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ABSTRACT OF THE DISSERTATION

Channel Modeling, Signal Processing and Coding for Perpendicular Magnetic

Recording

by

Zheng Wu

Doctor of Philosophy in Electrical Engineering

(Communication Theory and Systems)

University of California San Diego, 2009

Professor Jack K. Wolf, Chair

Professor Paul H. Siegel,Co-Chair

With the increasing areal density in magnetic recording systems, perpendicular

recording has replaced longitudinal recording to overcomethe superparamagnetic limit.

Studies on perpendicular recording channels including aspects of channel modeling,

signal processing and coding techniques are presented in this dissertation.

To optimize a high density perpendicular magnetic recording system, one needs

to know the tradeoffs between various components of the system including the read/write

transducers, the magnetic medium, and the read channel. We extend the work by

Chaichanavong on the parameter optimization for systems viadesign curves. Differ-

ent signal processing and coding techniques are studied. Information-theoretic tools are

utilized to determine the acceptable region for the channelparameters when optimal de-

tection and linear coding techniques are used. Our results show that a considerable gain

can be achieved by the optimal detection and coding techniques.

The read-write process in perpendicular magnetic recording channels includes a

number of nonlinear effects. Nonlinear transition shift (NLTS) is one of them. The sig-

nal distortion induced by NLTS can be reduced by write precompensation during data

xiv



recording. We numerically evaluate the effect of NLTS on theread-back signal and ex-

amine the effectiveness of several write precompensation schemes in combating NLTS

in a channel characterized by both transition jitter noise and additive white Gaussian

electronics noise. We also present an analytical method to estimate the bit-error-rate

and use it to help determine the optimal write precompensation values in multi-level

precompensation schemes.

We propose a mean-adjusted pattern-dependent noise predictive (PDNP) detec-

tion algorithm for use on the channel with NLTS. We show that this detector can offer

significant improvements in bit-error-rate (BER) compared toconventional Viterbi and

PDNP detectors. Moreover, the system performance can be further improved by com-

bining the new detector with a simple write precompensationscheme.

Soft-decision decoding for algebraic codes can improve performance for mag-

netic recording systems. In this dissertation, we propose two soft-decision decoding

methods for tensor-product parity codes. We also present a list decoding algorithm for

generalized error locating codes.
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Chapter 1

Introduction to the Magnetic

Recording System

The first computer hard disk drive IBM 350 was introduced by IBM in 1956, as

a part of IBM RAMAC 305 system, where RAMAC is the abbreviation for “Random

Access Method of Accounting and Control”. This disk drive stored about 4.4 megabytes

[1], with a rotational speed of 1200 RPM. The data transfer rate was 8,800 bits per

second. However, the size and the price of this hard disk drive was huge. The disk

diameter was 24 inches. Assembled with covers, the IBM 350 was60 inches long, 68

inches high and 29 inches deep. The IBM RAMAC 305 system with IBM 350 disk

storage could be leased for $3,200 per month. Compared to thishuge and costly disk

drive, today’s hard disk drives are much smaller and cheaper, with much larger capacity

and higher speed. In July of 2008, Seagate Technologies announced their newest 3.5

inch desktop internal hard disk drive, Barracudar7200.11. It has up to 1.5 Terabytes

(1.5× 1012 Bytes) capacity, with rotational speed of 7200 RPM and data transfer rate of

3 Gigabits per second. Furthermore, the price is less than $200.

Moore’s law describes the exponential growth of the number of transistors per

integrated circuit over time [2]. It states that this numberwill double every year. The

growth of the capacity of the hard disk drives has the similartrend, following Kryder’s

law. The development of improved heads, servo, media and signal processing techniques

1
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are the forces behind this fast growth.

One of the most recent significant development of the recording technologies

is the introduction of the perpendicular recording technology. Before that, for over 40

years, the bits on the hard disk drives were recorded as magnetic fields horizontal to

the surface of the medium, which is called longitudinal recording. When the recording

density increases, the superparamagnetic effect will occur. The microscopic magnetic

grains on the disk becomes so tiny that their magnetic orientations are not stable even

at room temperature. Though increasing the coercivity (the“field” required to write

a bit) of the media can avoid the superparamagnetic effect, the write field can not be

arbitrarily large because of the materials from which the head is made [3, 4]. With

perpendicular recording technology, where the orientation of the magnetic field of each

bit is perpendicular to the surface of the medium, because ofthe geometry change in

the writing process, the maximum fringing write field generated by the head of the

same material is twice as big as that of the longitudinal recording. More over, unlike

the longitudinal recording, the demagnetizing field in perpendicular recording decreases

with higher density, thus improving thermal stability [4].Therefore, with perpendicular

recording, higher recording density can be achieved. The first commercial product using

perpendicular hard disk drives was introduced in 2005 by Toshiba, followed by Hitachi

Global Storage Technologies and Seagate Technology later in the same year. Today’s

high capacity hard disk drives all use perpendicular recording technology.

In this dissertation, our focus will be on the read channel and the signal process-

ing techniques used in perpendicular recording systems. Inthe remain of this chapter,

we will give an introduction to perpendicular recording channels and the read channel

architecture. A summary of the dissertation concludes the chapter.
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1.1 Perpendicular Recording Channels

1.1.1 Read and Write Process

In hard disk drives, data are recorded on the disk as binary bits. The bits are

written on the tracks, which are circular bands around the disk center.

In perpendicular recording systems, the polarity of the bits is represented by

the upward or downward orientation of the magnetic field on the medium. Writing

bits is a process of magnetizing the medium in different directions. Figure 1.1 gives

an illustration of the writing process. The recording flux iscontrolled by the current

in the write head. The amplitude of the current should be large enough to magnetize

the medium to saturation and the direction of the current determines the magnetization

direction. By spinning the disk, bits on the track are writtensequentially, with the later

bit overlapping the previous one. The rotational speed is controlled carefully to achieve

the desired channel bit spacing.

The data are written on the disk sector by sector. A sector has4096 user data bits,

plus other overhead bits. Each track includes multiple sectors. However, a 4kB sector

size is proposed today, so that longer error correcting codes that have better performance

can be used.

When the magnetization pattern on the disk is to be read, the disk spins and the

read head moves over the track to sense the magnetic field above the medium. The read-

back signal can be regarded as a superposition of the isolated transition responses, at the

transition positions of the magnetic fields. Mathematically, we can write the noiseless

read-back signal as follows:

z(t) =
∑

i

dis(t − iB) (1.1)

where{di} is the sequence of the transitions,B is the channel bit spacing, ands(t) is

the transition response. The “transition”di can be 0, +1 or -1, where 0 represents no

transition at positioni, and±1 represent transitions of different directions.

The isolated transition response could be analyzed and measured from the disk.
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Figure 1.1 Illustration of the writing process in perpendicular recording systems.

In the literature, two approximations of the ideal transition response are used in simula-

tions. One of them uses thetanh function, such as in [5, 6]. The transition response can

be expressed as:

s(t) = Vmax tanh

(

2t

0.579πT50

)

, (1.2)

whereVmax is the zero-to-peak amplitude andT50 is the width whens(t) changes from

−A/2 to A/2, as shown in Figure 1.2. Since thetanh function is an odd function,T50

is also the value that satisfies

s(T50/2) = A/2. (1.3)

The other approximation for the channel transition response is the error function

approximation [7, 8, 9]. The transition response is defined as

s(t) = Vmaxerf

(

0.954t

T50

)

, (1.4)
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Figure 1.2 The approximations of the ideal transition response in perpendicular record-
ing systems.

where erf(·) has the form

erf(t) =
2√
π

∫ t

0

e−u2

du. (1.5)

The parameterT50 in this approximation has the same meaning as in thetanh approx-

imation. It satisfies equation (1.3) as well. A comparison ofthe two approximations is

shown in Figure 1.2, using the parametersT50 = 20nm andVmax = 1.

The noiseless read-back signal can also be expressed as the superposition of

the dipulse response, where the input data are considered to be the NRZ pattern, not

the NRZI pattern for transitions. Let the binary data sequence be{xi}, wherexi ∈
{+1,−1}. The transitiondi can be calculated asdi = xi−xi−1

2
. Denoting the dipulse

response byh(t), the read-back signal can also be represented by

z(t) =
∑

i

xih(t − iB) (1.6)

whereh(t) = (s(t) − s(t − B))/2. An example of the dipulse response is shown in
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Figure 1.3, which uses the error function approximation of the transition response.

1.1.2 Noise and Distortions in Perpendicular Recording Systems

The read back signal will be affected by various noise and distortions, which

cause errors during the recovery of the data. The fundamental noise sources are me-

dia noise, the noise from the head and the noise from the electronic circuits such as

the preamplifier [10]. The noise from the head and the electronic circuits are usually

modeled as the additive white Gaussian noise (AWGN).

The noise from the media is the dominant noise source in perpendicular record-

ing systems [11]. Among the components of the media noise, the transition noise is

dominant [4, 6, 12]. The transition noise originates from the randomness of the mag-

netization of grains in the transition region. It can be modeled as a random jitter of the
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transition position, which can be included into the read-back signal as follows:

z(t) =
∑

i

dis(t + ai − iB) (1.7)

whereai is the transition jitter for transitiondi. If di is zero, there is no transition and

thusai is also zero. Whendi is non-zero, the transition jitterai is a random variable. In

much of the literature, for simplicity, the transition jitterai is assumed to have a Gaussian

distribution, or a truncated Gaussian distribution. The random variables representing the

transition jitters are assumed to be independent to each other.

Nonlinear distortions can also degrade the system performance, such as the non-

linear transition shift and the read head nonlinearities [13]. The nonlinear transition shift

(NLTS) is due to the magnetic field from the neighboring recorded transitions, on the

same track and from adjacent tracks. Also because of the neighboring magnetization,

the read head could operate in a nonlinear regime, yielding asymmetry in the dipulse

response [14, 15].

Inter-track interference (ITI) is another problem that arises with increasing den-

sity. It can be modeled as a linear signal added to the main track signal. Signal process-

ing techniques for ITI in perpendicular channel were studied [16].

Thermal asperities, which also happens in longitudinal recording, arise from the

defects on the medium surfaces. The friction between the asperity and the magneto-

resistive read head causes the head to heat rapidly, which results in a change of the head

resistance and therefore the read-back signal. Long burstsof errors usually happen be-

cause of thermal asperities. In practice, thermal asperities can be detected and canceled

by signal processing techniques, as proposed in [17, 18].

1.2 Signal Processing and Coding Techniques in Read

Channel

From the viewpoint of signal processing and coding techniques, the data storage

system can be modeled as a communication system. The communication channel here
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is the recording channel. A system diagram of the magnetic recording system is shown

in Figure 1.4.

The writing process can be regarded as the transmitter. The binary user data are

usually first encoded with an error correction code (ECC) and then with a modulation

code. A precoder is sometimes used. The transition positions in the write current are

adjusted by the write precompensation process before goingthrough the coil of the write

head, to reduce the effect of the nonlinear transition shift.

The read back and data recovery process can be regarded as a receiver in the

communication system. The read-back signal from the read head is an analog waveform.

It is processed by the front-end circuit, which usually contained a preamplifier and an

analog low-pass filter. The timing recovery loop provides the clock for sampling and

the digital signal processing afterwards. The sampled signal is usually equalized before
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the detector. The modulation code and the error correcting code are decoded afterwards

to finally recover the user data.

In the following paragraphs, we are going to introduce some signal processing

and coding techniques used in the system.

Partial Response Equalization

The magnetic recording channel is a channel with intersymbol interference. In

early longitudinal magnetic recording systems, peak detection was used for low density

recording. The pulses produced by two neighboring transitions are enough apart so that

the interference between each other can be ignored. However, with increasing recording

density, the interference between pulses becomes more severe, and the peak detection

gives very poor performance. A partial response maximum likelihood detector was

proposed to deal with the channel ISI [19, 20]. In order to reduce the number of states

in the detector, a FIR equalizer is used to equalize the channel response to a desired,

shorter partial-response target. One class of equalization target, labeled “Class-4” or

“extended Class-4”, is widely used in longitudinal magneticrecording channels with

different channel bit densities. A general expression of these target polynomials takes

the form

g(D) = (1 − D)(1 + D)N (1.8)

whereN ≥ 1. WhenN = 1, a simplified channel that usesg(D) as the channel transfer

function is usually called a PR4 (Partial Response Class-4) channel. WhenN ≥ 2, the

channels are called extended Class-4 channels, denoted by EN−1PR4.

Generalized partial response (GPR) targets were proposed later. The coefficients

of the GPR target can be arbitrary real numbers. The noise-predictive maximum like-

lihood (NPML) detector [21] is based on such a target, since the noise whitening filter

response can be built into the generalized partial responsepolynomial. By using GPR

targets, the equalizer reduces the noise enhancement and atthe same time, whitens the

noise. In present systems, a GPR target is usually used.

There are many studies on the design of the equalizer, such asin [22, 23, 24].
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The design objective is usually to minimize the mean squarederror (MMSE) of the

targeted signal and the equalized channel output. Since thechannel parameters might

change slightly on one disk drive, for example, because of the temperature varying, the

equalizer can be designed to be adaptive to the channel, so that a stable targeted signal

is provided for the detector afterwards [25].

Detection

Before the use of partial responses, the detection used a peakdetection. Given

a partial response target, a Viterbi, or Viterbi-like detector is used to detect the data

sequence.

The conventional Viterbi detector is a maximum likelihood sequence detector

for an ISI channel with AWGN [26]. For any received sequencer̄, the maximum like-

lihood sequence detector gives the most probable input datasequencēx, such that the

probability Pr(r̄|x̄) is maximized.

The Viterbi algorithm runs on a trellis. The number of trellis states is determined

by the partial response target length. The detected sequence is selected to be the one that

minimizes the accumulated branch metric. For the conventional Viterbi detector, the

branch metric is the Euclidean distance between the received samples and the labeled

targeted outputs.

As we stated previously, the noise in the perpendicular recording channel is dom-

inated by the transition noise which can not be modeled as AWGN. Besides, after the

equalizer, the noise is usually colored. Therefore, the conventional Viterbi detector is

not the optimal one. Modifications to the conventional Viterbi detector were proposed.

A noise-predictive maximum likelihood detector was proposed in [21], which uses a

noise prediction filter in the Viterbi algorithm. The pattern-dependent noise-predictive

detector, which uses a different noise-prediction filter for each branch to capture the

data-dependent nature of the jitter noise, was studied later [27, 28]. The system perfor-

mance is much improved by using these modified detectors.
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Modulation Code

Modulation codes, also called the constrained codes, are used in digital recording

systems to avoid some of the data recovery failure mechanisms, such as timing recovery

failure and detection failure [29, 30].

For example, in peak detection systems, a runlength-limited (d, k) constrained

codes was used. The code limits the runlength of zeros in a codeword. This constraint

is very suitable to the transition sequence recorded on the disk. Since the read head can

only sense transitions on the medium, if there is no transition on a long stretch of track,

i.e., there is a long sequence of zeros in the transition sequence, the timing recovery

loop could lose track of the clock. Therefore, we need to makesure that the runlength

of zeros can not be longer than a certain numberk. However, the run length of zeros

can not be smaller thand bits in order to prevent interference between two neighboring

transitions. If two transitions are too close, they will be affected by ISI and the detection

might fail.

In PR4 channels, a(0, G/I) modulation code is usually used. The parameter

G limits the runlength of zeros in the transition sequence forthe sake of the timing

recovery, which is the same as thek constraint in the(d, k) codes. The constraintI

is used to ensure the successful detection by the Viterbi detector. Since the trace-back

length in the Viterbi detector is limited in real system, themaximum number of zeros in

the even and odd substrings of the sequence needs to be limited by I.

A variety of other constraints are also used in the magnetic recording channels.

For example, a DC-free constraint is extremely useful for a perpendicular recording

channel where the DC is nonzero. Some constrained codes, such as the maximum-

transition-run (MTR) constrained codes, are designed such that the distance between

events in the PRML detector is increased, thus improving the system error performance.

The modulation codes adds overhead to the data sequence to ensure the con-

straint. Thus the rate of the code is very important to the system designers. The con-

strained codes used in real systems usually have very high code rates.



12

Error Correction Codes

Because of noise and distortions from the channel, there may be errors in the

detected data. For hard disk drives, because of the huge volume of reads and writes of

the data in a computer system, the ultimate error rate of the recovered user data needs

to be very low, for example,10−15, which is much lower than in other communication

system, such as in wireless communication. An error correction code is used after the

detection and modulation code, to correct the errors which occurred during the recording

process.

In magnetic recording systems, a Reed-Solomon (RS) code is theerror correct-

ing codes used for decades and is still being used today. RS codes are maximum distance

separable (MDS) codes which have the maximum minimum Hamming distance given

the number of parity check symbols. It can correct and detectburst errors. Hard decision

decoding of RS codes is very well defined and simple to implement. Because of these

advantages, it is used in various communication systems, including storage systems.

However, many other coding schemes were proposed to improvethe system

sector-error-rate (SER) and save the overhead further. For example, concatenating other

codes with the RS codes, where sometimes the decoding of the inner code is regarded as

the postprocessing of the detector, were proposed in [31, 32]. Multilevel error correct-

ing codes were also proposed to handle both random and burst errors in the recording

systems [33, 29]. The low-density parity-check (LDPC) codesare the most likely can-

didate today to substitute for the RS code in magnetic recording systems, because of its

channel capacity approaching property [34]. The decoding of the LDPC codes uses a

message passing algorithm, which is practical for implementation [35].

1.2.1 Advanced Techniques

Signal processing and coding techniques for magnetic recording systems are

improving rapidly today. Here, we only introduce two advanced techniques among

them.
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Reverse Concatenation of Modulation Code and ECC Code

The order of the concatenation of the modulation code and theECC code is not

necessarily in the order shown in Figure 1.4. A reverse concatenation of the modulation

code and ECC code modules was proposed [36, 37]. Since the decoding of the modula-

tion code might result in error propagation, the reverse concatenation enables the ECC

code to correct the errors directly from the detector, whichis more efficient.

Turbo Equalization and Iterative Detection and Decoding

Turbo equalization is an iterative decoding and detection process for ISI chan-

nels. With the recent improvement of the iterative decodingtechniques proposed for

Turbo codes and LDPC codes, there is a trend toward using Turbo equalization tech-

niques in the read channel.

In Turbo equalization, soft-decision detection algorithms such as the BCJR al-

gorithm [38] and the soft-output Viterbi algorithm (SOVA) [39] are used to provide soft

information on each channel bit. The ECC code decoder is a decoder that can handle

soft input and output soft information as well. We call this type of decoder asoft-input-

soft-output (SISO) decoder. The soft output of the detector is the input to the SISO

decoder, while the soft output of the decoder can be fed back to the channel detector,

to improve the detector performance. Thus, a Turbo-like structure is built between the

detector and the decoder, and soft information is iteratively exchanged between them.

