UC Irvine

UC Irvine Previously Published Works

Title

Lifetime ovulatory years and risk of epithelial ovarian cancer: a multinational pooled analysis

Permalink

https://escholarship.org/uc/item/49h4w4r1

Journal

Journal of the National Cancer Institute, 115(5)

ISSN

0027-8874

Authors

Fu, Zhuxuan Brooks, Maria Mori Irvin, Sarah et al.

Publication Date

2023-05-08

DOI

10.1093/jnci/djad011

Peer reviewed

Europe PMC Funders Group

Author Manuscript

J Natl Cancer Inst. Author manuscript; available in PMC 2023 October 27.

Published in final edited form as:

J Natl Cancer Inst. 2023 May 08; 115(5): 539–551. doi:10.1093/jnci/djad011.

Lifetime ovulatory years and risk of epithelial ovarian cancer: a multinational pooled analysis

A full list of authors and affiliations appears at the end of the article.

Abstract

Background—The role of ovulation in epithelial ovarian cancer (EOC) is supported by the consistent protective effects of parity and oral contraceptive (OC) use. Whether these factors protect through anovulation alone remains unclear. We explored the association between lifetime ovulatory years (LOY) and EOC.

Methods—LOY was calculated using 12 algorithms. Odds ratios (ORs) and 95% confidence intervals (CIs) estimated the association between LOY or LOY components and EOC among 26,204 controls and 21,267 cases from 25 studies. To assess whether LOY components act through ovulation suppression alone, we compared beta coefficients obtained from regression models to expected estimates assuming one year of ovulation suppression has the same effect regardless of source.

Results—LOY was associated with increased EOC risk (ORs per year increase: 1.014 (95%CI 1.009-1.020) to 1.044 (95%CI 1.041-1.048)). Individual LOY components, except age at menarche, also associated with EOC. The estimated model coefficient for OC use and pregnancies were 4.45 times and 12-15 fold greater than expected, respectively. LOY was associated with high-grade serous (HGSOC), low-grade serous (LGSOC), endometrioid, and clear cell histotypes (ORs per year increase: 1.054, 1.040, 1.065, and 1.098, respectively), but not mucinous tumors. Estimated coefficients of LOY components were close to expected estimates for HGSOC but larger than expected for LGSOC, endometrioid, and clear cell histotypes.

This work is licensed under a BY 4.0 International license.

Correspondence to: Francesmary Modugno.

Corresponding Author: Francesmary Modugno Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15213 modugnof@upmc.edu.

Disclosures.

Elisa Bandera is currently a member of an Advisory Board for the Pfizer Clinical Trial Diversity Initiative.

Usha Menon held personal shares in Abcodia between 1st April 2011 and 30 October 2021.

Penelope Webb received grant funding for an unrelated study of ovarian cancer and a speaker's honorarium from AstraZeneca.

Author Contributions:

 $ZF: Conceptualization, Methodology, Investigation, Writing - Original\ Draft, Writing - Review\ and\ Editing - Conceptualization, Methodology, Investigation, Writing - Original\ Draft, Writing - Review\ and\ Editing - Conceptualization, Methodology, Investigation, Writing - Original\ Draft, Writing - Review\ and\ Editing - Conceptualization, Methodology, Investigation, Writing - Original\ Draft, Writing - Review\ and\ Editing - Conceptualization, Methodology, Investigation, Writing - Original\ Draft, Writing - Review\ and\ Editing - Conceptualization, Methodology, Investigation, Writing - Original\ Draft, Writing - Review\ and\ Editing - Conceptualization, Writing - Original\ Draft, Writing - Review\ and\ Editing - Conceptualization, Writing - Original\ Draft, Writ$

MMB: Conceptualization, Methodology, Investigation, Writing – Review and Editing

SI, SJ, NW, PMW: Writing - Original Draft, Writing - Review and Editing, Data Curation

HAR: Conceptualization, Methodology, Investigation, Writing – Review and Editing, Data Curation

FM: Conceptualization, Methodology, Investigation, Supervision, Writing - Original Draft, Writing - Review and Editing, Funding Acquisition, Resources, Data Curation

KKHA, HAC, EVB, MWB, AB, ABW, JCC, LSC, DWC, KLCH, JAD, ABE, PAF, RTF, SAG, AGM, GGG, ELG, MTG, AOCSG, HRH, AH, RK, LAK, MK, JK, NDL, AWL, KM, VM, JRM, UM, RLM, KBM, CLP, MCP, BOQ, SJR, MJR, JHR, JMS, WS, RS, KLT, PJT, LT, AMVA, EW, ASW, AHW, WZ, AZ, SET, LT, TS: Writing – Review and Editing, Data Curation

Conclusions—LOY is positively associated with non-mucinous EOC. Differences between estimated and expected model coefficients for LOY components suggest factors beyond ovulation underlie the associations between LOY components and EOC in general and for non-HGSOC.

Keywords

epithelial ovarian cancer; lifetime ovulation years; case-control study; incessant ovulation; pooled analysis; OCAC

Epithelial ovarian cancer (EOC) is the most lethal gynecologic malignancy. The consistent protective effects of oral contraceptives (OC), 1–3 bearing children, 3,4 and breastfeeding, 5 which all suppress ovulation, suggest that ovulation may play a key role in disease origin. 6 In support of this hypothesis, lifetime ovulatory years (LOY) have been associated with increased EOC risk. 2,7–14 However, differences in how studies define LOY and categorize exposure make it challenging to quantify the LOY-EOC relationship. 15 Moreover, it remains unclear whether the mechanism whereby LOY components exert their impacts is through ovulation suppression alone or other means. 7

While EOC is considered a set of diseases defined by histologic subtypes ("histotypes"), the relationship between LOY and EOC histotypes remains understudied. Although LOY might be associated with specific EOC subtypes, 2,10–14 no individual study has had a large enough sample size to undertake a detailed histotype-specific analysis to evaluate the actual versus expected effects of individual LOY components to assess whether the mechanism of action of these components is solely by ovulation suppression.

To investigate the effects of LOY and its components on EOC, we pooled data from 25 case-control studies from the Ovarian Cancer Association Consortium (OCAC). Our goals were to (1) quantify the LOY-EOC association overall and for individual histotypes, (2) assess the impact of LOY definition on the LOY-EOC relationship, and (3) determine whether the relationship between LOY components and EOC is beyond ovulation suppression.

Methods

Study population

This study included 25 case-control studies (Table 1)^{16–42} from OCAC.⁴³ Participants provided informed consent for original studies, whose protocols were approved by their respective Institutional Review Boards.

Study variables and LOY calculation

OCAC's harmonized core data provided LOY component variables: age at last menstrual period (LMP) before diagnosis (cases) or interview (controls), age at menarche, number of pregnancies, number of full-term births, and total durations of pregnancy, breastfeeding, and OC use.

LOY was calculated with 12 algorithms (Supplementary Table 1)⁸ using the formula:

LOY = menstrual span - years of an ovulation

where "menstrual span" was calculated from age at LMP minus age at menarche. The algorithms were divided into four classes based on how "years of anovulation" was defined (Figure 1).

Seven studies recorded age at LMP (cases: 6881 (32.4% of total), controls: 8316 (31.7% of total)). For the remaining studies, we imputed age at LMP (Figure 2)⁴⁴ and assessed the imputation algorithm by comparing actual versus imputed age at LMP for the seven sites (Supplementary Table 2). Sites with 50+% missing values in any LOY component except age at LMP were excluded from algorithms using those components (Supplementary Table 3).^{45,46}

Variables considered *a priori* as potential confounders included age at diagnosis (cases) or interview (controls), race, education, body mass index (BMI) 1-year to 5-years prior, family history of ovarian or breast cancer in a first-degree relative, smoking status, history of endometriosis, and tubal ligation.

Statistical analyses

Assessment of study heterogeneity—We used random effects meta-analysis to assess inter-study LOY-EOC heterogeneity. Because we observed no substantive heterogeneity (Supplementary Figure 1), we used the pooled data set adjusted for study site for all analyses.

Correlations between LOY values among algorithms and between LOY and LOY components—We used Pearson's correlation to assess pairwise correlations of LOY calculated among algorithms limiting analyses to observations with complete data for each algorithm in the pairwise comparison. Pearson's correlation was also used to assess the correlations of individual components with LOY calculated by each algorithm.

Estimation of LOY-EOC association—Multivariable logistic regression was used to estimate odds ratios (ORs) with 95% confidence intervals (95% CIs) for the association between LOY and EOC overall and by histotype. Models were adjusted for study site, age at diagnosis or interview, race, education, BMI, smoking status, and family history; inclusion of tubal ligation and endometriosis in models did not alter findings and were omitted from final models. Because OCAC only recorded total months of breastfeeding across all live births and not months per breastfeeding episode, to account for return of ovulation once food is introduced typically at 6 months, we performed sensitivity analyses replacing breastfeeding duration with either (1) number of live births times the average duration of breastfeeding per live birth if the average duration was less than 6 months, or (2) number of live births times 6 months if the average duration was 6 months or greater. Similar sensitivity analyses were performed for algorithms containing a term for breastfeeding duration (Algorithms I-L). Sensitivity analyses were performed with multiple imputation by chained equation (MICE) to assess the effect of missing values on LOY-EOC associations⁴⁷ including the same covariates as main models. Nested imputations were done for number

of pregnancies, number of full-term births, duration of breastfeeding, and duration of OC use using the binary variables of ever pregnant, ever breastfed, and OC use, respectively. Imputations were done five times with auxiliary variables defined as Pearson's correlation larger than 0.4.⁴⁸ Sensitivity analyses also examined limiting models to population-based studies and using only observations with complete data for all variables.

To assess the relationship between LOY and EOC histotypes, we present results using algorithm K because this algorithm most closely reflects lifetime ovulatory years accounting for OC use, pregnancy type, and breastfeeding.

