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Abstract

Probabilistic Methods for Single Individual Haplotype Reconstruction:
HapTree and HapTree-X

by

Emily Rita Berger

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Lior Pachter, Chair

Identifying phase information is biomedically important due to the association of complex
haplotype e↵ects, such as compound heterozygosity, with disease. As recent next-generation
sequencing (NGS) technologies provide more read sequences, the use of diverse sequencing
datasets for haplotype phasing is now possible, allowing haplotype reconstruction of a single
sequenced individual using NGS data. Nearly all previous haplotype reconstruction stud-
ies have focused on diploid genomes and are rarely scalable to genomes with higher ploidy.
Yet computational investigations into polyploid genomes carry great importance, impacting
plant, yeast and fish genomics, as well as the studies of the evolution of modern-day eukary-
otes and (epi)genetic interactions between copies of genes. Furthermore, previous diploid
haplotype reconstruction studies have ignored di↵erential allele-specific expression in whole
transcriptome sequencing (RNA-seq) data; however, intuition suggests that the asymmetry
in this data (i.e. maternal and paternal haplotypes of a gene are di↵erentially expressed)
can be exploited to improve phasing power. In this thesis, we describe novel integrative
maximum-likelihood estimation frameworks, HapTree and HapTree-X, for e�cient, scalable
haplotype assembly from NGS data. HapTree is built to recover an individual polyploid
genome from genomic read data, and HapTree-X aims to reconstruct a diploid genome or
transcriptome from RNA-seq and DNA-seq data by making use of di↵erential allele-specific
expression. HapTree-X is the first method for haplotype assembly that uses di↵erential
expression, newly allowing the use of reads that cover only one SNP.

For triploid and higher ploidy genomes, we demonstrate that HapTree substantially im-
proves haplotype assembly accuracy and e�ciency over the state-of-the-art; moreover, Hap-
Tree is the first scalable polyplotyping method for higher ploidy. As a proof of concept, we
also test our method on real sequencing data from NA12878 (1000 Genomes Project) and
evaluate the quality of assembled haplotypes with respect to trio-based diplotype annotation
as the ground truth. The results indicate that HapTree significantly improves the switch ac-
curacy within phased haplotype blocks as compared to existing haplotype assembly methods,
while producing comparable minimum error correction (MEC) values. We evaluate the per-



2

formance of HapTree-X on real sequencing read data, both transcriptomic and genomic, from
NA12878 (1000 Genomes Project and Gencode) and demonstrate that HapTree-X increases
the number of SNPs that can be phased and sizes of phased-haplotype blocks, without com-
promising accuracy. We prove theoretical bounds on the precise improvement of accuracy
as a function of coverage which can be achieved from di↵erential expression-based methods
alone. Thus, the advantage of our integrative approach substantially grows as the amount
of RNA-seq data increases.
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Chapter 1

Introduction

The human genome has been successfully sequenced using whole genome shotgun sequencing
technology, creating a human reference genome. The average human’s genome agrees with
the reference genome in approximately 99.5 % of locations. The variation between genomes
accounts for the biological di↵erences between individuals, and thus much important genetic
information is not contained within the reference genome. A main goal of computational
genomics is to understand these di↵erences and their impact.

Much variation is contained within the genotypes of an individual at single nucleotide
polymorphism (SNP) sites. Methods for genotyping, or determining the set of alleles inher-
ited from an individual’s parents at a particular locus, have been around the decades. The
haplotypes of an individual are the sequences of these alleles, indicating on which homologous
chromosome each allele falls, and thus contain more information than the genotypes alone.

Determining haplotypes is biologically and computationally more di�cult than determin-
ing the genotypes alone. The problem of single individual haplotype assembly is to determine
the haplotypes of an individual using sequenced reads (short pieces of his or her genome or
transcriptome.) This thesis introduces novel probabilistic algorithms for determining haplo-
type blocks in several di↵erent biological contexts.

1.1 Diploid Haplotypes

Humans are diploid organisms, having two copies of each chromosome (other than the sex
chromosomes), or two haplotypes. In almost all locations, the two haplotypes belonging to an
individual are identical. The locations in the genome where the haplotypes can commonly
vary throughout the population correspond to the “single nucleotide polymorphisms”, or
SNPs. For any individual, SNP sites where the same allele occurs on each haplotype are
called homozygous SNPs, and SNP sites where di↵erent alleles occur on each haplotype are
called heterozygous SNPs. In the case of heterozygous SNPs, we call one allele the “wild”
type or reference allele and one allele the “mutant” or alternative allele.
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1.2 Polyploid Haplotypes

While humans are diploid and have two copies of each chromosome, this is not the case for
all organisms. Unlike humans, plants and certain fish (among other organisms) may have
more than two copies of each chromosome; these species are considered to be polyploid. For
example, salmon, goldfish, and salamanders are polyploid; wheat, depending on the strain,
can be diploid, tetraploid (4 copies) or hexaploid (6 copies). More generally, we say a species
is k-ploid if it has k copies of each homologous chromosome.

Throughout this thesis, we assume that the ploidy is always known, but this is not
necessarily the case in general. Determining ploidy is a complex problem in its own right
and shares many features with several problems in the field of metagenomics. Another
complexity that can occur in relation to polyploid genomes is non-constant ploidy across a
genome: that is, the ploidy varies throughout the genome, such as in tumor cells or even in
full chromosomes. The latter is the case for Down syndrome for example, which is caused
by an individual having three copies (triploid) chromosome 21.

1.3 RNA vs DNA

While DNA and RNA are both chains of nucleotides, their functions and structure are
distinct. Normal cellular function consists of replication of DNA, translation of DNA into
RNA, and transcription of RNA into proteins. DNA once translated becomes messenger
RNA (mRNA) and is spliced into exons (coding regions) and introns (non-coding regions).
It is possible for there to be multiple splicings of RNA into exons; we refer to these splicings
as isoforms. Unlike DNA, RNA is usually single stranded and the two strands may be
expressed di↵erently. In this thesis, we design an algorithm, HapTree-X, which leverages
this di↵erential expression to preform phasing.

1.4 Related Problems and Methods

Various sources of information can be utilized for the computational identification of an
individual’s diplotype/polyplotype: pedigree (e.g. trio-based phasing) [31, 32, 8], population
structure of variants (e.g. phasing by linkage disequilibrium) [8, 30, 29, 12] and more recently
by identity-by-descent in unrelated individuals [9, 4], as well as sequencing read datasets [5,
3, 18, 6, 14]. Among these approaches, methods for sequence-based haplotype phasing are
the only viable approach for haplotype phasing on a single individual member of a species
(assuming homologous chromosomes are sequenced together), as other approaches either
require family members or a population.

For an individual diploid genome, the problem of reconstructing the diplotype using
sequence information, the diploid phasing problem, is equivalent to the identification of the
sequence of alleles on either parental haplotype. If this sequence is correctly inferred, then
the other haplotype will automatically carry the corresponding opposite alleles (reference or



CHAPTER 1. INTRODUCTION 3

alternative). Solving an error-free version of the diploid haplotype reconstruction problem
is straightforward: the haplotype of each connected (by reads) component of heterozygous
SNPs can be obtained by propagating allele information within reads. In reality, however,
sequencing errors as well as false read mappings cause conflicts within sequence information,
requiring a mathematical formulation of the haplotype reconstruction problem.

Among various formulations suggested for this problem, the most commonly used is an
NP-hard minimum error correction (MEC) definition [20, 22], which aims to identify the
smallest set of nucleotide changes required within mapped fragments that would allow a
conflict-free separation of reads into two separate homologous chromosomes (or a bipartite
separation of the fragment conflict graph). Some of the solutions proposed for this problem
include: HapCUT [5], an algorithm for optimizing MEC score based on computing max-
cuts of the fragment graph; Fast Hare [24], a heuristic that clusters reads into two sets
in a greedy fashion, and HapCompass [3], a spanning tree based approach for minimizing
fragment conflicts.

1.5 Motivation

While knowing the haplotypes of an individual has value in its own right, there are also
specific applications from having this information. For example, biomedical studies that
focus on certain autosomal recessive disorders must determine whether or not a given gene
is a compound heterozygote. In order to do so, the individual’s haplotypes, in addition to
the genotypes, must be known.

Compound Heterozygosity

By running standard genotype calling tools, it is possible to accurately identify the number
of “wild type” and “mutant” alleles (A, C, G, or T) for each single-nucleotide polymorphism
(SNP) site. However, in the case of two heterozygous SNP sites, genotype calling tools
cannot determine whether “mutant” alleles from di↵erent SNP loci are on the same or
di↵erent chromosomes (i.e. compound heterozygote). While the former would be healthy, in
many cases the latter can cause loss of function; it is therefore necessary to identify the phase
(phasing) — the copies of a chromosome on which the mutant alleles occur — in addition
to the genotype (Figure 1.1).
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Figure 1.1: Loss of function in di↵erent polyplotypes of a sample pentaploid genome

As the loss of function is often determined by whether a healthy copy of a gene exists,
knowing the genotype vector is su�cient if there is a single SNP site. In the case of two
SNP sites however, the genotype vector cannot be used to unambiguously determine loss of
function, and phasing is required.

1.6 Single Individual Haplotyping: The Problem

The problem of single individual haplotyping is to determine the haplotypes of an individual
from next-generation sequencing (NGS) data. This data contains contiguous DNA (or RNA)
segments, for which a mapper may then be used to map these fragments to a reference
genome. While these fragments have been mapped to locations within the genome, we have
no information regarding which homologous chromosome they were sequenced from, except
that each fragment is derived from a single haplotype. A useful fragment is therefore one
which covers at least two heterozygous SNPs, and thus contains information about the phase
of the haplotype from which it was sequenced.

Approaches to haplotype assembly focus on reconstructing the haplotypes from sequenced
fragments which cover more than one heterozygous SNP to determine which alleles fall on
which homologous chromosomes. Due to the large distances which can occur between SNPs,
the entire haplotypes cannot actually be determined, but rather pieces of the genome can
be phased; we refer to these pieces as phased haplotype blocks. For details and the formal
definition of a phased haplotype block, she section 2.1.
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AA?CG - - - - TG?CTAA - - - - CGCT?TTA - - - - AGG?GTG
AA?CG - - - - TG?CTAA - - - - CGCT?TTA - - - - AGG?GTG

Sequencing

AACCG - - - - TGCCT
AGCG - - - - TGTCTAA

GCCTAA - - - - CGCTTTTA - - - - AGGAG
CTGTTA - - - - AGGCGTG

Haplotype Assembly

AACCG - - - - TGCCTAA - - - - CGCTTTTA - - - - AGGAGTG
AAGCG - - - - TGTCTAA - - - - CGCTGTTA - - - - AGGCGTG

Figure 1.2: Sequence and Haplotype Assembly

Diploid

Methods for phasing a diploid genome in the past have generally aimed to minimize the
number of conflicts between sequenced reads; any two reads conflict if once assigned to a
particular haplotype they disagree at an overlapping SNP locus. If there were no errors in
reads, it would be trivial to find a solution with no conflicts. Unfortunately reads are not error
free, and in the case of gapped reads minimizing the number of conflicts, or minimum error
correction (MEC), is known to be computationally intractable. We take a di↵erent approach,
instead attempting to find a solution of maximum likelihood, as opposed to minimum conflict.
We remark that if we assume uniform read errors and that each read covers only two SNPs,
a solution of maximum likelihood is one of minimum conflict, and vice versa.

Polyploid Variation

Unlike diploid genomes, computational identification of common chromosomal variants in
polyploid genomes using sequencing data has received little attention, except in the pio-
neering work of Aguiar & Istrail [4]. Polyploidy studies are of importance as they allow
a comprehensive investigation of variants within plant, fish, and yeast genomes and help
understand mechanisms of eukaryotic evolution. However, haplotype reconstruction in poly-
ploid genomes is fundamentally more complex, even in the error-free version of the problem
(without sequencing errors or false read mappings). Due to the newness of the NGS-based
biological research in polyploid genomes, the mathematical foundations of the polyploid
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phasing problem have not yet been established. The solution proposed by Aguiar & Istrail
for single individual polyplotyping problem is based on phasing all possible SNP loci pairs
independently while further consolidating this information in a separate stage in order to
infer a set of haplotypes.

Diploid phasing methods focus on a given list of heterozygous variants that are guaranteed
to contain a single reference allele, as well as an alternative allele (even assuming the simpler
case in which all heterozygous loci are bi-allelic). In contrast, in the polyploid phasing
problem, there is no such guarantee of a single type of heterozygous SNP. In the simplest
case where all SNP loci are bi-allelic, each heterozygous locus for a k-ploid chromosome
can potentially contain from 1 up to k � 1 alternative alleles within the heterozygous loci,
significantly increasing the complexity of the phasing problem in comparison to the diploid
case. Furthermore, in a diploid phasing setting, there are always two possible options for
phasing a pair of SNP loci, regardless of what other SNPs they are phased with. These
two options can be thought as parallel (alternative allele pairs and reference allele pairs are
matched within themselves) or switched (each alternative allele is matched with the other
reference allele). These two options are no longer su�cient when the genome contains more
than two copies of each chromosome, due to the fact that there are up to k! options when
merging a phased haplotype block with another.

RNA-seq variation

There are two major di↵erences between RNA-seq data and DNA-seq data which may both
be leveraged to produce a more powerful algorithm for haplotype reconstruction. Firstly,
in the case of DNA-seq data, both the maternal and paternal haplotypes are expressed
equally; this is not necessarily the case in RNA-seq data. RNA-seq data features di↵erential
haplotypic expression, or DHE: the maternal and paternal haplotypes are not necessarily
expressed at the same rate. DHE in the transcriptome can be exploited to improve phasing
power because SNP alleles within maternal and paternal haplotypes of a gene are present in
the read data at (di↵erent) frequencies corresponding to the di↵erential haplotypic expression
(DHE).

This asymmetry in the data due to di↵erential haplotypic expression not only contains a
significant amount of information, but furthermore allows us to make use of reads which cover
only one heterozygous SNP. To date, approaches that utilize RNA-seq data for phasing (or
DNA-seq data) (e.g., [25]) can only make use of reads covering 2 or more heterozygous SNPs,
as they repurpose existing genome phasing approaches which are based on sequence conti-
guity. However, only 10% of reads that overlap a heterozygous SNP fall into this category
(Table 5.2). Thus, current methods are discarding 90% of potentially useful information.
Though these reads do not overlap multiple SNPs, as do those conventionally used for phas-
ing, they provide insight into di↵erential haplotypic expression within genes. An advantage
of using reads covering only a single SNP is that phasing is not limited by the length of the
read or fragment, nor the transcriptomic or genomic distance between SNPs.
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A second important feature of RNA-seq data, is that compared to DNA-seq, RNA-
seq allows for longer-range phasing due to RNA splicing in the transcriptome. While the
length of the fragment is the same in RNA-seq experiments as in DNA-seq experiments, the
fragments only cover exons, and therefore connected SNPs much further apart in the genome
that previously possible. This ultimately leads to larger phased blocks and more SNPs that
can be phased.

1.7 Data

HapTree and HapTree-X were designed to perform phasing of a genome or transcriptome
using Next-Generation Sequencing (NGS) data. Several NGS methods have been developed
including but not limited to Sanger sequencing, 454, and Illumina. These methods vary
both in what is performed at a biological level and what sort of data is generated. In all
cases, a DNA (or RNA) sample is broken up into small fragments which can be sequenced,
generating millions of reads consisting of a (possibly paired-end) sequence of nucleotides.
The length of the read (total number of nucleotides sequenced) as well as the rates of error
(probability of reporting an incorrect nucleotide) vary across methods, as do the costs per
base pair sequenced.

In the case of genomic sequencing data (DNA-seq), haplotypes are expressed equally, and
each read is theoretically equally likely to have come from any haplotype. In the case of
transcriptomic sequencing data (RNA-seq) however, genes may be di↵erentially expressed.
Furthermore, because of the exon/intron spliced structure of RNA, RNA-seq reads can cover
pairs of SNPs at much greater genomic distance than DNA-seq reads of the same length and
insert size because the RNA-seq read is restricted to the exons in the transcriptome.