The ECC code which is required to have a practical SISO decoder, can be ei-

ther a convolutional code [40], an LDPC code [41] or a Turbo code [42]. With the

development of SISO decoder for the RS codes [43, 44], RS codes are also in consider-

ation. The performance of the system with Turbo equalization is shown to be improved

substantially compared to the conventional system.
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1.3 Summary of Dissertation

In this dissertation, we will focus on the channel modeling of perpendicular

recording systems with nonlinearities, and the study of thesystem performance, op-

timization, and related signal processing and coding techniques.

Chapter 2 will discuss the tradeoffs among channel parameters for perpendicular

recording systems with specific signal processing and coding schemes. An information

theoretic study will be discussed to show the system densitylimit and the tradeoff of the

channel parameters.

Chapter 3 to 5 will focus on the study of the nonlinear transition shift (NLTS)

phenomenon in perpendicular recording systems and relatedtopics. In Chapter 3, write

precompensation of different levels is studied. In Chapter 4, a bit-error-rate analysis is

presented for the system with NLTS and write precompensation. Chapter 5 proposed a

new modification of the Viterbi detector, which can reduce the effect of NLTS.

Chapter 6 presented a study on coding schemes in magnetic recording systems.

A soft-decision decoding algorithm is proposed for tensor-product parity codes. A list

decoding algorithm is also presented for the generalized error-locating (GEL) codes.
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Chapter 2

Design Curves and

Information-Theoretic Limits for

Perpendicular Recording Systems

The optimization of high density magnetic recording systems requires the anal-

ysis and evaluation of tradeoffs among the many system parameters. For example, code

rate optimization for different channel models has been addressed in several recent stud-

ies [1, 2, 3]. In particular, Chaichanavong et al. [1] proposed a quasi-analytical method-

ology to optimize the system for a channel model with three parameters, the replay pulse

width T50, the transition jitter noise standard deviationσJ , and the signal-to-electronic-

noise ratioSNRW . The signal processing scheme included an MMSE equalizer with

a unit energy constraint, a Viterbi detector, and a Reed-Solomon (RS) error-correcting

code. For a specified user bit spacingBuser andSNRW , the results in [1] take the form

of a design curve that defines the acceptable (T50, σJ ) pairs for a specified sector error

rate (SER). Each point on the curve has a corresponding optimal code rate,R, and an

optimal channel bit spacingB = RBuser.

In this chapter, we will present the design curves for systems using coding and

equalization schemes different from those used in the system in [1]. The same channel

model will be considered. Then we will apply information-theoretic tools to derive de-

19
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sign curves that will shed light on the acceptable region of (T50, σJ ) pairs when optimal

detection and linear coding techniques are used.

2.1 Design Curves for Perpendicular Recording Systems

2.1.1 Perpendicular Recording System with Jitter-Noise and AWGN

In this section, we will introduce the channel model we are going to use.

Assume the channel isolated transition response to be

s(t) = Vmaxerf

(

0.954t

T50

)

, (2.1)

where erf(·) is the error function defined by

erf(t) =
2√
π

∫ t

0

e−u2

du. (2.2)

The constant 0.954 comes from the definition ofT50, which is the width of the transition

response at half of the maximum amplitude, i.e.,s(T50/2) = Vmax/2. The channel

dipulse response is defined as

h(t) = [s(t) − s(t − B)]/2, (2.3)

whereB is the channel bit spacing.

The channel input is a binary sequence{xi}, wherexi ∈ {+1,−1}. The noise-

less channel outputy(t) can be written as the convolution of the channel input and the

dipulse response

y(t) =
∑

i

xih(t − iB). (2.4)

The jitter noise is modeled as

nJ(t) =
∑

i

ai

(

xi − xi−1

2

)

s′(t − iB) (2.5)

where the{ai} are independent Gaussian random variables with zero mean and variance

σ2
J ands′(t) is the first derivative of the transition responses(t).
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Electronic noise and a small amount of stationary medium noise, not included in

the jitter noise, can be modeled as AWGN represented bynW (t). Therefore, the output

of the channel can be written as

z(t) = y(t) + nJ(t) + nW (t). (2.6)

After low-pass filtering and sampling at the channel bit spacing B, the discrete-time

channel output is thus

zk =
∑

i

hixk−i +
∑

i

ak−i

(

xk−i − xk−i−1

2

)

s′i + nW (kB) (2.7)

wherehi is the sample ofh(t) at iB, s′i is the sample ofs′(t) at iB. The signal-to-

electronic-noise ratio is defined bySNRW = 10 log10(V
2
max/σ

2
W ), whereσ2

W is the

variance of the Gaussian random variablenW (kB). WhenSNRW is fixed, the channel

depends only on the normalized parametersT50/B andσJ/B.

2.1.2 Parameter Optimization and Design curves

In a recording system, we would like to store as much user dataas possible per

unit area. However, during the recording process, various types of overhead will be

added to the user data, such as the parity check bits for the error correcting code (ECC),

the extra bits inserted for the modulation codes and so on. Inthis chapter, we assume a

simplified recording system as shown in Figure 2.1, where theECC code is considered

as the only source of overhead. For such a system, the user bitspacing is defined as

Buser = B/R, whereR is the code rate for the error correcting code. The user density is

thus1/Buser.

Raising the channel bit density does not necessarily increase the user density.

Higher channel density will result in more ISI and higher normalized jitter noise. There-

fore, a stronger ECC code, which usually has lower code rate, is needed to ensure the

system performance, usually measured by the sector error rate (SER). The user density

might not increase in this process because of the amount of overhead required.
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Figure 2.1 The system diagram for design curve computation.

For example, Figure 2.2 shows a curve of the user density1/Buser verses the

channel density1/B for a given channel. The ECC code is a Reed-Solomon code with

information length 4100 bits and 10-bit symbols. The systemutilized an MMSE equal-

izer design with unit energy constraint [4] and a conventional Viterbi detector.T50 is

set to be 20nm,σJ is set to be 1nm andSNRW is 20dB. For each channel bit spacing

value, we used the block multinomial model [5] to estimate the SER for different ECC

code rate. The maximum code rate that ensures a target SER is chosen to calculateBuser

which isB/R. We can see that the higher the channel density1/B is, the lower the code

rate goes. However, the user density is not a monotonic function of the channel density.

When1/B = 0.064, the maximum user density is achieved.

A very natural system optimization question thus arises. For a given channel

with parameters (T50, σJ , SNRW ), what is the proper channel bit spacing and the ECC

code rate that maximize the user density, or minimize the user bit spacingBuser? The

answer for different channel models has been addressed in several recent studies [1, 2,

3]. Besides this question, the design curves in [1] also definethe acceptable (T50, σJ )

pairs for a specified sector error rate (SER), given the user bit spacingBuserandSNRW .

Here, we will briefly review the methodology to calculate thedesign curves proposed in

[1].

As we have shown in Figure 2.2, for a given set of channel parameters (T50,
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Figure 2.2 An example of the user density optimization.T50=20nm; σJ=1nm;
SNRW =20dB; SER for each point is no greater than10−12. A MMSE unit energy
equalizer design is used. The ECC code is a Reed-Solomon code with information
length 4100 bits and 10-bit symbols.

σJ , SNTW ), there exists an optimalB and a corresponding code rateR that maximize

the user density. Since the channel model we used depends only on the normalized

parametersT50/B andσJ/B when theSNRW is fixed, by changing bothT50/B and

σJ/B while keeping the ratioT50/σJ constant, we can obtain the code rates that meet

the requirement of SER for all the (T50/B, σJ/B) pairs. Among these code rates, the

optimal code rateR is the code rate that maximizes theT50/Buser. It also maximizes

theσJ/Buser since the ration ofT50/σJ is fixed. Thus, a point on the normalized design

curve can be drawn in the (T50/Buser,σJ/Buser)-plane for a givenSNRW . By connecting

those points for the sameSNRW of differentT50/σJ ratio, as shown in Figure 2.3(a),

a normalized design curve is obtained. For any givenBuser requirement, for example,

20nm in Figure 2.3(b), a design curve in (T50, σJ )-plane can be created from the corre-
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sponding normalized design curve of the sameSNRW . The code rates on the curve are

the same as those on the normalized curve of the sameT50/σJ ratio. From this design

curve, the acceptable region of (T50,σJ ) pair that can achieve the given user density and

SER is identified by the region under the curve. For any given pair of (T50, σJ ) and a

fixed SNRW , we are also able to determine the maximum user density we canachieve

and the code rate we should choose according to the normalized design curves.

2.1.3 Design Curves of Different Coding and Equalization Schemes

The design curves are different for systems with different signal processing

methods and ECC coding schemes. As we mentioned before, the system in [1] in-

cludes an MMSE equalizer of unit energy design, the conventional Viterbi detector and

the RS code. In this section, we will show the simulation results for two systems that

differ from the system used in [1].

In the first system, we modified the constraint used in the MMSEequalizer de-

sign [4]. The monic constraint, which sets the first tap of theequalization target to be
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1, was shown to perform better than the unit energy constraint, which sets the energy,

i.e., the squared sum of the target taps, to 1. The design curves for a system using an

MMSE equalizer with the monic constraint are compared with those using the unit en-

ergy constraint in Figure 2.4. The coding scheme is the same RScode as in [1], which

has 410 information symbols per codeword and 10 bits per symbol. We can see that

the design curves for the monic constraint do not curve downward as much as those for

the unit energy constraint. It means that the monic constraint has a better performance

especially when the jitter noise is severe.

The second system used a different coding scheme proposed in[6]. The coding
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scheme is a combination of the tensor product parity (TPP) code with the RS code. The

TPP code will be further discussed in Chapter 6. In this system, a single parity check

bit is calculated for every 10 bits in the sector. These parity check bits form a codeword

of a BCH code. The RS code is still the same RS code with 10 bits per symbol and

410 information symbols per codeword. A brief diagram of theencoding and decoding

process proposed in [6] is shown in Figure 2.5.

Now we need to find the optimal code rate for such a combined coding scheme

that satisfies the SER requirement.

The SER for such a system is

SER= PBCH + (1 − PBCH) × PRS ≈ PBCH + PRS (2.8)

wherePBCH is the BCH code decoding failure rate andPRS is the RS code decoding fail-

ure rate, as marked in Figure 2.5. The approximation is appropriate for a good channel

wherePBCH is very small.

The total set of parity bits includes those from both the TPP code and the RS

code. For a fixed number of parity bits, the most efficient way to distribute them among

the BCH code and the RS code is such thatPBCH ≈ PRS, because if any one of the

two codes fails to decode, the whole decoding process fails.Therefore, if the target

SER is10−12, the requirement onPBCH andPRS is that both need to be no greater than

5×10−13. To estimatePBCH andPRS, we used the block multinomial model for both the

BCH code and the RS code. However, the block multinomial model can only give us

the required error correcting ability of the code. For the RS code, the number of parity

symbols required for correctingt errors is2t. But the relationship between the number

of parity bits and the number of correctable errors for the BCH code is not obvious.

Therefore, for the BCH code, we set up look-up tables for the number of errors and

the corresponding parity bits. The length of the BCH code is determined by the total

number of the parity bits. If the length of BCH code is smaller than 511, we will use

the look-up table for shortened code of length-511 BCH code, and if the length is larger

than 511, we will use the look-up table for shortened code of length-1023 BCH code. In

this way, the number of parity bits required for each code canbe calculated and the total



27

RS
Encoder

Channel

Equalizer

TPP
Encoder

Viterbi
Detector

Compute 
Parity

BCH
Decoder

Parity
Viterbi

RS
Decoder

User data

Failure Rate: P
RS

Failure Rate: P
BCH

Encoder
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code rate can be obtained.

The design curves for the TPP code plus the RS code are shown in Figure 2.6.

We can see that this coding scheme actually does not always perform better than the RS

code alone. The design curves of these two coding schemes cross each other forSNRW

larger than 17dB. The TPP plus RS coding scheme can handle more jitter noise while

the RS code alone is better suited for channels with more ISI.

2.2 Information-Theoretic Limit of the Perpendicular

Recording System

Information theory tells us that there exist coding schemesthat provide an arbi-

trarily small error rate if the rate of the code is smaller than the capacity of the channel.

Intuitively, we expect that if we use the maximum mutual information rate instead of the

rate of a specific code, the acceptable region for the parameters will be extended to the

limit. From the information-theoretical perspective, theprevious optimization questions

for a specific coding scheme becomes for any detection and linear coding scheme:

• GivenT50, σJ , andSNRW , what is the maximum achievable user areal density?
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• For a given areal density, what would be an acceptable set of values forT50, σJ ,

andSNRW ?

There exists substantial literature addressing the computation of information

rates and capacity for magnetic recording channels [7, 8, 9,10]. As an application

of these techniques, Ryan et al. [11] determined the symmetric information rate (SIR)

for a Lorentzian channel corrupted by AWGN, and then used thisresult to maximize the

linear and areal user density. In this chapter, for the perpendicular recording channel we

modeled previously, we will calculate the upper bounds on the SIR and apply it to form

the information-theoretic design curves that, for a given user linear density, provide in-

sight into the tradeoff among the three parametersT50, σJ , andSNRW . The results will

be compared to those of the RS-coded system described in [1], and they show the pos-

sibility of obtaining considerable performance improvement with the help of advanced
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detection and coding techniques.

2.2.1 Monte-Carlo Estimation of Information Rate

Before we go into the details of estimating the information rate, let us review

the channel model based on equation (2.7). Since the sampleddipulse response and

the first order derivative of the transition response vanishwheni is far away from zero,

we assumehi ≈ 0 when i < −A1 and i > A2 whereA1, A2 > 0. Similarly, we

assume thats′i ≈ 0 wheni < −D1 andi > D2, whereD1, D2 > 0. The channel is

therefore modeled as a finite-memory intersymbol interference (ISI) channel with data-

dependent, finite-memory noise and AWGN. We can write the discrete-time channel

output as follows:

zk =

A2
∑

i=−A1

hixk−i +

D2
∑

i=−D1

ak−idk−is
′
i + wk (2.9)

wheredk−i = xk−i−xk−i−1

2
andwk = nW (kB).

The symmetric information rate (SIR) of a channel is the mutual information rate

corresponding to independent, identically distributed, equiprobable binary inputs. The

SIR is generally interpreted as the maximum achievable ratefor which reliable recording

is possible using a binary, linear code. For the channel described above, we use the SIR

to examine the tradeoffs among system design parameters assuming optimal detection

and linear coding. In this section, the method we used to evaluate the SIR is introduced.

In [7] and [8], independently, a simulation-based method toevaluate the infor-

mation rate of a Markovian channel was proposed. This methodwas extended in [9, 10]

to evaluate the information rate and the capacity for the magnetic recording channel, as-

suming linear ISI and data-dependent, colored Gaussian noise. We use a similar method

in this section.

In the following analysis, we denote a column vector(xi, xi+1, · · · , xj)
T by x̄j

i .

The information rate between the channel inputX and the channel outputZ can be

written as

I(X; Z) = lim
n→∞

1

n
I(x̄n

1 ; z̄n
1 ) = h(Z) − h(Z|X) (2.10)
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whereh(Z) = limn→∞(1/n)h(z̄n
1 ) is the entropy rate of the channel output andh(Z|X) =

limn→∞(1/n)h(z̄n
1 |x̄n

1 ) is the entropy rate of the channel output conditioned on the chan-

nel input. We proceed to evaluate these two values separately.

According to [7],−(1/n) log Pr(z̄n
1 ) converges toh(Z) with probability one.

Since we are considering a finite-memory Markovian channel,it can be computed by

the forward recursion of the BCJR algorithm [12]. LetSk be the trellis state at timek.

Then the probability of the channel output sequence is

Pr(z̄n
1 ) =

∑

m∈Ω

Pr(Sn = m, z̄n
1 ) (2.11)

whereΩ is the set of all states.

Define the forward state metric as

αk(m) = Pr(Sk = m, z̄k
1 ). (2.12)

Using Bayes’ rule

αk+1(m) =
∑

m′∈Ω

Pr(Sk = m′, Sk+1 = m, z̄k
1 , zk+1)

=
∑

m′∈Ω

Pr(Sk = m′, z̄k
1 )Pr(zk+1, Sk+1 = m|Sk = m′, z̄k

1 ). (2.13)

If we define the branch metric to be

γk(m
′,m) = Pr(zk, Sk = m|Sk−1 = m′, z̄k−1

1 ) (2.14)

then we have the following recursion:

αk+1(m) =
∑

m′∈Ω

αk(m
′)γk+1(m

′,m). (2.15)

Sinceαk(m) is very close to zero whenk is large, we normalized the sum of

all forward-state metrics at each timek to be 1 in order to avoid losing precision in the

computation. Therefore, denoting the normalized forward state metric at timek and

statem by α̃k(m), and the normalization factor byλk, the new recursion takes the form

α̃k+1(m) = λk+1

∑

m′∈Ω

α̃k(m
′)γk+1(m

′,m). (2.16)
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Setting the same initial values for recursions (2.15) and (2.16), i.e., letα̃0(m) =

α0(m), we can show that

α̃k(m) =

(

k
∏

i=1

λi

)

αk(m). (2.17)

Thus

− 1

n
log Pr(z̄n

1 ) = − 1

n
log

[

∑

m∈Ω

αn(m)

]

= − 1

n
log

[
∑

m∈Ω α̃n(m)
∏n

i=1 λi

]

=
1

n

n
∑

i=1

log(λi). (2.18)

The computation of the branch metric depends on the channel model. According

to the derivations in the Appendix, the branch metric is

γk(m
′,m) = c1 exp

{

c2

[

(z̄k
k−L − ȳk

k−L)T ω̄
]2
}

(2.19)

wherec1 andc2 are edge-dependent constants andω̄ is an edge-dependent column vec-

tor, as defined in (2.35)-(2.33). Here,L is the memory of the jitter noise, defined as

L = D1 + D2.

Using the branch metrics, the initial values for the forwardstate metrics, and the

recursion (2.16), we can compute the probability of a long channel output realization,

and thus get an estimate of the output entropy rate.

Computing the conditional entropy rateh(Z|X) is quite straightforward for this

channel model [9]. The conditional entropy rate is

h(Z|X) = lim
n→∞

1

n
E[h(z̄n

1 |x̄n
1 = x̄∗)], (2.20)

wherex̄∗ is a realization of the input sequencex̄n
1 and the expectation is over all possible

input sequences.