Prior studies suggest that the relationship between LOY and EOC may not be linear;⁴⁹ thus, we constructed models using LOY and log(LOY). Because log(LOY) did not improve model fit when included with LOY and models with LOY alone provided a better fit than those with log(LOY) alone, we report only analyses using LOY.

Estimation of EOC risk related to LOY components: observed versus expected estimates—The association of each LOY component and EOC risk overall and separately for each histotype was estimated using multivariable logistic regression adjusted for study site, age at diagnosis (cases) or interview (controls), race, education, BMI one to five years prior to diagnosis/interview, smoking status, family history, and other LOY components.

To assess whether each component acts through ovulation suppression alone, we compared expected beta coefficient to actual estimates obtained from regression models. Based on the "incessant ovulation" hypothesis, one year of ovulation suppression should have the same effect on the log odds of EOC regardless of origin. Thus, if we assign one as the expected beta coefficient for age at LMP per year (indicating that a one-year increase in LMP, which would increase LOY by 1, would increase the log odds by 1), then the expected beta coefficient for age at menarche per year would be -1 because each additional year increase would decrease LOY by one year and hence decrease the log odds by 1. Similarly, the expected beta coefficients for OC use per year, number of incomplete pregnancies (assumed to be 3 months or 0.25 years), number of full-term births (assumed to be 9 months or 0.75 years), and breastfeeding per year would be -1, -0.25, -0.75 and -1, respectively.

We then computed the relative coefficients, defined as the actual coefficients from regression models divided by the actual coefficient of age at LMP. This set the relative coefficient for age at LMP to 1, just as in the expected model. This enabled us to compare the actual relative coefficient estimates coefficients to their expected counterparts. To assess the significance of individual components, $\chi 2$ statistics and p-values were obtained from the likelihood-ratio test for the removal of each component from the full model. Sensitivity analyses examined limiting models to population-based studies and using only observations with complete data for all variables.

All statistical tests were two-sided and performed in Stata/SE version 16.1 (StataCorp, College Station, TX).

Results

Study population

Among the 25 studies, there were 26,204 controls and 21,267 cases (Table 2). Compared to controls, cases were more likely to have a family history of breast or ovarian cancer, a history of endometriosis, be hysterectomized, and be obese/overweight. Controls were more likely to have never smoked, be pre-menopausal, and have had a tubal ligation. Cases reported a shorter total duration of OC use and breastfeeding, and fewer total pregnancies.

LOY estimations and correlations

Among the 12 algorithms, median LOY ranged from 31.67 [interquartile range (IQR) 25.50-35.20] to 35.75 [IQR 32.50-37.50] years (Figure 3 and Supplementary Table 4). Pairwise LOY correlations ranged from 0.75 between the algorithms in the first class (inclusive of pregnancies only) and the third class (inclusive of pregnancies, OC use, and breastfeeding,) to 0.99 for correlations within the same class (Supplementary Table 5). Correlations between individual components and LOY are presented in Supplementary Table 6. As algorithm complexity increased, correlations between age at LMP and LOY decreased. OC duration was moderately negatively correlated with LOY (rho range: -0.68 to -0.69); correlations between the other components and LOY were low.

Estimation of LOY-EOC association (Table 3)

ORs for LOY per year increase across the 12 algorithms ranged from 1.014 (95%CI 1.009-1.020) to 1.044 (95%CI 1.041-1.048). Associations with LOY calculated from the third class of algorithms (inclusive of pregnancies, OC use, and breastfeeding) were not changed when months of breastfeeding were truncated at six for participants reporting more than six months per birth (data not shown). LOY associations remain unchanged when adjusting models in the first class of algorithms (which included only pregnancies) for OC and breastfeeding duration, as well as when adjusting the second class of algorithms (which included pregnancies and OC duration) for breastfeeding duration (data not shown). Sensitivity analyses with multiple imputations of missing values did not alter LOY-EOC associations (Table 3). Sensitivity analyses limited to populationbased studies and those limited to observations with complete data also did not alter the LOY-EOC association (data not shown).

Estimation of EOC risk related to LOY components: observed versus expected estimates (Table 4)

Individual components in LOY, except for age at menarche, were associated with EOC. There were substantial deviations between relative estimated coefficients and expected estimates for each component. The estimated coefficient of OC use per year was 4.45 times larger than expected, while estimates for pregnancies were 11-15-fold greater than expected regardless of pregnancy type. Estimated coefficient of breastfeeding per year was -13.45, instead of the expected -1. Results were similar when truncating breastfeeding at 6 months per full-term birth, when limiting analyses to population-based studies, and when limiting analyses to observations with complete data (data not shown).

Histotype-specific estimation for LOY and individual components: observed versus expected estimates (Table 5)

LOY was associated with invasive high-grade serous (HGSOC; OR per year 1.054, 95%CI 1.048-1.061), low-grade serous (LGSOC; OR 1.040, 95%CI 1.019-1.061), endometrioid (OR 1.065, 95%CI 1.053-1.076), and clear cell (OR 1.098, 95%CI 1.079-1.117), but not mucinous EOC (OR 1.006, 95% CI 0.992-1.019). Except for breastfeeding, estimated coefficients of LOY components were close to expected for HGSOC. In contrast, estimated coefficients of individual components, except for age at menarche, were larger than the expected for LGSOC, endometrioid, and clear cell cancers.

Discussion

Pooling data from 25 case-control studies, we show a positive association between LOY and EOC, with each year of ovulation associated with a 4% increase in risk. We also found a positive association between LOY and HGSOC, LGSOC, endometrioid, and clear cell EOC but not with mucinous tumors. These LOY-EOC associations were not altered when using different algorithms to compute LOY or when imputing missing data. We further found that LOY components, except age at menarche, were associated with EOC, with the magnitude of these associations varying substantially from expectation if their mechanism of action were solely ovulation suppression. There was also notable heterogeneity in these component-specific findings among EOC histotypes. Together, these data suggest that reproductive factors comprising LOY exert their effects through means beyond ovulation suppression and those relationships vary by EOC subtype.

Most prior studies report a positive relationship between LOY and EOC. 2,7-14,50-63 Differences in LOY definitions among studies make it challenging to compare specific findings across studies. In the present study, we defined LOY from available harmonized data using 12 algorithms. Like the Polish Cancer study⁸ (one of the 25 studies in this analysis), we found a high correlation for LOY among algorithms, although point estimates varied depending on the algorithm. When assessing overall EOC per 1-year increase in LOY, estimates ranged from 1.01-1.04, which is similar to estimates reported by the US Nurses' Health Study (1976-2006) (NHS) and Nurses' Health Study II (1989-2005) (NHS II) (OR=1.07; 95% CI 1.05 -1.08). While it is reassuring that our results are similar to previous work, because each study used different LOY algorithms and units of presentation (e.g., quartiles, ovulatory cycles, etc.)¹⁵, a direct comparison of estimated magnitudes is not possible. A standardized definition of LOY would facilitate cross-study comparisons and allow for more robust inter-study analyses. Our findings confirm that among algorithms that account for menstrual span, number of pregnancies, total duration of OC use, and total duration of breastfeeding, point estimates for the LOY-EOC relationship are similar. Defining LOY using these factors would facilitate inter-study analyses.

We report differences in the association of LOY with EOC subtypes. We report a positive association between LOY and both HGSOC and LGSOC. While previous studies have reported a positive association between LOY and risk of serous tumors, 2,10–15 only OC3¹⁴ reported results separately for HGSOC, also finding a positive association. Separating serous EOC analyses is important because HGSOC and LGSOC are distinct diseases. 64,65 Also

consistent with most ^{10–14} but not all previous studies^{2,15} we found positive associations between LOY and clear cell and endometrioid but not mucinous tumors. These results are consistent with epidemiologic evidence that suggests a different risk-factor profile for mucinous EOC.^{3,66}

Results regarding the associations between LOY components and EOC appeared consistent with previous studies. 7,8,10,12,58,62 Beyond considering statistical significance, our study also compared the magnitudes of each component's effect on EOC risk and found the actual magnitudes varied substantially from expectation. Based on the "incessant ovulation" hypothesis, ⁶ women with the same LOY should have the same estimated risk if ovulation is the only etiologic mechanism underlying the relationship between the components of LOY and EOC. However, consistent with two case-control studies, ^{7,62} we show that pregnancy. OC use, and breastfeeding are associated with stronger protective effects than would be expected based on ovulation suppression alone. Moreover, the protection from one year of pregnancy, whether complete or incomplete, was substantially greater than that of one year of OC use. ⁷ Together, these data imply that mechanisms beyond ovulation suppression, such as hormonal alterations^{67,68} or inflammation,⁶⁹ contribute to the LOY-EOC association. They further imply differences in the mechanisms whereby individual LOY components impact EOC risk, especially for non-HGSOC subtypes, suggesting that a model of EOC risk incorporating just LOY and not its component parts would be insufficient in fully capturing the effects of exposure to LOY components.

Our results indicate heterogeneity in the associations between LOY components and histotype-specific risk. Notably, except for breastfeeding, the estimated coefficients for HGSOC were close to expected if only ovulation suppression underlies the component-HGSOC relationship. This suggests that ovulation may be the primary etiologic mechanism for HGSOC; however, because HGSOC is believed to arise in the fimbriated end of the fallopian tube and not the ovary^{70–72} ovulation effects must extend beyond ovarian surface epithelium trauma, as originally proposed by Fathalla.⁶ Notably, during ovulation, fallopian tube fimbria come in close proximity to the site of ovulation, directly exposing the fimbria to ovarian follicular fluid. *In vitro* studies show that normal fallopian tube epithelia exposed to follicular fluid aspirates develop TP53 mutations, a hallmark of HGSOC.⁷³ Moreover, follicular fluid has both mutagenic and tumorigenic effects facilitating the full transformation process for developing HGSOC from the fallopian tube.^{74–77} Thus, follicular fluid may be the link between greater number of ovulations and HGSOC.

