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ABSTRACT OF THE DISSERTATION

Computational Methods for Analyzing Human Genetic Variation

by

Vikas Bansal

Doctor of Philosophy in Computer Science and Engineering
University of California, San Diego, 2008

Professor Vineet Bafna, Chair

In the post-genomic era, several large-scale studies that set out to characterize
genetic diversity in human populations have significantly changed our understanding of
the nature and extent of human genetic variation. The International HapMap Project has
genotyped over 3 million Single Nucleotide Polymorphisms (SNPs) in 270 humans from
four populations. Several individual genomes have recently been sequenced and thou-
sands of genomes will be available in the near future. In this dissertation, we describe
computational methods that utilize these datasets to further enhance our knowledge of
the fine-scale structure of human genetic variation. These methods employ a variety of
computational techniques and are applicable to organisms other than human.

Meiotic recombination represents a fundamental mechanism for generating ge-
netic diversity by shuffling of chromosomes. There is great interest in understanding
the non-random distribution of recombination events across the human genome. We de-
scribe combinatorial methods for counting historical recombination events using pop-

ulation data. We demonstrate that regions with increased density of recombination

XV



events correspond to regions identified as recombination hotspots using experimental
techniques.

In recent years, large scale structural variants such as deletions, insertions, dupli-
cations and inversions of DNA segments have been revealed to be much more frequent
than previously thought. High-throughput genome-scanning techniques have enabled
the discovery of hundreds of such variants but are unable to detect balanced structural
changes such as inversions. We describe a statistical method to detect large inversions
using whole genome SNP population data. Using the HapMap data, we identify several
known and putative inversion polymorphisms.

In the final part of this thesis, we tackle the haplotype assembly problem. High-
throughput genotyping methods probe SNPs individually and are unable to provide in-
formation about haplotypes: the combination of alleles at SNPs on a single chromo-
some. We describe Markov chain Monte Carlo (MCMC) and combinatorial algorithms
for reconstructing the two haplotypes for an individual using whole genome sequence
data. These algorithms are based on computing cuts in graphs derived from the se-
guenced reads. We analyze the convergence properties of the Markov chain underlying
our MCMC algorithm. We apply these methods to assemble highly accurate haplotypes

for a recently sequenced human.
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Chapter 1

Introduction

The sequencing of the human genome in 2001 marked the beginning of a new
era in human genetics and biomedical research. With the availability of a reference hu-
man genome sequence, it has become possible to catalog differences between individ-
ual genomes. It is well known that differences in DNA are responsible for a substantial
fraction of phenotypic variation in humans and that a comprehensive understanding of
human genetic variation will enable the discovery of genetic variants responsible for
increased susceptibility to various diseases. This genetic variation is present in many
different forms and sizes: in the form of single letter changes known as Single Nu-
cleotide Polymorphisms (SNPs) but also as insertions, deletions and inversions of DNA
segments several thousand to millions of base pairs long.

During the sequencing and analysis of the human genome, more than a mil-
lion candidate SNPs were discovered by comparison of the genomic sequence of a
few individuals Sachidanandam et aR001). Given the huge number of SNPs in the
human genome and the relative ease of obtaining SNP information, the International
HapMap projectThe International HapMap Consortiy2003 was formed in 2002 to
catalog genetic variation at SNPs in human populations. The HapMap project focused
on common SNPs, SNPs where both letters are present in a population above a mini-

mal frequency (1% of the individuals). The main goal of this project was to determine



the patterns of common genetic variation in human populations which would enable
the efficient design of genome-wide association studies for finding the genetic basis
of complex diseases. The HapMap project was completed in 2007 and has generated
genotypes for more than 3 million Single Nucleotide Polymorphisms (SNPs) have been
genotyped in 270 humans from four different populations. The HapMap data has proved
useful in understanding recombination patterns and identification of genes under posi-
tive selection in the human genoriég International HapMap Consortiy@2009. In
the post-HapMap era, several commercial SNP genotyping chips have been developed,
some of which can interrogate up to a million Single Nucleotide Polymorphisms (SNPs)
in the human genome. The availability of these chips has enabled whole genome asso-
ciation studies where one can compare the DNA sequence of thousands of healthy and
diseased individuals to identify genetic variants that are associated with the disease. In
the past year alone, association studies for common diseases such as diabetes, coronary
artery disease, etc and physiological traits such as height and eye color have identified
hundreds of SNPs associated with increased risk for diseases and that can explain the
variation in traits.

The HapMap project and other projects (see e.g. Perlegen dtidgg et al,
2009) have significantly enhanced our understanding of the patterns of variation at
SNPs in human populations. In comparison, until recently, very little was known about
large scale genomic variants such as deletions, insertions, duplications (copy-number
changes), and inversions. Knowledge about the location of these large scale variants,
collectively referred to as “structural variation”, has recently started to accumulate.
High-throughput techniques based on comparative hybridization which compare the in-
tensity of genomic segments between individuals have allowed biologists to discover
thousands of structural variants, in particular copy number polymorphisms (a segment of
DNA presentin a variable number of copies in different individuals). Some of these have
also been linked to human phenotype variatg®bat et al(2004; Lucito et al.(2003;
lafrate et al(2004). Structural genetic variants have the potential to affect phenotypes

through multiple mechanisms such as gene deletion/disruption, gene fusions, changes



in gene copy number, increasing/decreasing distance between functional elements in the
genome through inversions, etc. However, relative to SNPs, the catalog for some of these
polymorphisms is far from being complete. Furthermore, intensity based techniques are
limited by their inability to discover balanced structural variants such as inversions or
insertions of previously unknown sequences in the genome. High throughput sequenc-
ing represents a direct way for discovery of all kinds of structural variants including
copy-neutral variations such as inversioriBuzun et al(2005 mapped paired-end se-
guence data from large-insert clones (40 kb) from an individual genome to the reference
human genomic sequence to reveal sites of deletions, insertions and inversions. This
strategy has been applied to several different individual genomes to reveal many more
such variants. In order to obtain a comprehensive catalog of all forms of genetic vari-
ants, complete sequencing of many individual genomes represents the ideal strategy. In
the post-HapMap era, advancements in sequencing technology are driving down the cost
of sequencing and projects that aim to sequence hundreds of individual genomes have
been launched (see e.g the 1000 Genomes Project: www.1000genomes.org). In 2007,
several individuals such as J. Craig Venter and James Watson have had their complete
genomes sequenced.

The wealth of SNP population data generated by projects such as the HapMap
and the DNA sequence data from individual genome sequencing projects contains use-
ful information about human evolutionary history and the fine-scale structure of human
genetic variation. Lot of this information can be obtained by simple computational anal-
ysis. However, sophisticated computational methods especially those based on model-
ing human genetic variation have the potential to uncover hidden information and make
more accurate population-genetic inferences. In this dissertation, we address three com-

putational problems related to analysis of human genetic variation data:

e Counting historical recombination events using population haplotypes

e Reconstruction of individual haplotypes using DNA fragments from genome se-

guencing data



e Discovery of large inversions in the human genome using whole genome SNP

haplotype data

The first two problems can be formulated as self-contained computational prob-
lems. We have attempted to explore the computational complexity of these two problems
and obtain efficient algorithms that work well on real datasets. Using whole genome
SNP haplotype data to discover large inversions represents a novel use of such data. We
address this problem in a statistical framework where we model the effect of large inver-
sions on SNP haplotype patterns and scan the genome for potential inversion breakpoints
using a simple score designed to capture deviations from expected haplotype patterns.
In the rest of this chapter, we give some background on SNPs, haplotypes and the pro-
cess of recombination. We also present the three problems listed above in more detail

and provide motivation for them.

1.1 Single Nucleotide Polymorphisms (SNPs)

The human genome can be considered as a long string over the four letter alpha-
bet: {A,C,T,G}. In total, the human genome has about 2.8 billion nucleotides packed
into 23 chromosomes. Humans diploid organisms and each individual has two copies
of each chromosome (except for the X and Y chromosofme@he copy is inherited
from the mother and the other from the father. As DNA is transmitted from parent to
child, many small and large scale mutations can take place in this sequence. Single
base pair substitutions or point mutations substitute one nucleotide for another. For ex-
ample, a single base pair mutation can change the DNA sequence ‘BATAG” to
“AACT CATAG". If a mutation is in the reproductive cells of the parent, the offspring
may inherit the mutation. Over many generations, this mutation may increase in fre-

guency in a population of individuals, remain limited to a small number of individuals

I these correspond to the different nucleotides: A (adenine), C (cytosine), T (thymine), and G
(guanine)
Zmales have the pair (X,Y) while females have two copies of X



or eventually die out. Mutations that increase in frequency such that both the origi-
nal DNA sequence and the mutation become prevalent in a population (e.g. frequency
> 1%) are known as “polymorphisms”. Note that some mutations may completely
replace the original DNA variant, e.g. if the mutation offers some form of selective
advantage to an individual. Single Nucleotide Polymorphisms are point mutations that
have become frequent in a population of individuals. Most SNPs seen in human popula-
tions are bi-allelic, i.e. there are two alleles seen in a population - the original nucleotide
and the mutation. For a SNP to have three common alleles, a new mutation must happen
at the same location in another individual and this mutation should also increase in fre-
guency. The probability of observing this in human polymorphism data is low for two
reasons: i) single base pair mutation rates in the human genome are low (of the order
of 10~ per base pair per generation), and ii) human populations are relatively recent in
origin. For a bi-allelic SNPs with major allele ‘A" and minor allele ‘a’, every individ-

ual can have one of three possible genotypes: two minor alleles (aa), two major alleles
(AA) or both alleles (aA). When both chromosomes carry the same allele for a SNP, the
individual is said to be homozygous. When the two chromosomes have different alleles,

the individual is heterozygous.

1.1.1 SNPs and Haplotypes

Haplotypes refer to the sequence of alleles at a collection of SNPs on a single
chromosome. In other words, a haplotype is the DNA sequence at the varying sites or
SNPs. Figurel.l.lillustrates the concept of SNPs and haplotypes. Since humans are
diploid, every individual has two haplotypes, e.g. the two haplotypes for the first individ-
ual in this region are\CGTTC and AGGGAC. The genotype for this individual can
be represented a§C|G|G[T'|G][T|A]C. The process of determining the alleles that an
individual carries at a SNP is callggnotyping Genotyping can determine whether the
individual carries the minor allele on both chromosomes (aa), two major alleles (AA) or

allele a on one chromosome and allele A on the other (aA/Aa). Given the genotype there
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Figure 1.1: lllustration of the two copies from a region of a chromosome present in
three individuals. Only the positions which are SNPs are shown, the letters in between
are represented as '-".

are many pairs of haplotypes that are consistent with it. For example there are 4 pairs
of haplotypes that are consistent with the genotype for the first individual. Only one of
these is the true pair of haplotypes. In the absence of molecular methods for determin-
ing haplotypes, haplotypes are inferred computationally from SNPs genotyped in a set
of individuals from a populationGlark, 1990 Excoffier and Slatkin1995 Stephens

et al, 2007, Niu et al, 2002 Stephens and DonnellI2003. This is known afaplotype
phasingand there are a wide variety of methods based on different evolutionary models

for obtaining haplotypes.

1.2 Meiotic Recombination

Mutation is the starting point of all genetic variation, however, there are other
biological forces that can create genetic diversity. The most important among these
is meiotic recombination Recombination produces genetic diversity in a population
by mixing of homologous chromosomes as they are passed on to the next generation.
When DNA is passed onto the offspring from the parent, the two copies of each chromo-
some combine to produca@osaicchromosome. This process where two chromosomes
present in the parent are shuffled to produce a mosaic chromosome is called recombina-
tion (see Figurd..2 for an illustration). It is this mosaic chromosome that is passed on
to the offspring and can be different from the two chromosomes present in the parent.

In evolutionary biology, recombination is believed to be an important mechanism for
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Figure 1.2: lllustration of a recombination event between the two chromosomes (mater-
nal and paternal) in an individual. A recombination event produces two mosaic chromo-
somes, one which is passed on to the offspring.

producing new combination of genes thus allowing multiple beneficial variants which
arose separately on different chromosomes to come together. There is great interest
in understanding where recombination happens in the human genome, what genomic
features determine its extent and how recombination rates change over time. This can
provide insights into the evolutionary advantage provided by recombination in humans

and in sexually reproducing species in general.

1.2.1 Recombination Rates

Genetic distance measures the amount of recombination between two markers
(also referred to as loci) on a chromosome. Two loci are said to at a genetic distance of
1 M (Morgan) if the expected number of recombination events between them during a
single meiosis event (formation of sperm/egg cell from two homologous chromosomes)
is 1. The average recombination rate across the human genome is quite low: about 0.01
M per megabase or one recombination event per 100 Mb. In a large study, the average
number of recombination events per generation was estimated to be 44 (females) and 27
(males) Broman et al.1998.

A genetic maps a sequence of ordered genetic markearish an estimate of the
genetic distance between every pair of adjacent markers. Genetic maps are constructed
by genotyping a large number of individuals that are closely related by a pedigree at the

genetic markers and estimating the genetic distance by a simple count of the number of

3A genetic marker is a locus in the genome that is polymorphic in a population, i.e has multiple alleles.



recombination events in each interval averaged over all meiosis events in the pedigree.
Lot of variation has been observed in the distribution of recombination events across
the human genome in genetic map®iig et al, 2002g. The resolution of genetic
maps is limited to the megabase scale due to the low recombination rate in humans, i.e.
genetic maps cannot reveal variation in recombination rates at the level of genes (1-10
kilobases). In order to detect a recombination event in a 1 kb interval of a chromosome,
one will have to observe of the order df* meiosis events, which is experimentally
infeasible.

There is great interest in understanding how fine-scale recombination rates vary
across the human genome. Recombination hotspots are regions of the genome that
have a very high rate of recombination compared to the background. Analyses of the
distribution of recombination events in sperm DNA has revealed that recombination
events cluster in small regions known as hotspasppi et al.(2003; Jeffreys et al.
(2005. However, these experimental techniques for estimating fine-scale recombination
rates (recombination rates on the kilobase scale) in maéfadys et al.200Q 2007)
are very laborious and limited to small regions (about few hundred kilobases) of the
human genome. Methods for estimating fine-scale recombination rates from population
data have been shown to be useful for detecting recombination hotdpbtsan et al.
(2004); Jeffreys et al(2005.

1.2.2 Recombination and Linkage Disequilibrium (LD)

When markers are genotyped in a sample of unrelated individuals, one observes
that the alleles at pairs of physically close markers show non-random correlation. In
some cases, the alleles at multiple SNPs in segments of the genome are in perfect cor-
relation. Why do we see such non-random associations at markers in populations of
individuals who are not related to each other ? The answer lies in the shared ancestry of
our chromosomes. A variant arises through a mutation event on a unique chromosome

and shares a distinct combination of alleles at neighboring markers on this chromosome.



Individuals who inherit this variant will also tend to inherit the combination of alleles at
markers physically close to the variant. Therefore, the allele will be associated with al-
leles at neighboring markers. Recombination will break down this association between
the variant and alleles at neighboring markers by creating new combinations between
alleles. However, one can still detect this association if the recombination rate is small
and the number of generations since the variant arose is not large.

The haplotypes that we observe in a population of unrelated individuals are a
result of recombination events (and other forces) that have happened over thousands of
generations. In contrast to haplotypes of individuals related by a pedigree (typically over
a few generations), we have information about many more recombination events but in
a much weaker sense. We do not observe the underlying genealogy and hence cannot
count the number of recombination events. Undeniably, there is some information about
fine-scale recombination rates averaged over thousands of generations in this data. How
do we extract this information from this data ? Consider two physically neighboring
SNPs between which little or no recombination has happened in history of the popula-
tion. One would expect the alleles at these two SNPs to be highly correlated. On the
other hand, if the two SNPs are far apart and lot of recombination events have happened
between them, one would expect no correlation between the alleles at the two SNPs. In
population geneticd,inkage Disequilibriunquantifies this non-random correlation (or
lack of) in alleles at neighboring markers in genotype data from unrelated individuals.
Linkage disequilibrium (LD) is measured using pairwise association statistics such as
D’ andr? (Lewontin 1964 Hedrick 19873 Pritchard and Przeworsk2001). Consider
two bi-allelic SNPsA and B with alleles A, /A, and B, / B, respectively. LetP,, be
the frequency of allele!; at locusA and similarly for locusB. Let Py, 5, represent the
frequency of the paid; B; and defineD = |P4, 5, — Pa, Pp, |- Then

D

D =
Dmaa}

whereD,, ... iIs a normalizing factor so that D’ lies between 0 and 1 independent of allele
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frequencies. Another commonly used measure oft’Ds defined as

D2
Py, Py, Pp, Pp,

Significant LD is observed in human populations between markers at short dis-
tances (10-50 kilobases). This is primarily due to the low average recombination rate
in humans {0~ per base pair per generation) and the relatively recent origin of human
populations. Greater LD is seen in European populations as compared to African popu-
lations which are older. LD is also greatly affected by other factors such as population
history (migration and changes in population size), natural selection, etc. Nonetheless,
LD has important implications for disease association mapping. Whole genome as-
sociation studies genotype large number of cases (affected patients) and controls at a
selected subset of SNPs distributed throughput the genome and identify SNPs that show
statistically significant correlation with the disease phenotype. The rationale behind this
approach is that even if the causal genetic variant is not genotyped, a SNP in LD with this
variant is likely to show association with the disease phenotype. The HapMap project
genotyped millions of SNPs in human populations so that LD information could be uti-
lized for designing disease association studies, i.e for determining how many SNPs to
type in a region to have enough power to detect disease associations. Next, we describe
how we can detect historical recombination events using haplotype data from unrelated

individuals.

1.3 Reconstructing Evolutionary Histories from Haplo-

type data

SNPs arise as a result of a mutation event (substitution of one base for another)
that happened during human history. The commonly ustite sites assumptioim
population genetics states that there is no recurrent mutation at a SNP. As there are only

two alleles at every SNP, we can label the alleles as 0/1 and hence every haplotype
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overm SNPs can be represented as a binary sequence of lengihathematically, a
recombination event at column between two haplotype$ and B, produces a recom-
binant haplotype&”, which is either a concatenation df1...p — 1] with B[p...m] or
B[1...p— 1] with A[p...m].

In the absence of recombination (for example in the Y chromosome), each chro-
mosome inherits some mutations from his parental chromosome and adds new ones that
will be shared by all his descendants. Under the infinite-sites assumption, the history of
the chromosomes can be explained Ipeafect phyloger(zusfield 1991). Informally,
the perfect phylogeny tree derives the set of sequences starting from a root sequence
through a sequence of mutations. The restriction that every location appears exactly
once in the tree corresponds to the infinite-sites assumption, i.e. every polymorphic
site mutates exactly once. A perfect phylogeny tree does not exist for any set of bi-
nary sequences. Gusfiel@\isfield 1991 described an algorithm for finding a perfect
phylogeny in time linear in the size of (or proving that a perfect phylogeny does not
exist). Recombination events cause genetic material to be inherited from two parental
chromosomes and therefore the evolutionary history cannot be represented as a tree. In
the presence of recombination, the evolutionary history can be represented through a
directed graph known as the Ancestral Recombination Gr&piffiihs and Marjoram
1996. In an ARG, a node with two incoming edges is callad@ombinatiomode. The
two incoming edges to a recombination node are referred to as recombination edges.

Nodes with only one incoming edge (a mutation edge) are called mutation nodes.

Formal Definition of Ancestral Recombination Graph Let S be a set of: binary
sequences, of lengtlh. An Ancestral Recombination Grapfd for S is a directed

acyclic (no directed cycles) graph with roBtand the following properties:

1. Each nodeV of G corresponds to a binary sequence of lengtlidenoted by

seq(V)). Each sequence ifi corresponds to a leaf ii.

2. Eachmutationedge inG corresponds to a set of sites.
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Figure 1.3: Example of an Ancestral Recombination Graph explaining@&aebinary
sequences with two recombination nodes (denoted by green circles). The labels of the
external nodes (leaves) are shown in blue. The incoming edges for the two recombi-
nation nodes are colored red. The recombinant sequence 10100 (d) is derived from a
recombination event between 1001®) @nd 01100 &) where the first two columns of

d come fromP and the last three columns fro&h Hence the recombination node is
labeleds.

3. If nodesA and B are connected by an mutation edge, then the sequences seq(A)

and seq(B) differ at exactly the sites corresponding to the edge.

4. Each recombination nodeis associated with an integey, 2 < r, < m, called
the recombination point for. Let P and S be the binary sequences corre-
sponding to the two “parent” nodes connected tiy recombination edges. The
sequence corresponding to nadis a concatenation of the firgt — 1 elements

of P with the lastm — r, + 1 elements ofS.

An ancestral recombination graphthat explains a sef of n binary sequences
represents possiblesvolutionary history of the sequences under the assumption that the
sequences were derived from an ancestral sequence (the root) through a sequence of mu-
tation and recombination events. Note that there could be multiple ARGs explaining the
same set of sequences each with different number of recombination nodes. ERjure

illustrates the structure of an ARG (example frol.Gusfield et al.2003).
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1.3.1 Counting Recombination Events

Haplotype data obtained from a random sample of individuals from a population
contains information about recombination events that have happened over thousands of
generations in the history of that population. However, reconstructing the evolutionary
history of a set of sequences that have undergone recombination and mutation is diffi-
cult since many recombination events do not create new sequences. A parsimonious ap-
proach is to estimate the minimum number of recombination events required to explain
the sample of sequences. We defR)g,, to be the minimum number of recombinations
required to explainS, i.e. there exists an ARG witlR,,;, humber of recombination
nodes which explain§ and there is no ARG with fewer recombination nodes that ex-
plainsS. Reconstructing the ARG with the minimum number of recombination events is
a challenging computational problem. This problem is computationally hard and lacks
even an exponential time algorithm. Heidgin, 1990 1993 proposed methods for
reconstructing parsimonious ARGs, however the complexity of these methods is super-
exponential and the methods practical for about 8-10 sequences. This problem was
recently revisited by Gusfield and colleagues who gave polynomial time algorithms for
reconstructing minimal ARGs which have the property that every recombination node is
in its own edge disjoint cycle.Gusfield et al.2003 2004). Since one is interested in
the numberR,,;, rather than the actual evolutionary histories, research in this area has
focused on computing lower bounds &,;,. This can be achieved without explicitly
considering evolutionary histories and is a somewhat simpler problem.

Consider two SNPs A and B withrepresenting the ancestral allele drttie de-
rived allele at each SNP. There are four possible pairs of sequébees , 10, 11} that
one can observe at these two SNPs. Any sequence of two mutations starting from the an-
cestral sequend® can produce at most 3 different pairs, one exampl@is01, 10}.

The fourth pairll, can be produced by a recombination event between the two se-
guenceslO and01. Therefore, if we observe all four pairs at the two SNPs, one can

infer that at least one recombination event happened between the two sites at some time
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in the history of the population (assuming that no site mutated more than once). This
is known as thdour-gamete tesin population genetics. The first lower bound on the
minimum number of recombination events was proposetiibgson and Kapla(iL985

using the four-gamete test. Significantly better lower bounds were proposétl/bys

and Griffiths (2003 using haplotype diversity and an indirect notion of evolutionary
histories. In Chapter 2, we mathematically describe the problem of computing lower
bounds onR,,;, and analyze the computational complexity of the two lower bounds
of Myers and Griffithg(2003. We propose faster methods for computing these lower
bounds and also introduce a new lower bound that is provably better than all previous
lower bounds. We show that these methods can detect higher number of recombination
events for a haplotype dataset from a region in the lipoprotein lipase gene than previous
lower bounds. We apply our methods to two datasets for wieicbmbination hotspots

have been experimentally determined and demonstrate a high density of detectable re-
combination events in the regions annotated as recombination hotspots.

In Chapter 3 we explore the problem of computing lower bound&gp using
conflicts between pairs of sites. We analyze the conflict graph for a set of sequences and
demonstrate that number of non-trivial connected components in the conflict graph is a
lower bound on the minimum number of recombination events required to explain the
set of sequences under the infinite sites model of evolution. We show that in many cases,
this lower bound R, is a better bound than the haplotype lower boutd Our results
also offer some insight into the structural properties of this graph and are of interest for

the general ARG reconstruction problem.

1.4 Finding Inversions using SNP haplotype data

Inversions represent a type of structural variation in which a genomic segment is
reversed or inverted. Inversion polymorphisms are well known in the genus Drosophila
but less is known about the extent and frequency of inversions in the human genome.

Unlike deletions which cause miscalled genotypes and can lead to Mendelian inconsis-
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tencies McCarroll et al, 2006 Conrad et al.2006), inversions are copy neutral and do

not affect the SNP genotypes. However, large polymorphic inversions can affect haplo-
type patterns in a population by suppressing recombination in the inverted region for in-
dividuals who are heterozygous for the inversion, i.e. carry both the non-inverted and the
inverted allele. Lack of recombination between the two orientations also causes them to
evolve independently accumulating mutations that are specific to each orientation. We
use an indirect approach to detect large inversions for which the inverted allele (with
respect to the reference sequence assembly) represents the major allele. As described
earlier, Linkage Disequilibrium measures the correlation in alleles at two markers and
tends to decay with increasing genetic distance between the markers. Two SNPs that
are physically close tend to be show higher levels of LD than SNPs that are physically
distant. Our method tries to identify pairs of breakpoints for which the distant LD is
unusually strong while the LD between SNPs across the breakpoint is low. This type of
LD pattern is indicative of the fact that the region is actually inverted in a large fraction
of the chromosomes in a population. In chapter 4, we describe a statistical method for
detecting large inversions in the human genome based on this unusual LD pattern. We
apply our method to haplotype data from the International HapMap project to generate
a list of candidate inversions and obtain additional evidence supporting these predic-
tions through genomic analysis. Our method is applicable to population data from other
organisms and represents an useful technique for scanning for large inversions in the

absence of sequencing data.

1.5 The Haplotype Assembly Problem

Humans are diploid organisms with two copies of each chromosome (except the
sex chromosomes). The two chromosomes are homologous and differ at a number of
sites, a large fraction of which correspond to single base-pair differences commonly
known as Single Nucleotide Polymorphisms (SNPs). The genome sequence assembly

for a chromosome is an arbitrary mix of the two haploid chromosomes and does not
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contain information about which alleles are present on the same chromosome. The two
haplotypeqdescribed by the combination of alleles at variant sites on a single chromo-
some) represent the complete information on DNA variation in an individual. SNP chips
can now interrogate up to a million SNPs in each individual, making the genotyping
effort cost-effective. However, haplotype information remains difficult to obtain experi-
mentally. Haplotypes are typically inferred from population SNP data using “haplotype
phasing” algorithmsgusfield 2002 Stephens et /2001 Bafna et al. 2003 Eskin

et al, 2003. These algorithms exploit Linkage Disequilibrium (LD); the correlation be-
tween alleles at neighboring SNPs in a population to reconstruct haplotypes. The great
variation in recombination rates and Linkage Disequilibrium across the human genome
limits the accuracy of these methods.