Since we are considering the symmetric information rate, weassume the input

sequences are equiprobable. For a random input sequence realization x̄∗, (1/n) h(z̄n
1

|x̄n
1 = x̄∗) converges toh(Z|X) when n goes to infinity. With the knowledge that
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the channel output sequence obeys a joint Gaussian distribution when conditioned on a

specific channel input sequence, the conditional entropy rate is

h(Z|X) ≈ 1

2
log(2πe|Rx̄∗|) (2.21)

whereRx̄∗ is the covariance matrix of the output sequence, given the input sequencēx∗.

The length of the input sequence should be large for this approximation to be valid.

2.2.2 Reducing computation complexity

The number of states in the trellis grows exponentially withthe sum of the mem-

ory length of the channel ISI and the memory length of the jitter noise. Thus, if these

quantities are large, the complexity in computing the SIR isdominated by the channel

output entropy rate calculation.

One method to reduce the computational complexity is to reduce the number of

states in the trellis by truncating the channel dipulse response,{hi}, and the sampled

first derivative ofs(t), {s′i}. In [9], it is stated that if we use an approximation of the

real channel in the BCJR forward recursion, the computed output entropy rate is an

upper bound on the true value ofh(Z). However, although this method can reduce the

computational complexity significantly, it generates a loose upper bound.

Another method is to try to reduce the number of branch metriccomputations

in the recursion. Recall that, for each state, the new state metric is obtained by cal-

culating the branch metric for each incoming edge, multiplying each of these by the

state metric of the corresponding state from the previous stage, and then summing up

these products. However, the normalized forward-state metric α̃k(m
′), which equals the

conditional probability Pr(Sk = m′|z̄k
1 ), may be very close to zero if the current state

m is unlikely to be the actual state at timek, given the past channel output sequence.

Since the branch metric is a multivariate Gaussian density function, which is bounded,

we can ignore terms in the summation (2.16) corresponding tosufficiently small values

of α̃k(m
′).Therefore, we set a threshold valueε, and if the forward-state metric̃αk(m

′)

is smaller thanε, it is set to zero and the branch metrics on the edges startingfrom state
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m′ are not calculated. This approximation results in forward state metrics, and there-

fore estimated output sequence probabilities, that are smaller than their true values. It

follows that the computed estimate of the output entropy rate is an upper bound for the

true value.

Simulations confirmed that this method significantly reduces the required amount

of computation, while producing a tight upper bound on the output entropy rate. For ex-

ample, for a 512-state trellis and a threshold valueε = 10−3, the computation time

consumed using this approximation is about one-fifth of thatrequired by the exact cal-

culation. We observed that the number of non-zero forward state metrics was reduced

to no more than 100 after a few steps, and sometimes dropped toless than 10. At the

same time, the entropy rate upper bound differed only slightly from the exact value.

Therefore, in the simulations used to generate the design curves, we chose a reasonably

large number of states, namely213, and applied this approximation method to compute

our upper bounds on the SIR.

2.3 Information-Theoretic Limit of the Design Curves

For a specified user density andSNRW , the information-theoretic design curves

computed in this paper essentially determine the region of (T50,σJ ) pairs that are accept-

able in a system utilizing a code that achieves the SIR.

As in [1], we simplify the calculation of the design curves bynormalizing with

respect to the user bit spacing, defined byBuser = B/R, where the code rateR is set

equal to the SIR. The method for deriving the normalized curveis modeled after the

approach used in [1]. Specifically, for a givenSNRW and various values of the ratio

T50/σJ , we first compute the SIR bound as a function ofσJ/B. We then determine the

corresponding values ofT50/Buser = RT50/B, whereR is the calculated SIR bound.

Figures 2.7 and 2.8 illustrate the numerical results for these two steps for the case

whereSNRW =17dB. Note that for each curve in Figure 2.8, there is a point representing

a maximum value ofT50/Buser. The corresponding points in the (T50/Buser,σJ/Buser) -
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plane form the normalized information-theoretic design curve forSNRW =17dB, shown

in Figure 2.9 along with the normalized design curves forSNRW values of 14dB and

20dB.

For purposes of comparison, Figure 2.9 also shows the normalized design curves

derived in [1] for the RS-coded system at the same values ofSNRW . (We remark that, in

order to facilitate the comparison to the curves taken from [1], the information-theoretic

results plotted in Figure 2.9 were computed for different values of the ratioT50/σJ than

those used to generate the curves in Figure 2.7 and Figure 2.8. )

It is clear that there is a significant gap between the curves representing the same

SNRW . Thus, we can infer that better detection methods and codingschemes might

extend the acceptable region of system parameters considerably.

Also, it is interesting to note that the shapes of the two setsof curves are not the
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same. This suggests that the tradeoff between the system parameters might be different

for SIR-achieving codes than for the optimized RS codes examined in [1].

In Figure 2.10, we plot the design curves in the (T50, σJ )-plane forSNRW =17dB

and for user bit spacingBuser=20nm. The region below the lower design curve is the

acceptable region of (T50,σJ ) pairs for the RS-coded system in [1]. The region above the

upper design curve can be interpreted as (T50,σJ ) pairs for which no detection method

and linear coding scheme can guarantee reliable data retrieval. The region between

these two curves gives insight into head and media parameters that are acceptable with

sufficiently powerful detection and coding schemes.

The numerical results represented by the curves in Figure 2.9 are shown in Ta-

ble 2.1 and Table 2.2. Table 2.1 gives theT50/Buser values for points on the normalized

design curves for both the RS-coded system and the information-theoretic limiting case.
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Table 2.1 ComparingT50/Buserof the RS-coded system and SIR.

T50/σJ RS-coded system SIR
14dB 17dB 20dB 14dB 17dB 20dB

8 0.39 0.60 0.73 1.01 1.17 1.31
10 0.44 0.69 0.84 1.08 1.26 1.43
12 0.47 0.75 0.93 1.11 1.33 1.50
15 0.50 0.81 1.02 1.17 1.40 1.61
20 0.53 0.86 1.10 1.24 1.49 1.77

Table 2.2 shows the corresponding optimal RS code rates and the SIR upper bound val-

ues. Note that the SIR-achieving code almost doubles the userdensityT50/Buserrelative

to the optimized RS code, whereas the optimal RS code rates and SIR upper bounds are

relatively close.
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Table 2.2 Comparing code rate of the RS-coded system and SIR.

T50/σJ RS-coded system SIR
14dB 17dB 20dB 14dB 17dB 20dB

8 0.55 0.71 0.77 0.66 0.70 0.71
10 0.60 0.76 0.79 0.63 0.74 0.75
12 0.61 0.78 0.80 0.71 0.69 0.78
15 0.63 0.77 0.82 0.65 0.72 0.72
20 0.63 0.81 0.86 0.54 0.62 0.77
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Appendix: Derivation of the Branch Metric

Referring to the channel model in Section 2.2, we defineI = max{A1, D1} and

T = max{A2, D2 + 1}. We also recall thatL = D1 + D2, so the state of the channel is

given bySk = {xk−T−L+1, · · · , xk+I}. With these definitions, the Markovian channel

satisfies the relations

Pr(Sk|S̄k−1
1 , z̄k−1

1 ) = Pr(Sk|Sk−1) (2.22)

and

Pr(zk|S̄n
1 , z̄k−1

1 ) = Pr(zk|Sk−1, Sk, z̄
k−1
k−L). (2.23)

The branch metric defined in Section 2.2.1 can therefore be written as

γk(m
′,m) = Pr(zk, Sk = m|Sk−1 = m′, z̄k−1

1 )

= Pr(zk|Sk = m,Sk−1 = m′, z̄k−1
1 )Pr(Sk = m|Sk−1 = m′, z̄k−1

1 )

= Pr(zk|Sk = m,Sk−1 = m′, z̄k−1
k−L)Pr(Sk = m|Sk−1 = m′). (2.24)

The transition probability from stateSk−1 to stateSk is either 0, if there is no

edge between them, or 0.5, assuming i.i.d. equiprobable binary channel inputs.

The channel output satisfies

z̄k
k−L = ȳk

k−L + Qāk+D1
k−L−D2

+ w̄k
k−L, (2.25)

whereQ is an (L+1) by (2L+1) matrix defined as

Q =















s′D2
s′D2−1 · · · s′−D1

0 · · · 0

0 s′D2
s′D2−1 · · · s′−D1

0 · · ·
0 0 · · · .. .

...
...

...

0 · · · 0 s′D2
s′D2−1 · · · s′−D1























dk−L−D2

0
. . . 0

dk+D1









,

(2.26)

where,di = xi−xi−1

2
.
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The conditional joint density function Pr(z̄k
k−L|Sk−1, Sk) is multivariate Gaus-

sian with covariance matrix

R(L) = E{(Qāk+D1
k−L−D2

+ w̄k
k−L)(Qāk+D1

k−L−D2
+ w̄k

k−L)T}

= σ2
JQQT + σ2

W I. (2.27)

Similarly, the conditional density of̄zk−1
k−L given Sk−1 and Sk is multivariate

Gaussian with covariance matrixR(L−1) which is obtained fromR(L) by eliminating

the last row and column; that is

R(L) =

(

R(L−1) r̄(L)

(r̄(L))T rLL

)

, (2.28)

Noting that

Pr(zk|Sk = m,Sk−1 = m′, z̄k−1
k−L) =

Pr(z̄k
k−L|Sk = m,Sk−1 = m′)

Pr(z̄k−1
k−L|Sk = m,Sk−1 = m′)

, (2.29)

we can express the branch metric as

γk(m
′,m) = Pr(Sk = m|Sk−1 = m′)

√

|R(L−1)|
2π|R(L)| exp

{

− 1

2
(z̄k

k−L − ȳk
k−L)T (R(L))−1(z̄k

k−L − ȳk
k−L)

+
1

2
(z̄k−1

k−L − ȳk−1
k−L)T (R(L−1))−1(z̄k−1

k−L − ȳk−1
k−L)

}

(2.30)

According to the inversion relation ship ofR(L) andR(L−1) [13],

(R(L))−1 =

(

(R(L−1))−1 0

0 0

)

− 2c2ω̄ω̄T (2.31)

where

c2 = − 1

2 [rLL − (r̄(L))T (R(L−1))−1r̄(L)]
(2.32)

ω̄ =

(

−(R(L−1))−1r̄(L)

1

)

(2.33)
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it is not difficult to derive the branch metric to be

γk(m
′,m) = c1 exp

{

c2

[

(z̄k
k−L − ȳk

k−L)T ω̄
]2
}

(2.34)

where

c1 =







1
2

√

|R(L−1)|

2π|R(L)|
, if there is an edge fromSk−1 to Sk

0, otherwise
. (2.35)

All the three parametersc1, c2 andω̄ are edge-dependent.
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Chapter 3

Nonlinear Transition Shift and Write

Precompensation in Perpendicular

Recording Systems

In a high density perpendicular recording system, nonlinear effects can distort

the read-back signal and degrade the system performance. Nonlinear transition shift

(NLTS) induced by demagnetization from previously writtentransitions is one exam-

ple. As in longitudinal recording, the NLTS in a perpendicular recording channel can be

measured by time or frequency analysis of the read-back signal corresponding to a care-

fully chosen input data pattern [1, 2]. The distortion caused by NLTS can be reduced

by the use of write precompensation, whereby, for specific data patterns, deterministic

offsets are added to timing of written transitions. A simpleand commonly used prec-

ompensation scheme is dibit precompensation, which affects the second transition of a

dibit pair; see, e.g., [3, 4]. In practice, the timing offsets in write precompensation are

optimized empirically in order to minimize the bit-error-rate (BER).

There are very few theoretical results on optimal precompensation of NLTS in

recording channels. This is due, in part, to the complex nature of the nonlinear effects. It

also stems from the fact that, even with a good model for NLTS,it is very difficult to de-

rive an analytical solution for a precompensation scheme that minimizes the BER. Lim

42



43

and Kav̌cić [5] presented a dynamic programming method to optimize write precom-

pensation for a longitudinal recording channel with partial erasure, NLTS and additive

white Gaussian noise (AWGN). Their objective was to minimizethe mean-squared error

(MSE) between the output signal of the noisy, nonlinear channel model and that of the

noiseless, linear channel model, rather than to minimize BER.They allowed the use of a

different precompensation value for each transition. The optimization procedure and the

resulting precompensation scheme would be too complex to implement in a real system,

however.

In this chapter, we will first describe briefly the reason of the existence of NLTS.

The NLTS calculation model proposed by Bertram and Nakamoto [6, 7] will be intro-

duced. A perpendicular recording channel model including jitter noise, AWGN and

NLTS with write precompensation will then be discussed. Various precompensation

schemes will be discussed including dibit, two-level, 3-level and 7-level precompen-

sation scheme. We will numerically find the precompensationlevels that minimize the

BER at the detector output and compare the performance with the case where there is no

NLTS in the channel. This result will also be compared to the optimal precompensation

levels based upon two other criteria: minimizing the MSE as in [5] and minimizing the

variance of the net transition shift.

3.1 Perpendicular Recording Channel with Nonlinear

Transition Shift

3.1.1 Nonlinear Transition Shift Model

The nonlinear transition shift (NLTS) is induced by the demagnetization from

the previously written transitions. When the write head writes a transition, it generates a

magnetic field opposite from the previous bit and magnetizesthe media to the opposite

direction. The transition positions are controlled by the write current. But with the

interference of the magnetic field generated by the previously written transitions, the
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Figure 3.1 The generation of the nonlinear transition shift. B is the channel bit spacing.

writing field will be affected and thus the real transition position will be shifted from the

proper position. This is illustrated in Figure 3.1.

The amount of the transition shift is determined by media andhead parameters,

as well as the pattern and the distances of the previous transitions to the current one.

When the recording density is increased, the previous transitions are closer to the current

one; thus, a larger transition shift is generated. Therefore, with increasing density, the

NLTS becomes one of the nonlinear effects that can not be ignored.

Bertram and Nakamoto [6, 7] proposed a model to calculate the NLTS for a per-

pendicular recording channel. The net demagnetizing field was calculated by superpo-

sition of the field produced by previous transitions. Figure3.2 illustrates the parameters

used:T , the thickness of the medium;S, the medium to soft underlayer spacing;Mr, the

remanent magnetization; andHFG, the head field gradient at the writing position. The

distances of the previous transitions to the current transition are denoted byL1, L2, ...,

whereL1 corresponds to the most recent transition,L2 corresponds to the next most

recent and so on.

Therefore, according to Bertram and Nakamoto, the net demagnetizing field is
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the sum of the fields from the medium and the soft underlayer.

Hnet
demag= Hdemag+ HSUL

demag (3.1)

where

Hdemag= −8Mr

T

∫ T

0

(

arctan
y

L1

− arctan
y

L2

+ arctan
y

L3

− · · ·
)

dy (3.2)

HSUL
demag= −4Mr

T

∫ T

0





















arctan y+2S
L1

− arctan y+2S
L2

− arctan y+2S+T
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arctan y+2S
L3

− arctan y+2S
L4

− arctan y+2S+T
L3

+ arctan y+2S+T
L4

+ · · ·





















dy. (3.3)



46

By using the following definite integral,
∫ t

0

(arctan y)dy = t arctan t − 1

2
ln(1 + t2), (3.4)

we can express the demagnetizing field equations without integrals:

Hdemag= −8Mr

T

∞
∑

i=1

(−1)i−1

[

T arctan
T

Li

− Li

2
ln(1 +

T 2

Li

)

]

(3.5)

HSUL
demag= −4Mr

T

∞
∑

i=1

(−1)i−1

[

(T + 2S) arctan
T + 2S

Li

− 2S arctan
2S

Li

− (2T + 2S) arctan
2T + 2S

Li

+ (T + 2S) arctan
T + 2S

Li

−Li

2
ln(1 +

T 2 + 4ST

L2
i + 4S2

) +
Li

2
ln(1 +

T 2 + 2T (T + 2S)

L2
i + (T + 2S)2

)

]

. (3.6)

The NLTS can then be written as

τ =
Hnet

demag

HFG
. (3.7)

From equations (3.5) and (3.6) we can see that the current NLTS is determined

by all the previous transition positions, for the given headand medium parameters. The

contribution of a previously recorded transition to the shift of a transition currently being

written decreases as the distance between the transitions increases.

In Figure 3.3, we show an example of the contributions of the past transitions.

The contributions are normalized by the contribution of theneighboring transition that

is B away. The x-axis represents the separation between the previous transition and the

current one, as a multiple of the channel bit spacingB. The y-axis represents the abso-

lute value of the normalized contribution of the corresponding transition. The medium

thickness is 10nm. The medium to soft underlayer spacing is 20nm. The channel bit

spacing, denoted byB, is 16nm. The remanent magnetization to head field gradient

ratio Mr/HFG is 1.5077. With these parameters, the NLTS caused by a neighboring

transition in the past, i.e., the dibit induced NLTS is about20% of the channel bit spac-

ing B. We can see that the contribution of the past transitions decreases very fast. For

example, the absolute value of the contribution of a transition 4B away from the current
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Figure 3.3 The normalized absolute contributions of the past transitions.T = 10nm;
S = 20nm;Mr/HFG = 1.5077; B = 16nm.

transition decreases to 10% of that of a neighboring transition that isB away. The shift

induced by a transition10B away is only 1% of that of the neighboring transition, and

the relative shift resulting from a transition20B away drops to 0.1%. Therefore, when

calculating the NLTS, we can ignore the influence of the transitions far away from the

current transition. The equations (3.5) and (3.6) can be truncated. We denote byK the

number of preceding bits used to calculate the NLTS. The largerK is, the more accurate

the calculated NLTS will be. We callK the NLTS calculation window length.

In equations (3.5) and (3.6), the terms for the transitions in the past have different

signs, which means some of the transitions in the past push the current transition away

while others pull it back. We can see that the terms withLi, wherei is odd, have negative

signs in the net demagnetization field while those withLi, wherei is even, have positive

signs. Since the contribution of the previous transitions decreases asi increases, the
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Table 3.1 NLTS for different data patterns. (consider 3 previous NRZI bits)

Bit pattern
τ/B (No NLTS on previ-
ous transitions)

τ/B (NLTS on previous
transitions considered)

· · · 0 0 0 0 (1) 0 0
· · · 0 0 0 1 (1) 20% 20%
· · · 0 0 1 0 (1) 8.1% 8.1%
· · · 0 0 1 1 (1) 11.9% 17.0%
· · · 0 1 0 0 (1) 4.0% 4.0%
· · · 0 1 0 1 (1) 16.0% 17.9%
· · · 0 1 1 0 (1) 4.1% 5.5%
· · · 0 1 1 1 (1) 15.9% 18.8%

demagnetization field will always be non-positive, i.e., either zero or the opposite direc-

tion of the write field. Therefore, the direction of the NLTS in perpendicular recording

systems is always away from the previous transitions, andτ is always non-positive.

In Table 3.1, an example of the NLTS values for different datapatterns are listed.

