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Abstract
Many paradigms in cognitive science posit that human learning
is characterized by a limited capacity to represent the informa-
tion relevant for a given task. We argue that excess capacity —
using more representational resources than needed for a task
at hand — is a plausible alternative paradigm for the study
of human learning. Leveraging recent results from machine
learning, we show that excess capacity can be consistent with
high predictive ability. We also review extant empirical find-
ings from the cognitive science literature, demonstrating that
excess capacity learning can account for a range of empirical
phenomena, such as humans’ simultaneous yet apparently con-
tradictory tendency to both memorize observations and cap-
ture higher-level patterns in them. We conclude by discussing
promising directions for future inquiry under the excess capac-
ity learning paradigm.
Keywords: cognitive capacity; overparametrized models; reg-
ularization; generalization; compression; simplicity bias

1 Introduction
A body of literature has shown that the amount of information
people can deal with at once is constrained by biological and
cognitive limitations like working memory capacity, encod-
ing time, and attention (Marois & Ivanoff, 2005; Musslick &
Cohen, 2019). Many theories of human cognition posit that
the resources people use to represent this information are sim-
ilarly constrained, i.e., that our internal representations are
“simpler” than the information we intake1. The goal of this
paper is to explore the implications of relaxing the assump-
tion of constrained representational capacity, and taking ex-
cess, rather than constrained, representational capacity as a
conceptual preliminary in the study of human cognition.

To make more concrete the differences between different
amounts of representational capacity and introduce the ter-
minology used in the remainder of this paper, consider three
different learning systems that can all learn from the same set
of observations.

1. The constrained capacity2 system compresses these obser-
vations into a lower-dimensional space, effectively discard-
ing details deemed “irrelevant.”
1One of the authors has gathered from informal discussions that

the focus on constrained capacity learning mechanisms ranges from
resource rational analysis (Lieder & Griffiths, 2020) to most appli-
cations of drift diffusion (Ratcliff et al., 2016), early connectionist
(Rumelhart et al., 1986), symbolic (Raaijmakers & Shiffrin, 1981),
and dynamical systems modeling (Thelen & Smith, 1994).

2We will use “capacity” to mean “representational capacity” un-
less otherwise specified.

2. The sufficient capacity system uses as many resources as
necessary to reconstruct the observations.

3. The excess capacity system expands the observations into a
higher-dimensional space, devoting more representational
resources than necessary to simply reconstruct the obser-
vations: The system’s internal representation is of higher
dimension, i.e., is “richer,” than the data itself.

In cognitive science, we often posit that human learners are
constrained capacity systems (Doroudi & Rastegar, 2023).
Constrained capacity learning can result in adaptive heuris-
tics (Todd & Gigerenzer, 2012) and reflects bottlenecks in-
duced by limited biological and cognitive resources (Just &
Varma, 2007; Miller, 1956; Peterson & Peterson, 1959; Rus-
sell & Subramanian, 1994; Waugh & Norman, 1965; Lieder
& Griffiths, 2020).

The idea that we apply excess capacity — i.e., learn with
more resources than the tasks require — is much less ex-
plored.3 Here, we argue that excess capacity learning is worth
further exploration as a paradigm for human cognition.

We reassess two types of arguments for constrained cogni-
tive capacity:

1. Normative arguments posit that constrained capacity fa-
cilitates successful pattern discovery and prediction. In
section 2, we show that excess capacity learning can lead
learned solutions to make better predictions given new
data.

2. Descriptive arguments purportedly demonstrate that con-
strained capacity and the implied simplicity bias is consis-
tent with empirical data on how humans learn. In section
4, we demonstrate that a variety of empirical phenomena
in cognitive science can be reinterpreted through the lens
of an excess capacity paradigm.

2 Excess capacity learning can lead to high
predictive ability

A central challenge of cognitive science is to understand how
cognitive systems learn from experience and generalize to sit-

3Neural network models, adapted to tasks like perceptual and
language learning, present a prominent recent exception to this
(Kriegeskorte, 2015; Yamins & DiCarlo, 2016; Schrimpf et al.,
2021). These models often exhibit surprisingly human-like behavior
or even outperform humans in these domains.
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(a) Degree-one model (constrained capacity). (b) Degree-twenty model (sufficient capac-
ity).

