electrode clusters) N/A N/A 0 %

Williams [29] 2010 169ADHD, 167CON Fz/FCz, θ/β ratio N/A N/A 38 %

Snyder [15] 2008 Clinic: 97ADHD, 62CON Cz, θ/β ratio 89 % 87 % /94 %
95 % PPP
82 % NPP

87 %

Monastra [14] 2001 Exp 1: 96ADHD, 33CON;
Exp 2/3: 313 ADHD

Cz, θ/β ratio 91 % 90 % / 94 %
98 % PPP
76 % NPP

90 %

Note: CON: Non-ADHD control; Clinic: clinic sample; ACC: accuracy; SEN: sensitivity (true positive); SPEC: specificity (true negative); PPP: positive
predictive power; NPP: negative predictive power; GNG; Go/no-go task; OE: omission errors; abs: absolute; rel: relative; θ: theta (3-8 Hz); β: beta (14-
30 Hz)
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offer no simple interpretation (also c.f. individual level
diagnostics), requires further replication and validation.

Capturing Clinical Heterogeneity in EEG-Based
Diagnostics

The limited success of EEG in diagnosis of ADHD is perhaps
not surprising when considering the heterogeneity in etiology,
symptoms and treatment outcomes of the disorder, a fact that
has led most theorists to favor multiple pathway models over
single-cause explanations of the disorder [40–45]. Affected
neural circuits in ADHD have included nigrostriatal,
mesolimbic, and mesocortical dopamine pathways [41], nor-
adrenergic dysregulation of posterior attentional pathways
[46], delayed development of frontal cortex [47], and atypical
functioning of default mode network [48]. The plausibility of
multiple pathways causing the same set of ADHD symptoms
implies that a single EEGmeasure, like TBR, will be effective
in predicting ADHD in only a subset of those diagnosed. A
growing awareness of increased heterogeneity even in non-
ADHD populations is noted by Arns et al. [12••], who report
that the significant heterogeneity in the control group TBR is
responsible for the attenuated effect size of the TBR in
ADHD. This means that the major challenge for any diagnos-
tic is to contend with heterogeneity, not only of the disorder
but also at the larger population level as well. Current efforts
to disambiguate the links between clinical heterogeneity of

ADHD and EEG-based metrics include multivariate, multidi-
mensional analyses of EEG features previously associated
with ADHD (Fig. 1c), as well as mechanistically motivated
studies of the neural correlates of EEG features.

Emerging Multivariate EEG Profiles

Both exploratory and targeted analyses of spectral power in
the continuous EEG recording have indicated the presence of
multiple multidimensional clusters within ADHD, suggest-
ing that using any one spectral power (or ERP) feature is
likely to be characteristic of only a subset of kids with
ADHD. Using a multivariate cluster analysis, Clarke et al.
[49] characterized the variability within EEG data of 264
children (155 with ADHD) to reveal five behaviorally and
symptomatically unique clusters. Of these, only two (55
participants, 36 % of the ADHD sample) showed elevated
theta (and reduced beta), one of which was associated with
reduced ADHD symptoms and the other with enhanced self-
enjoyment. The remaining three clusters were characterized
by: elevated beta (12.5-25 Hz) power that was coupled with
symptoms of delinquent behaviors (n=36), elevated slow
wave (<12.5 Hz) power that was coupled with indices of
maturational lag (n=38), and elevated frontal alpha (7.5-
12.5 Hz) power that was coupled with markers of ritualistic
obsessive behaviors (n=26). Clearly, elevated spectral power
in the theta band (or any particular frequency band for that
matter) is not a feature that is homogenous within ADHD but
characterizes only a subset of patients.

