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Abstract

Phylogeny estimation (the reconstruction of evolutionary trees) has recently been applied to 

CRISPR-based cell lineage tracing, allowing the developmental history of an individual tissue 

or organism to be inferred from a large number of mutated sequences in somatic cells. 

However, current computational methods are not able to construct phylogenetic trees from 

extremely large numbers of input sequences. Here, we present a deep distributed computing 

framework to comprehensively trace accurate large lineages (FRACTAL) that substantially 

enhances the scalability of current lineage estimation software tools. FRACTAL first reconstructs 

only an upstream lineage of the input sequences and recursively iterates the same produce 

for its downstream lineages using independent computing nodes. We demonstrate the utility 

of FRACTAL by reconstructing lineages from >235 million simulated sequences and from 

>16 million cells from a simulated experiment with a CRISPR system that accumulates 

mutations during cell proliferation. We also successfully applied FRACTAL to evolutionary tree 

reconstructions and to an experiment using error-prone PCR (EP-PCR) for large-scale sequence 

diversification.

There is a limitation in the number of input sequences that can be applied for computational 

reconstruction of phylogenetic lineage. This limits the capacity to capture the evolutionary 

trajectories of species and genes to the highest possible extent. Recent progress in the 

development of computational methods has achieved the reconstruction of a lineage tree for 

up to approximately 1 million sequences1. However, given that the current estimate for the 

number of unique eukaryotic species on Earth is approximately 8.7 million2 and the size of 

their available sequence resources could be multiple orders of magnitude higher than this 

estimate, it is important to develop more scalable lineage reconstruction methods.

Developmental biology will soon encounter the same computational issues. With the advent 

of the CRISPR–Cas9 genome-editing technology3,4, different cell lineage tracing methods 

have been rapidly developed and applied to analyze the development of multicellular 

organisms, including mice5–7, flies8 and zebrafish9–12, and cancer proliferation13,14. In 

an ideal CRISPR cell lineage tracing, chromosome-embedded synthetic DNA barcode 

sequences are continuously and randomly mutated by Cas9 and targeting guide RNAs 

(gRNAs) and inherited from mother to daughter cells. In this approach, the cell lineage 

initiated from a fertilized egg can be deduced from the mutation patterns in DNA barcodes 

of daughter cells identified at the time of observation by high-throughput sequencing and 

a phylogeny estimation algorithm established in evolutionary biology. This lineage tracing 

strategy has also been paired with single-cell RNA sequencing (scRNA-seq), allowing for 

the analysis of cell type differentiation coupled with cell lineage history10–12. However, 

the current methods have not been able to demonstrate high-resolution tracing of large cell 

lineages, such as mapping of the whole-body cell differentiation trajectories of a mouse 
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because of the three major technical limitations in (1) continuous recording of lineage 

information into the high-capacity DNA memory, (2) sampling sensitivity of daughter cells 

and (3) computational capacity of lineage reconstruction. While technology developments 

addressing the first two issues have been rapidly progressing with CRISPR6,13,14 and 

scRNA-seq technologies15–17, the third issue remains to be addressed. Considering that 

mammalian bodies are estimated to be composed of hundreds of millions to trillions of 

nucleated cells18, high-resolution lineage tracing methods would need to handle a similar, 

or multiple orders of magnitude larger, number of mutated sequences for mammalian whole-

body cell lineage tracing.

Results

Overview of FRACTAL.

To reconstruct large lineage trees of mutated sequences, we developed a deep distributed 

computing framework FRACTAL that enhances the scalability of any lineage estimation 

software and enables incremental top–down reconstruction of a large target lineage, whereby 

a shallow top-layer lineage is reconstructed first, and the same procedures are recursively 

iterated in parallel for the next layer of lineages starting from the leaves of its parental 

lineage by distributed computing (Fig. 1). Generating a hierarchy of distributed computing, 

FRACTAL resolves large lineage trees in a reasonable computing time.

In FRACTAL, a given number of sequences are first randomly subsampled from an input 

sequence pool (step 1). Their sample lineage tree is reconstructed with a rooting or 

provisional rooting sequence by lineage estimation software of choice (step 2) (note that, 

for cell lineage tracing, while an outgroup or a true ancestral sequence is preferred as the 

rooting sequence if available, any sequence can be used for unrooted tree estimation). Each 

of the remaining input sequences is then mapped to its most proximal branch of the sample 

tree by phylogenetic placement19,20 (step 3). If all of the input sequences are mapped on 

the downstream branches of the sample tree to separate them into multiple distinct clades, 

their upstream lineage is considered to be resolved (step 4), and the sequence group in each 

downstream clade is recursively subjected to the first process in a distributed computing 

node (step 5). If any sequence or sequences are mapped on the root branch, which does not 

allow the grouping of input sequences into clades, the phylogenetic placement is repeated 

against a new sample tree generated for sequences randomly chosen from a union of the 

previous subsampled sequences and the ‘problematic’ sequences (step 6). This process 

generates a new sample tree in a biased manner such that it harbors the previous problematic 

sequences in its leaves and decreases the probability of acquiring problematic sequences in 

the subsequent phylogenetic placement step. The retrial process is repeated until the problem 

is solved but only up to a given threshold number of times and as long as the number of 

problematic sequences continues to be reduced in every retrial step. When the retrial cycle 

stops without completely solving the problem, the remaining problematic sequences are 

discarded, and the other sequence sets are separated into distinct clades and subjected to the 

first process in separate computing nodes. Accordingly, FRACTAL generates a hierarchy of 

expanding parallel computing trajectories, where each distributed computing job recursively 

generates a large set of successive jobs. When the number of input sequences is reduced to 
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a certain threshold (hereafter called the naive computing threshold), the remaining lineage 

is directly reconstructed using the designated software, and the operation terminates for 

this computing trajectory (step 7). For unrooted lineage estimation, the provisional rooting 

sequence can be removed after completing the entire computation. Thus, FRACTAL enables 

the efficient reconstruction of large lineages by distributed computing while using limited 

computing power and memory per node (Supplementary Note 1 and Supplementary Fig. 1).

Lineage reconstruction of 235 million sequences.

To simulate various types of lineages, we also developed a versatile sequence diversification 

simulator, PRESUME, that generates a large number of mutated sequences (Extended Data 

Fig. 1 and Methods). In PRESUME, sequences are proliferated by changing their doubling 

speeds under a stochastic model that determines the balancedness of the producing lineage. 

Along with proliferation, sequences continuously acquire new mutations according to a user-

defined model. We generated a range of lineage trees using PRESUME and demonstrated 

that FRACTAL with commonly available software tools (RapidNJ21, RAxML20 and 

FastTree22 for neighbor-joining (NJ), maximum parsimony (MP) and maximum likelihood 

(ML) methods, respectively) reconstructed them with the accuracies comparable to the 

original tools (Supplementary Note 2 and Supplementary Figs. 2–5).

Next, to demonstrate the scalability of FRACTAL, we generated an unbalanced 

lineage of 235,100,752 sequences using PRESUME and reconstructed the lineage using 

FRACTALized RapidNJ using 300 computing nodes, each with 128 gigabytes (GB) of 

memory. This process required a median of four recursive FRACTAL iterations that 

produced a total of 39,840 jobs (Fig. 2a–d) and a total runtime of 31.6 h (Fig. 2e). The 

reconstructed lineage involved nearly 100% of the input sequences (235,100,199). Because 

there is no computing method to directly measure the accuracy of the whole lineage 

reconstruction by comparing the topological agreement of the reconstructed and simulated 

ground truth trees at this scale, we randomly sampled arbitrary numbers of sequences 

included in the reconstructed tree and measured topological agreement of their subgraph 

trees with the simulated tree using normalized Robinson– Foulds distance (NRFD)23 

(Methods; Fig. 2f). In this analysis, a steady increase in topological agreement was evident 

from a relatively large sample size of sequences from approximately 104, which ended 

with an agreement score of over 99.8% for the maximum tested size of 106 sequences. 

This result suggests that the overall accuracy of this reconstructed lineage was over 99.8%. 

Direct lineage estimations were also performed for the same sets of subsampled sequences 

using the original tool (RapidNJ). Interestingly, the topological agreements of the subgraph 

trees reconstructed by the original tool with the simulated ground truth tree were markedly 

lower than those in the entire tree estimated using FRACTAL. Although the agreement 

score outputted by the original tool constantly increased with the input sequence size, it 

reached only 89.4% for the maximum capable number of sequences (100,000) with the 

same memory limitation per node, whereas the corresponding subgraph in the entire tree 

reconstructed by FRACTAL displayed an agreement score of 99.6%. This supported the 

important suggestion that the lineage estimation accuracy for a set of target sequences 

increases when other sequences produced in the same sequence diversification process are 

fully taken into account.
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The recursive FRACTAL iteration involves three major time-consuming steps: (1) sequence 

subsampling from the entire input sequence, (2) phylogenetic placement and (3) sorting 

of sequences mapped on each of the sample lineage clades for successive job cycles. 

While the present implementation of FRACTAL uses another layer of distributed computing 

with available computing nodes only for the phylogenetic placement step and a part of 

the subclade grouping step after aggregating the phylogenetic placement result using a 

single computing node (Fig. 2g), the computing loads of the remaining steps can also 

theoretically be distributed. To estimate the scalability of FRACTAL with this best possible 

implementation, we developed a simple FRACTAL runtime simulator, in which we modeled 

the input sequence size-dependent runtimes of FRACTAL iterations and runtime-dependent 

occupancies and releases of computing nodes in a distributed computing environment 

(Extended Data Fig. 2). The sequence size-dependent runtime function was fit to runtime log 

data for which all three steps in each FRACTAL iteration were processed by a single node 

in the lineage reconstruction of 235 million sequences. We then constructed a FRACTAL 

runtime simulator in which no secondary distributed computing was used in any of the 

three steps (model A). Another runtime simulator (model B) was constructed in which 

all three steps were processed by distributed computing, assuming that the number of 

available free computing nodes can linearly reduce the runtime of each FRACTAL iteration. 