(c) Degree-one-thousand model (excess ca-
pacity).

Figure 1: Polynomial regression models fit to data generated from a degree-three polynomial. Points: Training data. Values on
the y-axis are an additive combination of a cubic function of values on the x-axis and Gaussian-distributed noise; in particular,
y= x− .5x3+ε where ε∼N(0, .3). Green line: Mean of the data-generating function. Violet line: Predictions of the polynomial
regression model with degree indicated by the corresponding caption and parameter values fit to the training data. Example is
adapted from Nakkiran et al. (2019).

uations they have never encountered before. In both statistical
and cognitive learning theory, a hallmark measure for the suc-
cess of this learning process is predictive ability, or the ability
to use what one has learned to successfully predict outcomes
in unknown situations.4

Besides empirical evidence for a simplicity bias in human
learning (see section 4), there is a compelling rationale for
constrained capacity models on the basis of statistical theory:
Until recently, it was widely believed that underparametrized
models of the world — models that look at few features or do
not transform those features in complicated ways — lead to
higher predictive performance (Hastie et al., 2001). The in-
tuition is that, in the face of noise, constrained capacity (un-
derparametrized) models can more reliably capture patterns
in the observations. On the other hand, excess capacity (over-
parametrized) models are prone to overfitting the noise in the
observations and thus are commonly thought of as unreliable,
in the sense that they can lead to arbitrarily high prediction
error.

This is illustrated in Figures 1a and 1b, which show how
the predictive ability of a class of polynomial regression mod-
els changes as a function of the degree of the corresponding
polynomial representation (i.e., the model’s representational

4We use terms like “successful predictions” or “predictive abil-
ity” where others might refer to “successful generalization” or “abil-
ity to generalize.” Some of our arguments will depend on the learner
interpolating within the boundaries of the observed data. We avoid
the term “generalize” where it might imply extrapolation, or pre-
diction beyond the boundaries of the observed data. While section 7
discusses the importance of extending our arguments to tasks that re-
quire extrapolation, others have suggested the ability to interpolate
is sufficient for many learning tasks humans encounter in practice
(Nastase et al., 2020).

capacity).5 Figure 1a shows the predictions of a degree-one
polynomial regression model. This model is constrained in
the sense that it does not have enough parameters to capture
the curvature of the true data-generating process. Figure 1b
shows the predictions of a degree-twenty polynomial regres-
sion model. This model has sufficient capacity: It has exactly
enough capacity to perfectly reconstruct the training data.
The dangers of overfitting can be seen by comparing Figure
1a to Figure 1b. In particular, notice the erratic predictions of
the model in Figure 1b in areas it has not seen. Here, there
is a trade-off between fitting the noise in the training data,
and identifying a pattern that resembles the data-generating
process.

Figure 1c shows the predictions of a degree-one-thousand
polynomial regression model. This model has excess capac-
ity: It has more than enough parameters to perfectly recon-
struct the training data. Classic statistical results would lead
one to expect this to result in even more erratic predictions
than the degree-twenty model. Yet Figure 1c shows exactly
the opposite: While the degree-one-thousand model does er-
roneously fit the noise in the data, it does so in such a way
that nevertheless appears to track the underlying structure of
the data.6

Understanding the mechanisms of the phenomenon that
overparameterization increases predictive capacity, known as
“benign overfitting,” is still an open area of inquiry in ma-
chine learning research (Belkin, 2021; Dar et al., 2021). Re-

5This example was adapted from Nakkiran et al. (2019).
6Importantly, note that all three models are fit from the same

twenty data points. With reference to discussion in section 1, the
learners (here, regression models) are each endowed with the same
constraints on the amount of information they can intake, but vary
in terms of the resources they apply to represent this information.
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sults in linear regression cases like those shown in Figure 1
reveal that overparametrized models can distribute their er-
ror in many different directions, which can effectively cancel
each other out, resulting in robust behavior of the learned so-
lutions on new observations (Bartlett et al., 2020; Chatterji &
Long, 2021). Other results suggest that learning with excess
capacity may lead to implicit regularization as the parame-
ters of a model become highly constrained by each other —
leading to solutions that are both complex enough to capture
all the relevant patterns in the data and less sensitive to noise
(Spigler et al., 2019; Geiger et al., 2019).