The ‘1’ in the data pattern represents a transition while ‘0’represents no transition. The

second column shows the NLTS values calculated for the data patterns where all the

previous transitions are assumed to be at their nominal positions. In real systems where

the data are written sequentially, the transition shifts ofthe previous transitions will

affect the distance of these transitions to the current one.The third column takes this

effect into account and gives the NLTS values where the previous transitions are shifted

by NLTS. We only consider 3 bits of transitions before the current one and all the bits

before that are assumed to be zero (no transitions). Since the most recent neighboring

bit plays the most significant role in NLTS, we can see that if this bit is shifted by NLTS,

the NLTS for current transition will be shifted more, as can be seen in the case of data

pattern “011”.

Figure 3.4 shows the change in the distribution of NLTS values for the two sce-

narios. Both curves represent a histogram of the NLTS values.The histogram is ob-

tained by counting the number of transitions in a long randomsequence that are shifted

by a value within each bin of length 0.001. The dashed curve isthe histogram of NLTS

values which are calculated under the assumption that the previous transitions are not
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shifted. The solid curve considers the NLTS of the previous transitions. The absolute

shifts larger than 0.1 correspond to the data patterns that have a neighboring transition.

We can see that this part of the histogram changes most.

3.1.2 Write Precompensation

NLTS can be offset by writing the transition a little earlierso that the resulting

transition position is close to its nominal position. We call this write precompensation.

Let us denote∆i the precompensation for theith transition in a data sequence. The

current net shift of the transition, denote byδi, is the sum of the precompensation and

the NLTS.

δi = ∆i + τi. (3.8)
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Here,τi is a function of the distances of the previous transitions tothe current transition

position. Note that the current transition position is shifted by the precompensation

value∆i when writing. The previous transitions are also shifted by the combination of

their precompensation and the NLTS.

In theory, we can calculate the proper precompensation value∆i that reduces the

net transition shiftδi to zero. But this is not practical in real systems for three reasons.

First, the precompensation precision cannot be arbitrarily small. Second, the precom-

pensation values that make the net transition shifts zeros might require the knowledge

of quite a few bits in the past, which could cost a lot of memory. And finally, these

precompensation values are not easy to obtain for real systems.

3.1.3 Channel Output and Approximations

In this chapter, we will consider a channel model with NLTS, as well as jitter

noise and electronic noise. The transition response is modeled as an error function, the

same as in Chapter 2.

Let the input transitions bedi, di ∈ {−1, 0, +1}. The channel outputz(t) can

be written as

z(t) =
∑

i

dis(t + δi + ai − iB) + nW (t). (3.9)

Here,δi is the net shift of the transitiondi with respect to its nominal location in the

recording medium,ai is the random position jitter for transitiondi, B is the channel bit

spacing (as well as the sampling period), andnW (t) is the electronics noise. Fordi = 0,

we setai = 0, whereas fordi 6= 0, ai is a zero mean Gaussian random variable with

varianceσ2
J . The jitter values for recorded transitions are mutually independent. The

electronics noisenW (t) is modeled as a zero-mean, AWGN process. The variance of

the sampled AWGNnW (kB) is denoted byσ2
W . We define the signal-to-AWGN ratio

to beSNRW = 10 log10(V
2
max/σ

2
W ), which is the same as in Chapter 2.

If the net transition shift is small, we can approximate the channel output again
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using a truncation of the Taylor series. Expanding the transition shift att − iB,

z(t) =
∑

i

di[s(t − iB) + (δi + ai)s
′(t − iB) +

(δi + ai)
2

2
s′′(t − iB) + · · · ] + nW (t).

(3.10)

We call the result anorder-1 channel approximation when we consider only the first

derivative of the transition response:

zo1(t) ≈
∑

i

dis(t − iB) +
∑

i

di(δi + ai)s
′(t − iB) + nW (t) (3.11)

and anorder-2 channel approximation when we take the first and second derivatives into

account:

zo2(t) ≈
∑

i

dis(t − iB) +
∑

i

di(δi + ai)s
′(t − iB)

+
∑

i

di
(δi + ai)

2

2
s′′(t − iB) + nW (t). (3.12)

As we did in Chapter 2, the data sequences can be represented byNRZ dataxi as well

as in terms of the transitions. The order-1 and order-2 channel approximations can be

written as

zo1(t) ≈
∑

i

xih(t − iB) +
∑

i

di(δi + ai)s
′(t − iB) + nW (t) (3.13)

zo2(t) ≈
∑

i

xih(t − iB) +
∑

i

di(δi + ai)s
′(t − iB)

+
∑

i

di
(δi + ai)

2

2
s′′(t − iB) + nW (t) (3.14)

wheredi = xi−xi−1

2
andh(t) is the dipulse response.

The accuracy of these approximations will be discussed later.

3.1.4 System Diagram

In this chapter, we consider a simple system shown in Figure 3.5. The channel

output is first sampled and then pass through a digital equalizer. The detector is as-

sumed to be a conventional Viterbi detector matched to the equalizer target. We will
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Figure 3.5 The system diagram for NLTS and precompensation study.

measure the BER at the detector output in the simulations. Theperformance of various

precompensation schemes will also be compared and analyzed.

3.2 Precompensation Schemes

As we have mentioned, for a given transition sequence{di} one could in prin-

ciple determine a corresponding set of precompensation values{∆i} such that the net

shift of all transitions would be zero. However, in practice, recording systems usually

use only a small number of precompensation values corresponding to selected patterns

of recently recorded transitions, which play the most important role in determining the

NLTS value of the transition being written. Therefore, these precompensation schemes

can not completely eliminate the effects of NLTS. However, as our later simulations will

show, in some cases, the performance of a simple precompensation scheme can be even

better than the performance of a channel with no NLTS.

3.2.1 Dibit Precompensation

The simplest precompensation scheme, usually called dibitprecompensation,

applies a shift only to those transitions with a neighboringtransition in the preceding

bit position. As we have mentioned before, the neighboring transition is the most sig-

nificant contributor to the NLTS. Using the NRZI description,where ‘0’ represents no
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transition and ‘1’ represents a transition, we can specify the precompensation rule for

theith transitiondi as:

∆i =

{

∆ if di−1 6= 0 anddi 6= 0

0 otherwise
(3.15)

3.2.2 Two-level Precompensation

The NLTS values for different patterns of the 3 preceding bits are shown in Table

3.1. If we only look at the 2 preceding bits, we will find that the two cases where the

transitions are shifted the most is when the preceding 2 bitsare ‘01’ and ‘11’. Therefore,

we now propose a two-level precompensation scheme that applies precompensation to

these two cases. Specifically, we define the precompensationvalue as

∆i =















∆H if di 6= 0, di−1 6= 0 anddi−2 = 0

∆L if di 6= 0, di−1 6= 0 anddi−2 6= 0

0 otherwise.

(3.16)

3.2.3 Multilevel Precompensation

More levels of precompensation can be used, according to different previous data

patterns. However, the number of levels of the precompensation increases exponentially

to the number of bits involved in the pattern. If the number ofbits involved isk, and

we assign one level to each pattern except the all-zero pattern, the number of levels of

precompensation will be2k − 1.

For example, the 3-level precompensation scheme can be expressed as the fol-

lows:

∆i =



























∆H if di 6= 0, di−1 6= 0 anddi−2 = 0

∆M if di 6= 0, di−1 6= 0 anddi−2 6= 0

∆L if di 6= 0, di−1 = 0 anddi−2 6= 0

0 otherwise.

(3.17)

The precompensation levels for a 7-level (3-bits look-back) scheme can be ex-

pressed as in Table 3.2
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Table 3.2 The precompensation levels corresponding to the preceding 3-bit patterns.

NRZI pattern 000(1) 001(1) 010(1) 011(1) 100(1) 101(1) 110(1) 111(1)
Precomp∆i 0 ∆(1) ∆(2) ∆(3) ∆(4) ∆(5) ∆(6) ∆(7)

The more levels we have, the more complex it is to find the best precompensa-

tion levels through Monte-Carlo simulation searches. For the 3-level and 7-level prec-

ompensation scheme, instead of using brute-force search for the optimal values in the

Monte-Carlo BER simulation, we used the performance analysistechnique in Chapter 4

to help reduce the computational complexity. Thus, we can compare the performances

of different precompensation schemes.

3.3 Simulation Results

The channel simulations use pseudorandom input data sequences of length 5120

bits. Using the NLTS model, the net transition shifts are calculated sequentially for each

sequence. The noisy channel output signal is sampled at multiples of the bit spacingB.

We use a minimum mean-squared error (MMSE) equalizer designwith monic constraint

[8]. The equalizer is a 21-tap FIR filter and the equalizationtarget has 3 taps. The

equalizer output is passed into a Viterbi detector matched to the target. The BER is

measured at the Viterbi detector output.

For the NLTS calculation, we set the same parameters as in Table 3.1. The

channel bit spacingB is 16nm in most of the simulations except in Figure 3.15, where

B is 14nm.

3.3.1 Dibit Precompensation

Figure 3.6 shows the simulated system BER as a function of the normalized dibit

precompensation level∆/B for window lengthsK = 5, 10, and 20. The simulation

uses the order-2 channel approximation. The channel density T50/B is 1, the jitter noise

σJ/B is set to0.08, and the signal-to-AWGN ratioSNRW is 29dB. As can be seen, the
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Figure 3.6 Influence on BER of NLTS window length.

curves corresponding to the different values ofM are almost identical. Therefore, in all

of the remaining simulations, we use the NLTS window lengthK = 10. Note that the

precompensation level that minimizes BER is∆ = 0.08B.

In Figure 3.7, we compare the BER results obtained using the exact channel

model with those obtained with the order-1 and order-2 channel approximations. We

see that the BER produced by the order-1 channel approximation is optimistic relative

to that of the exact channel over the entire range of precompensation values, while, in

contrast, the BER corresponding to the order-2 approximation is pessimistic over the

same range. Since the order-2 estimate is fairly close to theexact channel BER, and is

considerably less complex to compute, we will use the order-2 channel approximation

in subsequent simulations in this section.

For the dibit precompensation, a question we would like to know the answer
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Figure 3.7 Comparison of simulated BER for exact channel, order-1 channel approxi-
mation, and order-2 channel approximation.

to is how the best precompensation level changes when some ofthe channel parameters

change. Therefore, in Figure 3.8, Figure 3.9 and Figure 3.10we fix the NLTS calculation

parameters and change only the jitter noise, AWGN and ISI separately.

In Figure 3.8 we changed the jitter noise levelσJ . All the other parameters

remain the same. We can see only a very slight change in the best precompensation

level whenσJ/B changes from 0.08 to 0.14. The curves become shallower when the

jitter noise increases. The performance improvement brought by write precompensation

decreases because the NLTS is relatively small when jitter noise variance increases.

The BER performance of dibit precompensation for different AWGN levels is

shown in Figure 3.9. The best precompensation levels for different SNRW remain

almost the same as the case for the jitter noise. However, in Figure 3.10, we find that the

best precompensation level needs to be larger whenT50 increases. WhenT50 = 1.5B,



57

0 0.05 0.1 0.15 0.2
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

Precompensation ∆/B

B
E

R

T
50

/B=1;SNR
W

=29dB;B=16nm;

σ
J
=0.14B

σ
J
=0.12B

σ
J
=0.10B

σ
J
=0.08B
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the best precompensation level is0.12B, compared to0.08B whenT50 = 1B.

3.3.2 Two-level Precompensation

The BER simulation results for the two-level precompensation scheme are shown

in Figure 3.11. The simulations used the same system parameters as in previous simula-

tions, with NLTS window length 10 and an order-2 channel approximations. The surface

plot shows the BER as a function of the normalized precompensation values∆H/B and

∆L/B. The optimal two-level precompensation values are seen to be∆∗
H = 0.09B and

∆∗
L = 0.05B.

Figure 3.12 shows a comparison between the performance of the two-level pre-

compensation scheme and the dibit precompensation. The curve for the dibit precom-

pensation scheme is the same as the order-2 channel approximation curve shown in
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Figure 3.7. For the two-level precompensation scheme, we fixed∆L to be the optimum

value0.05B and plot the BER versus∆H/B. The point on this curve that achieves

the minimum BER is thus optimal for the scheme. The horizontaldash-dot line repre-

sents the BER for a channel with no NLTS and no precompensationbut with the same

amount of jitter and electronics noise. We see that the dibitprecompensation scheme

reduces the BER by approximately one order of magnitude compared to a system with-

out any precompensation. There is a small gap between the lowest BER achieved by the

dibit precompensation scheme and the BER for the no-NLTS case. However, the sys-

tem with optimized two-level precompensation actually performs better than the system

with no NLTS. Specifically, the BERs for the optimal dibit precompensation scheme,

the no-NLTS case, and the optimal two-level precompensation scheme are3.0 × 10−6,

1.7 × 10−6, and1.5 × 10−6, respectively.
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In order to verify and better understand these comparative results, particularly

the overall superiority of the optimized two-level precompensation scheme, we ran

longer channel BER simulations. Indeed, the longer simulations pointed to the same

conclusion. In Table 3.3, we list the frequency of occurrence of the dominant error

events for the system without NLTS and for the system with NLTS and optimal two-

level precompensation. In the simulations, a total of100, 000 sectors of 5120 bits each

were used as channel input. The same pseudorandom input sequence was used in both

cases. We also used the same sequence of randomly generated jitter and electronics

noise samples. We see from the table that the dominant error event is the single er-

ror event for both channels, but the system using two-level precompensation scheme

experienced about 9% fewer of these.

However, this relative performance may not be observed if the channel param-
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Table 3.3 Error-event counts for system with no NLTS and withoptimal two-level
precompensation

Error events No NLTS Optimal two-level precomp
1 414 368
-1 410 385

-1 1 12 4
1 -1 4 6

1 -1 1 4 1
-1 1 -1 4 2

Total erroneous bits 888 790
BER 1.73 × 10−6 1.54 × 10−6

eters change. Figure 3.13 shows a comparison of BER performance when the precom-

pensation schemes are used on a channel with more severe jitter noise, specifically with

σJ = 0.12B. All the other system parameters remain unchanged. We see that while the



61

0 0.05 0.1 0.15 0.2
10

−6

10
−5

10
−4

10
−3

∆ / B (∆
H

 / B for two level precomp)

B
E

R

T
50

/B=1;σ
J
/B=0.08;SNR

W
=29dB

 

 
Dibit precompensation
Two level precompensation (∆

L
=0.05B)

No NLTS

Figure 3.12 Comparison of simulated BER for dibit precompensation and two-level pre-
compensation withσJ = 0.08B.

optimized two-level precompensation scheme continues to have an advantage over the

dibit scheme, it does not outperform the system with no NLTS,although the results are

very close.

3.3.3 Higher Density and Multilevel Precompensation

According to the previous simulations, the optimal two-level precompensation

can perform better than the no NLTS situation. How will otherprecompensation schemes

with more levels perform? In this section, we will show some simulation results that ad-

dresses this question.

As mentioned earlier, the search complexity for the best precompensation values

grows exponentially with the number of precompensation levels. It is not practical to

use the brute force search of Monte-Carlo BER simulations to obtain the optimal prec-
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Figure 3.13 Comparison of simulated BER for dibit precompensation and two-level pre-
compensation withσJ = 0.12B.

ompensation values for 3-level and 7-level precompensation schemes. Instead, we will

use the performance analysis in Chapter 4 to help reduce the computational time.

For example, for the 3-level precompensation scheme, we used the BER analysis

in Chapter 4 to estimate the optimal precompensation values.For a system with the same

parameters as in Figure 3.12, the resulted precompensationvalues are(∆H , ∆M , ∆L) =

(0.114B, 0.056B, 0.093B). To verify the result using the Monte-Carlo simulation, we

chose(0.12B, 0.06B, 0.1B) as the center point, and simulated on points ((0.12±0.02)B,

(0.06 ± 0.02)B, (0.1 ± 0.02)B). The step size is chosen to be consistent with the

previous simulations on dibit precompensation. The Monte-Carlo simulation shows that

the optimal point is(0.12B, 0.06B, 0.1B), the center point. The curve where∆H is

fixed to0.12B and∆M is fixed to0.1B is shown in Figure 3.14.

For the 7-level precompensation scheme, we didn’t verify the estimation result
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Figure 3.14 Comparison of the Dibit, Two-level and multilevel precompensation
schemes forB=16nm. All the parameters are the same as in Figure 3.12.

with the Monte-Carlo simulation, since even the verificationsimilar to the 3-level pre-

compensation scheme is too complex. We used directly the estimated values in the

BER Monte-Carlo simulation and draw the BER as a line in Figure 3.14. According

to the results of other precompensation schemes, the estimated values are very close to

the Monte-Carlo simulation result. Therefore, we think the performance given in Fig-

ure 3.14 for the 7-level precompensation scheme is very close to the best performance

the 7-level scheme can achieve.

In Figure 3.15, we ran simulations on a system with higher channel density.

The channel bit spacingB is set to 14nm and all the other parameters remain the same

as in Figure 3.14. With the increase of the channel density, the NLTS of the second

transition in an isolated dibit pattern is increased from 20% to approximately 26%. The

normalized channel densityT50/B is about1.14 andσJ/B is about0.09. TheSNRW is
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assumed to be29dB. As in Figure 3.14, the performance for dibit, 2-level, 3-level and

the 7-level precompensation schemes are shown. The curve for 3-level precompensation

and the line for 7-level precompensation are obtained by thesame process as described

previously. Generally, because of the increased NLTS, the precompensation values for

all the levels are larger than those in Figure 3.14. We can also see that though the 2-level

precompensation scheme didn’t give a better performance than that of a system without

NLTS, the 3-level and 7-level precompensation schemes all outperform the no-NLTS

case. On the other hand, the performances for the 3-level precompensation and the 7-

level precompensation are very close. The main reason is that the increased ISI and

the normalized jitter noise variance in the higer density channel can not be reduced by

more levels of precompensation. Therefore, the improvement of BER resulting from an

increased number of precompensation levels is limited.

3.4 Other Criteria

In the comparisons above, we used Monte Carlo simulation to find the prec-

ompensation values for dibit and two-level precompensation schemes that minimize the

BER after the detector. This optimization approach is very time-consuming, however, so

it is desirable to consider criteria other than minimum BER inthe selection of precom-

pensation parameters. These criteria might not guarantee aminimal BER after detection,

but they might produce a suboptimal solution for the precompensation values that nev-

ertheless gives a relatively low BER. We now consider two such alternative optimization

criteria.