To run HapTree or HapTree-X, the following data types are required:

Reference Genome

The reference genome must be in the .fa format and contains a guess about the information
of the common reference alleles for an individual in the population.

Variant Calls File (VCF)

The VCF file contains all the necessary information about the homozygous and heterozygous
SNP sites and the reference and alternative alleles for each SNP. For polyploid genomes, the
genotypes are extremely useful to have within the VCF, though not necessary.
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BAM/SAM Format

A BAM or SAM file contains NGS read data. To use with HapTree(-X), the BAM or SAM
file ought to contain uniquely mapped reads and we supply a tool, Chair, to translate the
SAM file into an easy to read list of reads restricted only to the heterozygous SNP sites
which they cover. Chair takes as input a VCF file, reference genome, and SAM file.

Gene Model (BED Format)

To use HapTree-X, a gene model must be assumed in order to determine what SNPs blocks
may be phased and where DHE ought to be constant. HapTree-X uses a BED format as
input, though the di↵erent formats for gene models are easily translated into one another.

1.8 Overview

This thesis has been broken down into six chapters, including this introduction. The remain-
ing chapters are as follows.

Chapter 2: Relative Likelihood Models: HapTree

In this chapter we build the theoretical framework for HapTree, including a relatively like-
lihood score which will be the metric that HapTree aims to maximize throughout. This
likelihood score results from a model we derive for the probability that a haplotype is the
true haplotype given a read dataset. We apply Bayes’ theorem and condition instead on the
haplotype in question and attempt to model the probability of generating the read dataset
given a particular haplotype. Furthermore, we discuss how to this model can be extended in
a natural way to handle the cases of multi-allelic SNPs, unknown genotypes, and partially
known haplotypes.

Chapter 3: Relative Likelihood Model: HapTree-X

We generalize the theory from Chapter 2 to handle the case of RNA-seq data. In this context,
the main di↵erence between RNA-seq and DNA-seq is that in RNA-seq data, maternal and
paternal haplotypes may be di↵erentially expressed. The HapTree model assumes all reads
are equally likely to have come from the maternal or paternal haplotype (in the diploid case);
we generalize that model to accommodate this non-uniformity.

We demonstrate how to estimate the di↵erential expression for each gene by formulating
a Hidden Markov Model and applying the forward algorithm to find the maximum likelihood
rate of di↵erential expression. These estimates are to determine which genes we believe have
su�cient di↵erential expression to be phased using this method. If a gene is found to have
su�cient di↵erential expression, this estimate is then used as input for the relative likelihood
function.
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Finally, we define the event concordant expression which measures whether di↵erential
expression is occurring as expected. We compute the probability of concordant expression
as well as show that under very mild assumptions, the solution of maximal likelihood is that
with concordant expression everywhere.

Chapter 4: Maximization of Relative Likelihood Score

We aim to maximize both the relative likelihood models for HapTree and HapTree-X in the
same way. In the most general case, to provably find the solution of maximal likelihood, one
would need to enumerate all possible haplotype blocks or use exact dynamic programming,
which for some cases is intractable. Therefore, we develop an algorithm which in practice
finds solutions of high likelihood quickly. Our solution is based on finding high likelihood
phases for the first m+1 SNPs, conditioned on a collection of high likelihood phases for the
first m SNPs.

Chapter 5: Simulated and Experimental Results

To determine the accuracy of HapTree and HapTree-X, we tested both on simulated and
experimental data. For the case of HapTree, we compared against HapCut [5] on NA12878
(1000 Genomes Project) data and found that HapTree slightly outperformed HapCut both
in accuracy and speed. HapTree was designed specially for the polyploid case; we simulated
polyploid data and compared HapTree to HapCompass [3, 4] and found that HapTree dras-
tically outperformed HapCompass. We show that MEC score, which was previously used
in many diploid phasing algorithms [5], is not sensitive enough of a metric to be used for
polyploid phasing.

For HapTree-X, we demonstrate that as coverage increases, so does the theoretical accu-
racy. Because HapTree-X does not require all useable reads to cover at least two SNPs, we
are able to increase the number of SNPs phased as well as the lengths of the phased blocks.
We compared HapTree-X to HapCut to find that not only were the total SNPs phased and
block lengths increased as expected, but that phasing accuracy increased substantially as
well. Furthermore, HapTree-X takes in several parameters to determine how stringent to be
with respect to which SNPs it elects to phase; we show that accuracy behaves as expected
as a function of these parameters.

Chapter 6: Phasing with Multiple Isoforms

In Chapter 3 of this thesis, to perform phasing based on the di↵erential expression of a gene,
we restrict to phasing subsets of the SNPs in the gene such that each SNP is covered by the
same set of isoforms. This condition is trivially satisfied when a gene has only one isoform,
but fails to be satisfied for many non-trivial (size greater than one) subsets when a gene has
multiple isoforms.
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In this chapter, we investigate how one can attempt to reconstruct haplotypes in the
presence of multiple isoforms. We begin by modeling the proportions of reference and alter-
native alleles (at the SNP loci of a particular gene) expected to be observed in an idealized
RNA-seq dataset. For a given gene, assuming the structure of its isoforms and their quantifi-
cations are known, we derive conditions describing when a particular haplotype is a feasible
haplotype given an observation of allele proportions. A haplotype is a feasible haplotype
when it is (mathematically) possible for it to have been the underlying haplotype given the
observation of allele proportions.

We extend this model to incorporate noisy di↵erential expression and investigate (for
GM12878 transcriptome fragments sequenced from the nucleus) how often there is a unique
feasible solution, and when that solution is correct with respect to the platinum phased
Illumina vcf file [1]. We find that at this time, certain SNP pairs can be very accurately
phased in the presence of multiple isoforms: those which satisfy various error and coverage
thresholds. Unfortunately, a small percentage of all SNP pairs satisfy those constraints.
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Chapter 2

Relative Likelihood Models: HapTree

2.1 Definitions and Notation

We describe below the problem of sequence-based single individual haplotype assembly for
polyploid (and diploid) genomes and provide basic technical notation that will be useful for
describing our method.

Genotypes

We assume for now that each SNP locus to be phased is bi-allelic (i.e. contains only two
possible alleles, one being the reference allele). We further assume that for each SNP locus
s, the genotype of s is known and is defined to be the number of chromosomes carrying
the alternative allele (denoted by g(s)). For diploid haplotypes, the genotype will be 0 for
homozygous SNPs (which need not to be phased as the same allele occurs on both copies on
the homologous chromosomes) and 1 for heterozygous SNPs (there is always one reference
allele and one alternative allele at each locus). In the polyploid case, let k denote the
ploidy, then g(s) can range from 1 to k � 1 for heterozygous loci s. We note that these two
assumptions are made for the sake of simplicity in describing our model. At the end of this
chapter we discuss how to update our model to the general case.

Reads

We denote the sequence of observed nucleotides of a fragment simply as a “read” (indepen-
dent from single/paired-end reads and sub-reads of a strobe read structure). The set of all
reads is denoted as R. We define a read r 2 R as a vector with entries r[i] 2 {0, 1,�}
where a 0 denotes the reference allele, a 1 the alternative allele, and a � indicates one of
two possibilities: First, that the read does not overlap with the corresponding SNP locus, or
second, that neither the reference nor alternative allele is present and hence there must be
a read error. A read r 2 R contains a SNP s if r[s] 6= �. A read can also be represented as
a dictionary or mapping with keys the positions (from amongst the SNPs to be phased) of
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SNP loci it contains and values of either reference allele or alternative allele, represented by
0 and 1 respectively (e.g. r = {3:0, 4:1, 5:0, 8:1, 9:1}).

Read Errors

As current sequencing technologies generate read data with a certain rate of sequencing er-
rors, some of the positions within a read likely contain false nucleotide information. Among
these erroneous bases, unless they are located at SNP loci and contain opposite allele in-
formation, we ignore them by representing them with �, and thus keep only confounding
sequencing errors that can a↵ect phased haplotype results. For each read r and for each SNP
locus s, we assume an error rate of ✏r,s and a probability of opposite false allele information
r[s] is equal to "r,s = ✏r,s

1� 2
3 ✏r,s

. We modify this error rate by a factor of two-thirds because

conditional on there being an error, we model the error as equally likely to be any of the three
other alleles. Two of the three of these alleles are neither the reference nor the alternative
allele and thus we know that an error has been made in this case. Therefore, two-thirds of
the time the erroneous alleles produced are known as such and may be thrown out, leaving a
true error only one-third of the time. We represent these error rates as matrices ✏, ". At this
time our method assumes uniform error rates with respect to the SNP position; the error
rate is supplied by the user and ought to depend on the read sequencing technologies used.

Read Graph

Upon the set of SNP loci S and read set R; we define a Read Graph, G(S,R), such that there
is a vertex for each SNP locus s 2 S and an edge between any two vertices s

1

, s
2

if there is
some read containing both s

1

and s
2

; equivalently if 9r 2 R, r[s
1

] 6= � ^ r[s
2

] 6= �. Without
loss of generality, we assume that G(S,R) is connected; otherwise each connected component
can be processed independently. We will define a more complex Read Graph structure in
section 3.1, when we discuss the more general model that handles RNA-seq data. Below in
Figure 2.1, we provide a sample set of five reads R = {r

1

, ..., r
5

} on S = {v
1

, ..., v
7

}; the
graph G(S,R) has two connected components, SNPs v

1

, ..., v
5

and v
6

, v
7

.
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1 1 � � � � �
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1 � 0 � � � �
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r
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Figure 2.1: Example reads and corresponding Read Graph G

Vector Set

A k-ploidy phase of n SNPs with genotypes {g(s)} is a tuple of k vectors (not necessarily
distinct) (h

1

, ..., hk) ⇢ {0, 1}n satisfying the genotype allele counts property, that is: h
1

[s] +
h

2

[s] + ... + hk[s] = g(s) for all s 2 {1, 2, ..., n}. We will refer to this collection as a vector
set and we think of each vector as a row vector; these vectors correspond to haplotypes.

We can build a phase by selecting a permutation of the alleles present for each SNP
locus s. Note that the number of distinct permutations, C(s), is strictly dependent on
the genotype of the SNP and in the diploid bi-allelic case is equivalent to selecting the
chromosomes containing the alternative alleles, hence

C(s) =

✓

k

g(s)

◆

=
k!

g(s)!(k � g(s))!
.

For example, let k = 4, then g(s) 2 {1, 2, 3}. We enumerate the possible permutations below
in Figure 2.2 and include an example tetraploid genome as well.

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

0 0 0 1 1 1
0 1 1 0 0 1
1 0 1 0 1 0
1 1 0 1 0 0

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

Figure 2.2: All possible permutations of tetraploid bi-allelic heterozygous SNPs.

The sample tetraploid genome featured below has genotype vector: [2, 1, 2, 3, 2, 2, 3, 2] (see
Figure 2.3); recall this counts the number of alternative alleles present at each SNP site.
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0 0 0 1 1 0 1 0
0 1 1 1 0 0 1 1
1 0 1 1 1 1 0 0
1 0 0 0 0 1 1 1

{(00011010), (01110011), (10111100), (10000111)}

Figure 2.3: A sample tetraploid genome and its corresponding vector set.

For any SNP s, let Ps denote the set of distinct allele permutations at SNP locus s.
Throughout we are indi↵erent to the order of each chromosome, with this in mind we can
see that the total number of phases is bounded below by 1

k!

Q

s C(s).

2.2 Likelihood of a Phase

We formulate the haplotype reconstruction problem as identifying the most likely phase(s)
given the read data R, all SNP loci S, as well as their genotypes, and sequencing error rates
" . We assume the sequencing errors are independent of each other, that is for all r 2 R and
all s 2 r, that {r[s]} are independently correct with probabilities (1 � "r,s) and incorrect
with probabilities "r,s. Let " be a matrix containing all of these probabilities: {"r,s}. Given a
vector set, H, corresponding to a phase, R, and "; the likelihood of the phase is determined
by:

P[H |R, "] =
P[R |H, " ] P[H | "]

P[R | "] . (2.1)

As P[R | "] depends only on " and the read set R, it is therefore the same across all vector
sets. Hence, we define a relative likelihood measure (RL) as

RL[H |R, "] = P[R |H, " ] P[H | "].

For P[H | "], there are several ways this can be modeled depending on the situation. When
we simulate polyploid data, we assume that P[H | "] is equal for almost all vector sets, exclud-
ing those containing duplicate vectors. Let M = {m

1

,m
2

, ...} be the set of the multiplicities
in H; for example, if H = {0001, 0010, 1100, 0001, 0010} then M = {2, 2, 1}. The proba-
bilities P[H | "] will di↵er multiplicatively by multinomial coe�cients

�

k
m1,m2,...

�

= k!

m1!m2!...
.

Specifically:
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P[H | "] =
�

k
m1,m2,...

�

Q

s C(s)
.

For the diploid case, there will never be duplicate vectors. To model P[h 2 H | "], we
might assume that since mutations tend to occur together, adjacent SNP sites are more
likely to be phased in parallel (00) or (11) than switched (01) or (10). Let H = (h, h0) and
let P (H) denote the number of adjacent SNPs that are parallel in h and S(H) the number
of adjacent SNPs that are switched in h (we must only consider h as it determines h0). For
example, if H = ((00010111000), (11101000111)), then P (H) = 6 and S(H) = 4. For some
p > .5 (denoted as parallel bias) and q = 1 � p, we model this vector set probability as

P[H | "] = pP (H)qS(H).

Finally, we consider P[R |H , "]. Because each read is independent, we can factor P[R |H , "]
over the probability P[r |H , "] for each read r 2 R.

P[R |H , "] =
Y

r2R

P[r |H , "]

To compute P[r |H , "], for a given r 2 R and h 2 H, let A(r, h), D(r, h) denote the
positions of SNP loci where r and h agree and disagree respectively. For example, if
r = (�,�, 1, 0, 1,�,�, 1, 0) and h = (1, 0, 0, 1, 1, 0, 0, 1, 0), then A(r, h) = (5, 8, 9) and
D(r, h) = (3, 4). We may now compute the desired probability, that is:

P[r |H , "] =
1

k

X

h2H

0

@

Y

s2A(r,h)

(1 � "r,s)
Y

s2D(r,h)

"r,s

1

A .

Modification for Unknown Genotypes, Multi-allelic SNPs, and
Partially Known Haplotypes

To generalize this model to incorporate either unknown genotypes, multi-allelic SNPs, or
partially known haplotypes, we only must change the priors P[H | "]. In the case of unknown
genotypes or multi-allelic SNPs, there are many more possible haplotypes, but we can still
model P[H | "] to be uniform aside from di↵ering multiplicatively by

�

k
m1,m2,...

�

, where the mi

correspond to the multiplicities of vectors within the vector set.
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For the case of partially known haplotypes H̃, suppose the haplotypes are known only
at the set of locations S̃ ✓ S. One approach for assigning prior probabilities to vector
sets (or haplotypes) is to assign a probability of 0 to any H which is incompatible with H̃.
Perhaps more interestingly, in the diploid bi-allelic case, one could assign a penalty for each
switch error which must occur between the proposed solution H and H̃. One may do so, for
example, by assigning probabilities P[H | "] proportional to ��M where � 2 (0, 1) and M is
the minimum number of switch errors between H, H̃.
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Chapter 3

Relative Likelihood Model:
HapTree-X

HapTree-X is a single individual haplotype assembly algorithm for diploid genomes and tran-
scriptomes. Genomic read data di↵ers from transcriptomic read data in several important
and useful ways; we discuss these di↵erences and provide notation describing them in order
to ultimately define a relative likelihood model which successfully handles the transcriptomic
and genomic cases concurrently.