Table 2 Studies employing multivariate analyses and novel measures in EEG-based diagnosis of ADHD

Author Year N Measures ACC Result details

Nazhvani [35] 2013 12ADHD, 12CON,
12 BMD

2 ERP features: N2, P2 peaks,
at O1 and O2 electrodes

92.9 %-94.6 % Algorithm developed to identify features
that most optimally discriminate between
ADHD and control subjects,
and between ADHD and BMD subjects

Mueller [34••] 2011 75ADHD, 75CON 5 ERP features: 4 latency, 1
amplitude

91 % 5 ERP features 100 % ACC in validation
sample: 17 ADHD subjects; 94 %
predictive power

Sadatnezhad [36] 2011 21ADHD, 22 BMD fractal dimension, AR model,
band power (δ/θ/α/β/γ)
(22 electrodes)

86.4 % Fractal-based features are more effective than
otherfeatures (qualitative observation).
Added noise degrades classification
equally across methods.

Abibullaev [38] 2012 7ADHD, 3CON rel. θ and βpower, θ/β & θ/α
ratios (9 frontal electrodes)

97 % Relative theta power most accurate with
semi-supervised method.

Ahmadlou [37] 2010 12ADHD, 12CON inter-electrode synchronization
(δ/θ/α/β/γ)

87.5 % Discriminant validity for synchronization
indices in theta band (electrodes O2, P4)
and delta band (electrodes T5), relative to
frontal electrodes.

Magee [39] 2005 253ADHD, 67CON abs. and rel. power 87 % Accuracy of resting EEG improved when
comparing each ADHD cluster versus
controls. 89 %/80 % Sensitivity/Specificity

Note: CON: Non-ADHD control; BMD: Bipolar mood disorder; ACC: accuracy; ERP: event related potential; AR: autoregressive; abs: absolute; rel:
relative; δ: delta (<4 Hz); θ: theta (3-8 Hz); α: alpha (8-14 Hz); β: beta (14-30 Hz); γ: gamma (>30 Hz)
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Furthermore the overall spectral profile may also vary
with gender and clinical subtype [50, 51, 52•, 53]. In
several studies TBR was reported to be enhanced in the
combined subtype of ADHD more than in the inattentive
subtype [23•, 52•], and only in boys in other studies [51,
52•]. These data indicate that there are important sources
of heterogeneity in ADHD (and the larger population) that
make it unlikely that any one EEG or ERP feature can
capture all or the majority of the variance. Although
previous studies have focused on ADHD subtype, which
is one of the most salient diagnostic divisions, this too
may be tenuous. It is notable that, in a comprehensive
review of the validity of DSM-IV subtype criteria,
Willcutt et al. [54•] have concluded that the distinction
between inattentive, combined and hyperactive sub-types
is minimally supported, in contrast to the symptom
dimensions of inattention and hyperactivity, which were
well supported. It seems therefore that the sub-group char-
acterized by elevated spectral power or ERP feature need
not correspond to an existing sub-type.

Alternative approaches have been proposed to adapt
EEG-based diagnostics to the heterogeneity of the ADHD
clinical sample. Hermens et al. [55, 56] argued that EEG
features ought to be best utilized as part of a larger profile
and for prediction of treatment response rather than as a
diagnostic. Defining response criteria based on perfor-
mance on cognitive tests, and various EEG features (in-
cluding resting state spectral power and ERP-related fea-
tures) they achieved a sensitivity of 80-90 %, and speci-
ficity of 90-95 %. In more recent logistic regression anal-
yses, Ogrim et al. [57, 58] identified EEG features that, as
part of a larger profile, predicted positive response to
methylphenidate (determined by symptom reductions), as
well as the side effects. In these analyses, responders were
characterized by higher baseline theta-band and alpha-
band power, whereas side effects were predicted by a
number of baseline ERP components including visual
evoked potentials, anticipatory potentials and P3 ampli-
tude. Interestingly, neither medication response nor side
effects were predicted by ADHD sub-type (combined ver-
sus inattentive), in agreement with the conclusions of
Willcutt et al. [54•]. Finally, Clarke et al. [59], in an 11-
year follow up, reported that individuals whose ADHD
persisted into adulthood had greater childhood global rel-
ative beta power, reduced frontal relative theta power, and
increased frontal absolute and relative beta power. These
studies demonstrate proof-of-concept utility of EEG as
predictor of outcome rather than as diagnostic, and high-
light the value of multivariate profiling. They also dem-
onstrate the challenge with this approach. The profiles are
complex, which makes their interpretation and direct com-
parison across studies difficult at best. Their generalizabil-
ity remains to be tested.

