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Steven Novack and Alexandru Nicolau
Department of Information and Computer Science
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Abstract

VISTA is a visually oriented, interactive environment for parallelizing sequential programs at the
instruction level for execution on fine-grain architectures. Fully automatic parallelization techniques
often perform well, but may not be able to achieve the strict performance and code size requirements
needed for some critical applications. In such cases, manual manipulation by an expert user can
often provide enough improvements in the parallelization process to meet the requirements of the
application. Using VISTA, an expert user fine-tunes the parallelization process by providing rules
and directives to the system in response to graphical and numeric feedback provided by the system.

1 Introduction
The Visual Interface for Scheduling Transformations and Analysis (VISTA) is a visually oriented, in
teractive environment for the semi-automatic parallelization of sequential programs at the instruction
level for execution on fine-grain architectures. Fully automatic parallelizing compilers (e.g. [8, 7,10,5])
perform well on average and produce generally good results, but in some cases may fail to extract a
sufficient level of parallelism from a given program to achieve the high performance required for the ap
plication while satisfying the physical constraints (e.g. allowable memory usage) ofthe target machine.
For many applications, such as embedded systems in aircraft, meeting specific cost and performance
constraints may be strictlynecessary for the application to work at all. For such applications, even small
improvements over fully automatic techniques obtained by manual manipulation of the parallelization
process can be the enabling factor for the feasibibty of a given project.

The failure of a fully automatic compiler to achieve a desired level of performance, even though
such a level is in fact achievable, is usually a consequence of two problems inherent to automatic
compilation: generally good heuristics for solving NP-hard problems can fail to perform adequately
for some specific cases, and a lack of application specific knowledge can force the compiler to make
overly conservative assumptions. The NP-hard characteristic of resource-constrained scheduUng and
scheduling in the presence ofconditional branches suggests that there is no "best" general solution for
parallelizing programs for execution on actual machines. Even though the heuristics employed by fully
automated compilers for dcabng with these problems may perform well on average, for any particular
application, an interactive tool like VISTA will often enable an expert user to produce schedules that
are significantly better than those produced by the available fully automated compilers. Furthermore,
a lack of application specific knowledge can greatly degrade the performance of programs by forcing

•Appears in the proceedings ofSixth Annual Workshop on Languages and Compilers for Parallelism. This work was
supported in part by NSF grant CCR8704367 and ONR grant N0001486K0215.



the compiler to make overly conservative decisions in such areas as the disambiguation of indirect
memory references needed for instruction scheduling and the estimation of path execution probabilities
necessary for making good speculative scheduling choices. Clearly, manual intervention by the user to
provide application specific knowledge or scheduling direction need not {and should not) be applied at
every decision point during the parallelization process. The fact that even large programs spend most
of their time executing in a small fraction of their code (i.e. in loops or recursive routines) suggests
that such special manual attention need only be applied at relatively few stages of compilation (e.g. at
loops on critical paths) and then only selectively when the compiler is not able to make an obviously
superior scheduling choice or would otherwise have to make an overly conservative decision that might
adversely affect the performance of the program.

The VISTA environment allows the user to fine-tune the parallelization process using problem
specific knowledge, human intuition, and trial-and-error approaches, when and where needed, by pro
viding decisions, directives and rules to the system in response to system queries or at user specified
decision points. This fine-tuning can take two forms. First, the user can provide information to the
parallelization system that can not always be computed efficiently (or at all), such as identification
of critical paths and bottlenecks, disambiguation of pointer and indirect references, and control path
execution probabifities. Second, during the parallelization process, there may be decision points at
which the system is not able to determine a clearly superior course of action. Some examples are cost
vs. performance trade-offs (e.g. code size and compile time vs. parallelism), high-level transformation
choices (e.g. which level to pipeline^ in a nested loop), and choosing alternative scheduling strategies
(e.g. transformation ordering heuristics and speculative scheduling strategies^). These decisions may
be different at different points in the program and at different stages of the parallelization process.