One of these criteria is commonly known as the mean-squared error (MSE) crite-

rion [5]. The objective is to minimize the MSE between the output signal of the channel

with no noise or NLTS and the output signal of the channel impaired by both. The

former is given by

y(t) =
∑

i

dis(t − iB) (3.18)

and the latter is given byz(t) as defined in (3.9), or the approximations in (3.11) and
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(3.12). The squared error for each sample is defined by

ǫ2
k = [z(kB) − y(kB)]2, (3.19)

and the MSE is thenE{ǫ2
k}, where the expectation is taken over all possible samples. It

can be approximated by

E{ǫ2
k} ≈ 1

N

N
∑

k=1

ǫ2
k. (3.20)

With this formulation of the MSE, we can estimate it closely by simulation over a long

enough random input sequence.

Another possible optimization criterion is the minimization of the variance of the

net transition shifts,δi. Again, we can accurately estimate this by simulating the effects
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Table 3.4 Optimal precompensation values for different criteria
T50/B=1;σJ/B=0.08;SNRW =29dB

BER Shift Variance MSE
Dibit (∆/B) 0.08 0.10 0.12
Two-level
(∆H/B, ∆L/B)

(0.09, 0.05) (0.12, 0.08) (0.14, 0.12)

of NLTS and precompensation over a long random input sequence and computing the

sample variance of the observed net transition shifts.

We numerically determined the optimal precompensation values according to

these two criteria for the same channel as used to generate the results in Figure 3.12.

For the dibit precompensation scheme, we found that the value which minimizes the

MSE is0.12B, while the value producing the minimum shift-variance is0.10B. Note

that these precompensation values differ from that which wepreviously found to mini-

mize the BER, namely0.08B. In this example, we see that the minimum shift-variance

criterion gives an optimal precompensation value that is closer to the value that mini-

mizes the BER. Referring to Figure 3.12, we see that, indeed, theBER obtained using

this precompensation value is lower than that obtained using the minimum MSE value.

In Table 3.4, we give the corresponding results for the two-level precompensa-

tion scheme. Referring to Figure 3.11, we again find that the precompensation levels

that minimize the net shift variance give a lower BER than the levels that minimize the

MSE.

It is important to note that the results of such a comparison might not hold for

different channel parameters. For example, when we use dibit precompensation, the

precompensation value that achieves the minimum BER will be larger whenT50 is larger,

according to our simulations. On the other hand, the variance of net transition shifts

does not depend on the value ofT50. So the precompensation value that minimizes this

variance will remain at0.10B. For the minimum MSE criterion, we ran simulations for

T50 equal to1.2B, 1.3B, and1.5B. The result is shown in Figure 3.16. In the figure,

we normalized the MSE by their minimum values for each case, so that it is easy to

compare the optimal values for all the cases. We found that, for all three cases, the
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optimal precompensation level was0.12B. Now, for the channel withT50 = 1.5B, we

found through Monte Carlo simulation that the precompensation value that minimizes

the BER is0.12B. Hence, in this situation, the minimum MSE criterion is superior to

the minimum shift-variance criterion.
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Chapter 4

Analysis of the Bit-Error-Rate for

Perpendicular Recording Channels

with NLTS

In Chapter 3, we showed the performance of different precompensation schemes

for perpendicular recording systems with NLTS. We used the Monte-Carlo method to

simulate the bit error rate for each precompensation scheme. The best precompensation

values were found by brute force search (for dibit and two-level precompensation) and

the performances were compared.

In this chapter, we will develop a method to analyze the bit error rate for the

system in Chapter 3. An estimate of the lower bound will be derived and compared to

the Monte-Carlo simulation result. The optimal precompensation levels obtained us-

ing the lower bound are very close to those found with Monte-Carlo simulation. Since

the Monte-Carlo method is time-consuming, it can not be easily used to optimize the

precompensation values in a multilevel precompensation scheme. Using the analyti-

cal method, the computation time can be greatly reduced and the performance can be

determined, as already shown in Chapter 3.

The Viterbi detector was briefly introduced in Chapter 1. The error probability

analysis for the Viterbi detector involves the analysis of the error events. In this chapter,

69
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Figure 4.1 Illustration of error eventǫ = (ξ1 → ξ2).

we will first analyze the error events in our system. The unionbound and a lower

bound for the bit error rate will be derived. An estimate of the lower bound will then be

proposed and compared with the result of Monte-Carlo simulation.

4.1 Pairwise Error Probability

Suppose we transmit data sequencex̄(1) and after detection, we get̄x(2) as the

detected sequence. Letξ1 andξ2 be the paths in the trellis of Viterbi detector that corre-

spond tōx(1) andx̄(2), as shown in Figure 4.1. Therefore, pathξ1 is the correct path and

pathξ2 is the incorrect path. Let’s assume thatξ1 andξ2 diverge at timek and remerge

at timek + M . Between timek andk + M , they do not cross at any state.

We usually call the probability thatξ2 is chosen as the detected path instead

of ξ1, given thatx̄1 was transmitted, thepairwise error probability of the error event

ǫ = (ξ1 → ξ2). We should note that in our case, the pairwise error probability for event

(ξ1 → ξ2) is different from that for event(ξ2 → ξ1) because of the data dependent noise

and NLTS.
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An event error happens when the accumulated metric on the incorrect path is

smaller than that on the correct path. In a conventional Viterbi detector, the Euclidean

distance is used as the branch metric. Therefore, the pairwise error probability can be

expressed as follows:

Pr(ξ1 → ξ2|x̄(1)) = Pr(
k+M−1
∑

i=k

(ri − y
(1)
i )2 >

k+M−1
∑

i=k

(ri − y
(2)
i )2|x̄(1)), (4.1)

whereri is the equalized channel output sample whenx̄(1) is transmitted, andy(1)
i and

y
(2)
i are branch output labels at timei in the trellis corresponding to input data sequence

x̄(1) andx̄(2), respectively. Assume that the equalization target of the system isg(D) =

g0+g1D+ · · ·+gJDJ , whereD is a unit delay operator. We can write the branch output

labels as follows:

y
(1)
i =

J
∑

l=0

glx
(1)
i−l (4.2)

y
(2)
i =

J
∑

l=0

glx
(2)
i−l . (4.3)

Let the noise at the input of the detector beni = ri−y
(1)
i . After some derivations,

from equation (4.1) we get

Pr(ξ1 → ξ2|x̄(1)) = Pr(
k+M−1
∑

i=k

2ni(y
(1)
i − y

(2)
i ) < −

k+M−1
∑

i=k

(y
(1)
i − y

(2)
i )2

∣

∣x̄(1)) (4.4)

In the above equation, the branch output labelsy
(1)
i andy

(2)
i are deterministic

values, given the transmitted sequence and the specific error event. Therefore, the left

side of the inequality in the probability calculation is a linear combination of the random

noiseni, i = k, · · · , k + M − 1, while the right side is a deterministic value. If we can

derive the distribution of the linear combination of the noise, the probability can be

calculated directly. We will discuss how to calculate this probability for order-1 and

order-2 approximations of the channel with NLTS in the remainder of this section .
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4.1.1 Order-1 channel Approximation

In the order-1 channel approximation, the noise at timei can be written as

ni =
∑

j

x
(1)
i−jh̃j −

∑

j

x
(1)
i−jgj +

∑

j

d
(1)
i−j(δi−j + ai−j)s̃′j + wi, (4.5)

whereh̃j and s̃′j denote the convolution of the FIR equalizer taps with the samples of

the channel dibit response and the first derivative of the transition response, respectively.

The equalized sample of the AWGN at timek is denotedwk.

In perpendicular recording systems,h̃j ands̃′j will vanish whenj goes to+∞
and−∞. Let’s assume that̃hj = 0 ands̃′j = 0 wheni < −A, or i > B. We can rewrite

equation (4.5) as follows:

ni =
B
∑

j=−A

x
(1)
i−jh̃j −

J
∑

j=0

x
(1)
i−jgj +

B
∑

j=−A

d
(1)
i−j(δi−j + ai−j)s̃′j + wi (4.6)

In the above equation,{δi} are the NLTS values when̄x(1) is recorded; they are deter-

ministic givenx̄(1). The jitter noise values{ai} are i. i. d. random Gaussian distribu-

tion variables, and{wi} are colored Gaussian distribution random variables. Therefore

ni, i = k, · · · , k + M − 1 are non-zero mean, jointly distributed Gaussian random

variables when conditioned on̄x(1).

Thus equation (4.4) can be calculated by the Q-function:

Pr(ξ1 → ξ2|x̄(1)) = Q(
λ̄T λ̄ + 2λ̄T µ̄

2
√

λ̄TΣλ̄
) (4.7)

where column vector̄λ is (y
(1)
k − y

(2)
k , y

(1)
k+1 − y

(2)
k+1, . . . , y

(1)
k+M−1 − y

(2)
k+M−1)

T , µ̄ is the

mean of random variable vectorn̄ = (nk, nk+1, . . . , nk+M−1)
T given x̄(1), andΣ is the

covariance matrix of̄n givenx̄(1). In order to distinguish these from the noise mean and

variance of the order-2 channel approximation, we add the subscript1 to them in the

following derivations. The mean and the variance can be written as:

µ̄1 = H · x̄(1) − G · x̄(1) + S′ · D(1) · δ̄(1) (4.8)

Σ1 = σ2
JS

′ · (D(1))2 · S′T + σ2
WFFT (4.9)
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Here,H, G, S′ andF are all Toeplitz matrices of similar form. For example,H is a

M × (M + A + B) matrix with each row equal to a shifted version of the sequence h̃i,

in reverse order:

H =















h̃B h̃B−1 · · · h̃−A 0 · · · 0

0 h̃B h̃B−1 · · · h̃−A 0 · · ·
...

... · · · · · · ...

0 · · · 0 h̃B h̃B−1 · · · h̃−A















(4.10)

Similarly, the rows ofG, S′ andF correspond to the sequences of{gi}, {s̃′i} and the

equalizer coefficients. Since sequencesh̃i andgi probably are of different lengths, the

data vectors multiplied byH andG are of different lengths. For example, the data bits

involved in multiplication withH are from timek−B to k +M −1+A, while the data

bits involved in multiplication withG are from timek − J to k + M − 1. To simplify

the notation, we omit the index of the data bits in equation (4.8) and (4.9).

D(1) is a matrix whose diagonal elements are the transition values di and zeros

elsewhere. We use the superscript(1) to emphasize that here the transitions are for the

recorded sequencēx(1). Similarly, the size ofD(1) and the length of̄δ(1) are determined

by the range of̃s′.

The derivation of the mean and the variance is very direct when we write out the

matrix representation of the noise vectorn̄. As we can see, the mean of the noise vector

is affected by NLTS while the covariance matrix is not affected. The distance between

two paths are changed by NLTS.

4.1.2 Order-2 Channel Approximation

In the order-2 channel approximation, the noise at timei can be written as

ni =
∑

j

x
(1)
i−jh̃j −

∑

j

x
(1)
i−jgj +

∑

j

d
(1)
i−j(δi−j + ai−j)s̃′j

+
∑

j

d
(1)
i−j

(δi−j + ai−j)
2

2
s̃′′j + wi. (4.11)
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Because of the second derivative term in the above equation, the noise is no longer

Gaussian in nature. The joint distribution of the noise is complicated and the exact

pairwise error probability cannot be calculated easily.

Therefore, we approximated the pairwise error probabilityby still using the Q-

function in equation 4.7. Of course, the mean and the covariance matrix of the noise are

different from those for the order-1 channel approximation. According to the derivations

in the Appendix, the mean and the variance for the order-2 channel approximation are

represented as follows:

µ̄2 = H · x̄(1) − G · x̄(1) + S′D(1)δ̄(1) +
σ2

J

2
S′′D(1) + S′′D(1)Q(1)δ̄/2 (4.12)

Σ2 = σ2
J(S′ + S′′Q(1))(D(1))2(S′ + S′′Q(1))T + σ4

JS
′′(D(1))2S′′T + σ2

WFFT (4.13)

Here,H, G, S′, D(1) andF are the same as in equations (4.8) and (4.9). The matrix

S′′ is the Toeplitz matrix in which each row is a shifted version of the sequencẽs′′i, in

reverse order. The size ofS′′ can be the same asH andS′, since we can always findA

andB such that̃hj = 0, s̃′j = 0 and s̃′′j = 0 wheni < −A, or i > B, as assumed in

equation (4.6).

Matrix Q(1) in equations (4.12) and (4.13) is the matrix whose diagonal elements

are the net transition shiftsδi for recorded sequencēx(1), and with zero entries elsewhere.

Comparing the noise mean and covariance matrix in order-1 andorder-2 channel

approximations, we see that the NLTS affects only the noise mean in the order-1 channel

approximation, while in the order-2 channel approximation, NLTS affects both the noise

mean and the covariance matrix. Similarly, the jitter noisevariance appears only in the

covariance matrix calculation in the order-1 channel approximation while in the order-2

channel approximation, it appears both in the mean and the covariance matrix calcula-

tion. The AWGN noise variance only appears in the covariance matrix calculation for

both cases.
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4.2 Upper and Lower Bounds on Bit-Error-Rate

For the Viterbi detector, the union bound on the probabilitythat an error event

occurs at timek can be expressed by the summation of the probabilities of allthe pos-

sible error events that start at timek and end at timek + M − 1 for any given recorded

data sequencēx(1):

PE ≤
∑

x̄(1)

Pr(x̄(1))
∑

ǫ

Pr(ǫ|x̄(1)) (4.14)

If we group the error events according to the error event lengths, the union bound of the

sequence error probability can also be written as

PE <
∞
∑

M=Mmin

∑

x̄(1)

Pr(x̄(1))
∑

x̄(2)such that
ǫM=(ξ1→ξ2)∈EM

Pr(ǫM |x̄(1)) (4.15)

whereǫM denotes a length-M error event,Mmin is the minimum length of the error

event, andEM is the set of all error events of lengthM .

The union bound on the bit error probability can be derived from PE. Denote

by Nb(ǫM) the number of erroneous bits corresponding to the error event ǫM , i.e., the

number of bits by which sequencēx(1) and x̄(2) differ. The bit error probability is the

probability that the bit belongs the set of incorrect bits ofan error event. The union

bound for the bit error probability is thus given by

Pb <

∞
∑

M=Mmin

∑

x̄(1)

Pr(x̄(1))
∑

x̄(2)such that
ǫM=(ξ1→ξ2)∈EM

Pr(ǫM |x̄(1))Nb(ǫM) (4.16)

The union bounds in the above equations are usually very loose. A lower bound

on bit error rate can be obtained if the error events we pick are all disjoint. According to

the simulation results in Table 3.3, the bit error rate is dominated by the single-bit error,

which results from the minimum-length error events. Therefore, we will pick these error

events and derive a lower bound.

The minimum-length error events are error events where the two pathsξ1 andξ2

diverge at timek and remerge in the shortest time. This happens whenx̄(2) differs from
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x̄(1) only in the bit at timek. The minimum length of the error events is thusMmin =

J +1. For a given recorded sequencex̄(1), there is only one such error event because the

input data is binary and there is only one sequencex̄(2) that can differ from̄x(1) at time

k. Therefore, all the minimum-length error events are disjoint since they correspond to

different recorded sequences. For each minimum-length error event,Nb(ǫMmin
) = 1.

The lower bound on the bit error probability considering only the minimum

length error events can thus be written as follows:

Pb >
∑

x̄(1)

Pr(x̄(1))Pr(minimum-length error eventξ1 → ξ2|x̄(1)) (4.17)

Suppose the recorded data sequences are equiprobable. Thenequation (4.17)

can be written as

Pb >
1

2LE

∑

x̄(1)

Pr(minimum-length error eventξ1 → ξ2|x̄(1)) (4.18)

whereLE is the effective calculation length of the recorded sequence. The value of

LE is determined by the ISI channel memory, the memory of the noise correlation, the

data-dependence noise memory, and the memory of the NLTS.

If the noiseni is AWGN, LE is just the length of the error events, which is

determined by the ISI channel memory. In our case, the noise is data-dependent and has

memory. According to equations (4.8), (4.9), (4.12) and (4.13), the data bits involved in

calculating the pairwise error probability are determinedby the span of{h̃i}, {s̃′i}, {s̃′′}
and{gi}. However, there is another factor that will implicitly affect the effective length

LE, namely, the net transition shifts. Theoretically, the data bits are written sequentially

and the net transition shift of the current transition is affected by previous transition

positions, which in turn have been affected by their preceding transitions. Thus, the

memory of NLTS can be tracked back to the very beginning of a track. In this case,LE

needs to be a very large number, which is not practical for computation. Therefore, we

will truncate the data sequence and shortenLE to estimate the lower bound.

One more simplification of the calculation can be applied in the estimation of

the bit error rate lower bound considering only the minimum-length error events. The
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vectorλ̄ in this scenario is̄λ = 2x
(1)
k (g0, g1, · · · , gJ)T , wherex

(1)
k is either+1 or −1.

Therefore, when calculatinḡλT µ̄ andλ̄TΣλ̄, we can calculate in advance those vectors

such as|λ̄|T ·H, which are not related to the recorded data sequencex̄(1). These vectors

can then be truncated according toLE before they are applied to the pairwise error

probability calculation.

4.3 Simulation Results

The lower bound estimate can be calculated for both order-1 and order-2 channel

approximations. In Figure 4.2, the lower bound is shown for the dibit precompensation

scheme using the order-1 channel approximation. The bit error probability calculated

using equation (4.18) is compared to the BER verses precompensation value curve sim-

ulated in Figure 3.7. All the channel parameters are the sameas in Figure 3.7. The value

of TC in the legend of Figure 4.2 determines the effective calculation lengthLE, which

is LE = 2TC + 1. The data sequencēx(1) we considered in the calculation is from time

k − TC to k + TC . We can see that the curves forLE = 11 andLE = 15 are almost

identical. ForLE = 31, because of the computational complexity, we simulated only

the point where no precompensation was used. Still the result is very close to the results

corresponding toLE = 11 andLE = 15.

The lower bound curve for the order-1 channel approximationis very close to the

Monte-Carlo simulation result, as shown in Figure 4.2. The optimal precompensation

value that minimizes the BER can also be deduced from the lowerbound estimate. It is

the same as the Monte-Carlo simulation, and it took much less time to compute.

Figure 4.3 shows the estimate of the lower bound for the order-2 channel ap-

proximation. The channel parameters are the same as in Figure 4.2. We can see that

the lower bound is not as tight compared to that for the order-1 channel approximation

because of the Q-function approximation in the pairwise error probability calculation.

However, the optimal precompensation value obtained by using the estimate is the same

as that which resulted from the Monte-Carlo simulation. Again, the difference between



78

0 0.05 0.1 0.15 0.2
10

−7

10
−6

10
−5

10
−4

∆ / B

B
E

R

Order−1 channel

 

 
Monte Carlo
Estimation, T

C
=5, L

E
 = 11

Estimation, T
C

=7, L
E
=15

Estimation, T
C

=15, L
E
=31

Figure 4.2 The lower bound estimation for order-1 channel approximation with dibit
precompensation scheme.T50/B = 1; σJ/B = 0.08; SNRW = 29dB; B = 16nm.