3.1 Definitions and Notation

The goal of phasing is to recover the unknown haplotypes (haploid genotypes), H = (H
0

, H
1

),
which contain the sequence of variant alleles inherited from each parent of the individual.
As homozygous SNPs are irrelevant for phasing, we restrict ourselves to heterozygous SNPs
(from now on referred to simply as a ‘SNP’) and we denote the set of these SNPs as S.
We assume these SNPs to be biallelic, and because of these restrictions, H

0

and H
1

are
complements. Let H[s] = (H

0

[s], H
1

[s]) denote the alleles present at s, for s 2 S.
In genomic read data (DNA-seq), all r 2 R (the set of reads) are equally likely to be

sampled from the maternal or paternal chromosomes. In transcriptomic read data (RNA-
seq) however, this may not always be the case. There are several ways to discuss the di↵ering
rates of maternal and paternal expression; we define some here. Furthermore, we can leverage
this bias to perform phasing in certain cases. The blocks which can be phased in this case
are larger that those which can be phased without using RNA-seq data. We generalize the
Read Graph as defined in section 2.1 below to include the additional SNPs which may be
phased using HapTree-X.

Some genes have multiple isoforms (alternative splicings) complicating phasing based on
di↵erential expression. In this chapter we phase using di↵erential expression only for genes
without multiple isoforms, or for subsets of SNPs S within a gene with multiple isoforms
such that the sets of isoforms covering each SNP s 2 S are identical. For an investigation
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into the more general case of multiple isoforms, see Chapter 6.

Di↵erential Haplotypic Expression (DHE)

In this thesis, we define the di↵erential haplotypic expression (DHE) to represent the under-
lying expression bias between the maternal and paternal chromosomes of a particular gene.
Throughout, we will refer to the probability of sampling from the higher frequency haplotype
of a gene as �. We assume two genes g, g0 have independent expression biases �, �0. A toy
example gene featuring di↵erential haplotypic expression is in figure 3.1 below.

Background
Method
Results

Phasing
Limitations
Our Contribution

Our Contribution: Use Di�erential Haplotypic Expression

exon intron exon

Alternative Allele

Reference Allele

� Use RNA-seq data and di�erential haplotypic expression.
� Make use of reads covering only one SNP.
� Leverage asymmetry!

Emily Berger HapTree-X

Figure 3.1: Di↵erential Haplotypic Expression Example

Di↵erential Allele-Specific Expression (DASE)

Di↵erential allele-specific expression (DASE) we define as the observed bias in the alleles at
a particular SNP locus present in R.

Allele \ SNP 1 2 3 4 5
0 12 15 79 97 11
1 92 85 7 4 84

DASE: Observed Allele Counts

Guess of True Haplotype

1 2 3 4 5
0 0 1 1 0
1 1 0 0 1

Guess of DHE
� = .9

Concordant Expression

We define concordant expression as when the DASE of a SNP agrees with the DHE of the
gene to which the SNP belongs; that is when the majority allele (allele occurring with higher
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frequency) occurring within the reads at a particular SNP locus is in agreement with the
expected majority allele as determined by the DHE. In the case of concordant expression,
the true DHE signal of the gene is being observed within the data. When this is not the case,
we say we have discordant expression. For examples of each, please see figure 3.2 below.

Background
Method
Results

Relative Likelihood Model
Concordant Expression

Concordant Expression: Recovering True Signal

Concordant Expression =� true signal may be recovered;
can phase accurately.

alternative
reference

DHE
.8
.2

Expression
Concordant

Discordant
Expression

Emily Berger HapTree-X
Figure 3.2: Concordant Expression and Discordant Expression Example

Blocks to be Phased: Joint Read Graph

DASE-based Phasing Blocks

To phase using di↵erential expression (DASE-based phasing), we assume the existence of
some gene model G that specifies the genes (and their exons) within the genome. For each
g 2 G, we assume that the haplotypes (H

0

, H
1

) restricted to g are expressed at rates �
0

, �
1

respectively due to DHE. The phasing blocks correspond to the SNPs in genes g 2 G, though
we will see that some SNPs are not phased due to insu�cient probability of concordant
expression. Two distinct genes g, g0 may not be DASE-phased due to lack of correlation
between their expression biases �, �0. In the remainder of this thesis, when DASE-phasing a
particular gene, by H we mean the gene haplotype, that is H restricted to the SNPs within
g.

Contig-based Phasing Blocks

To perform phasing using the sequence contiguity within reads (contig-based phasing), upon
the set of SNP loci S and read set R, we define a Read Graph such that there is a vertex for
each SNP locus s 2 S and an edge between any two vertices s, s0 if there exists some read r
containing both s and s0. These connected components correspond to the haplotype blocks
to be phased.



CHAPTER 3. RELATIVE LIKELIHOOD MODEL: HAPTREE-X 20

DASE-based and Contig-based Phasing Blocks

The blocks which are able to be phased by HapTree-X integrating both contig and DASE-
based phasing are defined as the connected components of a Joint Read Graph. In the Joint
Read Graph, each vertex corresponds to a SNP phased by either method, and there is an
edge between any two vertices (SNPs) s, s0 if there exists some block that was phased by
either method containing both s, s0.

CTGTGGTATAGCGAGCACGTGTGTAATGAGAGACGTGCGTGAGAGTGCTGCTAGTGGGACATGTGGTACTCCAGTTGGCACCGReference
Genome

Trancriptome CTGTGGTATAGCGAGCAC                                     GGGACATGTG         TTGGCACCG

GTGT----CGCC
 CATG----ACTC

 CATG-------------GGCT
 GTGT-------------GCAC

 GCCA---GGCA

AGGA-----------------------------------------ACGT
GCAC-----------------------------------------CATG

Phased
Diplotype

-C-------------C--------------------------------------------A------------------T---
-T-------------G--------------------------------------------G------------------A---

CTCC----GGCT

GAGC
GAGC
 AGCA
AGCA
  GGAC
AGCA

CTGT
CCGT
CCGT
CGTG
CGTG
CGTG

GACA
ACAT
ACAT
CATG
CATG
GTGT

GGCAGGCAGCTCGCTCCTCC
TCCGTCCG

CTCC

Block phased through DNA-seq

Block phased through RNA-seq reads

Block phased through differential allele-specific expression (DASE)

Phasing with
DNA-seq reads

a

Phasing with
RNA-seq reads

b

Phasing 
with DASE

c

d

intron intron

Figure 3.3: A toy example demonstrating the haplotype phasing capabilities of and di↵erences
between single-individual haplotype reconstruction methods using genome sequencing (DNA-seq)
reads (a), transcriptome sequencing (RNA-seq) reads (b), and di↵erential allele-specific expression
(DASE) information that can be inferred from RNA-seq data (c).

In figure 3.3 above, green and orange blocks respectively represent reference genome and
the transcriptome sequence, which contains only the exons in a gene separated by introns.
Positions marked in red denote heterozygous-SNP loci. Paired-end sequencing reads are
of length 2x4bp and have 3-4 bp insert lengths; reference alleles overlapping SNP loci are
marked with red and alternative alleles are marked with blue. (a) Phasing using DNA-seq
reads can be performed by looking at reads that overlap multiple heterozygous-SNP loci
and observing the alleles that are connected through reads. Phasing distance is limited by
maximum fragment length (12bp in the example). Multiple SNP loci can be chained together
for phasing, but the probability of a switch error increases with the length of the chain. (b)
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Though limited to only the SNPs within the transcriptome, RNA-seq reads have longer
distance phasing capability than DNA-seq reads due to long introns in the genome that
are spliced-out in the sequenced transcript fragments. RNA-seq reads also provide higher
accuracy phasing of SNPs within the transcriptome compared to DNA-seq, since DNA-seq
phasing needs to chain through intron SNPs to connect the exons. (c) Di↵erential allele-
specific expression (DASE) at transcriptomic SNP loci is available within RNA-seq datasets
in the form of allele-specific coverage ratios. For genes that display di↵erential haplotypic
expression (DHE), the majority of alleles can be phased together to obtain a single haplotype
block for the entire gene. Depending on the DHE and depth-coverage, DASE-based phasing
can perform accurate haplotype reconstruction, independent of gene/exon lengths, without
requiring paired-end or long reads. (d) Phasing capabilities of DNA-seq, RNA-seq and
DASE-based phasing methods are demonstrated on the given toy example. The genome
sequencing based approach is only able to provide haplotype blocks for the exons close
together. The RNA-seq read based approach is able to reconstruct a longer haplotype block,
phasing through the introns as well, but failing to phase far apart SNPs within the first
exon. Whereas DASE-based phasing is able to reconstruct the complete gene haplotype by
leveraging di↵erential expression at SNP loci.

3.2 Likelihood of a Phase

We formulate the haplotype reconstruction problem as identifying the most likely phase(s)
of set of SNPs S, given the read data R, and sequencing error rates ". Furthermore, suppose
we knew for each read r, the likelihood that r was sampled from Hi (denote this as �r

i ); we
represent these probabilities as a matrix B. While B is not given to us, we may estimate B
from R (see section 3.3). We derive a likelihood equation for H, conditional on R,B and ".

Given a haplotype H, reads R, error rates ", and B, the probability of H being the true
phase is

P[H |R,B, " ] = P[R |H,B, " ] P[H | B, "]
P[R | B, " ] . (3.1)

Since P[R | B, "] does not depend on H, we may define a relative likelihood measure, RL.
Note that P[H|B, "] = P[H] as the priors on the haplotypes are independent of the errors in
R, and of B.

RL[H |R,B, " ] = P[R |H,B, " ] P[H | B, "]. (3.2)

For the prior P[H | B, "], we assume a potential parallel bias, ⇢ � .5, (the prior proba-
bility of adjacent SNPs being phased in parallel as opposed to switched) which results in
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a distribution on H such that adjacent SNPs are independently believed to be phased in
parallel

�

00

11

�

with probability ⇢ and switched
�

01

10

�

with probability 1 � ⇢. When ⇢ = .5 we
have the uniform distribution on H. The general prior distribution on H in terms of ⇢ is
(here we mean either H

0

or H
1

as they are conjugate).

P[H] = ⇢P (H)(1 � ⇢)S(H) (3.3)

where P (H) and S(H) denote the number of adjacent SNPs that are parallel and switched
in H, respectively.

Given the above model, as each r 2 R independent, we may expand P[R |H,B, " ] as a
product:

P[R |H,B, "] =
Y

r2R

P[r |H,B, "] (3.4)

In the setting of RNA-seq, reads are not sampled uniformly across homologous chro-
mosomes, but rather according to the DHE (expression bias) of the gene from which they
are transcribed. We see in (3.5) how this asymmetry allows us to incorporate reads which
contain only one SNP. Let A(r,Hi), D(r,Hi) denote the SNP loci where r and Hi agree and
disagree respectively, then

P[r |H,B, "] =
X

i2[0,1]

�r
i

 

Y

s2A(r,Hi)

(1 � "r,s)
Y

s2D(r,Hi)

"r,s

!

. (3.5)

When there is uniform expression �r
0

= �r
1

(no bias) and if |r| = 1, then P[r |H,B, e] is
constant across all H. This is not the case when the expression bias is present however, and
therefore reads covering only one SNP a↵ect the likelihood of H.

If we knew the matrix B, we could apply HapTree [7] to search for H of maximal likeli-
hood; the matrix B, however, is unknown. Suppose instead we are given some probability
distribution for the entries of B, to compute P[r |H,B, "], it is enough to know the expected
value of each entry because of the linearity (over i) of P[r |H,B, "]. To this aim, we provide
methods for determining a maximum likelihood B. To approximate distributions for the en-
tries of B, we assume for each gene there is uniform expression with some probability p, and
di↵erential expression with probability 1� p; in the latter case, the di↵erential expression is
assumed to be that of maximal likelihood. By varying p, we can vary the relative weights
associated to DASE-based phasing and contig-based phasing.

Furthermore, we develop methods for determining for which reads r we are su�ciently
confident there this is in fact non-uniform expression, that is �r

0

6= �r
1

. Moreover, we deter-
mine for which SNPs s 2 S (contained only by reads of size one), we have su�cient coverage
and expression bias to determine (with high accuracy) the phase H[s].
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3.3 Maximum Likelihood Estimate of Di↵erential
Haplotypic Expression

For a fixed gene g, containing SNPs Sg, the corresponding reads Rg have expression biases
�r

0

, �r
1

which are constant across r 2 Rg. Let � = �r
0

refer to this common expression; we
wish to determine the maximum likelihood underlying expression bias � of g responsible for
producing Rg. To do so, we formulate a Hidden Markov Model (HMM) and use the forward
algorithm to compute relative likelihoods of R given �, ".

To achieve the conditional independence required in a HMM, we define R0
g, a modification

of Rg, containing only reads of size one, so that R0
g,s (the reads r 2 R0

g which cover s) are
independent from R0

g,s0 (8s 6= s0 2 Sg). We restrict each r 2 Rg to a uniformly random SNP
s, and include this restricted read of size one (r|s) in R0

g (we note that if |r| = 1, then r = r|s,
by definition.) Therefore, R0

g,s and R0
g,s0 are independent as all r 2 R0

g are of size one.
Our goal is the determine the maximum likelihood �, given R0

g. We assume a uniform
prior on �, and therefore P[� |R0

g, "] is proportional to P[R0
g | �, "] (immediate from Bayes

theorem). We may theoretically compute P[R0
g | �, "] by conditioning on H (which is inde-

pendent from �, ")

P[R0
g | �, "] =

X

H

P[R0
g |H, �, "] P[H]

and expand P[R0
g |H, �, "] as a product over r 2 R0

g as in (3.4) and (3.5). This method,
however, requires enumerating all H; since |H| = 2|Sg | we seek di↵erent approach. Indeed,
we translate this process into the framework of a Hidden Markov Model, apply the forward
algorithm to compute f(�) := P[R0

g | �, "] exactly for any �, and since f has a unique local
maxima for � 2 [.5, 1], we can apply Newton-Rhapson method to determine � of maximum
likelihood.

HMM Model Translation

To set this problem in the framework of a hidden Markov model, we let the haplotypes H
correspond to the hidden states, R0

g to the observations, and let the time evolution be the
ordering of the SNPs Sg. The observation at time s in this context is R0

g,s, the reads covering
SNP s. The emission distributions are as follows:

P[R0
g,s |H[s], �, "] =

Y

r2R0
g,s

P[r |H[s], �, "]

P[r |H[s], �, "] =

⇢

�
0

(1 � "r,s) + (1 � �
0

)"r,s if r[s] = H
0

[s]
�

1

(1 � "r,s) + (1 � �
1

)"r,s if r[s] = H
1

[s]
(3.6)

where H[s] is H restricted to s.
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To determine the hidden state transition probabilities, recall our prior on H in (3.3). We
may equivalently model this distribution H as a Markov chain, with transition probabilities:

P[H[si+1

] |H[si]] =

⇢

⇢ if H
0

[si] = H
0

[si+1

]
1 � ⇢ if H

0

[si] 6= H
0

[si+1

]

These emission probabilities and hidden state transition probabilities are all that are needed
to apply the forward algorithm and determine the � of maximum likelihood. The diagram
below in figure 3.4 shows the underlying graphical structure of this hidden Markov model.

�s(�) : P[R0
g,s |H[s], �, "] ↵si,si+1 : P[H[si+1] |H[si]]

H[1] H[2] H[3] H[4] H[5]

R0
g,1 R0

g,2 R0
g,3 R0

g,4 R0
g,5

↵
1,2 ↵

2,3 ↵
3,4 ↵

4,5

�
1

(�) �
2

(�) �
3

(�) �
4

(�) �
5

(�)

Figure 3.4: Hidden Markov Model for Estimating Di↵erential Haplotypic Expression

3.4 Likelihood of Concordant Expression

A Solution of Maximum Likelihood

In this section we prove that the intuitively correct solution (under mild conditions CND1,
CND2, and CND3) is that of maximal likelihood. In doing so, we see the role played by
concordant expression, and motivate its use as a probabilistic measure for determining which
SNPs we believe we may phase with high accuracy.

We derive H+, a haplotype solution of a gene g, of maximum likelihood given R0
g, � and

" and conditions CND1, CND2, and CND3. These conditions are:

Conditions:

– CND1: Error rates are constant (say ✏)

– CND2: Error rates less than a half (✏ < .5)

– CND3: Uniform prior distribution (⇢ = .5)
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Let Cv
s denote the number of reads r 2 R0

g,s such that r[s] = v where v 2 {0, 1}.
Provided error rates are constant (CND1) (say ✏) and ✏ < .5 (CND2), and assuming a
uniform prior distribution (⇢ = .5) (CND3), we can show a solution of maximum likelihood
is H+ = (H+

0

, H+

1

), where H+

0

[s] = v such that Cv
s � C1�v

s . In words, H+

0

and H+

1

contain
the alleles that are expressed the majority and minority of the time (respectively) at each
SNP locus; given su�cient expression bias and coverage, intuitively, H+ ought to correctly
recover the true haplotypes. It is easy to show that CND1 and CND3 can be removed if one
is willing to specify a minimum coverage; we do not show this here. Intuitively, CND2 must
not be removed.