One objection to the analogy to cognitive systems is that
the best-fitting model would be the correct model — a
degree-three polynomial. Under our definition, this is consid-
ered a constrained capacity model. In other words, to recog-
nize what is signal and what is noise, all the learner would
have to do is build a good, and relatively simple, internal
model that captures the data-generating process and nothing
else. However, rarely are we able to know the structure of the
true data-generating process — presenting the key challenge
of inferring the data-generating process in the wild, which of-
ten makes excess capacity models more successful in learning
the generalizable patterns in the data than their constrained
and sufficient capacity counterparts (Dar et al., 2021; Malli-
nar et al., 2022; Hastie et al., 2022).

It is also important to note that the phenomenon of benign
overfitting does not always occur. Excess capacity systems
can also overfit in catastrophic ways (Mallinar et al., 2022),
resulting in extremely unreliable solutions. Besides elucidat-
ing the mechanisms of benign overfitting, the work cited here
has also begun to articulate conditions under which benign
overfitting is expected to occur. In section 7, we highlight the
ways in which this literature can and should play an important
role in future work applying the excess capacity paradigm to
cognitive science.

3 Properties of learned solutions
As illustrated in Figure 1, the capacity of the learning sys-
tem affects qualitative properties of learned solutions. Fig-
ure 2 is a schematic illustration of how capacity affects three
such properties: the expected generalization error of a learned
solution, its sensitivity to noise, the degree to which the ob-
served datapoints can be reconstructed (training error), and
the complexity of learned solutions (represented by the x-
axis itself)7. Section 2 discussed the double descent exhibited
by expected generalization error. The following subsections
will discuss the rest of these properties in more detail, empha-
sizing differences in the properties of solutions recovered by
constrained, sufficient and excess capacity systems. In sec-
tion 4, we discuss existing empirical findings from the study

7Note that the excess capacity learning suggests a tradeoff be-
tween predictive performance and amount of data. Specifically,
more data can actually hurt generalization performance, as it moves
a learner towards the constrained capacity regime (i.e., moves the
interpolation threshold, or sufficient capacity regime, further to the
right) (Nakkiran et al., 2021).

of human cognition in terms of these properties, demonstrat-
ing that many findings can be reinterpreted as consistent with
the predictions of an excess capacity account.

Memorizing observations while capturing patterns
that are robust to noise
Like sufficient capacity systems, and unlike constrained ca-
pacity systems, excess capacity systems achieve zero training
error, i.e., the learned solutions perfectly reconstruct previous
observations.

However, like constrained capacity systems but unlike
many sufficient capacity systems, excess capacity systems
can simultaneously learn solutions that are robust to noise.8

With reference to the degree-twenty model in Figure 1b, the
sufficient capacity model exhibits high dependence on the
particular datapoints that were used to train it: Were we to re-
sample twenty new datapoints on which to train a new degree-
twenty model, the new model’s predictions would look very
different from those shown in Figure 1b. On the other hand,
Figures 1a and 1c show that the constrained and excess capac-
ity models exhibit low sensitivity to noise: Models trained
on twenty new datapoints drawn from the same distribution
would make similar predictions on unseen inputs (Somepalli
et al., 2022).

Complex and redundant solutions
Excess capacity systems, by definition, apply more resources
to transform observations in different ways. While con-
strained capacity systems effectively compress the informa-
tion they intake, excess capacity systems instead expand the
information in more varied and sometimes convoluted ways.

4 Rethinking empirical findings through an
excess capacity framework

We now briefly review empirical findings from the cognitive
science literature, showing that many can be accounted for by
an excess capacity framework.

Memorizing observations while capturing patterns
that are robust to noise
As discussed in section 3, excess capacity systems perfectly
memorize the information they intake, while sometimes also
learning a good approximation to general patterns in this in-
formation. Similarly, humans have demonstrated a tendency
to simultaneously memorize observations and capture higher-
level patterns in these observations.

Instance-based effects refer to the observation of our su-
perior ability to recite solutions corresponding to previously-
seen items, indicating memorization of individual observa-
tions. For example, people’s responses to previously-seen
items tend to be faster and more accurate (Shepard, 1967;

8As stressed in section 2, excess capacity systems often identify
solutions that are robust to noise, but this property is by no means
universal or guaranteed (Belkin et al., 2019; Hastie et al., 2022; Dar
et al., 2021).
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Figure 2: Illustration of the properties of solutions resulting from learning with different levels of cognitive capacity.