An alternative way to obtain haplotypic information is to reconstruct the two
haplotypes for an individual using DNA sequence fragments. A sequenced fragment
is a piece of one of the chromosomes and a fragment that is long enough will cover
multiple variant sites and provide information about the alleles at those sites present on
a single chromosome. If a large fraction of the fragments are long enough to encom-
pass multiple variant sites, and the shotgun sequencing has sufficient coverage to pro-
vide overlaps between fragments, the fragments can be assembled to reconstruct long
haplotypes. The haplotype assembly problem, also known as the Single Individual Hap-
lotyping problem, was introduced in the context of Single Nucleotide Polymorphisms
(SNPs) byLancia et al(2001) who described three optimization formulations for solv-
ing this problem. The problem has been shown to be computationally hard under various
combinatorial objective functionkséncia et al.2001; Bafna et al. 2005 Cilibrasi et al,

2005 (e.g. Minimum Fragment Removal (MFR), Minimum Error Correction (MEC),
Minimum SNP Removal (MSR)). Efficient algorithms exist for optimizing the MFR
objective when all fragments are gap-lédiggi et al, 2002 Lippert et al, 2002. How-

ever, the lack of real sequencing data has limited the development and evaluation of
computational methods for this problem. Recently, Levy and colleagues announced the

diploid genome sequence of a single human individieay et al, 2007), referred to as
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HuRef They also demonstrated that the quality of the data and the presence of paired-
end reads makes haplotype assembly feasible. A simple greedy heuristic was used for
reconstructing haplotypes. The heuristic works well for the HuRef sequence data, but
results indicate that it can be improved.

The final part of this thesis is devoted to the haplotype assembly problem. In
chapter 5, we describe a Markov chain Monte Carlo algorithm for this problem that is
based on the notion of computing certain cuts in graphs derived from the sequenced
fragments. This algorithm was motivated by the availability of the HuRef sequence
data. In chapter 6, using similar ideas, we describe a combinatorial algorithm for this
problem that tries to optimize a certain error measure of the haplotype assembly. In
chapter 7, we investigate the mixing properties of the Markov chain underlying our
algorithm and show that a cut-based Markov chain has polynomial mixing time for a

family of fragment matrices.



Chapter 2

Counting Recombination Events:
Lower bounds and Recombination

Hotspots

Meiotic recombination is a major mechanism responsible for creating genetic
diversity in many species. Although all genetic variation starts from mutation, recombi-
nation can give rise to new variants by combining types already present in the popula-
tion. Recombination events break up haplotypes as they are passed from one generation
to the next during gametogenesis and greatly influence the patterns of haplotype varia-
tion in human population data. Until recently, the variation in recombination rates on
a genome-wide scale was primarily studied by genotyping large number of individuals
related by a pedigree, and estimating the recombination rates between the genotyped
markers by a direct count of recombination events. However, constructing such genetic
maps Kong et al, 20020 requires high marker density and can only provide infor-
mation about variation in recombination rates on the mega-base scale. In contrast to
genotype data from families, population genetic data (genotype data from unrelated
individuals) contains information about recombination events accumulated over many

generations and can reveal fine-scale variation in recombination rates on the kilo-base
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scale. In the post-genomic era, the emergence of genome-wide diversity studies, such
as the HapMap projectbie International HapMap Consortiy2003, has enabled the
characterization of fine-scale distribution of recombination events across the genome.
Initial analyses of human polymorphism da@apriel et al. 2002 Daly et al, 2003
Jeffreys et al.2000 suggested an interesting block like structure of the genome, where
long stretches known dsD blocks(with little or no diversity) show signs of little or
no recombination and the recombination events cluster in so aalbednbination hot-
spots To enable a more quantitative analysis of these datasets, a variety of statistical
methods based on different population genetics models have been proposed to estimate
recombination rates from genotype data (see e.geafnhead and Donnel200%
McVean et al.2002 Hudson 200Z% Li and Stephen2003). Sperm typing is an exper-
imental technique that can reveal fine scale variation in recombination rates by counting
crossover events from sperm DNA samples. Sperm crossover analysis from two regions
from the human genomeJéffreys et al.2001, 2005 identified several short (1-2KB)
regions with elevated crossover rates. Most of these crossover hotspots were also de-
tected using coalescent based computational methodsd Stephens2003 McVean
etal, 2004 Fearnhead et aR004 Stephens and DonnellI2003 with some differences
between the recombination rates estimated from the two methods.

In genotype data from individuals related by a pedigree, it is possible to obtain
a estimate of the number of the recombination events between every pair of markers.
In the absence of any genealogical information about the genotyped individuals, ob-
taining a direct count is not possible. Some coalescent based approkeheshgad
and Donnelly 2001) estimate recombination rates by integrating over large number of
genealogies consistent with the observed data. In contrast to explicitly modeling the
evolutionary history of chromosomes to infer recombination rates, an alternative ap-
proach for characterizing the variation in recombination is to obtain a count of obligate
recombination events. Population genetic data, in particular haplotype data contains
signature patterns left behind by historical recombination events.

A parsimonious approach to inferring recombination events from haplotypes is
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to compute the minimum number of recombination events required to construct a evo-
lutionary history of the sample assuming that each segregating sites mutates only once.
This problem is computationally challenging and has resisted efforts for even an expo-
nential time algorithmHKein, 1990 1993 Song and Hein2003 Wang et al. 2001a
D.Gusfield et al.2003. Therefore, research in this area has focused on computing
lower bounds on the minimum number of recombination events. Although most histor-
ical recombination events leave no imprint in the data, one expects that regions with el-
evated recombination rates will have a large number of detectable recombination events
in comparison to surrounding regions.

For almost two decades, th,, lower bound Hudson and Kaplgmn985 has
been used to detect the presence of recombination in haplotype data (ses\Vaug (
et al, 20010). Recently, theR;, lower bound Myers and Griffiths2003 was demon-
strated to be much more powerful than tRg, lower bound for detecting recombina-
tion events through simulation studies and detected a strong clustering of recombination
events in the center of the lipoprotein lipase geNieKerson et al.1998. This region
has previously been characterized to be a putative recombination hotgpapléton
et al, 2000. The R, lower bound was applied to detect recombination events in the
(-globin gene clusterRearnhead et al2004 which has a well-characterized recom-
bination hotspot. It was reported that the results obtained using the lower bound were

consistent with the estimates obtained using a full likelihood method.

Outline of chapter In this chapter, our objective is to explore the problem of com-
puting lower bounds on the number of recombination events. We present many results
on the computational complexity of computing recombination lower bounds and their
application to real haplotype datasets to reveal fine-scale distribution of recombination

events.

e We provide a theoretical formulation for the lower bouRgland show that it is
NP-hard to compute this bound. However, on the positive side, using the greedy

algorithm for the set cover problerddhnson1972, we present & (mn?) time
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algorithm which computes a lower boutt}, for a dataset witln rows andm
segregating sites. Using simulations under the coalescent, we show that this new
lower bound is faster than the Recmin progtanand is more sensitive than

the Recmin bound to changes in the recombination rate, especially for higher

recombination rates.

e Most real haplotype datasets have some amount of missing data. A simple way
of handling missing data is to not consider markers which have missing alleles
for some haplotypes. We extend the lower bodtydo compute a lower bound
utilizing information from all markers in the presence of missing data. These
bounds applied to the LPL dataséli¢kerson et al.1998 detect many more
recombination events (in comparison to the number detected by ignoring the
sites with missing data) which provide stronger support for the presence of a

recombination hotspofémpleton et a).2000.

e We apply our methods to genotype data from two long regions (several hundred
kilobases) from the human genome and show that these can indicate the presence
of most of the recombination hotspots that were detected experimentally using

sperm typing Jeffreys et al.2001, 2005.

e We give anO(m2") time algorithm for computing?; which enables us to apply
it to real datasets. The previous implementatiglyérs and Griffiths2003 had

only an{2(m - n!) bound and is intractable for more than 10-15 haplotypes.

e We show that the lower boun, can underestimate the true number of re-
combination events since it does not consider missing haplotypes. We propose
a new boundR; which extendsR, using the notion of intermediate haplo-
types. TheR; bound for the haplotypes from the ADH locus Bfosophila

Melanogaster(Kreitman 1983 is 7 which is optimal for this dataset (equal to

I Recmin is the program that implements fRglower bound Myers and Griffiths2003. Throughout
this chapter, we will refer to the bound computed using Recmin (enhance =0) as the Recmin lower bound
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the upper bound of 7). We also show that thebound is better than all pre-
vious bounds on several datasets from the SeattleSNP database (SeattleSNPs,

http://pga.gs.washington.edu, March 2004).

2.1 Preliminaries

2.1.1 Lower Bounds on the Minimum Number of Recombination

Events

The lower boundR;, (Hudson and Kaplgri985 is based on théour-gamete
test if for a pair of SNP’s with ancestral and mutant alleles a/b and c/d respectively, all
four possible gametes (ac, ad, bc, bd) are present, then at least one recombination event
must have happened between the pair of loci under the assumption that no site mutates
more than once. Based on this idea, one can find all intervals in which recombination
must have occurred and choose the largest set of non-overlapping intervals from this
collection. The bound?,, is the number of intervals in this set. HowevA&y, is a con-
servative estimate of the actual number of recombination evelutdson and Kaplan
1985. One can use haplotype diversity to infer more than one recombination event in
an interval. Consider an interval with segregating sites. H(> m + 1) distinct hap-
lotypes are observed in this interval, then at magtaplotypes can be explained using
mutation events. Assuming that the ancestral haplotype is present in the sample, the re-
mainingn — m — 1 haplotypes must arise due to recombination events. Hence, one can
infer a lower bound ofi — m — 1 for the interval. Moreover, one can choose any subset
of segregating sites for an interval and compute this difference to obtain another lower
bound for that region. Taking the maximum bound over all subsets of segregating sites
in a particular region gives the best lower bound, denote,a@Myers and Griffiths
2003.

The boundsk,,; and R;, do not explicitly consider possible histories of the sam-

ple. The lower bound?, (Myers and Griffiths 2003, computes for every history (an



23

ordering of the haplotypes), a simplified number of recombination events, such that any
phylogenetic network that is consistent with this history, requires more recombination
events than this number. By minimizing over all possible histories, one obtains a lower
bound on the minimum number of recombination events. The algorithm for computing
R, (for a precise description seeMyers and Griffiths 2003) performs three kinds of
operations on a given matrix: row deletion, column deletion and non-redundant row re-
moval. Arow deletioncan be performed if the given row is identical to another row in
the matrix. Such a row is also referred to asdundantow. A column deletiortan be

done if the column (site) ison-informative all but one rows have the same allele at this
site). Anon-redundant row remové a row removal when there are no non-informative
sites in the matrix and no redundant rows. Given an ordering of ttevs, the algo-

rithm performs a sequence of column deletions, row deletions and non-redundant row
removals until there is no row left in the matriX. The minimum number of non-
redundant row removal events over all possible histories gives the bBundince,

the procedure considers all histories, the worst case complexity of this procedure is

2.1.2 Combining Local Recombination Bounds

Myers and Griffiths(2003 presented a general framework for computing re-
combination lower bounds from haplotype data. This framework can combine local re-
combination bounds on continuous subregions of a larger region to obtain recombination
bounds for the larger parent region. Consider a matfixvith m segregating sites la-
beledl tom. Suppose that one has computed, for every intéiva) (1 <i < j < m),
alower bound;; on the number of recombination events between the sited;. Each
local lower bound;; can be computed by any lower bound method described previously
and bounds for different intervals may be obtained by different methods.

In the second step, which is essentially a dynamic programming algorithm, one

computes a new lower bounfl;; on the minimum number of recombination events
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between the sites and j using the local bounds;;,.i" < i < j < j'. The local
bound B;; can be computed aB;; = max]_;,, (B + bi;). Note that the combined
lower boundB;; can be substantially better than the corresponding local boyriar
aninterval(i, 7). It is important to note that all the practical results are obtained by com-
puting lower bounds (by using the corresponding lower bound method) for all intervals
of lengthw (specified as a parameter) for the given dataset, and combining them using

the dynamic programming algorithm.

2.2 Bounds based on Haplotype Diversity

Consider a matriXx/ and letS” C S be a subset of sites iif. For a subse$’ of
segregating sites, we denote the set of distinct haplotypes inducgdasy? (S’). The
Ry, boundMyers and Griffiths2003 is based on the observation that(S")|—|S’|—1 is
a lower bound on the number of recombinations for every sufis&ince the number of
subsets i2" for a region of widthw, The Recmin progranMyers and Griffiths2003
use the approach of computing this difference for subsets of size asmbsres < w
is a specified parameter. Increasingan provide better bounds with an increase in
computation time since the running time is exponential.iVe define the algorithmic
problem associated with the computation of the bofipds follows:
MDS: Most Discriminative SNP subset problem
Input: A binary matrix/ and an integek.
Output: Is there a subset’ of S, whereS is the set of columns of\/, such that
H(S)| ~ S| — 1> k.

Computing theR;, bound is equivalent to finding the largest valué:dbr which
the MDS problem has a solution. We show that MDS problem is NP-complete by using
a reduction from thdest Collection Problen{Garey and Johnsod979. An instance
of the test collection problem (TCS for short) consists of a colledfiaf subsets of a
finite setS and an integek, and the objective is to decide if there is a sub-collection

C’ C C such that for each,y € S there exists: € C’ that contains exactly one of
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andy and|C’| < k. An instance of the test collection problem can be encoded as a
binary matrix)/ of size|S| x |C|. Each row of the matrix corresponds to an element of
the finite setS and M [z, | = 1 if the subset contains the elementand( otherwise.
Here, the objective is to find a subsgtof the columns of\/ of size at mosk such that

for every pair of rows inM, there is a column i’ that can distinguish between them,
i.e.|S'| < kandH(S") = |S|. Using this encoding we show that the MDS problem is

NP-complete.
Lemmal The MDS problem is NP-complete.

Proof: ~ We prove thek-TCS and thegn — & — 1)-MDS problems to be equivalent.
Consider a subse&t’ of S such that H(S")| = n and|S’| < k, i.e. S’ is a valid solution
of thek-TCS problem. It follows that for the subsgt, |H(S")| — S| —1>n—k —1.
Therefore,S’ is a valid solution for thén — k£ — 1)-MDS problem.

Now, let.S” C S be a solution of thén — k& — 1)-MDS problem, i.e|H(S")| —
|S’l =1 > n — k — 1. Consider a haplotypg € H such thath ¢ H(S’). For such
a haplotype, there is exactly one haplotypgen H(S’) that is identical toh, since all
haplotypes ir/ (S’) are distinct. Also, there is a sitec S— .S’ such that the character at
this site inh is different from the character at this site in haplotypeHence, we can add
the sites to S” and the haplotypg to H (S’) to get another set” such thatS”| = |5'|+1
and|H(S")| = |H(S")| + 1. Clearly, S” is also a solution for thén — k — 1)-MDS
problem. Inductively, we can add all haplotypes not presefi(f’) to obtain a subset
of sitesS* such that (S*) = H. Therefore)S*| < |H(S*)| — (n — k) = k. HenceS*
is a solution for th&-TCS problem.

Therefore, thé-TCS problem and thé: — k& — 1)-MDS problem are equivalent.
The NP-completeness of the MDS problem follows. )

2.2.1 The lower boundR,

From the encoding for the MDS problem, it is easy to see that computing the

bound Ry, is equivalent to finding a a smallest subset of colufirsuch that for every
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pair of rows(z,y), there is at least one columne C such thatM [z, c] # My, c].

We adapt the standard greedy algorithm for the set cover proklehm$on1972 to

devise an algorithm for computing a lower bound; denote® adt is well known that

the greedy algorithm gives(@ + 2 In n) approximation for the test collection problem

wheren = |S|, the size of the ground set. However, this approximation ratio does not

apply to the MDS problem.

Algorithm for computing the lower bound R,:

1.

If two rows in M are identical, coalesce them. If a columis non-informative,
remove the column. Repeat while it is possible to perform one of these opera-

tions.
Let M’ be the reduced matrix with rows andm sites
Initialize I = ¢ andd(z,y) = 0forall z,y € M’

while d(z,y) = 0 for some pair of rows

Let s” be the column for whichy_ , (1 — d(z,y)) A (M'[z, s & M'[y, s'])
IS maximum

setd(xz,y) = 1 forall (z,y) s.t. M'[z,s'] # M'[y, §']

I=1uU{s}
endwhile
Return|H(I)| — |[I| — 1

2.2.2 Comparison of the lower boundR,, with previous bounds

In order to compare the new lower bouftj against previous bounds, we use

simulated data generated under the coales¢@ngthan 1982 Hudson 199Q Rosen-

berg and Nordborg2002 using the MS programHudson 2002. The coalescent is a
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Table 2.1: Properties of the three lower boun&tg; Recmin programNlyers and Grif-

fiths, 2003 and R,; (Hudson and Kaplari985 and two other summary statistics for
samples of size = 100 andf = 10 and a region of length 10KB. Hetlé is the number

of distinct haplotypes ang is the actual number of recombination events in the geneal-
ogy of the sample (generated using the MS program). Each point was obtained using
10000 samples. Recmin program was run with the default settings (w=12 and s=5). The
coefficient of variation (denoted by c.v.) for a statistic is the standard deviation divided
by the mean for that statistic.

Recombination rate

Statistics 1 2 5 10 20 25 50 100

H Mean 25.27 26.09 2835 31.84 37.80 4053 50.84 63|60
Hc.v. 016 0.15 015 0.14 0.13 0.12 0.11 0.10

R, Mean 123 227 5.09 9.03 1580 1894 31.54 49.69
R, c.v. 089 065 044 034 0.27 0.25 0.21 0.19

Ry Mean 1.02 168 3.03 444 6.29 7.55 9.39 12.07
Ry c.v. 083 061 044 037 031 0.29 0.25 0.23
Recmin Mean| 1.23 229 488 8.26 1358 1590 2486 36.80
Recminc.v. | 0.88 0.63 043 0.34 0.28 0.26 0.23 0.22
R Mean 521 1049 27.19 57.49 126.45 165.58 388.76 966.
Rc.v. 049 038 029 0.23 0.20 0.19 0.15 0.13

R, (secs) 37 47 82 173 391 515 1150 2449
Recmin (secs) 34 59 168 410 880 1068 1880 3160

standard framework for simulating population genetic data. Under the coalescent, the
history of a sample of. sequences is a stochastic process governed by two parameters:
the scaled mutation rate = 4Nu and the recombination raje = 4Nr. Here,N is
the effective population size, andandr are the per generation mutation rate and re-
combination rate for the whole region respectively. We simulated data under a neutral
model with no population structure, constant population size and assuming the infinite
sites model for mutations. Most simulations were done with a sample size of 100 and
mutation rate in the range 1-2 per kb.

In table 2.1, we compare the mean and the coefficient of variation of various
lower bounds with recombination rate varying from 0.1 per kb to 10 per kb. It is clear

that our new lower bound, is more sensitive than the Recmin lower bound (using
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default parameters) to changes in recombination rate, especially for higher recombina-
tion rates. Furthermore, the time to compute the bolipds always less than that for
the Recmin program (except for= 0.1/kb). Note that the Recmin lower bound will
increase as one increases the parametensds and eventually will be at least as good
as theR, bound. To see how the performance of Recmin changes as we increase the
parameters, we ran Recmin for 100000 samples generatedwithi0 andp = 50
with three different parameter settings. For the default settings of 12 ands = 5,
the mean Recmin bound is 24.86 computed in about 30 minutes. Increasmd5
ands to 8, the mean increases to 27.31 but the running time doubles. With parameters
w = 20 ands = 10, the mean increases to 30.03 but the program takes more than 25
hours to complete. In contrast, tiig lower bound with a window size of 30 returns a
mean of 31.54 in less than 20 minutes. The running time of Recmin is proportional to
>-i_, (%) wherew is the maximum number of segregating sites in a region for which
the local bound is computed ards the maximum subset size used for computing the
bound. In comparison, in order to compute the best bound by combining theRtpcal
bounds, we require only one parameter, i.e maximum width and the overall running time
is O(n*mw?).

Note that since thé?, lower bound is computed using a greedy procedure and
is not guaranteed to be optimal, it may be worse than the Recmin lower bound for an
individual dataset. However, comparison of the lower bofgavith the Recmin bound
for individual datasets revealed that the lower bou)dvas rarely worse than the cor-
responding Recmin bound. Moreover, it is difficult to decide what valuesaofd w
will find the best Recmin bound. Choosing large values will result in prohibitive run-
ning times (as demonstrated above), while the bound with the default settings becomes
increasingly sub-optimal as the recombination rate increases. Although Recmin can
be used to compute the best bound for an individual sample, in order to empirically
estimate the properties of the haplotype lower bound and it's sensitivity to the recombi-
nation rate, it is important to have a fast method for computing the lower bound. In this

respect, the?, bound has the advantage that it can compute a bound equal to (or close
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Figure 2.1: Distribution of the?, lower bound and the number of distinct haplotypes
for different recombination rates. On the left are frequency histogrants, éind H

for 6 = 20 and two differentp values (10 and 20). The histograms on the right are for
0 = 20 and two differentp values (10 and 50). The plots were generated using 10000
samples each.

to) the optimalR,;, bound for a large range of recombination rates.

The number of distinct haplotypd$ in a sample and the lower bourit); have
been shown to be good summary statistics for estimating the recombination rate from
a sample of haplotypes using coalescent simulatidved( 2000. The estimated mean
value of the lower bound#, and R, show that these lower bounds are much more
sensitive to changes in recombination rate tikapn. It is an interesting question as to
whether these bounds could be better recombination summary statistics for a sample.
In figure 2.1, we plot the distribution of the two summary statistiés, and / for two
different values op. In the first plots on the left, we compare the histogramgfer 10

andp = 20. From the plots, it is apparent that the distribution of the lower bound
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shifts towards the right as the recombination rate is doubled and furthermore there is
almost no overlap between the two distributions with a recombination rate difference of
five-fold. Looking at the corresponding plots féf, we observe thaRk, seems to be
more sensitive to changes in recombination rate, although the distributidgih fas a
smaller spread. In general, the probability distribution of f)elower bound or any
other summary statistic such &sis a function of the two variablegsandp. A summary
statistic X is expected to be a good estimator of the recombination rate if the random
variable (X, p|0) is sensitive to changes in the recombination ratend has a small
coefficient of variation for a fixeg. Preliminary results indicate that the lower bound

is a good summary statistic for estimating recombination rates after correcting for the

variation in the number of segregating sites. (Bafna and Bansal, unpublished results)

2.2.3 Bounds for Haplotypes with Missing Data

A complete haplotype is an element{af, 1} wherem is the number of SNP’s
and thej-th component indicates the allele at that position. However, due to genotyping
errors or other reasons, the genotype at a particular position for a individual is sometimes
undetermined. In such a scenario, some of the haplotypes are partial or incomplete. A
partial haplotype is an element ¢6, 1,7}™ where? represents the positions where
the allele is unknown. Since most real haplotype datasets have some amount of missing
data, it is important to find efficient methods for computing recombination lower bounds
for haplotypes with missing data. We show how the greedy algorithm for compiiting
can be extended to handle haplotypes with missing data without much increase in the
computational complexity. We first need to modify the definition of a non-informative
site. A site is defined to be non-informative if it has all but one alleles of one type (ignor-
ing the missing alleles). With this modified definition, the algorithm for compuitpg
described in sectior2.2.1remains unchanged for the first 8 steps. Recall that in the last
step of the algorithm, we return the bouAd/) — / — 1. For a matrix with missing en-

tries, it is not straightforward to computé(7). However, consider an assignment to the



31

?’s that minimizesH (I). Then the differencéf (1) —I —1 gives a valid lower bound, i.e.

a bound which is valid for all possible assignments to the missing entries. However, for
minimizing H(I) one has to solve the minimum haplotype completion problem; where
given an haplotype matrix with missing entries, the objective is to complete the missing
entries so as to minimize the number of distinct haplotypes. This problem was shown
to be NP-hardKimmel and Shamir2004). To get a lower bound on the number of dis-
tinct haplotypes induced by the given data, we construct the compatibility graph on the
set of haplotypes, where two haplotypes are connected by an edge if they are identical
(treating the missing entries as don't cares). The number of connected components in

this graph gives a valid lower bound on the minimum number of distinct haplotypes.

2.2.4 Application to Haplotype Data from LPL locus

A 9.7-kb region from the human LPL gene was sequenced by Nickerson. et.
al. (Nickerson et al.1998 in 71 individuals from three different populations. The hap-
lotype data comprised of 88 haplotypes defined by 69 variable sites with about 1.2%
missing data. This data has previously been analyzed for haplotype diversity and re-
combination Clark et al, 1998 Templeton et a).200Q Myers and Griffiths2003. In
table2.2, we compare the bounds obtained for different sub-regions of the LPL region
for various populations. The overall bound for the whole region is 70 if one ignores the
sites with missing data (sedyers and Griffiths2003), while our method for comput-
ing lower bounds including missing data detects 87 recombination events. Templeton et.
al. (Templeton et a).2000 had found that the 29 recombination events detected using
their method to be clustered near the center of the region (approximately between the
sites 2987 and 4872). It is interesting to note that number of detected recombination
events (37) in this region increases significantly (from 22) when one takes into account
the sites with missing alleles. Thus, the bounds obtained using our improved methods
which can handle missing data, seem to provide strong support for the presence of a

recombination hotspot suggested by Templeton et. Teimpleton et aJ.2000. This
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Table 2.2: The number of detected recombination events using bounds for missing data
for the LPL datasets. The number in bracket indicates the density of detected recom-
bination events per kb. The middle region (2987-4872) corresponds to the suggested
hotspot Templeton et a).2000.

Site Range
Region | 106-2987 2987-4872 4872-9721 Full
Jackson | 10(3.47) 11(5.84) 17(3.51) 39(4.06)
Finland | 2(0.69) 13(6.90) 13(2.68) 31(3.22)
Rochester; 1(0.35) 13(6.90) 7(1.44) 22(2.89)
Combined| 13(4.51) 37(19.63) 36(7.42) 87(9.0b)

demonstrates that the ability to extract past recombination events can be crucial to de-

tecting regions with elevated recombination rates.

2.2.5 Application of Lower Bounds to reveal Recombination Hotspots

In humans, individual hotspots have been identified using pedigree studies and
sperm crossover analysis. However, characterizing fine-scale variation in recombination
rates using pedigree studies (at the kb scale) is difficult and performing sperm analyses
on a genome-wide scale is experimentally infeasible. Recombination hotspots are de-
fined as regions in which the crossover rates are significantly larger than the rates in the
surrounding regions. Detecting hotspots is important for disease association studies and
understanding the biological mechanisms behind the origin and evolution of hotspots
(for some recent work seeP{ak et al. 2004 2005 Winckler et al, 2005).