Emerging Neural Mechanisms of EEG Features

In contrast to large-scale data mining efforts that seek to
extract predictive content out of EEG (and other) data, efforts
are emerging that aim to map the neural mechanisms of EEG
features. From this perspective, clinical heterogeneity of
ADHD may be addressed by identifying the neural pathways
that account for distinct groups of ADHD symptoms or
neurocognitive performance profiles. Mapping these to their
EEG correlates could furthermore improve the diagnostic
accuracy of EEG. This approach, though in relative infancy,
is important because circuitry has been extensively studied in
ADHD using magnetic resonance imaging (MRI) [5, 43,
60–67], and thus provides priors for the categories that may
be nested within EEGmetrics in ADHD. Group differences in
neural activity and connectivity have been documented for
fronto-striato-cerebellar dopamine pathways [41, 68], atten-
tional pathways [46, 64, 65], as well as default mode network
[43, 48, 67]. Preliminary reports suggest that the degree of
dysfunction in these networks can vary with ADHD subtype,
comorbidity and symptoms. Fair et al. [69], having analyzed
the connectivity patterns of 648 datasets (455 from individuals
with ADHD), suggested that ADHD inattentive subtype is
associated with a dysfunction of dorsolateral prefrontal cortex
— a core node in the striatal and attentional pathways, where-
as ADHD combined subtype is associated with dysfunction of
default mode network regions. Arnsten and Rubia [62]
reviewed differential network involvement according to co-
morbidity, highlighting, for example, dysfunction of attention-
al systems in obsessive-compulsive disorder that is more
prominent than in major depressive disorder or conduct
disorder.

The large body of knowledge derived from MRI and func-
tional MRI may be helpful in refining the efficacy of EEG
measures in ADHD diagnosis and prognosis. Direct studies
comparing MRI and EEG in the context of ADHD are sparse
but at least three lines of work have begun to yield results. In
2007, Sonuga-Barke and Castellanos [48] put forth the hy-
pothesis that default mode network activity is dysfunctional
and interferes with attentional control. This hypothesis has
spurred a number of experiments that collectively suggest a
positive relationship between slow fluctuations of the default
mode network and ultra-slow fluctuations of the EEG signal,
that together appear to account for response variability
[70–74]. These slow fluctuations may prove helpful in iden-
tifying patients with alterations of default mode network
functioning.

Using a different approach Lenartowicz et al. [75•] com-
bined two techniques, independent component analysis and
event-related spectral analysis, to link poor spatial working
memory in a group of ADHD children with ineffective
stimulus encoding. Specifically, poor working memory
encoding was associated with weaker desynchronization
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(i.e., decrease) of alpha power (resulting in elevated alpha
power) and elevated midline theta power that were, through
source imaging of independent components, associated with
occipito-parietal and frontal brain regions, respectively. The
data suggested that stimulus-locked desynchronization in
alpha power in posterior regions may be a marker for the
efficacy of attention network interactions — one of the
primary networks implicated in ADHD and notably absent
in the ADHD group during spatial working memory perfor-
mance. Mazaheri et al. [53, 76] put forth a similar notion,
supported by disrupted coherence (see glossary) between
alpha-theta frequency band power in individuals with
ADHD.

The most direct test of EEG-fMRI interactions is made
possible by concurrent recording of the two modalities. This
approach was adopted by Karch et al. [77, 78] who, in a
preliminary study with only eight patients and eight controls,
demonstrated that the stimulus-locked fronto-central N2 ERP
response was associated with reduced involvement of
attention-related neural structures, including middle and me-
dial prefrontal cortex and insula. A combined approach can
therefore offer validation of EEG metrics as they relate to
existing network hypotheses as well as provide mechanisti-
cally driven priors for network-based sources of heterogeneity
in ADHD. The primary challenge in concurrent EEG-fMRI
recordings is degradation of the EEG signal by induced arte-
facts fromMRgradients and cardiac activity that are amplified
by headmotion [79–81], meaning that small trial numbers and
hyperkinetics (e.g., fidgeting) associated with ADHD (and
with childhood) can seriously compromise the signal-to-
noise of the EEG in the ADHD demographic. New methods
are, however, emerging that will allow practitioners to more
accurately characterize (and eliminate) the noise [82, 83•, 84,
85], promising increasing feasibility of the technique.