LE = 11 andLE = 15 is very small.

The computation time required for the lower bound estimate is much less than

required for the Monte-Carlo simulation. For example, the curve obtained by Monte-

Carlo simulation in Figure 4.3 took several hours to compute,while the lower bound

estimate curve in the same figure took only several minutes. The computation time

for the Monte-Carlo simulation is related to number of simulated sectors, which need

to increase when the bit error rate decreases. However, the computation time of the

estimate does not depend on the bit error rate.

As we have shown in Figure 4.3, the lower bound estimate can give us the

same optimal precompensation value for the dibit precompensation scheme in much

less time, though the lower bound is not very tight. Similar results were observed for

the two-level precompensation and 3-level precompensation schemes. In Table 4.1, we
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Figure 4.3 The lower bound estimation for order-2 channel approximation with dibit
precompensation scheme.T50/B = 1; σJ/B = 0.08; SNRW = 29dB; B = 16nm

compare the best precompensation values obtained through the Monte-Carlo simulation

and the lower bound estimation. Except for the dibit precompensation scheme, the op-

timal precompensation values for other schemes are obtained by using thefminunc

function in MATLAB. This function can give us the minimum value of a function

and its corresponding function input when the function input has no constraint. The

input of the function can be either a scalar, or a vector. The format of the precom-

pensation values in the table is as follows: (∆H/B,∆L/B) for two-level precompen-

sation, (∆H/B,∆M/B,∆L/B) for the 3-level precompensation, (∆(1)/B, ∆(2)/B, · · · ,
∆(7)/B) for the 7-level precompensation. In the Monte-Carlo simulation, we used a step

size of 0.01 when tuning the precompensation values for the two-level precompensation

scheme and 0.02 for other schemes.
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Table 4.1 Comparison of the optimal precompensation values obtained from the Monte-
Carlo simulation and the lower bound estimate.

T50/B = 1;σJ/B = 0.08; SNRW = 29dB; B = 16nm
Dibit
precomp

Two-level
Precomp

3-level Pre-
comp

7-level precomp

Monte-Carlo
Simulation

0.08 (0.09,0.05) (0.12,0.06,
0.1)

N/A

Lower Bound
Estimation

0.08 (0.088,0.043) (0.114,0.056,
0.093)

(0.128, 0.113, 0.063, 0.079,
0.123, 0.089, 0.059)

4.4 Application of the Analysis

The BER analysis of the lower bound can be used to find the optimal precom-

pensation values for a multi-level precompensation scheme, when a brute force search

by Monte-Carlo simulation is not affordable. We used the lower bound estimate to help

compare the performance of the multi-level precompensation schemes in Chapter 3,

significantly reducing the required amount of computation time.

The analysis can also be used to explain some of the simulation results. In Chap-

ter 3, we showed the simulation results for various precompensation schemes. One ob-

servation is that in some cases, the multi-level precompensation schemes can perform

better than the system without NLTS and precompensation.

Table 3.3 compared the error events for the system with NLTS and the best

two-level precompensation, with those for the system without NLTS. It shows that

the single-bit error event is dominant and the system with two-level precompensation

scheme apparently has fewer single-bit error events. Sincethe minimum-length error

events correspond to the single-bit error events, we try to give the reason after observing

the distribution of the pairwise error probabilities for the minimum-length error events.

Figure 4.4 shows the histograms of the pairwise error probability for all the minimum-

length error events for both cases. The x-axis is the logarithm of the pairwise error

probability. We divided the x-axis into bins of size 0.1 and count the number of error

events with probability falling in each bin. These numbers are shown as the y-axis. The

BER is dominated by those error events that have large pairwise error probability, as
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indicated roughly in the figure. We can see that those error events that have the largest

pairwise error probability in the no-NLTS case, concentrated in the right most peak of

the distribution. However, these error events span a wider range along the x-axis for the

two-level precompensation case. There are a small amount ofthe error events whose

probabilities increases very slightly, but a large amount of error events that has a de-

creased probability. The count of the highest error probability events is much less than

that of the no-NLTS case. Although the highest error probability is slightly larger in the

two-level precompensation case, the overall BER still decreases from3.59 × 10−7 to

3.03 × 10−7, according to the lower bound estimate.

The histogram for the error events shows that the effective distance between the

correct path and the incorrect path is larger for many single-error events than those in

the no-NLTS case. And therefore, the BER is improved.
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Appendix: Derivation of Noise Mean and Covariance Ma-

trix for Order-2 Channel Approximations

The equalizer output of the order-2 channel approximation is

rk =
J
∑

i=0

gixk−i +
∑

i

dk−i[(δk−i + ak−i)s̃′i +
(δk−i + ak−i)

2

2
s̃′′i] + wk + qk (4.19)

where{gi} are the target taps,{di} are transitions,{xi} are binary data bits of +1 and -1,

andδi is the net shift for transitioni. If di equals zero, which means there is no transition,
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the net shiftδi equals to zero. The jitter noise is denoted byai. It is zero when there is no

transition and a Gaussian random variable with zero mean andvarianceσ2
J , otherwise.

The sequence{s̃′i} and{s̃′′i} are the equalized samples of the first-order and second-

order derivatives of the transition response. The termwk is the equalized AWGN, and

qk is the equalizer residue, given by

qk =
∑

i

x
(1)
k−ih̃i −

∑

i

x
(1)
k−igi. (4.20)

Therefore, the noise at the equalizer output can be written as

nk = vk + wk + qk (4.21)

where

vk =
∑

i

dk−i[(δk−i + ak−i)s̃′i +
(δk−i + ak−i)

2

2
s̃′′i] (4.22)
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Now we are going to derive the mean and covariance matrix fornk conditioned

on data sequencēx. The mean can be written as

E{nk} = E{vk} + E{wk} + E{qk} (4.23)

Sincewk is colored AWGN with zero mean, andqk is determined when the data is given,

the mean is actually

E{nk} = E{vk} + qk. (4.24)

The first term,E{vk}, can be derived as follows:

E{vk} = E{
∑

i

dk−i[(δk−i + ak−i)s̃′i +
(δk−i + ak−i)

2

2
s̃′′i]}

=
∑

i

dk−i[δk−is̃′i +
E{(δk−i + ak−i)

2}
2

s̃′′i]

=
∑

i

dk−i[δk−is̃′i +
σ2

J + δ2
k−i

2
s̃′′i] (4.25)

The covariance betweennk andnk−m can be expressed as

Cov{nknk−m} = Cov{vkvk−m} + Cov{wkwk−m} (4.26)

since the AWGN is independent with respect to the jitter noise.

The covariance matrix for the colored Gaussian noise is not difficult to derive.

With the assumption that the equalizer taps aref̄ = (f0, f1, ..., fK), the covariance

matrix for the vector̄w is σ2
WFFT , whereF is a Toeplitz matrix generated bȳf .

Therefore, we now consider the covariance of thevk:

Cov{vkvk−m} = E{vkvk−m} − E{vk}E{vk−m} (4.27)

The expectationE{vkvk−m} can be derived as follows:
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E{vkvk−m} = E

{

∑

i

dk−i[(δk−i + ak−i)s̃′i +
(δk−i + ak−i)

2

2
s̃′′i]

∑

j

dk−m−j[(δk−m−j + ak−m−j)s̃′j +
(δk−m−j + ak−m−j)

2

2
s̃′′j]

}

=
∑

i

∑

j

dk−idk−m−j

[

s̃′is̃′jE{(δk−i + ak−i)(δk−m−j + ak−m−j)}

+
s̃′′is̃′′j

4
E{(δk−i + ak−i)

2(δk−m−j + ak−m−j)
2}

+
s̃′is̃′′j

2
E{(δk−i + ak−i)(δk−m−j + ak−m−j)

2}

+
s̃′′is̃′j

2
E{(δk−i + ak−i)

2(δk−m−j + ak−m−j)}
]

=
∑

i

∑

j:k−i6=k−m−j

dk−idk−m−j

[

s̃′is̃′jδk−iδk−m−j

+
s̃′is̃′′j

2
δk−i(σ

2
J + δ2

k−m−j) +
s̃′′is̃′j

2
δk−m−j(σ

2
J + δ2

k−i)

+
s̃′′is̃′′j

4
(σ2

J + δ2
k−i)(σ

2
J + δ2

k−m−j)
]

+
∑

i

d2
k−i

[

s̃′is̃′i−m(σ2
J + δ2

k−i)

+
s̃′is̃′′i−m + s̃′′is̃′i−m

2
δk−i(δ

2
k−i + 3σ2

J)

+
s̃′′is̃′′i−m

4
(δ4

k−i + 6δ2
k−iσ

2
J + 3σ4

J)
]

=
∑

i

∑

j

dk−idk−m−j

[

s̃′is̃′jδk−iδk−m−j +
s̃′is̃′′j

2
δk−i(σ

2
J + δ2

k−m−j)

+
s̃′′is̃′j

2
δk−m−j(σ

2
J + δ2

k−i) +
s̃′′is̃′′j

4
(σ2

J + δ2
k−i)(σ

2
J + δ2

k−m−j)
]

+
∑

i

d2
k−i

[

s̃′is̃′i−mσ2
J + (s̃′is̃′′i−m + s̃′′is̃′i−m)δk−iσ

2
J

+
s̃′′is̃′′i−m

2
(2δ2

k−iσ
2
J + σ4

J)
]

. (4.28)
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Since

E{vk}E{vk−m} =
∑

i

dk−i

[

δk−is̃′i + (σ2
J + δ2

k−i)s̃
′′
i/2
]

·
∑

j

dk−m−j

[

δk−m−j s̃′j + (σ2
J + δ2

k−m−j)s̃
′′
j/2
]

=
∑

i

∑

j

dk−idk−m−j

[

s̃′is̃′jδk−iδk−m−j

+
s̃′′is̃′′j

4
(σ2

J + δ2
k−i)(σ

2
J + δ2

k−m−j) +
s̃′is̃′′j

2
δk−i(σ

2
J + δ2

k−m−j)

+
s̃′′is̃′j

2
δk−m−j(σ

2
J + δ2

k−i)
]

. (4.29)

Therefore,

Cov{vkvk−m} =
∑

i

d2
k−iσ

2
J

[

s̃′is̃′i−m + (s̃′is̃′′i−m + s̃′′is̃′i−m)δk−i

+ s̃′′is̃′′i−mδ2
k−i +

s̃′′is̃′′i−m

2
σ2

J

]

=
∑

i

d2
k−iσ

2
J

[

(s̃′i + s̃′′iδk−i)(s̃′i−m + s̃′′i−mδk−i) +
s̃′′is̃′′i−m

2
σ2

J

]

.

(4.30)

Therefore, we can express the meanµ̄2 and the covariance matrixΣ2 for the

order-2 channel approximation as:

µ̄2 = H · x̄(1) − G · x̄(1) + S′D(1)δ̄(1) +
σ2

J

2
S′′D(1) + S′′D(1)Q(1)δ̄/2 (4.31)

Σ2 = σ2
J(S′ + S′′Q(1))(D(1))2(S′ + S′′Q(1))T + σ4

JS
′′(D(1))2S′′T + σ2

WFFT (4.32)

whereH, G, S′, D(1) andF are the same as in equation (4.8) and (4.9). The rows of

H, G andS′ are shifted versions of sequences{h̃i}, {gi} and{s̃′i}, respectively, in

reverse order.S′′ is a similar Toeplitz matrix where each row is a shifted version of

the sequence{s̃′′i}, in reverse order. The matricesD(1) andQ(1) are diagonal matrices,

whose diagonal elements are the transition datadi and the net shiftsδi respectively, with

zeros elsewhere. The transitions are the net transition shifts are both for the recorded

sequencēx(1).



Chapter 5

Mean-Adjusted Pattern-Dependent

Noise Prediction Detector for

Perpendicular Systems with Nonlinear

Transition Shift

In Chapter 3 and 4, we introduced the modeling of NLTS in the perpendicular

recording channel and evaluated the performance of the system with write precompensa-

tion. Write precompensation is the predominant method that is used today to counteract

the distortion induced by NLTS.

In this chapter, we propose a new detection method designed to reduce the per-

formance degradation resulting from NLTS. We show that the new detector performs

significantly better than a conventional Viterbi detector and a pattern-dependent noise

prediction (PDNP) detector, while its computational complexity is comparable to that

of a PDNP detector. In contrast to write precompensation, which generally requires

empirical optimization of the precompensation levels, thenew detection algorithm in-

corporates parameters that reflect the channel nonlinearity and noise statistics. These

parameters can be determined either adaptively or through the use of training sequences.

Several equalization and detection techniques have previously been proposed to

86
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reduce the effects of nonlinear distortion and media noise in the magnetic recording

readback channel. A Volterra equalizer design method was proposed in [1] to combat

channel nonlinearities. Detector design has generally concentrated on techniques that

mitigate the effects of nonlinear media noise and noise correlation. In particular, the

conventional Viterbi detector has been modified in various ways. For example, in [2, 3],

partial local feedback noise prediction was used to reduce the impact of correlated noise

and media noise. Kavčić and Moura [4] derived a maximum-likelihood sequence detec-

tor (MLSD) for an intersymbol-interference (ISI) channel with data-dependent finite-

memory Gauss-Markov noise and applied the detector to an autoregressive (AR) model

for the magnetic recording channel. The detector incorporates pattern-dependent noise

prediction filters. Moon and Park [5] examined various sub-optimal pattern-dependent

noise prediction (PDNP) detectors that offer a trade-off between performance and im-

plementation complexity in the presence of media noise. Zayed and Carley [6] and

Sun et al. [7] both proposed a modified Viterbi detector with adata-dependent offset in

the branch metric calculation, intended to deal with both nonlinearities and media noise.

In this chapter, we address the data-dependent nature of NLTS and derive a mod-

ified PDNP detector for perpendicular recording channels with additive Gaussian noise,

transition jitter noise, and NLTS. Computer simulations show that the new detector,

which we refer to as the mean-adjusted PDNP (MA-PDNP) detector, improves the bit-

error-rate (BER) performance when compared to the conventional Viterbi detector and

the PDNP detector. In our simulations, we calculate the NLTSaccording to the model

proposed by Bertram and Nakamoto [8, 9] and illustrated in Chapter 3. We also show

that the MA-PDNP detector can be combined with write precompensation schemes to

achieve further performance improvement.

We will first give a brief introduction to the derivation of the PDNP detector and

then describe the structure of the MA-PDNP detector. The simulation results and com-

parisons between the MA-PDNP detector, Viterbi detector, and PDNP detector will then

be given. The performance of the MA-PDNP detector combined with a dibit precom-

pensation scheme will also be presented.
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5.1 Channel Model and Notations

The channel model we considered in this chapter is the same asin Chapter 3 and

Chapter 4, which considers the NLTS, jitter noise and AWGN. More precisely, we will

use the order-2 channel approximation in this chapter. The notation is also the same as

in Chapter 3 and Chapter 4. The system diagram is the same as in Figure 3.5. In this

section, we will briefly review the order-2 channel approximation.

The order-2 channel approximation incorporates both first-and second-derivative

terms of the Taylor expansion of the transition response, given by

z(t) ≈
∑

i

dis(t − iB) +
∑

i

di(δi + ai)s
′(t − iB)

+
∑

i

di
(δi + ai)

2

2
s′′(t − iB) + nW (t). (5.1)

The discrete-time signal at the detector input can thus be written as

rk =
∑

i

xih̃k−i +
∑

i

di(δi + ai)s̃′k−i

+
∑

i

di
(δi + ai)

2

2
s̃′′k−i + wk, (5.2)

whereh̃j, s̃′j ands̃′′j denote the convolution of the FIR equalizer taps with the samples

of the channel dibit response, the first derivative of the transition response, and the sec-

ond derivative of the transition response, respectively. The binary input data sequence to

the channel is represented by{xi}. The corresponding transition sequence is given by

{di}, wheredi = xi−xi−1

2
. The jitter noise and the net transition shift for transition di is

represented byai andδi, respectively. They are zero whendi is zero, i.e., no transition at

time iB. The jitter noiseai is modeled as independent Gaussian random variables with

varianceσ2
J for transitionsdi not equal to zero. The equalized sample of the AWGN at

timek is denotedwk, wherewk = nW (kB).

With an equalization targetg(D) = g0 +g1D + · · ·+gJDJ , the equalizer output
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can be written as

rk =
J
∑

i=0

gixk−i + nk, (5.3)

where

nk =
∑

i

di(δi + ai)s̃′k−i +
∑

i

di
(δi + ai)

2

2
s̃′′k−i + wk + qk. (5.4)

The noisenk, which has non-zero mean and a non-Gaussian density, includes contri-

butions from the NLTS, transition jitter noise, equalized AWGN, and misequalization

errorqk, which is

qk =
∑

i

xk−ih̃i −
J
∑

i=0

xk−igi. (5.5)

5.2 Pattern-Dependent Noise Predictive Detector

The conventional Viterbi algorithm with squared-Euclidean metric is an MLSD

only if the noise termnk in (5.3) is sampled AWGN. The number of trellis states in such

a Viterbi detector is2J , whereJ + 1 is the length of the equalization target. For a chan-

nel with zero-mean, data-dependent, finite-memory Gauss-Markov noise, the MLSD

was derived in [4]. We refer to this detector as the pattern-dependent noise-predictive

(PDNP) detector. In this section, we will briefly discuss thederivation of the PDNP

detector

Assume the channel output is

rk = yk + nk (5.6)

where the following Markovian properties hold

Pr(Sk|S̄k−1
1 ) = Pr(Sk|Sk−1) (5.7)

Pr(rk|S̄n
1 , r̄k−1

1 ) = Pr(rk|Sk−1, Sk, r̄
k−1
k−L). (5.8)

In the above equations,Sk is the state at timek defined by channel inputs andL is the

Markov memory length of the noise.
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The MLSD is a detector that gives an estimate of the input sequence that maxi-

mizes the likelihood probability

Pr(r̄N
1 |x̄N

1 ) =
∏

k

Pr(rk|r̄k−1
1 , S̄N

1 ), (5.9)

or minimizes the following:

− ln Pr(r̄N
1 |x̄N

1 ) = −
∑

k

ln Pr(rk|r̄k−1
1 , S̄N

1 ). (5.10)

The branch metric of the trellis is thus

M(ek) = − ln Pr(rk|r̄k−1
1 , S̄N

1 ), (5.11)

whereek is a trellis branch at timek, from stateSk−1 to Sk.

Using the Markovian property,

M(ek) = − ln Pr(rk|r̄k−1
k−L, Sk−1, Sk) (5.12)

= − ln
Pr(r̄k

k−L|Sk = m,Sk−1 = m′)

Pr(r̄k−1
k−L|Sk = m,Sk−1 = m′)

. (5.13)

According to equation (2.30), the branch metricM can be written as

M(ek) = − ln
γ(m′,m)

Pr(Sk = m|sk−1 = m′)
, (5.14)

whereγ(m′,m) is defined in equation (2.14).