Kolers, 1976). Results from a variety of domains indi-
cate that people store nearly all instances from past expe-
rience and then use them as reference points when facing
novel situations. Instance-based accounts that reflect this
have been developed in domains from human categoriza-
tion (Medin & Schaffer, 1978; Nosofsky, 1988), skill au-
tomatization (Logan, 1988), visuomotor learning (Gorman &
Goldstone, 2022), dynamic decision-making (Gonzalez et al.,
2003; Gonzalez & Dutt, 2011) to problem-solving in groups
(Sloman et al., 2021).

Along with storing and using the instances, the evidence
also shows that people construct higher-level summary rep-
resentations (e.g., an average category member) that describe
these instances (Murphy, 2004; Schlichting et al., 2015; Bow-
man et al., 2020). For example, after learning a new category,
humans discriminate an average category member which has
never been observed faster and categorize it more accurately
than any other new instance of the category (Posner & Keele,
1968, 1970), or distort perception towards an average cate-
gory member (e.g., achromatic bananas are perceived slightly

yellow Hansen et al. (2006)) (Kuhl et al., 1992; Goldstone,
1994; Hansen et al., 2006; Bates et al., 2019; Bates & Jacobs,
2020; Dubova & Goldstone, 2021; Harnad, 2003).

Summary-based and instance-based reasoning accounts
have been successful at describing learning even within the
same domains and tasks, leading to the development of dual-
process theories that combine the memorization of instances
with a summary or rule inference process (Juslin et al., 2008;
Ashby et al., 1998; Erickson & Kruschke, 1998; Briscoe &
Feldman, 2011; Hahn & Chater, 1998; Kumaran et al., 2016).

Complex and redundant solutions
Along with being able to capture robust patterns driving the
observations, excess capacity learners often take excessively
complex ways to get there — their solutions can involve more
transformations of information than needed to make accurate
predictions. On the other hand, constrained representational
capacity implies a preference for simpler explanations or so-
lutions to the problems we face (Chater & Vitányi, 2003).
While much work on human learning finds evidence for such
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a simplicity bias, there is substantial literature suggesting that
people rely on redundant cues and exhibit a preference for
complex accounts of past observations.

Causal learning People exhibit a large variety of pref-
erences when they assess or induce accounts for the data,
sometimes learning what seem to be simple explanations,
and sometimes clearly devising complex, and even redun-
dant accounts for the observations. A large body of work
has focused on human preferences for simple accounts for
the data. For instance, in causal learning with simple stimuli,
adults (Lombrozo, 2006, 2007) and preschoolers (Bonawitz
& Lombrozo, 2012) prefer simpler causal explanations to
more complex ones. When presented with function fits of
different complexity, humans prefer simpler functions as gen-
erative accounts, often ranking them higher than the medium-
complexity ground truth functions (Wilson et al., 2015) (see
also Little & Shiffrin (2009) showing a human bias towards
linear functions when predicting new points on a graph).

Another body of work, however, demonstrates human pref-
erences for complex and even redundant accounts for the
data. For example, when asked to induce a generative rule
for items from two artificially created categories, humans are
often unable to find the simplest description, inducing overly
complex and sometimes redundant rules (Medin et al., 1987).
Moreover, when presented with more realistic situations than
those used by Lombrozo (2007) and Bonawitz & Lombrozo
(2012), adult participants preferred explanations that referred
to multiple causes, even if one cause was sufficient to explain
the data (Zemla et al., 2017). Other work replicates these
results and offers a reconciling “complexity matching hy-
pothesis,” positing that people value explanations that match
the hypothesized complexity of the domain (Lim & Oppen-
heimer, 2020). Finally, conspiracy theories present an epit-
omal example of the human tendency to construct complex
and convoluted explanations in an effort to account for every
data point (Wojtowicz & DeDeo, 2020).