In contrast to HGSOC, factors beyond ovulation suppression underlie the link between LOY and other histotypes. For LGSOC, endometrioid and clear cell histotypes, we found that actual coefficient estimates were substantially larger than expected for OC use, pregnancies, and breastfeeding. This suggests that other mechanisms, such as increased progestin exposure. The may play a role in the protective effects of these factors.

While we did not find any association between LOY and mucinous EOC, we report associations for several LOY components. Thus, factors other than ovulation may be driving mucinous carcinogenesis. Moreover, the relationship between LOY components and mucinous disease varied from that of other histotypes. Together, these observations suggest

that factors underlying the relationship between exposures and EOC vary based on histotype and confirm the unique origin of mucinous cancers. ^{79,80}

The major strength of our work was pooling 25 case-control studies, allowing us to estimate more precisely the LOY-EOC association overall and by histotype. The large data set also enabled comparison of different LOY definitions and their impact on the LOY-EOC relationship. For LOY components, the sample size enabled us to separate the effects of ovulation suppression from other potential etiologic mechanisms. The range of studies from four continents and nine countries supports the generalizability of our findings.

Despite these strengths, there are several limitations. Because all but two studies^{25,42} employed a retrospective case-control design, recall and selection bias are always a concern. Regardless of study design limitations, our estimates were consistent with previous prospective studies, including the NHS and NHS II study¹⁰ and the OC3 pooled analysis of prospective studies.¹⁴ We made some assumptions about LOY components that may impact results. If age at LMP was unknown, we imputed it using an algorithm based on average age at menopause by country, age at first HRT use, or age at hysterectomy. We compared the observed and imputed age at LMP from seven sites, conducted sensitivity analyses using LOY calculated from the imputed value for those sites, and noted no differences in observed associations. To prevent overestimating the duration of anovulation from breastfeeding, we repeated analyses capping women at six months of breastfeeding per live birth. Results were unchanged.

In conclusion, increasing LOY is associated with increased EOC risk, as well as the risk of HGSOC, LGSOC, endometrioid, and clear cell histotypes. Although point estimates varied slightly, the association between LOY and EOC was not altered when LOY was calculated in different ways using core components. Our study also indicated heterogeneity in the expected estimated coefficients of each LOY component on histotype-specific EOC. Together, our findings suggest that ovulation suppression is not the sole mechanism whereby reproductive factors affect EOC overall and for non-HGSOC histotypes. Identifying these mechanisms and understanding their individual and joint roles can provide deeper insight into disease etiology and potential riskreducing approaches.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Authors

Zhuxuan Fu, Ph.D.¹, Maria Mori Brooks, Ph.D.^{1,2}, Sarah Irvin, Ph.D.³, Susan Jordan, Ph.D.⁴, Katja K.H. Aben, Ph.D.^{5,6}, Hoda Anton-Culver, Ph.D.⁷, Elisa V. Bandera, M.D., Ph.D.⁸, Matthias W. Beckmann, M.D.⁹, Andrew Berchuck, M.D.¹⁰, Angela Brooks-Wilson, Ph.D.¹¹, Jenny Chang-Claude, Ph.D.^{12,13}, Linda S. Cook, Ph.D.^{14,15}, Daniel W. Cramer, M.D., Sc.D.^{16,17}, Kara L. Cushing-Haugen, M.S.¹⁸, Jennifer A. Doherty, Ph.D.¹⁹, Arif B. Ekici, Ph.D.²⁰, Peter A. Fasching, M.D.⁹, Renée T. Fortner, Ph.D.¹², Simon A. Gayther, Ph.D.²¹, Aleksandra Gentry-Maharaj, Ph.D.²², Graham G. Giles, Ph.D.^{23,24,25}, Ellen L. Goode, Ph.D.²⁶, Marc

T. Goodman, Ph.D.²⁷, AOCS Group^{28,29}, Holly R. Harris, Sc.D.^{18,30}, Alexander Hein, M.D.⁹, Rudolf Kaaks, Ph.D.¹², Lambertus A. Kiemeney, Ph.D.⁵, Martin Köbel, M.D.³¹, Joanne Kotsopoulos^{32,33}, Joanne Kotsopoulos^{32,33}, Nhu D. Le, Ph.D.³⁴, Alice W. Lee, Ph.D.³⁵, Keitaro Matsuo, M.D., Ph.D.^{36,37}, Valerie McGuire, Ph.D.³⁸, John R. McLaughlin, Ph.D.³⁹, Usha Menon, M.D.²², Roger L. Milne, Ph.D.^{23,24,25}, Kirsten B. Moysich, Ph.D.⁴⁰, Celeste Leigh Pearce, Ph.D.⁴¹, Malcolm C. Pike, Ph.D.^{42,43}, Bo Qin, Ph.D.⁸, Susan J. Ramus, Ph.D.^{44,45}, Marjorie J. Riggan, B.Sc.¹⁰, Joseph H. Rothstein, M.S.^{46,47}, Joellen M. Schildkraut, Ph.D.⁴⁸, Weiva Sieh, M.D., Ph.D.^{46,47}, Rebecca Sutphen, M.D.⁴⁹, Kathryn L. Terry, Sc.D.^{16,17}, Pamela J. Thompson, M.P.H.⁵⁰, Linda Titus, Ph.D.⁵¹, Anne M. van Altena, M.D., Ph.D.⁵², Emily White, Ph.D.^{30,53}, Alice S. Whittemore, Ph.D.^{38,54}, Anna H. Wu, Ph.D.⁴³, Wei Zheng, M.D., Ph.D.⁵⁵, Argyrios Ziogas, Ph.D.⁷, Sarah E. Taylor, M.D., Ph.D.⁵⁶, Lu Tang, Ph.D.², Thomas Songer, Ph.D.¹, Nicolas Wentzensen, M.D., Ph.D.⁵⁷, Penelope M. Webb⁴, Harvey A. Risch, M.D., Ph.D.⁵⁸, Francesmary Modugno, Ph.D.^{1,56,59} on behalf of the Ovarian Cancer Association Consortium

Affiliations

¹Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA

²Department of Biostatistics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA

³Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA

⁴The School of Public Health, The University of Queensland, Brisbane, Queensland

⁵Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands

⁶Netherlands Comprehensive Cancer Organisation, Utrecht, the Netherlands

⁷Department of Medicine, Genetic Epidemiology Research Institute, University of California Irvine, Irvine, CA, USA

⁸Cancer Prevention and Control Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA

⁹Department of Gynecology and Obstetrics, Comprehensive Cancer Center Erlangen-EMN, Friedrich-Alexander University Erlangen-Nuremberg, University Hospital Erlangen, Erlangen, Germany

¹⁰Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, NC, USA

¹¹Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada

¹²Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany

¹³Cancer Epidemiology Group, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany

- ¹⁴Epidemiology, School of Public Health, University of Colorado, Aurora, CO, USA
- ¹⁵Community Health Sciences, University of Calgary, Calgary, AB, Canada
- ¹⁶Obstetrics and Gynecology Epidemiology Center, Department of Obstetrics and Gynecology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- ¹⁷Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- ¹⁸Program in Epidemiology, Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- ¹⁹Huntsman Cancer Institute, Department of Population Health Sciences, University of Utah, Salt Lake City, UT, USA
- ²⁰Institute of Human Genetics, Comprehensive Cancer Center Erlangen-EMN, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
- ²¹Center for Bioinformatics and Functional Genomics and the Cedars Sinai Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- ²²MRC Clinical Trials Unit, Institute of Clinical Trials & Methodology, University College London, London, UK
- ²³Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- ²⁴Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- ²⁵Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
- ²⁶Department of Quantitative Health Sciences, Division of Epidemiology, Mayo Clinic, Rochester, MN, USA
- ²⁷Cancer Prevention and Control Program, Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- ²⁸Cancer Genetics Laboratory, Research Division, Peter MacCallum Cancer Center, Melbourne, Victoria, Australia
- ²⁹Centre for Cancer Research, The Westmead Institute for Medical Research, Sydney, New South Wales, Australia
- ³⁰Department of Epidemiology, University of Washington, Seattle, WA, USA
- ³¹Department of Pathology and Laboratory Medicine, University of Calgary, Foothills Medical Center, Calgary, AB, Canada

³²Women's College Research Institute, Women's College Hospital, University of Toronto, Toronto, Ontario, Canada

- ³³Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- ³⁴Cancer Control Research, BC Cancer, Vancouver, BC, Canada
- ³⁵Department of Health Science, California State University, Fullerton, Fullerton, CA, USA
- ³⁶Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
- ³⁷Division of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- ³⁸Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, USA
- ³⁹Public Health Ontario, Samuel Lunenfeld Research Institute, Toronto, Ontario, Canada
- ⁴⁰Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, USA
- ⁴¹Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, MI, USA
- ⁴²Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
- ⁴³Department of Population Health and Public Health Sciences, Keck School of Medicine, University of Southern California Norris Comprehensive Cancer Center, Los Angeles, CA, USA
- ⁴⁴School of Clinical Medicine, UNSW Medicine and Health, University of NSW Sydney, Sydney, New South Wales, Australia
- ⁴⁵Adult Cancer Program, Lowy Cancer Research Centre, University of NSW Sydney, Sydney, New South Wales, Australia
- ⁴⁶Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- 47 Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- ⁴⁸Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
- ⁴⁹Epidemiology Center, College of Medicine, University of South Florida, Tampa, FL, USA

⁵⁰Samuel Oschin Comprehensive Cancer Institute, Cancer Prevention and Genetics Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA

⁵¹Muskie School of Public Policy, Public Health, Portland, ME, USA

⁵²Department of Obstetrics and Gynaecology, Radboud University Medical Center, Nijmegen, the Netherlands

⁵³Fred Hutchinson Cancer Research Center, Seattle, WA, USA

⁵⁴Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA

⁵⁵Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN, USA

⁵⁶Division of Gynecologic Oncology, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA

⁵⁷Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA

⁵⁸Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA

⁵⁹Women's Cancer Research Center, Magee-Womens Research Institute and Hillman Cancer Center, Pittsburgh, PA, USA

Acknowledgements

We thank all the study participants who contributed to this study and all the researchers, clinicians, technical and administrative staff who have made this work possible.