Achieving the abovementioned functionality requires three things: an ability to visualize the paral
lelization process, a system of parallelizing program transformations that is powerful enough to provide
maximum parallelism relative tosystem specific constraints while remaining efficient and flexible enough
to allow for arbitrary scheduling approaches and cost vs. performance trade-offs in an interactive en
vironment, and finally, mechanisms for analyzing and anticipating the effects of such transformations
during parallelization to provide the user with useful information and feedback upon which to base
scheduling decisions. For small programs, Control Flow Graphs (CFG's) can be graphically displayed
to provide a natural, visual representation of programs upon which a system of parallelizing trans
formations, such as Percolation Scheduling (PS)[9], can be performed. PS parallelizes programs by
repeated application of a pair of transformations, called move-op and move-cj, that move an operation
or conditional jump up one instruction^ in the CFG while preserving the semantics ofcontrol and data
flow. These transformations need not be applied in any specific order or exhaustively, thus, PS provides
the flexibility to implement arbitrary scheduling heuristics.^ Performing PS on CFG's can provably
extract all of the parallelism available in a program[2]). However, as program size increases, CFG's
become too unwieldy and complicated, especially after parallelization, to be useful for visualization and
inefficiencies inherent to straight PS can begin to have significant detrimental effects on compilation
time and code size. These inefficiencies derive mainly from the strictly incremental application of trans
formations and significant code explosion caused by loop unrolling and parallelizing code containing

^Loop pipelining refers to overlapping the execution of successive iterations of a loop.
^Determining when to move operations above conditionals.

VLIW instruction is a set of rise-like operations that can be executed in parallel, possibly containing multiple
conditional jumps that combine to yield a single control path.

*The transformations themselves ensure the preservation of correct semantics.



multiple control paths.
To overcome these problems, VISTA incorporates a hierarchical representation of the CFG based on

Hierarchical Task Graphs (HTG's)[6] and an enhancement of PS called Trailblazing PS (TiPS)[lI] that
overcomes the inefficiencies of PS while retaining its power and flexibility. HTG s partition the CFG
into a hierarchy ofsubgraphs, usually with a direct correspondence to the hierarchy ofthe original high-
level representation of the program, thus providing a visualizable and understandable structure to the
instruction level representation being parallelized. TiPS also exploits this structure by extending the
PS core transformations to navigate through the HTG hierarchy. At the lowest level sub-graphs in the
hierarchy, TiPS is able to perform the same fine-grained transformations as normal PS, while at higher
levels, TiPS is able to move operations across large blocks of code in constant time, including loops,
past which normal PS is unable to move operations at all. This non-incremental code motion itself
improves efficiency over PS by bypassing multiple instructions in constant time, but also allows code
explosion to be controlled by splitting control paths only when necessary to extract more parallelism,®
and then only if the cost ofdoing so is justified by the performance thus achieved. TiPS attempts to
move operations at the "highest" possible level, where they can bypass multiple nodes at lower levels
in constant time, while moving operations to, or keeping them at, lower levels when needed to expose
more parallelism. In this fashion, TiPS is able to provide efficient code motion without sacrificing the
"completeness" of normal PS and even enables some code motion not directly possible in normal PS.

In order to assist the user in directing the parallelization process, VISTA provides visually-oriented
analysis and (parallel) code editing capabilities. For example, VISTA can graphically portray resource
(e.g. functional unit, register, or memory bandwidth) utilization by shading in nodes in the HTG by
an amount proportional to the utilization at that point. This feature helps the user to monitor the
effects of different transformations on resource utilization and to identify critical paths and bottlenecks
within the code. Another useful analysis capability of VISTA is an integrated simulator that can be
used to report dynamic speedups at successive stages of parallelization in order to gauge the effect
of the transformations. This information can also be graphically represented by shading in nodes
in the HTG by an amount proportional to the normalized execution time (the percentage of total
time spent executing each node), thus providing a global, visual representation of the critical paths
throughout the program. The visual editing capabilities of VISTA provide the user with a "point-and-
click" environment for performing transformations at any level, from moving individual operations to
initiating a loop pipelining transformation or parallelizing an entire routine. The remaining sections
of this paper provide an overview of the VISTA interface (Section 2) and its use in fine-tuning specific
applications (Section 3).

2 The VISTA Environment
This VISTA interface portrayed in Figure 1 shows the HTG representation of the Discrete Ordinates
Transport loop (number 20) ofthe Livermore Kernels, partially parallelized for a VLIW machine with
four functional units. The main window of the graphical interface consists of three regions. The first
region, called the canvas®, located in the upper right-hand corner of the display shows the entire routine

^When moving conditionals or when moving operations that can move more on one control path than on another,
control paths may need to be duplicated, or split, in order topreserve the semantics of control flow. Normal PS will always
perform such splitting when moving operations along multiple control paths, even ifit is not semantically necessary (e.g.
when moving an operation across an entire if-then-else block).