To prove H+ is of maximal likelihood, we introduce the terms concordant expression and
discordant expression. We say R and H have concordant expression at s if CH0[s]

s > CH1[s]
s ,

discordant expression if CH0[s]
s < CH1[s]

s , and equal expression otherwise. In words, since we
assume �

0

> �
1

, we expect to see the allele H
0

[s] expressed more than the allele H
1

[s] in Rg,s

(concordant expression.)
We may now equivalently define H+ as a solution which assumes concordant or equal

expression at every SNP s. Because we assume uniform priors, P[H |R0
g, �, ✏] is proportional

P[R0
g |H, �, ✏] (see (3.1)), and since each read is of size one, we can factor across Sg in the

following way:

P[R |H, �, ✏] =
Y

s2Sg

P[Rg,s |H[s], �, ✏]

Therefore, to show H+ is of maximal likelihood, it only remains to show that concordant
expression is at least as likely as discordant expression, as intuition suggests. Let �i =
�i(1 � ✏) + (1 � �i)✏, then as in (3.6) we may deduce

P[Rg,s |H[s], �, ✏] =
Y

i2{0,1}
�C

Hi[s]
s

i

Let H� = (H+

1

, H+

0

), the opposite of H+. We can now compare the likelihood of con-
cordant (or equal) expression at s (H+[s]) with that of discordant (or equal) expression at s
(H�[s].) For ease of notation, let vi = H+

i [s] and wi = H�
i [s].

P[Rg,s |H+[s], �, ✏]

P[Rg,s |H�[s], �, ✏]
=

Q

i2{0,1} �
C

vi
s

i
Q

i2{0,1} �
C

wi
s

i

=
�C

v0
s �C

w0
s

0

�C
w1
s �C

v1
s

1

=

✓

�
0

�
1

◆C
v0
s �C

v1
s

� 1 (3.7)

The rightmost equality results from the fact that H+

i = H�
1�i, and hence vi = w

1�i. Since
✏ < .5, we have �

0

> �
1

; Cv0
s �Cv1

s � 0 by the definition of H+, which proves the inequality.
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Computing Likelihood of Concordant Expression

We just showed that under mild conditions, the solution of maximal likelihood is, intuitively,
that which has concordant expression at each SNP locus s. Therefore, to determine which
SNPs we believe we can phase with high accuracy, we measure the probability of concordant
expression at that SNP, and only phase when that probability is su�ciently high.

The probability of concordant expression can be immediately derived from (3.7). We as-
sume a uniform error rate of ✏ for ease of notation, though is not required. Let CE(Rg,s, H[s])
denote the event of concordant expression at s, then

P[CE(Rg,s, H[s]) | �, ✏] = P[Rg,s |H+[s], �, ✏]

P[Rg,s |H+[s], �, ✏] + P[Rg,s |H�[s], �, ✏]
(3.8)

=
1

1 +
⇣

�1
�0

⌘|C0
s�C1

s | (3.9)

Furthermore, given N reads, an expression bias �, and a constant error rate ✏, we compute
likelihood of concordant expression using the standard binomial distribution B(N, �

0

) by
equating ‘successes’ in the binomial model to observations of the majority allele, expressed
with bias �

0

(recall �i takes errors into account):

P[CE |N, �, ✏] =
N
X

i=dN+1
2 e

✓

N

i

◆

�i
0

�N�i
1

� 1 � e�N 1
2�0

(�0� 1
2 )

2

(3.10)

To obtain the bound on the right hand side, apply the Cherno↵ bound P[X < (1��)µ)] 
e��2µ

2 where X corresponds to the number of ‘successes’ and µ = E[X] = N�. This bound
shows that the probability of concordant expression increases exponentially with the coverage
(N).

We remark for large N , the Binomial Distribution B(n, �) converges to the normal dis-
tribution N (N�, N�(1� �)), and therefore this probability can always be easily computed.
See Figures 5.10 and 5.11 for a sense of these likelihoods.

Likelihood of Non-Biased Expression

Now that we have a method for determining the likelihood of concordant expression, we can
require any SNP loci to have a su�ciently high probability of concordant expression in order
for HapTree-X to attempt to phase that SNP. The likelihood of concordant expression is
dependent on � however, which we may only estimate. We therefore require that for any
gene g (and SNPs within it) to be phased, the di↵erential allele-specific expression within the
gene must be su�ciently unlikely to have been generated by uniform DHE (� = .5) (because
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in this case, we can not use DASE-based methods to phase). We compute an upper bound
on this probability using a two sided binomial test applied to total allele counts m,M , where

m =
X

s2g

min(C0

s , C
1

s )

M =
X

s2g

max(C0

s , C
1

s ).

The likelihood of at least M heads and at most m tails is computed below. Let N = m+M ,
then the upper bound based on the two-sided binomial test is

m
X

i=0

✓

N

i

◆

1

2

N

+
N
X

i=M

✓

N

i

◆

1

2

N

.

As mentioned above, the Binomial Distribution B(n, 1

2

) converges to the normal distribution
N (N

2

, N
4

), and therefore we may e�ciently compute these likelihoods.
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Chapter 4

Maximization of Relative Likelihood
Score

4.1 Background

The goal of our haplotype reconstruction problem is to find the (sets of) haplotypes which
maximize the product P[R |H, " ] P[H | "], equivalently RL[H|R, "]. The number of possible
haplotypes is O(2kn) (if we assume SNPs are bi-allelic, or O(4kn) in the most general case)
and therefore, in general, checking all possible solutions is intractable. Our solution is based
on finding high-likelihood phases for the first m+1 SNPs, conditioned on a collection of high
likelihood phases for the first m SNPs.

Enumerative Approach

For any fixed block of size n, one can enumerate all possible haplotype solutions and for each
possible solution compute RL[H|R, "]. Suppose the set of reads RB cover the block B, and
each r 2 RB covers l(r) SNPs. For any fixed vector set H, the time to compute RL[H|RB, "]
can be written as

k
X

r2RB

l(r).

Summing over all blocks B, we see the total time to compute RL[H|R, "] for a fixed vector
set is proportional the total coverage of R:

k
X

B

X

r2RB

l(r) = k
X

R

l(r).

The above holds as R =
F

B RB.
Unfortunately, to compute the probabilities for all possible haplotypes, exponentially

many solutions must be enumerated. For su�ciently small k and n, this is tractable, but
even in the diploid case k = 2, block lengths can be in the hundreds, making the enumerative
approach not fully applicable, motivating the algorithm HapTree.
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4.2 Notation for HapTree and HapTree-X

For the description of our method, we assume known-genotypes and that SNPs are bi-allelic.
After describing our method we also describe the changes needed to our original approach
to accommodate multi-allelic and genotype-oblivious polyploid haplotype assembly.

Semi-Reads and Sub-Reads

To properly describe our method we must first define the semi-reads of a SNP locus s and
the sub-reads of a subset S 0 ⇢ S.

Semi-reads

To form the set of semi-reads of s, denoted SR(s), include each read r 2 R that contains
both s and some s0 < s (s0 is upstream of s) and ignore all information from r on SNPs
s00 > s (s00 is downstream of s). Suppose the set of reads is:

{1:1, 2:1, 3:1, 4:1} {3:1, 4:1, 6:0} {4:0, 5:1, 6:1}
{4:0, 5:1, 6:1, 7:0} {5:0, 6:0, 7:1} {5:1, 6:1, 7:0}

The corresponding semi-reads for each SNP locus would be:

1 ! None 2 ! {1:1, 2:1} 3 ! {1:1, 2:1, 3:1}
4 ! {1:1, 2:1, 3:1, 4:1} {3:1, 4:1}
5 ! {4:0, 5:1} {4:0, 5:1}
6 ! {3:1, 4:1, 6:0} {4:0, 5:1, 6:1} {4:0, 5:1, 6:1} {5:0, 6:0} {5:1, 6:1}
7 ! {4:0, 5:1, 6:1, 7:0} {5:0, 6:0, 7:1} {5:1, 6:1, 7:0}

Sub-reads

The sub-reads of S 0 ⇢ S, denoted R(S 0), are obtained by, for each r 2 R, removing all keys
s 2 S\S 0 to form r0, and then adding r0 to R(S 0) if the length of r0 is at least 2. Alternatively,
R(S 0) corresponds to the set of reads relevant to the problem of only phasing S 0. Continuing
with the example above, if S 0 = {1, 2, 3, 4, 5}, then

R(S 0) = {{1:1, 2:1, 3:1, 4:1}, {3:1, 4:1}, {4:0, 5:1}, {4:0, 5:1}}.

4.3 HapTree and HapTree-X Maximization Algorithm

Our main approach to solving the single individual polyploid haplotype assembly problem
is by finding highly probable solutions on m SNPs and extending those to highly probable
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solutions on m+1 SNPs. Our algorithm has two fundamental parts: branching and pruning.
For each connected component of the ReadGraph, G(S,R), we inductively generate a collec-
tion of high likelihood phases on the first m SNPs. For each of these phases, we branch them
to phases on m+1 SNPs by considering all possible orderings of alleles for position m+1 and
including branches for those which occur with probability above a certain threshold. After
doing so, we prune the tree of phases by removing all leaves that occur with probability
su�ciently less than the most probable leaf. We discuss both parts in more detail below.
We note that although a dynamic programming algorithm can be directly applied to infer
the best solutions under HapTree’s likelihood model, we instead developed HapTree, which
is substantially faster than exact dynamic programming but with nearly identical empirical
performance.

Extension

We first describe how to extend an existing a haplotype assembly H on m � 0 SNPs
onto the m+1th SNP s. Recall the set of permutations of s is denoted Ps and one particular
permutation as o 2 Ps. An extension H 0 of H onto SNP locus s can be defined by appending
some permutation o 2 Ps of alleles to H; H 0 = H+o. Note that it is possible for two distinct
permutations to result in the same H 0: H + o = H + o0. In these cases we do not include
duplicates, as they are equivalent. Observe that if H is empty, all allele permutations are
the same as vector sets; we therefore include only one. For any H 0, we can compute the
probability of it being the correct haplotype (for the first m+1 SNPs) conditioning on H
being correct (for the first m SNPs), as well as the semi-read data SR(s) and error rate ".
We express this below:

P[H 0 |H, SR(s), "] =
P[SR(s) |H 0, H, "] P[H 0 |H, "]

P[SR(s) |H, "]
(4.1)

This computation is similar to those done above in equation (2.1). The EXTEND algorithm
(Algorithm 1) is given below, which returns a list of all extensions H 0 of H that occur with
probability above a certain threshold, ⇢, given haplotype H.

Input: H, ⇢, s
Output: E 0

E = [ ]
for o 2 Ps do
H 0 = H + o
if H 0 /2 E then

if P[H 0 |H, SR(s), "] > ⇢ then
E += H 0

return E

Algorithm 1: EXTEND(H, ⇢, s): Extending a haplotype H at SNP s to all H 0 that occur with
probability � ⇢ 2 [0, 1).
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Branching

Here we define branching a collection of haplotypes H with threshold ⇢ to SNP s:
BRANCH(H, ⇢, s) (Algorithm 2) . We assume all H 2 H phase the first m � 0 SNPs
and that SNP s is the m+1th SNP. The act of branching H returns H0: a list of all exten-
sions generated by EXTEND with threshold ⇢ for all H in H. To initialize BRANCH we
EXTEND the empty vector set to an arbitrary permutation of the alleles of the first SNP,
as all permutations are equivalent as vector sets.

Input: H, ⇢, s
Output: H0

H0 = [ ]
for H 2 H do
E = EXTEND(H, ⇢, s)
for H 0 2 E do

H += H 0

return H

Algorithm 2: BRANCH(H, ⇢, s): Branching haplotypes H at SNP s with threshold ⇢ 2 [0, 1).

Pruning

For a collection of haplotypes H of SNPs S 0 ⇢ S, we can compute the relative likelihood
of each haplotype conditioned on the sub-reads R(S 0) and error rate "; we write this as
RL[H |R(S 0), "]. The same computation as performed in equation 2.1 yields:

P[H |R(S 0), "] =
P[R(S 0) |H, " ] P[H | "]

P[R(S 0) | "] .

Since P[R(S 0) | "] does not depend on H:

RL[H |R(S 0), "] = P[R(S 0) |H, " ] P[H | "]. (4.2)

The goal of PRUNE(H,, S 0) (Algorithm 3) is to return a subset H0 ⇢ H containing only
su�ciently probable haplotypes. It does so by computing the relative likelihood of the
most probable H 2 H, that is ! = maxH2H RL[H |R(S 0), "], and adding H 2 H to H0 if
RL[H |R(S 0), "] � !, where  is between 0 and 1. We note that that one can compute
RL(H 0) from RL(H) by only looking at the semi-reads RS(s): we store the relative likelihood
values for all H 2 H and update them when branching to H0; PRUNE is therefore no more
costly than BRANCH.
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Input: H,, S 0

Output: H0

H0 = [ ]
! = maxH2H RL[H |R(S 0), "]
for H 2 H do

if RL[H |R(S 0), "] � ! then
H0 += H

return H

Algorithm 3: PRUNE(H, , S0): Pruning haplotypes H on S0 with factor  2 [0,1] .

Main Algorithm

Here we give a high-level description of our overall haplotype assembly method HapTree(R, ⇢̂, ̂, S)
(Algorithm 4) using the EXTEND, BRANCH, and PRUNE algorithms. We generate high
likelihood phases for the first m SNPs, BRANCH those phases to include s (the m+1th SNP),
then PRUNE the resulting phases, and repeat for m = m+1. We begin with an arbitrary
permutation of the first SNP, since all orderings result in the same vector set. For the final
step, we PRUNE with  = 1, and therefore return only the maximally probable phases that
we have found; if this set is of size greater than one, we choose a phasing from within it
randomly. More generally, below we take ⇢̂ and ̂ to be vectors, as ⇢ and  may depend on
m, the size of H or other user-specified variables.

Input: R, ⇢̂, ̂, S
Output: H

H = [ ]
S 0 = {}
for s 2 [1, 2, ..., |S|] do
S 0 += s
H = BRANCH(H, ⇢̂(s), s)
H = PRUNE(H, ̂(s), S 0)

return H
Algorithm 4: HapTree(R, ⇢̂, ̂, S): Assembling haplotype from reads R with parameters ⇢̂, ̂.
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Further Remarks

Dynamic Programming Approach

We present an exact dynamic programming algorithm which we believe is first described in
[18]. In [18], however, the author minimizes MEC score, as opposed to maximizing relative
likelihood, and assumes gapless reads.

For phasing a block B, a simple dynamic programing algorithm exists with runtime
O(C ⇥n⇥2m) (in the diploid bi-allelic case), where C is the sum over all reads (covering B)
of the number of SNPs covered by each, n is the total number of SNPs in B, and m is the
maximum range of any read covering B. The range of a read is the total number of SNPs
between (and including) the first SNP it covers and the last. For gapless reads, the range is
equal to the length of the read (the number of SNPs covered by the read). For reads with
gaps, the range is strictly more than the number of SNPs covered.

The algorithm consists of computing, for each 0  i  n � m � 1, the maximum log-
probability of a haplotype solution of length i+m with a particular su�x Hm. Let Mi(Hm)
denote this maximum probability, and let Ri denote the set of all reads originating at SNP
i. The key insight into the algorithm is

Mi(Hm) = max
H0

m

⇣

Mi�1

(H 0
m) + log(P[Ri |H 0

m , ")]
⌘

where H 0
m is any set of haplotypes of length m whose length m� 1 su�x is the length m� 1

prefix of Hm. In the diploid bi-allelic case, there are two such H 0
m, corresponding to the

possible phases of a SNP
�

0

1

�

and
�

1

0

�

. The algorithm is initialized with

M
0

(Hm) = log(P[Ri |Hm , ")].