Acknowledgements for individual studies:

AUS: The AOCS also acknowledges the cooperation of the participating institutions in Australia, and the contribution of the study nurses, research assistants and all clinical and scientific collaborators. The complete AOCS Study Group can be found at www.aocstudy.org. CON: The cooperation of the 32 Connecticut hospitals, including Stamford Hospital, in allowing patient access, is gratefully acknowledged. This study was approved by the State of Connecticut Department of Public Health Human Investigation Committee. Certain data used in this study were obtained from the Connecticut Tumor Registry in the Connecticut Department of Public Health. The authors assume full responsibility for analyses and interpretation of these data; MCC: Cases and their vital status were ascertained through the Victorian Cancer Registry (VCR) and the Australian Institute of Health and Welfare (AIHW), including the National Death Index and the Australian Cancer Database; NJO: We thank all participants and research staff at the Rutgers Cancer Institute of New Jersey, the New Jersey State Cancer Registry, and Memorial Sloan-Kettering Cancer Center; SWH: We thank the participants and the research staff of the Shanghai Women's Health Study for making this study possible.

Funding

The Ovarian Cancer Association Consortium is funded by generous contributions from its research investigators and through anonymous donations. OCAC was funded by a grant from the Ovarian Cancer Research Fund (OCRF).

Funding for individual studies:

AUS: The Australian Ovarian Cancer Study (AOCS) was supported by the U.S. Army Medical Research and Materiel Command (DAMD17-01-1-0729), National Health & Medical Research Council of Australia (199600,

400413 and 400281), Cancer Councils of New South Wales, Victoria, Queensland, South Australia and Tasmania and Cancer Foundation of Western Australia (Multi-State Applications 191, 211 and 182). AOCS gratefully acknowledges additional support from Ovarian Cancer Australia and the Peter MacCallum Foundation; BAV: ELAN Funds of the University of Erlangen-Nuremberg; CON: National Institutes of Health (R01-CA063678, R01-CA074850; R01-CA080742); DOV: National Institutes of Health R01-CA112523 and R01-CA87538; GER: German Federal Ministry of Education and Research, Programme of Clinical Biomedical Research (01 GB 9401) and the German Cancer Research Center (DKFZ); HAW: U.S. National Institutes of Health (R01-CA58598, N01-CN-55424 and N01-PC-67001); HOP: University of Pittsburgh School of Medicine Dean's Faculty Advancement Award (F. Modugno), Department of Defense (DAMD17-02-1-0669) and NCI (K07-CA080668, R01-CA95023, MO1-RR000056). Funding was also provided by the National Science Foundation (DGE-2217399-Modugno). The views expressed are those of the authors and do not necessarily reflect the views of the National Science Foundation; JPN: Grant-in-Aid for the Third Term Comprehensive 10-Year Strategy for Cancer Control from the Ministry of Health, Labour and Welfare; MAY: National Institutes of Health (R01-CA122443, P30-CA15083, P50-CA136393); Mayo Foundation; Minnesota Ovarian Cancer Alliance; Fred C. and Katherine B. Andersen Foundation; MCC: MCCS cohort recruitment was funded by VicHealth and Cancer Council Victoria. The MCC was further augmented by Australian National Health and Medical Research Council grants 209057, 396414, and 1074383 and by infrastructure provided by Cancer Council Victoria; NCO: National Institutes of Health (R01-CA76016) and the Department of Defense (DAMD17-02-1-0666); NEC: National Institutes of Health R01-CA54419 and P50-CA105009 and Department of Defense W81XWH-10-1-02802; NJO: National Cancer Institute (NIH-K07 CA095666, R01-CA83918, NIH-K22-CA138563, and P30-CA072720) and the Cancer Institute of New Jersey; If Sara Olson and/or Irene Orlow is a co-author, please add NCI CCSG award (P30-CA008748) to the funding sources; NTH: Radboud University Medical Centre; OVA: This work was supported by Canadian Institutes of Health Research grant (MOP-86727) and by NIH/NCI 1 R01CA160669-01A1; POL: Intramural Research Program of the National Cancer Institute; SON: National Health Research and Development Program, Health Canada, grant 6613-1415-53; STA: NIH grants U01 CA71966 and U01 CA69417; SWH: NIH (NCI) grant R37-CA070867 and UM1-CA182910; TBO: National Institutes of Health (R01-CA106414-A2), American Cancer Society (CRTG-00-196-01-CCE), Department of Defense (DAMD17-98-1-8659), Celma Mastry Ovarian Cancer Foundation; TOR: NIH grants R01 CA063678 and R01 CA063682; UCI: NIH R01-CA058860 and the Lon V Smith Foundation grant LVS-39420; UKO: The UKOPS study was funded by The Eve Appeal (The Oak Foundation) with contribution to author's salary through MRC core funding MC_UU_00004/01 and the National Institute for Health Research University College London Hospitals Biomedical Research Centre. UM and AGM are supported by salary contributions through MRC core funding (MC_UU_00004/01); USC: P01CA17054, P30CA14089, R01CA61132, N01PC67010, R03CA113148, R03CA115195, N01CN025403, and California Cancer Research Program (00-01389V-20170, 2II0200); VTL: NIH K05-CA154337.

Role of Funder

Provision of funding only. Funders had no role in the execution of this study.

Data Availability

The data generated in this study are not publicly available due to restrictions of some included studies' informed consent. The corresponding author will facilitate access to data through existing data request processes for OCAC.

References

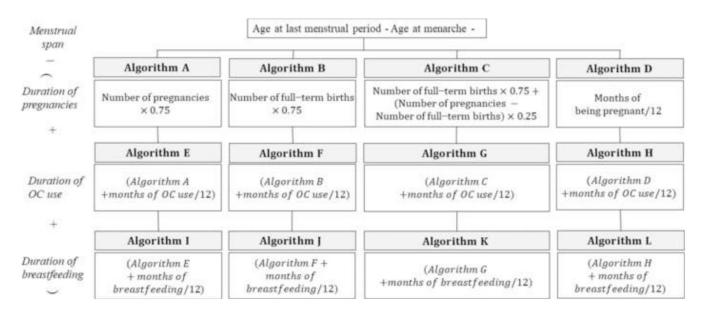
- 1. Wu AH, Pearce CL, Lee AW, et al. Timing of births and oral contraceptive use influences ovarian cancer risk. Int J Cancer. 2017; 141 (12) 2392–2399. [PubMed: 28748634]
- 2. Soegaard M, Jensen A, Hogdall E, et al. Different risk factor profiles for mucinous and nonmucinous ovarian cancer: results from the Danish MALOVA study. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2007; 16 (6) 1160–1166.
- 3. Wentzensen N, Poole EM, Trabert B, et al. Ovarian Cancer Risk Factors by Histologic Subtype: An Analysis From the Ovarian Cancer Cohort Consortium. J Clin Oncol. 2016; 34 (24) 2888–2898. [PubMed: 27325851]
- 4. Sung HK, Ma SH, Choi JY, et al. The Effect of Breastfeeding Duration and Parity on the Risk of Epithelial Ovarian Cancer: A Systematic Review and Meta-analysis. Journal of preventive medicine and public health = Yebang Uihakhoe chi. 2016; 49 (6) 349–366. [PubMed: 27951628]

 Babic A, Sasamoto N, Rosner BA, et al. Association Between Breastfeeding and Ovarian Cancer Risk. JAMA Oncology. 2020; 6 (6) e200421 [PubMed: 32239218]