Linkage Disequilibrium analysis of a 210 kb region in the MHC class Il re-
gion (Jeffreys et al.200]) followed by sperm crossover analysis on a few males re-
vealed five crossover hotspots of length 1-2 kb separated by long haplotype blocks con-
taining tightly linked markers. This region contains another hotspot near the TAP2 gene
identified earlier Jeffreys et al.2000 using the same technique. For this region, the
locations of the sperm crossover hotspots and their intensities were in good agreement

with the historical recombination rates estimated from coalescent analysis of the geno-
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type datalicVean et al.2004). Note that the two methods measure different quantities;
sperm analyses measures current recombination rates in males while population genetic
methods estimate the sex-averaged recombination rates averaged over many genera-
tions. We also applied our lower bounds to the population data genotyped from the 50
UK individuals {Jeffreys et al.2001). Since the data is unphased, we applied our lower
bounds to the haplotypes estimated by the PHASE prog&tapbens et gl2007). In
Figure 2.2 (top half of the figure), we plot recombination lower bounds for short seg-
ments (0.5KB to 5KB) from the MHC region. We use a simple statistic of plotting the
recombination lower bound scaled by the length of the segment for which the bound
was computed. (seeMyers and Griffiths2003). The regions with high density of re-
combination events can easily be distinguished from the plot and correspond to putative
recombination hotspots. We find that four hotspots: DNA2, DNA3, DMB2 and TAP2
are clearly identifiable. The hotspot DNAL is difficult to distinguish from DNAZ2 since
the centers of these hotspots are very close (3-4KB apart). Similarly the two hotspots
DMB1 and DMB2 appear as a single cluster. It may be possible to further analyze the
two regions to separate the hotspots. Note that the density of detected recombination
events in a region is not directly interpretable in terms of the underlying recombination
rate.

More recently, Jeffreys et al.2009 genotyped 200 SNP’s for 80 UK males in
a 206KB region of chromosome 1g4.23. LD analysis of this region revealed long haplo-
type blocks (upto 80kb) disrupted by five regions of low LD. Sperm crossover analysis
of the regions with breakdown of LD identified seven new hotspots in addition to the
MS32 hotspot. The genotype data was analyzed using three different coalescent based
methods Fearnhead et al2004 Li and Stephens2003 McVean et al. 2004. The
LDHot method McVean et al. 2004 found 4 hotspots with no false positives while
the Hotspotter method.{ and Stephens2003 found 5 hotspots with 3 false positives.
In comparison, the approximate likelihood methé@#rnhead et al2004 seemed the
most accurate; it could detect 7 hotspots with a single false positive. The hotspots

NID2 actually consists of two hotspots NID2a and NID2b and no coalescent based
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method could separate these two hotspots. Similarly, the MSTM1 hotspot is a dou-
blet of two closely spaced hotspots. As for the MHC region, we plotted recombination
lower bounds for short segments for this region (see bottom of FigQu@2e From the
plot, one can visually identify five hotspots: NID2, NID1, MS32, MSTM1 and MSTM2.
The hotspot NID3 is not detectable, a possible reason being the low recombination rate
in this hotspot. From these results, it is clear that haplotype lower bounds can provide
a first hand idea of the location and to some extent the intensities of most of the recom-
bination hotspots detected using sperm crossover analysis. Although LD analysis can
also identify many hotspots, the evidence for hotspots is much better from lower bounds
than pairwise LD plots in some cases (see e.g.dubobin hotspot Fearnhead et al.
2009).

In the remainder of this chapter, we present results for improving the complex-
ity of the R, lower bound and describe a new lower bouRgdthat can detect more

recombination events that eith& or 12, for many datasets.

2.3 History Based Lower Bounds

(Myers and Griffiths 2003 only give a procedural definition of the bourtl,
and their description is somewhat informal. The time complexity of their procedure (as
described in Algorithm 3 in Nlyers and Giriffiths 2003) is O(mn!), wheren is the
number of rows, anan the number of columns. We give a theoretical formulation of
the boundR, which allows us to develop an exponential time algorithm for computing
it.We define a history for a set afrows as simply an ordering of the rows. We start by
redefiningR, in terms of appropriate cost of a row in a given history. Consider a history
H =17 — ry... — r,. The cost of rowr; in the history, denoted by'(r;), is 0 if
after removing non-informative columns from, r,, ..., r;, the rowr; turns out to be
identical to one of the rows,, . .., r;_; and1 otherwise. Then we have

Cy(H) = Z C,(r;) and R (M) = higtl(i)?w C,(H)
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We defer the discussion of why,, as we have defined it, is a lower bound to Theofem
(where we prove thak; is a lower bound).Consider a bit vectoof lengthsn. Let M
denote a submatrix af/ which contains only rows such that-; = 1. Define a partial
order on the vectors as follows; < o5 if vy[i] = 1 whenever,[i] = 1. Define the
vectorv_; as thev with the i—th bit set to0. Let Rg[v] denote theR, bound for the

corresponding sub-matrix.

Dynamic programming algorithm for computing Rs(M):
1. For all row subsetsi: Rg[r] =0
2. for all subsets picked in an increasing order
3. if 3 aredundant row im: Rg[r] = Rg[r_]
4.  else Rg[r] = min;{1 + Rg[r_;]} (*forallrowsis.t.r; =1%)

The running time of the procedure aboveign2™). Using a non-trivial reduc-
tion from the MAX-2SAT problem, we have shown that computing the baolintbr a
matrix is NP-hardBafna and BansaR005.

The R, bounds searches over possible histories of the set of haplotypes and one
would expect the bound to be better than the diversity based bByndHowever, in
practice,R, does not improve oveR,, in most cases. Next, we describe a new lower

boundR; that improves oveR,.

2.3.1 Recombinant Intermediates and the boundz;

We use an example to demonstrate higycan be improved. Consider the set of
n + 2 haplotypes with sites shown in Figur2.3.1 For illustrationn = 7.

Note that if the history was forced to start with the first two haplotypes, each of
the followingn rows could only be removed through a non-redundant row removal, and

we would have a recombination boundraf However, if we choosé111111 to be the
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Figure 2.3: A set of 9 haplotypes for whidky is 1 and a phylogenetic network for the
set of haplotypes with 6 recombination eveRts= 6).

last haplotype in the history, then removing it makes every column non-informative. As
R, is the minimum over all historied?;(M) = 1. However, at leasi recombinations

are needed. Note that for this particular example, we can boogst tHmund to the
correct value by applying the dynamic programming algoritivydrs and Griffiths
2003 for combining local bounds. However, the example illustrates a problemRyith
which is that in explaining a non-redundant row-removal, we only char§&N&LE
recombination event. Therefore,lif11111 was indeed the last haplotype in the true
history, then adding it would requiferecombinants (the haplotypes in dashed boxes)
NOT from the current set (as explained in Fig@r8).

We use this idea to improve thes bound. Consider a historfy = r, —
ry... — 1. LetZ;(H) denote the minimum number of recombination events in ob-
taining r;, given any phylogenetic network fof,...,r,_;. We allow the use of re-
combinant intermediates, and (/) can be greater than one. In general, the use of

recombinant intermediates is tricky because the intermediates may help explain some
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of the existing haplotypes by simple mutations. In order to prove a lower bound, we
introduce the concept ofdirect recombinationWe defineCy,(r;) for a haplotype-; in

a given historyH as follows:

0 r; is different from allr;; in a non-informative column.
Ca(ri) =4 0 r; isidentical tor;; after removing non-informative columns

1 Otherwise
(2.1)

We observe that the definition 6f;(r;) holds for a set of haplotypgs, ro,...7r;_1,7;}
and denote this generic definition@s(r;, {r1,72,...7;_1}). Note thatCy(r;) < Cs(r;)
for all 7 in a history. However(; can be used to give a new lower bound on the total

number of recombinations.

Theorem 2 Let H denote the set of all histories over the set of haplotypes hen
R; = min mjax{; Ca(r:) +Z;(H) + ; Cy(ri)}
1<] 127

is a lower bound on the number of recombinations.

Proof: Recall thatm,, denotes the minimum number of recombinations in any
history of M. We construct one historftd = r, — ro... — r, in which which
>icj Calri) + ;(H) + 32, ; Cs(ry) is a lower bound omn,, for all choices ofj. This

is sufficient because we minimize over all histories. Consider an phylogenetic network
A that explaingn,,; with a minimum number of recombinations. Each ned@ the
phylogenetic network corresponds to a haplotypewhich may or may not be id/.
Haplotyper € M is adirect withesgor a recombinant nodeif » = r,. Itis anindirect
witnessif it can be derived fromr, solely by mutation events. A predecessor relation-
ship< p is defined for some haplotypesr; € M. Specificallyr; <p r; if r; is a (direct

or indirect) witness to a recombinant node on a path from the root thlote that<p

is a partial order. Next, choose a histd#y(a total ordering) that is consistent withe.
Note thatC,(r;) = 1 if and only if r; is the first witness to a recombination nodeAn

to appear inH (thereby proving thaf2;(M) is a lower bound). Likewis€';(r;) = 1 if
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and only ifr; is the first direct witness to a recombination nodelito appear inH. As
each recombination node contributes at mogt, = > . Cs(r;) is a valid lower bound
on the number of recombinations. Consider an arbitranyith C(r;) = 1. Instead of
chargingl to the number of recombination events, we charge a VBAIUE ) equal to the
minimum number of recombinations needed to obtaiftomr, 5, ..., r;_;. Consider
the sequence of intermediate recombination events that were used torgbtdame of
these nodes have a direct witness. Therefore the nodesrin ..., r,_; that had &,
value of1 correspond to other recombination nodes.

Next, the haplotypes;. ; that followr; are charged’s(r;). Whenever((r;) =
1, it is because; is the first witness to a recombination nodeArto appear inH. By
construction, this recombination node is not on any path from rogf,tand therefore
wasn’t charged when considering intermediates-forTherefore, each recombination

node is charged at most once and the bound holds. )

The algorithm below describes how to comp#tein time O(n2"1(m.n)) time,
where(m,n) is the time to computé&;|r] for any subsef. Z;[r_;| denotes the min-
imum number of recombinant intermediates needed to compute haplotgpen the

subset” with r; removed.

Dynamic programming algorithm for computing R;(M):
1. For all row subsetsr: R4[r] =0, R;[r] =0
2. for all subsets picked in an increasing order
3. if 3 a redundant row i
4, Ryl = {Ra[r-i]}; Rilr] = {R[Fi]}
5. elsefor all rowsi s.t.r; = 1

6. Rdﬂ' = mini{C’d(ri, ’I?_Z)—FRd[??_Z]}, Rl,i = min,—{max{1+R1 [77_1'], Rd[F_Z]+
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7. Rd[’f_‘j = mini{Rd,i}; R[[F] = mini{RLi}
8. returnR; (M)

It is easy to see thak; > R,. In order to compute?;, we need to compute
Z;(H) for all haplotypesj, and all historied?. To do this more efficiently, we defirig
over subsets, instead of histories. We denote a subset of haplotypes by the bit=vector
of sizen wherer; = 1 iff r; € 7"and defineZ;[] as minimum number of recombination
events needed to obtain, over any history of the haplotypes it Likewise, define
R,4(7) as the minimum number of direct recombinations in any history of the haplotype

subset”.

2.3.2 Computing Recombinant Intermediates

Our goal is to computé;[r] efficiently. Haplotypei is assumed to arise later
in history the in7” and is therefore a mosaic of sub-intervals of the haplotypes in
The mosaic can be expressed by a sequence of pais (hy, j1), (ha, j2) - - -, (hi, ji)
interpreted as follows: In;, columnsl, ..., j; came from haplotypé,, columnsj; +
1,...,j2 + 1from hy, and so on. IfM were the true mosaic, thén would needk — 1
recombinant intermediates. Thus, we need to minimize this.

First, we can ignore all columns that are identical for all haplotypes i h;
has a different value in any of these columns, it can be explained by a mutation. If it
has the identical value, the column can be explained using any haplotype and will not
contribute to recombination. Ignoring these columns, the following is true: if columns
Jji,- .., o Of h; arise from haplotypé, then the values of andh; must be identical in
columnsj; throughjs. If any columnse was different {;[c] # hc]), to explain it by a
mutation would violate the infinite-sites assumption. This observation allows us to solve
the problem of computing;[] efficiently.

For columne, 1 < ¢ < m and haplotypé, let I[c, h] denote the minimum num-

ber of recombinations needed to explain the firsblumns of haplotypé; such that the
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c-th column arose from haplotype This is sufficient becausg|r] = ming,{I[m, hl]}.

I[e, h] can be computed using the following recurrence:

0 c=20
Ile,h] =< oo hilc] # h[c]
min {I[c — 1, h], miny 2, {1 + I[c — 1, h']} o/w

2.3.3 Results forR; bound

Besides the simulated example (in Fig@.&), real datasets are known where
R, and R;, are sub-optimal. As an example, tii& and R, bounds for Kreitman’s
data Kreitman 1983 from the ADH locus ofDrosophila Melanogasteare both 6.
Song and Hein§ong and Hein2004 showed that their set theoretic lower bound gave
a bound of 7 and proved this to be optimal by actually constructing an phylogenetic
network which requires 7 recombination events. Our new lower bdynalso returns
the optimal bound of 7. However, the set theoretic-bouswohg and Hein2004) does
not have an explicit algorithmic description. On the other hand,Rhé&ound can be
computed for large datasets)() x 500 matrix can be analyzed in few hours on a standard
PC) and gives improved bounds for a number of real datasets (se@tahde a partial
list).

2.4 Discussion and Future Work

We have presented new computational methods for computing lower bounds on
the minimum number of recombination events from a sample of haplotypes. We have
shown that one of these lower bounds is very fast to compute and more sensitive to
changes in recombination rate than previous bounds. Plots of this lower bound for two
regions from the human genome for which recombination hotspots have been identified

experimentally, provide a strong signal for most of the detected hotspots.
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Table 2.3: Comparison of the number of detected recombination events idsid
R; for the phased haplotype datasets for various genes obtained from the SeattleSNP
project (SeattleSNPs, http://pga.gs.washington.edu, March 2004).

Dataset Size R s R |
CSF3 15x 17 3 4
MMP3 21x41 6 9
ABO 68x 197 | 70 73
DCN 31x117 | 16 18

HMOX1 34 x 53 14 16

F2RL3 28x 29 10 11

EPHB6 31x 62 23 25

There is an inherent stochasticity in the number of historical recombination
events for a region of fixed length given a fixed recombination rate. This stochasticity
is independent of the number of segregating sites in the region. On the other hand, any
method for detecting historical recombination events is highly dependent on the number
of mutations (segregating sites). In the worst case of no mutations, no method can detect
any recombinations. Furthermore, the power to detect historical recombination events
depends greatly on ancient mutations, i.e. mutations which happened before the recom-
bination events. Note that any mutation that happened after a particular recombination
event is non-informative for detecting that particular recombination event. It is interest-
ing to note that Jeffreys et a].2001) choose markers with high rare allele frequency
(> 0.15) under the assumption that these are likely to be ancient and hence provide
greater evidence for breakage of haplotypes by recombination events. Therefore, one
needs to incorporate this bias for high frequency mutations in methods which use sum-
mary statistics for estimating recombination rates using coalescent simulafi@atls (

2000. This will possibly provide greater power to detect hotspots when these methods
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are applied to real datasets. We are currently pursuing this line of research.

Previous paperdfyers and Griffiths 2003 have suggested that the minimum
number of recombination events will miss most historical recombination events and
should not be used as an indicator of the true number of historical recombination events
or directly used to estimate the recombination rate. One should use full likelihood meth-
ods Fearnhead and Donnell2001) or approximate likelihood methodsF¢arnhead
et al, 2004 Li and Stephens2003 Hudson 2007) for estimation the underlying re-
combination rate. However, the computational burden imposed by these methods can be
sometimes prohibitive for large scale datasets. Resultgvafl(200Q Hudson 2001])
suggest that estimates of the recombination rate obtained in a maximum-likelihood
framework using easy to compute summary statistics of the data, are comparable to
estimates using pairwise likelihooddydson 200L McVean et al. 2002. Therefore,
it remains to be seen whether using new summary statistics for recombination (such as
lower bounds described in this chapter) and correcting for the bias in the number of
mutations and mutations with low rare allele frequency, one can obtain good estimates
of the recombination rates and detect recombination hotspots reliably.

From the computational standpoint, there are several open questions. How close
are these recombination lower bounds to the minimum number of recombination events
for a sample ? We believe that the difference between the lower bounds and the true
minimum could increase as the recombination rate increases, although it is difficult to
verify this and may not be true. The recombination lower bounds described here and
almost all previous lower bounds are applicable to haplotype data. Unfortunately it is
experimentally difficult and expensive to obtain phase information for genotypes. We
obtain nice results for recombination hotspots using computationally phased haplotype
data. However, computing recombination lower bounds from unphased data remains an

interesting computational problenwW(uf, 2004).
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Chapter 3

Counting Recombination Events:

Conflict Graph and Lower Bounds

In the previous chapter, we investigated the computational complexity of two
lower bounds on the minimum number of recombination events. We also described
efficient algorithms for computing these lower bounds and a new lower bound that is
better than all previous lower bounds. All of these recombination bounds are explicitly
or implicitly based on haplotype diversity. The lower bound of Hudson and Kaplan
(1985) is based on estimating the maximum possible number of conflicting pairs of
sites. The conflict graph for a set of sequences represents the pairs of sites that do not
satisfy the four-gamete test. The conflict graph was used.Busfield et al(2003 to
obtain a polynomial time algorithm for the galled tree problem, which is a special case
of the Ancestral Recombination Graph (ARG) reconstruction problem. In this chapter,
we show that the number of non-trivial connected components in the conflict graph
for a given set of sequences is a lower bound on the minimum number of recombination
events required to explain the set of sequences under the infinite sites model of evolution.
We show that in many cases, this lower boufdjs a better bound than the haplotype
lower boundR,,. Our results also offer some insight into the structural properties of this

graph and are of interest for the general ARG reconstruction problem.

45
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In particular, we demonstrate the following results:

1. The number of non-trivial connected componeftsin the conflict graph of a
set of haplotypes is a lower bound on the number of recombinations required to
explain the history of the sample under the infinite-sites model. This bound can

be computed it (nm?) time for a matrix of sizex x m.

2. The number of recombinations required does not increase if sites are deleted.
Based on this idea, we introduce tdax-NTCCproblem of deleting sites so that
the number of non-trivial connected components is maximized (to give improved
lower bounds). We show that this problem is NP-complete using a reduction

from the Maximum Independent Set problem.

3. We show that for any set of haplotype’, > R.. Although R, is generally a
weaker lower bound thaRy,, there are many instances where it can be greater
than R;,. We show that for any matrid/, R, > 2R. — ; and also provide
infinitely many examples for whiclk, = %RC. Additionally, we show how
R. can be combined with the other bounds to reduce the computation time in

practice, and present a real dataset where it offers improvements.

3.1 Definitions

We will use the same notation and definitions as used in the previous chapter. We
provide some definitions of conflicts and the conflict graph introducedb$usfield
et al.(2003.

Definition 1: A pair of columns(i, j) in M are said taconflictif there is set of 4 rows

with the pairs{00,01, 10,11} in these two columns. If the ancestral type at each site is
known and assumed to be 0, the presence of three rows with the alud$), 11} in

these two columns implies a conflict, since we can infer the existence of the ancestral

type 00. A pair of columng(i, j) is said to becompatibleif : and; do not conflict.
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Definition 2: [from D.Gusfield et al(2003] The conflict graphG (M) = (V, E) for
a given setV/ of n sequences is a graph with vertex 8et= {i| 7 is a column ofM }
andE = {(i,j)| columnsi and; conflict }. Note that matrix\/ defines an ordering
for the vertices of7(M). We define two edge@:, b) and(c, d) in G¢(M) to benon-

interleavingif max{a,b} < min{c, d} ormax{c,d} < min{a, b}.

Definition 3: We defineR.(M) to be the number of non-trivial connected components

(components of size more than one) in the conflict graph of a set of sequeéhces

Definition 4: Let M be ann x m matrix, andS = {1,2,...,m} denote the set of
sites inM. For a subset’ C S, let M (S’) denote the submatrix obtained by restricting
columns to be irt’, and removing all redundant rows. For a sitelenoteM (S — {s})

by M_,.

3.2 Connected Components in the Conflict Graph

We begin by showing that removing sites from the matrix corresponding to the

given set of sequences does not increase the required number of recombination events.

Lemma 3 Forany subse$’ C {1,2,...,m} of the columns of a matrid/, m sy <
myy, and therefore any lower bound on the number of recombinations for the matrix

M (S") is also a lower bound om,.

Proof: Consider an ancestral recombination grapt\/) explaining M. For any
arbitrary sites € .S, we show how to transforr/(/) into a ancestral recombination
graph explaining/_,; without increasing the number of recombination cycle§{a/).
Consider the edge= (u, v) labeled withs in G(M). If the edgee is labeled with other
sites as well, we simply delete the labehnd keep the ancestral recombination graph
unchanged. Therefore, the interesting case is wheihe only label on the edge If v

is a leaf node, we simply removeand the node. Clearly, this can only happen if the



48

sequence labeling the leaf node was the only sequent£with a mutation on:, and
hence is not present it/ _,.

In the case where is an internal node iiz(1), we collapse the edgeand
makew to be the starting vertex of all outgoing edges fromlt is easy to see that
collapsing the edge does not induce a cycle in the gragtii/). Hence, the modified

graph is an ARG for the matriX/_,. Using an inductive argument, it is easy to see that
marsy < my VST C S
)

Corollary 4: Let S’ denote a subset of the sit§sin M. Thenmaxg/cgmas (s IS a

lower bound orm,.
Lemma5 Foramatrix\/ and a set of site§’ C S, R,(M(S")) < Rs(M) < myy.

Proof:  Observe that any sequence of non-informative column deletions, row dele-
tions and non-redundant row removal (from the definition of bofigdoperations that
reduces the matri®/ to an empty matrix, also reduces the mat¥i)(.S’) to an empty
matrix. HenceR, (M (S)) which is the number of row removal operations in a sequence
which uses the minimum number of row removal operations, is at Rdst/).

&

The main idea behind the proof of the connected components lower bound is
based on the computation of the lower bouRd In the R, computation, we delete
rows and columns, but we only charge a recombination event when we are deleting a
non-redundant row. We will show that a row that is non-redundant when restricted to
sites in a connected component MUST be redundant when restricted to sites of any other
connected component. In order to show this, we must prove a structural property of two
connected components described in2hedge theorem (Theore8). The proof of this

theorem depends on two technical lemmas which we prove next.
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Lemma@ LetS = {i, 7, k,(} be four columns in a matriX/ such that the pairg, ;)
and(k, ) conflict and(s, k), (¢,1), (j, k) and(j, () are compatible. Then there is at most
one paira € {00,01, 10, 11} such thafab,| and[ab,] are distinct rows inV/(.S), where
by, by € {00,01,10,11}.

Proof:  The proof is by contradiction. Suppose there are 4 distinct fay¥s|, [a;1b2],

lagbs], [azby] In M(S). Without loss of generality, we can assume that= b, = 00

(we can relabel the columns without changing the conflict graph). We now consider two
cases where, = 01 anda, = 11. Since the ordering of the columns is not important,
the case where, = 10 is the same as, = 01.

Casea, = 01 : Sinceb; # by, they differ in at least one of the sitd&,[}. We can
assume that they differ in the colunin(as the order of the columns is not relevant).
Also, as(i, 7) conflict, the rowsz; = 10, anda, = 11 exist. The remaining entries in

the matrix are constrained to have particular values (see F&jlixeFor the last matrix

in Figure 3.1, we observe that the pair of columfs/) contains the four distinct pairs
00,01,1z, and1z. This is a contradiction to the fact that the pair of columns does not
conflict.

Casea, = 11 : The argument for this case proceeds along the same lines as the previous
one. Since the only conflicts possible are between the@itgsand(k, 1) the submatrix

is constrained to contain the following distinct set of rows:

v g k1
0 0 0 O
0 0 0 1
1 1 1 =z
11 0 =z
1 0 0 =z
0 1 0 =z
x y 1 z

If y = 0, then(y, k) conflict. If y = 1, then(y, [) conflict, a contradiction &

Lemma7 LetS = {i,j,k,l} be four columns in a matrix/ such thati, j) and(k, )

conflict and(i, k), (i,1), (j,k) and(j,1) are compatible. There the submatrix(5)
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does not have three distinct rows of the fofub; |, [a2bs], [asbs] Wherea, # as # a3
andb; # by # bs.

Proof:  Suppose to the contrary we have 3 distinct rgws |, [a2bs], [asbs] in M(S).
Without loss of generality we can assume that= b, = 00 anda, = 01 (we can
relabel the columns without changing the conflict graph and the ordering of the rows

and columns is not important). As before, we proceed using a case-by-case analysis.

Case:as; = 11 andby = 01 :

i j k1 i j k1 i j k1
00 0 0 (j, k) can't 0 00 0 . . |0 0 0 0
01 0 1| containdl& |0 1 0 1 (Zégz]ﬁi?t 01 0 1
1 1 1 - (k,l)conflict |1 1 1 =2 N 1 1 1 2
1 0 - - — 1 0 0 - 1 0 0 -

-1 1 z 1 1 1 =z

But now (7, [) containd)0, 01, 1z, and1, z, a contradictioh

Case:as; = 11 andby = 11 :

i k1 i g k1 i k1
00 0 0 (j,k)cannot |0 0 0 O (i, 1) must 0 0 0 O
0 1 1 1 contain01 & 0 1 1 1 no’tconflict 0 1 1 1
1 1 0 1 (k,1) conflict 1 1 0 1 N 1 1 0 1
1 0 - - = 1 0 0 - 1 0 0 1

-1 1 0 — 1 1 0

Now, the pair of columnsgj, [) conflict, which is a contradiction.
Note that, since the ordering of the columns does not matter, the cases where
b, = 10 is identical to the case whebg = 01.

Case:as; = 10 andb, = 01 :
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i k1 i g k1 i 5 k1
0 0 0 0 (j,k)cannot [0 0 0 0 (i, k) cannot 00 0 0
0 1 0 1 contain0l & 0 1 0 1 ’ flict 0 1 0 1
10 1 -| (kDconfict [1 0 1 = con 10 1 -
11 - - — 110 - — 110 -
-1 1 z 1 1 1 =z
But now (i, /) contains)0, 01, 1z, and1, z, hence a conflict.
Case:ag = 10 andb, = 11 :
i j k1 i j k1 i j k1
0 0 0 O (i, k) cannot 0 0 0 O (j, k) must 0 0 0 O
0 1 1 1 containll & 0 1 1 1 nc;t conflict 0 1 1 1
1 0 0 1 (k,1) conflict 1 0 0 1 BN 1 0 0 1
11 - - - 1 1 0 - 1 1 0 -—
- — 1 0 — 1 1 0

Now, the pair of columngj, ) conflict, which is a contradiction. This completes the

proof of the lemma. s

Theorem 8 [2-edge theorem] Le§ = {i, j, k, [} be four columns in a matri®/ such
that (s, j) and(k, ) conflict and(i, k), (4, 1), (j, k) and(j,!) are compatible. Then there
exists pairsy;; andby;, such that every row in the submatax(S) is of the form[a;;b]
or [aby) wherea,;, by, a, b € {00,01, 10, 11}.