Therefore, according to the derivations in Chapter 2, it is not difficult to write

the branch metric for the MLSD as:

M(ek) = log(
√

2πσ2(ek))

+
1

2σ2(ek)

[

L
∑

i=0

pi(ek)(rk−i − yk−i)

]2

, (5.15)

whereσ2(ek) is the equivalent noise variance for branchek andpj(ek), j = 1, ..., L are

the noise prediction coefficients for branchek. By comparing equations 2.34 and 5.15,

the equivalent variance and the noise prediction coefficients can be represented as

σ2(ek) = rLL − (r̄(L))T (R(L−1))−1r̄(L), (5.16)

p̄(ek) = −(R(L−1))−1r̄(L), (5.17)
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wherep̄(ek) = (pL(ek), ..., p1(ek))
T andp0(ek) = 1. The matrixR(L) is the covariance

matrix for noise vector̄n = (nk−L, ..., nk) and R(L−1) is the covariance matrix for

n̄′ = (nk−L, ..., nk−1). The relationship betweenR(L) andR(L−1) is shown in equation

(2.28). Since the noise samples{nk} are data dependent, the covariance matricesR(L)

andR(L−1) vary from branch to branch.

Compared to the conventional Viterbi detector, the trellis complexity for the

PDNP detector is increased because of the memory length of the Markovian noise as

well as the span of its data dependence. For example, supposethat the signal-dependent

noisenk depends on the data values in positionsk − C to k + D. Then, the trellis state

Sk at timek is defined bySk = (xk−L−max{C,J}+1, · · · , xk+D), and the number of states

is therefore2L+D+max{C,J}.

The noise in a magnetic recording channel is not finite-memory Gauss-Markov,

so the PDNP detector is, strictly speaking, not optimal, although it achieves near-optimal

performance [5]. Several methods have been proposed to reduce the complexity of

the PDNP detector, yielding a variety of simpler, yet still effective detectors [2, 3, 5].

Strategies include reducing the prediction filter length, limiting the required number of

predictors by shortening the data-dependence length, and eliminating trellis states by

using feedback of tentative decisions.

5.3 Mean-Adjusted Pattern-Dependent Noise Predictive

Detector

As we discussed in Section 5.1, the noisenk in (5.4) is non-Gaussian with non-

zero mean. We have derived in Chapter 4 that the NLTS affects both the equivalent

noise mean and variance, as well as the jitter noise. However, unlike the jitter noise, the

NLTS is a deterministic, data-dependent nonlinear effect.To account for the NLTS, we

propose a mean-adjusted PDNP (MA-PDNP) detector in which the branch metric for a
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branchek is written as:

M(ek) = log(
√

2πσ2(ek)) (5.18)

+
1

2σ2(ek)

[

L
∑

i=0

pi(ek)(rk−i − yk−i − mi(ek))

]2

,

wheremi(ek) represents the data-dependent mean of the noisenk−i.

The methods used to reduce the complexity of the PDNP detector can also be

applied to the MA-PDNP detector. More precisely, we can rewrite the branch metric in

(5.18) as

M(x̄k) = log(
√

2πσ2(x̄k)) (5.19)

+
1

2σ2(x̄k)

[

Ly
∑

i=0

pi(x̄k)(rk−i − yk−i − mi(x̄k))

]2

,

wherex̄k represents the data pattern from which the noise variance and the prediction

filter coefficients corresponding to timek are determined. Since the noise is not a finite-

memory Markovian process, we can not assign a value for the memory lengthL. Instead,

we specify a valueLy to represent the length of the noise prediction filters, and we

denote the span of the data-dependence byLx + 1. The number of trellis states is given

by2M . WhenM < Lx, the data pattern̄xk includes tentative decisions from the survivor

path ending at the initial state of the branchek

The computational complexity of the MA-PDNP detector depends upon the pa-

rametersM andLy, while Lx determines the memory size required to store the pattern-

dependent mean, variance and noise prediction filter coefficients. Thus, the overall im-

plementation complexity of the MA-PDNP detector is comparable to that of the corre-

sponding PDNP detector.

The branch metric calculation requires the values of the data-dependent mean,

variance and filter coefficients. These parameters are derived from the channel noise

statistics which can be determined by means of a training sequence, or adaptively by

using an algorithm such as that proposed in [10, 7], or a combination of these two

methods. Of course, an adaptive scheme requires extra computation to determine the
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noise variances and filter coefficients using (5.16) and (5.17) at each time the noise

statistics get updated.

5.4 Simulation Results

For the NLTS calculation, we set the medium to soft-underlayer spacing to

20nm, and the medium thickness is set to 10nm. The channel spacing is 16nm, corre-

sponding to a linear density of about1.59 × 106 bits/inch. The remanent magnetization

to head field gradient ratio is set to 1.5. With these parameters, the NLTS of the isolated

dibit pattern is about 20% of the channel bit spacingB.

The simulation uses pseudorandom input data divided into 5000-bit sectors. The

equalizer utilizes the minimum mean-squared error (MMSE) monic constraint design

[11]. The equalization target has length 3 and the number of FIR equalizer taps is set to

15. The noise statistics are obtained by means of a training sequence.

A comparison between the Viterbi detector, the PDNP detector, and the MA-

PDNP detector is shown in Fig. 5.1. The normalized jitter noise variance isσJ/B = 0.1.

The bit density is set toT50/B = 1. The BER for different detectors is plotted versus

SNRW . The PDNP detector and the MA-PDNP detector have the same number of

states as the Viterbi detector,M = J = 2. The data-dependence parameter is set to

Lx = 6 for both the PDNP detector and the MA-PDNP detector. The two detectors also

have the same noise prediction filter lengthLy = 3. From the figure, it is clear that the

MA-PDNP detector is superior to the PDNP detector, which, inturn, outperforms the

conventional Viterbi detector. The intuitive explanationfor this relative behavior is that

the pattern-dependent noise prediction reduces the effectof the correlated jitter noise,

while the pattern-dependent mean compensates for the NLTS.

Fig. 5.2 compares MA-PDNP detector performance with various values of the

noise prediction lengthLy and the data-dependence lengthLx, assumingM = J = 2.

Note that the performance achieved withLx = 4 is very close to that obtained with

Lx = 6. We also note that the BER atSNRW = 26dB is nearly identical forLy =
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Figure 5.1 Comparison between Viterbi, PDNP, and MA-PDNP detectors.

1, 2, 3. Even when we setLy = 0, corresponding to no noise prediction, the BER is only

slightly higher.

The MA-PDNP detector can also be used in combination with write precom-

pensation. To illustrate this, we simulated the BER for the MA-PDNP detector used in

conjunction with a dibit precompensation scheme, with the results shown in Fig. 5.3.

The channel parameters were set toSNRW = 26dB, σJ/B = 0.1 andT50/B = 1.

The parameter settings for the NLTS calculation were the same as in the previously

discussed simulations. We setLx = 6, and used the same number of trellis states in

the MA-PDNP detector as in the conventional Viterbi detector, i.e.,M = J = 2. The

figure shows that for a channel with NLTS, the MA-PDNP detector can achieve a much

lower BER than a Viterbi detector even with dibit precompensation. For prediction fil-

ter lengthsLy = 1, 2, we see that the MA-PDNP detector with dibit precompensation
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Figure 5.2 Comparison between differentLy andLx.

achieves the same performance as that of a PDNP detector applied to a channel with no

NLTS. This is true over a wide range of precompensation values.

5.5 Conclusions

In this chapter, we presented a mean-adjusted pattern-dependent noise-prediction

(MA-PDNP) detector for perpendicular recording channels with nonlinear transition

shift (NLTS), transition jitter, and additive Gaussian noise. The new detector reduces

the performance degradation caused by data-dependent NLTSand media noise. Accord-

ing to simulation results for an order-2 channel approximation, the MA-PDNP detector

improves the performance significantly as compared to both the conventional Viterbi

detector and the PDNP detector. At the same time, the computational complexity of the
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Figure 5.3 MA-PDNP detector with dibit precompensation.

MA-PDNP detector is comparable to that of the PDNP detector.The MA-PDNP detec-

tor can also be combined with write precompensation to achieve further performance

improvements. Simulation results show that, when used witha simple dibit precom-

pensation technique, the MA-PDNP detector provides the same BER performance as a

PDNP detector applied to a channel with no NLTS, over a wide range of precompensa-

tion values.
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Chapter 6

Error-Locating Codes and

Soft-Decision Decoding

Error-locating (EL) codes were introduced first by Wolf and Elaspas in 1963 [1]

and extended in [2, 3]. These codes can detect errors in sub-blocks, based on the idea

of protecting the syndrome of each sub-block by another error correcting code. This

idea was extended to a general case [4], where the syndromes corresponding to different

codes of each sub-block are protected by different error correcting codes respectively.

We call this type of codes generalized error-locating (GEL)codes. In general, EL and

GEL codes have the ability to adjust their error detection/correction capability according

to the channel, while decreasing the number of parity bits used.

Both EL and GEL codes have been proposed for application in magnetic record-

ing systems [5, 6]. In [5], a tensor-product parity (TPP) code, which is a simple case of

an EL code, is proposed to be concatenated with the Reed-Solomon (RS) code. Such a

system outperforms a system with RS code only, and a system with a usual parity code

concatenated with a RS code. In [6], a methodology to design a GEL code that adapts

to the given magnetic recording channel is proposed. The GELcode was compared to

a RS code of the same rate for several types of channels, including a PR4 channel with

AWGN, ME2PR4 channel with AWGN and other channels. The performance of the

GEL code was shown to be better than the RS code.
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In the first part of this chapter, we will discuss soft-decision decoding of the TPP

code in an ISI channel. Soft-decision decoding is now widelyused for various types

of codes, such as the Turbo codes, LDPC codes, Reed-Solomon codes, etc. Simulation

results will be presented for an example for ISI channel withAWGN. However, the soft-

decision decoding method we proposed can be applied to more sophisticated magnetic

recording channels.

In the second part of this chapter, we will discuss the performance of a list de-

coding algorithm for GEL codes that use RS codes as the outer codes. Simulation results

will be presented for a simple GEL code used in conjunction with an AWGN channel.

6.1 Tensor-Product Parity Code and Soft-Decision De-

coding

In this section, we will first describe the structure of an error-locating code. Af-

ter that, a TPP code will be introduced as a special case of an EL code. A hard decision

decoding algorithm for TPP codes in ISI channels was proposed in [5]. We will propose

two soft-decision decoding procedures for TPP codes. Simulation results will be pre-

sented for a TPP code using a convolutional code as the outer code. The performance

advantage of soft-decision decoding as compared with hard decision decoding will be

shown.

6.1.1 Introduction to Error-Locating Codes

Before we describe error-locating codes, we would like to first introduce some

notation which we will use in this chapter. Assume a block code C defined on a Galois

field GF(q). The code length ofC is N and the code dimension isK. The code rate is

thusR = K/N . The minimum Hamming distance of codeC is dmin. We denote such a

code byC(q; N,K, dmin).

An error-locating code can be defined in terms of two component codes. Assume
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the outer code isA(pq; Na, Ka, dmin,a) and the inner code isB(p; Nb, Kb, dmin,b), where

q = Nb − Kb. Assume that a codeword of an EL code is represented by a matrix C of

sizeNb × Na, the elements of which are from GF(p). Denote the columns ofC by ci,

wherei = 1, ..., Na. The inner codeB is used to calculate the syndrome of each column

of C:

ai = HBci, i = 1, ..., Na (6.1)

whereHB is the parity check matrix for codeB. Therefore,ai is a column vector

of length Nb − Kb over GF(p). Let ai represent a symbol from GF(pNb−Kb). The

definition of an EL codes requires that the symbol vectora = (a1, a2, ..., aNa
) must

form a codeword of codeA.

Consider the following example. A TPP code is defined as a binary code, with

codeword size3 × 7. Therefore,p = 2. The inner code is a single parity check code of

length 3, i.e.,B(2; 3, 2, 2). The parity check matrix ofB is thusHB = [1 1 1]. Therefore,

q = Nb − Kb = 3 − 2 = 1. The outer code is also a binary code. We define the outer

codeA(2; 7, 4, 3) to be a Hamming code of length 7. The following3 × 7 matrix is a

codeword of this EL code:

C =









1 0 1 1 1 0 1

0 1 0 1 1 0 0

1 1 0 1 1 0 0









. (6.2)

We now proceed to check the correctness. The syndrome for each code is a one bit sym-

bol. Multiply HB with each column ofC, to obtain the vectora = (0, 0, 1, 1, 1, 0, 1).

The parity check matrix for the outer codeA is defined as follows:

HA =









1 1 1 0 1 0 0

0 1 1 1 0 1 0

1 1 0 1 0 0 1









. (6.3)

It can be verified that the vectora satisfiesHAaT = 0.

We can further show the parity check matrix for this EL code. Write the code-

word C in the vector formC̄ by taking the elements in the matrix column-wise, i.e.,
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let

C̄ = (101 011 100 111 111 000 100)T . (6.4)

Thenc̄ satisfy the equation

HELC̄ = 0, (6.5)

whereHEL is the tensor product ofHA andHB:

HEL = HA ⊗ HB =















hA
11HB hA

12HB · · · hA
1Na

HB

hA
21HB hA

22HB · · · hA
2Na

HB

...
...

...
...

hA
ra1HB hA

ra2HB · · · hA
raNa

HB















(6.6)

=









111 111 111 000 111 000 000

000 111 111 111 000 111 000

111 111 000 111 000 000 111









, (6.7)

Let the element in theith row andj th column of matrixHA be represented byhA
ij. The

variablera is the number of rows of the parity check matrixHA, which is equal to

Na − Ka.

In general, the parity check matrix for any EL code can be represented by the ten-

sor product of the parity matrixHA andHB, as shown in equation (6.6). However, since

HB is a matrix with elements from GF(p) while hA
ij is an element on GF(pq), when mul-

tiplying hA
ij andHB, hA

ij uses the matrix representation of elements in GF(pq) [7], where

each component of such a matrix is from GF(p). The corresponding codeword is the vec-

tor C̄, composed by taking the elements inC column-wise, i.e.,̄C = (cT
1 , cT

2 , · · · , cT
Na

).

Since the number of parity symbols, i.e., the number of rows in matrixHEL, is

(Nb −Kb)× (Na −Ka), the code rate of the EL code is thusR = 1− (Nb−Kb)(Na−Ka)
NaNb

=
NaKb+NbKa−KaKb

NaNb
. The code rate is greater than or equal to any of the code ratesof the

component codesA andB. However, the minimum distance of the El code is no greater

than the minimum distance of any component codes, which ismin{dmin,a, dmin,b}.
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Na-Ka

Information symbols

Information symbols

Codeword

Syndromes

Parity symbols of the outer code Nb-Kb

Outer code codeword

ui

pi

ci

Figure 6.1 A systematic encoding procedure for error-locating codes.

Encoding of EL codes

A systematic encoding procedure for the EL codes can be described as follows:

1. Let the information symbols fill in all the rows of the codeword matrixC from

column 1 to columnKa and rows from 1 toKb in columnKa +1 to Na, as shown

in Figure 6.1.

2. Calculate the syndromes for columns from 1 toKa. They are the information

symbols for the outer codeA.

3. Encode the information symbolsa1, ..., aKa
with a systematic encoder of codeA.

The codeword of the outer code is thus formed as(a1, ..., aKa
, aKa+1, ..., aNa

).

4. For columns fromKa + 1 to Na of codewordC, calculate the parity symbols,
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shown as the shaded area of codewordC in Figure 6.1. More precisely, if the

parity check matrix for codeB is in the systematic form

HB = [P I], (6.8)

whereI is an identity matrix of size(Nb − Kb) × (Nb − Kb), the parity symbols

of each column can be calculated as

pi = ai − Pui, i = Ka + 1, ..., Na, (6.9)

whereui is a vector of information symbols of columni and pi is the parity

symbols of columni, as shown in Figure 6.1. Columnci is thus given as

ci =

(

ui

pi

)

, i = Ka + 1, ..., Na (6.10)

Hard-Decision Decoding of EL Codes

During the decoding process of an EL code, a direct way of hard-decision decod-

ing is to first decode the outer code and then the inner code. This algorithm is described

as follows:

1. For the received matrixC′ of codewordC, calculate the syndromes(a′
1, ..., a

′
Na

)

of all the columns usingHB.

2. Input the syndromes to the decoder of codeA. If the decoding fails, announce a

decoding failure of the EL code. Otherwise, go to step 3.

3. Assume the decoded codeword of the outer codeA to be(â1, ..., âNa
). For each

column, we have

a′
i = HBc′i = HB(ĉi + ei) = âi + HBei (6.11)

⇒ HBei = a′
i − âi (6.12)

whereĉi is the estimate of columni after EL decoding, andei is the error vector

for columni. The decoder for the inner codeB is a syndrome decoder, which can
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decodeei given the syndromea′
i−âi. The estimate of columni is thuŝci = c′i−ei,

wherec′i is the received columni.

6.1.2 A Tensor-Product Parity Code with Soft-Decision Decoding

for an ISI Channel

The tensor-product parity (TPP) code proposed in [5] is a special case of an EL

code. The inner codeB is a binary parity check codeB(2; Nb, Nb − 1, 2), while the

outer code is a linear binary codeA(2; Na, Ka, dmin,a). The code definition in [5] differs

from our definition of an EL code. In [5], the parity check bitsof the inner code, not

the syndromes, form a codeword of the outer code. However, for the TPP code defined

in [5], the same code results using our definition. For example, the previous EL code

example is exactly a TPP code. As defined in [5], the inner codeB would be a (2;4,3,2)

code, rather than a (2;3,2,2) code which would result from our definition.

A TPP code in [5] was proposed to replace the conventional parity check code in

the magnetic recording system, which is usually used in the post processing procedure.

When using the conventional parity check code, a single parity check bit for each sub-

block will be sent over the channel. This parity check bit candetect an odd number of

bit errors, thus provide the information for the post processing. However, in high SNR

scenarios, the parity check bits for the sub-blocks are mostly correct. By using the TPP

code, we don’t send the parity check bits of each sub-blocks.Instead, we put constraint

on the transmitted bits, so that the parity check bits of sub-blocks form a codeword of

the outer code. The errors in the parity check bits can be recovered mostly by the outer

code. Therefore, less redundancy is used for the TPP code andthe advantage is shown

in [5].