Model B suggested that the runtime of FRACTAL with ideal implementation would be 

proportional to the number of input sequences and inversely proportional to the number 

of computing nodes (Fig. 2h). Furthermore, models A and B predicted total runtimes of 

449.6 and 12.2 h, respectively, to reconstruct a lineage of 235 million sequences with 300 

computing nodes. These predicted runtimes were consistent with the runtime of the present 

implementation (31.6 h), which was intermediate between the two models, suggesting room 

for improvement.

Reconstruction of evolutionary and pseudo-evolutionary trees.

The lineage tree for 13,897 16S rRNA sequences obtained from the SILVA database24 

(Fig. 3a) was also estimated using the original phylogeny estimation tools and those 

FRACTALized with different subsampling and naive computing threshold parameters. 

Compared with the gold standard lineage of SILVA 16S rRNA sequences, the performance 

of FRACTAL was similar to that of the original tools (Fig. 3b). However, this experiment 

did not satisfy the fundamental question of how accurately FRACTAL can reconstruct 

evolutionary lineages because the SILVA 16S rRNA lineage was also generated by 

a prediction, and no ground truth lineage for any evolutionary process was reported. 

Furthermore, there has been no large biologically relevant lineage available that involves 

more than 1 million sequences and enables examination of the scalability of FRACTAL. 

Thus, we fit the PRESUME parameters to the reported evolutionary tree datasets to obtain 

a large pseudo-evolutionary tree. We first calibrated the parameter of PRESUME that 

determines its fluctuation level in the sequence proliferation speeds (topological lineage 

balancedness) so that the distribution of branching balance indices (BBIs; Methods) of the 

simulated lineage was similar to or higher than those of the SILVA 16S rRNA lineage tree 

and the Genome Taxonomy Database (GTDB) reference trees25 (Fig. 3c,d). The uniformity 

parameter for mutational positions and nucleotide substitution rate parameters of the GTR-

Gamma model were then separately estimated using the SILVA 23S rRNA dataset, which 
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consists of longer sequences than 16S rRNAs. At the same time, using the optimized 

topological balancedness parameter, we generated a tree of 1,019,509 leaves such that its 

relative branch length distribution was the same as that of the SILVA 23S rRNA lineage. 

Finally, the overall mutational level parameter of the GTR-Gamma model was fitted to 

capture the diversity of the sequences in the SILVA 23S rRNA sequences (Fig. 3e,f).

For the pseudo-evolutionary lineage of 1,019,509 sequences (Fig. 3g), we examined the 

accuracies of the different phylogeny estimation tools and those FRACTALized with single 

and 100 computing nodes to reconstruct various sizes of its subclades (Fig. 3h). Overall, 

any of the FRACTALized lineage estimations could reconstruct the whole lineage. Their 

accuracies were similar to or slightly higher than the original tools for any size lineage 

reconstruction. To examine the robustness of FRACTAL in reconstructing large pseudo-

evolutionary trees, three more pseudo-evolutionary lineages of 1,019,509 sequences were 

simulated without changing the lineage tree structure. Independent lineage estimations were 

performed five times for each of the four large sequence datasets using FRACTAL with 100 

computing nodes. These experiments demonstrated that FRACTAL robustly reconstructed 

the large pseudo-evolutionary trees with accuracies similar to or higher than those of the 

original tools for their maximum capable lineage sizes (Fig. 3i). We also demonstrated that 

FRACTALized phylogeny estimations were also as robust as the commonly used software 

tools against noise sequence contamination. For the SILVA 16S rRNA sequences mixed with 

0% to 20% random sequences, the reconstruction accuracies of their gold standard lineage 

remained the same for RapidNJ, RAxML and FastTree and those FRACTALized (Extended 

Data Fig. 3)

FRACTAL for high-resolution tracing of large cell lineages.

Because the idea of CRISPR cell lineage tracing has been beautifully demonstrated9,26, 

the area has been rapidly developing. However, no method has yet achieved high-

resolution tracing of large cell lineages, such as the entire cell lineage of animal body 

development. Several methods have used multiple evolving barcodes integrated into each 

cell, in which multiple barcodes in distal chromosomal regions independently acquire 

mutations5,6,13,14,26,27. In such a system, the barcodes are tagged with a unique static 

identifier (or locus ID) and transcribed under polymerase II promoters, allowing for 

combinatorial mutation patterns in individual cells to be read by scRNA-seq or spatial 

genomic approaches. While the current systems use either a few copies of a CRISPR 

targeting array or many recording units of a limited lineage recording capacity, one 

plausible way to increase the memory capacity for high-resolution cell lineage tracing is 

a combination of these strategies, where each cell has dozens to hundreds of transcribing 

barcode arrays of multiple CRISPR targeting units (Fig. 4a). If realized, this approach 

would also allow a quantitative self-evaluation of reconstructed lineages without a ground 

truth lineage (Fig. 4b). DNA barcode arrays can be split into two distinct sets. Therefore, 

the agreement between cell lineages orthogonally reconstructed from independent datasets 

would represent the accuracy of the reconstructed lineages. Furthermore, in current 

technologies, the use of Cas9 to induce continuous mutations also has major drawbacks. 

Cas9-based induction of DNA double-stranded breaks (DSBs) to introduce mutations is 

toxic to cells28, and DSBs often induce deletions after non-homologous end-joining repair. 
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Furthermore, multiple DSBs at a DNA barcode array, if they occur simultaneously, would 

pop out the entire memory region sandwiched by the cut sites. These deletions result in 

the termination of the mutation process and mask lineage information recorded before such 

events. One strategy to mitigate this effect would be the use of CRISPR base editors that 

induce nucleotide substitutions with minimal DSB activities29. Several studies have recently 

established dual-function CRISPR base editors with C→T and A→G activities, which can 

greatly diversify sequences in a narrow window of the gRNA target sequence30–32.

Foreseeing these next-generation strategies involving the high-resolution lineage tracing of 

a large number of cells, we examined whether FRACTAL can practically handle such a 

game. Using the genome editing outcome dataset of scGESTALT generated for the tracing 

of zebrafish brain cell lineages10 and the base editing spectrum data of dual-function 

base editor Target-ACEmax that we developed previously32, PRESUME was modeled to 

simulate a lineage of over 16 million cells each with 100 copies of a barcode array that was 

continuously mutated. Each barcode array was designed to have nine gRNA target sites and 

a unique locus identifier. Because currently published CRISPR cell lineage tracing data are 

dominated mainly by multifurcation branches and do not enable quantitative estimation of 

the unbalancedness of a typical vertebrate cell lineage (Extended Data Fig. 4a), we obtained 

an embryonic cell lineage of C. elegans33 (Fig. 4c), examined its branching balancedness 

and used a topological parameter for PRESUME that ensured a more unbalanced sequence 

diversification process than C. elegans embryogenesis (Fig. 4d).

To model substitutions by Target-ACEmax, the average C→T and A→G base editing 

spectra across different positions of a gRNA-targeting unit were obtained from the previous 

dataset32 with their scaling factors to represent base editing efficiencies of different target 

sequences (Fig. 4e). Different base editing frequencies across the array of nine gRNA 

targets were then modeled according to the base editing scaling factor distribution. Finally, 

we used a constant secondary base editing scaling factor to be multiplied by these base 

editing frequencies at different sequence positions to represent those per cell generation. 

A minimized level of insertions and deletions (indels) has been reported to be induced by 

base editing. To model the unique mutation patterns in the barcode array with overestimated 

frequencies of base editing-induced indels, we obtained frequencies of observed insertion 

positions and deletion center positions across the array of nine gRNA targets and their 

observed size distributions in the scGESTALT dataset10 as their relative event probabilities 

and size distributions of independent events (Fig. 4f).

Using the mutation model, we first calibrated the indel probabilities per generation so 

the average total insertion and deletion sizes of each array conferred by a simulation 

of producing 4,000 cells would be similar to those observed in the scGESTALT dataset 

(Extended Data Fig. 4b,c). Assuming that the average total generation time from the root 

to leaves of a given tree was double that of a tree whose number of leaves is square 

rooted, half of these indel probabilities were allocated to simulate the lineage of 16 million 

(4,0002) cells such that each producing cell would acquire a similar degree of indels. To 

determine the optimal secondary base editing scaling factor for the lineage of 16 million 

cells, we also simulated the production of 4,000 cells and found that lineage tracing by 

RapidNJ performed the best for a secondary base editing scaling factor of approximately 
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0.5 (Extended Data Fig. 4d–f). Accordingly, we simulated lineages of 16 million cells 

using a secondary base editing scaling factor of 0.25 (Fig. 4g) and an order of magnitude 

lower scaling factor of 0.025 (Fig. 4h). These base editing frequencies per generation 

were considered reasonable because of the secondary base editing factor of 1.0, which is 

equivalent to the training base editing dataset obtained after three generations of HEK293Ta 

cells32, and because the base editing efficiency could be easily attenuated by changing 

promoters or mutating the base editor or gRNA.

Using FRACTALized RapidNJ with 100 computing nodes, the simulated cell lineages of 

16 million cells were reconstructed from different numbers of barcode arrays (Fig. 4i). 