Proof:  Consider 3 distinct rows in the submatfix(.S) of the form[a; b1 ], [asbs], [asbs]
wherea; # as # asz. From Lemma? it follows that it cannot be the case that
by # by # bs.

First, we consider the special case where= b, = b3. Then consider the 3
rows [asby), [asbs], [asbs) Whereb, # bs # bg # by. Since the columnégk, [) conflict,
three such rows exist. Now if; = as = ag, then there cannot be a row of the form
[ab] wherea € {aj,as,a3} andb # by, since then we would have 4 distinct rows

[ab], [ab], [asbs], [asbs] Which violate lemm&b. Hence, the only other row we can have
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is [a4b1] and therefore the lemma holds withy = a4 andb,, = b;. If we havea, =
as # ag, then we cannot have another row of the fdu# wherea # a4, Since then we
would again have 4 distinct rows violating the constraint of lenimidence, the lemma
is satisfied withu;; = a4 andby; = b;.

In the case wherg, = b, # b3, lemmab enforces that there is exactly one row
of the form|a,b,] whereb, is different from bothh, andb; anda, € {00,01,10,11}.
Similarly, there is one and only one row of the fofmbs| wherebs is different from
either of by, b3 or by andas € {00,01,10,11}. If ay # a3 anday # as, then the
three rows|asb], [asbs], [a4bs] Violate lemma7. Applying lemma7 to the three rows
[a1D1], [asbsa], [asby], we get that eithet, = a; or ay = a3. But both the previous con-
straints can be satisfied if and onlyuf = a3, Sincea; # a,. Using similar arguments,
it follows thatas = as. Hence, the lemma is true with; = a3 andby; = b;.

&

Definition 5:  Let S = {i,4,k,[} be a subset of columns of a matri{ such that
the pairs(i, j) and(k, ) conflict and(z, k), (¢,1), (4, k), (j, () are compatible. Then we
denote byu;; andby, the pairs, such that every row in the submatvix.5) is of the form

[aijb] or [abkl] .

The next lemma explains how a non-redundant row removal (a row removal is
said to be non-redundant when a column deletion or a row deletion cannot be done) can
only destroy one connected component. The connected component theorem will follow

from a simple application of this lemma and LemBa

Lemma9: Consider a matrix\/ such that each connected component in the con-
flict graph G (M) has size 2, i.e. it consists of two sites which are in conflict. Then

Proof:  We show that every possible sequence of non-redundant row removal events
which reduces a matriX/ (whose conflict graph has the structure described above)

to the empty matrix, requires at leaBt(A/) non-redundant row removal operations.
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Since, the bound, is the minimum number of row removal operations performed for
some sequence of non-redundant row removal events, it followsttiat ) > R.(M).

We claim that any column or row deletion cannot remove an edge in the conflict graph
(or equivalently destroy a connected component). A site is deleted only when it is non-
informative, i.e. there is either only a single haplotype with a 1 at that site or a single
haplotype with a O at that site. Clearly, such a site cannot be involved in a conflict with
another site, since one needs at least 2 ones and 2 zeroes at a site for it to be involved in
a conflict. Similarly, a row is deleted when there are two identical haplotypes. Clearly,

a removal of one of them cannot remove a conflict between two sites.

Now, consider a non-redundant row removal operation which destroys a con-
flict between two sitegi, j), i.e it removes one of pair§00, 10,01, 11} from the two
columns. Denote the pairs removed (ay). Consider a pair of conflicting sitg#, /)
and the submatrid/ (.S) restricted to the 4 siteS = {1, j, k, [ }. Clearlyab # a;; (where
a;; is as defined above), sineg; is present in more than one row 6f(.S). From the
2-edge lemma it follows that the pair in the colunths!) in the row that was removed is
also presentin other rows i (S). Hence, the removal of the row containiag) in the
columns(i, j) cannot destroy a conflict between the sited). Hence, a non-redundant
row removal operation can destroy at most one connected component (or conflict) in the
conflict graph. Therefore, by induction, any sequence of column deletions, row dele-
tions, or non-redundant row removal events requires at flggst/ ) non-redundant row

removals to reduce the matrix to the empty matrix. s
Theorem 10 For every matrixV/, R.(M) < Rs(M) < myy.

Proof:  For every non-trivial connected componentAp(M ), we remove sites such

that only two conflicting sites remain in each connected component. Clearly, we can
do this for every connected component with 2 or more sites. Hence, after removal of a
subset of sites, we have a reduced matrixS’) whereS’ is the set of remaining sites.
From lemmab, my, > R (M(S)). Also from lemma9, it follows that R, (M (S")) >

R.(M), which proves the required result.
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Note that the 2-edge theorem (Theor&nimposes a strong structure on the
underlying matrix. We can extend this theorem to the general case where we have a
connected component instead of an edge. The theorem below, shows that the rows
conferring haplotype diversity to a connected component are disjoint for each connected

component.

&

Theorem 11 Let A, B be disjoint subsets of columns representing distinct connected
components in the conflict graph. L&t . . ., a; andby, . . ., b, be the distinct rows (hap-
lotypes) in)M (A) and M (B) respectively. There exist haplotypesandb;, such that

all distinct rows of the matrix(/[A U B] are of the typéa; b] for someb € {by, ..., },

or [a b;] for somea € {ay, ..., ax}.

Proof: We prove by induction on the total number of columnsiih As the two
components are non-trivial/ has at least columns containing an edge in each com-
ponent.

Base case (4 columns): Each componenthédsstinct haplotype$0, 01, 10, and11.
The base case follows directly from Theor8m

Induction stepk + 1 columns): Assume that the hypothesis is true for all matrices con-
taining two non-trivial components with a total bfcolumns. LetA be the component
with the larger number of columns. Remove a colunfiom A to getA’, such that the
columns inA’ still form a single connected componént

By the induction hypothesis, there exist haplotypeandb;, such that all dis-

tinct rows of M [A’U B] are of the typga! b] for someb € {by,..., b}, or[ab,] for some

a € {ay,...,a}. Thus, the distinct rows af/ (A’ U B) are:

! such a column always exists, since one can remove a vertex from a connected graph such that the
remaining vertices still form a connected graph
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A | B
/
/
/
/

ay | b
!/
/!

ay | b

Now add thei-th column back to ged/ (A U B). Consider all the rows containing.
We claim that all rows containing, must have the same valuein the i column. If

this is true, the rows of/ (A U B) are

A | B
/

z a; | b
!/

z a; | b
!/

z a; | b
!
!
/
ay | b

Leta, = [z a}]. Then each row is of the forra, b], or [a b;], and we are done.

Next, consider the case when the rows contairingave instances afandz in
thei-th column. Without loss of generality, rename the haplotypée3 sb that the rows
of M (AU B) contain

1 A | B
z a | by
z CL; bg
Cl; bl

/
ay | b;

/
ay | b;

/
ay | b

Next, consider an arbitrary columine A’ such that, j conflict, and denote the value

of row «; in columnj asx. Consider the connected componéht= {i, j}, andB. As
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(1, 7) conflict, all four rowszx, zZz, 2z, Zz must appear. On the other hand,ca®nly
containsz, all rows containinge must line up againgt;. The columns of\/(X U B)

contain

It is easy to verify that the componentsand B violate the inductive hypothesis

even though they U B has fewer thai columns, a contradictidn )

Definition 6: For a pair of non-trivial connected componefits B), denote the com-

mon haplotype ofd with respect taB ash(A, B).

3.2.1 Extensions to theR,. lower bound

In this subsection, we show how the connected component lower bound can be
extended to obtain improved bounds. We show that we can apply the lower Byund
independently to each connected component of the conflict graph of a mdttix

obtain a recombination lower bound fof.

Lemma 12

> Ry(M(C)) < Y Ry(M(C)) < Ry(M) < muy

cgecc cgecc

Proof:  Consider an optimal history faR, for the matrix)/, i.e. a sequence of col-

umn deletions, row deletions and non-redundant row removal events which reduces a
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matrix M to the empty matrix and requirds()/) non-redundant row removal oper-
ations. This history can be used to obt&ip histories for each connected component
as follows. Consider any non-redundant row removal operation in the optimal history
and letr denote the row removed. There is at least one connected compGrearh

that the rowr is non-redundant in the submatrix restricted to the siteS.irLet C’ be
another connected component in the conflict grapiof We claim that the row is
redundant is the submatrix restricted to the sites in this compdrferif this was not

the case, it would contradict Theorehl. Hence, the row is non-redundant in the
submatrix restricted to the sites of exactly one connected component. Therefore, every
non-redundant row removal can be assigned taithkistory of one connected compo-
nent. For all other components, this row removal corresponds to a row deletion event in
the history. Therefore, the sequence of column deletion, row deletion and row removal
operations in the history of a connected component is identical to that in the optimal
history for M. Moreover, the total number of non-redundant row removal operations
summed over histories of all connected components is ex&ctly/). It follows that

Y cece Bs(M(C)) < R, (M). SinceR,(S) > R,(S) for any set of sitess, the sum of

Ry, bounds on the connected components is also a valid lower bound. &

Note that computing?, is intractable in general. However, we can possibly
speed up the computation of tlig bound by computing the bound independently on
each connected component of the conflict graph. Moreover, in practice the above lemma
can be used to obtain improved bounds as follows. For each connected component, it
is easy to check in polynomial time R, = 1 or more. If it is not then it cannot be
explained by a single recombination event. Hence, instead of one event, one can infer
two recombination events. In fact for any small constamne can check if?, < ¢ or
not. We illustrate this on a real dataset in subsec3@l Moreover, the above lemma
also allows us to combine the bounfls and .. For a given set of sites, one can get a

bound that is at least as good as the maximum of the boBpdnd E..
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We can use lemmain conjunction with the connected component lower bound
to obtain a somewhat stronger lower boundmeyy. For a subset’ of the sites inM/,
letCC(S’) denote the non-trivial connected components in the conflict grapi/fat').

For every matrix\/,

max [CC(S")] < mar (3.1)

We introduce the Max-NTCC problem for finding a subset of sites whose conflict
graph has the maximum number of non-trivial connected components. Unfortunately,

we show that this problem is NP-complete.

Max-NTCC problem:
Input: A matrix M with n sequences and a seDf s sites.

Output: S’ C S, such that the number of non-trivial connected components in the

conflict graph ofM (S5") is > k.
Theorem 13 The Max-NTCC problem is NP-complete.

Proof: Itis easy to see that the problem is in NP. To prove the NP-hardness, we give a
reduction from the Independent Set problem. The independent set problem is defined as
follows: Given an undirected gragh = (V, E), is there a subsét’ of V' of cardinality
> k such that there is no edge between any pair of verticés.in

We construct a matriX/ with 2|V| sites (columns) and|V| + 3|E| rows as
follows. Label the nodes ifv arbitrarily from 1 to|V|. For every vertex; in V' we
define 2 sites; andv,. We initially start with no rows and add new rows to the matrix
keeping the number of columns fixed2%"|. For every vertex;, we add 3 rows with
the pairs{01,10, 11} in the columns{v;,v;} and with value 0 in all other columns.
Hence, we obtain a matrix with| V| rows, such that there is a conflict between the sites
{vi,v}},1 <4 < |V] and no other conflicts. Now, for every ed@e, v;) € E, we add
three new rows with the paif$1, 10, 11} in the columngv;, v; } and with value 0 in all

other columns. As a result, we obtain a mattikwith 2|V| columns and|V'| + 3| E)|
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rows. We claim that the only edges in the conflict graph for this matrix are of the form
{vi, v}, v; € V or{v;,v;}, where(v;,v;) € E. This is true since the only pairs of
columns for which there is a row with paft1} are{v;, v.},v; € V and{v;,v;} where
(v;,v;) € E.

Suppose that there exists an independenti’SeC V' of cardinality & in G.
Consider the conflict graph fav/(S’) whereS’ = U,cy{u,u'}. Each pair of sites
{u,v'},u € V' forms a connected component of size 2, since there is no conflict be-
tween a pair of sitesu, v) whereu,v € V. Hence the conflict grap&(M (S)')) has
k non-trivial connected components.

Now, let.S” C S be such that the conflict graph far (S’) hask non-trivial
connected components. It is easy to see that every non-trivial connected component has
at least one non-primed vertexe V. For each connected component, we choose one
non-primed vertex to form the sétC 1. Now,  is an independent set{r since if there
was an edge between two verticed ithen they would have been in the same connected
component irCC(M (S’)) and therefore not both in the sktAlso, the independent set
I has cardinalityt. Hence, there is an independent BétC V' of cardinality at leask
iff there exists a subset’ of S such that the conflict graph dif (S”) hask non-trivial

connected components. s

3.3 Comparison of k. with other bounds

In this section, we comparg&, to the boundsk,, and R,. We have already
proved (see Theoref0) that the history based bourt] is always better than the bound
R., however it is not feasible to compufe, for a set of 10 or more haplotypes (see
Myers and Griffithq2003). First, we observe that if we apply tii& method to subsets
of continuous columns, and compute the best bound using dynamic programming on the
local lower bounds, the®, is always better tha®,,. Note that the running times for
computing the bound®;, and R, are exponential and super-exponential respectively.

In general, the best lower bound that can be obtained using the connected component
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approach isn /2 wherem is the number of columns. If the number of distinct haplotypes

n > m + m/2, then the boundr, is trivially better than the connected component
lower bound. For example, for a set f haplotypes withk columns, theR,, bound

is exponentially better than the connected component lower bound. For regions of low
diversity in haplotype data, the connected component lower bound can possibly offer
better bounds that the haplotype diversity bout)d Here, we provide an example of

a matrix M for which R, = 2|CC|, whereCC is the set of the non-trivial connected
components in the conflict graph faf. Although this example is not real, it serves to
illustrate the kind of haplotype data for which the bouRdcould offer improvements

over the boundz,,.

Theorem 14 For allng, there exists a matrix/ with n > nq rows such thalz, (M) =
SR(M).

Proof: We choose the number of rows for the mathikto be3* > n,, wherek > 2.
Starting from an empty matrix, we add new columns keeping the number of rows fixed.
We add columns in groups of 2, which represent a connected component in the conflict
graph. The following procedure defines the matvix(depicted in Figure.2) :

l.for j=1t0k—1

2. for i=0t03*7 —1do

add two new columns with the following values:

01in3’~! rows starting from rows’—(3i + 1)

10 in37~! rows starting from rov3’—!(3i + 2)

11in3/~! rows starting from rovg’—1(3i + 3)

N o o kM W

00 in the remaining rows

Claim: Every column conflicts with only one other column.
Proof: Consider a columnawhere0 < i < 2-3%¥~! — 1. There are only two rows with
a 1 at this site and every other site (apart from the one site this site conflicts with) has

the same value in these two rows. Hence, everyigite< i < 2-3%~! — 1 isinvolved in
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I
[

[=—— 2.3*(k—1) columns : 2.37Mk—2—=]

Figure 3.2: The structure of the matrix M for whigt), = §Rc

only one conflict. Next, consider a columinvhere2-3*—1 < j <2.3F142.3k2 1,

There are six rows with a 1 at this site and every other site (except the column with
which j conflicts) has the same value in these rows. Hence, every sgit¢he range
(2381 2.3F1 —1+2.3*2—1]is involved in only one conflict. Similar arguments are
applicable to each submatrix added in steps 2-6 of the procedure above which describes
the matrix)/. Hence, the required property holds for every column in the matirix

)
Lemma 15 Ry for the matrix)/ (constructed above) is exact%ﬁc.

Proof: After adding new rows as defined by this procedure, the matfihas
2(3F 1 + 32 4+ ...+ 3) = 3*¥ — 3 columns. Also, there is a conflict between any
two new columns added. Therefore, we h%@"g‘—?’} non-trivial connected components.
Hence|CC| = [?”7‘3]

Observe that the first two columns are the only columns that can distinguish rows 1, 2
and 3. The next 2 columns are the only columns that can distinguish rows 4, 5 and 6.
In general, columng&; and2; + 1 are the only columns that can distinguish between
rows3i, 3i + 1 and3i + 2,0 < ¢ < 31 — 1. Let I be the set of the first*~! sites.
Observe thatD(M;)| = 3*. Restricting the matrix to the fir&- 3*~! sites, we obtain
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R, >3 —2.31 —1 =31 —1. Now, we need to show that for every subset of
rows S, (|[D(Ms)| — |S| — 1) < 37! — 1. Suppose on the contrary, there is a sub-
setS for which (|[D(Ms)| — |S] — 1) > 3%1 — 1. If S does not contain a pair of
columns(2i,2i + 1), 0 < ¢ < 3k — 1, then we can add the pair of columAsto ob-
tain a set of columns$’ such that(|D(M{)| — |S'| — 1) > (|[D(Mg)| — |S| —1). In

the other case, wherg does not contain one of the colum(®, 2; + 1), we can add
that column to get a s&t’, for which (|D(M§)| — |S'| — 1) = (|D(Ms)| — |S] — 1).
Inductively, we can add columns t® to obtain a set of column§* = S U [ such
that (|D(Ms-)| — |S*| — 1) > |D(Ms)| — |S] — 1) > 3*1 — 1. We know that
|S*| > |I| = 2-3*'. Hence, we obtainD(Mg-)| > 3¥1 4 2. 3*1 = 3 which

is a contradiction since we only hagérows. Therefore, it follows thak;, = 3! — 1.

Hence,
2 (3% -3 2
R,=3"1_-1=2 = —|cc
h s (F50) = 3keet
This shows thai?, = %Rc for the matrix)/. For this particular example, one can also
show thatR; = |CC]|. &
This completes the proof of Theorelv. &

Although theR,, bound for the matrix\/ is 3*~! — 1, by obtaining local bounds
using R;, on subregions of the matrix and using the framework of Myers and Grif-
fiths (Myers and Griffiths 2003 to combine these local bounds, the overall bound for
the whole matrix can be improved t6C|. However, by permuting columns appropri-
ately, the overall bound obtained by combining the Id@abounds can be forced to be
3%=1 — 1, while the connected component bound is unchanged. The next theorem shows

that the above example is in fact a worse case scenario.

Theorem 16 For any matrixM, R, (M) > 2R.(M) — 3.

For a given matrix\/, we can remove columns such that every non-trivial connected

component is of size 2 and the number of non-trivial connected components does not

decrease. Therefore, it suffices to prove the above theorem for a matixwhich
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every connected component has size 2. Next, we prove a series of lemmas for a matrix
M in which every connected component is of size 2. For such a matrwth » distinct

rows, we show that the number of non-trivial connected components cannot ex@eed

For a matrix withn rows, we denote the number of non-trivial connected components

by C(n). Since every component is of size 2, the number of sités S(n).

Lemma 17 For a matrix) in which every connected component is of size 2, there ex-
ists a connected component (pair of columns), such that 3 of the 4{paix<1, 10, 11}

appear exactly once.

Proof: ~ Consider a connected componént Let C'(ab) denote the set of rows with
valueab in the columns of”, whereab € {00,01,01,11}. Let C(2) denote the set
of rows corresponding to the second largest among the four vafu€%ub)| : ab €
{00,01,01,11}}. andzy denote the pair in the componeftin the rowsC(2). Let
Chnin be the connected component for whi€h,,;,,(2)| = mincece{|C(2)|}.

If |Crin(2)] = 1, then clearly|C,in(2)] = |Crnin(3)| = |Cmin(4)] = 1, and
therefore 3 of the 4 pairs appear exactly once in the connected compG@pgnt If
|Cin(2)| > 1, since all the rows in the matrik/ are distinct, there exists a connected
component” such that the pairs in the componéritin the set of rows”,,;,(2) are
not all equal. Henceh(C.in, C') = xy (hereh(A, B) denotes the common haplotype
of componentA with respect toB) and therefore 3 out of 4 pairs in the component
(' are present in the rows,,;,(2). Let C’(2) denote the set of rows corresponding to
the second largest among the four valugg (ab)| : ab € {00,01,01,11}}. Clearly,
|C"(2)| < |Cin(2)|. However,

Crnin(2)| = mingece{|C(2)|} which leads to a contra-
diction. Therefore|C,.;,(2)| = 1 and there is a connected component such that 3 of the
4 pairs{00,01, 10,11} appear exactly once.

)

Lemma 18 Foramatrix}/ in which every connected component is of siz&2()M) >
n/3—1.
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Proof:  The proof is by induction on the number of rows. For a matrix with at most 6
rows and at least one connected component(pair of columns), we can restrict the matrix
to a single connected component for computik)gand hence?, > 4—-2-1=1 >

6/3 — 1. This proves the base case. Suppose the induction hypothesis is ttue foy

i.e for every matrix)/ with £ rows (k¢ < n) and in which every connected component is

of size 2,R, (M) > k/3 — 1. Now, consider a matrix with rows, wheren > 6. From

the previous lemma, there is a pair of conflicting columns (connected component), such
that 3 of the 4 pairs appear exactly once. Létdenote the matrix after removing the

two columns with 3 of the 4 pairs occurring only once and the three rows corresponding
to the three pairs. Note that removing the two columns does not cause any other rows to
become identical, since all rows apart from the three removed had the same value in the
two columns. (see lemn) One can writeRR, (M) > R,(M') +3 —2 = R,(M’) + 1.

From the induction hypothesis, we haig(M’) > (n — 3)/3 — 1. Combining, we
obtainR, (M) > n/3 — 1, which proves the lemma.

&

Lemma 19 For a matrix}/ in which every connected component is of siz€2p) <
n/2—1.

Proof:  Consider a matriX\/ with n rows in which every connected component has
size 2. From Lemmd7, there exists a connected componénhtsuch that 3 of the

4 pairs occur exactly once ii. Denote the 3 rows containing these pairsigs’).
Moreover, applying the 2-edge theorem, we also have the property that the pairs in the
rows R(C'), in every component apart frodi are identical. Hence, if we remove the
columns inC, three rows inM become identical. Therefore, we have the equation:
C(n) <1+ C(n—2). We also have€’(4) = 1 and henc&'(n) < n/2 — 1. &

From the above two lemmas, it follows thaj, > n/3 —1 > 2C/(n) — 5, which
completes the proof of Theorem6. Note that the theorem still holds ®.(M) is
replaced bymaxg/cg R.(M(S")).
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1 2 3 456 7 8 9 10 11 12 13 14 15 16
A 000100010 O0O O O O O O O
B 01 00O0O0OO0O11IO0O0O O O O O O0 O
C 00 00O0OO0OOOOOO O O O O 1 O
D 00 0O0O0O0O1O0O0OTO0O OO O O 1 O
E 0006011111000 OO O O O 1
F 0601 00O01O0O0OO0OT11TTO0O 1 O0 1 1 1
G 060100010011 1 1 1 1 0 1
H 11111100111 1 1 1 1 0 1
I 1111010011 1 1 1 1 0 1

Figure 3.3: A reduced haplotype matrix for alcohol dehydrogenase locus of Drosophila.

3.3.1 Application to a Drosophila Dataset

Next, we consider a real dataset taken from the alcohol dehydrogenase locus
from 11 chromosomes of Drosophila melanogasktaeitman 1983. The original
dataset had 11 haplotypes and 2800 sites. We coalesce two identical haplotypes and
remove all sites that are not incompatible with any other sites and sites that are identical
to an adjacent site. This leaves us with a reduced set of 9 haplotypes typed at 16 sites
(see Figure.3).

If the alleles at the sites 2 and 3 had not been determined, then the haplotypes
would be restricted to the site$1,4,5,6,7,8,9,10,11,12,13,14, 15,16}. We denote
a recombination lower bound for the sites between sit@sdb by B,,;,. For this smaller
dataset, the recombination lower bound that we would get ugjpgs 4. However, the
conflict graph for the subsétl, 4, 5,6} has 2 connected components, which implies a
local recombination lower bound of 2 between the sitaad6, i.e. B, ¢ = 2. Hence, the
connected component lower bound for the smaller dataset is 5. However, for the set of
sites betweeff and15, there are two conflicting pair of siteé7, 15) and(14, 15). One
can check that the removal of one sequence does not destroy both these conflicts. Hence,
one can infer a recombination bound2dbr this subset (see Lemni&), i.e. By ;5 = 2.
Therefore,By 16 = Big + Ber + Bris + Bis1s = 2+ 1+ 2+ 1 = 6 which gives an
overall lower bound of. For this dataset, Song and He8ojhg and Hein2004 showed

that the minimum number of recombination events is 7. This example illustrates, that



67

if we have the alleles at fewer sites, then the connected component bound can provide

improvements over the bourng,,.
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Chapter 4

Detecting large inversions from

whole-genome SNP haplotype data

4.1 Introduction

Long before SNPs were discovered as a form of genetic variation and even be-
fore the discovery of DNA, Dobzhansky, in early 20th century, had detected large ge-
nomic rearrangements that were polymorphic in Drosophila strains. These were the first
known examples ofienetic variationthat Darwin’s theory had described as the 'raw
materials for evolution’. Advancements in modern biology have allowed us to study
and cataloger the smallest form of genetic variation (SNP). However, with sequencing
of complete mammalian genomes, large chromosomal rearrangements have come un-
der increasing attention with extensive work on their discovery, mechanisms of origin
and impact on genomic evolution. Study of chromosomal rearrangements is also im-
portant for reasons of medical importance since genomes of tumor cells are known to
undergo extensive rearrangements. These chromosomal rearrangements include inver-
sions, duplications, translocations and deletions of genomic segments of sizes ranging
from a gene to several megabases. Large scale structural changes such as deletions,

duplications, inversions and translocations of genomic segments are known to be asso-

68
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ciated with susceptibility to diseaskakich et al, 1993 Osborne et a.2001; Lupski,

1998. In the past 2-3 years, increasing evidence suggests that the human genome con-
tains large scale DNA variants, collectively referred to as ‘structural variants’. High-
throughput experimental techniques based on comparative genomic hybridization have
enabled the discovery of hundreds of copy number polymorphisms in human individu-
als (Sebat et a).2004 lafrate et al. 2004 Sharp et al.2005. The HapMap genotype

data has also been used to discover insertion/deletion polymorphi3onsad et al.