- 6. Fathalla MF. Incessant ovulation--a factor in ovarian neoplasia? Lancet. 1971; 2 (7716) 163. [PubMed: 4104488]
- Risch HA, Weiss NS, Lyon JL, Daling JR, Liff JM. Events of reproductive life and the incidence of epithelial ovarian cancer. American journal of epidemiology. 1983; 117 (2) 128–139. [PubMed: 6681935]
- 8. Yang HP, Murphy KR, Pfeiffer RM, et al. Lifetime Number of Ovulatory Cycles and Risks of Ovarian and Endometrial Cancer Among Postmenopausal Women. American journal of epidemiology. 2016; 183 (9) 800–814. [PubMed: 27190045]
- Wu ML, Whittemore AS, Paffenbarger RS Jr, et al. Personal and environmental characteristics related to epithelial ovarian cancer. I. Reproductive and menstrual events and oral contraceptive use. American journal of epidemiology. 1988; 128 (6) 1216–1227. [PubMed: 3195563]
- 10. Gates MA, Rosner BA, Hecht JL, Tworoger SS. Risk factors for epithelial ovarian cancer by histologic subtype. American journal of epidemiology. 2010; 171 (1) 45–53. [PubMed: 19910378]
- 11. Terry KL, Titus-Ernstoff L, McKolanis JR, Welch WR, Finn OJ, Cramer DW. Incessant ovulation, mucin 1 immunity, and risk for ovarian cancer. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research cosponsored by the American Society of Preventive Oncology. 2007; 16 (1) 30–35.
- 12. Tung KH, Goodman MT, Wu AH, et al. Reproductive factors and epithelial ovarian cancer risk by histologic type: A multiethnic case-control study. American journal of epidemiology. 2003; 158 (7) 629–638. [PubMed: 14507598]
- 13. Peres LC, Moorman PG, Alberg AJ, et al. Lifetime number of ovulatory cycles and epithelial ovarian cancer risk in African American women. Cancer causes & control: CCC. 2017; 28 (5) 405–414. [PubMed: 28251458]
- 14. Trabert B, Tworoger SS, O'Brien KM, et al. The Risk of Ovarian Cancer Increases with an Increase in the Lifetime Number of Ovulatory Cycles: An Analysis from the Ovarian Cancer Cohort Consortium (OC3). Cancer research. 2020; 80 (5) 1210–1218. [PubMed: 31932455]
- 15. Fu Z, Taylor S, Modugno F. Lifetime ovulations and epithelial ovarian cancer risk and survival: A systematic review and meta-analysis. Gynecologic oncology. 2022.
- 16. Merritt MA, Green AC, Nagle CM, Webb PM, Australian Cancer S, Australian Ovarian Cancer Study G. Talcum powder, chronic pelvic inflammation and NSAIDs in relation to risk of epithelial ovarian cancer. Int J Cancer. 2008; 122 (1) 170–176. [PubMed: 17721999]
- 17. Song H, Ramus SJ, Tyrer J, et al. A genome-wide association study identifies a new ovarian cancer susceptibility locus on 9p22.2. Nature genetics. 2009; 41 (9) 996–1000. [PubMed: 19648919]
- 18. Risch HA, Bale AE, Beck PA, Zheng W. PGR +331 A/G and increased risk of epithelial ovarian cancer. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research cosponsored by the American Society of Preventive Oncology. 2006; 15 (9) 1738–1741.
- 19. Bodelon C, Cushing-Haugen KL, Wicklund KG, Doherty JA, Rossing MA. Sun exposure and risk of epithelial ovarian cancer. Cancer Causes Control. 2012; 23 (12) 1985–1994. [PubMed: 23065074]
- 20. Royar J, Becher H, Chang-Claude J. Low-dose oral contraceptives: protective effect on ovarian cancer risk. Int J Cancer. 2001; 95 (6) 370–374. [PubMed: 11668519]
- 21. Goodman MT, Lurie G, Thompson PJ, McDuffie KE, Carney ME. Association of two common single-nucleotide polymorphisms in the CYP19A1 locus and ovarian cancer risk. Endocr Relat Cancer. 2008; 15 (4) 1055–1060. [PubMed: 18667686]
- 22. Lo-Ciganic WH, Zgibor JC, Bunker CH, Moysich KB, Edwards RP, Ness RB. Aspirin, nonaspirin nonsteroidal anti-inflammatory drugs, or acetaminophen and risk of ovarian cancer. Epidemiology. 2012; 23 (2) 311–319. [PubMed: 22252409]
- 23. Hamajima N, Matsuo K, Saito T, et al. Gene-environment Interactions and Polymorphism Studies of Cancer Risk in the Hospital-based Epidemiologic Research Program at Aichi Cancer Center II (HERPACC-II). Asian Pac J Cancer Prev. 2001; 2 (2) 99–107. [PubMed: 12718640]

24. Kelemen LE, Sellers TA, Schildkraut JM, et al. Genetic variation in the one-carbon transfer pathway and ovarian cancer risk. Cancer research. 2008; 68 (7) 2498–2506. [PubMed: 18381459]

- Giles GG, English DR. The Melbourne Collaborative Cohort Study. IARC Sci Publ. 2002; 156: 69–70. [PubMed: 12484128]
- Schildkraut JM, Iversen ES, Wilson MA, et al. Association between DNA damage response and repair genes and risk of invasive serous ovarian cancer. Plos One. 2010; 5 (4) e10061 [PubMed: 20386703]
- 27. Terry KL, De Vivo I, Titus-Ernstoff L, Shih MC, Cramer DW. Androgen receptor cytosine, adenine, guanine repeats, and haplotypes in relation to ovarian cancer risk. Cancer Res. 2005; 65 (13) 5974–5981. [PubMed: 15994977]
- 28. Bandera EV, King M, Chandran U, Paddock LE, Rodriguez-Rodriguez L, Olson SH.


 Phytoestrogen consumption from foods and supplements and epithelial ovarian cancer risk: a
 population-based case control study. BMC Womens Health. 2011; 11: 40. [PubMed: 21943063]
- van Altena AM, van Aarle S, Kiemeney LA, Hoogerbrugge N, Massuger LF, de Hullu JA. Adequacy of family history taking in ovarian cancer patients: a population-based study. Fam Cancer. 2012; 11 (3) 343–349. [PubMed: 22388872]
- 30. Wetzels JF, Kiemeney LA, Swinkels DW, Willems HL, den Heijer M. Age-and gender-specific reference values of estimated GFR in Caucasians: the Nijmegen Biomedical Study. Kidney Int. 2007; 72 (5) 632–637. [PubMed: 17568781]
- 31. Garcia-Closas M, Brinton LA, Lissowska J, et al. Ovarian cancer risk and common variation in the sex hormone-binding globulin gene: a population-based case-control study. BMC Cancer. 2007; 7: 60. [PubMed: 17411440]
- 32. Risch HA, Marrett LD, Howe GR. Parity, contraception, infertility, and the risk of epithelial ovarian cancer. American journal of epidemiology. 1994; 140 (7) 585–597. [PubMed: 7942759]
- 33. McGuire V, Felberg A, Mills M, et al. Relation of contraceptive and reproductive history to ovarian cancer risk in carriers and noncarriers of BRCA1 gene mutations. Am J Epidemiol. 2004; 160 (7) 613–618. [PubMed: 15383404]
- 34. Zheng W, Chow WH, Yang G, et al. The Shanghai Women's Health Study: rationale, study design, and baseline characteristics. Am J Epidemiol. 2005; 162 (11) 1123–1131. [PubMed: 16236996]
- 35. Pal T, Permuth-Wey J, Betts JA, et al. BRCA1 and BRCA2 mutations account for a large proportion of ovarian carcinoma cases. Cancer-Am Cancer Soc. 2005; 104 (12) 2807–2816.
- 36. Zhang S, Royer R, Li S, et al. Frequencies of BRCA1 and BRCA2 mutations among 1,342 unselected patients with invasive ovarian cancer. Gynecol Oncol. 2011; 121 (2) 353–357. [PubMed: 21324516]
- 37. Ziogas A, Gildea M, Cohen P, et al. Cancer risk estimates for family members of a population-based family registry for breast and ovarian cancer. Cancer Epidemiol Biomarkers Prev. 2000; 9 (1) 103–111. [PubMed: 10667470]
- 38. Balogun N, Gentry-Maharaj A, Wozniak EL, et al. Recruitment of newly diagnosed ovarian cancer patients proved challenging in a multicentre biobanking study. J Clin Epidemiol. 2011; 64 (5) 525–530. [PubMed: 21074968]
- 39. Pike MC, Pearce CL, Peters R, Cozen W, Wan P, Wu AH. Hormonal factors and the risk of invasive ovarian cancer: a population-based case-control study. Fertility and sterility. 2004; 82 (1) 186–195. [PubMed: 15237010]
- 40. Ness RB, Cramer DW, Goodman MT, et al. Infertility, fertility drugs, and ovarian cancer: a pooled analysis of case-control studies. American journal of epidemiology. 2002; 155 (3) 217–224. [PubMed: 11821246]
- 41. Wu AH, Pearce CL, Tseng CC, Templeman C, Pike MC. Markers of inflammation and risk of ovarian cancer in Los Angeles County. Int J Cancer. 2009; 124 (6) 1409–1415. [PubMed: 19065661]
- 42. White E, Patterson RE, Kristal AR, et al. VITamins And Lifestyle cohort study: study design and characteristics of supplement users. Am J Epidemiol. 2004; 159 (1) 83–93. [PubMed: 14693663]
- 43. Ramus SJ, Vierkant RA, Johnatty SE, et al. Consortium analysis of 7 candidate SNPs for ovarian cancer. Int J Cancer. 2008; 123 (2) 380–388. [PubMed: 18431743]

44. Rosner BA, Colditz GA. Agea at menopause: imputing age at menopause for women with a hysterectomy with application to risk of postmenopausal breast cancer. Ann Epidemiol. 2011; 21 (6) 450–460. [PubMed: 21441037]