For both base editing frequency levels, the accuracy of lineage reconstruction measured by 

comparing to the ground truth lineage of simulation increased with the number of barcode 

arrays used, as expected (Fig. 4j). For the secondary base editing factor of 0.25, the lineage 

reconstruction accuracy exceeded 99% when 40 barcode arrays were used. The maximum 

accuracy of 99.5% was observed with the total runtime of 16.5 h when all 100 barcode 

arrays were used. Even for a scaling factor of 0.025, the accuracy exceeded 99% with the 

total runtime of 16.7 h when all 100 barcode arrays were used, showing that FRACTAL 

was amenable for high-resolution tracing of large cell lineages with many barcode arrays 

(Fig. 4j). Furthermore, the agreement of orthogonal cell lineage trees reconstructed from 

independent sets of barcode arrays increased with the number of barcode arrays used to 

reconstruct each tree (Fig. 4k). The agreement levels of orthogonally reconstructed trees 

were linearly correlated with the accuracies of lineages reconstructed using the same number 

of barcode arrays (Fig. 4l). This result suggests that the orthogonal lineage reconstruction 

strategy would enable a quantitative estimation of lineage accuracy when a ground truth 

lineage is unavailable, which is expected in developmental cell lineage tracing. We also 

plugged Cassiopeia27, a recently developed cell lineage tracing software, into FRACTAL 

and demonstrated that both Cassiopeia and FRACTALized Cassiopeia underperformed 

FRACTALized RapidNJ and FRACTALized RAxML to reconstruct cell lineages with many 

barcode arrays (Fig. 4m, Supplementary Note 3 and Supplementary Figs. 6–11).

Tracing large sequence diversification processes in EP-PCR.

To examine whether FRACTAL can also trace experimentally produced sequence 

diversification processes, we performed two-step EP-PCR experiments and generated two 

mutated sequence datasets of a CTNNB1-encoding region (198 base pairs (bp)) and an 

arbitrarily selected sequence BET002 (110 bp) in the human genome, each with 96 designed 

lineage bottlenecks. The generation of each dataset was initiated by subjecting an input 

sequence clone to an EP-PCR (Fig. 5a). Following bacterial cloning of the PCR product 

and isolation of 96 colonies, the plasmids were purified and subjected to secondary EP-

PCR. The same 96 plasmid samples were subjected to high-fidelity PCR (HF-PCR). The 

PCR products were uniquely indexed and pooled for sequencing. Sequencing reads were 

demultiplexed, and unique reads were identified for each sample. The sequencing reads of 

HF-PCR were used to identify the parental first-generation sequences in each well subjected 

to secondary EP-PCR. We found multiple first-generation sequences in some wells, 

suggesting imperfect clone isolation. Most of the second-generation sequences showed the 

best match to the parental first-generation sequences identified for the corresponding wells, 
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demonstrating that the experiment generated expected datasets (Fig. 5b and Extended Data 

Fig. 5).

We obtained 3,077,052 and 3,146,330 unique second-generation sequences for CTNNB1 
and BET002, respectively. In this study, we also invented an incremental multiple sequence 

alignment (MSA) method for FRACTAL, which does not require a preliminary MSA 

of the entire input sequences (Extended Data Fig. 6 and Supplementary Note 4) and 

reconstructed the CTNNB1 and BET002 lineages using this method. The total runtimes 

for CTNNB1 and BET002 were 41.9 h and 32.6 h, respectively. The reconstructed lineages 

covered most of the input sequences (3,020,109 and 3,119,911 sequences for CTNNB1 and 

BET002, respectively) and showed significant clustering of sequences observed from the 

same wells (Extended Data Fig. 7). Under the assumption that second-generation sequences 

that best matched the parental sequences of different or multiple source wells were derived 

from sample cross-contamination or insufficient edit distance conferred by EP-PCR, these 

sequences were removed from the reconstructed lineages, leaving 1,983,716 and 1,483,691 

sequences for CTNNB1 and BET002, respectively (Extended Data Fig. 6). This improved 

clustering of same-well sequences for both datasets (Fig. 5c–f and Extended Data Fig. 5). 

Especially for CTNNB1, the downstream clades consisting of 1,000 to 15,000 sequences 

were dominated mainly by sequences from single wells (Fig. 5e). Furthermore, the distances 

of sequence pairs in the reconstructed lineages were shorter for sequences identified for 

the same wells than for sequences in different wells (Fig. 5g and Extended Data Fig. 

5). Consistent with the fact that CTNNB1 sequences accumulated more mutations than 

BET002 (Extended Data Fig. 5), these results also demonstrated that the reconstructed 

lineage of CTNNB1 had a higher agreement with the experimental sample manipulation 

process than BET002. FRACTAL could also reasonably reconstruct lineages of at least up 

to approximately 3 million experimentally produced sequences. This scale was not possible 

using the original lineage estimation software tools.

Discussion

In evolutionary biology, phylogenetic trajectories of species have been estimated by lineage 

reconstructions for independent taxonomic categories at different ranks. The definitions 

and relationships of these ranks have been empirically given by lineage reconstruction 

of representative species or by morphological analyses34. However, recent metagenomic 

sequencing efforts have revealed the existence of the large candidate phyla radiation with 

an unidentified clade size. Its members are largely uncultivable, resulting in difficulties in 

morphological or other phenotypic analyses35. Considering that there are also many other 

potential underexposed clades, it is no longer unusual that massive amounts of sequence data 

for novel species are acquired before identifying their taxonomic positions. This growing 

trend requires large-scale, unsupervised phylogenetic estimation using only input sequence 

information. The deep distributed computing strategy FRACTAL would have great potential 

to reveal the vast evolutionary landscape of species that have emerged on Earth.

The success of FRACTAL shows that random sampling of sequences is adequate for 

precise estimation of only an upper layer of a target lineage. At the same time, when 

different fractions of sequences were randomly sampled from the simulated dataset of 
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235 million sequences for independent small-lineage reconstructions, the accuracies of the 

estimated lineages largely underperformed compared to the corresponding lineage subgraphs 

in the whole reconstructed lineage, showing that the sampling strategy was inferior in 

reconstructing the downstream lineage. This phenomenon has already been seen at a much 

smaller scale in evolutionary biology; a lineage estimation of species from a taxonomic 

group is more successful when species are densely sampled from the taxonomic group at 

their full extent36. We found that this is still the case even for an unbiased sampling of 

tens of thousands of sequences from hundreds of millions of sequences. This indicates the 

need to use sequences from as many species as possible, even for large-scale phylogeny 

estimation in evolutionary biology, where FRACTAL would significantly contribute. This 

also has a striking impact on developmental cell lineage tracing and raises the need for 

whole-body, high-resolution cell lineage tracing, even when a limited number of cells are 

being investigated.

The genetic circuits for the high-resolution lineage recording would be realized in a way 

proposed in the present study. The barcode array of multiple gRNA-targeting units9,10, 

the use of multiple recording units per cell for capture by scRNA-seq6,7,10 or spatial 

genomics26,37, the introduction of dozens to hundreds of recording units per cell5 and the 

use of base editors29 have all been independently demonstrated. The sampling sensitivity 

of daughter cells has been a conceptual bottleneck for the high-resolution tracing of large 

cell lineages. However, the speed of scRNA-seq technologies has been increasing faster 

than predicted by Moore’s law in the last 6 years since the advent of droplet-based scRNA-

seq methods38,39, which enabled the analysis of multiple thousands of cells. The current 

scalability of split pool barcoding-based scRNA-seq is now on the order of multiple millions 

of cells16,17. It is not too optimistic to predict that technologies that capture multiple 

orders of magnitude higher numbers of cells will appear in the next 5 years. Thus, the 

deep distributed computing presented in this study will break the last wall hindering high-

content lineage analysis. Furthermore, unlike in the field of evolutionary biology that can 

be satisfied with a one-time reconstruction of high-resolution lineages of target organisms, 

FRACTAL will be of greater utility when large-scale lineage estimations are repeatedly 

required to explore developmental processes of multiple individuals from the same species 

and those of different species. The reconstruction of individual lineages would lead to 

the identification of deterministic and stochastic cell differentiation and body formation 

processes.

In summary, we developed a new deep distributed computing method, FRACTAL, for the 

scalable reconstruction of extremely large lineages and verified its validity by successfully 

reconstructing various types of large lineage trees that the commonly used software tools 

could not reconstruct. Although many lineage estimation tools have been developed in the 

long history of evolutionary biology, all of the major tools use algorithms to reconstruct 

an entire tree all at once with the need to continuously monitor the computing status of 

all of the input sequences, preventing their computing processes from being subdivided 

into isolated tasks. Instead, FRACTAL abandons the reconstruction of the target lineage all 

at once and incrementally pursues independent estimations of upstream lineages that can 

be precisely reconstructed from sparsely subsampled sequences. The computing costs of 

FRACTAL, even with a single node, were successfully reduced from those of the original 
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tools in many cases, suggesting that the current lineage estimation algorithms are overkill 

for many practical tasks. The strategic shift in FRACTAL has dramatically reduced the 

overall computing cost, allowed the use of distributed computing and essentially enhanced 

the lineage estimation capability. This concept will be fundamental for large-scale lineage 

reconstruction using distributed computing and will benefit both evolutionary biology and 

developmental biology, whose data resources have been growing rapidly.

Methods

Datasets.

The SILVA 16S and 23S rRNA trees and their MSA results were obtained from the 

SILVA database24 (LTPs132_SSU and LTPs123_LSU, downloaded on 13 December 

and 18 December 2020, respectively). Sequence alignment gaps of LTPs132_SSU and 

LTPs123_LSU were trimmed using trimAl 1.4rev15 (ref. 42) with ‘-gappyout’. The GTDB 

reference prokaryotic lineages were obtained from the GTDB25 (release 95; downloaded 

18 December 2020). As some software did not accept the RNA sequence representation, 

uracils in the sequences were converted to thymines. The embryonic cell lineage of C. 
elegans was generated from time-lapse three-dimensional measurement data of embryonic 

cell divisions obtained from a previous study (http://www.digital-development.org/; dataset 

name: ZD_RW10348_WT_20110126_2_s1_emb2)33, and the data were converted into a 

Newick file such that each branch length represents the duration of its corresponding cell 

imaged with a resolution of 75 s (Supplementary Data 1). The base editing outcome data 

of Target-ACEmax at 47 gRNA target sites in the human genome (HEK293Ta cells 3 

d after transfection) were obtained from our previous study32. The scGESTALT barcode 

sequencing results for cell lineage tracing of zebrafish brain development were obtained 

from the National Institute of Health Sequence Read Archive (SRR6176748, SRR6176749 

and SRR6176750 for ZF1, ZF2 and ZF3, respectively). The benchmarking datasets for 

evaluating cell lineage tracing performance prepared for Cassiopeia were downloaded from 

the Zendo repository (https://zenodo.org/record/3706351).