2006 Hinds et al, 2006 McCarroll et al, 2009.

In sharp contrast, knowledge about the location and genome-wide extent of in-
version polymorphisms has not accumulated at the same pace, primarily due to the
lack of a high-throughput technique for detecting inversions. Inversion polymorphisms
are well known and quite common in species of Drosophila. Sturtevant discovered in
1921 Sturtevant1921) that the genomes of two Drosophila species differ a large in-
version on one of the chromosomes. Inversion polymorphisms were shown to reduce
recombination rates in the inverted region and increase recombination rates in other
chromosomes3CHULTZ and REDFIELD 1951). Recombination is suppressed in in-
dividuals who are heterozygous for the inversion: carry both the non-inverted and the
inverted haplotype. This leads to an overall reduction in the recombination rate in the
region. Lack of recombination between the two haplotypes causes them to evolve in-
dependently accumulating mutations that are specific to each clade. Large inversion
polymorphisms are generally believed to be rare in humans due to their expected dele-
terious effects and very examples of such polymorphisms are known. A notable one is
the recently discovered 900kb long common inversion polymorphism on 17qAite31 (
fansson et al2005. The inverted orientation had a frequency of 21% in Europeans but
was rare in individuals of African (6%) and Asian (1%) origin. The inverted haplotype
was dated to be about 3 Myr old but shows little evidence for recombination, leading
to a distinct haplotype pattern and extended LD across the region in the CEU popula-
tion (see Figure4.1 for a graphical display of the unusual haplotype pattern for this

region). Interestingly, genotype-phenotype analysis in an Icelandic population showed
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that women carrying the inverted haplotype had more children than those who didn't,
providing direct evidence that the inverted arrangement is under some form of selection.
Stefansson et. alSfefansson et al2005 suggested that an computational approach

to detecting inversion polymorphisms would be to look for regions with unusually high
LD especially long range LD. However, there is great variation in recombination rates
across the human genome, and high LD can arise just to an underlying low recombi-
nation rate. There are patterns that one would expect to see in a region harboring an
inversion polymorphism that are unlikely due to fluctuation in recombination rates and
under neutral evolution.

Another large common inversion polymorphism discovered previously, lies in
the chromosome band 8p23.1 - 8p22. This inversion was initially detected when un-
usual recombination patterns were observed in recombination analysis of CEPH pedi-
gree dataBroman et al.2003 and later verified and analyzed using Fluoresaesttu
hybridization (FISH) Giglio et al, 2001). Subsequently, the frequency of the inversion
polymorphism was determined to be about 26% in the CEU population and 39% in the
Japanese populatioB@gawara et §l2003 and the inversion breakpoints were mapped
quite precisely. For this unusually long inverted region (4.7 MB), the reference assem-
bly (Build 34) has the orientation of the minor allele while the ordering in the deCODE
genetic mapkong et al, 2002g matches the major allele.

A recent study Tuzun et al. 2005 mapped fosmid paired-end sequence data
from a fosmid DNA library of a North American female (not represented in the refer-
ence human genome assembly) to the reference human assembly. Fosmids that showed
discrepancy by size were indicative of deletions/insertions between the two genomes,
while fosmids whose ends mapped on the same strand of the reference genome (discor-
dant by orientation) pointed to potential inversions. This strategy revealed 56 putative
inversion breakpoints in addition to 139 insertions and 102 deletions. For 228 of the 297
variants, the fosmid library also contained clones consistent with the reference assembly,
suggesting that these are unlikely to be genome assembly errors. Although the method is

effective in determining inversions, it will require extensive re-sequencing in a popula-
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tion of individuals to fully determine the extent and frequency of these polymorphisms.

An indirect approach that has been adopted for finding inversion polymorphisms is to
test human-chimp inversions for polymorphism in humans using FISH and PCR analy-
sis (Feuk et al. 2005 Szamalek et al2006. Out of 23 regions that were testdéeuk

et al, 2009, 3 were found to be polymorphic in humans with the largest being a 800kb

inversion on chromosome 7.

In this chapter, we describe a statistical method to detect large inversion poly-
morphisms in the human genome using whole genome SNP genotype data. Unlike dele-
tions which cause miscalled genotypes and can lead to Mendelian inconsistéfcies (
Carroll et al, 2006 Conrad et al.2006), inversions are copy neutral and do not affect
the SNP genotypes. Our method is based on the detection of an unusual Linkage Dis-
equilibrium pattern that is indicative of inversions for which the inverted orientation
(w.r.t reference human genome sequence) is present in a majority of chromosomes in
a population. The method can also detect assembly orientation errors in the human se-
guence assembly, i.e. genomic segments which are present in the reverse orientation
in the assembly. Using simulations, we show that our method has statistical power to
detect such inversions. We have applied our method to data from the first phase of the
International HapMap project to generate a list of 176 candidate inversions in the three
HapMap ‘analysis panels’ (CEU, YRI and CHB+JPT). Although it is difficult to esti-
mate how many of these represent true inversions, a crude estimate of the false positive
rate using coalescent simulations indicates that about half of the 78 predictions in the
YRI *analysis panel’ represent true inversions. The false positive rate could be higher
(about 80%) for the inversions in the CHB+JPT ‘analysis panel’ , according to a conser-
vative assessment. Even with the high false positive rates, our method is a cost-effective
approach to discovering inversion polymorphisms. We have looked for supporting ev-
idence for our predicted inversions in the form of discordant fosmid pairs, assembly
discrepancies and presence of a pair of inverted repeats near inversion breakpoints. This
has resulted in a smaller list of 15 inversions, two of which represent previously known

inversions.
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4.2 Methods

Genetic maps are constructed by genotyping a large number of genetic markers
in a pedigree and ordering the markers based on estimates of the recombination frac-
tion between genetic markers. Markers that are physically close to each other in the
genome are also expected to be close to each other in the recombination map and vice
versa. On the other hand, the human genome assembly represents the genomic sequence
of a few individual(s) and a second, possibly different, ordering of the markers (SNPs
for example) can be determined by mapping the sequence flanking the markers to this
reference. Recently a high resolution genetic map was constructed using data for an
Icelandic populationKong et al, 2002g9. Comparison of the genetic map to the refer-
ence sequence revealed several regions where the ordering of the genetic markers was in
opposite orientation to that suggested by the reference sequence. Given the incomplete
nature of the draft human sequence at that time, the sequence was modified in the re-
gions where the genetic map strongly indicated a different marker order. The possibility
that some of these discrepancies are a result of an inversion polymorphism in the par-
ticular region cannot be discounted. For example, if the human sequence represents the
minor allele in a particular region of the human genome which has two orientations, one
would expect the ordering of the markers (inside the inverted segment) in the genetic
map to be consistent with that of the major allele and hence be opposite to that of the
sequence. In fact, this is true for a 4.5 megabase long inversion on chromosome 8 where
the reference human sequence represents the minor allele (frequency 20-30% in human
populations) and the genetic mafofg et al, 20028 matches the marker order of the
major allele. However, the low resolution of genetic maps makes it difficult to detect
such discrepancies in general.

In genotype data from unrelated individudlgjkage Disequilibrium (LD)efers
to the non-random association of alleles at physically neighbouring markers (SNPs in
our case). In human population data, significant LD is observed at close distances and

little or no LD is observed at long distances. This correlation of LD with distance is



74

Refer ence Sequence
E=———= A === A [T G bz ——F—]
E=——=A = | [ A [T G P77
=—NN——R % 16 F } (I A [
= 16 F } (I T [ Genotyped
f f f : Inversion f f population
= == | A c A : (T 7 T
e | ¥ 1CcF } (I A [
—_ — — R —
mapped fragments
A |A .
A |A .
AT Polymor phism Data
G | T ©
G | A s ©
1L T2 3 4
D’=0.17

Figure 4.2: Unusual Linkage Disequilibrium observed in SNP data when the inverted
haplotype (w.r.t the reference sequence) has very high frequency. SNPs are 'mapped’ to
the reference sequence using the flanking sequence (denoted by shaded boxes). There-
fore close SNPs in high LD are mapped to distant regioasd3 (the shaded boxes).
Consequently, the two regions show unusually high LD for that distance.

very noisy due to multiple factors, largely due to the fine-scale heterogeneity in the
recombination rates in the human genorikeYean et al.2004 Crawford et al. 2004

Myers et al, 2005. Although it may not be possible to determine a physical ordering of
SNPs using LD alone, itis possible to distinguish between SNPs that are physically close
from physically distant SNPs using LD. Our method utilizes high density SNP haplotype
data to find regions of the human genome where the ordering of the SNPs suggested by

Linkage Disequilibrium patterns is opposite to that of the physical sequence.

4.2.1 Using LD in population data to detect inversions

Consider a genomic region that is inverted (w.r.t the reference sequence) in a

majority of the chromosomes in a population and assume that we have genotyped mark-
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ers on either side of the two breakpoints. For a graphical illustration, see Fiy@re

In such a scenario, we would expect to see unusually high long range. L; (@nd

LD,,) than would be expected between markers that are physically distant. Further,
one would also observe low LDL(D», and LDs,) between pairs of markers that are
physically close according to the reference sequence. The strength of this effect will be
proportional to the frequency of the inverted allele. Our statistic is designed to search

for pair of breakpoints showing this kind of signal.

4.2.2 The Inversion Statistic

Consider a pair of breakpoints whets and B, denote two blocks on either
side of the left inversion breakpoint ait§ and B, are the blocks of SNP’s spanning the
other inversion breakpoint (See Figut2). We compute a pair of log likelihood ratios,
one for each inversion breakpoint which represent the log of the ratio of the probability
of the region being inverted in the population vs being non-inverted.LIgt denote
the LD between blocks and j, andd;; denote the corresponding distance. The log

likelihood ratio for the left breakpoint is defined as

¢d13 (LD12) ) ¢d12 (LD13) )
Gy, (LD12) - days(LD13)
Similarly, the log likelihood ratio for the right inversion breakpoint is defined as

LLR, = log ( (4.1)

(4.2)

LLRT — 10g <¢d24 (LD54) : ¢d34(LD24))

Gdgs(LD31) * Gy (LDo24)
If the pair of breakpoints represent inversion breakpoints (with the inverted allele

having high frequency), we would expect the long range IID{; and LD,,) to be
stronger than the short range LD, and L Ds4) and both log likelihood ratios to be
positive. However, most measures of LD, including D’ show some dependence upon
allele frequencies. Therefore, even in the absence of an inversion, the log likelihood
ratios could be positive (due to the long range LD being larger in magnitude than the
short range LD just by chance). Therefore, we estimate the significance of the two log-

likelihood ratios using a permutation test. For a pair of breakpoints denotéd, iy)



76

and(ry,r2), we permute the haplotypes inside the inverted region (from the Bjdck

r1). The two log-likelihood ratios are computed for this permutation and the p-value is
defined as the fraction of permutations for which at least one of the two log-likelihood
ratios is greater than its corresponding original value. Weldse00 permutations to
compute each p-value. Using simulations, we foundtivalue to have much better
specificity and almost equal sensitivity at detecting inversions as compared to the log-
likelihood ratios. Therefore, we use thevalue for a pair of breakpoints as our statistic

for the presence of an inversion. Thevalue for the log-likelihood ratios cannot be
interpreted as a typicakvalue; it estimates the chance that at least one of the two log-
likelihood ratios would achieve the corresponding computed value even if there was no

LD between the blocks.

4.2.3 Measuring LD

Most measures of LD are defined for a pair of bi-allelic sites, and have high
variance. We are interested in assessing the strength of association between blocks of
SNP'’s across the inversion breakpoints. Therefore, we usetitieallelic version of
the LD measuré)’ (Lewontin 1964 Hedrick 19871 by considering a block of SNPs as
a multi-allelic marker. LetA and B denote two blocks with haplotypes;, A,, ... and
By, B,, ... respectively. Lep; (¢;) denote the frequency of haplotype (5;). Define
D,; = hi; — p,q; Whereh,;; is the frequency of the haplotyp& B;. The extent of LD
between each pair of haplotypes is defined as

D;;

e
Dy =
max

where
min{p;(1 — ¢;), (1 — pi)g;} ~otherwise

Dmax =

The overall measure of LD betweehandB is

Dhp=Y_> pigl|Dj
i J
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We computed the LD measure between all pairs of multi-SNP markers on a chromosome
(defined above) within a certain maximum distance. Using these LD values for the
22 autosomes, we obtained probability distribution curves of LD at a fixed distance
denoted a®,. The X chromosome was excluded since it has a reduced recombination

rate as compared to the autosomes.

4.2.4 Defining multi-SNP markers

For each *analysis panel’ , all SNPs with a minor allele frequency smaller than
0.1 in the ‘analysis panel’ were discarded since they are less informative about LD
patterns. After this filtering, we selected a multi-marker SNP block for every remain-
ing SNP as follows. For each SN, we considered all SNPs in the genomic region
L(S)...L(S)+ W whereL(S) is the genomic location of SNP andIV is the window
size. If this window had less thanSNPs, it was discarded. For ahySNPs, an indi-
vidual sequence is described by a haplotype of lergtinduced by the allelic values
of the k SNPs. Denote the set of haplotypesAs A, . . ., with frequencie®, po, . . .
respectively. For each window, we chose a subsét®NPs that maximize the entropy
of the haplotype$— > . p; log p;) defined by any subset &fSNPs. The subset of SNPs
with maximum entropy best captures the haplotype diversity of the window and is po-
tentially most effective for measuring LD with other multi-allelic SNP markers. These
k SNPs defined a multi-SNP marker with a left and right physical boundary defined by
the physical location of the first aridh SNP. The average SNP density of the HapMap
‘analysis panels’ is about one SNP (with MAF= 0.1) per 5-6 kb (across different
chromosomes). The parametérand 1V were chosen to be 3 and 18kb respectively
based on this SNP density. The results are not greatly affected by increasing or decreas-
ing W by a few kb. Simulations indicate that the power to detect inversions is smaller

for k = 4 as compared té = 3.
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4.2.5 Simulating Inversions

It is straightforward to simulate an inversion with frequerfcy= 1, however,
to the best of our knowledge, there is no existing program that can simulate human
population data accommodating polymorphisms. The effect of decreasing the frequency
of the inverted haplotype (on our statistic) is to essentially decrease the strength of long
range LD and increase short range LD. Hence, we adopted a simple simulation strategy
which could mimic this effect of the inversion frequency on our statistic directly. For a
given chromosome, we chose at random two SNR&d E that define the region with
the inversion polymorphism. Ldt 2...s denote the SNP’s in this chosen region. To
simulate an inversion with frequengy= 1, we just flip the values of the alleles at SNPs
iands + 1 — 4, forall 1 <i < s/2 for all haplotypes. In order to simulate an inversion
of frequencyf (0 < f < 1), we randomly select a subset of haplotypes of gizen,
wheren is the total number of haplotypes. For every haplotype in this set, we simply
flip the values of the alleles at SNPands + 1 — ¢, forall 1 < i < s/2. Notice that this
may have the effect of combining the alleles at two different SNPs.

We used the phased haplotype data from the International HapMap project to
simulate inversions. In order to simulate an inversion of given length, we choose one
breakpoint randomly and the second breakpoint using the length of the inversion. After
planting the inversions, we scan the chromosome for regions wittptealue for the
log-likelihood ratios. A simulation inversion is considered to be detected if predicted
inversion(ly, l2, 71, 72) has the property that the interv@|, () overlaps the left endpoint
of the inversion andry, ;) overlaps the right endpoint. Power is defined as the fraction
of simulated inversions which are detected. Each point in the power plots is based on

simulating about 500 inversions.
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4.3 Results

4.3.1 Power to detect Inversion Polymorphisms

Our statistic is suited to detect long inversions (long enough for little or no long
range LD to be present) for which the inverted orientation (w.r.t. the reference sequence)
is the major allele. Many factors influence the power of our statistic, including back-
ground recombination rates, the length of the inversion, and the frequency of the inverted
haplotype. We used simulations to assess how these factors affect the power of our statis-
tic. Currently, only a few instances of inversion polymorphisms are known, and existing
work on simulating population data incorporating the effect of inversion polymorphisms
is of a theoretical nature based on Drosophila inversion polymorphisasaro et al.
20009. Therefore, we adopted a simple strategy to simulate inversions of varying fre-
guency using haplotype data from the HapMap project.

As our simulations were over real data with high variation in recombination
rates, we effectively average over the effect of recombination rate variation. Big(eg
describes the power of the statistic to detect inversions as a function of the frequency of
the inverted allelef), keeping the length fixed &00 kb for the three HapMap ‘analysis
panels’. The power is measured by the fraction of simulated inversions in which the
inverted region was detected withpavalue less than a fixed cutoff (0.02). Figur&X(b)
describes the power for different lengths of the inverted region. The results indicate
that the power of the method is low for small inversions (0.45 for inversions of length
100kb) and increases with increasing length, saturating around 500kb. Although the
simulations cannot completely capture the effect of an inversion on LD patterns, they
suggest that our method has good statistical power to detect long inversions segregating
at high frequency in a population. They also indicate that the power is maximum in the
YRI ‘analysis panel’ (see Figurel.3@)). We show later, through independent assess-
ment of the false-positive rate of our predicted inversions on the HapMap data, that the

error rate is lowest for the YRI "analysis panel'.
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Figure 4.3: (a) Power of the method to detect inversion polymorphisms in the three
HapMap 'analysis panels’. Inversions of varying frequency (100% to 50%) of a fixed
length (500 kb) were simulated using the HapMap data for the three ‘analysis panels’
separately (YRI, CEU and CHB+JPT). The y-axis represents the fraction of simulated
inversions for which there was at least one pair of predicted breakpointgpwihue <

0.02 matching the breakpoints of the simulated inversion. (b) Power to detect inversions
of four different lengths in the YRI 'analysis panel'.

4.3.2 Scanning the HapMap data for inversion polymorphisms

We utilized the genome-wide SNP data from Phase | of the International HapMap
project consisting of genotypes of 269 DNA samples for approximately 1 million SNPs.
These samples consist of 90 CEPH individuals (30 parent-child trios) from Utah, USA
(abbreviated as CEU), 90 Yoruban individuals (30 trios) from Ibadan, Nigeria (YRI),
44 unrelated individuals from Tokyo, Japan (JPT) and 45 Han Chinese individuals from
Beijing, China (CHB). We combined the individuals from the JPT and CHB populations
to obtain a larger set of 89 individuals (referred to as the CHB+JPT ‘analysis panel’). For
the CEU and YRI *analysis panels’, our data consisted of 120 chromosomes (from the
60 parent individuals) each. We used the phased haplotype data (downloaded from the
HapMap website) which was computationally phased using the program Phaéke 2 (
International HapMap ConsortiyrB005 Stephens and Sche@0095.

We searched the phased haplotype data from the three HapMap 'analysis panel’

individually using our statistic to determine sites of inversion. To reduce the number of
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false positives, we considered predicted inversions with length in the range 200kb-4Mb.
After clustering and filtering the initial list of predicted inversions for each ‘analysis
panel’ separately (see Appendix for details of the clustering method), we had a total of
176 putative inversions in the three HapMap ‘analysis panels’ wittvalue of0.02 or
less Of these26 were detected in the CEU ‘analysis panef8, in the YRI ‘analysis
panel’ and72 in the CHB+JPT ‘analysis panel’ . Most of the predicted inversions were
unique to one of the ‘analysis panels’, but three regions were predicted in two ‘analysis
panels’ each. The predicted list includes two sites of known inversion polymorphisms:
a800kb inversion polymorphism on 7p22.1 and.a megabase long inversion on chro-
mosome 16p12.2. The 800 kb inversion at 7p22 was identified previdusik(et al,
2005 using interphase FISH with 2/20 CEPH individuals found to be heterozygous for
the inversion. Our method gave a signal for this region in the YRI ‘analysis panel’
matching the known breakpoints-¢alue of 0.012). For this inversion, the breakpoints
were previously identified to a resolution of about 200kbyk et al.2005. For one of
the breakpoints, our method can narrow down the location to a region of length 45kb.
The chromosomé6 inversion was identified through the analysis of discordant fosmid
pairs (Tuzun et al.2005. Interestingly, we detected this inversion in both CEptvélue
0.008) and the YRI ‘analysis panelsp{value0.018) with identical pair of breakpoints
(see Tablet.1). Analysis of the sequence around the breakpoints revealed that presence
of a pair of long highly homologous inverted repeats (see Figube

The current list of inversion polymorphisms in the human genome is small, with
only about15 inversions larger than 200kb that are known to be polymorphic in nor-
mal humans (from the Genome Variation Database at http://projects.tcag.ca/variation/).
We looked for additional evidence that would support some of our predicted inver-
sions. As noted earlier, sequence from different individuals (in the form of fosmid
end pair sequences) can be mapped to the reference sequence to identify inverted re-
gions (Tuzun et al.2005. Another source of evidence comes from comparing the two
human sequence assemblies produced by the International Human Genome Sequencing

Consortium [nternational Human Genome Sequencing Consort001) and Celera
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-

Left Breakpoint: 21.279..557 Mb YRI inversion Right Breakpoint: 22.300...682 Mb
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Figure 4.4. Genomic overview of a 1.4 Mb region at 16p12 predicted to have an in-
version in both the CEU and YRI ‘analysis panels’ . The left predicted breakpoint (the
dotted line) overlaps with & 80kb long segment that is highly homologous to a seg-
ment (in the inverted orientation) near the other breakpoint. The region contains several
disease-related genes (from the OMIM database).

GenomicsYenter et al.200]). Regions that are inverted in orientation between the two
assemblies represent sites of assembly error in one of the two assemblies or polymor-
phic inversions, since these assemblies were generated using different sets of individ-
uals. The Celera whole genome shotgun assensisa{l et al, 2004 was aligned to

the reference sequence assembly (Build 34) to discover such regions (B. Walenz, pers.
comm.). If the orientation of the Celera assembly supports a predicted inversion, then it
is highly likely that the inverted orientation is present in the population.

One of our predictions was supported by two fosmid pair sequences discordant
by orientation Tuzun et al,2005. Thisx 1.2Mb inversion on chromosome 10 (p15.1-
pl4) was predicted in the CHB+JPT ‘analysis panel’ withrealue of 0.005. The left
end of the fosmid pair mapped in the reference assembly about 40kb before the pre-
dicted left breakpoint while the right end mapped just before the right breakpoint (see
Figure4.5). Since the insert size of fosmids ranges between 32 and 48 kb, the two dis-
cordant fosmids are consistent with the predicted breakpoints. There were no gaps in

the genome assembly near the breakpoints and there were fosmids and BACs consistent
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Figure 4.5: Overview of az 1.2 Mb long inversion on chromosome 10 predicted in
the CHB+JPT ‘analysis panel’ . Also shown are two fosmid pairs (discordant by ori-
entation) whose one end maps to before the predicted left breakpoint and the other end
maps to a region before the right breakpoint. These discordant mappings support the
predicted inversion breakpoints. In this region, there is another overlapping inversion
predicted in the CHB+JPT ‘analysis panel’ . The region has several genes proximal to

the left breakpoint, one of which is known to be over-expressed in tumor &aiagath
et al, 2003.
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with the reference assembly (UCSC Human Genome Browser: http://genome.ucsc.edu).
This suggests that the inversion represents a previously unknown inversion polymor-
phism.

There were two regions for which we obtained evidence for the inverted orienta-
tion from the Celera assembly. One of these regions\¥s280 kb long region on chro-
mosome 13 which was predicted to be inverted in both the CEU and CHB+JPT ‘analysis
panels’ . The region is also present in the inverted orientation in the Celera assembly
and both breakpoints span large gaps (100kb) in the sequence assembly. Another large
predicted inversion on chromosome 2p25 overlaps with a 1.4Mb region that is inverted
between the two recent human genome assemblies (Build 34 and 35). The orientation of
the Celera assembly of the human genome is concordant with the Build 35 assembly for
the 1.4Mb region. There are gaps on each breakpoint which are not spanned by fosmids
indicating that it is difficult to determine the correct orientation. This region was tested
for polymorphism in a *analysis panel’ of 10 CEPH individuafe(k et al. 2005 but
was not found to be polymorphic.

A 2Mb long predicted inversion on chromosome 10g.11 was predicted in both
the YRI and CHB+JPT ‘analysis panels’ . Further, both the breakpoints for this re-
gion span gaps in the human sequence assembly suggesting that this could represent an
assembly orientation error. Two segments in this region are inverted between the Cel-
era sequence assembly and the public assembly. The analysis of the genomic sequence
around the breakpoints revealed the presence of several hundred kb long inverted repeats
of very high sequence similarity.

Many of our predicted inversions overlap with regions that are inverted between
the human and chimpanzee genomiswman et al.2005 Feuk et al. 2005 (see
Table4.1 for a list). One of these is the 800kb inversion on chromosome 7 that was
tested for polymorphism in humans since it was found to be inverted between the human

and chimpanzee sequenceég(k et al. 2005.
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4.3.3 Seqguence Analysis of Inversion Breakpoints

Segmental duplications have been shown to be highly overrepresented near sites
of structural variation in the human genoniaffate et al. 2004 Tuzun et al. 2005.
Mechanisms have been proposed as to how a pair of low copy inverted repeats may
mediate inversion events in the genon@dlio et al, 2001, Lupski, 1998 Shaw and
Lupski, 2004). Pairs of inverted repeats have also been detected near the inversion
breakpoints for several known inversion polymorphisi@agawara et 812003 Feuk
et al, 2005. We checked for the presence of pairs of low-copy homologous repeats near
the breakpoints of our predicted inversions. We found that 18 of our predicted inversions
had pairs of highly homologous repetitive sequences near the breakpoints. There were
11 distinct regions for which there were inverted repeats near the breakgtistes in
Table4.1). The significance of finding inverted repeats near the inversion breakpoints
was estimated using a simple empirical method (see Appendix for detailsp-Vdlae
was estimated to be 0.006.

Many examples of apparently benign chromosomal deletions that in many cases
delete entire genes have recently been reported in the HapMap ‘analysis p&wats’ (
rad et al, 2006 McCarroll et al, 2006. Less is known about inversions affecting genes
by truncating the coding sequence in normal human individuals. Recurrent inversions
disrupting the factor VIl gene on the X chromosome are known to be a common cause
of severe hemophilia AL@kich et al, 1993 Deutz-Terlouw et a).1995 Bagnall et al.
2002. We analyzed the sequence around inversion breakpoints to see if they overlap
with known genes in the human genome. The resolution of our predicted inversion
breakpoints varies from a few kilobases in some cases to several hundred kilobases
in others, making it difficult to say with certainty whether the inversion actually af-
fects some gene. Assuming that purifying selection acts on inversions disrupting genes,
one would expect a under-representation of inversion breakpoints disrupting genes. We

found that 66 of our predicted inversion breakpoints are completely covered by one or

'Some of these regions correspond to two predicted inversions
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Figure 4.6: A predicted inversion on chromosome 6 (YRI sample) overlaps with the
TCBAL gene. The dashed line describes the location of the predicted breakpoints. The
previously mapped breakpoints of the gene in T-cell ymphoma/leukemia cell lines are
shown by the blue lines.

more genes (for 6 inversions, both breakpoints are spanned by gene(s)). This is signifi-
cantly less than what one would expect by chaneealue of 0.02).

Many of the genes that intersect with breakpoints are previously known to be
disrupted in diseases. The T-cell lymphoma breakpoint-associated ta(j&BA1l)
gene spans a genomic region of 0980kb on chromosome 6, and is associated with
multiple splice isoforms, as well as alternative start sites. As the name suggests, the
gene is structurally disrupted in T-cell lymphoma cell lindagawa et a).2002, and
developmental disorder¥ife et al, 2006. A sketch of the previously mapped break-
points and our predicted inversion breakpoints with respect to the known isoforms of
the gene is shown in Figure6.