®The reader familiar with the X environment will recognize many of these names (and regions) as being widgets from
the X Athena Widget set.
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Figure 1: HTG after automatic compaction without loop pipelining. Functional unit utilization is
highlighted in the canvas.



represented as a tree^ of nodes. The dashed-line rectangle surrounding a portion of the canvas is called
the slider. The second region, the porthoJe, located at the bottom of the display shows a magnified
view of the rectangular portion of the canvas enclosed by the sUder.

Each rectangle shown in the porthole represents a node in the HTG and is labelled by a unique
number (actually, the memory address of the node itself). HTG's were originaUy presented for use at
the coarse-grain level but we have adapted them for use at the instruction-level. An HTG is a directed
acyclic graph containing five types of node: START and STOP nodes indicating the entry and exit
of HTG's respectively, Simple nodes that, for our purposes, represent VLIW instructions, Compound
nodes representing sub-HTG's which we use to represent if-then-else blocks, and finally, Loop nodes
that represent loops whose bodies are sub-HTG's. Rectangles other than the slider in the canvas or
porthole that contain other rectangles represent either compound or loop nodes, and rectangles that
contain no others represent either simple nodes or STOP nodes. Loop nodes containing inner loops are
distinguished from the other nodes in the canvas by a rectangle drawn with thick lines as in Figure 1.

When moving an operation, op, TiPS is able to determine whether or not a dependency exists
between op and a compound or loop node, say B, without visiting any node within HTG(B) (the sub-
HTG of B).® If there is no dependency or if the dependency can be removed (e.g. by renaming[3]), then
op can move non-incrementally across B without visiting any nodes within HTG(B). For compound
nodes containing (possibly nested) if-then-else blocks, this can provide significant savings over PS in
terms of compile time and code size since the worst case cost of both for moving the same operation
across the if-then-else block using PS is exponential in the number conditionals within the block. The
motion across loops (represented as loop nodes) provided by TiPS is not even possible using PS. Since
compound nodes and loop nodes can both act as "bridges" across their sub-HTG's, we refer to them
collectively as bridge nodes or just bridges. Given a bridge B, HTG(B) is referred to as the region
bridged by Bor just bridged region if Bis understood. Avariety of information about each node can
be shown in the corresponding rectangle in the porthole of the VISTA display, including the entire
operation tree of simple nodes or the entire region bridged by bridge nodes. In Figure 1, all bridged
regions are displayed this way and the operations of one simple node are shown as an example, but in
general, we just characterize simple nodes by the number of operations contained within them and any
special characteristics that distinguish them from the others.® At the right-hand side of each rectangle
is apair of numbers, "X,Y", where Xis the total number of operations in the node and Yis the number
of operations in the node that are conditional jumps. Some nodes are distinguished with further labels,
such as "loop head" if the node is the head of a loop or "backedge" if at least one of the successors
of the node is a backedge, "Bridge" if the node is a bridge and "Stop" if it is a STOP node (START
nodes are not expDcitly shown).

The final region of the main display, called the control region, is shown in the upper left-hand corner
ofthe display. The buttons in this region are used toprovide global control ofthe parallelization process
when the compiler is in interactive mode. Additional, finer-grain control is provided via commands and
menus associated with the nodes themselves. The functionality provided by these controls fall generally
into two categories of transformations: parallelism exposing and parallelizing. Parallelism exposing

^For the sake of simplicity, we currently use a tree representation for the program, therefore, the multiple predecessors
ofjoin-points and backedges are not explicitly shown.

®This is accomplished by associating defi/iitjon and use sets with Bthat indicate which variables are defined or used
within HTG(B). If an operation shares no definitions or uses with B, then it has no dependency on any operation in
HTG(B).