FRACTAL.

Execution.—Lineage estimation using FRACTAL is executed with the information of 

input sequences, a rooting sequence, a lineage estimation software of choice, subsampling 

size k, naive computing threshold t, phylogenetic placement method of choice, subgraph 

size for phylogenetic placement z, the maximum number of sample tree reconstruction 

retrials x and the number of computing nodes d. The input sequences are provided in 

a FASTA-formatted file. The user can provide an MSA result of the input sequences 

in the FASTA file by representing gaps by ‘-’ or choosing an option to incrementally 

perform MSA along with the FRACTAL process. Any lineage estimation software tool can 

be plugged into the sample tree and terminal tree reconstructions using a user-prepared 

script. In the present implementation of FRACTAL, RapidNJ 2.3.2 (ref. 21), RAxML 

8.2.12 (SSE3, HPC, Pthreads version)20 and FastTree 2.1.10 (SSE3, OpenMP version)22 

were implemented as default lineage estimation tools for NJ, MP and ML, respectively 

(note that while RAxML is commonly used for ML-based phylogeny estimation from a 

starting tree reconstructed by MP, FRACTAL uses this software to reconstruct MP trees by 
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inactivating the likelihood optimization). For phylogenetic placement, RAxML 8.2.12 (MP) 

or EPA-ng 0.3.5 (ML)19 was selected for the present implementation of FRACTAL. The 

GTRCAT model of EPA-ng was used for phylogenetic placement throughout the present 

study. The user-provided rooting sequence is commonly used for all sample and terminal 

tree reconstruction processes.

FRACTAL iteration.—In each FRACTAL iteration, if the number of input sequences n 
is equal to or less than t, the lineage of the entire input sequence is directly estimated 

by the software tool of choice, and the operation for that computing trajectory terminates. 

Otherwise, k sequences are randomly subsampled from the input sequence pool. Redundant 

sequences are removed from the subsampled sequence pool, and unique sequences are used 

to reconstruct a sample tree by the lineage reconstruction tool plugged in by the user. All 

of the input sequences are then independently mapped to their most proximal branches of 

the sample tree using the phylogenetic placement method of choice. When z < k, a subtree 

of the sample tree for randomly selected z sequences is used for phylogenetic placement 

to reduce memory cost. If multiple branches were found to be equally parsimonious for an 

input sequence (for MP-based phylogenetic placement only), a random branch is selected.

If all of the input sequences are placed on downstream branches of the sample tree such that 

they are separated into multiple distinct clades, their upstream lineage is considered to be 

resolved and fixed. The sequence groups in different downstream clades are then recursively 

subjected to the next FRACTAL iterations using different computing nodes in parallel. 

If any sequences are placed on the branch connecting to the rooting sequence, thereby 

preventing the grouping of input sequences into clades, the sample tree reconstruction and 

phylogenetic placement processes are repeated by subsampling k sequences from a union 

of the previously subsampled sequences and the ‘problematic’ sequences. This process is 

repeated until the problem is solved, but only up to x times as long as the number of 

problematic sequences continues to be reduced in every retrial step. When the retrial cycle 

stops, problematic sequences on the rooting branch, if any, are discarded, and the other 

sequences are grouped into distinct clades for the next FRACTAL iterations.

The present implementation of FRACTAL uses another layer of distributed computing to 

accelerate the computing speed. The initial input sequences are first split into multiple 

FASTA files using SeqKit 0.12.1 (ref. 43) before the first FRACTAL cycle. The number of 

split files becomes equal to the number of computing nodes d assigned for the FRACTAL 

run. Followed by random subsampling of sequences from randomly selected files and 

sample tree reconstruction, the input sequence files are independently subjected to available 

computing nodes for phylogenetic placement. The placement results from the different 

computing nodes are aggregated to determine an upstream lineage using a single computing 

node. Grouping of sequences into downstream clades for the next FRACTAL iteration is 

also performed independently for the input sequence files under distributed computing. For 

each of the determined clades, multiple sequence files are generated from the distributed 

computing nodes and directly subjected to successive iterations.

Lineage reconstruction using both substitutions and indels.—While most of the 

practical phylogeny estimation tools can consider only substitutions, FRACTAL allows any 
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software of choice to use both substitutions and indels for scalable lineage reconstruction. 

In this option, similar to a previously described method9,10, mutation patterns in the 

input sequences are converted into another sequence representation using four nucleotide 

sequences in the sample tree reconstruction and phylogenetic placement of each cycle as 

follows. All of the mutation patterns in sequences subsampled at each FRACTAL iteration 

are first encoded by binary letter patterns of unique positions to convert each mutated source 

sequence into a binary sequence of a fixed length, each of which represents the presence 

and absence of a specific mutation observed in the original subsampled pool by 1 and 0, 

respectively. The binary sequence of 1/0 is then further converted into a nucleotide sequence 

of thymine/cytosine or adenine/guanine at each position. The converted sequences are used 

to construct a sample tree using the given software of choice. Phylogenetic placement is 

achieved by converting the remaining sequences using the same encoding rule, ignoring 

the unique mutation patterns observed outside the original subsampled pool. The encoding 

rule is updated for every sample tree reconstruction, economically taking into account 

all mutations in the original input sequences through the lineage reconstruction process. 

Terminal tree reconstruction is performed using the same sequence conversion process. 

Because RAxML only accepts input sequences containing all four nucleotide characters, 

we used the thymine/cytosine and adenine/guanine codes in the upstream and downstream 

halves of the converted sequences, respectively.

Regulations implemented for effective distributed computing.—To prevent 

unnecessary increases in overhead costs of waiting time and process management in 

distributed computing, the present version of FRACTAL includes several simple regulations. 

In the phylogenetic placement of each FRACTAL iteration, the independent tasks of placing 

n sequences to a sample tree are also performed using distributed computing. To save 

available computing nodes for other processes running in parallel, this process is subdivided 

into max d × n/n0 − 1, 1  groups for different computing nodes, where n0 is the number 

of input sequences subjected to the initial FRACTAL cycle. In the subclade grouping 

process after phylogenetic placement, an upper tree is defined for branch depths of up to 

1 + log2(n/t)  to prevent small sequence groups that can be easily handled by the terminal 

lineage reconstruction from being unnecessarily split into many smaller groups for the next 

FRACTAL iterations. Furthermore, when n ≤ n0/d, the following FRACTAL iterations are 

performed in the same computing node without distributing the tasks to the other computing 

nodes.

The FRACTAL parameters used in all experiments in the present study are listed in 

Supplementary Table 1.

Runtime simulation of FRACTAL.

The runtime simulator of FRACTAL in a distributed computing environment was modeled 

based on the input size-dependent runtime of each FRACTAL iteration cycle and a runtime-

dependent occupation and release of computing nodes. In this simulation, assuming a 

high-performance computing environment with a fixed number of distributed computing 

nodes d, each FRACTAL iteration cycle of input sequence size n starts if there is an 

available computing node; otherwise, it is stalled until a newly available node is released 

Konno et al. Page 13

Nat Biotechnol. Author manuscript; available in PMC 2023 February 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



from one of the ongoing jobs. Each FRACTAL job process occupies one computing node 

for a runtime f(n). The incremental FRACTAL job propagation process was modeled with 

a simple assumption where every FRACTAL iteration produces two new child jobs each 

with an input sequence size of n/2 . When n is equal to or less than the naive computing 

threshold t, the job terminates after occupying one node for a runtime f(n), assuming the 

terminal lineage reconstruction process.

Each FRACTAL iteration involves three major steps that require high computing loads: 

(1) sequence subsampling from the entire input sequences, (2) phylogenetic placement 

and (3) subclade grouping of input sequences for successive job cycles. While these 

computing loads can, in theory, be distributed into multiple computing nodes, FRACTAL 

implemented in the present study uses another layer of distributed computing only for the 

phylogenetic placement step and a part of the subclade grouping step after aggregating 

the phylogenetic placement result using a single computing node. We first fitted the 

f(n) function for the model in which none of the three steps is processed by distributed 

computing (model A) using runtime log data of independent FRACTAL iteration cycles that 

were processed without the secondary distributed computing in the lineage reconstruction 

of the approximately 235 million sequences. Next, we modeled the best implementation of 

FRACTAL, where the collective computing load f(n) from the three major steps is perfectly 

distributed using the available computing nodes (model B) as follows:

f(n)
max 1, d × n

n0

Here, the denominator represents the number of available computing nodes, assuming that 

the smaller the input sequences for a FRACTAL iteration cycle the higher the chance of 

computing nodes being occupied by the other job processes at the same period on a linear 

scale.

PRESUME.

Execution.—PRESUME (Supplementary Fig. 2) enables the simulation of various 

sequence diversification processes based on user-defined models. It is executed with the 

input information of a root sequence, a target number of sequences to be generated n as 

well as a parameter σ that determines the branch unbalancedness of the generating tree and 

parameters that determine how to introduce mutations in sequences. A template tree with 

defined branch lengths (or generation times) can also be given, such that the mutational 

process is simulated along with the provided tree.

Simulation of tree topology.—Unless a tree of defined topology is provided by the 

user, PRESUME first simulates a template tree topology for the proliferation of propagating 

units (PUs) (that is, sequences or cells as units to harbor multiple sequences) using a single 

parameter σ. Following a linear time T progression, PRESUME progressively proliferates 

PUs, in which each PU duplicates when its generation time d has passed since its birth. 

The generation time d is given to each new PU, so its reciprocal (doubling speed) follows a 

gamma probability distribution, wherein the mean and variance are 1 and σ2, respectively.
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1/d ∼ Γ 1/σ2, σ2 .