We also detect a number of disrupted genes with alternative splice forms, with
some of the splice isoforms consistent with the inversion breakpoint. An interesting
example is the Islet cell antigen (ICAp69) gene, which is a target self-antigen in type
1 diabetes. The gene is known to have multiple isofor@®aedigk et al.1996. As
shown in Figure4.7, a predicted inversion breakpoint on chromosome 7 removes the
3’ end of the gene (gh:BC008640), approximately consistent with the expression of
alternative splice forms (gh:BC005922,U38260). These and many other examples hint

at the important role of structural variation in mediating gene diversity.
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Figure 4.7: Splice isoforms of the ICAp69 gene that are approximately consistent with
a predicted YRI inversion breakpoint on chromosome 7. The region of the left insertion
breakpoint is denoted by a dashed line. The exons are not drawn to scale.

4.3.4 Assessing the false positive rate

Several of our predicted inversions represent known inversion polymorphisms

and many others are supported by independent forms of evidence such as matching
fosmid end sequences showing discordancy by orientation, regions inverted between
different human assemblies, etc. Given the incomplete nature of our knowledge of in-
version polymorphisms in the human genome, this does suggest that many of our other
top predictions could represent inversions. Although LD generally decays with increas-
ing distance between the markers, it is now well known that there is significant variation
in recombination rates across the human genavhe/gan et al. 2004 Myers et al,
2005. This variation in the recombination rates could potentially result in false posi-
tives using our statistic. Therefore, it is useful to estimate how many of our predicted
inversions are correct. Estimating the false positive rate reliably is difficult, given the
state of our knowledge.

We used coalescent simulations to estimate the frequency of predicted inversions
on haplotype data with ‘no inversions’. To incorporate the heterogeneity in recombina-
tion rates in the simulated data, we used a recently developed coalescent simulation
program Gchaffner et a).2005 which can generate population data incorporating vari-
ation in recombination rates and a wide range of demographic histories for different
populations (see Appendix for details of the coalescent simulations). The program is

calibrated to produce haplotype data that has considerable variation in LD such as that



89

seen in real population data. The same thresholds and parameters were used for scan-
ning the simulated datasets using our statistic as for the HapMap data. We analyzed the
number of predicted inversions in the simulated data separately for each ‘analysis panel’
. Given the small number of predicted inversions in the HapMap data and many caveats
in matching the simulation parameters with the real data, it is difficult to estimate the
false positive rate based on a direct comparison. The number of pairs of breakpoints
for which the statistic is computed is huge @0 million in the YRI ‘analysis panel’)

while the number of predicted inversions is small (78 witihaalue of 0.02 or smaller).

One cannot compare the ratio of the number of breakpoints examined to the predicted
inversions in the HapMap and the simulated ‘analysis panels’ . Therefore, we use an
indirect estimate.

For ap-value cut-offr, denotey(r) to be the ratio of the number of predicted
regions with gp-value at mostr in the HapMap ‘analysis panel’ to the corresponding
number in the simulated data. If a lowewalue implies a greater chance of a prediction
being real, one would expegtr) to increase with decreasesin Note that if the number
of true predictions (which is unknown) is small or if thevalues for the real predictions
are not concentrated in the tail of the distribution, it would be difficult to observe an
increase iny(m). For the YRI ‘analysis panel'y(w) ranges from.73—1.75 for = in the
range0.1 — 0.06, but increases t9(0.02) = 2.85, and~(0.01) = 4.86. For ap-value of
0.02, this representsla7-fold enrichment in the number of predictions in the HapMap
data vs the simulated data. Under the assumption that the increase in the number of
predictions in the tail of the-value distribution is a result of true predictions, the false
positive rate at cut-off of 0.02 can be estimated to~be>8%. For the CEU ‘analysis
panel’, we didn’t observe a gradual increase(m) and also the number of predictions
smaller than 0.02 is only 26, making it difficult to get a meaningful estimate of the false
positive rate via this method. For the CHB+JPT *‘analysis panel’, this method suggests
a higher false positive rate of 80% at a cutoff of 0.02. This could reflect the low power of
our method to detect true inversion polymorphisms in the CHB+JPT haplotype ‘analysis

panels’ due to less accurate long range haplotype phasing in the CHB+JPT ‘analysis
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Figure 4.8: Length distribution of predicted inversions in the YRI ‘analysis panel’ . For
this plot, we consider inversions with length in the range 200kb to 10Mb.

panels’ as compared to the CEU and YRI ‘analysis panels’ . Our analysis suggests that
the false positive rate is the smallest in the YRI ‘analysis panel’ and about half of the
YRI predicted inversions could be real. This is also supported by the fact that the two
previously known inversions (that we detect across the 3 HapMap ‘analysis panels’ )
are detected in the YRI ‘analysis panel’ and abbupredicted inversions in the YRI
‘analysis panel’ are supported by the presence of inverted repeats.

We also looked at the length distribution of the predicted inversions using our
statistic in each of the three HapMap ‘analysis panels’ independently. For this we con-
sidered inversions with length in the range 200kb-10Mb. For the YRI ‘analysis panel’

, the number of predicted inversions seems to drop after 4Mb and remains essentially
constant after that (see Figu4e8). The number of predicted inversions with length in

the range 1-4 Mb is 30 while the number of predicted inversions in the range 4-8 Mb
is only 10. In contrast, for the CHB+JPT ‘analysis panel’ , the numbers are 62 (in the
range 1-4 Mb) and 51 (in the range 4-8 Mb). These results indicate that there is a 3-fold
clustering of predicted regions in the smaller range for the YRI ‘analysis panel’ . If most

of the predictions were false, one would not expect to see any clustering. The higher
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clustering in the YRI ‘analysis panel’ versus the CHB+JPT *analysis panel’ is consistent
with the results from the coalescent simulations which also predict a smaller false pos-
itive rate for the YRI ‘analysis panel’ . While the above estimates of the false positive
rate are crude, they nevertheless indicate that many of our predictions, especially those

in the YRI ‘analysis panel’, are likely to be real.

4.4 Discussion

We have presented a statistical method that has power to detect large inversion
polymorphisms using population data. Our method can also detect large regions where
the reference assembly has erroneous orientation. Applying our method to the HapMap
data, we have identifietl76 putative inversions in the three HapMap ‘analysis panels’

. The false positive rate for the predicted inversions in the YRI sample indicates that

30 of the 78 YRI predictions could represent real inversions. We have looked for inde-
pendent evidence in the form of discordancies between the NCBI and Celera assembly,
discordant fosmid pairs and presence of inverted repeats near inversion breakpoints for
our predicted inversions. We have identified a novel 1.2 Mb long inversion on chro-
mosome 10 that is supported by two discordant fosmid pairs and has not been reported
before. For two of our predicted inversions, both breakpoints span gaps in the human
reference assembly and the inverted orientation is represented in the Celera genome as-
sembly, indicating orientation errors in the reference assembly. For about 10 regions,
the inversions breakpoints are flanked by a pair of highly homologous inverted repeats.
A recently proposed method called ‘*haplotype fusion’ can assay single haplotypes for
the presence of an inversion even when the breakpoints lie within long inverted re-
peats Turner et al. 2006. The set of predicted inversions flanked by inverted repeats
represent ideal candidates for validation using this technique.

Our method is designed to detect long inversions for which the inverted allele
(w.r.t the reference sequence orientation) in a population has high frequency. Therefore,

itis unlikely to detect inversion polymorphisms for which the inverted allele is the minor
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variant. However, the allele frequencies of structural polymorphisms can vary signifi-
cantly across populations. For 5 of the 10 deletion polymorphisms that were genotyped
in the HapMap ‘analysis panels’, the minor allele in one ‘analysis panel’ was the major
allele in another ‘analysis panelMcCarroll et al, 2006. The availability of data from
multiple populations increases the chance of detecting the inversion using our method
in the population where the inverted allele is the major variant. Furthermore, in many
cases the reference sequence assembly is likely to represent the minor variant in the
population. For a 18-kb inversion polymorphism at 7qE&uk et al. 2009, the minor

allele (frequency of 30%) was represented in the reference assembly while the major al-
lele matches the orientation in the chimpanzee sequence. Although the method seems to
be robust to the variation in recombination rates, it is possible that this heterogeneity in
recombination rates and other events can produce a signal using our statistic. One such
scenario is where the two breakpoints represent gene conversion hotspots while there is
no recombination across the entire region. Gene conversion events would reduce short
range LD while absence of recombination would maintain long range associations.

From a computational perspective, our method represents a novel strategy for us-
ing population data for detecting large rearrangements. It is becoming increasingly cost-
effective to generate genome-wide SNP genotype data and our method can be applied
to any such data. Other strategies have been suggested for computationally mining SNP
data for potential inversions. Inversion polymorphisms have been extensively investi-
gated for Drosophila, and it has been observed that the presence of inversion polymor-
phisms leads to strong and extended Linkage Disequilibrium across the inverted region
since recombination in inversion heterozygotes is suppregsadb(fatto et al, 2001,
Navarro and Gazay005 Navarro et al.20000. This reduces the overall recombina-
tion rate in the region and also tends to produce two divergent haplotype d\ales (0
et al, 1997 Andolfatto et al, 2007). The best known example of this effect in the hu-
man genome is the 900kb polymorphic inversion on chromosom8tefapsson et al.

2005. However, it remains to be seen if this pattern is true of all (or most) human in-

version polymorphisms. In fact, our analysis of haplotype patterns of the few known
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inversion polymorphisms does not indicate that all inversion polymorphisms lead to
such distinctive haplotype patterns (unpublished data).

Our results also indicate that many large inversion polymorphisms remain to be
discovered in the human genome, and it may require extensive re-sequencing in multi-
ple populations to find all such inversions. The presence of a large number of inversion
polymorphisms could have major implications for evolution of the human genome. In-
versions are known to directly suppress recombination in inversion heterozygotes. The
lowering of recombination between inversion heterozygotes may also create effects sim-
ilar to population sub-structure even without geographic isolation of the individuals.
Characterization of inversion variants in human populations will be required to deter-
mine to what extent large inversions affect the recombination landscape of the human
genome. Inversions could also represent an alternative mechanism for creating diversity
in gene regulation, and splice isoforms. Such variation may also influence phenotypes

and associations with diseases.

4.5 Appendix

4.5.1 Haplotype Data

We utilized genotype data from Phase | of the International HapMap project con-
sisting of 269 individuals genotyped on about 1 million SNPs. These individuals consist
of 30 trios from Utah region (CEU), 30 trios from Ibadan, Nigeria (YRI), 44 unrelated
individuals from Tokyo, Japan (JPT) and 45 Han Chinese individuals from Beijing area
(CHB). Since the JPT and CHB populations are genetically similar, we pooled the data
from these two populations to obtain a larger ‘analysis panel’ of 89 individuals. For the
CEU and YRI ‘analysis panels’ , we used the 60 unrelated parents from the respective
populations. We analyzed each of the three ‘analysis panels’ : CEU, YRI and CHB+JPT
separately. We used the phased haplotype data for these ‘analysis panels’ (HapMap data

release #16 available at http://www.hapmap.org/downloads/phasing/200Ba881/full/).
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Since the SNPs in this data were ordered based on the NCBI Build 34 (hg16) assembly
of the human genome, all our results are with respect to NCBI Build 34 assembly. We
used the phased data since it is difficult to detect long range LD without phasing infor-
mation. The phasing is highly accurate for the CEU and the YRI ‘analysis panels’ due
to the presence of trio information. For the JPT and CHB populations, in the absence of
trios, the haplotype phasing is less accurate (a switch error every 0.3Fhdrfterna-

tional HapMap Consortiun2005). This can destroy long range LD, thereby potentially

reducing the power of our method to detect inversions in the CHB+JPT *analysis panel’

4.5.2 Identifying potential inversions

For every chromosome, we considered the region between every pair of adjacent
SNPs as a potential breakpoint. If a pair of adjacent SNPs showed high correlation
using ther? measure (a cutoff of = 0.6 was used), the region in between is highly
unlikely to be a breakpoint and was excluded. For every breakpoint, we choose a multi-
SNP marker to the left of the breakpoint and another one to the right of the breakpoint
(these were chosen to be the physically closest multi-SNP markers to the breakpoint
from the set of multi-SNP markers defined previously). Each breakpoint is reported as a
pair of genomic coordinates corresponding to the right physical boundary of the multi-
SNP marker closest to the left of the breakpoint and the left physical boundary of the
multi-SNP marker closest to the right of the breakpoint. For every pair of breakpoints
within a certain maximum distance, we computed the two log-likelihood ratios and the
correspondingy-value. All pairs of breakpoints with low-value are considered as
potential candidates for inverted regions. A predicted inversion is reported as a 4-tuple
({4,15,7m,72) corresponding to a pair of left;, [5), and right(r, r2) breakpoints.

For analysis of the HapMap data, we ignored pairs of breakpoints within 200kb
of each other since considerable LD is observed at short distances in the HapMap data

and power simulations also indicate that our method has low power to detect inversions
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of small length. Our results for the estimation of the false positive rate indicated that
there was some enrichment for true positives in the predicted inversiongwiétue
smaller than 0.02. Therefore we choosealue cutoff of 0.02 for generating the pre-
dicted inversions. We also limit the size of the largest predicted inversion that we con-
sider to 4 megabases. The largest known polymorphic inversion in the human genome is
about 4.5Mb in length (Genome Variation Database at http://projects.tcag.ca/variation/).
Also, the distribution of the length of the predicted inversions suggests that predicted in-
versions larger than 4Mb represent false positives rather than true inversions. All pairs of
predicted inversion breakpoints with length in the range 200kb-4Mb and wiadue

of 0.02 or smaller were enumerated for each chromosome in the three HapMap ‘anal-
ysis panels’ . For each ‘analysis panel’ and chromosome, we clustered the predicted
inversions based on the physical location of the breakpoints. For two predicted inver-
sions(ly, Iy, r1,m2) and(p1, p2, 41, g2), if the segmently, l;) and(py, p2) overlapped and
similarly if (r1,r2) and(q1, ¢2) overlapped, these two predicted inversions were grouped
together. After clustering, we had 215 predicted inversions in the three ‘analysis panels’
. For every cluster we report the pair of inversion breakpoints with the smaliedte.

In order to further reduce potential false positives, we removed predicted inversions for
which there was strong LD between the block to the left of the left breakpoint (block
Figure4.2) and the block to the right of the right breakpoiptalue of the multi-allelic

LD smaller than 0.02).

4.5.3 Sequence Analysis

We used the repeat-masked June 2003 (NCBI Build 34) human genome se-
guence from the UCSC (University of California, Santa Cruz) Human Genome Browser
website for analyzing the inversion breakpoints. For each predicted inversion, the ge-
nomic sequence in the windoj4 — 200000 .. .1, + 200000] was blasted against the
sequence in the windof; — 200000 . .. r, + 200000] to find pairs of homologous se-

guences. Only hits with an e-value less than-25 and length at least 100bp were
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considered. We also removed pairs of homologous sequences that were less than 100kb
apart. The statistical significance of the number of inversion breakpoints flanked by a
pair of inverted repeats was estimated empirically as follows. We simulated 1000 ran-
dom lists of inversions and computed the number of inversions with a pair of inverted
repeats. Each random list of inversions was generated by shifting each predicted inver-
sion (on the HapMap ‘analysis panels’) to a random location on the same chromosome
on which it was detected. Thevalue was estimated to be 0.006 using this method. Ad-
ditionally, we observed that the length of the inverted repeats for many of the predicted
inversions was generally much longer than those for the random lists.

Analysis of genes near inversion breakpoints was performed using the UCSC
KnownGenes Il list from the UCSC Genome Browser. A gene was defined to cover an
inversion breakpoint, if the transcriptional start position of the gene was before the left
boundary of the breakpoint and the transcriptional end location after the right boundary
of the breakpoint. In order to assess the statistical significance of the number of inversion
breakpoints covered by one or more genes, we used an empirical method similar to the
one used above for inverted repeats. We simulated 1000 random lists of inversions and

computed the number of genes covering breakpoints for each list.

45.4 Coalescent Simulations

We simulated population data using the Cosi progr&chéffner et al.2005
which implements a coalescent model similar to the MS progtdodgon 1990 but
allowing for complex demographic histories and variable recombination rates. We used
the bestfit model which has been calibrated using genome-wide human population data
for different populations. The bestfit model uses the large-scale variation in recombi-
nation rates obtained from the deCODE genetic map along with fine-scale variation in
recombination rates. We used the default parameters of this model which are listed in
Table 1 of the paper describing the meth&dljaffner et a.2005. The program gen-

erates data for four populations, each with its own demographic scenario. We used the
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data for three of the populations: West African, European and East Asian. These three
populations were considered as proxies for the YRI, CEU and CHB+JPT ‘analysis pan-
els’ respectively from the International HapMap project. We matched each HapMap
‘analysis panel’ to the corresponding simulated ‘analysis panel’ in the number of chro-
mosomes. We didn’t model SNP ascertainment bias (present in the HapMap ‘analysis
panels’ ) for the simulated data since it is unlikely to affect our results as we discard
SNPs with low minor allele frequency (less than). We generated00 datasets of
length 20Mb (it is computationally infeasible to generate chromosomal length regions
using the cosi program) for each of the three ‘analysis panels’ . We simulated data with
a fixed number of SNPs and then thinned the SNPs so that the average SNP density (for
SNPs with minor allele frequency= 0.1) matched that of the HapMap data.
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Chapter 5

Haplotype Assembly from

Whole-genome sequence data

5.1 Introduction

Humans are diploid organisms with two copies of each chromosome (except the
sex chromosomes). In recent years, the development of high-throughput technologies
has made it incredibly easy and cost-effective to read the DNA sequence at millions of
SNPs across the genome. However, these genotyping methods determine the two alleles
at a individual SNP and are unable to provide information about haplotypes, the com-
bination of alleles present at multiple SNPs along a single chromosome. Haplotypes
observed in human populations are a result of shuffling of ancestral haplotypes through
recombination and contain much more information about human genetic variation than
genotypes. In chaptesand 3, we have seen how population haplotypes are useful
for detecting historical recombination events and identifying recombination hotspots.
In chapter4, we also saw how highly accurate and long genome-wide haplotypes are
useful for searching for large inversion polymorphisms in the genome. Haplotypes from
the HapMap project have proven to be invaluable for whole-genome association studies

in multiple ways. To reduce cost, disease association studies are performed using a sub-
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set of SNPs in the human genome. The HapMap haplotypes are useful for evaluating
the power of these subsets to detect association at the untyped SNPs in human popula-
tions. Further, the haplotype data has also been used for fine-scale mapping of variants
identified in association studie&(gdmundsson et al2007) and improving the power

of whole-genome association studigaitlen et al, 2007 Pe’er et al. 2006 Marchini

et al, 2007).

In the absence of molecular methods for determining haplotypes, haplotypes are
inferred computationally from SNPs genotyped in a set of individuals from a popula-
tion (Clark, 199Q Excoffier and Slatkin1995 Stephens et gl2001; Niu et al, 2002
Stephens and DonnelI2003. All haplotype phasing methods, explicitly or implicitly,
exploit Linkage Disequilibrium (LD), the correlation of alleles at physically proximal
SNPs in the human genome. In short regions of the genome, high LD reduces the
number of distinct haplotypes, allowing these methods to piece together haplotypes for
an individual. The great variation in recombination rates and Linkage Disequilibrium
across the human genome limits the accuracy of these methods. A popular haplotype
phasing method, PHASE{ephens et 3l2001), has a switch error rate of 5.4% for unre-
lated individuals from a European populatibtarchini et al, 2006; this corresponds to
one switch error between the maternal and paternal chromosomes approximately every
50kb. In general, population data from unrelated individuals does not contain enough in-
formation to reliably estimate the haplotypic phase between distant mark&@9Kb).
Accurate long-range haplotypes may prove useful for finding multiple genetic variants
that contribute to complex diseases. For accurate long range haplotyping, additional in-
formation such as family data is invaluable. For example, the presence of trios in two of
the HapMap populations (CEU and YRI) has allowed the inference of highly accurate
haplotypes. However, family data is hard to obtain for every population sample.

The availability of full diploid genome sequences for a large number of indi-
viduals would be ideal for obtaining a comprehensive understanding of all forms of
genetic variation and especially useful for finding rare genetic variants associated with

disease. Advancements in sequencing technology are driving down the cost of sequenc-
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ing and it should be possible to completely sequence many human individuals in a few
years Schuster2008 Shaffer 2007). Whole-genome sequence data from a single in-
dividual represents an alternate resource from which the two haplotypes can potentially
be determined. Each sequence read represents a fragment of a chromosome. A read
that spans multiple variant sites can reveal the combination of alleles present at those
sites on that chromosome. Using the overlaps at heterozygous sites between a collec-
tion of reads, one can potentially assemble the two haplotypes for a chromosome (see
Figure5.1 for an illustration). This “haplotype assembly” represents a different com-
putational challenge in comparison to genome sequence assembly, where one uses the
sequence overlap between reads (ignoring the variant sites) to piece together a haploid
genomic sequence.

----ACTCAC----- GTATGGTGC----- ACAGTCTT------ CTGAAGAT - - -AGCATTA- - - - -
----ACGCAC----- GTATCGTGC----- ACACTCTT------ CTGATGAT- - -AGCGTTA- - - - -

Sequencing

----ACTCAC----- GTATGGTG
----ACGCAC----- GTATCGTGC
TATCGTGC--- - - ACACTCT

ACTCAC--------mmmmmmmmn o ACAGTCT
ACGCA- - e AGCGTTA
GAAGAT - - -AGCATT
Haplotype
Assembly
------ R LR T LT R T c EFS RPN : RPRSRIRSP FSR R
------ Go--mmmeeeee QG T G- - -

Figure 5.1: lllustration of how haplotypes can be assembled from sequenced reads.
Each read is a fragment of one of the two chromosomes. Reads that share a allele
at a common variant can be inferred to come from the same chromosome and joined
together. Reads that differ at a particular variant can be inferred to come from different
chromosomes and similarly extend the two haplotypes.

Haplotype assembly refers to the problem of reconstructing haplotypes from a
collection of sequenced reads given a genome sequence assembly. A more challenging

problem is to separate out the two haplotypes during the sequence assembly process it-
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self. This has recently been done for some small, highly polymorphic gendfimse g

et al, 2005, but remains difficult to accomplish for large eukaryotic genomes such as
humans. Large eukaryotic genomes include many repetitive sequences, and a sequence
assembly must therefore distinguish between two (almost identical) instances of a se-
guence that lie on the same chromosome as well as separating the chromosomes. The
haplotype assembly problem may seem easier but the objectives are different. By work-
ing with a reference sequence, one can focus on obtaining highly accurate haplotypes
and estimating their reliability rather than just obtaining ‘a single’ haplotype assembly.
Also, as many individuals in a population are sequenced, it is computationally more ef-
ficient to generate a reference assembly once, and assemble haplotypes for each of the
individuals.

For haplotype assembly to be feasible, one requires a high sequence coverage
(sufficient overlaps between reads) and reads that are long enough to span multiple vari-
ant sites. Given the level of polymorphism in the human genom®.1%), single
shotgun reads (about 800-1000 base pairs long) at 5-8x coverage would result in short
haplotype segments. Howeverired endsor mate pairs (pair of sequenced reads de-
rived from the same shotgun clone) provide linkage information that can substantially
increase the length of inferred haplotypes. Even with mate pairs, it is not possible to
link all variants on a chromosome. A haplotype assembly for a diploid genome is a
collection of haplotype segments or disjoint haplotypes. In the absence of errors in se-
guenced reads, the correct haplotype assembly is unique and is not difficult to derive.
Errors in reads increase the space of possible solutions making this problem computa-
tionally challenging. The problem of finding the haplotype assembly that optimizes a
certain objective function (e.g. minimize the number of conflicts with the sequenced
reads) has been explored from a theoretical perspe@amma et al. 2005 Rizzi et al,

2002 Halldorsson et al.2003 Lippert et al, 2002, and has been shown to be com-
putationally intractable for gapped reads (e.g. mate pairs). A statistical method was
proposed (i et al., 20049 for reconstructing haplotypes from sequenced reads aligned

to a reference genome. The method is based on inferring local haplotypes using a Gibbs
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sampling approach and joining these local haplotypes using overlaps. This method has
recently been extendeifn et al., 2007 to include polymorphism detection as part of
the haplotype reconstruction pipeline and applied to the genorG@aoh intestinalis
Recently, Levy and colleaguekdvy et al, 2007 have sequenced the complete
diploid genome of a single human individual. Approximately 32 million sequenced
reads (from clone libraries of various lengths), were used to generate a genome as-
sembly referred to as “HuRef”. More than 4.1 million genomic variants were detected
by identifying heterozygous alleles within the sequenced reads and through compari-
son of the HuRef assembly with the NCBI version 36 human genome assembly. Of
these, 1.8 million heterozygous variants were used for haplotype assembly. The pres-
ence of paired-end sequences or mate-pairs with different insert sizes (ranging from 2kb
to 40kb) increases the length of the haplotype segments that can be inferred, but also
results in links between physically distant variants. As mentioned earlier, there are no
efficient algorithms for haplotype assembly in the presence of mate-pairs, and statisti-
cal methods for haplotype assembly ét al., 2004 Kim et al, 2007 which start by
inferring short local haplotypes are not particularly suited for the HuRef data. A simple
greedy heuristic was implemented to build haplotypes incrementally starting from single
reads (see Material and Methods, Levy et al., 208V et al.(2007). More than 70%
of the 1.8 million heterozygous variants used for haplotype assembly were assembled
into haplotypes that cover at least 200 variants. In additionGb of the genome could
be covered by haplotypes longer than 200kb in length. Comparison of sequenced reads
to the reconstructed haplotypes showed that 97.4% of the variant calls are consistent
with the haplotype assembly. Notwithstanding the reasonable accuracy of the haplo-
type assembly for HuRef, the greedy strategy represents a relatively simple approach
for this problem. It incrementally reconstructs a single haplotype assembly and does
not attempt to find a haplotype assembly that is optimal under a probabilistic or combi-
natorial model. In Levy et al., 200[Zevy et al.(2007), we had briefly mentioned that
it is possible to obtain a more accurate haplotype assembly using Markov chain Monte

Carlo (MCMC) methods and had implemented one such algorithm. In this chapter, we
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describe a novel MCMC algorithnjASH (Haplotype Assembly of Single Hum#éor)
haplotype assembly. The MCMC approach represents a natural way to search the space
of possible haplotypes to find likely haplotype reconstruction(s) and also allows us to
estimate the reliability of the reconstructed haplotypes. The transitions of the Markov
chain underlying our algorithm are determined using the graph structure of the links
between the variants and are not restricted to be local.