Individual-Level Diagnostics

Independent of the sensitivity and specificity that a diagnostic
tool achieves across individuals, its diagnostic value is also
influenced by at least three other factors: robustness, interpret-
ability, and feasibility. Considering, as an example, the X-ray
in diagnosing tuberculosis, it is not only sensitive and specific,
it also produces a signal that is distinct from noise (robust),
allows for clear interpretation based on the presence or ab-
sence of masses in the lungs (interpretable), and it can be
administered in less than 10 minutes within an outpatient
clinic (feasibile). Can any EEG-derived metric come close to
meeting these criteria? In terms of robustness, we suggest that
spectral-based metrics outweigh the potential value of ERP-
based measures. Spectral power indices such as relative level
of alpha band power in a resting state recording, or event-

related changes in alpha power, produce identifiable signal
with a short recording of 10-15 minutes and with (in event-
related analyses) as few as 30 trials [e.g., 75•]. In contrast,
ERP analyses rely on averaging over in excess of 100 trials
[86] in order to arrive at a reliable signal for each individual.
Furthermore the typical ERPs that have been most relevant to
ADHD diagnosis, such as the error related negativity or P3
responses to unexpected events (i.e., oddball paradigm), are
produced by stimuli that by design must occur infrequently
(10-30 %). The diagnostic test must therefore be at minimum
2-4 times longer than the duration of the data that is of interest.
It is noteworthy that, because of volume conduction, EEG
metrics at any electrode represent the summation of multiple
electrical events from, possibly, different locations in cortex.
Approaches that attempt to un-mix these signals into their
source components (Fig. 1b), such as independent component
analysis [87, 88] and inverse modeling [89, 90], improve the
signal-to-noise (of either spectral or ERPmeasures), and so, in
the case of ERP analysis, can counteract some of the single-
trial variability associated with the technique [e.g., 34••, 57,
75•].

Multivariate approaches that combine many different met-
rics, including behavioral and other neuroimaging measures,
into a diagnostic profile, face a different problem. These
methods, because of their computational power, can be very
robust. The more variables in the diagnostic, the more likely it
is that some kind of a signal will be available from at least a
subset of such variables. However such profiling faces a
problem with feasibility and with interpretation. While
machine-learning algorithms are becoming increasingly avail-
able, a norm in big-data mining, obtaining large amounts of
data can lead to long and tiring sessions. The collection of
cognitive, neuropsychological, EEG and other physiological
measures requires multiple hours of testing time, which cre-
ates a confound of fatigue and learning-transfer. In other
words, exhaustive tests can be impractical, undermining the
feasibility of the diagnostic. Multivariate profiling also raises
the issue of interpretation. Most measures of cognition, be-
havior and neurophysiology fall on a spectrum for the popu-
lation. They cannot be trivially dichotomized into a ‘yes’ or
‘no’ answer. This means that such diagnostics rely on norms
and/or databases, which themselves require updating as well
as interpretation [56]. This problem is compounded as more
measures become involved. Of course multivariate profiles
can and are typically thresholded to output a binary decision.
However, dependent on the design of the algorithm, such
profiles can be susceptible to errors when the incoming pa-
tient’s profile does not fit perfectly in either the ADHD or the
non-ADHD template (i.e., they can over-fit to the training
data, failing to generalize). Balancing robustness, interpret-
ability, feasibility, reliability and validity are not easy goals,
particularly with a backdrop of EEG heterogeneity. Although
it is still unclear which combination of EEG markers will
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ultimately be identified, we believe that parsimony allowing
for heterogeneity should be the goal.