- 45. Clavel J, Merceron G, Escarguel G. Missing Data Estimation in Morphometrics: How Much is Too Much? Systematic Biology. 2014; 63 (2) 203–218. [PubMed: 24335428]
- 46. McNeish D. Missing data methods for arbitrary missingness with small samples. Journal of Applied Statistics. 2017; 44 (1) 24–39.
- 47. Royston P. Multiple imputation of missing values. Stata Journal. 2004; 4 (3) 227–241.
- 48. Enders, CK. Applied missing data analysis. Guilford press; 2010.
- 49. Pike MC. Age-related factors in cancers of the breast, ovary, and endometrium. Journal of Chronic Diseases. 1987; 40: 59S–69S. [PubMed: 3667868]
- 50. Hildreth NG, Kelsey JL, LiVolsi VA, et al. An epidemiologic study of epithelial carcinoma of the ovary. American journal of epidemiology. 1981; 114 (3) 398–405. [PubMed: 7304575]
- 51. La Vecchia C, Franceschi S, Gallus G, Decarli A, Liberati A, Tognoni G. Incessant ovulation and ovarian cancer: a critical approach. International journal of epidemiology. 1983; 12 (2) 161–164. [PubMed: 6874210]
- 52. Whittemore AS, Harris R, Itnyre J, Halpern J. Characteristics relating to ovarian cancer risk: collaborative analysis of 12 US case-control studies. I. Methods. Collaborative Ovarian Cancer Group. American journal of epidemiology. 1992; 136 (10) 1175–1183. [PubMed: 1476140]
- 53. Whittemore AS, Wu ML, Paffenbarger RS Jr, et al. Epithelial ovarian cancer and the ability to conceive. Cancer research. 1989; 49 (14) 4047–4052. [PubMed: 2736545]
- 54. Bernal A, Mendez-Moran L, Fajardo-Gutierrez A, Gonzalez-Lira G, Escudero P, Ortiz H. Univariate and multivariate analysis of risk factors for ovarian cancer: casecontrol study, Mexico City. Arch Med Res. 1995; 26 (3) 245–249. [PubMed: 8580675]
- 55. Schildkraut JM, Bastos E, Berchuck A. Relationship between lifetime ovulatory cycles and overexpression of mutant p53 in epithelial ovarian cancer. J Natl Cancer Inst. 1997; 89 (13) 932–938. [PubMed: 9214672]
- 56. Schildkraut JM, Moorman PG, Bland AE, et al. Cyclin E overexpression in epithelial ovarian cancer characterizes an etiologic subgroup. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology. 2008; 17 (3) 585–593.
- 57. Webb PM, Green A, Cummings MC, Purdie DM, Walsh MD, Chenevix-Trench G. Relationship between number of ovulatory cycles and accumulation of mutant p53 in epithelial ovarian cancer. J Natl Cancer Inst. 1998; 90 (22) 1729–1734. [PubMed: 9827528]
- 58. Moorman PG, Schildkraut JM, Calingaert B, Halabi S, Vine MF, Berchuck A. Ovulation and ovarian cancer: a comparison of two methods for calculating lifetime ovulatory cycles (United States). Cancer causes & control: CCC. 2002; 13 (9) 807–811. [PubMed: 12462545]
- 59. Purdie DM, Bain CJ, Siskind V, Webb PM, Green AC. Ovulation and risk of epithelial ovarian cancer. Int J Cancer. 2003; 104 (2) 228–232. [PubMed: 12569579]
- 60. Rosner BA, Colditz GA, Webb PM, Hankinson SE. Mathematical models of ovarian cancer incidence. Epidemiology. 2005; 16 (4) 508–515. [PubMed: 15951669]
- 61. Tung KH, Wilkens LR, Wu AH, et al. Effect of anovulation factors on pre-and postmenopausal ovarian cancer risk: revisiting the incessant ovulation hypothesis. American journal of epidemiology. 2005; 161 (4) 321–329. [PubMed: 15692075]
- 62. Pelucchi C, Galeone C, Talamini R, et al. Lifetime ovulatory cycles and ovarian cancer risk in 2 Italian case-control studies. American journal of obstetrics and gynecology. 2007; 196 (1) 83. e81-87
- 63. Le DC, Kubo T, Fujino Y, et al. Reproductive factors in relation to ovarian cancer: a case-control study in Northern Vietnam. Contraception. 2012; 86 (5) 494–499. [PubMed: 22579106]
- 64. Furuya M. Ovarian cancer stroma: pathophysiology and the roles in cancer development. Cancers (Basel). 2012; 4 (3) 701–724. [PubMed: 24213462]
- 65. Rojas V, Hirshfield KM, Ganesan S, Rodriguez-Rodriguez L. Molecular Characterization of Epithelial Ovarian Cancer: Implications for Diagnosis and Treatment. Int J Mol Sci. 2016; 17 (12)

66. Risch HA, Marrett LD, Jain M, Howe GR. Differences in risk factors for epithelial ovarian cancer by histologic type. Results of a case-control study. American journal of epidemiology. 1996; 144 (4) 363–372. [PubMed: 8712193]

- 67. Cramer DW, Welch WR. Determinants of ovarian cancer risk. II. Inferences regarding pathogenesis. J Natl Cancer Inst. 1983; 71 (4) 717–721. [PubMed: 6578367]
- Risch HA. Hormonal etiology of epithelial ovarian cancer, with a hypothesis concerning the role of androgens and progesterone. J Natl Cancer Inst. 1998; 90 (23) 1774–1786. [PubMed: 9839517]
- 69. Ness RB, Cottreau C. Possible role of ovarian epithelial inflammation in ovarian cancer. J Natl Cancer Inst. 1999; 91 (17) 1459–1467. [PubMed: 10469746]
- 70. Kim J, Park EY, Kim O, et al. Cell Origins of High-Grade Serous Ovarian Cancer. Cancers (Basel). 2018; 10 (11)
- 71. Kurman RJ, Shih Ie M. The origin and pathogenesis of epithelial ovarian cancer: a proposed unifying theory. Am J Surg Pathol. 2010; 34 (3) 433–443. [PubMed: 20154587]
- 72. Salvador S, Gilks B, Köbel M, Huntsman D, Rosen B, Miller D. The fallopian tube: primary site of most pelvic high-grade serous carcinomas. Int J Gynecol Cancer. 2009; 19 (1) 58–64. [PubMed: 19258943]
- 73. Bahar-Shany K, Brand H, Sapoznik S, et al. Exposure of fallopian tube epithelium to follicular fluid mimics carcinogenic changes in precursor lesions of serous papillary carcinoma. Gynecologic oncology. 2014; 132 (2) 322–327. [PubMed: 24355484]
- 74. Huang HS, Chu SC, Hsu CF, et al. Mutagenic, surviving and tumorigenic effects of follicular fluid in the context of p53 loss: initiation of fimbria carcinogenesis. Carcinogenesis. 2015; 36 (11) 1419–1428. [PubMed: 26363031]
- 75. Huang HS, Hsu CF, Chu SC, et al. Haemoglobin in pelvic fluid rescues Fallopian tube epithelial cells from reactive oxygen species stress and apoptosis. J Pathol. 2016; 240 (4) 484–494. [PubMed: 27625309]
- 76. Hsu CF, Huang HS, Chen PC, Ding DC, Chu TY. IGF-axis confers transformation and regeneration of fallopian tube fimbria epithelium upon ovulation. EBioMedicine. 2019; 41: 597–609. [PubMed: 30852161]
- 77. Hsu CF, Chen PC, Seenan V, Ding DC, Chu TY. Ovulatory Follicular Fluid Facilitates the Full Transformation Process for the Development of High-Grade Serous Carcinoma. Cancers (Basel). 2021; 13 (3)
- 78. Rodriguez GC, Walmer DK, Cline M, et al. Effect of progestin on the ovarian epithelium of macaques: cancer prevention through apoptosis? Journal of the Society of Gynecologic Investigations. 1998; 5 (5) 271–276.
- 79. Babaier A, Ghatage P. Mucinous Cancer of the Ovary: Overview and Current Status. Diagnostics (Basel). 2020; 10 (1)
- 80. Purdie DM, Webb PM, Siskind V, Bain CJ, Green AC. The different etiologies of mucinous and nonmucinous epithelial ovarian cancers. Gynecol Oncol. 2003; 88 (1 Pt 2) S145–148. [PubMed: 12586107]

Figure 1. Flow chart for algorithms to calculate lifetime ovulatory years OC, oral contraceptive.

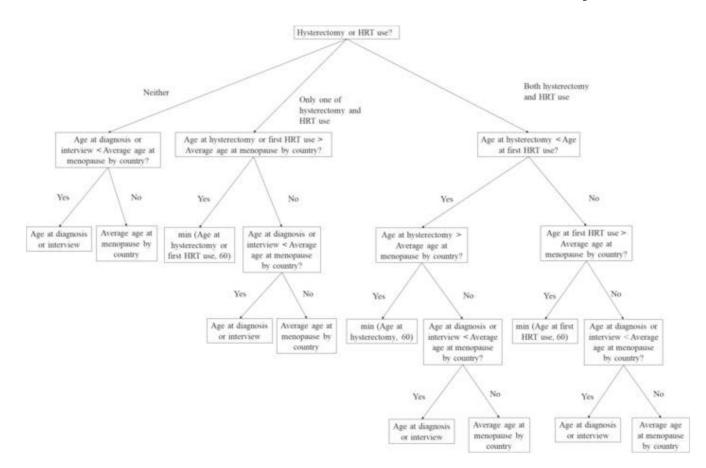


Figure 2. Flow chart for imputation of age at last menstrual period (LMP). HRT, hormone replacement therapy.

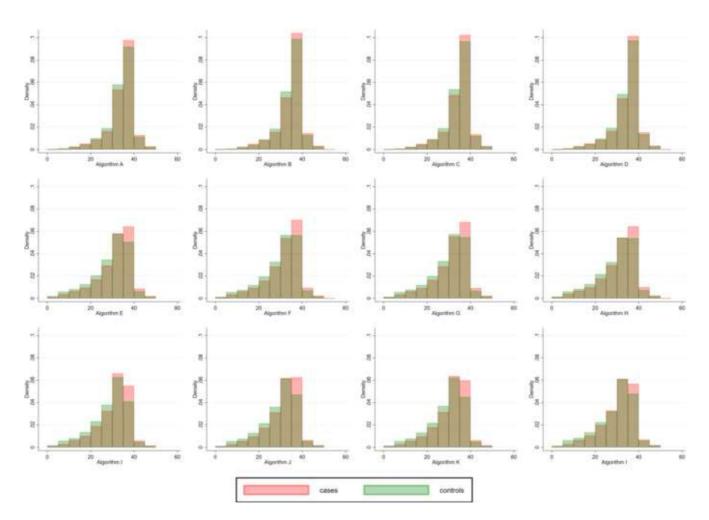


Figure 3. Distribution of lifetime ovulatory years calculated from 12 different algorithms

Characteristics of the 25 case-control Studies from the Ovarian Cancer Association Consortium, conducted in Asia, Australia, Europe, and North America from 1989 to present and included in the lifetime ovulatory years (LOY) analyses