Results on the HuRef sequence data demonstrate that the haplotypes recon-
structed using HASH are more consistent with the sequenced fragments than the hap-
lotypes obtained using the greedy heuristic. Using haplotypes sampled by the MCMC
algorithm, we estimate that the HuRef haplotypes have a switch error rate of 0.9%.
Using simulations, we also demonstrate that our MCMC algorithm can reconstruct hap-
lotypes to a high degree of accuracy and determine which variant calls are likely to be
incorrect. Based on comparison to population haplotypes from the HapMap project, we
estimate a switch error rate of approximately 1.1% for the HuRef haplotypes inferred
using HASH. In comparison, the switch error rate for the haplotypes reconstructed us-
ing the greedy heuristic is 3.1%. Although we describe results using data from a human
genomic sequence, our methods are valid for performing haplotype assembly from se-
guenced reads generated using any sequencing technology as long as the polymorphism
rate for the sequenced organism and the length of sequenced reads allow the linking of
multiple variants. They are also applicable to inferring haplotypes using short haploid

sequences from other sources (see e.g. Konfortov et alK2odartov et al.(2007).

5.2 Methods

We assume that a list of genetic variants such as SNPs, short insertions/deletions,
etc is available. A list of polymorphic variants can be generated while performing se-
guence assembly or can be obtained from a database of genetic variants such as db-
SNP Sherry et al.2001). We restrict ourselves to variants that have been identified

to be heterozygous in the genome of the individual under consideration as homozygous



104

variants are uninformative about phasing of other variants. Note that certain variants that
are truly heterozygous in the genome may be reported as homozygous as both alleles
are not sampled sufficient number of times during sequencing.

Each sequenced read is mapped to the reference genomic sequence to obtain
the alleles it has at each of the heterozygous sites. For a variant, reads with sequence
matching the consensus sequence are assigned as '0’ while those not matching are as-
signed as '1’. The assumption of just two alleles makes sense in the absence of errors.
However, the presence of base-calling errors makes actual data more complex with tri-
allelic variants. Here, we assume that such sites are filtered out (described in Levy et
al. (Levy et al, 2007. Paired-end reads from the same clone that map to the assembly in
the expected orientation and whose physical separation is within the expected range are
represented as a single fragment. Mated reads that show some inconsistency in orienta-
tion or distance are split into two separate fragments. Note that these aberrant mapping
pairs might represent chimeric errors, but also, heterozygous structural variation in the
HuRef genome; Levy et al., 200&vy et al.(2007) describe some of these variations.

Here, we ignore this additional information.

5.2.1 Haplotype Likelihood

Formally, each fragmentis represented by a ternary string < {0,1, —}",
where the— corresponds to the heterozygous loci not covered by the fragment. The
complete data can be represented lfsagment matrixX with m rows andn columns
where each row represents a fragment and each column corresponds to a variant site.
Corresponding to each variant call[j], we have an error probability[;], which de-
notes the probability that the variant call is incorrect. Ag] cannot be estimated
from the fragment data, we use quality scosdg| that usually accompany sequence
data. For example, the quality scores might be obtained using FEwedd and Green

1998. Sequence quality scores are integer values related to the error probabilities as
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For SNPs,s;[j] describes the quality value for the allele call; for multi-base variants,
si[7] is the lowest of the quality values for the base-calls in the variant; for the case
of a gap (insertion/deletion};[j] corresponds to the lower of the two quality values on
either side of the gap. If information about the sequencing quality values is not available
or for performing simulations, we assume a uniform error probabjlityf = ¢ for alll
variant calls. In what follows, we will assume thgis available and fixed.

Let H = (h, h) represent the unordered pair of haplotypes witeiea binary
string of lengthn andh is the bit-wise complement éf. The problem of reconstructing

the most likely pair of haplotypes given the fragment data (known) is given by

arg max Pr(X|H,q)

However, we are interested in samplifigfrom a probability distribution. Using Bayes

rule, we can write

_ Pr(X|q,H)Pr(H|q)
PriflXa) = s~ B (X g, ) Priig) (1)

Assuming a uniform prior on the space of haplotypes, we have
Pr(H|X,q) o< Pr(X|H,q) (5.2)

In the following discussion, we will refer t&r(X|H, ¢q) as a distribution ovef for
notational convenience. Define the functi®diX;|j], ~[j]) = 1 if X;[j] = h[j] and O
otherwise.

Then,
Pr(Xilgh)= [ (Xl abDA = ali) + (1= 6, k) als]  (5.3)
{7:Xilj]#-}
Extending this to a haplotype paif = (h, h), we define
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Then, Pr(X|q, H) can be computed as a product over fragments (assuming that frag-

ments are independently generated):

Pr(X|g, H HP?“ (Xilq, H (5.5)

5.2.2 Markov chain Monte Carlo algorithm

Instead of computing the most likely solution, it is potentially more useful to
sample from the posterior distribution of haplotypes. As the number of possible haplo-
types grows exponentially with the number of variants, we construct a Markov chain to
sample from the posterior distribution &f given the fragment matriX” and the matrix
of error probabilitieg;. The states of the Markov chain correspond to the set of possible
haplotypes. Transitions of the Markov chain are governed by suSset€olumns of
the fragment matrixX. Specifically, each transition is of the forkkk — Hg where H
is the current state (haplotype pair) aHd is a new haplotype pair created by ‘flipping’

the values of the columns it. For example,

H Hs
5_{3 4,511}
10111000101 00000100
01000111010 CHER B Lo} i

Note that at columns not ifi, such as columm, H and Hg are identical. How-
ever, columns irt' = {3,4, 5,11} are flipped inH.

If I' = {51,52...5k} is a collection of subsets of columns &f, then for each
stateH, there arek + 1 possible moves to choose from, including the self-loop. The
Markov chain in statéf chooses a subsgt € I' and moves to the new stai€s, with
a certain probability. The transition probabilities are chosen to ensure that they satisfy

the detailed balance conditions. The MCMC algorithm is described as follows:
Initialization: Choose an initial haplotype configuratiéH®.

lteration : Fort =1,2,...obtainH**! from H' as follows:



107

1. With probability1/2, setH**! = H*
2. Otherwise sample a subsgfrom I" with probabilityﬁ

3. With probabilitymin [1, %} ,setH*! = HY. Otherwise sefl'*! =

Ht

As can be seen, our algorithm uses the Metropolis updateMdegpolis et al,
1953, and is completely specified dy, fragment matrixX and the matrix; of error
probabilities. We denote the corresponding Markov chain&sX, ¢, I') or simply by
M(T"), wheneverX andq are implicit. Note that Step 1 of the above algorithm which
represents a a self-loop probability bf2 is added to ensure aperiodicity which is re-
quired for analysis of the mixing time of the Markov chaRandall 2006. In practice,

it is not essential and can be removed as most Markov chains are indeed aperiodic.
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Figure 5.2: a3 Example of a fragment matriX (n, d) for which two haplotype$7; and
H, have equal likelihood. The matrix hascolumns with each pair of adjacent columns
(except the paitn/2,n/2 + 1)) covered by fragments { = 2 andn = 20 as shown).
b) Plot of hitting time (number of steps taken by the Markov ch&itI’;) to go from
H, to H,) as a function of the depth of fragment coveradge (For eachd value, the
Markov chain was run 100 times (each value represented as a circle) with05.
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5.2.3 Choosing’

A simple choice forT" is Ty = {{1},{2},...{n}}. Itis easy to show that
any Markov chainM(X,q,I") is ergodic and has the desired posterior distribution
Pr(H|X,q) if Ty C T" (See Supplementary Methods for proof). However, we also
want the Markov chain to have a low “mixing time”, i.e after a small number of steps,
the Markov chain should be “almost” sampling from the stationary distribution. Empir-
ical results suggest that the chair(I';) does not sample the haplotype space quickly
enough and in particular takes a large number of steps to move from a haplétype
to another haplotypé!’ such thatdd and H' differ in a large block of columns and
Pr(H'|X,q) = Pr(H|X,q). The reason for this is that in order to samplé the
Markov chain has to go through several intermediate haplotype configurations, each of
low-probability. As an illustrative example, Figurel(a) describes the case of a frag-
ment matrix for which there are two equally likely haplotype configuratiihend H,
which differ by a single flip of half of the columns. The fragment matrix which we
denote byX (n, d) hasn columns and every column is spannedddyagments ¢ = 20
andd = 2 in the example shown).

For this fragment matrix, we empirically estimate the hitting time of the Markov
chain to reachf, starting fromH; as a function ot/ (see Figurer.1(b)). The error
probability g is identical for all positions. Ag increases, the likelihood of all haplo-
types other than the two haplotyp&s and H, decreases. Thereforg/(I';) will take
increasingly longer time to move froiff; to H,. The plot shows that the hitting time
increases exponentially witth Ford = 5, the expected hitting time (averaged over
100 runs) is roughly 10 million steps. For larger sized examples and smathez hit-
ting time will be much greater. The above experiments suggest that the mixing time of
M(T) is unlikely to be small. Indeed, we prove theoretically that the mixing time of
M(T';) grows exponentially with! (see Supplementary Methods for formal definition
of mixing time and proof of this result).

Clearly, the Markov chaioM(I';) is not a desirable chain for sampling the hap-
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lotype space. A natural question to ask is: can the mixing time be reduced with inclusion
of larger sized subsets in? For the fragment matriX (n, d) shown in Figurer.l, if

we include the subset; /> (columns 1 to n/2) ", the Markov chain will move from

H, to H, whenever this subset is sampled. Therefore, the hitting time should reduce to
O(n log n) , which we empirically observe to be true (results not shown). Intuition sug-
gests that the mixing time of the Markov chain should also decrease since the bottleneck
in moving betweern{; and H, has been removed. Using a combination of methods for
analyzing the mixing time of Markov chains, it can be shown that the mixing time of
the Markov chainM (I'y U S, _,,/2) is indeed polynomial im andd. (V. Bansal and V.
Bafna, unpublished results).

These results demonstrate that(I';) has poor mixing time for a specific frag-
ment matrix, but augmentinig, slightly can dramatically improve the mixing time. In
addition, we gain an insight into holt; should be augmented. Results on mixing time
of Markov chains $inclair and Jerrum1989 Sinclair, 1992 imply that if there is a
subset of haplotype($Y for which the probability of moving to a haplotype outsitie
in a single step (scaled by the probability of being in std)as low, the Markov chain
has poor mixing time. For the fragment matii(n, d) (Figure7.1) and the Markov
chain M(T'y), H; represents such a subgét While there are such “bottlenecks” in
the transition matrix, the mixing time is bad. Subsets of columns (suéh as,) that
remove such bottlenecks represent good candidates to inclidédiowever, for a gen-
eral fragment matrix it is not obvious how to choose these subsets computationally and
how many subsets to include. We do not want the number of subs€tsoirbe very
large since the probability that a specific subset is picked decreases with incriéasing
thereby increasing the mixing time. Therefore, we restrict ourselves to chdosity
size linear in the number of columns of the fragment matrix.

To motivate our approach for constructihgwe return back to the example of
the fragment matriXX (n, d) in Figure7.1 As we saw before$; ,,/» represents a good
candidate to include i’ since it allows the Markov chain to move easily between the

two haplotype configuration&; and H,. The set of columns in this subset is linked
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to the rest of the columns by two fragments and in addition, these two fragments are
inconsistent with each other. Subsets that contain columns from%0th, and from
outside this subset are not particularly important for addirig téherefore, the problem

of constructingl’ can be considered independently for the fragment matrix restricted to
S = Si..n/2 and the matrix restricted t. This suggests a recursive partitioning strategy

for constructing’, which we describe next.

5.2.4 A graph-partitioning approach

We construct an undirected weighted graphX') with each column of the frag-
ment matrix as a separate node of this graph and an edge between two nodes if there is
some fragment that covers both columns. The weight of an edge between two columns
is the number of fragments that cover both columnsugin G(X) is simply a subsef
of vertices, with weight equal to the sum of weights of the edges going across the cut. A
Minimum-cutis a cut with minimum weight in the graghi(X'). From the perspective of
the Markov chain, a cut represents a subset of variants, and a cut with low-weight repre-
sents a good candidate to includelinWe partition the grapli-(.X') into two piecesS
andsS using a simple min-cut algorithnSoer and Wagne 994 and add the two sub-
setsS, S to I'. We apply the same procedure recursively to the two induced sub-graphs
G(S) andG(S) adding two new subsets 10 every time we compute a new cut. The
recursive graph-partitioning approach ensures IhatcludesI’; and has: additional
subsets.

We construct a grap&y(X') with vertex set” as the set of all columns of and
edge seft as all pairs of columnéi, j) of X for which there is at least one row iK
covering both columns, i.eX[i] # — and X,[j] # — for some rowk. The weight of
the edgd(i, ;) is the number of such rows covering both columngud(S, S) in G(X)
is a partition of the vertices af(X) into two disjoint set of vertices. The weight of a
cut (S, S is equal to the sum of the weights of edges going across the cutdrmnthe
S.
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GraphPartitioning(X, I')
1. If the number of columns iX is less than 2, returhi
2. Compute a min-cutS, S) in the graphG/(X)
3.T=Tu{s,S}
4. GraphPartitioningX (S5),I")
5. GraphPartitioningX (S),T)
6. returnl

Information about the variant calls in the fragment matrix can be used for as-
signing weights to the edges @(X). This is potentially more informative than just
using the number of fragments. Consider the example fragment matrix in Figure
The subseb, _,/, is a good candidate fdr not only because the cut corresponding to
this subset has low weight (two edges) but also because the two fragments linking this
subset of columns to the rest of the matrix are inconsistent with each other. We have
developed a scheme that assigns weights to the edg&s'of based on the consistency
of a haplotype paiff with the fragment matrix. A fragment adddo the edge weight
between two columns if the phase suggested by the fragment is consistent with the cur-
rent haplotype assembly. If not, it contribute$ to the edge weight. Hence, a cut with
low or negative weight corresponds to a subset of columns whose current phase with
respect to the rest of the columns is inconsistent with the fragment matrix.

Consider a pair of columnisj in X. W.l.o.g, assume that the current haplotype
H is described by = [00...0,11...1]. For a fragmentf, we describe a function
matchthat scoresf on being consistent (or not) with the haplotype at positians
Formally

L it (f[e], fl5]) € 00,11}

—1 otherwise

matchy (f,4,7) =
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We use the match function for assigning weights to edges in the grajgh. Define
wr(i,j) =) matchy(f,i,5)
f

If wy(7,7) is highly positive, it implies that the current haplotype pHiris consistent
with the phasing suggested by the fragments for the (@aj). On the other hand, a
negative value fotvy (4, 7) indicates that the phasing for the péirj) in the haplotype

pair H is likely to be incorrect. We denote the graph with edge weighysi, j) by
G(X, H), and would like to compute Min-Cuts. As negative weightsQn(i, j) make

the problem equivalent to the Max-Cut problem, which is known to be computationally
hardGarey and Johnsori979, we use the heuristic of removing all edges;) for
which wgy(i,7) < 0 from G(X, H). We denote the the graph partitioning algorithm
based orG(X, H) for computingl” asWeightedGraphPartitioningX, H).

The recursive graph-partitioning approach for construciinig greatly moti-
vated by the nature of the sequencing data that we have analyzed. The example that
we presented in Figuré.lis quite typical of real data. Figure.4 depicts an exam-
ple of a fragment matrix from chromosome 22 of HuRef. Shotgun sequencing leads to
non-uniform sampling of variants creating “weak” links in the fragment matrix that the

graph-partitioning approach can exploit to constitict

5.2.5 The complete MCMC algorithm

The collection of subsefts computed using the weighted graph-partitioning ap-
proach is dependent upon the haplotype pairAs we sample haplotypes with greater
likelihood, it is potentially useful to update. The complete algorithm which we call

“HASH” (short for HaplotypeAssembly forSingle Human) is as follows:

HASH(X,q)
1. Setl'® — 1.

2. SetH© at random or otherwise.
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Figure 5.3: lllustration of the weighted gragh X') derived from the fragment matrix

X and a haplotype paiff and the recursive graph-partitioning algorithm for comput-
ing I'. The graph is shown on the top right and the tree stucture below demonstrates
the recursive partitioning of the graph using min-cut computations. The first cut (la-
beled as 1), partitions the columns &f into two subsets:S = {1,2,3,4,5} and

S = {6,7,8,9,10,11,12,13}. The second cut (labeled 2), further partitions the sub-
setS into two smaller subsets{1,2,3,4} and{5}. I is obtained from the subsets
labeling the nodes of the tree (except the root node).

3. Fort=1,2,...

(@) LetH® = M(I'*1 X, H¢=V ¢) be the haplotype obtained after running
M(TED) for ¢ - n steps (¢ ~ 1000).

(b) Computel'® = WeightedGraphPartitionirfgC, ®)).
4. Setl’ — I'® and discard all previous samples.

5. Run the chainM(T) initialized with H® for ~ 10° - n steps.
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Figure 5.4. An example of a fragment matrix for a haplotype segment from chromo-
some 22 of HuRef. “Inconsistent fragments” (one on each line) correspond to fragments
that are inconsistent witl/. “Consistent fragments” (multiple independent fragments

on each line, two independent fragments separated by whitespace) that perfectly match
one of the two haplotypes iff. This example illustrates two common features of the
HuRef data relevant for haplotype assembly: (i) the “gapped” nature of the fragment
matrix, i.e. the presence of links between non-adjacent variants, (ii) haplotypes do not
always link all variants that they span.

Steps 1-3 in the above algorithm represent atetermination phase where we
start from a haplotypé/® andI initialized toI";. We run the Markov chain for a certain
number of stepsc(- n wherec ~ 1000) and then compute a nelvusing the current
haplotype pair. This is repeated until we see no improvement in the likelihood of the
best haplotype sampled by the Markov chain. After this inifi@letermination phase,
we run the Markov chain initialized using the current haplotype and the Firfak

~ 10° - n steps. The samples used to make inference about the posterior distribution are
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drawn only from this Markov chain. For drawing samples frartiT"), we discard the

first 10000 - n samples and thin the chain evai§00 - n steps.

5.3 MEC score for haplotype assembly and posterior er-

ror probabilities

Given a haplotype assembly, we would like to evaluate how “consistent” it
is with the fragment matrix (sequenced reads) Each fragment represents a chunk
of DNA from one of the two chromosomes and in the absence of sequencing errors,
the alleles at variant sites covered by the fragment should perfectly match one of the
two haplotypes. We defing[j,h] = 1 if X; andh disagree at positiorj, and let
MEC(X;, h) = >, ilj, h] denote the number of alleles mis-matched betw&¥gand
h.

For a haplotype paiff = (h,h), let0 < Z;(H)) < 1 denote the probability that
the fragmentX; is derived from the haplotype. Define

MEC(X;, H) = Z;(H) - MEC(X;, h) 4 (1 — Z;(H)) - MEC(X;, )

The total MEC score is defined as the fraction of mismatched variantBafis{ et al.
2005 Rizzi et al, 2002

MEC(X, H) = 1 > MEC(X;, H)
n =

The MEC score gives an estimate of the quality of the reconstructed haplotypes, i.e.
lower this number, better the haplotypes. For a single haplotypefpawe can set
Zi(H) = 1if MEC(X;,h) < MEC(X;,h) and0 otherwise. On the other hand, if

we are given a probability distributiom on the haplotypes and the matijxof error
probabilities, we can compute

l Pr(Xilg, h) + Pr(Xi|q, )
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and the expected MEC score as
E.(MEC(X Z TeMEC(X, H)

Additionally, = can also be used to used to compute posterior error probabilities on the

base callX;[j] as
Pr(e:[j] = 1|m) = ZWH{Z ) €ilj bl + (1= Zi(H)) - ], b))}

An MCMC algorithm that samples from the posterior distribution of haplotypes
can be used to compute the posterior error probabilities where Pr(X|H, q). These
error probabilities represent probabilistic estimates of the reliability of each variant call,
i.e. an error probability of 0.9 implies a 90% chance of the call being incorrect. To illus-
trate, consider the example of a fragment matrix with two columns and two fragments:
00 and01. Letg;[j] = ¢ = 0.05 be identical for all variant calls. The two haplotypes for
this matrix areH, = (00, 11) and H, = (01, 10) with 7y, = 75, = 0.5. The posterior
error probability for each variant call can be easily computed tezbe5. Therefore,
none of the variant calls is reliable and there is no information about the phase between

the two variants present in the data.

5.4 Results

5.4.1 HuRef sequence data

The HuRef genome assembly (Levy et dleyy et al, 2007) represents the
sequence of a single human individual using traditional Sanger sequencing technology.
It was derived from approximately 32 million reads and has a sequence coverage of
7.5. Using the HuRef sequenced reads and comparison between the HuRef genome
assembly and the NCBI reference genomic sequence, a list of potential DNA variants
was compiled. These variants are not restricted to single nucleotide polymorphisms, but

also include short insertions/deletions, etc. The sequenced reads were mapped to the
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HuRef assembly to determine the alleles at each variant. For each sequenced read, the
sequencing quality values were used to assign a error probability for the variant sites.
After applying various filters to define a set of reliable heterozygous variants, there were
about 1.8 million heterozygous variants for the 22 autosomesl(seg ét al, 2007) for

details).

To illustrate the coverage and connectivity of the sequenced fragments, we present
some statistics for chromosome 22, which has 24,967 heterozygous variants. For this
chromosome, the fragment matrix had 103,356 rows where each row corresponds to a
DNA fragment from one of the two copies of the chromosome. Hence, paired-end reads
(sequenced ends of clones) are represented as a single row. 18,119 of these fragments
correspond to such paired-end reads. About half of the fragments (53,279) link two or
more variants and therefore are potentially useful for haplotype assembly. These 53,279
fragments correspond to 173,084 variant calls{ calls per variant) in the fragment
matrix. Using the overlap between these fragments, the chromosome can be partitioned
into 609 disjoint haplotypes (in addition to 921 isolated variants) of varying lengths, the
largest of which links 1008 variants. In terms of the actual physical distance spanned
by haplotypes, the N50 haplotype length (length such that 50% of the variants are con-
tained in haplotype segments of the given length or greate¥) #0kb. Note that a
haplotype segment does not link all variants it spans (see Figdrer an illustration
of a haplotype segment). Even if haplotype length is measured in terms of the number
of variants linked, the N50 length is about 400 variants.

The importance of paired-end reads for haplotype assembly can be gauged from
the comparison of the distribution of the number of variants among haplotypes of dif-
ferent sizes for a) reads including paired-end information vs b) unpaired reads (see Fig-
ure5.5). If we ignore the paired ends, and split them into separate fragments, the linkage
between the variants and consequently, the haplotype block sizes are greatly reduced.
The number of disconnected haplotypes increase378 with no haplotype having

more thanl00 variants.
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Figure 5.5: Distribution of the number of variants among haplotypes of different sizes
(haplotype size is measured as the number of variants linked together in a haplotype)
for chromosome 22 of HuRef. The y-axis is the aggregated number of variants that are
part of haplotypes of a certain size. Haplotype size ‘1’ corresponds to isolated variants
not connected to any other variant. The ‘reads with mates’ distribution corresponds to
the complete fragment matrix. The ‘unmated’ distribution is obtained by splitting mate
pairs into separate fragments.

5.4.2 Performance of HASH on Simulated data

To test the performance of HASH, we generated simulated data with varying
error rates as follows: first, the fragment matiixwas modified to make it perfectly
consistent with a particular haplotype. Next, to simulate an error rate(0f< ¢ <
0.1), each variant call in the fragment matrix was “flipped” (changed from O to 1 or
vice versa) independently with probability For this modified fragment matrix, we
know the true haplotypes and also the variant calls that are correct (those that were not
flipped) and also those that are incorrect (the ones that were flipped during simulations).
Therefore, we can assess the performance using two different critgtige distance of

the reconstructed haplotypes from the true haplotypes atitelability to predict which
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variant calls are incorrect.
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Figure 5.6: Comparison of the switch error rate for the algorithm HASH and the MCMC
algorithm withI';. The y-axis is the average switch distance of the reconstructed hap-
lotypes from the true haplotypes. The x-axis (simulated error rate) is the fraction of
variant calls in the fragment matrix that were flipped.

In Figure5.6, we plot the average switch distance of the Maximum Likelihood
reconstructed haplotypes from the true haplotypes as a functien A¥erage switch
distance or switch error ratkif et al, 2002 is defined as the fraction of positions for
which the phase between the two haplotypes is different relative to the previous position.
The switch error rate increases roughly linearly with increasing error rate andis {
lower for HASH than for the MCMC algorithm witl';. This is expected given the
slow convergence of the Markov chain with. The switch error rate for the greedy
heuristic Levy et al, 2007) is also high in comparison with HASH (results not shown).

Using an MCMC procedure, one can estimate the posterior error probability for
each variant call in the fragment matrix. Given a haplotype faie (h, h), let Z;(H)
denote the probability that fragmekt is sampled fronk. Denotez;[j, | = 1 if X; and

h disagree at positiog. Finally, lets;[j] = 1 to denote thafX;[;] is called incorrectly,
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and¢;[j] = 0 otherwise. Then, the posterior error probability can be computed as

follows:
Prie;[j] = 1|m) = E Tu{Zi(H) - &[j, h] + (1 = Z;(H)) - &[j, h) }
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Figure 5.7: Fraction of variant calls with a posterior error probabitty).5 using the
HASH algorithm for different values of. (a) False-positive rategiven by the fraction
of “correct” variant calls with high posterior error probabilities. {lsue-positive ratg
given as the fraction of “flipped” variant calls with high posterior error-probability.

Herery = Pr(X|H, q) is a probability distribution oveH. See Supplementary
Methods for a complete description. We compare the posterior error probability for the
“correct” variant calls with those for the “incorrect” variant calls to demonstrate that our
algorithm HASH can predict the incorrect variant calls. In Figbrga), we plot the
false positive rate (fraction of correct variant calls that had a posterior error probability
greater than 0.5) for different values«fFor an error rate of 0.02 (typical of the HuRef
sequence data, see Figb), the fraction of incorrect variant calls with a high posterior
error probability ¢ 0.5) is almost 80%. In Figur®.7(b), we plot the true positive
rate (fraction of flipped base calls that had a posterior error probability greater than

0.5). Increasing the cutoff value for the posterior error probability reduces both the true
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positive rate and the false positive rate. For an error rate of 0.02, 65% of the incorrect
(or flipped) variant calls have a posterior error probability greater than 0.95 while only
0.015% of the correct variant calls have such a high posterior error probability.

The plots suggest that the error in reconstruction is very low for typical sequenc-
ing errors, but increases with increasing error rate. Also, our measure for estimating
accuracy is (perhaps, overtly) conservative. For example, if there is a single call for a
variant and this variant call is flipped, it is not possible to reconstruct the true haplotype
or predict that this variant call is incorrect. Flipping a variant call not only affects the
posterior error probability of that variant call, but the error probability of variant calls
that cover the same column. Therefore, increasing the error rate is expected to increase
the number of ‘correct’ variant calls with a high posterior error probability. Also, if the
error rate is large and the number of fragments covering each variant is small, it may not

be possible to reconstruct the true haplotype exactly from the mutated fragment matrix.