When the distributed computing mode is disabled, the simulation stops at time T = t when 

the number of generated PUs satisfies ≥n (note that some PUs can be generated at the 

same time). When the distributed computing mode is enabled, PRESUME first simulates a 

propagation process using a single computing node T = t′ when the number of generated 

PUs satisfies ≥ n the propagation until process starting from each of these PUs is then 

operated independently by distributed computing until T = 2t′ so that the total number of 

generated PUs is ~n.

Nucleotide substitution.—When a template tree is provided by the simulation or by the 

user, the mutational processes of sequences are simulated along with it. In the present 

implementation of PRESUME, substitutions are simulated either with time-dependent 

probability functions assigned for different sequence positions using the GTR-Gamma 

model or time-independent probabilities per branch (or generation) defined for independent 

sequence positions by the user.

When the GTR-Gamma model is chosen, a position-specific relative substitution parameter 

γi for every different position i is first determined by a gamma distribution with user-defined 

parameters μ and α as follows:

γi ∼ Γ(α, /α)

Let Pi(Δt) be a 4 × 4 matrix, where Pi(Δt)x y is the transition probability from a certain 

source nucleotide x to a destination nucleotide y(x, y ∈ A, C, G, T ) within the time interval 

Δt . Pi(Δt) is then defined using γi and the substitution rate matrix Q as follows:

Pi(Δt) = eγiΔtQ

where Q is given by

Q =

− aA C aA G aA T
aC A − aC G aC T
aG A aG C − aG T
aT A aT C aT G −

πA 0 0 0
0 πC 0 0
0 0 πG 0
0 0 0 πT

The sum of the diagonal values of the right-side matrix of Q must be 1 

πA + πC + πG + πT = 1 , and the left-side matrix needs to be symmetrical (that is, the same 

values are assigned to the symmetrical nucleotide transition patterns), wherein the diagonal 

missing values are given to satisfy the condition that every row sum of Q becomes 0. Here, 

ax→y and πx are user-defined parameters.
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Alternatively, the user can define time-independent substitutions per branch (or generation) 

using the substitution probability matrix Φsub, i for every sequence position whose original 

position in the root sequence is i, as follows:

Φsub, i =

− Φi, A C Φi, A G Φi, A T
Φi, C A − Φi, C G Φi, C T
Φi, G A Φi, G C − Φi, G T
Φi, T A Φi, T C Φi, T G −

Here, all elements in the matrix are non-negative, and the diagonal missing values are given 

to satisfy the condition that every row sum becomes 1.

Indels.—The time-independent indel simulation is as follows. Sequences are propagated 

along the template PU tree and progressively accumulate indels at each generation. Let 

i′ be the nucleotide position of a sequence at a given branch of the PU tree, where its 

corresponding position in the root sequence is i. Insertion events in each generation (branch) 

are modeled by insertion probability parameters Φins, i, representing the chance of having 

an insertion event at the 3′ side of nucleotide position i′ and a position-independent 

size probability distribution ψins(L). The sequence of the insert length L at every event 

is randomly generated with equal probability for each nucleotide at every position. Deletion 

events are modeled by deletion probability parameters Φdel, i and a position-independent size 

probability distribution ψdel(L), where a deletion of size L centering at a nucleotide position 

i′ spanning from position i′ − L/2  through i′ − L/2 + L − 1  occurs with probability 

Φdel, i, where L is stochastically determined according to ψdel(L). Note that Φins, i and Φdel, i
are defined only for nucleotide positions i of the root sequence, reflecting that genome 

editing occurs only for predefined targeting sequences in cell lineage tracing.

When the distributed computing mode is enabled to simulate mutations for the template 

PU tree of n leaves, PRESUME first simulates mutations for its most upstream tree that 

subdivides its downstream trees so that each of them is composed of n  or less leaves. The 

following downstream mutational processes are independently simulated using distributed 

computing.

The PRESUME parameters used in all experiments in the present study are listed in 

Supplementary Table 2.

Evaluation of reconstructed trees.

The accuracy of the reconstructed tree compared to the ground truth or reference tree was 

measured by 1 – NRFD23 using the phangorn R package version 2.4.0 (ref. 44). NRFD 

represents a fraction of edges each of whose disconnections separates leaf sequences of a 

tree into two groups that cannot be achieved in the other tree by any edge disconnection. 

Sequences that are not shared between the two target trees were ignored to calculate the 

score. The coverage of the reconstructed tree was defined by the proportion of initial input 

sequences successfully included in the reconstructed tree without dropping out as unresolved 
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problematic sequences during the FRACTAL iterations. The tree recovery ratio was obtained 

by multiplying accuracy and coverage.

Simulation of pseudo-evolutionary trees.

The SILVA 16S rRNA reference tree (13,897 sequences after removing redundant 

sequences) and the GTDB reference trees for bacteria and archaea were used to calibrate 

the topology balancedness parameter σ for the simulation of pseudo-evolutionary lineages. 

The GTDB trees were combined through root nodes, and a random subgraph consisting of 

13,897 leaves was used for the analysis. Various trees with 13,897 to 16,384 leaves were 

simulated using PRESUME by changing σ from 0 to 4.0. The topological fits of each 

simulated lineage to the two reference trees were, respectively, measured by similarity in 

BBI distributions (intersection over union with a binning size of 0.05), where a BBI was 

calculated for each node by taking the ratio of the number of leaves associated with its two 

downstream branches (smaller over larger). In this analysis, BBIs were calculated for nodes 

with more than ten leaves associated with both of their two branches. Separately, Q and α of 

the GTR-Gamma model and branch lengths of the SILVA 23S rRNA tree (1,614 sequences) 

were estimated using RAxML (Q* and α*). Although the size of the 23S rRNA tree was 

onefold smaller than that of the 16S rRNA tree, the 23S rRNA tree composed of longer 

sequences (median of 2,900 bp) was assumed to produce more relevant mutational process 

parameters than the 16S rRNA tree (median of 1,447 bp). Applying the optimal topology 

balancedness parameter σ* that showed the best fit to the 16S rRNA tree (more skewed 

than GTDB) to PRESUME, a template tree for 1,019,509 sequences was generated, and the 

relative lengths of the internal and terminal branches were redefined by randomly assigning 

those of the 23S rRNA tree estimated using RAxML, respectively. Using the GTR-Gamma 

model with Q* and α*, nucleotide substitution processes were simulated along with the 

branch-adjusted tree by changing the mutational parameter μ from 0.001 to 1. Finally, the 

optimal mutational parameter for the pseudo-evolutionary lineage μ* was chosen so that the 

distribution of NHDs between 1,000 pairs of sequences randomly chosen from the simulated 

dataset have the best agreement with that of the SILVA 23S rRNA dataset (intersection over 

union with a binning size of 0.05). Four pseudo-evolutionary lineages were produced by 

repeating the simulation of nucleotide substitution processes using the same length-adjusted 

template tree of 1,019,509 sequences and with the above-mentioned optimized parameters 

(σ*, Q*, α* and μ*).

Identification of scGESTALT barcode arrays.

To determine a representative scGESTALT barcode array for each single cell, the raw 

FASTQ files were first converted into FASTA format using SeqKit (version 0.10.1). 

Sequence reads associated with single cells that had only a single unique molecular 

identifier (UMI) were removed. For each of the remaining single cells, barcode array reads 

of the same UMIs were then grouped, and the reads in each UMI group were clustered by 

CD-HIT-EST 4.8.1 (ref. 45) with the options ‘-c 0.9’ and ‘-n 7.’ Reads in the most dominant 

cluster with a size ≥75% in each UMI group were aligned using MSA using MAFFT version 

7.453, and their consensus sequence was determined by CONS in EMBOSS:6.6.0.0 (ref. 
46). The UMI groups with no dominant cluster of ≥75% were eliminated for the following 

process. The consensus barcode array reads of different UMIs in each cell were then 
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processed by the same operations (clustering, MSA and consensus sequence construction) to 

determine the representative barcode arrays of cells.

Mutation call.

A common mutation-calling pipeline was used throughout the study for the barcode 

arrays of the scGESTALT dataset and simulated cell populations as well as the EP-PCR 

reads. Sequences were aligned to the reference (root) sequence by NEEDLEALL in 

EMBOSS:6.6.0.0, with the options ‘-gapextend 0.5’, ‘-gapopen 10’ and ‘-endopen 10.’ The 

resulting SAM file was processed using SAMTOOLS version 1.9–74-gf69e678 (ref. 47) to 

obtain MD tags representing mutation patterns.

Reconstruction of scGESTALT lineages.

The scGESTALT cell lineages were reconstructed as previously described9. Among the 

identified mutations in the scGESTALT barcode arrays of single cells, those overlapping on 

the Cas9 cut sites, –3 bp to –1 bp from the 5′ end of the protospacer adjacent motif (PAM), 

were used for lineage reconstruction. For each lineage reconstruction, a presence/absence 

matrix for all of the observed unique mutations was generated for every cell, and every 

mutation was weighted by its relative log abundance across the cells. Using these datasets, a 

maximum parsimonious cell lineage was then reconstructed using PHYLIP Mix 3.696 (ref. 
48) with the options P, W, 2, 3, 4 and 5 and a maxtree parameter of 5. Among multiple trees 

reconstructed using Mix, the tree with the highest parsimony score was selected. If there 

were multiple highest-scored trees, the most common one, if any, was selected. Otherwise, 

selection was random.

Simulation of high-capacity CRISPR barcode system.

In the simulation of cell proliferation with the high-capacity CRISPR barcode system, each 

cell was modeled to encode 100 copies of a transcribing barcode array in its chromosomes 

with specific locus IDs, in which a dual-function base editor Target-ACEmax continuously 

induces mutations only in the barcode arrays. The design of the barcode array was adopted 

from scGESTALT, where each root barcode array was composed of a total length of 255 

bp, starting from a leader sequence (12 bp) followed by nine targeting barcode units, each 

of which was composed of a 3-bp linker and a single gRNA target site (24 bp in total; a 

spacer sequence of 21 bp plus 5′-NGG-3′ PAM for SpCas9) (Supplementary Data 2). Each 

of the gRNA-targeting spacers was designed to encode adenine or cytosine in every position 

from –21 bp to –7 bp from the 5′ end of the PAM with equal probabilities to serve them as 

substrates for C→T and A→G base editing. The cell proliferation processes were simulated 

using a topology balancedness parameter σ of 0.05.