Study	Region	Study Name	Study Period	Cases Type	Method of Data Collection	Age (years), mean (SD)	Controls, n (%)	Cases, n(%)
$ m AUS^{16}$	Australia	Australian Ovarian Cancer Study/Australian Cancer Study	2002-2006	Population-based	Self-completed questionnaire	56.88 (12.28)	1506 (43.2)	1984 (56.8)
BAV^{17}	Germany	Bavarian Ovarian Cancer Cases and Controls	2002-2006	Hospital/Clinic-based	Interview	57.31 (13.77)	629 (47.9)	684 (52.1)
CON ¹⁸	USA	Connecticut Ovarian Cancer Study	1998-2003	Population-based	Interview	55.27 (11.04)	551 (52.6)	497 (47.4)
DOV ¹⁹	USA	Diseases of the Ovary and their Evaluation	2002-2009	Population-based	Interview	55.78 (9.26)	1849 (54.2)	1562 (45.8)
${ m GER}^{20}$	Germany	German Ovarian Cancer Study	1993-1996	Population-based	Self-completed questionnaire	55.07 (12.24)	533 (67.4)	258 (32.6)
HAW^{21}	USA	Hawaii Ovarian Cancer Case-Control Study	1993-2008	Population-based	Interview	54.98 (14.28)	1103 (55.2)	895 (44.8)
HOP^{22}	USA	Hormones and Ovarian cancer PrEdiction	2003-2009	Population-based	Interview	58.66 (12.52)	1802 (68.3)	836 (31.7)
JPN^{23}	Japan	Hospital-based Research Program at Aichi Cancer Center	2001-2005	Hospital/Clinic-based	Interview	52.36 (11.17)	233 (60.5)	152 (39.5)
MAY^{24}	USA	Mayo Clinic Ovarian Cancer Case-Control Study	1999-2018	Hospital/Clinic-based	Interview	60.51 (13.58)	2299 (55.5)	1846 (44.5)
*MCC ²⁵	Australia	Melbourne Collaborative Cohort Study	1990-2008	Defined Cohort	Self-completed questionnaire	64.07 (9.62)	471 (73.1)	173 (26.9)
NCO^{26}	USA	North Carolina Ovarian Cancer Study	1999-2008	Population-based	Interview	55.28 (11.53)	1085 (47.6)	1195 (42.4)
NEC ²⁷	USA	New England Case Control Study	1992-2003	Population-based	Interview	53.54 (12.35)	2100 (50.0)	2075 (49.7)
${ m NJO}^{28}$	USA	New Jersey Ovarian Cancer Study	2002-2008	Population-based	Interview	61.48 (11.60)	458 (65.9)	237 (34.1)
NTH ^{29,30}	Netherlands	Nijmegen Ovarian Cancer Study	1997-2008	Population-based	Self-completed questionnaire	55.90 (10.79)	600 (69.4)	265 (30.6)
OVA	Canada	Ovarian Cancer in Alberta and British Columbia	2002-2012	Population-based	Self-completed questionnaire 2002-2004; interview 2004-2012	56.81 (10.62)	2698 (62.2)	1637 (37.8)
POL^{31}	Poland	Polish Ovarian Cancer Case Control Study	2000-2003	Population-based	Interview	55.70 (10.62)	1128 (79.3)	294 (20.7)

Study	Region	Study Name	Study Period	Cases Type	Method of Data Collection	Age (years), mean (SD)	Controls, n (%) Cases, n(%)	Cases, n(%)
SON ³²	Canada	Southern Ontario Ovarian Cancer Study	1989-1993	Population-based	Interview	56.86 (11.97)	564 (55.6)	450 (44.4)
STA^{33}	USA	Family Registry for Ovarian Cancer AND Genetic Epidemiology of Ovarian Cancer	1997-2001	Population-based	Interview	47.77 (10.07)	567 (46.0)	665 (54.0)
SWH^{34}	China	Shanghai Women's Health Study	1996- present	Defined Cohort	Interview	53.36 (9.70)	986 (86.6)	152 (13.4)
TBO^{35}	USA	Tampa Bay Ovarian Cancer Study	2000- present	Population-based	Interview	60.53 (10.85)	205 (41.8)	285 (58.2)
TOR ³⁶	Canada	Familial Ovarian Tumour Study (FOTS) AND Health Watch (HW)	1995-1999 and 2000-2003	Population-based	Interview	56.62 (12.77)	322 (21.6)	1167 (78.4)
UCI ³⁷	USA	University California Irvine Ovarian Study	1993-2005	Population-based	Interview	54.29 (13.17)	614 (49.1)	636 (50.9)
UKO^{38}	UK	United Kingdom Ovarian cancer Population Study	2006-2010	Hospital/Clinic-based	Interview	63.06 (8.93)	1182 (58.5)	839 (41.5)
USC ^{39–41}	USA	Los Angeles County Case-Control Studies of Ovarian Cancer	1992-2009	Population-based	Interview	55.07 (12.41)	2595 (52.2)	2380 (47.8)
$^{a}\! m VTL^{42}$	USA	VITamins And Lifestyle Cohort Study	2000-2010	Defined Cohort	Self-completed questionnaire	68.19 (7.62)	124 (54.6)	103 (45.4)
Total						56.55 (12.20)	26204 (55.2)	212 <i>67</i> (44.8)

 $^{2}\mathrm{Employed}$ a nested-case control study design within a cohort study

Table 2
Characteristics of ovarian cancer cases and controls included in the lifetime ovulatory years (LOY) analyses

Variables	Control, n (%) N= 26204	Case, n (%) N=21267
Age, years, mean (SD)	56.51 (12.06)	56.59 (12.36)
Race		
White	22,586 (86.2)	18,685 (87.9)
Black	566 (2.2)	460 (2.2)
Asian	2,019 (7.7)	1,227 (5.8)
Other	775 (3.0)	692 (3.3)
Unknown	258 (1.0)	203 (1.0)
Education		
Less than high school	2,857 (10.9)	2,512 (11.8)
Completed high school	6,508 (24.8)	5,309 (25.0)
Completed some college	5,573 (21.3)	4,849 (22.8)
Completed college or university bachelor's degree	4,727 (18.0)	3,344 (15.7)
Completed graduate or professorial degree	3,139 (12.0)	2,271 (10.7)
Unknown	3,400 (13.0)	2,982 (14.0)
Body Mass Index (BMI) at 18, kg/m ²		
<18.5	2,637 (10.1)	2,008 (9.4)
18.5-24.9	10,697 (40.8)	8,809 (41.4)
25-29.9	992 (3.8)	1,002 (4.7)
30	310 (1.2)	353 (1.7)
Unknown	11,568 (44.2)	9,095 (42.8)
Body Mass Index 1 or 5 years prior, kg/m ²		
<18.5	286 (1.1)	274 (1.3)
18.5-24.9	7,472 (28.5)	5,672 (26.7)
25-29.9	4,541 (17.3)	3,570 (16.8)
30	3,074 (11.7)	3,021 (14.2)
Unknown	10,831 (41.3)	8,730 (41.1)
Smoking Status		
Never Smoker	13,311 (50.8)	10,106 (47.5)
Former Smoker	2,900 (11.1)	2,682 (12.6)
Current Smoker	7,449 (28.4)	5,930 (27.9)
Unknown	2,544 (9.7)	2,549 (12.0)
Family History of Breast or Ovarian Cancer in first-relative		
No	16,038 (61.2)	11,574 (54.4)
Yes	1,569 (6.0)	1,808 (8.5)
Unknown	8,597 (32.8)	7,885 (37.1)
Tubal ligation		
No	16,351 (62.4)	15,035 (70.7)
Yes	5,138 (19.6)	3,345 (15.7)

Variables	Control, n (%) N= 26204	Case, n (%) N=21267
Unknown	4,715 (18.0)	2,887 (13.6)
Menopausal status		
Pre/peri-menopausal	8,206 (31.3)	5,775 (27.2)
Post-menopausal	16,749 (63.9)	14,422 (67.8)
Unknown	1,249 (4.8)	1,070 (5.0)
Endometriosis		
No	18,294 (69.8)	15,128 (71.1)
Yes	1,291 (4.9)	1,615 (7.6)
Unknown	6,619 (25.3)	4,524 (21.3)
Hysterectomy pre-diagnosis (cases) or interview (controls)		
No	20,969 (80.0)	14,562 (68.5)
Yes	4,004 (15.3)	5,008 (23.6)
Unknown	1,231 (4.7)	1,697 (8.0)
Hormone replacement therapy		
No	15,547 (59.3)	13,097 (61.6)
Yes	7,472 (28.5)	5,921 (27.8)
Unknown	3,185 (12.2)	2,249 (10.6)
Components of lifetime ovulate	ory years	1
Age at last menstrual period before diagnosis or interview, n(%)	26,204 (100.0)	21,267 (100.0)
mean (SD)	48.77 (6.03)	48.84 (6.4)
Age at Menarche, n(%)	25,255 (96.4)	20,101 (94.5)
mean (SD)	12.91 (1.7)	12.79 (1.6)
Duration of Oral Contraceptive Use, months, n(%)	24,948 (95.2)	19,762 (92.9)
mean (SD)	52.12 (71.3)	37.42 (59.3)
Number of Pregnancies, regardless of outcome, n(%)	25,429 (97.0)	20,429 (96.1)
mean (SD)	2.75 (1.8)	2.40 (1.9)
Total number of months of being pregnant, regardless of outcome(s), n(%)	14,438 (55.1)	12,195 (57.3)
mean (SD)	21.42 (22.3)	16.39 (17.6)
Total number of full-term births, n(%)	22,835 (87.1)	18,304 (86.1)
mean (SD)	2.13 (1.5)	1.85 (1.6)
Total months of breastfeeding, n(%)	18,578 (70.1)	13,619 (64.0)
mean (SD)	9.52 (14.4)	6.86 (13.1)
Behavior and Histotype	es	
Invasive	-	17,465 (82.1)
High-Grade-Serous	-	7,492 (71.8)
Low-Grade Serous	-	513 (4.9)
Serous (Unknown Grade)	-	2,418 (23.2)
Endometrioid	-	2,536(14.5)
Mucinous	-	1,134 (6.5)
Clear cell	-	1,310 (7.5)
Mixed	-	566 (3.2)