Conclusion

As the past 75 years will attest, finding a simple diagnostic
measure for ADHD (i.e., behavioral, cognitive, etiologic,
neurophysiologic, or neurobiologic) has not been possible
and such a measure may not exist at all. Needless to say, we
believe that EEG/ERP are not ready to serve as tools to
diagnose or aide in the diagnosis of ADHD. Our caveat, based
on review of current literature, is that this conclusion is not
specific to EEG/ERP but reflects a general problem of univar-
iate measures or markers (biological or otherwise) being used
to predict clinically heterogeneous disorders such as ADHD.
Nonetheless, it is notable that the relatively high (>90 %)
sensitivities and specificities reported using EEG, far exceed
the most advanced of classification attempts using anatomical
and functional MRI data. The competition put forth by the
ADHD-200 consortium, challenging scientists to develop
novel diagnostic profiles based on over 700 MRI datasets
[91•], resulted in a range of accuracies from 55 to 78 %
(arrived at by internal cross-validation). EEG thus remains a
strong contender for a spot in the clinical setting, contingent
on continued efforts — via multivariate analyses and refined
studies of EEG signal generators — to capture additional
sources of heterogeneity in ADHD.
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Glossary

Alpha band Referring to oscillations in the range
of 8-15 Hz

Beta band Referring to oscillations in the range
of 16-30 Hz

Delta band Referring to oscillations <4 Hz
Event-related
desynchronization
(ERD)

Decrease in power of a frequency
following a stimulus in event-related
spectral analysis relative to pre-
event; thought to arise from de-
creased synchronization of neural
activity in that frequency

Event-related potential
(ERP)

The average EEG signal in a time
window following an event of
interest (e.g., beep), computed over
many repetitions of that event;
typically associated with transient
cortical dynamics in response to a
stimulus or response

Event-related spectral
analysis

The average power in a time
window following an event of
interest (e.g., beep), computed over
many repetitions of that event;
computed separately across many
frequencies; typically associated
with transient changes in brain state

Event-related
synchronization
(ERS)

Increase in power of a frequency
following a stimulus in event-related
spectral analysis relative to pre-
event; thought to arise from in-
creased synchronization of neural
activity in that frequency

Feature A descriptor or metric of EEG data;
can be categorized into subclasses
(see below) such as spectral,
temporal, spatial or fractal

Fractal Referring to characterization of
jaggedness or serratedness of an
EEG time series

Frequency Number of cycles of an oscillation
occurring per unit time; units of
Hertz (Hz) or cycles/sec; distin-
guishes between “fast” and “slow”
oscillations

Gamma band Referring to oscillations above 30 Hz
Independent
components analysis

Statistical technique that attempts to
parse multivariate data (e.g., signal
across many electrodes in EEG) into
latent components that describe
patterns of variables that covary
across some other variable (e.g.,
time); these components are selected
to be maximally statistically
independent

Machine learning The study and design of computer-
based statistical algorithms that can
learn from the data; typically de-
signed to predict categorical out-
come variables such as diagnosis;
logistic regression is a univariate
example of Machine Learning

Multidimensional Simultaneous observation and
analysis of more than one domain
of data (e.g., ERP and
performance measures)
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Multivariate Simultaneous observation and
analysis of more than one outcome
variable

Power A measure of the amplitude of
oscillations of a particular frequency
in an EEG time course; typically
associated with brain state

Spatial Referring to characterization of
electrode or cortical source of EEG
time series

Spectral Referring to characterization of
frequency content of EEG time series

Spectral analysis Quantification of time series in
terms of power across frequencies,
producing a power “spectrum”

Synchronization The degree to which two or more
neural units (cells or populations)
show oscillations of a particular
frequency that are the same across
time (i.e., have the same phase and
amplitude); the metric of “coherence”
is sometimes used in analog to the
“correlation” coefficient, to quantify
this co-variation

Temporal Referring to characterization of time
content of EEG time series

Theta band Referring to oscillations in the range
of 4-7 Hz
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