Perceptual learning Similarly contradictory evidence per-
vades lower-level implicit learning. It has been argued that
perceptual learning proceeds with a simplicity bias — a ten-
dency to infer as little or less structure than needed to accom-
modate the observations. For instance, when being exposed
to stimuli generated by two feature distributions, participants
are sometimes more likely to assume that all the stimuli come
from just one distribution, especially when the two distribu-
tions overlap Gershman & Niv (2013); also, see previously
discussed work on categorical perception: Kuhl et al. (1992);
Goldstone (1994).

Along with demonstrations of a simplicity bias in percep-
tual learning, the literature is also full of evidence demon-
strating the human tendency to infer more structure than is
needed to capture what has been observed. For example, mul-
tiple studies show that people posit new categories or clusters
to account for small variations in new stimuli — as demon-
strated by contrastive perceptual adaptation effects, under

which perception is biased away from the stimuli that have
already been observed (Leopold et al., 2001, 2005; Dubova &
Moskvichev, 2019). Finally, when learning relationships be-
tween properties of objects (e.g., gem appearance and price),
humans have been shown to often be unable to ignore irrel-
evant perceptual cues (e.g., gem color), even when they are
explicitly told about their irrelevance for the task (Thomson
& Oppenheimer, in preparation).

5 When is overfitting benign?
Two of the qualitative properties we highlighted — high pre-
dictive ability and the recovery of patterns that are robust
to noise — are often exhibited by excess capacity systems
(Bartlett et al., 2020; Hastie et al., 2022; Belkin, 2021; Belkin
et al., 2019). However, overparameterization can also lead
to unstable predictions (Mallinar et al., 2022). This leads to
the crucial question of when the excess capacity framework
leads to high predictive ability — and what the implications
are for its use as a framework for cognitive science, given
that humans’ ability to make good predictions also depends
on the task and environment (DeLosh et al., 1997; Kane &
Broomell, 2020; Zhu et al., 2009).9

Some recent work has begun to elucidate the conditions
under which one should expect benign overfitting to occur.
For example, there is some evidence that the double descent
is more dramatic in instances of model misspecification (Dar
et al., 2021) and low noise environments (Hastie et al., 2022).
Further exploration of the proposed paradigm should entail
developing a better understanding of whether the conditions
that predict benign vs. catastrophic overfitting can also pre-
dict people’s ability to generalize.

6 What about biological limitations?
The presence of biological limitations — the requirement to
conserve metabolic and other physiological resources neces-
sary for cognitive processing — has been leveraged as an
argument against the excess capacity paradigm (Laughlin,
2001). In an insightful recent opinion piece, Hasson et al.
(2020) offer arguments for the plausibility that excess capac-
ity learning might be consistent with the actual representa-
tional resources that brains seem to possess. Hasson et al.
(2020) argue that it is easier to view the brain as an excess
capacity organ learning complex representations that interpo-
late well, than conceiving of the neural biological limitations
as drastically constraining the learning capacity and complex-
ity of learned solutions. While our argument is about repre-
sentational capacity of cognitive systems in general — which
may reflect capacity of not only neural systems, but learning
systems broadly considered, which includes embodied minds,
machines, and social and human-machine systems (Dubova et
al., 2022) — Hasson et al. (2020) present additional evidence
that this paradigm is worth exploring.

9Some have speculated that human perceptual illusions can also
be interpreted as a contextual failure to make good predictions
(Kriegeskorte, 2015; Yamins & DiCarlo, 2016; Majaj & Pelli, 2018).
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7 Discussion
In this paper, we have argued that excess capacity can be a
useful perspective for cognitive scientists to adopt. Here, we
discuss some empirical and methodological implications of
adopting the excess capacity learning perspective, open di-
rections for future inquiry, and limitations of our argument.

What is left unexplained
Despite being a potentially useful framework for understand-
ing cognition in some situations, excess capacity is not ap-
propriate for capturing the whole body of evidence on how
we learn and act. Here, we note just some of the phenomena
which are more consistent with limited or sufficient capacity
accounts of human cognition.