®For the purposes ofthis paper, the operation-level details of the code being parallelized are unimportant.
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Figure 2: Exposing Parallelism

transformations (soc Figure 2) consist ofloop unrolling (inserting one or more successive iterations of
a loop into its body),^° loop shifting ("unwinding" a loop so that its head becomes a true successor
ofeach of its predecessors), and routine in-lining (replacing a CALL by the body of the routine being
called). These transformations do not in general improve performance (although, each in-lining does
eliminate a CALL and a RETURN); however, they do expose new operations that can be scheduled in
parallel with existing operations, thereby allowing for improved performance at the cost of increased
code size and compile time. Parallelization is affected by a hierarchy of transformations. At the lowest
level are trailblaze (the TiPS equivalent of the PS move-op transformation) and move-cj (same for
both PS and TiPS) which move individual operations or conditional jumps, respectively. Next higher
up is the schedule transformation that moves operations in a user-specified order, using traiib/aze and
move-cj, toward the node currently being scheduled, say n, until no further operations can move inton.
Operations can be prevented from moving due to datadependencies, resource constraints, and artificial
limitations such as cost vs. performance trade-offs. The highest level parallelizing transformation is
the compact transformation which traverses a specified sub-graph ofthe program in a top-down fashion
while applying the schedule transformation to each node visited (the specified sub-graph may be the
entire program HTG).

3 Fine-tuning parallelization
These transformations are usually performed automatically by the system; however, control is available
for manuaUy applying them as needed, at any level, in order to fine-tune specific applications. The
VISTA interface can be used to provide interactive disambiguation and speculative scheduling decisions;
however, in this section, we will focus on the ability of VISTA to tune cost vs. performance trade-offs.
Tuning cost vs. performance trade-offs is one of the more intractable problems for fully automated
parallelizing compilers since acceptable ratios ofcost to performance depend entirely on theapplication
and architecture at hand, and achieving this ratio is itself an NP-hard problem. For example, without
any restrictions on program size, it is usually a good idea to fully loop-pipeline the inner loops of
programs. Loop Pipelining consists of repeatedly exposing parallelism within an inner loop (using
unrolling as in [10] or shifting as in [4]) and compacting the resultant loop until no more parallelism
can be extracted from the loop. Loop Pipelining usually has the effect of significantly improving
performance at the expense of increased program size. When there are limits on program size, VISTA
allows loop pipelining to be terminated when the user determines that either enough parallelism has
already been exploited or the point ofdiminishing returns ofthe cost vs. performance ratio has been
reached. To facilitate the making of decisions, such as these, based on performance goals and cost vs.

'"In our compiler, ifunrolling is applied more than once, iterations from the original (rather than the current, previously
unrolled) loop are inserted.



performance trade-offs, VISTA has mechanisms for quantitatively and graphicaUy providing feedback
to the user about the effects of transformations that have been applied to the program. Quantitative
feedback can take the form of reports on program size, static speedup computed as the average degree
of paralleUsm over a specified region of code, or dynamic speedup, the ratio of sequential to paraUel
execution times determined by simulating the code before and after applying any transformations. For
instance, simulation (initiated by the simulation button) of the schedule in Figure 1yields aspeedup
of 2.41 (reported using the statistics button).

While quantitative feedback is primarily useful for analyzing the effect of previously appbed trans
formations, graphical feedback in the form of visual representations of resource utiUzation and nor
malized execution times help the user to anticipate the effect of future transformations. Graphical
representation, referred to as highlighting, is provided by shading the rectangles in the canvas by an
amount proportional to the specified resource utilization or normalized execution time at that point in
the program. For example, the canvas in Figure 1shows functional unit utilization (i.e. the percentage
of functional units that are used by the operations in each node). By highlighting resource utilization,
the user can determine where paraUelism exposing transformations might be useful —if no resources
are available, then, in general, there is no point in exposing new operations for movemcnt.^^ For in
stance the availability of unutiUzed resources, indicated by the unshaded areas of the inner loop nodes
displayed in the canvas of Figure 1, suggests that applying loop shifting and/or unrolling on the inner
loop would probably improve performance. The amount of performance gained and its cost in increased
code size depends on which technique is used, the architecture, and the characteristics of the loop itself.
In general, when combined with a loop restructuring technique such as Perfect PipeUning[l, 10], loop
unrolling can achieve maximum performance by allowing iterations to be scheduled successively until
resources are utilized as well as possible,^^ ^ut can potentially result in a significant amount of code
explosion. On the other hand, loop shifting has the advantage of keeping the number of iterations
constant (with somewhat less code explosion), but at the cost of arbitrarily limiting the number of
operations within the loop, and therefore the maximum possible resource utibzation since the fixed
number of operations may not be evenly divided among the available functional units. For example,
in Figure 3, the user might decide to shift rather than unroll the loop due to the lesser code explosion
penalty and the bkebhood that unrolling would not perform significantly better than shifting for this
particular loop running on the given architecture. The intuition behind this decision is that since the
architecture is relatively "narrow" with respect to the number of operations in the loop (4 functional
units compared to 52 operations), then the penalty for shifting, of not being able to evenly divide
the operations by the number of functional units, is bkely to be smaU. Figure 3shows the inner loop
shifted 7 times which resulted in a 17% increase in speedup (to 2.82) at the cost of a 15% increase in
code size relative to the schedule in Figure 1. While the decision to use shifting instead of unrolUng
may be appropriate for this particular loop running on a "four-wide" VLIW architecture, results in
[10] show that for different loops and/or different architectures the performance penalty of shifting can
be significant, in which case unrolling might be a better choice. Whether unrobing, shifting, or some
combination of the two is best for a given appbcation depends entirely on the characteristics of the
appbcation itself and the target architecture. Any automatic, deterministic heuristic for applying these
transformations would, by necessity, be sub-optimal for some appbcation/architecture combinations for