Because the TPP code has a weak inner code which can only detecterrors, a hard

decision decoding process different from the hard decisiondecoding algorithm stated

in 6.1.1 was proposed for the TPP code in [5]. The decoding process was described in

Figure 2.5, as well as in Figure 6.3 (a). The bits in the TPP codeword matrix are recorded

column-wise. After Viterbi detection of the equalized channel, the parity/syndrome bits
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are calculated and decoded to an outer code codeword. An extended Viterbi trellis that

combine the channel states and the parity bit state is then used to process the channel

outputsri again. The output of such a detector is the estimate of the TPPcodeword,

which satisfies the TPP code constraint.

Soft-Decision Decoding of TPP Codes

In this part, we will propose two soft-decision decoding algorithms for TPP

codes used for binary ISI channels.

In Figure 6.2, two system diagrams are shown. In (a), the bitsin the TPP code-

words are sent column-wise, which is the same as in [5]. However, we can also send

the bits in the codewords row-wise, which is equivalent to inserting an interleaver at the

transmitter side, as shown in (b). Of course, the hard decision decoding proposed in [5]

can only be used for the system in (a), because the extended Viterbi trellis requires that

the bits in the codewords are sent column-wise.

One method to achieve soft-decision decoding is to use the BCJR[8] algorithm

instead of the Viterbi algorithm, and a soft input soft output (SISO) decoding algorithm

instead of the hard decision decoder for the outer code of theTPP code, as shown in

Figure 6.3(b). We call this decoder theExt-BCJR decoder. Just as was the case for

hard decision decoding, this decoder can only be applied to the system in Figure 6.2(a),

because of the use of the extended trellis in the “Extended BCJR” block.

The “Channel BCJR” block in Figure 6.3 (b) applies the BCJR algorithm to

the trellis matched to the ISI channel. It outputs soft information for each bit in the

codeword, i.e., the probability of each bit being a 1 or 0 can be obtained. The next step

is to calculate the probability that the syndrome bits is a 1 or a 0. We assume that the

bits in each column of the TPP codeword are independent. Denote columni of the TPP

codeword byci as before, and denote each bit in this column bycj,i, j = 1, ..., Nb.

Denote the syndrome, in this case only one bit, of columnci by ai. The probability that
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(b)  ISI channel with AWGN, with interleaver. 

(Bits in the TPP codewords are sent row-wise.)

rk

rk

Figure 6.2 System diagrams using TPP code. (a) without interleaver; (b) with
interleaver.

ai is a 0 can be expressed as follows:

Pr(ai = 0) =
∑

even number of 1’s in
{bj , j=1,...,Nb}

∏

j

Pr(cj,i = bj|r) (6.13)

wherer is the channel output sequence.

The probabilities of the syndrome bits are then used as the input to the SISO de-

coder of the outer code. The decoder output provides the softinformation of the updated

probability of the syndrome bits. These information are used asa priori information in

an extended trellis of the BCJR algorithm to update the probability of each bit in the

TPP codeword.

The extended trellis is a combination of the channel trellisand the parity bit trel-

lis. Figure 6.4 shows an example where the channel memory is two. Each state in the

extended trellis includes the two input bits as the channel memory, as well as a bit repre-

senting the accumulated parity bitpk, wherepk+1 = pk+xk, k = 1, 2, ..., NaNb; p0 = 0.
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Figure 6.3 Hard and soft decision decoder structures for TPPcode for an ISI channel.
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Given the updated probabilities ofai, i = 1, ..., Na, the probability ofpiNb
, i =

1, 2, ..., Na, can be calculated by the following relationship:

Pr(piNb
= 0) = Pr(p(i−1)Nb

= 1)Pr(ai = 1) + Pr(p(i−1)Nb
= 0)Pr(ai = 0) (6.14)

i = 2, ..., Na

Pr(pNb
= 0) = Pr(a1 = 0) (6.15)

Pr(piNb
= 1) = 1 − Pr(piNb

= 0) i = 1, ..., Na. (6.16)

The probabilities ofpiNb
, i = 1, 2, ..., Na are used asa priori information of

the BCJR algorithm on the extended trellis. In the log-domain BCJR algorithm [9], the

log-likelihood ratio (LLR) ofpiNb
is added to the branch metric, LLR of the conditional

transition probability. However, this information is onlyavailable for branches at time

iNb. For branches at other times, the LLR ofpk is zero.

The output of the “Extended BCJR” block is thus the updated soft information

for each bit of the TPP codeword. The codeword can be recovered from this soft infor-

mation.

Another decoding structure for the TPP code, as shown in Figure 6.3(c), utilizes

the Tanner graph [10] structure of the inner code. The graph structure of the decoder is

shown in Figure 6.5. A message passing algorithm used to decode LDPC codes [11],

such as the sum-product algorithm, can be used on the Tanner graph of the inner code

to exchange information between the “channel BCJR” block and the “SISO decoder for

the outer code” block. With this structure, an iterative decoding processis also possible.

The soft information can be passed back and forth on the graph.

Unlike the Ext-BCJR algorithm, the second decoding algorithm, denoted byMP-

BCJR algorithm, can be applied to both the system with and withoutthe interleaver.

The type of SISO decoder for the outer code in both algorithmsdepends on the

type of the outer code. For example, if the outer code is an LDPC code, a graph based

message passing algorithm can be used. If the outer code is a convolutional code, the

BCJR algorithm can be used. If the outer code is a Turbo code, an iterative Turbo

decoder can be used.
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Figure 6.4 Combination of the channel trellis and the accumulated parity bit trellis.

6.1.3 Simulation Results

In this section, we will give an example of the soft-decisiondecoding of a TPP

code over a PR4 channel with AWGN. The inner code of the TPP code is a single parity

check code of length 10 bits. The outer code is a systematic convolutional code of rate

1/2, with the generator matrixG(D) = [1, 1 + D + D3]. The block length of the

convolutional code is set to 468 bits. Thus the codeword sizeis 10 × 468 bits, which is

about the size of a typical sector of hard disk drives. The rate of the code is0.95.

We compared the performance of the following cases in Figure6.6: (1) uncoded

detection; (2) the data bits are coded with a TPP code, without an interleaver, and de-

coded using the hard decision decoding; (3) data bits are coded a TPP code, without an

interleaver, and decoded using the Ext-BCJR algorithm; (4) data bits are coded with a

TPP code, without an interleaver, and decoded using the MP-BCJR algorithm, with one

iteration; (5) data bits are coded with a TPP code, with an interleaver, and decoded using
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Figure 6.5 The graph structure of the MP-BCJR algorithm.

the MP-BCJR algorithm, with one, two and three iterations.

We can see that the performances of the soft-decision decoding for the cases

without interleavers are very close to the performance of the hard decision decoding.

The Ext-BCJR algorithm performs only about 0.12dB better thanhard decision decod-

ing and the MP-BCJR algorithm performs even worse than hard decision decoding.

However, if we use the interleaver, the performance is improved by about 1dB.

With the interleaver, the burst errors can be spread over multiple columns rather than in

one column, to be checked by multiple parity check bits. At the same time, the bits in

one column of the TPP codeword are more independent comparedto the case without

the interleaver. The message passing algorithm works better for this scenario because it

assumes the input bits to be independent.

Multiple iterations are also examined for the MP-BCJR algorithm for the system

with an interleaver. Because of the weak inner code, we can seethat the performance
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Figure 6.6 Performance comparison of several decoding algorithms for systems with
and without interleaver.

does not vary much with one, two and three iterations.

6.2 Generalized Error-Locating Codes and List Decod-

ing

In [6],a GEL code was proposed as a coding scheme that can substitute for a RS

code in the magnetic recording channels. In this section, wewill briefly introduce the

advantage of the GEL code through examples and then propose alist decoding algorithm

for the GEL code. The performance of the list decoding algorithm will be compared to

one of the decoding algorithms in [6], using a simple GEL codeexample for a binary

symmetric channel (BSC) and an AWGN channel.
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6.2.1 Introduction to Generalized Error-Locating Codes

An EL code has two component codes. One is the inner code and the other is the

outer code. In the definition of a GEL code, there are two sets of component codes, the

set for the inner codes and the set for the outer codes.

A GEL code of orderL is a combination ofL outer codesA(l)(pq
(l)
a ; Na, K

(l)
a ,

d
(l)
min,a) andL inner codesB(l)(p; Nb, K

(l)
b , d

(l)
min,b), wherel is from 1 to L. All the outer

codes have the same code lengthNa and all the inner codes have the same code length

Nb.

Let the GEL codeword also be represented in the form of anNb ×Na matrixC.

We use the same notation for the columns ofC as for the EL codes. Therefore, the GEL

code requires that the syndromes of each level

a(l) = (a
(l)
1 , a

(l)
2 , ..., a

(l)
Na

) = H
(l)
B C, for i = 1, ..., L (6.17)

whereH
(l)
B is the parity check matrix for thelth inner code and syndromesa(l)

i , i =

1, ..., Na are symbols in GF(pq
(l)
a ), represented by the vectors with elements in GF(p), to

be a codeword of the codeA(l).

The parity check matrices of the inner codes are restricted to have the following

structure:

HB =















H
(L)
B

H
(L−1)
B
...

H
(1)
B















=















Q
(L)
0 I(L) 0 · · ·

Q
(L−1)
0 Q

(L−1)
1 I(L−1) 0 · · ·

...
...

. . . . ..
...

Q
(1)
0 Q

(1)
1 · · · Q

(1)
L−1 I(1)















(6.18)

whereI(l) is the identity matrix of sizeq(l)
a × q

(l)
a , for l = 1, ..., L.

Writing the codeword in vector form by taking the elements inC column-wise,

we can derive the parity check matrix for the GEL code using the tensor products of the

inner codes and the outer codes, as for the EL codes. Any codeword of a GEL code is

a codeword of the EL code with inner codeB(l) and outer codeA(l), for l = 1, ..., L.

Therefore, the codeword must satisfy all the parity check equations of all of these codes.
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The parity check matrix for the GEL code is thus formed by combining the parity check

matrices of all the individual EL codes:

HGEL =















H
(L)
A ⊗ H

(L)
B

H
(L−1)
A ⊗ H

(L−1)
B

...

H
(1)
A ⊗ H

(1)
B















. (6.19)

The dimension ofHGEL is
∑L

l=1(Na − K
(l)
a )(Nb − K

(l)
b ) by NaNb. The rate of

the GEL code is thusR = 1 −
∑L

l=1(Na−K
(l)
a )(Nb−K

(l)
b

)

NaNb
.

Encoding of GEL codes

GEL codes can be encoded using a procedure similar to that used for EL codes.

Using the parity check matrix in equation (6.18), the encoding of the GEL code can be

conducted level by level fromL to 1.

We assume that the encoders for the outer codesA(l) are systematic encoders.

The encoding procedure can be described as follows:

1. Put the information symbols in the white spaces of the codeword matrixC, as

shown in Figure 6.7.

2. Use the encoding procedure of the EL codes in Section 6.1.1for level L, i.e.,

using the inner codeB(L) to calculate the syndromes from column1 to column

K
(L)
a , then encode the syndromes using the outer codeA(L), and finally calculate

the parity symbols in positionPL, as marked in Figure 6.7. Since the parity check

matrix of the inner code is of the form shown in equation (6.18), the syndromes

from column1 to columnK
(L)
a do not depend on the parity symbols of other

levels.

3. By repeating the same procedure as in levelL, we fill in parity symbols in position

PL−1 to P1 sequentially, using inner and outer codes from levelL − 1 to 1. The

parity symbols filled into the codewords from higher levels will be used as the

information symbols for the lower levels.
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Figure 6.7 Encoding of the GEL codes.

Thus, the parity symbols all can be filled in the gray area and the encoding

procedure is finished.

Decoding of GEL codes

The decoding procedure is more flexible. For example, we can calculate the

syndromes for each inner code and decode the outer code of each level separately. The

corrected syndromes are then used to correct the symbols of each column using the

code corresponding to parity check matrixHB in equation (6.18). Fahrner proposed

several decoding procedures in [6], considering the fact that some of the outer codes

can correct more errors than others. A level-by-level hard-decision decoding procedure

was proposed as follows. Here, we assume that the outer codesare ordered such that

K
(i)
a ≤ K

(j)
a if i < j, and the error correcting capability of codeA(i) is greater than
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A(j). Therefore, we now start from level1 of the inner and outer codes:

1. Calculate the syndromesa′(1)
i , i = 1, ..., Na for the received wordC′, using ma-

trix H
(1)
B . Decode using outer codeA(1). If the number of erroneous columns in

the wordC′ is larger than(d(1)
min,a − 1)/2, the outer code can not correct all the

errors. In this case, declare a decoding failure. Otherwise, the syndromesa′(1)
i

can be corrected aŝa(1)
i . Since the outer codeA(1) has the most powerful error

correction capability among all the outer codes, it can correct the largest number

of column errors.

2. Now, we erase the columns which are determined to have errors by codeA(1).

Calculatea′(2)
i for those unerased columns. If the number of erased columns is less

thand
(2)
min,a − 1, the codeword can be recovered. Combineâ(1) andâ(2) together,

to form the syndrome for the code with parity check matrix

H
1,2
B =

(

H
(2)
B

H
(1)
B

)

. (6.20)

Thus, if H1,2
B can correctt errors, the erroneous columns that contain no more

thant errors can be corrected. The reason we combine the syndrome of the in-

ner codesB(1) andB(2) together is that the error correcting capability is greater

than any individual code. Now the remaining codeword matrixC has only erro-

neous columns which have more thant errors. Therefore in the following level of

decoding, the outer codes will see less errors.

3. Go to the next level of inner and outer codes decoding. At every level, we could

choose either to decode the inner code of the erroneous columns, or to leave those

columns as erasures for the next level of outer code decoding. Of course, at the

last level, we will decode the inner code corresponding to parity check matrixHB.

In this process, any failure of the outer code decoding couldresult in decoding failure

of the GEL code.

For a channel where the erroneous columns that contain more symbol errors are

less likely to appear, the GEL code can be used to reduce the number of parity symbols.
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Of course, the GEL code needs to be designed specifically for the given channel. For

example, let the GEL codeword size be31 × 31, and further assume that the channel is

a binary channel which has the following properties:

• The number of erroneous columns in one codeword is almost always smaller than

7.

• The number of erroneous columns in one codeword that have more than 1 error is

almost always smaller than 3.

• The number of erroneous columns in one codeword that have more than 2 errors

is almost always smaller than 1.

• There is almost never a column having more than 3 errors.

Then, we can design a GEL code with three levels. The inner codes are BCH

codes with code length 31. The parity check matrixHB is the parity check matrix of a

BCH code(2; 31, 16, 7) whose rows are arranged such thatNb − K
(l)
b = 5, l = 1, 2, 3,

codeB(1) has minimum distance 3, and the code corresponding to paritycheck matrix

H
1,2
B has minimum distance 5. Therefore, the first, second and third level of decoding of

the inner codes can correct 1,2 and 3 errors, respectively, in each column.

The outer codes are RS codes over GF(25), with length 31. Using the decoding

procedure mentioned above, the outer code can be designed toadapt to the channel error

statistics as follows:

• CodeA(1) needs to correct at most 7 errors. Setd
(1)
min,a = 2 × 7 + 1 = 15.

• CodeA(2) will need to recover at most 7 erasures if we choose not to decode.

Therefore, we could set thed(2)
min,a = 7 + 1 = 8.

• CodeA(3) will need to recover 1 erasure if the level 2 column-wise decoding

reports the failure on the 3-error columns. If it decoded to an incorrect codeword,

the code needs to handle 1 error. Therefore, we could set thed
(3)
min,a = 2×1+1 =

3.
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The code rate for such a GEL code is about 0.88. However, if we use a shortened RS

code over GF(231), which can correct any number of errors in each column, we will

need to have 14 parity symbols to be able to correct 7 erroneous columns. The rate of

such a RS code is only 0.55. Of course, this comparison is not entirely fair. However

we can have a sense of how the GEL code could have an advantage over the RS code

for some channels. In [6], more detailed simulations and comparisons of the GEL code

over some magnetic recording channels were given.

6.2.2 List Decoding Algorithm for GEL Code

With the development of new decoding techniques for RS code, such as the

Guruswami-Sudan list decoding [12] and the Koetter-Vardy soft-decision decoding [13],

we are able to improve the performance of the GEL codes which use the RS codes as the

outer codes. As we have mentioned in Section 6.2.1, the decoding failure of any outer

codes will result in the decoding failure of the GEL code. Thus, by improving the decod-

ing performance of the outer codes, we are able to improve thedecoding performance

of GEL codes.

In this section, we apply the Guruswami-Sudan (G-S) list decoding algorithm to

the RS code decoding in the GEL code. A detailed description ofthe G-S algorithm can

be found in [14]. Instead of obtaining one codeword for each outer code decoding, a list

of codewords will be obtained at each level of outer code decoding. Each codeword in

the list will be a candidate in the next level of decoding. At the last level, a list of TPP

codewords will be obtained.

A simple GEL code of order 2 is simulated. The GEL code description is as

follows:

Code size: 7 × 7, na = 7 andnb = 7

Code order: 2

Inner codes: B1(7, 4; dmin = 3), Hamming code

B1,2(7, 1; dmin = 7), Repetition code
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HB =

























1 1 0 0 0 0 0

1 0 1 0 0 0 0

1 0 0 1 0 0 0

1 1 1 0 1 0 0

0 1 1 1 0 1 0

1 1 0 1 0 0 1

























Outer codes: A1(GF (23); 7, 3; dmin = 5), Reed-Solomon code;

A2(GF (23); 7, 4; dmin = 4), Reed-Solomon code

The performance of the list decoding algorithm is compared to the performance

of the hard decision decoding algorithm given previously for the binary symmetric chan-

nel in Figure 6.8 and the AWGN channel Figure 6.9. We can see that the decoding

performance is improved in both cases by the list decoding algorithm.

6.3 Conclusions

In this chapter, we first presented soft-decision decoding algorithms for the TPP

codes and their performances in the ISI channel with AWGN. Theperformance can be

improved by using an interleaver and there is not much need todecode with multiple

iterations. Of course, the algorithm can be applied to the magnetic recording channels

with other noise sources. The algorithms can also be appliedto systems where soft-

decision decoding is available for a code concatenated to a TPP code, such as a LDPC

code or a RS code with soft-decision, to help improve the performance.

The outer code of the TPP code is not limited to convolutionalcodes. A stronger

outer code can of course help improve the performance of the TPP code. However, since

the inner code is very weak, the performance improvement might be limited. To verify

this conjecture, further research and experiments will be needed.

In the second part of the chapter, we presented a list decoding algorithm for

the GEL code. However, the soft-decision decoding algorithm can probably be further
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Figure 6.8 Comparison between Farhner’s hard decision decoding and the list decoding
of the GEL code in BSC channel.

developed, using the soft decision decoding of the RS code andthe information provided

by each level of the inner code.
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