Variables	Control, n (%) N= 26204	Case, n (%) N=21267
Low Malignant Potential (Borderline Tumors)	-	3,602 (16.9)
Unknown behavior	-	200 (0.9)

Table 3

Odds ratio for ovarian cancer per lifetime ovulatory year using complete data and full data with imputation

	,	Main a	nalyses ^b (complete data only)	Sensitivity analyses b (includes imputed data)
	Controls	Cases	Odds Ratio ^a (95% Confidence Interval)	Odds Ratio ^a (95% Confidence Interval)
The first class of	algorithms –	anovulatio	on due to pregnancy	
Algorithm A	25,081	20,046	1.018 (1.013, 1.022)	1.015 (1.011, 1.020)
Algorithm B	22,519	18,013	1.014 (1.009, 1.020)	1.012 (1.007, 1.017)
Algorithm C	22,509	18,003	1.016 (1.011, 1.021)	1.014 (1.009, 1.019)
Algorithm $D^{\mathcal{C}}$	13,617	10,689	1.016 (1.010, 1.023)	1.009 (1.003, 1.016)
The second class	of algorithm	s – anovul	ation due to pregnancy and OC use	
Algorithm E	24,480	19,323	1.044 (1.041, 1.048)	1.043 (1.039, 1.046)
Algorithm F^d	22,316	17,772	1.043 (1.039, 1.046)	1.042 (1.039, 1.046)
Algorithm \mathbf{G}^d	22,306	17,762	1.043 (1.040, 1.047)	1.043 (1.039, 1.047)
Algorithm $H^{c,d}$	13,515	10,576	1.043 (1.039, 1.048)	1.041 (1.036, 1.045)
The third class of	algorithms -	- anovulati	ion due to pregnancy, OC use, and breastfeeding	ng
Algorithm I ^e	14,900	11,829	1.041 (1.036, 1.045)	1.047 (1.043, 1.051)
Algorithm \mathbf{J}^f	14,902	11,339	1.041 (1.036, 1.045)	1.046 (1.042, 1.050)
Algorithm \mathbf{K}^f	14,900	11,329	1.041 (1.036, 1.046)	1.046 (1.042, 1.050)
Algorithm L	8,473	6,498	1.040 (1.034, 1.046)	1.047 (1.042, 1.052)

^aAdjusted for study site, age, race (White, Black, Asian, other, unknown), education (less than high school, completed high school, completed some college, completed college or university bachelor's degree, completed graduate or professorial degree, unknown), body mass index 1 or 5 years prior (underweight, normal, overweight, obese, unknown), smoking status (never, former, current, unknown), and family history (yes, no, unknown).

b Main analyses included participants without missing values in any component for LOY calculation; sensitivity analyses included all participants with imputation

^cTBO was excluded from the sensitivity analyses due to limited numbers within site to impute missing values.

 d_{MCC} was excluded from the sensitivity analyses due to limited numbers within site to impute missing values.

eNTH was excluded from the sensitivity analyses due to fail to converge on observed data.

fNTH was excluded from the sensitivity analyses due to limited numbers within site to impute missing values.

Odds ratios, expected beta coefficients, and normalized beta coefficients for ovarian cancer by individual components of lifetime ovulatory Table 4 years

	Odds Ratio ^a	95% Confidence Interval	Expected estimate of coefficient	Normalized coefficient b	95% Confidence Interval Expected estimate of coefficient Normalized coefficientb P-value for removal of component from model
Age at last mens	strual period before	Age at last menstrual period before diagnosis or interview			
per year	1.011	1.004, 1.019	1 (defined)	1	0.004
Age at Menarche	ə				
per year	1.002	0.985, 1.018	-1	0.13	0.86
Duration of Oral	Duration of Oral Contraceptive Use, years	e, years			
per year	0.950	0.945, 0.956	-1	-4.45	<0.001
Number of incou	Number of incomplete pregnancies	S			
per pregnancy 0.968	896.0	0.944, 0.992	-0.25	-2.89	00.00
Number of full-term births	term births				
per pregnancy 0.877	0.877	0.857, 0.897	-0.75	-11.53	<0.001
Total years of breastfeeding	eastfeeding				
per year	0.858	0.816, 0.901	-1.0	-13.45	<0.001

adjusted for study site, age, race (white, black, Asian, other and unknown), education (less than high school, completed high school, completed some college, completed college or university bachelor's degree, completed graduate or professorial degree, unknown), body mass index 1 or 5 years prior (underweight, normal, overweight, obese, unknown), smoking status (never, former, current, unknown), family history (yes, no, unknown), and other components of lifetime ovulatory cycles in the model.

 $\ensuremath{b_{\mathrm{Ormalized}}}$ to the beta coefficient of age at last menstrual period.

Odds ratios, expected beta coefficients, and normalized beta coefficients for ovarian cancer histotypes by individual components of lifetime Table 5 ovulatory years

coefficient ORa (95%) βc Lifetime ovulatory years b,d 1.015 (1.007, 1.024) Per year 1.024) 1.024) Age at last menstrual period before diagnosis or interview per year 0.981 (0.967, 1 0.995) 1 Age at Menarche 1.027 (0.995, 1.360) 1.059) 1.059) Duration of Oral Contraceptive Use, years 1 0.0503 (0.962, 1.441)	6 Bc		CIT-VI STORES	serous N=282	serous N=282	N=1322	nici ioin	Invasive mucinous N=602	snou	Invasive clear cell N=547	r cell
Lifetime ovulatory years b,d per year Age at last menstrual period before diagnosis per year 1 0.981 (0.967) Age at Menarche Per year -1 1.027 (0.995) Duration of Oral Contraceptive Use, years per year -1 0.973 (0.963)	07, -	OR ^a (95% CI)	β^c	OR ^a (95% CI)	β^c	OR ^a (95% CI)	β	OR^d (95% CI)	β	OR ^a (95% CI)	\mathbf{p}_c
Per year Age at last menstrual period before diagnosis per year 1 0.95 Age at Menarche Per year 1 0.973 (0.96) Duration of Oral Contraceptive Use, years per year -1 0.973 (0.96)	07,is or interview										
Age at last menstrual period before diagnosis per year 1 0.981 (0.965) Age at Menarche 1 0.027 (0.995) Per year -1 1.059) Duration of Oral Contraceptive Use, years per year -1 0.973 (0.965)	is or interview	1.054 (1.048, 1.061)		1.040 (1.019, 1.061)	1	1.065 (1.053, 1.076)		1.006 (0.992, 1.019)		1.098 (1.079, 1.117)	1
1 -1 Contraceptive U	_										
-1 Contraceptive	67, 1	1.056 (1.044, 1.069)		1.010 (0.976, 1.044)		1.031 (1.013, 1.049)	1	0.977 (0.955, 1.000)	-	1.086 (1.057, 1.117)	-
per year -1 1.027 (0.99; Duration of Oral Contraceptive Use, years per year -1 0.973 (0.96;											
Duration of Oral Contraceptive Use, years organ organ organ organ organ	95, -1.360	1.000 (0.977, 1.023)	-0.008	0.961 (0.891, 1.037	-4.157	1.003 (0.967, 1.041)	0.093	1.076 (1.023, 1.132)	-3.208	0.948 (0.867, 1.002)	-0.643
-1											
	62, 1.441	0.948 (0.940, 0.956)	-0.975	0.953 (0.929, 0.978)	-5.042	0.928 (0.914, 0.942)	-2.472	0.973 (0.955, 0.991)	1.186	0.925 (0.904, 0.947)	-0.942
Number of incomplete pregnancies											
per pregnancy -0.25 0.998 (0.955, 1.044)	55, 0.082	0.987 (0.953, 1.021)	-0.245	0.889 (0.782, 1.010)	-12.484	0.926 (0.872, 0.983)	-2.533	0.944 (0.867, 1.027)	2.516	0.853 (0.774, 0.940)	-1.924
Total number of full-term births											
per pregnancy -0.75 0.824 (0.785, 0.864)	85, 10.085	0.938 (0.909, 0.967)	-1.170	0.915 (0.821, 1.021)	-9.356	0.740 (0.699, 0.784)	-9.884	0.883 (0.819, 0.953)	5.417	0.630 (0.573, 0.692)	-5.583
Total years of breastfeeding	•		•		•		•				
per year -1 0.963 (0.867, 1.069)	1.970	0.827 (0.771, 0.886)	-3.467	0.808 (0.627, 1.041)	-22.533	0.830 (0.727, 0.948)	-6.120	1.010 (0.858, 1.190)	-0.455	0.893 (0.723, 1.103)	-1.370

CI, confidence interval; OR odds ratio; β , estimated coefficient.

degree, completed graduate or professorial degree, unknown), body mass index 1 or 5 years prior (underweight, normal, overweight, obese, unknown), smoking status (never, former, current, unknown), adjusted for study site, age, race (white, black, Asian, other and unknown), education (less than high school, completed high school, completed some college, completed college or university bachelor family history (yes, no, unknown), and other components of lifetime ovulatory cycles in the model.

degree, completed graduate or professorial degree, unknown), body mass index 1 or 5 years prior (underweight, normal, overweight, obese, unknown), smoking status (never, former, current, unknown), and b adjusted for study site, age, race (white, black, Asian, other and unknown), education (less than high school, completed high school, completed some college, completed college or university bachelor's family history (yes, no, unknown).

Page 28