We can trace back through these values to determine all haplotypes of maximal likelihood.

Read Graph Restructuring Speed-Ups

A simple way to speed up HapTree (and the exact dynamic programming algorithm) can
be seen by looking more carefully at the connectivity of the read graph G. A graph G
is biconnected if removing any vertex does not disconnect the graph. Any graph can be
decomposed into biconnected components, and any pair of these components either share a
vertex or are connected by a single edge. Moreover, decomposing a graph into its biconnected
subgraphs can be done in linear time [19]. We remark that any solution of maximal likelihood
can be found by finding restricting to the biconnected components of G and finding maximal
likelihood solutions restricted to those components, and trivially gluing them together (when
a pair is connected by an edge, make the greedy choice).

There is a more complicated, and unfortunately NP-Hard [15], method which would in
theory speed up the exact dynamic programming algorithm as well. For some connected
component of G, say B, let m denote the maximum range of any read covering B; the range
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of a read is the total number of SNPs between (and including) the first SNP in a read and the
last. In terms of the read graph, assign to each v 2 V an integer f(v), where f(v) is such that
v corresponds to the f(v)th SNP in B. Then m = maxE

�|f(v) � f(v0)| + 1
�

where E is the
set of edges (v, v0) of G. By permuting the ordering of the SNPs, m can be minimized; this
is known as the graph bandwidth. Any permutation reducing m can be applied to the SNPs,
resulting in faster runtime for exact dynamic programing algorithm above. Unfortunately,
finding permutations which minimize m and determining the bandwidth of a graph is known
to be NP-Hard [15].

Extending to Partially Known Haplotypes, Multi-allelic SNPs,
and Unknown Genotypes

We remark that to generalize HapTree to handle partially known haplotypes, multi-allelic
SNPs, and unknown genotypes, the only step in the algorithm that must be updated is
Extension. In each case, the set Op of possible phases for the next SNP is modified. In the
case of partially known haplotypes, we can restrict at the known SNP loci the size of |Op| to
be one (to reflect the phase in the partially known haplotype); in this case, no solution that
disagrees with the partially known haplotype will be returned. Alternatively, we may just
modify the priors as discussed at the end of Chapter 2. For multi-allelic SNPs and unknown
genotypes, Op is updated to reflect the larger set of possibilities, and the priors are updated
accordingly.
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Chapter 5

Simulated and Experimental Results

5.1 Summary

In this thesis, we introduced a maximum-likelihood formulation of the haplotype reconstruc-
tion problem in several instances and present a haplotype assembly algorithm, HapTree(-X),
which concurrently performs SNP-pair phasing and full haplotype assembly based on a prob-
abilistic framework. We demonstrate the performance of HapTree(-X) by looking at both
common and innovate metrics for measuring phasing accuracy on both simulated and experi-
mental data. We find that HapTree and HapTree-X outperform previous methods for solving
the single individual haplotype assembly problem by increasing accuracy, speed, and in case
of HapTree-X, number SNPs phased and length of phased blocks as well. We demonstrate
these results in the following section.

HapTree: Diploid

As a proof of concept, we test our method HapTree on real diploid sequencing data from
NA12878 (1000 Genomes Project) and evaluate the quality of assembled haplotypes with
respect to trio-based diplotype annotation as the ground truth. The results indicate that even
for diploid genomes, HapTree improves the switch error accuracy within phased haplotype
blocks as compared to existing haplotype assembly methods [5], while producing comparable
MEC values.

HapTree: Polyploid

Because polyploid data of an organism with an accurately phased genome to compare against
is hard to come by, we evaluate the performance of HapTree on simulated polyploid sequenc-
ing read data modeled after Illumina and 454 sequencing technologies. For triploid and higher
ploidy genomes, we demonstrate that HapTree substantially improves haplotype assembly
accuracy and e�ciency over the state-of-the-art HapCompass [3, 4] for varying read depth
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coverage and length of haplotype block; moreover, HapTree is the first scalable polyplotyping
method for higher ploidy.

To evaluate HapTree’s performance, we consider the probability that HapTree finds
the exact solution, as well as compute the vector error of a proposed solution, a scoring
mechanism for when the exact solution is known, which we newly define to generalize the
commonly-used switch error to genomes of higher ploidy. In addition, for triploid genomes,
we demonstrate that our relative likelihood measure significantly outperforms the commonly
used minimum error correction (MEC) score [20, 22]; this outperformance becomes even
greater as the ploidy increases. Finally, as a proof of concept, we test our method on real
diploid sequencing data from NA12878 (1000 Genomes Project) and evaluate the quality of
assembled haplotypes with respect to trio-based diplotype annotation as the ground truth.
The results indicate that even for diploid genomes, HapTree improves the switch error accu-
racy within phased haplotype blocks as compared to existing haplotype assembly methods
[5], while producing comparable MEC values.

HapTree-X: RNA-seq

To measure phasing accuracy and assess theoretical accuracy bounds, we define concordant
expression to be when the DASE of a SNP agrees with the DHE of the gene to which the SNP
belongs; that is when the majority allele (allele present in the majority of the reads overlap-
ping the SNP locus) is in agreement with the expected majority allele as determined by the
DHE. We show that under realistic biological assumptions, the solution of maximal likeli-
hood is, intuitively, that which has concordant expression at each SNP locus. Furthermore,
we show that the theoretical probability of concordant expression increases exponentially
with the coverage level.

We compare the accuracy of phasing (along with the total number of SNPs phased and
phased block sizes) DNA-seq and RNA-seq datasets from NA12878 using HapTreeX to that
of HapCut [5]. Our results indicate that incorporating DASE information into haplotype
phasing increases the total number of SNPs phased, without increasing the switch error
rate (with respect to the trio-phased gold-standard annotation). Furthermore, HapTree-X
reduces the total number of phased blocks while increasing their overall sizes. Our work
shows for the first time that RNA-seq data can be used as a complement to DNA-seq data
to improve phasing.



CHAPTER 5. SIMULATED AND EXPERIMENTAL RESULTS 37

5.2 HapTree

In this section, we observe that on simulated polyploid data HapTree substantially improves
the phasing capabilities and performance of any existing program. Because real polyploid
data is hard to come by, we also evaluate HapTree on real human diploid data and find
that, when compared to the more accurate trio-based data as the ground truth [2], HapTree
significantly reduces the number of switch errors, while remaining on par in terms of MEC
score over existing single-individual haplotype assembly methods for diploid genomes. We
also introduce a relative likelihood (RL) score definition for annotation-free evaluation of
phasing quality for polyploid haplotype assembly as an alternative to MEC score. Using
simulated polyploid sequencing datasets, we demonstrate that RL-score performs signifi-
cantly better at capturing haplotype assembly quality than MEC-score as ploidy increases.
We will demonstrate these results in the section that follows.

Scoring and Evaluation

Determining the quality of a phasing solution depends on whether the true phase is
known. When no such information is avaliable, the Minimum Error Correction (MEC) score
[22] is a widely used scoring function to measure the quality of phasing solutions. The MEC
score is defined as the minimum (amongst chromosomes) number of mismatches between a
phase H and the read set R. A number of existing programs, including HapCut [5], find
phasing solutions by optimizing the MEC score in diploid cases. For higher ploidy the MEC
score can no longer be reliably used because unlike in the diploid case, the phase of any
one chromosome does not determine the phases of the others. Moreover, the MEC score
does not distinguish between two separate phases of a pair of SNP loci with di↵erent non-
zero counts of (0, 0), (0, 1), (1, 0), (1, 1) in their vector sets. Finally, unlike in the diploid
case, a phase of a pair of SNP loci containing a set of parallel alleles does not prevent it
from containing a set of switched alleles as well. To demonstrate these issues, consider two
possible vector sets corresponding to phases of a pair of triploid SNPs both with genotype 2:
a : ((0, 0), (0, 0), (1, 1)) and b : ((0, 0), (0, 1), (1, 0))}. If the read data is ((0, 0), (0, 0), (0, 0)),
it is clear from a probabilistic standpoint that phase a is a better fit, but both a and b have
equal MEC scores. This e↵ect is exaggerated as k increases.

When a true phase is available, there are a variety ways to evaluate how accurate any
predicted phase is. A widely used measure in diploid phasing is switch error, which is
calculated as the number of positions where the two chromosomes of a proposed phase must
be switched in order to agree with the true phase. For polyploid phasing, we generalize
switch error to vector error. In higher ploidy cases, at any SNP locus, it is possible for no
chromosomes in a proposed phase to require a switch or anywhere from 2 to k chromosomes
to require switches, in order for a proposed phase to agree with the true phase. We do not
wish to penalize a solution where only two vectors must be switched at a given position
with the same penalty to be used for a solution in which all vectors must be switched. The
vector error of a proposed phase (with respect to the true phase) is defined by the minimum
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number of segments on all chromosomes for which a switch must occur; for the diploid case
this score is exactly twice the switch error. One may also think of the vector error as the
minimum number of segments a proposed phase and the true phase have in common, less
the ploidy. Even for triploid genomes, the vector error is more discriminative than switch
error. Consider the following example in Figure 5.1:

1 1 1 0 0 0 1
1 0 1 0 0 1 0
0 0 0 1 1 0 1
True Phase

1 1 1 0 0 0 1
1 0 1 1 1 0 1
0 0 0 0 0 1 0

(i): 2 Vector Errors

1 1 1 1 1 0 1
1 0 1 0 0 0 1
0 0 0 0 0 1 0

(ii): 3 Vector Errors

1 1 1 0 0 0 0
1 0 1 1 1 0 1
0 0 0 0 0 1 1

(iii): 4 Vector Errors

Figure 5.1: Examples of Vector Error in a sample tetraploid genome; the true phase is on the
left and examples with two, three, and four vector errors are on the right.

In Figure 5.1 above, phase (i) is a more accurate phase than (ii), and phase (ii) more
accurate than phase (iii). The segments are broken up by row and color: phase (i) having
five segments, phase (ii) having six, and phase (iii) having seven. Note that there may be
several ways to break a vector set into a minimal number of segments; phase (ii) is such an
example. Finally, we remark that vector error can be computed in time O(kn2), where k is
the ploidy and n the block size.

Relative Likelihood (RL) vs. MEC Simulations

We assessed the e↵ectiveness of our RL score by comparison to MEC score on simulated data.
To do so, we simulated reads with error rate 0.02 from a pair of phased k-ploid SNP loci
for di↵erent coverages (5x, 10x, 20x, 100x) and for k 2 {2, ..., 10}. All possible phases were
exhaustively enumerated, and phases of the maximal relative likelihood (RL) and phases of
the minimal MEC score chosen. We computed the proportion of perfectly phased SNP pairs
in both cases (perfect solution rate). Even with two SNP loci, RL significantly outperforms
MEC for all k � 3 (figure 5.2). It is also worth noting that MEC (in comparison to RL)
deteriorates more seriously in accuracy as ploidy (k) increases (figure 5.2). In addition, we
also compared the vector error rate in both cases; for a pair of SNPs, this rate is the number
of vectors from the proposed solution that cannot be matched with vectors from the true
solution (figure 5.3).
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Figure 5.2: Proportion of perfectly phased SNP pairs (solid line) and MEC (dashed line) opti-
mization in 10000 trials over 5x, 10x, 20x and 100x coverage.
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Figure 5.3: Vector Error rate for RL (solid line) and MEC (dashed line) optimization in 10000
trials over 5x, 10x, 20x and 100x coverage.

The results demonstrate that the higher the ploidy, the better the relative likelihood
(RL) score performs in comparison to MEC score for phasing a pair of SNPs (Figures 5.2
and 5.3). In fact, in simulations where k � 8, RL with 5x the coverage already outperforms
MEC with 100x coverage. For the same coverage, RL always outperforms MEC for k � 3,
and they are equivalent in the diploid case (k = 2).
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Comparisons of HapTree and HapCompass on Simulated
Polyploid Data

To evaluate the phasing capabilities of HapTree, we compare it with HapCompass [4] (lat-
est version available at: www.brown.edu/Research/Istrail_Lab/hapcompass.php), to our
knowledge the only other existing program that directly addresses polyploid haplotype assem-
bly, over multiple depth coverage values and component sizes for triploid and tetraploid sim-
ulated genomes. We simulated triploid and tetraploid genomes with di↵erent block lengths
(10, 20 or 40 SNP loci), di↵erent coverages (5x, 10x, 20x and 40x), SNP positions, and SNP
densities. Throughout the simulations for both the triploid and tetraploid cases, our EX-
TEND module is run with threshold ⇢ = .01 and PRUNE primarily with threshold  = .001.
When the current number of haplotype options generated is above 1000, we prune more ag-
gressively with  = .01 and when above 5000, with  = .05. These parameters are chosen to
ensure the e�ciency of HapTree by only keeping a tractable collection of promising solutions
in each step. We also simulate a read set with uniform error rate and size dependent on
coverage. For details about how the reads are simulated, please see Simulated Polyploid
Data Generation.

We will observe that HapTree consistently out performs HapCompass. The primary
reasons for HapTree’s superior performance are, first, that HapTree’s relative likelihood
is more e↵ective than HapCompass’s MEC score (see Relative likelihood vs MEC);
and second, that HapTree’s inference algorithm is more accurate than the approximation
algorithm used by HapCompass.

Run-time evaluation

Not only does HapTree outperform HapCompass on phasing quality, it is also significantly
faster, especially for longer block length. The median runtimes for block length 10 and 10x
coverage were (0.00702, 0.633) seconds for HapTree and HapCompass, respectively; for block
length of 40 and 40x coverage, they were (0.0279, 13.099) seconds, respectively.
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Triploid Simulation Results

For the triploid case, we observed that HapTree finds a perfect solution at a rate independent
of the number of SNPs used in the simulation; in contrast, HapCompass declines in perfor-
mance the larger the block size (figures 5.4 and 5.5). While both HapTree and HapCompass
improve steadily the higher the coverage, in every case HapTree significantly outperforms
HapCompass; the least significant improvement of 63% occurs in the case of 10 SNP loci
and 10x coverage, whereas the most significant improvement occurs in the case of 40 SNP
loci and 40x coverage. For both vector error rate and likelihood of perfect solution, we find
that HapTree substantially outperforms HapCompass.
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Figure 5.4: HapTree (solid lines) and HapCompass (dashed lines) on simulated triploid genomes:
Likelihood of Perfect Solution, 1000 Trials, Block lengths: 10, 20, and 40.
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Figure 5.5: HapTree (solid lines) and HapCompass (dashed lines) on simulated triploid genomes:
Vector Error Rates, 1000 Trials, Block lengths: 10, 20, and 40.
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Tetraploid Simulation Results

For tetraploid simulations, HapTree significantly outperforms HapCompass with block length
of 10 SNP loci (Figures 5.6 and 5.7). For larger block lengths HapCompass arrives at the
perfect solution at a rate of less than 1%; HapTree however does so at a rate between 40%
and 70% depending on block size and coverage at least 20x.

15 20 25 30 35 40
Coverage

0.1

0.2

0.3

0.4

0.5

0.6

Perfect Solution Rate

15 20 25 30 35 40
Coverage

0.2

0.3

0.4

0.5

0.6

0.7
Vector Error Rate per SNP

Tree 10 SNPs

Compass 10 SNPs

15 20 25 30 35 40
Coverage

0.1

0.2

0.3

0.4

0.5

0.6

Perfect Solution Rate

15 20 25 30 35 40
Coverage

0.2

0.3

0.4

0.5

0.6

0.7
Vector Error Rate per Snp

Tree 10 SNPs

Compass 10 SNPs

Figure 5.6: HapTree (solid line) and HapCompass (dashed line) on simulated tetraploid genomes:
Likelihood of Perfect Solution, 1000 Trials, Block length: 10.
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Figure 5.7: HapTree (solid line) and HapCompass (dashed line) on simulated tetraploid genomes:
Vector Error Rates, 1000 Trials, Block length: 10.
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Performance for Varied Allele Error Rates

We varied the allele error rates (.001, .02, .05, and .1) and observed decreases in accuracy
that vary approximately linearly with the (uniform) allele error rates (Figure 5.9). The allele
error rate is the likelihood of the sequencing technology to report the incorrect allele for a
given position in one read. We ran 10000 trials for simulated triploid genomes of block size
10, with coverages 10x, 20x, and 40x.
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Figure 5.8: HapTree performance over varied error rates (.001, .02, .05, .1) and coverages (10x,
20x, 40x) on simulated triploid genomes: Likelihood of Perfect Solution, 10000 Trials, Block length:
10.
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Figure 5.9: HapTree performance over varied error rates (.001, .02, .05, .1) and coverages (10x,
20x, 40x) on simulated triploid genomes: Vector Error Rates, 10000 Trials, Block length: 10.