Along with memorizing instances in some cases, people
also routinely forget, with forgetting potentially serving many
cognitively adaptive functions (Nørby, 2015). Another body
of work looks at how biological systems compress rich ana-
log perceptual signals in their limited capacity sensory organs
(Bates & Jacobs, 2020; Stevens, 2013). Here, the evidence
suggests that humans and other animals adaptively allocate
their sensory and working memory resources to the percep-
tual dimensions or ranges of stimuli that are most relevant to
the tasks they are dealing with (Bates et al., 2019; Goldstone,
1994; Simoncelli & Olshausen, 2001). Similarly, there is ev-
idence that people rely on coarse-grained representations of
action and state spaces in dynamic decision-making and plan-
ning tasks (Lai & Gershman, 2021) — a presumably essential
step for avoiding the curse of dimensionality in such tasks.

Contradicting evidence on limited and excess capacity
learning may in part be reconciled by recent work in theo-
retical neuroscience, which suggests that “compression” and
“expansion” might each be at play at different stages of in-
formation processing (Farrell et al., 2022; Zhou et al., 2022).
Thus, the crucial next step for cognitive science is investi-
gating when excess capacity is more reflective of a particular
stage of the specific cognitive process at hand, instead of as-
suming limited capacity for all stages of cognitive processing
in all tasks.

What remains to be understood about excess
capacity learning?
Excess capacity learning is full of unresolved mysteries.
Here, we list just some of the open questions in this field
which might be of special interest to cognitive scientists. First
of all, as discussed in section 2, the statistical mechanisms
driving the ability of overparametrized models to make suc-
cessful predictions are far from understood. Another promis-
ing direction for future empirical and theoretical research is
controlled assessment of the ability of excess capacity sys-
tems to extrapolate beyond the ranges of observed data. Some
work in machine learning, e.g., Dhifallah & Lu (2020); Dar &
Baraniuk (2022), suggests that excess capacity hinders learn-
ers’ ability to extrapolate beyond the boundaries of the data
they have observed, but this evidence has so far been limited.

Finally, application of the framework to human cognition in
dynamic and changing environments would benefit from a
better understanding of the learning dynamics of excess ca-
pacity systems, looking at how the ability of these systems to
find robust patterns in the data changes as learning progresses.

Outlook
Cognitive science benefits from diverse perspectives on cog-
nitive systems (Dale et al., 2022). However, thinking about
cognition as having excess, rather than constrained, represen-
tational capacity has so far been neglected or even discour-
aged by the field. Exploring excess capacity learning as a
possibility for many domains of cognitive science presents
new directions of inquiry for cognitive scientists.

8 Acknowledgments
We thank Sebastian Musslick, Rob Goldstone, Brendan
Fleig-Goldstein, Rich Shiffrin, Suyog Chandramouli, YY
Ahn, Steven Sloman, Danny Oppenheimer, and three anony-
mous CogSci reviewers for their comments on the earlier ver-
sions of this manuscript.

References
Ashby, F. G., Alfonso-Reese, L. A., Waldron, E. M., et al.

(1998). A neuropsychological theory of multiple systems
in category learning. Psychological review, 105(3), 442.

Bartlett, P. L., Long, P. M., Lugosi, G., & Tsigler, A. (2020).
Benign overfitting in linear regression. Proceedings of the
National Academy of Sciences, 117, 30063-30070.

Bates, C. J., & Jacobs, R. A. (2020). Efficient data compres-
sion in perception and perceptual memory. Psychological
review, 127(5), 891.

Bates, C. J., Lerch, R. A., Sims, C. R., & Jacobs, R. A.
(2019). Adaptive allocation of human visual working
memory capacity during statistical and categorical learn-
ing. Journal of vision, 19(2), 11–11.

Belkin, M. (2021). Fit without fear: remarkable mathematical
phenomena of deep learning through the prism of interpo-
lation. Acta Numerica, 30, 203–248.

Belkin, M., Hsu, D., Ma, S., & Mandal, S. (2019). Rec-
onciling modern machine-learning practice and the classi-
cal bias–variance trade-off. Proceedings of the National
Academy of Sciences, 116(32), 15849–15854.

Bonawitz, E. B., & Lombrozo, T. (2012). Occam’s rattle:
children’s use of simplicity and probability to constrain in-
ference. Developmental psychology, 48(4), 1156.

Bowman, C. R., Iwashita, T., & Zeithamova, D. (2020).
Tracking prototype and exemplar representations in the
brain across learning. elife, 9, e59360.

Briscoe, E., & Feldman, J. (2011). Conceptual complexity
and the bias/variance tradeoff. Cognition, 118(1), 2–16.
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