Base editing.—The stochastic base substitution by Target-ACEmax on every barcode 

array copy per generation was modeled as subsequently detailed. From the base editing 

outcome data of Target-ACEmax at 47 gRNA target sites in the human genome, we first 

calculated the average C→T and A→G editing frequencies per gRNA-targeting site for 

positions from –25 bp to +5 bp from the PAM and obtained a unit substitution event 

probability matrix Φ̇sub (0 was given for the other substitution probabilities) (Supplementary 
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Data 3). We then fit a base editing scaling factor χ for χΦ̇sub to best represent the base 

editing spectra of each genomic target site and obtained the base editing scaling factor 

distribution P (χ) (Supplementary Data 4). Finally, the substitution probability matrix of the 

entire barcode array per generation Φsub was given such that the substitution probability 

matrix Φsub(τ) for each of the nine gRNA target sites τ (from −24 bp to −1 bp) satisfies the 

following:

Φsub(τ) = θsubχ(τ)Φ̇sub

where χτ ∼ P (χ), and Φsub is the secondary base editing scaling factor common across the 

target sites.

Indels.—The indel introduction process in the tandem array of gRNA target sites by Cas9 

base editors was modeled as follows. From the indels observed in the scGESTALT dataset, 

we first modeled frequencies of observed insert positions and deletion center positions in the 

root sequence coordinates and obtained the unit insertion event probabilities across different 

positions, Φ̇ins, and obtained unit deletion event probabilities across different positions, Φ̇del, 

in addition to their size probability distributions ψins(L) and ψdel(L), respectively, where L is 

the insertion or deletion length. The insertion event probabilities were given to the 5′-side 

nucleotide positions of the observed inserts, and the deletion event probabilities were given 

to positions each given by (x + y)/2 , where deletion start and end positions in the reference 

sequence were x and y, respectively. The insertion and deletion event probabilities across 

positions of the barcode array per generation Φins and Φdel for PRESUME were then defined 

as follows:

Φins = θinsΦ̇ins

Φdel = θdelΦ̇del

where θins and θdel are constant scaling factors. The size probability distributions ψins(L) and 

ψdel(L) were directly given to PRESUME to simulate indel size at each event.

Simulation of 16 million cells.—A tree topology of 16,671,840 cells was first obtained 

using PRESUME. Indel accumulation processes were tested for a small tree of 4,000 cells 

by sliding Φins and Φdel separately each from 0.0001 to 1. The optimal parameters θins
∗

(0.015) and θdel
∗  (0.34) were calculated. These parameters, together with the simulated cell 

proliferation trajectories, conferred indels in each barcode arrays whose lengths were similar 

to those observed in the scGESTALT dataset. To have similar indel levels in each barcode 

array through the trajectories of generating 16 million cells, we used θins
∗ /2 and θdel

∗ /2, 

assuming the average total generation time from the root to leaves of a given tree was double 

to that of a tree with a square root number of leaves. To determine secondary base editing 
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scaling factors Φsub to be used for the simulation of 16 million cells, sequence diversification 

processes were also simulated along with the same tree of 4,000 cells with the calibrated 

indel scaling parameters θins
∗  and θdel

∗  by sliding Φsub from 0.001 to 10. Elements of the 

matrix Φsub for each nucleotide position (either C→T or A→G) were fixed at 1 when they 

exceeded 1. In each simulation, the produced barcode arrays with mutations were aligned 

to the reference (root) sequence for calling mutations as described above. Substitutions in 

different numbers of barcode arrays (5, 10, 20, 40 and 100) were used for cell lineage 

reconstruction by RapidNJ and FRACTALized RapidNJ. From this experiment, the optimal 

secondary base editing factor θsub
∗  (0.5) that showed that the overall best accuracy was 

determined to reconstruct the lineage of 4,000 cells with any number of barcode arrays. 

Finally, together with the defined indel scaling parameters, the predicted optimal secondary 

base editing scaling factor θsub
∗ /2 (0.25) was used to simulate a proliferation of 16 million 

cells. Another simulation with θsub
∗ /20 (0.025) was also performed.

Cell lineage tracing.

To reconstruct the lineage of 16 million cells using FRACTALized RapidNJ, we aligned the 

mutated barcode array sequences of each cell to the reference sequence, called mutations 

and used only substitutions. To examine the performance of different lineage estimation 

methods, cells from different sizes of subclades in the simulated lineages of 16,671,840 

cells were used for cell lineage tracing using the original Cassiopeia (version 0.0.1), 

FRACTALized Cassiopeia, FRACTALized RapidNJ and FRACTALized RAxML. For 

Cassiopeia and FRACTALized Cassiopeia, the barcode array sequences were first aligned to 

the reference (root) sequence, and the identified mutations (both indels and substitutions) 

were grouped separately for the leader sequence and nine gRNA target units, where 

deletions spanning across multiple groups were assigned to all of the corresponding groups, 

and the converted mutation lists were formatted by ‘utilities.alleletable_to_character_matrix’ 

of the Cassiopeia package. The lineage reconstruction experiments by Cassiopeia were 

performed using the three run modes ‘Greedy’, ‘Hybrid’ and ‘ILP’ with the options ‘–

greedy–num_threads 1’,’– hybrid–num_threads 1–max_neighborhood_size 6000–time_limit 

5000–cutoff 200’ and ‘–ilp–num_threads 1–time_limit 12600’, respectively, as described 

previously. Lineage reconstruction experiments using FRACTALized Cassiopeia were 

also performed with the three run modes with the options ‘–greedy–num_ threads 1’, ‘–

hybrid–num_threads 1–time_limit 60–cutoff 4’ and ‘–ilp–num_ threads 1–time_limit 60’, 

respectively, with the subsampling size and the naive computing threshold set to 10. For 

FRACTALized RapidNJ and RAxML, to realize a fair comparison with Cassiopeia and 

FRACTALized Cassiopeia, the grouped mutation lists of each cell are concatenated into one 

list to include the redundant deletions assigned to multiple groups if any. The mutation lists 

of cells were then given to FRACTALized RapidNJ and RAxML with the above-mentioned 

mode, taking into account both indels and substitutions. The FRACTAL parameters used in 

these experiments are listed in Supplementary Table 1.
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PCR-based sequence evolution.

First-round ER-PCR and fragment cloning.—The CTNNB1 gene coding region 

(198 bp; chromosome 3, 41246920–41247074) and BET002 non-coding region (110 bp; 

chromosome 22, 27202644–27202753) in the human genome GRCh37/hg19 were amplified 

by EP-PCR using the GeneMorph II Random Mutagenesis kit (Agilent) with primer pair 

1684–1827 for CTNNB1 and 1759–1760 for BET002, respectively (Supplementary Table 

3). EP-PCR was performed in a 10-μl reaction volume, including approximately 10 copies of 

human genomic DNA template, 0.5 μl of 10 μM primer each, 0.2 μl of Mutazyme II DNA 

polymerase, 1 μl of 10× Mutazyme II Reaction Buffer and 0.2 μl of 40 mM dNTPs with 

the following thermal cycler conditions: 95 °C for 120 s, 60 cycles of 95 °C for 30 s, 55 

°C for 30 s and 72 °C for 60 s and 72 °C for 10 min for the final extension. For low copy 

number genomic DNA template preparation, 3.45 ng (approximately 1,000 copies) of human 

genomic DNA was resolved in 100 μl of PCR water containing 100 ng of pRSI9-U6-(sh)-

UbiC-TagRFP-2A-Puro plasmid DNA (Addgene, 28289) as a decoy in a 1.5-ml LoBind tube 

(Eppendorf) using 1 μl each as the PCR template. Amplified PCR products were resolved by 

2% agarose gel electrophoresis, purified using a column purification kit (NipponGene) and 

digested with XbaI (New England Biolabs) and XhoI (New England Biolabs). The digested 

products were purified again and assembled with the XbaI-XhoI-digested pcDNA3.1(+) 

backbone plasmid using T4 DNA ligase (NipponGene) at 16 °C for 2 h. The assembly 

product was purified using a 1.8×volume of Agencourt AMPureXP (Beckman Coulter) 

and transformed into New England Biolabs 5ɑ Escherichia coli chemically competent 

cells according to the manufacturer’s high-efficiency transformation protocol (New England 

Biolabs). Bacterial colonies were isolated, and the target sequence region was amplified by 

direct colony PCR using primer pairs 471–1727 for CTNNB1 and 471–1760 for BET002 

(Supplementary Table 3). For PCR samples in an expected size range, the corresponding 

plasmids were purified, and the mutations were confirmed by Sanger sequencing using 

primer 471 (Supplementary Table 3). For CTNNB1 and BET002, we prepared a collection 

of 96 colony-isolated plasmid samples, which were observed to have mutations via Sanger 

sequencing.