For the simulations above in Figure 5.9, we modeled our read data on Illumina sequencing
technologies; for more details, please see section Simulated Polyploid Data Generation
below. We also ran simulations on longer read data, modeled after 454 sequencing technolo-
gies and found almost identical results.
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Results on Real Diploid Data

As seen in the results of Geraci et al. [16], there is no perfect solution for diploid phasing.
HapCUT is one of the methods reported that consistently performs best or close-to-best for
a variety of experiments. For a proof of concept of how HapTree would perform on real data,
we ran HapTree and HapCUT using 454 and Illumina sequencing data of the well-studied
NA12878 genome (1000 Genomes Project Phase 1) [2], and compared MEC scores as well
as switch errors to a trio phasing annotation accepted as ground truth. The trio phasing
annotation represents a high quality diplotype of NA12878 for all SNP sites where either
parent (NA12891 or NA12892) is homozygous [2]. Note that we computed the number of
switch errors within connected SNP components only, against SNPs whose phase has been
determined by the trio-based phasing; we then sum over components. In this case, HapTree
was run with a uniform error rate of .02, an EXTEND threshold .001, and primarily with
a PRUNE threshold of .001. We begin to prune more aggressively when we have at least
100, 500, or 1000 possible haplotypes with thresholds of (.01, 05, .1) respectively. For the
vector set prior, from examining the read data, we ran HapTree with parallel bias p = .8.

We found that HapTree and HapCUT perform almost identically in MEC scores, with
HapCUT having marginally smaller scores for both 454 and Illumina data sets. It is worth
noting that HapCUT optimizes MEC score, and MEC score measures only the consistency
between a phasing solution and read data, not with the true phase.

Notably, when comparing to the ground-truth phase as determined by trio-based phasing,
we found HapTree significantly outperforms HapCut in terms of switch error rate for the
phasing experiments on the NA12878 genome for 454 and Illumina datasets. Although our
method is not primarily designed for phasing diploid genomes, it is still able to achieve better
phasing results, when compared to the state-of-the-art diploid method. Again, the results
on real-world read datasets showed the superiority of our likelihood function over MEC score
for NGS-based phasing.

Results 454 Illumina
Method MEC Switch MEC Switch
HapTree 32818 2978 20339 1888
HapCut 32781 3192 20290 1933

Table 5.1: Results of switch error (switch) and MEC score for HapTree and HapCUT of whole-
genome phasing using 454 and Illumina data.

Simulated Polyploid Data Generation

Reads. To generate a paired-end read, we uniformly choose a starting point on the genome
(we make sure the genome starts su�ciently before the first SNP and ends at the last). We
fix the read-end length (read len) to be 150. The fragment length (frag len) is normally
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distributed with a mean of 550 and standard deviation of 30, but with min and max lengths
of 500 and 600 respectively. The insert length (insert len) is determined by the fragment
length and read-end length, that is, insert len = frag len - 2read len. Once we know the start
and fragment length, we must choose from which chromosome to read; we do so uniformly
from the k chromosomes. Finally, we add uniform error to the read; we choose a rate of
.02, based on the reported error rate of Illumina sequencing technologies. For every SNP
that the read covers, independently with probability ✏ we flip the allele to any other allele;
two-thirds of the time when we have this error, we can see that the allele present is neither
the reference nor the alternative, and therefore we delete it. Hence, conditional on seeing a
SNP in a read, it is incorrect with probability " = ✏

1� 2
3 ✏

and correct with probability 1 � ".

Genomes. To simulate a genome, we fix a ploidy (k) and the number of SNPs (n). We
determine the positions for the SNPs by randomly generating the distance between each
pair of adjacent SNPs. We do so using a geometric random variable with parameter p (SNP
density); this choice is equivalent to assuming that any position is a SNP independently with
probability p. For phasing purposes, once one has generated the reads, the exact genomic
positions are no longer relevant; they were only needed to simulate more accurate read data.
We therefore refer to SNPs by their position amongst the SNPs, not their position in the
genome. For each SNP, we randomly generate its haplotype, assuming for each chromosome,
that the alternative and reference alleles are equally likely; if we generate a homozygous
SNP, we try again. This procedure results in the likelihood of genotype g(s) 2 {1, ..., k � 1}
equal to

�

k
g(s)

�

/(2k � 2), and all orderings o 2 Ps being equally likely. For the simulations
discussed we use this model. Note, however, that HapTree is not dependent on this model.
When running HapTree on real data, di↵erent assumptions ought to be made regarding the
distributions of vector sets.

Coverage. For any genome, to generate a read set with Cx coverage we need each base
pair to be on average covered by C reads. To determine the number of reads to generate, we
must know the length of the genome and the read length (read len). The expected length of
the genome is n

p
for SNP density p, and the read len is 150 for each end (of which there are

two); therefore we simulate Cn
300p

reads for Cx coverage. Note that many of these reads will
see only zero or one SNP(s), thus for Cx coverage the number of useful reads for any SNP
will be less than C.
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5.3 HapTree-X

Theoretical Performance

We demonstrate in section 3.10 the di↵erential haplotypic expression level of a gene, �, and
its coverage determine likelihood of concordant expression. We show this relationship below
for varying � and levels of coverage. While these functions are derived from an idealized
model of the data (for genes without alternative splicing and no amplification bias), this
relationship suggests that as the depth-coverage of a dataset increases, so does the likelihood
of concordant expression, and hence the accuracy of HapTree-X.

Figure 5.10 displays the theoretical curves depicting the exponential growth of likelihood
of concordant expression as a function of coverage and �, as described in section 3.10. We
infer from this theoretical result that requiring a lower bound of DHE is beneficial for reliable
DASE-based phasing given moderate coverage (30-50+).

Furthermore, we present a table including minimum coverage required to obtain a prob-
ability of at least 1 � 10�↵ of concordant expression, given �.
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Figure 5.10: Likelihood of concordant expression (CE) as a function of coverage and di↵erential
haplotypic expression � 2 [.55, .6, .65, .7, .75, .8, .85]



CHAPTER 5. SIMULATED AND EXPERIMENTAL RESULTS 47

8

0 20 40 60 80 100

0.6

0.7

0.8

0.9

1.0

Coverage

Pr
o
b
ab

ili
ty

o
f
C
E

0.85

0.8

0.75

0.7

0.65

0.6

0.55

DHE

Figure 2: A figure

9

at least ↵ of concordant expression, given some �.

� \ ↵ 2 3 4 5
.85 9 15 21 27
.8 13 21 31 41
.75 19 33 49 63
.7 31 55 79 105
.65 57 101 147 193
.6 133 235 339 447
.55 539 951 1377 1811

Figure 3: Coverage needed to obtain likelihood � of concordant expression given a di�erential haplotypic expression
of � and an assume opposite allele error rate of 2%.

Experimental Results

Datasets and Experimental Setup

We evaluate sequence-based and DASE-based haplotype reconstruction performance of HapTreeX
on diploid RNA-seq and DNA-seq read datasets from GM12878, a well-studied lymphoblastoid cell
line from a human female individual with European Ancestry (1000 Genomes Project [23]).

To assess the accuracy of phased haplotype blocks generated by HapTreeX, we compare to
a high-quality trio-phased SNP annotation of GM12878 (1000 Genomes Project Phase I) used
as the gold-standard phasing reference in the results. RNA-seq raw read datasets of GM12878
are obtained from ENCODE CSHL Long RNA-seq (wgEncodeCshlLongRnaSeq) [24] track with
average sequencing depth of 100 million mate-pairs (2x76bp), transcriptome fragments sequenced
from the nucleus with Poly-A+ and Poly-A� profiling.

For each RNA-seq dataset, we performed 2-pass alignments using STAR aligner v2.4.0d [25] by
initially aligning raw reads to hg19 reference genome and then realigning reads to a second index
generated from the splice junctions inferred from the first alignment.

We restricted DASE-based phasing within HapTreeX only to the SNPs that are located within
the same gene in the GENCODE gene annotation v19 (wgEncodeGencodeCompV19) [26]. For joint
DNA-seq and RNA-seq phasing experiments, we obtained genome sequencing reads of NA12878
from 1000 Genomes Project Pilot 2 release aligned to the hg19 reference genome using bwa aligner
[27] and input both genome and transcriptome reads to the HapTreeX haplotype reconstruction
framework.

We compared our results from real-data phasing experiments to the results from HapCUT
v0.7 sequence-based haplotype reconstruction tool [15]. To accommodate for long range splicing-
junctions within RNA-seq read alignments, we defined maximum insert-size (maxIS) parameter to
be longer than each chromosomes length.

Results from GM12878 data sets

In the RNA-seq read datasets from GM12878 (PolyA+ and PolyA- together), we observe that
majority of the reads (⇠ 89%) only cover a single heterozygous SNP in the genome. The distribution
of read sizes are given in ??. Of the 19782889 reads containing one SNP, we are able to confidently
assign expression biases to 675892 of them; which increases the total number of reads to be used
in phasing by 28%.

Figure 3: Another figure

is computed (see Maximum Likelihood Estimate of Di�erential Haplotypic Expression).
Furthermore, we determine which SNPs within those genes have high likelihood of concordant
expression (see Computing Likelihood of Concordant Expression).

For reads containing only such SNPs, we assign to them the computed expression bias of the
gene that they cover; for all other reads, we assign a non-biased expression. Finally, applying a
generalized version of HapTree [19], we determine a haplotype of maximal likelihood (as defined in
Likelihood of a Phase) which depends on the DASE present in the RNA-seq data, as well as the
sequence contiguity information within the reads.

Results

Theoretical Performance of HapTree-X Framework

Likelihood of Concordant Expression

We demonstrate in Computing Likelihood of Concordant Expression the relationship be-
tween di↵erential haplotypic expression level, �, of a gene, coverage, and likelihood of concordant
expression. We show this relationship below for varying � and levels of coverage. While these
functions are derived from an idealized model of the data, this relationship suggests that as the
depth-coverage of a RNA-seq read data sets increases, so will the accuracy of HapTree-X. Figure
1 displays the theoretical curves depicting the exponential growth of likelihood of concordant ex-
pression as a function of coverage and �, as described in (9). We infer from this theoretical result
that a lower bound of DHE is required for reliable DASE-based phasing given moderate coverage.

Furthermore, we present a table including minimum coverage required to obtain a probability
at least ↵ of concordant expression, given some �.

� \ ↵ 2 3 4 5
.85 9 15 21 27
.8 13 21 31 41
.75 19 33 49 63
.7 31 55 79 105
.65 57 101 147 193
.6 133 235 339 447
.55 539 951 1377 1811

Figure 5.11: Coverage needed to obtain likelihood 1 � 10�↵ of concordant expression given a
di↵erential haplotypic expression of � and an assumed opposite allele error rate of 2%.

Experimental Results

Reported RNA-seq phasing results using HapTree-X for a well annotated human lymphoblas-
toid cell line (GM12878) provide strong evidence for long-distance haplotype phasing capa-
bility of paired-end RNA-seq read alignments as well as the use of di↵erential allele-specific
expression as a practical haplotype reconstruction tool. Used jointly with genome reads in
genotyping studies, RNA-seq reads can provide long distance sca↵olds in order to be used
for extending and merging haplotypes inferred from genome reads as well as introducing
new long-distance phasing instances not possible to attain using short genome sequencing
reads. We observe that compared to a state-of-the-art sequence-based haplotype reconstruc-
tion method, HapCut [5], HapTree-X, increases the total number of SNPs phased along with
the sizes of phased haplotype blocks with improved accuracy, leveraging RNA-seq reads that
only cover a single heterozygous-SNP in the transcriptome.

Datasets and Experimental Setup

We evaluate haplotype reconstruction performance of HapTree-X on diploid RNA-seq and
DNA-seq read datasets from GM12878, a well-studied lymphoblastoid cell line from a human
female individual with European Ancestry (1000 Genomes Project [10]).

To assess the accuracy of phased haplotype blocks generated by HapTree-X, we com-
pare our phasing results to a high-quality trio-phased SNP annotation of GM12878 (1000
Genomes Project Phase I), the gold-standard phasing reference. RNA-seq raw read datasets
of GM12878 are obtained from ENCODE CSHL Long RNA-seq (wgEncodeCshlLongRnaSeq)
[28] track with average sequencing depth of 100 million mate-pairs (2x76bp), transcriptome
fragments sequenced from the nucleus with Poly-A+ and Poly-A� profiling.

For each RNA-seq dataset, we performed 2-pass alignments using STAR aligner v2.4.0d
[13] by initially aligning raw reads to hg19 reference genome and then realigning reads to a
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second index generated from the splice junctions inferred from the first alignment.
We restricted DASE-based phasing within HapTree-X only to the SNPs that are located

within the same gene in the GENCODE gene annotation v19 (wgEncodeGencodeCompV19)
[17]. For joint DNA-seq and RNA-seq phasing experiments, we obtained genome sequencing
reads of NA12878 from 1000 Genomes Project Pilot 2 release aligned to the hg19 refer-
ence genome using bwa aligner [21] and input both genome and transcriptome reads to the
HapTree-X haplotype reconstruction framework.

We compared our results to those of HapCUT v0.7 sequence-based haplotype recon-
struction tool [5]. To accommodate for long range splicing-junctions within RNA-seq read
alignments, we defined maximum insert-size (maxIS) parameter to be longer than each chro-
mosome’s length.

Results from GM12878 data sets

In the RNA-seq read datasets from GM12878 (PolyA+ and PolyA- together), we observe
that majority of the reads (⇠ 89%) only cover a single heterozygous SNP in the genome.
The distribution of read sizes are given in Table 5.2. Of the 19782889 reads containing one
SNP, we are able to confidently assign expression biases to 675892 of them; we use these
reads to phase, increasing the total number of reads to be used in phasing by 28%.

Read Size 1 2 3 4 5 6 7 8 � 13
Count 19782889 2027207 290489 47424 17176 11941 10623 9119

% 89.12 9.133 1.311 .2137 .0774 .0538 .0479 .0411

Table 5.2: Distribution of read sizes (#heterozygous-SNPs covered) in GM12878 RNA-seq data
(PolyA+ and PolyA-).

Table 5.3 summarizes the haplotype reconstruction performance of HapTree-X in compar-
ison to a contig-based algorithm, HapCut. Running HapTree-X without any DASE-based
phasing (using only reads covering at least two SNPs) yields identical statistics (besides
switch error) to HapCut, as both employ the ReadGraph structure to determine the SNPs
and blocks to be phased. The switch error rate of HapTree-X without DASE-based phasing
is consistent with that from with DASE-based phasing.
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Datasets \ Stats SNPs Switch Errors Blocks Edges SNP Pairs
HapTree-X (DNA-seq & RNA-seq) 979181 3767 298637 680544 5121692
HapCut (DNA-seq & RNA-seq) 978811 5718 298710 680101 5101488
HapTree-X (RNA-seq) 220849 641 88355 132494 412534
HapCut (RNA-seq) 220386 669 88403 131985 380718
HapTree-X (DASE only) 1580 6 435 1145 4884

Table 5.3: Haplotype reconstruction results from HapTree-X and HapCut using DNA-seq and
RNA-seq datasets from NA12878. Both HapCut and HapTree-X results are reported on RNA-seq
read datasets as well as DNA-seq and RNA-seq merged datasets. DASE-based phasing only results
from HapTree-X are also reported. For each dataset we report total number of phased SNPs, switch
errors, haplotype blocks, edges and SNP pairs.