"Although, in some cases, opportunities for redundant operation removal (e.g. load after store elimination or constant
folding) might be exposed and therefore may make the paraUeUsm exposing transformation worthwhile even in the absence
of available resources.

"Data dependencies that cross iteration boundaries can prevent full utilization.



which an expert user would nevertheless be able to find a superior solution if provided with sufficiently
powerful tools for understanding and directing the parallelization process.

When multiple opportunities for parallelism exposing transformations have been identified, it may
be necessary to choose from amongst them if there are limits on code size. An example of this is shown
in Figure 3 wherein loop shifting and/or unrolling can be performed on either of the loop heads.At
this stage, it is useful to highlight the normalized execution time of the nodes in the program in order
to provide a global picture of the critical paths through the code. Given this information, the user can
choose which of the potential parallelism exposing and parallelizing transformations to apply based on
his estimation of their likely affect on the critical paths and the relative cost vs. performance benefits
of each. Then, using quantitative feedback, the user can analyze the actual costs and performance
thus obtained. For example, by highlighting the normalized execution time in the canvas of Figure 3
we can see that the loop on the left is more critical than the one on the right, and therefore the next
parallelism exposing transformation (and compaction) should occur on the left-most loop head. By
shifting and compacting another 4 times along the left-most loop a speedup of 3.2 would be achieved,
providing an incremental improvement of 149^- over the schedule in Figure 3 at the incremental cost
of a further 3% increase in code size. After doing this, highlighting functional unit utilization would
show that resources are almost completely utilized. If it turns out that the cost vs. performance ratio
is not acceptable (a determination which is entirely application dependent), then the transformations
can be "undone" by replacing the outer-most HTG that was affected by the transformations with a
copy saved prior to performing the transformations (VISTA allows the user to save any HTG in its
current state for possible restoration at a later time, but only allows restoration when semantics would
be preserved by doing so).

For the example shown in Figures 1 and 3, fully automatic techniques, such as those presented in
(4, 10], would usually result in much greater code explosion than obtained using VISTA, but without
any significant improvements inspeedup since, in thefinal schedule described above, resource utilization
obtained with VISTA approaches 100%. In fact, depending on the choice of scheduling heuristics used
by either of these (or any other) automatic techniques, speedup might actually degrade because of the
added pressure on functional units caused by too much code explosion (i.e. more operations compete
for the same resources). For example, the same scheduling heuristics used to create the nearly optimal
results presented in [10] for some loops, would, for this particular loop, have resulted in a speedup of
2.9 at a cost in code size of over 1000 ins'iructions (as compared to the speedup of 3.2 at a cost of 42
instructions produced using VISTA).

By selectively applying exposing and parallelizing transformations based on application-specific
knowledge, intuition, and feedback from the VISTA system, the user can often fine-tune the paral
lelization process to provide cost vs. performance trade-offs superior to those produced by the available
fully automatic systems. The problems with fully automatic techniques can be alleviated somewhat
with better scheduling heuristics; however, due to the complicated interactions between the different
heuristics used for dealing with the various NP-hard problems involved in compiling for fine-grain
parallelism, human intervention can often be the deciding factor for achieving the necessary cost and
performance goals.

^^Notice that the loop has become irreducible as a result ofshifting a node that contained a conditional branch.
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