Second-round PCRs.—For CTNNB1 and BET002, the first-round plasmid products 

were assembled in a 96-well round-bottom deep-well plate at a concentration of 

approximately 100 copies per μl. Each sample was then subjected to second-round EP-PCR 

and HF-PCR. Each second-round EP-PCR was performed using the same protocol as the 

first-round EP-PCR using 1 μl of template and primer pair 1788–1789 for CTNNB1 or 

1783–1784 for BET002 to attach common adapter sequences for the following indexing 

PCR (Supplementary Table 3). The PCR products were resolved by 2% agarose gel 

electrophoresis and purified using a 1.8× volume of Agencourt AMPureXP (Beckman 

Coulter). Each HF-PCR also with the primer pair 1788–1789 for CTNNB1 or 1783–1784 

for BET002 was performed in a 20-μl reaction volume, including 1 ng of template plasmid, 

0.5 μl of 20 μM each primer, 0.2 μl of Phusion DNA Polymerase, 4 μl of 5× Phusion HF 

Buffer, 2 μl of 2 mM dNTPs and 0.06 μl of 100-fold SYBR Green I dilution (for monitoring 

amplification signal in each well) with the following thermal cycle conditions: 98 °C for 30 

s, 30 cycles of 98 °C for 10 s, 60 °C for 10 s and 72 °C for 60 s and 72 °C for 5 min for the 

final extension.
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Preparation of sequencing library.—The adapter-tagged PCR amplicon products were 

diluted 20-fold using PCR water for library preparation. To generate a pooled sequencing 

library, index PCR was carried out to reamplify each of the second-round EP-PCR and HF-

PCR products using a pair of custom Illumina 9-bp index primers as described previously32 

(Supplementary Table 4). In brief, 1 μl of the template DNA was amplified in a 10-μl 

reaction volume, including 1 μl of 10 μM primer each, 0.2 μl of Phusion DNA Polymerase, 

2 μl of 5×Phusion HF Buffer and 1 μl of 2.5 mM dNTPs with the following thermal cycle 

conditions: 98 °C for 30 s, 15 cycles of 98 °C for 10 s, 60 °C for 10 s and 72 °C for 

60 s and 72 °C for 5 min for the final extension. For CTNNB1 and BET002, the final 

products were resolved by 2% agarose gel electrophoresis and purified using a gel-based 

purification kit (NipponGene). The EP-PCR and HF-PCR products were combined into 

single tubes. Each pooled sequencing library was quantified using the Library Quantification 

kit (KAPA Biosystems) and sequenced by MiSeq v.3 2 × 150 bp paired-end sequencing 

(Illumina) with 20% PhiX spike-in control (Illumina). FASTQ files were generated using 

bcl2fastq2 (v.2.20.0). The second-round EP-PCR experiment was performed in duplicate, 

each of which was sequenced independently. FASTQ files for duplicates were combined for 

subsequent analysis.

Read preprocessing.—After demultiplexing of the sample reads, the adapter and sample 

index sequences were removed from the reads. The sequencing reads were then filtered with 

a Q score threshold of ≥5 for every position and an average Q score threshold of ≥20 per 

read.

Lineage estimation of EP-PCR-diversified sequences.

First-generation EP-PCR-diversified sequences were reconstructed from the HF-PCR reads 

of the corresponding reaction wells. Sequencing reads of each reaction well were processed 

by BARTENDER_SINGEL_COM of bartender-1.1 (ref. 49) with ‘-c 10 -l 5 -s 1 -z 3 -d 5’ to 

correct sequencing and PCR errors. Unique sequencing reads were then counted to generate 

a rank-count plot. The knee point of the rank-count plot was determined by KNEED version 

0.5.0 (ref. 50) and set as a threshold to determine the first-generation sequences and their 

abundances in each reaction well. Unique reads of the second-round EP-PCR were used as 

the second-generation EP-PCR-diversified sequences of each reaction well. For CTNNB1 
and BET002, the second-generation sequences of all reaction wells were pooled, and their 

entire lineage was reconstructed using FRACTALized RAxML (Supplementary Table 1). 

After lineage reconstruction, assuming second-generation sequences that best matched the 

first-generation sequences of different wells to be from PCR artifacts or contamination, the 

Levenshtein distances51 were measured between the first- and second-generation sequences. 

Second-generation sequences harboring unique parental first-generation sequences in their 

corresponding reaction wells were identified. Sequences that did not meet this criterion were 

excluded from the following analyses.

Normalized distance of tree leaves.

To evaluate the distance of two second-generation EP-PCR-diversified sequences in the 

reconstructed tree, we simply introduced a metric of ‘normalized clade size’, where distance 

DAB of two leaves A and B in a tree T was calculated by the number of leaves in a subclade 
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MAB starting from their most recent common ancestor normalized by the number of entire 

leaves in the tree:

DAB =
Number of leaves in MAB

Number of leaves in T .

To evaluate the difference between intra- and interwell distances of sequences in the tree, 

we randomly sampled 1,000 second-generation sequences for each reaction well if there 

were 1,000 or more sequences. Otherwise, the entire sequences were sampled. We then 

extracted a subtree composed of the sampled sequences from the entire tree. Using the 

extracted subtree, the intrawell distances of each target well were measured for 1,000 

pairs of randomly selected sequences. Control interwell distances for the target well were 

measured for 1,000 pairs of sequences, with one randomly selected from the target well 

and the other selected randomly from a random well. For each target well, the difference 

between the intrawell distance distribution and the control interwell distance distribution 

was tested by the Brunner–Munzel test using the R package Brunner–Munzel 1.4.1 (ref. 52) 

followed by Bonferroni correction.

Distributed computing environment.

All of the lineage estimations using FRACTAL and sequence diversification simulations 

using PRESUME were performed with the SHIROKANE Supercomputer at the University 

of Tokyo Human Genome Center (Xeon E5–2670 v.3) or the NIG Supercomputer System at 

the National Institute of Genetics (AMD EPYC7501, Xeon Gold 6130 or Xeon Gold 6136). 

See Supplementary Tables 1 and 2 for further details.

Reporting Summary.

Further information on research design is available in the Nature Research Reporting 

Summary linked to this article.
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Extended Data

Extended Data Fig. 1 |. PRESUME.
a, Schematic diagram of PRESUME. b, Various datasets of 32,768 sequences generated 

by PRESUME with different mutational parameters μ and α. The topological parameter 

σ was fixed to 0 (perfectly balanced sequence diversification). The diversity of nucleotide 

letters across different sequence positions is represented by a bit score distribution and 
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by a sequence logo for the first 15 nt of the generated sequences. c, Partial diagrams of 

representative trees generated by PRESUME with different topological parameters σ.

Extended Data Fig. 2 |. Runtime simulation of FRACTAL.
a, Conceptual diagram of the runtime simulation of FRACTAL. Under a distributed 

computing environment with a fixed number of available nodes d, each FRACTAL job of 

input sequence size n starts if there is one or more available free computing node; otherwise, 

it is stalled until a node is released from one of the ongoing jobs. Each FRACTAL job 

process is modeled to occupy one computing node for a runtime f(n) and produce two new 

child jobs for the next job cycles each with an input sequence size of n/2 . When the 

input sequence size is under a certain threshold (n ≤ t), the job terminates after occupying 

one node for a runtime f(n) assuming the terminal lineage reconstruction process. b, Two 

implementation models of FRACTAL. In FRACTAL, each job cycle contains three steps 

that require high computing loads: sequence subsampling from the entire input sequences, 

phylogenetic placement, and sorting of sequences mapped on each of the sample lineage 

clades for the next job cycles. In model A, none of the three steps is parallelized where 

a runtime of each cycle is f(n) for the input sequence size of n. In model B, all of the 

three steps are perfectly parallelized where a runtime of each cycle is linearly reduced by 

the number of available computing nodes. The denominator of the formula represents the 

number of available computing nodes, assuming that the smaller the input sequences for a 

FRACTAL iteration cycle, the higher the likelihood of computing nodes being occupied by 

the other job processes at the same period. c, Linear regression f(n) using runtime log data of 

independent FRACTAL iteration cycles any of whose major three steps was not parallelized 

for the lineage reconstruction of the 235 million sequences.
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Extended Data Fig. 3 |. Robustness of evolutionary lineage reconstruction with sequence data 
noise.
The scatter plots represent accuracies to reconstruct the SILVA 16S rRNA lineage from 

the input sequence datasets including different fractions of noise sequences. The noise 

sequences were generated by shuffling nucleotide positions of randomly selected sequences 

by keeping their alignment gap positions in the multiple sequence alignment result. The 

lineage dendrograms represent the ones reconstructed from the sequence dataset with 20% 

noise using FRACTALized RapidNJ, RAxML and FastTree.

Konno et al. Page 26

Nat Biotechnol. Author manuscript; available in PMC 2023 February 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Extended Data Fig. 4 |. Simulating proliferation of cells with the scalable CRISPR-barcode 
system.
a, The scGESTALT lineage tracing datasets of zebrafish brain development. BBI scores 

were obtained for branches that had more than three leaves associated to each of the 

two descending edges and a total of more than ten leaves associated to both of the two 

descending edges. b, c, Estimation of the insertion and deletion event probabilities per 

barcode array per generation in the scGESTALT dataset. The relative insertion and deletion 

event probabilities across each barcode array position and the probability distributions of 

insertion and deletion sizes were modeled using those observed in the scGESTALT dataset. 

The probabilities of the insertion and deletion events per generation for the production of 

4,000 cells were fitted to the average total insertion and deletion lengths per barcode array 

observed in the scGESTALT dataset, respectively. d, Median fractions of base substitution 

per nucleotide position per generation observed for different secondary scaling factors for 

base editing in the simulation of producing 4,000 cells. The blue shading represents the 5 
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to 95 percentile range. e, f, Tree recovery scores for RapidNJ and FRACTALized RapidNJ 

in reconstructing the lineages of 4,000 cells simulated based on different secondary scaling 

factors for base editing.