Results indicate that incorporating di↵erential allele-specific expression in haplotype
phasing increases the total number of SNPs phased, without increasing the switch error
rate (with respect to the trio-phased gold-standard annotation). Furthermore, HapTree-X
reduces the total number of blocks while increasing their overall sizes. We represent this by
#Edges = #SNPs � #Blocks, equivalently the total number of pairs of adjacent (within a
block) phased heterozygous-SNPs. This is also demonstrated by the large increase of total
phased SNP pairs (any two SNPs within the same block). This indicates that HapTree-X
produces longer haplotype blocks as a result of DASE-based phasing, as desired.

As discussed in section 3.4, the solution of maximum likelihood (for any gene g) corre-
sponds to that with concordant expression at all SNP loci within g. HapTree-X therefore
uses a threshold � (negative log-likelihood of concordant expression) which requires any SNP
to be concordantly expressed with probability at least 1 � e��, in order to be phased. We
run HapTree-X while varying this threshold �; we compute the percentage of concordantly
expressed SNPs and the total phased SNPs as we increase this threshold. As the threshold
increases, HapTree-X demands any SNP to be phased to have a correspondingly high like-
lihood of concordant expression; as a result, the phasing accuracy of HapTree-X increases.
The cost paid for this increase in accuracy is a decrease in the total number of SNPs phased,
as seen in Figure 5.12.
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Figure 5.12: Rate of concordantly expressed SNPs (purple) and total number of SNPs phased
(green) by HapTree-X, as a function of �, the negative log-likelihood of concordant expression.

For the results reported in Table 5.3, we used a threshold value of 20. In theory, this
threshold value � would produce a percentage of concordantly expressed SNPs equal to
1 � e��; however because of the structural noise commonly observed in aligned RNA-seq
data due to false mapping, RNA-editing, as well complex alternative splicing events, we
require a �0 > � to meet desired accuracy levels. Additionally, we require an estimated
� � .6 for any gene to be phased using DASE, for motivation see Figure 5.10. Finally, we
have several methods for managing alternative splicing events. HapTree-X can (1) avoid all
genes with alternative splicing, (2) phase s, s0 only if the set of isoforms containing s, s0 are
equal, and (3) phase independent of isoforms but require s, s0 to have coverage and DASE
that are su�ciently similar. (3) was used in Table 5.3; (2), and especially (1), result in higher
accuracy for lower �, but of course phase fewer SNPs.
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Chapter 6

Phasing with Multiple Isoforms

We have seen, with HapTree-X, that it is possible to perform phasing based on di↵erential
haplotypic expression (DHE) by making use of di↵erential allele specific expression (DASE).
In the case of HapTree-X, we restricted phasing depending on the structure of the isoforms
of a gene; phasing in the general case of multiple isoforms is much more complicated. We
discuss some cases in which phasing when there are multiple isoforms can be achieved in this
chapter.

Phasing based on DHE and DASE is immediately made more complex by the existence
of multiple isoforms. This is primarily because the rates of di↵erential haplotypic expression
are independent across isoforms, and furthermore, each isoform is expressed at a di↵erent
frequency. Fortunately, methods for determining the relative frequencies of expression of
isoforms, or quantification, have been studied in [27, 23, 26]. We therefore, in this thesis,
will assume that these relative frequencies are known.

Not only are isoforms expressed at di↵erent frequencies, but the two haplotypes of any
isoform may be di↵erentially expressed as well; it is this di↵erential expression that we wish
to use for haplotype reconstruction. Unfortunately, these DHE rates are not known and
we will see that depending on the situation they may or may not be able to be determined.
Furthermore, we will see that knowing the di↵erential expressions may not always be enough
to determine the haplotypes, and vice versa.

6.1 Definitions and Notation

Recall the goal of phasing is to recover the unknown haplotypes, H = (H
0

, H
1

), which contain
the sequence of variant alleles inherited from each parent of the individual. From now on,
we will restrict ourselves to one gene, G, with isoforms {I

1

, ..., Ik}. Let Si denote the set of
heterozygous SNPs that are present within the exons of the isoform Ii; we let S = [iSi. For
any s 2 S, we let H

0

[s], H
1

[s] denote the allele present at s on the haplotypes respectively.
Suppose |S| = n and S = {s

1

, ..., sn}, we can define the Isoform Matrix M (an incidence
matrix), whose rows correspond to the isoforms Ii and columns correspond to the set of
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SNPs S; that is M = {mi,j} where

mi,j =

⇢

1 if sj 2 Si

0 if sj /2 Si

We assume that the quantification of the isoforms is known; that is each isoform Ii is
expressed at a rate proportional to ↵i For each SNP sj, we define the relative SNP expression
level as Aj, where

Aj =
X

i:sj2Ii

↵i.

Let �M
i and �P

i (with �M
i +�P

i = 1) denote the expressions of the maternal and paternal

haplotypes respectively for isoform Ii; let �i =
�M
i ��P

i

2

.
We assume that M has all distinct rows, that is: isoforms covering identical sets of SNPs

are considered to be the same. If this is not the case, say I 0
1

, ..., I 0
k0 are all identical with

quantifications q0
1

, ..., q0
k0 and di↵erential expressions �0

1

, ..., �0
k0 , then we may represent these

isoforms as one isoform I 0 covering the same set of SNPs with quantification q0 =
P

q0
i and

di↵erential expression �0 =
P

q0
i�

0
i.

Finally, we let

�j =

⇢

1 if H
0

[sj] = 0
�1 if H

0

[sj] = 1

Suppose we are given, for each SNP sj, the proportion of alleles expressed that are the
reference allele (0) and alternative allele (1); we denote these as v0

j and v1

j , respectively. In our
ideal model of the world, all isoforms are known exactly, each isoform is expressed infinitely
(in proportion to its quantification), no read covers more than one SNP, and di↵erential
expression is exactly constant across an isoform. In this case, the following should hold:

v0

j =
1

Aj

k
X

i=1

mi,j↵i(
1

2
+ �j�i) (6.1)

v1

j =
1

Aj

k
X

i=1

mi,j↵i(
1

2
� �j�i) (6.2)

Matrix Representation

It will be useful to formulate these relations in terms of matrices. Let Q = {qi,j} be the k⇥k
diagonal matrix with entries corresponding to the quantifications levels, that is: qi,i = ↵i.
Let A = {ai,j} be the n ⇥ n diagonal matrix containing the relative SNP expression levels
Aj, that is aj,j = Aj. We can then define the Weighted Isoform Matrix, M 0 = {m0

i,j}, where
M 0 = QMA�1.
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By definition m0
i,j =

↵imi,j

Aj
.

The relations described in 6.1 and 6.5 can be represented equivalently as matrix relations
as well. To do so, we define � = (�

1

, ..., �k) (with �1

2

 �i  1

2

) and let S = {si,j} be the
n⇥ n diagonal matrix containing the �j, with sj,j = �j. Finally, let v0 = (v0

1

, v0

2

, ..., v0

n) (and
let v1 be defined analogously), then 6.1 may be expressed as

v0 = fkM
0 + �M 0S

v1 = fkM
0 � �M 0S

where fk = (1

2

, 1

2

, ..., 1

2

) and is of length k. Since the columns of M 0 each sum to one,
fn = fkM 0.

Let v = (v0, v1), since v0 + v1 = (1, ..., 1), without loss of generality will restrict ourselves
to v0. Let

z = v0 � fn = �M 0S (6.3)

z0 = (v0 � fn)S
�1 = �M 0. (6.4)

S is invertible as �j = ±1; indeed S = S�1.
We will see that being able to phase with multiple isoforms is equivalent to the existence

of unique (up to sign) S such that there exists |�i|  1

2

where S, � satisfies 6.3.

6.2 Problem Statement

We assume an idealized model of the world, where all isoforms of a gene are perfectly known,
as are their quantifications. Furthermore, each isoform is expressed infinitely (in proportion
to its known quantification), no read covers more than one SNP, and di↵erential expression is
exactly constant across an isoform (though unknown). Given total proportions of reference
and alternative alleles being expressed from all isoforms at each SNP locus, we can ask for
how many possible pairs of haplotypes, given the known isoforms and their quantifications,
it is feasible for us to have observed these allele proportions. In the case where there is a
unique pair of haplotypes, we say the haplotypes can be recovered and there exists a unique
haplotype solution.

In our notation from the previous section, we assume that the di↵erential expressions �
and haplotypes S are fixed but unknown. We are given the isoforms M , their quantifications
Q (and from M and Q we may deduce A and therefore M 0). Finally we observe v, and
equivalently z. The existence of a unique set of haplotypes is equivalent to there existing a
unique (up to sign) S such that there exists |�|  1

2

where z = �M 0S.

Definition 6.2.1. For a given M 0 and z, S is a feasible haplotype solution if there exists
|�|  1

2

such that z = �M 0S.

Definition 6.2.2. For a given M 0 and z, the haplotypes may be recovered if there exists a
unique (up to sign) feasible solution ±S.
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6.3 Zonotope Representation

We are fortunate to be able to borrow from the rich theory of polytopes, zonotopes, and hy-
perplane arrangements to describe the set of observations z for which a particular haplotype
solution S is feasible. We will state several facts about zonotopes without proof; we refer1

the reader to [11].
A zonotope may be defined as the Minkowski sum of a set of line segments beginning

at the origin. Given a set of points X ⇢ V (spanning V ), the zonotope Z(X) ⇢ V may be
written as

Z(X) =
n

X

x2X

txx | 0  tx  1
o

.

We can shift Z(X), to Z 0(X), so that it is centered at the origin, by subtracting the point
P

x2X
1

2

x from all points z 2 Z(X); equivalently we can write

Z 0(X) =
n

X

x2X

txx | � 1

2
 tx  1

2

o

.

It is known (but non-trivial to show) that Z(X) (or any polytope) may be written as the
intersection over a set of half-spaces each defined by a hyperplane. For the case of zonotopes,
there is a nice way to define these hyperplanes, described in Proposition 2.43 of [11]. To do
so, let F denote the set of subsets of X that span a codimension one subspace of V . For
each f 2 F , let uf be a linear equation such that huf , vi = 0 defines the subspace spanned
by f . Finally, define µ�

f and µ+

f to be the minimum and maximum values attained by f
over Z(X), respectively. With these definitions in mind, Proposition 2.43 of [11] states that
Z(X) may be written as

\

f2F

�

v 2 V | µ�
f  ⌦

uf | v↵  µ+

f

 

. (6.5)

Let B� := {x 2 X huf |xi < 0} and B+ := {x 2 X huf |xi > 0}. In the case of Z(X), µ�
f

and µ+

f are the sums of the values of uf at x, for x in B� and B+, respectively.

µ�
f :=

X

b2B�

huf , bi

µ+

f :=
X

b2B+

huf , bi.

In the case of the shifted zonotope Z 0(X), uf takes the following minimum and maximum
values on Z 0(X):

µ�
f :=

X

b2B�

1

2
huf , bi +

X

b2B+

�1

2
huf , bi

1We thank Bryan Gillepsie sharing this reference.
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µ+

f :=
X

b2B+

1

2
huf , bi +

X

b2B�

�1

2
huf , bi.

We will use this half-space representation to describe the observations z for which a particular
haplotype solution S if feasible.

For any fixed S, the set of z satisfying 6.3 are those points in the shifted zonotope
Z 0(X), where X is the set of rows of the matrix M 0S; we refer to this zonotope as Z 0

S(M
0).

Recall S is the diagonal matrix, with entries �j = ±1, representing the haplotypes. Without
loss of generality, we consider only Z 0(M 0) = Z 0

I(M
0), where I is the identity matrix. We

may restrict to this case because any Z 0
S(M) is the reflection of Z 0(M) through the set of

coordinates j such that �j = �1.
Following 6.5, to determine Z 0(M 0), we must compute the linear equations defining the

hyperplanes spanned by subsets of rows M 0 and their minimum and maximum values on
Z 0(M 0). To understand the codimension one subspaces spanned by the row vectors of M 0

it is enough to understand those spanned by the row vectors of M because M 0 = QMA�1,
where both Q and A are diagonal. If a subset of rows of M span the subspace defined by

n
X

j=1

�jxj = 0,

then the corresponding rows in M 0 span the subspace defined by

n
X

j=1

�jAjxj = 0.

For fixed n, the most general isoform matrix (which we will denote as M̂(n)) is the
collection of all non-empty binary strings. Determining the linear equations defining all
codimension one subspaces spanned by the row vectors of M̂(n) is su�cient for understanding
the hyperplane description of any Z 0(M 0), provided M 0 has at most n columns.

In the following section, we define the hyperplane descriptions of Z 0(M 0) and their cor-
responding minima and maxima for the case when n = 2. The cases of n = 3 and n = 4 are
included at the end of this chapter.

6.4 Phasing Two SNPs Given Multiple Isoforms

In the case where a gene G covers exactly two SNPs, we may write down simple necessary
and su�cient conditions for the existence of a unique haplotype solution S given z, Q, and
M . Recall that we may assume that M has no duplicate rows (that is, isoforms covering
identical sets of SNPs are considered to be the same.) Therefore, without loss of generality,
we can write:
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We investigate what kind of solution pairs �, S satisfy zS = �M 0 with �1

2

 �i  1

2

and S =
�

�1 0

0 �2

�

, with �j 2 {±1}. The case S = ± ( 1 0

0 1

) corresponds to the case in
which the two SNPs are phased in parallel (the reference allele occurs at both SNP sites
on one haplotype and the alternative allele at both SNP sites on the other.) The case
S = ± ( �1 0

0 1

) corresponds to the SNPs having switched phase (one haplotype has a reference
allele followed by alternative allele and the other haplotype an alternative allele followed
by a reference allele.) Note that if S, � is a solution, then �S,�� is also a solution and
corresponds to relabelling the haplotypes (switching the maternal and paternal haplotypes),
and we therefore restrict ourselves to the cases say Sp = ( 1 0

0 1

) and Ss = ( �1 0

0 1

).
It is possible to determine the phase of the gene G if there do not exist both forms

of solution pairs Sp, � and Ss, �; having solutions of both forms imply z can be explained
by either parallel or switched phasing, and therefore the phasing is ambiguous. We derive
conditions on z which determine when z is such that it is feasible for G to be parallel phased;
equivalently when there exist solution pairs Sp, � satisfying zSp = �M 0 and �1

2

 �i  1

2

.
We also derive the corresponding conditions for the case of switched phase. The phasing of
G is ambiguous when z satisfies both sets of conditions.

From the viewpoint of section 6.3, we wish to describe Z 0
Sp
(M 0), its reflection across the

y�axis, Z 0
Ss
(M 0), and their intersection; any point z in the intersection Z 0

Sp
(M 0) \ Z 0

Ss
(M 0)

implies the phasing of G is ambiguous. In the discussion that follows, we think of Z 0(M 0) as
the projection of the cube � defined by �1

2

 �i  1

2

by multiplication on the right by M 0.
To determine conditions for when z can be explained by parallel phasing, we derive

equations for the hyperplane description of the zonotope Z 0
Sp
(M 0) in terms of z and Q.
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Figure 6.1: Projection into 2-space of the cube � under the map: right multiplication by M 0.
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Proposition 6.4.1. The following conditions are necessary and su�cient for the existence
of � 2 � such that (x, y) = z = �M 0, where � is the cube defined by |�i|  1

2

.

Cy : |y|  1

2

Cx : |x|  1

2

C�
xy : |(↵

2

+ ↵
3

)y � (↵
1

+ ↵
3

)x|  ↵1+↵2
2

Proof. From the discussion in section 6.3, we begin by enumerating the linearly independent
subsets of M 0 who span a codimension 1 subspace, trivially these are the rows r

1

, r
2

, r
3

of
M 0. Equating (x, y) to �M 0 implies the following equations

(↵
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3
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(6.6)

(↵
2

+ ↵
3

)y = ↵
2

�
2

+ ↵
3

�
3

(6.7)
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2
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2

� ↵
1

�
1

(6.8)

In general, the coe�cient attached to �i on the RHS is what the row ri evaluates to under the
LHS. Each �i is missing from one these equations, and these equations are therefore su�cient
for defining the zonotope as an intersection of half-spaces. To determine those half-spaces,
we follow 6.3 and minimize and maximize the RHS of each equation, implying the bounds
in the statement of Proposition 6.4.1.

Proposition 6.4.2. The following conditions are necessary and su�cient for the existence
of � 2 � such that (x, y) = z = �M 0 ( �1 0

0 1

), where � is the cube defined by |�i|  1

2

.

Cy : |y|  1

2

Cx : |x|  1

2

C+

xy : |(↵
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+ ↵
3

)y + (↵
1

+ ↵
3

)x|  ↵1+↵2
2

This statement follows from Proposition 6.4.1 by a reflecting across the y-axis.
By combining Propositions 6.4.1 and 6.4.2 we can determine when the phasing of G is

ambigious; that is, when both C�
xy and C+

xy hold.
We include images depicting the the zonotopes Z 0

Sp
(M 0) and Z 0

Ss
(M 0) as determined by

6.4.1 and 6.4.2. As intuition suggests, the larger ↵
3

is to relative to ↵
1

,↵
2

, the smaller the
set of z with ambiguous phasing (Z 0

Sp
(M 0) \ Z 0

Ss
(M 0)). This intuition can be explained by

the idea that I
3

is the only isoform with information about the true phase.
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6.5 Modeling Noise

The model described in the preceding section assumed a theoretical set up where coverages
of isoforms are sent to infinity in proportion to their quantifications, and the di↵erential
expression across an isoform is exactly constant. In reality, we do not have infinite coverage.
Furthermore, we can have variation of coverage relative to the ‘known’ quantifications (of
an entire isoform or just a SNP) and variation of di↵erential expression within an isoform.
These variations can be caused by both random and structural noise. Modeling all of these
variations at once is equivalent to finding solutions �, S to the equations

v0

j =
1

A0
j

k
X

i=1

mi,j(↵i + ✏↵,i,j)(
1

2
+ �j(�i + ✏�,i,j)) (6.9)

v1

j =
1

A0
j

k
X

i=1

mi,j(↵i + ✏↵,i,j)(
1

2
� �j(�i + ✏�,i,j)) (6.10)

where A0
j =

Pk
i=1

mi,j(↵i + ✏↵,i,j), such that |�i|  1

2

and �j = ±1, the ✏↵, ✏� are bounded
in some way, and possibly |�i + ✏�,i,j|  1

2

as well. Even for fixed S, this problem is non-
linear since the errors and � are unknown. Instead, we discuss the simpler case of modeling
variation of di↵erential expression across an isoform.

Non-Uniform Di↵erential Expression

Assuming fixed and known quantifications, we can model variation at the SNP level of
di↵erential expression. Without noise, di↵erential expression ought to be the same for all
SNPs across an isoform. We introduce noise limits " = {"i,j} to account for this variation.
Given an observation v0, v1, we say S is a feasible haplotype solution if there exists |�|  1

2

and ✏  " (where {✏�,i,j}) such that the following hold:

v0

j =
1

Aj

k
X

i=1

mi,j↵i(
1

2
+ �j(�i + ✏�,i,j))

v1

j =
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Aj

k
X
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mi,j↵i(
1

2
� �j(�i + ✏�,i,j))

zj = v0

j � fn =
�j

Aj

k
X

i=1

mi,j↵i(�i + ✏�,i,j) (6.11)

Recall fk = (1

2

, 1

2

, ..., 1

2

) and is of length k and that the column sums of M 0 are one.
Furthermore, we may wish to bound |�i + ✏�,i,j|  1

2

since those limits correspond to only
one haplotype being expressed.
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Let ✏̂j, "̂j, denote the weighted average of errors and their upper bounds respectively at
each SNP, that is

✏̂j =
1

Aj

k
X

i=1

mi,j↵i✏�,i,j

"̂j =
1

Aj

k
X

i=1

mi,j↵i"i,j.

Setting ✏̂ = (✏̂
1

, ..., ✏̂n) and "̂ = ("̂
1

, ..., "̂n), we may write

z = v0 � fk = �M 0S + ✏̂S.

and therefore
|z � �M 0S|  "̂. (6.12)

If we impose |�i + ✏�,i,j|  1

2

, then |z|  1

2

as well.
For fixed S and given z, if we insist that |�i + ✏�,i,j|  1

2

, then the existence of |�|  1

2

satisfying 6.12 does not imply the existence of |�|  1

2

, ✏  " satisfying 6.11. If |z|  1

2

as
it will be in practice, then there will exist a solution where the weighted average over i of
|�i + ✏�,i,j| is less than a half for each j.

6.6 Experimental Results

We wish to get a sense for whether or not phasing when multiple isoforms are present is
possible with the current state of RNA-seq data. To do so, we see how accurate both
our idealized and error based models are when implemented on RNA-seq data. We use
RNA-seq raw read datasets of GM12878 obtained from ENCODE CSHL Long RNA-seq
(wgEncodeCshlLongRnaSeq) [28] track with average sequencing depth of 100 million mate-
pairs (2x76bp), and transcriptome fragments sequenced from the nucleus with Poly-A+ and
Poly-A� profiling. For both the Poly-A+ and Poly-A� profiling nucleus datasets there are
two replicates available, yielding a total of four separate datasets. Also obtained from EN-
CODE CSHL Long RNA-seq are the transcript quantifications [28] based on GENCODE
gene annotation v7 [17]. We take as ground truth Illumina’s platinum genome VCF file Il-
luminaPlatinumGenomes v7.0 [1] phased with both trio and further inheritance constraints.

Based on the gene model mentioned above, we find all isoform covered SNP pairs (s1, s2)
(that is, those which occur together in an isoform with non-zero quantification; from here
on, when we say isoform, we mean an isoform with non-zero quantification.) We can ask
what the coverage at (s1, s2) alone says about the feasible phasing solutions of the pair. This
problem can be reduced to the setup in section 6.4 by letting ↵

1

, ↵
2

and ↵
3

equal the sum
of quantifications of all isoforms covering only s1, only s2, and both s1 and s2 respectively.
Suppose the pair has coverage [A

1

, B
1

] and [A
2

, B
2

] where Ai, Bi denote the number of reads
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containing the reference allele at si and the alternative allele at si respectively. In our
previous notation, we can write (x, y) = ( A1

A1+B1
� 1

2

, A2
A2+B2

� 1

2

) and check when either C�
x,y

(6.4.1) holds, which would mean parallel phasing is feasible, and when C+

x,y (6.4.2) holds,
implying switched phasing is feasible.
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2
In this context, it is possible to have two, one, or zero feasible solutions. In order for

phasing with multiple isoforms to be e↵ective, we ideally would like there to exist a unique
feasible solution a high fraction of the time, and furthermore for that solution to be the true
phasing of the pair. In the table below we count the number of pairs with two, one, and zero
feasible solutions. We also report how often the unique feasible solution is accurate (AUFS),
by which we mean agrees with the phasing provided in the gold-standard platinum VCF.
We also report the same stats in the case where we condition on the coverage being at least
15 for both SNPs; somewhat surprisingly this does not a↵ect AUFS significantly.

Results PolyA- Rep 1 PolyA- Rep 2

# Feasible Solutions 2 1 0 2 1 0
# SNP Pairs 11695 7066 26850 11928 7477 27174
% SNP Pairs 25.64 15.49 58.87 25.81 16.05 58.34
AUFS Rate .6514 .6580

Results PolyA+ Rep 1 PolyA+ Rep 2

# Feasible Solutions 2 1 0 2 1 0
# SNP Pairs 15618 8714 34682 14778 8473 33561
% SNP Pairs 26.46 14.77 58.77 26.01 14.91 59.07
AUFS Rate .7592 .7285

Table 6.1: Counts and percentage of number of isoform covered SNP pairs with two, one, or zero
feasible solutions; accuracy of unique feasible solution (AUFS). No coverage requirement.
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Results PolyA- Rep 1 PolyA- Rep 2

# Feasible Solutions 2 1 0 2 1 0
# SNP Pairs 3891 1062 6360 4019 963 6189
% SNP Pairs 34.39 09.39 56.22 35.98 08.62 55.40
AUFS Rate .6271 .6449

Results PolyA+ Rep 1 PolyA+ Rep 2

# Feasible Solutions 2 1 0 2 1 0
# SNP Pairs 10001 3086 18011 9504 2881 17682
% SNP Pairs 32.16 09.92 57.92 31.61 09.58 58.81
AUFS Rate .7955 .7372

Table 6.2: Counts and percentage of number of isoform covered SNP pairs with two, one, or zero
feasible solutions; accuracy of unique feasible solution (AUFS). Coverage at least 15 for all SNPs.

To incorporate error into the model, we follow the formulation in 6.12 and ask, for fixed
", when there exists a feasible solution to

|z0 � �M 0S|  ". (6.13)

Equivalently, for which z0 does there exist z with |z0 � z|  " satisfying:

z = �M 0S.

Let z0 = (x0, y0), it follows from 6.4.1 that the set of z0 satisfying 6.13 are those which satisfy:
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for S = ± ( 1 0

0 1

) and ± ( �1 0

0 1

) respectively. Note that z0 will always satisfy Cx and Cy by
definition.

For any z0 = (x0, y0), we can ask how much error is required in order for some S to be
feasible; we let fp(x0, y0) and fs(x0, y0) denote such an error bound for parallel phased and
switched phase solutions respectively:
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We can ask at various error levels, how many isoform covered SNP pairs have two,
one, and zero feasible solutions (Figure 6.6). For the SNP pairs admitting only one feasible
solution at a given allowed error bound, we compute the proportion of accurately phased SNP
pairs (AUFS). As these curves do not vary significantly across Poly-A profile or replicate,
we report these results for just Poly-A- replicate 2.
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Figure 6.6: Counts of SNP pairs with coverage at least 15 with two, one, and zero feasible solutions
with varying allowed error for Poly-A- replicate 2.
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Figure 6.7: For varying allowed error, we report the proportion of SNP pairs with a unique
feasible solution (red) and the accuracy of that feasible solution (AUFS) (blue) compared against
the platinum phased VCF for Poly-A- replicate 2.
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Generalizing one step further, we consider phasing a pair of SNPs when one phasing
solution requires ✏m  "m error in order to be feasible and the other requires ✏M � "M error
in order to be feasible. Using the notation introduced 6.14 and 6.15, we phase a SNP pair
when either fp(x0, y0)  "m and fs(x0, y0) � "M or fs(x0, y0)  "m and fp(x0, y0) � "M . When
these conditions are satisfied, we compare the solution with lower error to the true phase.
We refer to the upper bound "m as allowable min-error and the lower bound "M as required
max-error. By doing so, we attempt to capture the intuition that given one solution which
appears to be very good, the worse the alternate solution is, the higher our confidence the
good solution is the true solution.

Below we plot how many SNP pairs can be phased for various "m, "M (Figure 6.9) and
how often those phasing solutions are accurate (Figure 6.10). Below, each curve corresponds
to some "m 2 [0, .02, .05, .1]. The enlarged points on the curves correspond to "m = "M ;
those points occur in Figure 6.7. In Figure 6.8 for "m = .05, we plot the proportion of SNPs
phased and phasing accuracy curves jointly. In all cases, we require coverage of at least
15 for all SNPs. As intuition suggests, accuracy appears to be approximately monotoni-
cally increasingly, and percentage of SNPs phased approximately monotonically decreasing,
di↵ering from the results presented in Figure 6.7.
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Figure 6.8: For allowable min-error = .05 and varying required max-error "M , we report the
proportion of accurately phased SNP pairs and the proportion of SNP pairs (out of all SNP pairs
with coverage at least 15) able to be phased (that is, those with coverage at least 15, min-error
 .05, and max-error � "M .)

Intuition suggests that with higher coverage, accuracy ought to increase; unfortunately
requiring higher coverage limits how often we are able to phase. We fix "m = .05 and
"M = .15 and for varying required coverage, we report what proportion of SNP pairs have
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Figure 6.9: For allowable min-error "m 2 [0, .02, .05, .1] (in purple, magenta, yellow, and green
respectively) and varying required max-error "M we report the proportion of SNP pairs (out of all
SNP pairs with coverage at least 15) able to be phased: those with coverage at least 15, min-error
 "m, and max-error � "M .
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Figure 6.10: For allowable min-error "m 2 [0, .02, .05, .1] (in purple, magenta, yellow, and green
respectively) and varying required max-error "M we report the proportion of SNP pairs that were
phased accurately relative to the gold-standard phased platinum vcf. The SNP pairs phased are
those with coverage at least 15, min-error  "m, and max-error � "M .



CHAPTER 6. PHASING WITH MULTIPLE ISOFORMS 66

the required amount of coverage (Figure 6.11), how accurately we phase when the coverage
and error thresholds are satisfied (Figure 6.11), and of SNP pairs satisfying the coverage
thresholds, what proportion satisfy the error thresholds and thus we choose to phase (Figure
6.12.)
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Figure 6.11: We report the proportion of SNP pairs with coverage above a varying threshold
(blue). Of those pairs, we phase those satisfying the error thresholds: "m = .05 and "M = .15; we
report the proportion of correctly phased SNP pairs (red).
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Figure 6.12: We report what proportion of SNP pairs with coverage � C satisfy the error thresh-
olds "m = .05 and "M = .15.
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Discussion

We find that attempting to phase SNP pairs in the presence of multiple isoforms without
taking into account error leads to low accuracy in phasing results, and furthermore for all
replicates and both Poly-A profiles, between 55�60% of SNP pairs have no feasible solutions
(Tables 6.1 and 6.2).

If we incorporate allowable error, the percentage of SNP pairs with a unique feasible
solution is maximized around an allowable error " = .05 (Figures 6.6 and 6.7.) As we increase
the allowable error, the accuracy rate of phasing increases, but the percentage of SNP pairs
with two feasible solutions with goes to 100% (Figure 6.6), as it must, and therefore the
percentage with a unique feasible solution goes to zero (Figure 6.7.)

When we allow two dimensional error thresholds, that is, when in order to phase we
require one solution be very close to ‘perfect’ (low required error) and the other very far
from it (high required error), we see (unsurprisingly) for fixed allowable min-error, increas-
ing required max-error increases accuracy while decreasing the proportion of SNPs phased
(Figures 6.8, 6.9, 6.10). Additionally, we see for fixed "m and "M , increasing coverage in-
creases accuracy. In this context, for a fixed pair of error thresholds, the total number of
SNP pairs able to be phased decreases as required coverage increases, but the proportion of
SNP pairs (out of SNP pairs satisfying the lower bound of required coverage) which satisfy
the error thresholds is noisy, but relatively flat when varying coverage.

At this time, it seems that certain pairs of SNPs can be accurately phased in the presence
of multiple isoforms: those which satisfy various error and coverage thresholds. It may be
useful to incorporate this sort of model into the general HapTree-X framework. At this time,
to phase an entire gene of (possibly more than two) SNPs simultaneously, we can employ
linear programming for each potential haplotype solution S for the gene to determine whether
there exists z = �M 0S with |�|  1

2

, or more generally if there exists a solution based
on the error model for non-uniform di↵erential expression in section 6.5. This approach
unfortunately involves enumerating 2n�1 haplotypes, where n is the number of SNPs in the
proposed gene, though is certainly feasible for some small n > 2.
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Figure 6.13: For varying allowed error, we report the proportion of SNP pairs with a unique
feasible solution (red) and the accuracy of that feasible solution (AUFS) (blue) compared against
the platinum phased VCF for (from top to bottom) Poly-A- replicate 1, Poly-A+ replicates 1 and
2.
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6.7 Hyperplane Equations for Z 0(M̂4)

For the interested reader, we have computed the equations defining the zonotope Z 0(M̂
4

).
To get the equations for any zonotope defined by a subset of the isoforms of M̂n for n  4,
set the relevant ↵i = 0. For example, setting ai = 0 for i > 3 will give us the equations in
6.4.1. Below we show the particular representation of M̂

4

used to define these equations. We
present its transpose due to the length of the columns.

Transpose[M ] =

0

B

B

@

1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

1

C

C

A

For this particular M̂
4

, the Aj are the sums:
A

1

= ↵
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+ ↵
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The equations provided below have significant symmetry and we sort them by “Type” –
plus-minus the multiset of coe�cients attached to each Ajxj. There are 45 in total; we do
not have a formula for general n. For n 2 1, 2, 3, 4 they are 1, 3, 9, 45.
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