Extended Data Fig. 5 |. Reconstruction of the BeT002 sequence diversification process produced 
by EP-PCR.
a, Distribution in number of mutations observed in the second-generation sequences 

(CTNNB1 and BET002). b-g, BET002. b, Distribution of the second-generation sequences 

across the parental sample wells. The second-generation sequences were assigned based 

on their best matched parental first-generation sequences. c, The lineage tree of the 

mutated sequences reconstructed by FRACTAL. The sequences that did not have unique 

best matched sequences in the expected parental wells were filtered out after the lineage 

reconstruction. The dendrogram only represents the upstream lineage of the largest clades 

each composed of less than 15,000 sequences. Number of sequences, proportions of their 

source sample wells, and entropy of the well proportions are represented for each of the 
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clades. d, A zoom-in diagram of the lineage highlighted by yellow in c. e, Distribution 

of entropies for the clades each with 1,000 or more sequences. The statistical difference 

between the entropy distribution and the null distribution given by random sequence-well 

assignment was tested by two-sided Brunner-Munzel test. f, Reconstructed lineage of the 

sequences in the clade indicated by the arrow in d. g, Proportions of the parental sequences 

identified in the control PCR wells and normalized distances of the second-generation 

sequences in the reconstructed lineage for pairs in the same wells and pairs, one of each is 

from a different well. Orange dots represent significant differences between the intra- and 

inter-well distributions (two-sided Brunner-Munzel test with Bonferroni correction; adjusted 

P-value < 0.05).
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Extended Data Fig. 6 |. Evolutionary lineage reconstruction without preliminary MSA.
a, Sample tree reconstruction and phylogenetic placement of FRACTAL with no preliminary 

multiple sequence alignment (MSA). A given number of sequences are first randomly 

subsampled from the input sequences (Step 1). The subsampled sequences are aligned 

with a common root sequence by MSA using MAFFT (Step 2) and a sample tree is 

reconstructed by a software tool of choice (Step 3). Each of the remaining input sequences 

are then independently added to the MSA result by ‘plus-one’ alignment using HMMER 

(Step 4i) and placed on the sample tree (Step 4ii). b, Accuracies of reconstructing various 
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sizes of clades in the reference lineage of 1,000,000 sequences generated by RNASim. 

c, Accuracies and coverages of reconstructing the entire lineage of 1,000,000 unaligned 

sequences by FRACTALized RapidNJ, RAxML and FastTree with 100 computing nodes 

(five trials). d, Time series for the numbers of computing jobs and waiting jobs observed in 

the reconstruction of the simulated lineage of RNA evolution using 100 computing nodes for 

FRACTALization.

Extended Data Fig. 7 |. Lineages of CTNNB1 and BET002 datasets before filtering out the 
potential artifact sequences.
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a, b, Reconstructed lineages. The dendrogram only represents the upstream lineage of 

the largest clades each composed of less than 15,000 sequences. Number of sequences, 

proportions of their source sample wells, and entropy of the well proportions are represented 

for each of the clades. a, CTNNB1. b, BET002. c, d, Distribution of entropies for the 

clades with 1,000 or more sequences. c, CTNNB1. d, BET002. The statistical differences 

between the entropy distributions and the null distributions given by random sequence-well 

assignment were tested by two-sided Brunner-Munzel test. e, f, Unique read counts of 

the second-generation sequences uniquely best-matched to single parental sequences in the 

expected and unexpected wells and those best-matched to multiple parental sequences. The 

ones uniquely best-matched to single parental sequences are color-coded according to the 

parental wells. The second-generation sequences best-matched to single parental sequences 

of unexpected wells can be assumed to be cross-contaminants derived during the second EP-

PCR and the following steps. The second-generation sequences redundantly best-matched 

to multiple parental sequences can be assumed to have parental sequences that were either 

cross-contaminated before the second EP-PCR or were conferred an insufficient number of 

mutations. e, CTNNB1. f, BET002.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. 
Schematic representation of FRACTAL.
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Fig. 2 |. Lineage reconstruction of over 235 million sequences.
a, The whole distributed computing history of FRACTAL used to reconstruct the lineage of 

235 million sequences generated by PRESUME. Each circle and its child circles in the circle 

packing diagram represent a parental FRACTAL iteration cycle and its child job cycles. 

b,c, Zoom-in diagrams representing the hierarchies of the distributed computing processes 

R3–R6 (red circles) (b) and B3–B6 (blue circles) (c). The hierarchy was visualized using 

the HiView web application40. d, A partial representation of the reconstructed lineage 

of 235,100,199 sequences. Each tree shows a partial lineage determined at each of the 

distributed computing cycles R2–R6 and B2–B6. The tree diagrams were visualized using 

Cytoscape 3.7.1 (ref. 41). Interactive visualization for the whole distributed computing 

trajectories and lineage subgraphs reconstructed in corresponding FRACTAL cycles are 

available on the HiView server (http://hiview.ucsd.edu/fractal_235M). e, Time series for the 

numbers of running jobs and waiting jobs observed in FRACTAL computing. f, Accuracy 

estimation of the reconstructed lineage. For different numbers of test sequences randomly 

sampled from the entire sequences, the agreements between their corresponding subgraphs 
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in the entire tree reconstructed by FRACTAL and those of the ground truth tree are 

measured by 1 – NRFD. The accuracies of the tree reconstructed by the original RapidNJ 

from the same sequence datasets are also shown by 1 – NRFD. The ghost icon denotes 

the sequence size that failed to reconstruct by the original tool with the memory restriction 

of 128 GB. g, The current implementation of FRACTAL. h, Runtime simulations for two 

potential implementations of FRACTAL. In model A, none of the three major steps in each 

FRACTAL iteration is parallelized. In model B, all three steps are processed in parallel by 

another layer of distributed computing.
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Fig. 3 |. Reconstruction of evolutionary and pseudo-evolutionary trees.
a, A representative subclade of the reference 16S rRNA phylogenetic tree obtained from 

SILVA. b, Accuracies and coverages of reconstructed lineage trees in recapturing the SILVA 

16S rRNA reference tree. c, Agreements in distribution of BBIs between a reference tree 

and simulated lineage trees generated with various topological parameters σ. BBI values 

were calculated for each node by taking the ratio of numbers of leaves associated with 

its two downstream branches (smaller over larger). The agreement of distributions was 

measured by intersection over union of two binned histogram areas. d, BBI distribution 
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of the lineage tree fitted the best to the SILVA 16S rRNA reference tree (σ = 1.96). e, 

Agreements in distribution of normalized Hamming distances (NHDs) among sequences 

of the SILVA 23S rRNA dataset with those simulated using various mutational parameters 

μ. f, NHD distribution of the simulated dataset fitted the best to the SILVA 23S reference 

dataset (μ = 0.077). g, An example clade of the pseudo-evolutionary lineage of 1,019,509 

sequences generated by PRESUME. h, Accuracies in reconstructing different sizes of 

subclades in the pseudo-evolutionary lineage by the original tools and those FRACTALized 

using single and 100 computing nodes. i, Accuracies and coverages of reconstructing four 

pseudo-evolutionary lineages of 1 million sequences using FRACTAL with 100 computing 

nodes. Five replicate runs were performed for each of sequence datasets.
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Fig. 4 |. FRACTAL for large-scale cell lineage tracing.
a, A high-resolution CRISPR cell lineage tracing model with a scalable recording capacity. 

b, Validation of the cell lineage tracing method by comparing orthogonally reconstructed 

lineage trees using independent sets of barcode arrays. c, An embryonic cell lineage 

of Caenorhabditis elegans. d, BBI distributions of the C. elegans cell lineage and a 

simulated cell lineage tree of the same number of sequences generated with the topological 

parameter (σ = 0.05), which was used for the simulation of 16,671,840 cells. e, Average 

C→T and A→G base editing spectra by Target-ACEmax across different positions of 

a gRNA-targeting unit and distributions of their scaling factors that explain the base 

Konno et al. Page 40

Nat Biotechnol. Author manuscript; available in PMC 2023 February 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



editing frequencies of different target sequences in the previous study. f, Probabilities of 

deletion and insertion events across different positions of the barcode array and their size 

distributions observed in the scGESTALT dataset. g,h, Average mutation patterns observed 

for array 34 in the simulation of 16 million cells using the secondary base editing scaling 

factor of 0.25 and those observed for array 87 in the simulation of 16 million cells using the 

secondary base editing scaling factor of 0.025. Base editing frequencies were presented for 

non-deleted bases. i, A partial representation of the lineage of 16 million cells reconstructed 

using all of the 100 barcode arrays in every cell (the secondary base editing scaling 

factor of 0.25). Insertions were omitted from the diagram. j, Accuracies of the simulated 

cell lineage reconstructions using different numbers of barcode arrays. k, Agreements of 

orthogonal cell lineage trees for different numbers of barcode arrays used for the orthogonal 

reconstruction of each tree. l, Correlation between lineage reconstruction accuracies using 

different numbers of barcode arrays and lineage agreements of orthogonally reconstructed 

trees each by the corresponding numbers of barcode arrays. m, Performance comparison 

of Cassiopeia, FRACTALized Cassiopeia and FRACTALized RAxML and RapidNJ for the 

lineage reconstruction of 9,518 cells generated using the secondary base editing scaling 

factor of 0.25. The tree recovery ratio was obtained by multiplying the accuracy and 

coverage.
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Fig. 5 |. Reconstruction of a sequence diversification process produced by eP-PcR.
a, Experimental design. b, Distribution of the second-generation sequences across the 

parental sample wells. The second-generation sequences were assigned based on their best-

matched parental first-generation sequences. c, The lineage tree of the mutated sequences 

reconstructed by FRACTAL. Sequences that did not have unique best-matched sequences in 

the expected parental wells were filtered out after lineage reconstruction. The dendrogram 

represents the upstream lineage of the largest clades each composed of less than 15,000 

sequences. Number of sequences, proportions of their source sample wells and entropy of 

the well proportions are represented for each of the clades. d, A zoom-in diagram of the 

lineage highlighted in yellow in c. e, Distribution of entropies for the clades each with 

1,000 or more sequences. The statistical difference between the entropy distribution and the 

null distribution given by random sequence well assignment was tested by Brunner–Munzel 

test. f, Reconstructed lineage of the sequences in the clade indicated by the arrow in d. g, 

Proportions of the parental sequences identified in the control PCR wells and normalized 

distances of the second-generation sequences in the reconstructed lineage for pairs in the 
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same wells and pairs, one of each is from a different well. Orange dots represent significant 

differences between the intra- and interwell distributions (two-sided Brunner–Munzel test 

with Bonferroni correction; adjusted P value < 0.05).
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