5.4.3 HASH versus other MCMC algorithms

Our goal in devising HASH is to enable the Markov chain to move out of
local optima and transition to haplotypes with greater likelihood. We compared the
performance of HASH against two other MCMC algorithmg:A(T';), the Markov
chain withT'; and ii) M(T") whereI" was computed once using the recursive graph-
partitioning onG(X). Recall that HASH is similar to (ii) except that is updated
iteratively. For this, we used data from chromosome 22 and looked at the maximum-
likelihood haplotype pair sampled by each algorithm. The results shown are for a block
with ~ 200 columns from chromosome 22 (see Fido&a)). In each case, the Markov
chain was initialized with a random haplotype pair. As expected, HASH dominates both
in the likelihood of the sampled solution, and in the speed with which the solution is
reached M (I';) gets stuck in a local optima and will take a prohibitively large number
of steps to sample the maximum likelihood solution.

In Figure5.8(b) we zoom in on thel’ update’ phase of the HASH algorithm
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Figure 5.8: Results of running the MCMC algorithm with differéhbn a fragment
matrix with n = 200 columns (from chromosome 22 of HuRef genome). a) A com-
parison of the HASH algorithm against two other MCMC algorithms:M((T'y), ii)
M(T") wherel" was computed using the recursive graph-partitioning algorithoy).

All algorithms were initialized with a random haplotype pair. b) Comparison of HASH
algorithm initialized with a random haplotype %d (I") (graph-partitioning) started with

a good haplotype. Note that we are zooming in on the first 10K steps in the iteration.

for the above example. The HASH algorithm was initialized with a completely random
haplotype. We observe that the likelihood of the best haplotype sampled by the HASH
algorithm after a few updates tois identical to that of the Markov chain with the graph-
partitioning based" started from a good quality solution. Although the results shown

in Figure 5.8 are for one particular example, they are similar for all data-sets (data
not shown). The two results combined show that the sample space has many locally
optimal solutions that one could be trapped in, but dynamic updates to the Markov
chain architecture, as described by HASH allows for rapid convergence, increasing the

likelihood of sampling the globally optimum solution.

5.4.4 Haplotypes for HuRef

We compared the most likely haplotype assembly obtained using HASH with the
greedy haplotype assemblygyvy et al, 2007) for each of the 22 autosomes of the HuRef

individual. HASH was run independently on each of the disjoint haplotype blocks for
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a chromosome. For each chromosome, we compared the haplotype assembly against
the fragment matrix and computed the MEC (Minimum Error Correction) s@&méng

et al, 2005, defined as the minimum number of variant calls in the fragment matrix
that need to be modified for every fragment to perfectly match one of the two haplo-
types. The MEC score represents a parsimonious estimate of the discordance between
the haplotypes and the fragment matrix. A more detailed formulation of the MEC score

is given in the Supplementary methods. In Fighrgé we compare the MEC scores for
three different methods: Greedy heuristieyy et al, 2007, MCMC algorithm withI';

and HASH. The haplotype assembly derived using HASH has a lower MEC score for
each chromosome, reflecting the greater accuracy of the haplotypes. For chromosome
22, the MEC score for HASH was 20% lower than the greedy algorithm. Note that the
MEC score is not expected to be zero, even for the true haplotypes, due to errors in

base-calling.

3.5%

3%1 Bl Greedy i
[ mewme (r)) I
2.5% [ |HASH i 1
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Figure 5.9: The percentage of variant calls that are inconsistent with the best haplotype
assembly for three different methods: Greedy heuristievy et al, 2007, MCMC
algorithm withI'; and the HASH algorithm for the 22 autosomes of HuRef.

We also compared the log likelihood of the haplotype assemblies for the greedy

algorithm and HASH. The log-likelihood was computed using the sequencing quality
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values to estimate the matrix. We found that the log likelihood for the haplotypes
reconstructed using HASH was consistently higher than that of the greedy haplotypes
indicating that the haplotypes are significantly more accurate. For example, the log-
likelihood of the greedy haplotype assembly for chromosome 22 (summed over all dis-
joint haplotypes) was -15683.4. In comparison, the most likely haplotype assembly
using the HASH algorithm had a log-likelihood of -11944.25 (a reduction of 23.8%).

We compared the posterior error probabilities for each variant call against the
sequencing quality values. To allow an unbiased comparison, the HASH algorithm was
run using uniform error probabilities estimated from the greedy haplotyjpedraction
of inconsistent variant calls). For chromosome 22, 3919 of the 173804 variant calls had
a posterior error probability greater than 0.5. If we restrict the comparison to variant
calls with a sequencing quality value below 20 % 0.01), 1203 out of 28532 such
variant calls had a high posterior error probability. This represents a 2-fold enrichment
of “erroneous” variant calls in the tail of quality value distribution. In Fig&:&Q
we can see that the fraction of variant calls with a high posterior probability increases
with increase in the error probability (or decreasing sequencing quality values). This
correlation between high posterior error probabilities and low sequencing quality values
represents an independent confirmation of the quality of the reconstructed haplotypes
and also indicates that some of the inconsistencies between the reconstructed haplotypes

and the fragments are a result of sequencing error.

5.4.5 Estimating accuracy of HuRef haplotypes

The HuRef haplotypes obtained using HASH are highly consistent with the se-
guenced fragments and have a low MEC error rate (see Fig@reHowever, we also
want to be able to estimate the absolute accuracy of the HuRef haplotypes. The absolute
accuracy can be expressed in terms of the “switch error tatedt al, 2002 or the
fraction of adjacent pairs of variants whose phase in the HuRef haplotypes is incorrect.

We have computed two independent estimates of the switch error rate; one based on the
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Figure 5.10: Fraction of variant calls with high posterior error probability0(5) for
different values of the error probability(derived from the sequencing quality values)
for chromosome 22 of HuRef.

haplotypes samples generated by our MCMC algorithm and another through compari-

son of the HuRef haplotypes to the population haplotypes from the HapMap project.

Switch error estimates using samples from the MCMC algorithm We used the
haplotypes sampled by the algorithm HASH to estimate the reliability of the phase be-
tween adjacent pairs of variants in a haplotype segment. For a pair of adjacent variants
(1,7), if we denote the two alleles at each site by 0 and 1, there are two possible hap-
lotype pairs:(00, 11) and(01, 10). Based on haplotypes sampled by the Markov chain,
the switch error probability for a pafi, j) was estimated as the fraction of times the less
frequent haplotype pair was observed. See Fi§utéor a plot of switch error probabil-

ities for a haplotype segment from HuRef. The switch error rate for a chromosome can
be approximated as the average of the switch error probabilities for adjacent pairs. For
chromosome 22 of HuRef, the switch error rate was estimated to be 0.009 using 1000

samples.
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Switch error rate based on comparison to HapMap haplotypes One of the benefits

of inferring haplotypes from sequence data is that the local accuracy of the haplotypes
is unlikely to be affected by the level of Linkage Disequilibrium in a region. This also
presents the opportunity of using LD in population data to detect switch errors in the
HuRef haplotypes. For a pair of variants that are in strong LD in population data, the
correct HuRef phasing is expected to match the more likely population based phasing.
If the inferred HuRef phasing does not match the preferred population phasing, one
can infer a switch error with some probability (the probability value depends upon the
strength of LD between the pair of variants). We use this idea to empirically estimate
the switch error rate of the HuRef haplotypes. As the HuRef individual is of Caucasian
origin, we have used the haplotypes from the CEU population in the HapMap project
for this comparison. We identified the subset of SNP variants in HuRef that were also
genotyped in the HapMap project. For each pair of adjacent SNPs in this subset, there
are two possible haplotype phasing$®0,11) and (01, 10). Let foo, fi1, fo1 @and fio
represent the frequencies of the four haplotype pairs in the HapMap CEU sample. If
(foo - f11) > (fo1 - f10), the pair(00, 11) is defined to be the preferred HapMap phasing.
Otherwise,(01, 10) is the preferred HapMap phasing. For a pair of adjacent HapMap
SNPs in the HuRef haplotypes (that were part of the same haplotype segment), the
phasing of the HuRef individual is compared to the preferred HapMap phasing for that
pair. The mismatch rate is defined as the fraction of pairs for which the HuRef phasing
does not match the preferred HapMap phasing. In Figut@ we plot the mismatch

rate of the HuRef haplotypes for chromosome 22 (estimated using HASH) as a function
of LD (measured using?). The mismatch rate is lowest for pairs with high levels of LD
(0.008 for pairs with-? > 0.8) and increases to 0.031 for all pairs. The mismatch rate
for pairs with high levels of LD can mainly be attributed to switch errors in the HuRef
haplotypes. For pairs of SNPs with low LD, mismatches between the HuRef haplotypes
and the preferred HapMap phasing can represent switch errors or chance mismatches
(see Figurés.11for an illustration).

To correctly estimate the error rate, we first compute an expected mismatch rate
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Figure 5.11: Comparison of haplotypes assembled using sequence data with the pre-
ferred HapMap phasing for each pair of adjacent SNPs inferred from the HapMap hap-
lotypes. For three pair of adjacent SNPs, the phase of the sequence-based haplotypes
mismatches the preferred HapMap phasing (indicated by crosses). The first pair shows
strong linkage disequilibrium-f = 0.95) and therefore the mismatch is more likely to
represent a switch error in the sequence-based haplotypes. For the second pair of SNPs,
the sequence based haplotypes are correct and the mismatch is due to low LD between
the SNP pair. For the third pair, LD is low and the mismatch is due to a switch error in
the sequence-based haplotypes.

for the HapMap haplotypes as follows: for every pair of adjacent SNPs, we sample one
of the two haplotype pairg((0, 11) or (01, 10)) based on the haplotype frequencies in

the HapMap haplotypes. The expected mismatch rate is the fraction of pairs for which
the sampled pair mismatches the preferred HapMap phasing. For a particular value
of 2, we define the “adjusted mismatch rate” as the mismatch rate minus the expected
mismatch rate. The adjusted mismatch rate represents an estimate of the switch error rate
of the HuRef haplotypes that is adjusted for variation in LD in the HapMap haplotypes.

In Figure5.12 we plot the “adjusted mismatch rate” for HASH and for the greedy
heuristic. We observe that the adjusted mismatch rate for HASH is nearly independent
of LD, ranging from 0.011 for all pairs to 0.0078 for pairs of SNPs with> 0.8.

The adjusted mismatch rate for the greedy heuristic is almost three times that of HASH,
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providing the strongest proof of the greater accuracy of the haplotypes inferred using
HASH.

Both internal and external estimates indicate that the switch error rate of the
HuRef haplotype assembly is about 0.01. The switch error rate for HapMap individuals
from the CEU and YRI samples has been estimated to be 0.0053 and 0.0216 respec-
tively (Marchini et al, 2006§. The haplotypes for these individuals have been inferred
using a combination of trio and population information. The increased error-rate for
YRI is due to lower levels of LD in the Yoruban population. Switch error rates for
haplotypes inferred without trio information are typically much higher (0.054 for CEU
individuals). An advantage of inferring haplotypes using sequence data is that the error
rates are expected to be independent of the ancestry of the individual. Moreover, since
the switch errors are distributed independent of LD, the error rate could be reduced fur-

ther by incorporating LD information from population data in the haplotype assembly.

5.5 Discussion

With the rapid development of new sequencing technolodgentley, 2006
comes the promise of individualized sequencing, wherein the complete genomic se-
guence of individuals will be available. As shown by Levy et &k\y et al, 2007,
individual sequencing in the presence of paired-ends allows one to reconstruct accurate
long haplotypes using a simple method. There are two challenges to sequence-based
haplotype inference: the high cost of whole genome shotgun sequencing at a reasonable
sequence coverage using Sanger sequencing and the feasibility of haplotype assembly
using other sequencing methods. In the past few years, next-generation sequencing tech-
nologies have drastically reduced the cost of sequencing complete genomes. Addition-
ally, some of these technologies have the ability to generate paired-end sequences which
is critical for haplotype assembly. Haplotype assembly is feasible when the sequenced
fragments are long enough to cover multiple variants, and the sequence coverage is high

enough to overcome base-calling error. Although the read lengths for these methods
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Figure 5.12: Mismatch Rate and the “Adjusted Mismatch Rate” (Error Rate) of the
HuRef haplotypes estimated by comparison with the CEU HapMap haplotypes. The
error rate is plotted as a functionof, i.e. computed for all pairs of adjacent SNPs with

r? greater than a certain value.

are much shorter than traditional Sanger sequencing, continued enhancements in these
technologies will make haplotype assembly feasible in the near future.

Haplotype assembly from sequenced reads of an individual genome has several
advantages over haplotypes obtained by computationally phasing SNP genotypes from
a population. First, the accuracy of the phasing is not limited by regions of low link-
age disequilibrium and it is possible to recover very long haplotypes spanning several
hundred kilobases. Second, it is possible to assemble “complete” haplotypes linking
alleles at all variants such as SNPs, insertion/deletions, etc that are heterozygous in the
individual. Third, the accuracy of haplotypes inferred from genotype data depends a
great deal on the knowledge of ancestry of the individual, while haplotype assembly
from sequence data does not require knowledge of the population of origin of the in-

dividual. It is important to note that these two approaches for inferring haplotypes are
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complementary to each other. As individual genomes are sequenced, population data
could be combined with sequence data to obtain longer and more accurate haplotypes
for an individual. Linkage Disequilibrium from population data could be used to deter-
mine the phase between variants that are not linked by sequenced reads, while sequence
data could be used to infer haplotypes across regions of low LD. The highly accurate
haplotypes generated by the HapMap project for the CEU and YRI samples could prove
especially useful for improving the quality of haplotypes assembled using individual
sequencing.

We have described a Markov chain Monte Carlo algorithm for haplotype as-
sembly that samples haplotypes given a list of all heterozygous variants and a set of
sequenced reads mapped to a genome assembly. Our emphasis has been on describing
how a particular choice of moves for the Markov chain enables it to sample the haplo-
type space more efficiently than a naive Markov chain. We have shown that haplotypes
reconstructed using HASH are much more consistent with the sequenced reads than
haplotypes inferred using a greedy heuristic. Comparison of the HuRef haplotypes to
the HapMap haplotype data suggests that the error rate of haplotype reconstruction us-
ing HASH is low (~ 1.1%), and independent of the local recombination rate. Instead,
simulations show that the error rate depends upon the sequencing error and depth of cov-
erage. As technologies improve, the cost and error rates will improve further, increasing
the power and accuracy of haplotype assembly.

There are some aspects of haplotype assembly that could be investigated further.
In our approach, we assume that the list of variants is compiled in advance using the
sequenced reads and haplotype assembly is performed using this list. Detection of SNPs
and variant sites from sequencing data is a challenging problem in itself and one can
possibly integrate the variant detection phase with the estimation of haplotypes. This
approach has recently been adopted by Kim etam(et al., 2007 and can have certain
advantages for genomes whose variant sites are not well characterized. Our model for
haplotype likelihood considers each variant call independently. One can incorporate

more complex error models where all the variant calls for a read are erroneous e.g. as a



131

result of the read being incorrectly mapped, or some of the variant sites do not represent
real polymorphic variants, e.g. paralogous SNPs. The HASH framework is independent
of the likelihood model and can be easily adapted for such models.

Finally, we note that there are some novel aspects of our Markov chain Monte
Carlo algorithm, HASH. We have shown, both empirically and theoretically, that a sim-
ple Markov chain with local moves, i.e. a chain in which all transitions are between hap-
lotypes that differ in a single column, is unable to sample the haplotype space efficiently.
We have proposed a Markov chain with non-local moves that allows transition between
haplotypes that differ in multiple columns. The transition matrix of this Markov chain is
determined by min-cut computations on an associated graph derived from the sequenced
reads. Moreover, the Markov chain architecture is dynamically updated periodically, to

escape local minima.
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Chapter 6

A Combinatorial Algorithm for the
Haplotype Assembly Problem

6.1 Introduction

In the previous chapter, we described HASH, a Markov Chain Monte Carlo
(MCMC) algorithm for the haplotype assembly problem and demonstrated that the
HuRef haplotypes based on HASH were much more accurate than those using the
greedy heuristic. In this chapter, we describe a novel combinatorial approach for the
Haplotype Assembly problem based on a problem related to the MAX-CUT problem.
Our algorithm HapCUT tries to minimize the MEC score of the reconstructed haplo-
types by iteratively computing max-cuts in graphs derived from the sequenced frag-
ments. Our algorithm is motivated by the HuRef sequence data and is applicable to
sequenced fragments of any length with an arbitrary number of gaps. Using the HuRef
sequence data, we demonstrate that our algorithm is significantly more accurate than
the greedy heuristic dfevy et al, 2007. We also compare the performance of HapCUT
with a previously proposed heuristic for this problem, namely Fast Rarefonesi and
Sozig 2004, and find that our algorithm consistently outperforms this heuristic. The

MEC score of the haplotypes reconstructed using HapCUT is comparable to those using

132
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a Markov chain Monte Carlo algorithm while being much faster to compute. While the
problem of optimizing the MEC score is NP-hard even for gap-less fragn@hitsési

et al, 2005, and unlikely to admit an efficient algorithm, HapCUT represents a fast
and accurate heuristic for haplotype assembly using real sequence data. We will also
describe a Maximum Likelihood based estimator of the switch error rate of the HuRef
haplotypes based on the CEU HapMap haplotypes and show that the HuRef haplotypes
inferred using HapCUT have a low switch error ratel (— 1.4%).

6.2 Methods

6.2.1 Preliminaries and Optimization

The genome sequence assembly for a chromosome is a mix of the two haploid
chromosomes. If we align all of the fragments to the assembly, certain sities(nsn
the alignment) will show identical values (homozygous) for all fragments, while others
will have different values (heterozygous) for different fragments. Note that heterozy-
gous sites in the alignment could correspond to a single base pair (SNPs) or multiple
base pairs, e.g. deletion/insertion variant. Sites that are homozygous are discarded, as
they are not useful for haplotype phasing. Likewise, all sites with more than 2 alleles
are discarded, as all variant sites should be bi-allelic for a diploid genome. Arbitrarily
re-labeling the variant alleles as 0 and 1, the input data can be represented as a ternary
matrix X of sizem x n, wherem is the number of fragments andis the number
of heterozygous sites. Theth fragment (row: of X) is described by a ternary string
X; € {0,1,—}", where/’—’ corresponds to the variant loci not covered by the fragment.
The objective of haplotype assembly is to reconstruct the two haplotypes, i.e. determine
the combination of alleles present on a single chromosome at the heterozygous sites.
The haplotypes can be represented as an unordered pai(h,, hy) of binary strings,
each of length. Since we only consider sites that are heterozygous in the individual

genomejs, is constrained to be the bit-wise complement.of
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In the absence of any errors, the rows of the fragment matrix can be partitioned
into two disjoint sets such that every column is homozygous in eachagei@ et al,
200]). Further, the consensus values can be used to reconstruct the two haplotypes.
However, such a perfect bi-partition is not possible when there are errors in the fragment
matrix. In the presence of errors, the objective of haplotype assembly is to find a bi-
partition or a pair of haplotypes that minimizes some objective function. Under the MEC
(minimum error correction) criterion, the objective is to change the smallest number of
entries in the fragment matrix such that the resulting matrix admits a perfect bi-partition.
The MEC objective is also equivalent to finding a pair of haplotyflefr which the
MEC score of the fragment matrix MEC(X,H) is minimum.

If d(X;,h) denotes the number of mismatches between the fragiieaind
haplotypeh (ignoring the ‘-’ in X;), then

MEC(X;, H) = min{d(X;, h),d(X;, h)}

and the overall score is given by
MEC(X,H) =Y  MEC(X;,H)

This leads to the natural parsimony based optimization problem of computing haplo-
types with minimumMEC' score. For notational convenience, we will denote the error
for a haplotype paiff asMEC(H), wheneverX is implicit. We will focus on designing

an algorithm for the MEC objective function. Other objective functions for haplotype
assembly have previously been proposed, such as MFR (Minimum Fragment Removal)
where the objective is to remove the smallest number of fragments to make the fragment
matrix error free, and MSR (Minimum SNP Removal) which models false variant sites.
However, the simplest (and most-common) source of error is due to base-miscalling and
the MEC objective serves as a good model for this type of error. Moreover, MEC can
also indirectly model other sources of error, e.g. a haplotype assembly with a low MEC

score is also likely to be good under the MFR objective.
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6.2.2 MEC optimization using max-cuts

Among the various objective functions for the haplotype assembly problem,
MEC seems to be the most difficult to optimize. While MFR and MSR can be solved
optimally for gap-less fragments, finding the optimal MEC solution has been shown
to be NP-hard even for gap-less fragmertipgert et al, 2002 Cilibrasi et al, 2005.
MEC has been shown to @(log n) approximable in the general case by Panconesi
and SauzidPanconesi and So0zig004), who also describe a heuristic Fast Hare for the
problem. Here, we provide a formulation for MEC optimization based on graph-cuts,
which leads to a simple but effective algorithm.

Given a fragment matriX', and a haplotype pafif, we define the grap@'x (H ),
with vertices defined by columns of. We abuse notation slightly by referring to the
vertex set asX. The setEy of edges of this graph is defined by pairs of columns
that are linked by some fragment. L&t[j, k] and H|j, k] represent the fragmentand
haplotype pait respectively, when restricted to the pair of coluning:). The weight

of the edgqj, k) € Ey connecting columng, k is defined as

wr(j, k) = [{i | MEC(X:[j, k], H[j, k]) = 1}]|-
i | MEC(X[5, k], H[j, k]) = O}

Informally, the weight of the edg@, k) is the number of fragments inconsistent with the
current phase between the pair minus the number of fragments consistent with the phase
H[j, k]. In other words, the weight represents the “weakness” of the phasing between
columnsi andj. A Cutin the graphG'x (H) is defined by a subsét C X of vertices.

The weight of a cut in Gx(H) is given by

wp(S)= S wn( k)
jeS kex—S

Given a haplotype paif/, and a cutS in Gx(H), the haplotype obtained the flipping

the values of the columns ifiis denoted by, as illustrated in the example below:
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S={3,4,511}

Such transformations are effective for improving the MEC score, as exemplified

by the following theorem.

Theorem 2Q Let X be a fragment matrix with each fragment of length 2. For any
haplotype pairH, let S C X be a positive weighted cuty(S) > 0 in the graph
Gx(H). Then

MEC(Hg) = MEC(H) — wg(S) < MEC(H)

If Sis a MAX-CUT in the graph=x(H), thenHg is an optimal MEC solution
for X.

Proof: ~ Consider a cuf in the graphGx(H). Let Hg be the haplotype obtained by
flipping the columnss of H. Clearly, MEG H) — MEC(Hj) is equal to the value of this
cutwg (S). The maximum value of this difference is reached when the cut is a max-cut

and thereforéds is an optimal MEC solution. s

The above theorem implies that given a current haplotype faany positive
weight g (S) > 0) cut leads to a haplotyp@ds) with a lower MEC score. This can
be repeated iteratively resulting in haplotypes with decreasing MEC scores. If we can
compute the MAX-CUT in a single step, we can find the optimal MEC solution, how-
ever this is not necessary. Based on this observation, an algorithm that looks for positive

cuts inG'x (H) can be used to optimize the MEC score as below.

Procedure HapCUT

Initialization: Choose an initial haplotype configuratiéft randomly.

Iteration: Fort=1,2,...

1. Construct the graptV'x (H*)
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2. Compute a cuf in Gx(H") such thatvy(S) >0
3. fMEC(HY) < MEC(H'), H'' = H,
4. ElseH'™ = H!

The iterative procedure HapCUT is run until we can no longer get an improve-
ment in the MEC score. While Theore2d holds only when all fragments have length
2 (and also for fragments of length 3 as we show in the next section), the algorithm
HapCUT as described above works for arbitrary sized fragments. In order to ensure that
HapCUT has good performance on real data, it is important to be able to compute high-
scoring cuts in the graptyx (H). First, we show how the edge weights of the graph

G x(H) can be weighted appropriately for long fragments.

6.2.3 Assigning weights to edges ¢f x (H)

In the previous section, we described a simple formula to assign a weight to each
edge of the grapt¥x (H). This formula gives disproportionately more weight to longer
fragments, i.e. a fragment of lengthcontributes a total absolute weight @f) to the
graph. The weighting scheme can be modified to ensure that The2etso holds
for fragments of length 3. We simply scale the contribution of the fragment to each
edge by 1/2. Now, a fragment of length 3 can have a MEC of 0 or 1. An MEC of 0
corresponds to the three vertices (columns of the fragment) being on the same side of
the cut and therefore contributing O to the cut value. An MEC of 1 corresponds to two
of the vertices being on one side and therefore the fragment contributes exactly 1 to the
cut after scaling. As the scaling %f—l for a fragment of lengtlk is consistent with the
weights for fragments of length 2 and 3, we adopt it for computing the edge weights
of arbitrary length fragments. Results on real data indicate that this works well, even
though we do not know of a scaling under which Theo&hholds for arbitrary length

fragments.
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6.2.4 Computing Max-Cuts

The problem of computing a maximum-weighted cut is known to be NP-complete
(Garey and Johnsot979, even when all edge weights are restricted to be 1. However,
we only need to find a positive-weighted cut in order to improve the MEC score. Simple
heuristics can find good cuts if all weights are positive. Indeed, a greedy he @adtia(
and Gonzalez1974 will give a cut which has at leas$t5 of the total weight of the
edges of the graph. When the MEC scorgbfs poor and far away from the optimal
MEC value (e.g. for a random haplotype pair), most of the edges of the gigpH )
have positive weights and finding a positive-weighted cut is easy. However, when the
MEC score ofH is close to the optimum, most of the edges of the gragti /) have
negative weights, and the greedy algorithm is not guaranteed to find a positive-weight
cut. On the other hand, presence of a highly negative weight edge between two vertices
s andt of the graph also implies that a positive-weight cut is unlikely to separatel
t. Therefore, for the purpose of computing a positive-weight cut, we can “contract” the
edge(s,t). We use a two-step greedy algorithm for computing a max-c@ #iH ).

First, we find a cut where most of the negative weight edges do not go across the cut. In
the second step, we move vertices from one side of the cut to the other if this improves

the weight of the cut. The complete greedy heuristic is described below:

Greedy-Cut(Gx (H))

Initialization : BestCut = e
Iteration : IterateO(m log m) times

1. Chose an edges, t) of the graph uniformly at random
2. Initialize S; = {s} andSy = {t}

3. While S; U Sy #V
(a) Foreach vertex ¢ S;US, compute the scoré(v) = > ¢ wy(v,s1)—

ZSQESQ wH (U7 82)



139

(b) Letwv,,,. be the vertex for whichA(v)| is maximum
(€) If A(Vpaz) <0,S1=S1Uv

(d) else if A(vynaz) > 0,52 = S Uw

(e) else add uniformly at random tcb; or S,

4. repeat

(a) OldCut= ’LUH(Sl)
(b) If v € S; andA(v) > 0, movev from S; to S,

(c) If v € Sy andA(v) < 0, movev from S, to S}

until wg(S;) < OldCut

5. If wy(S;) > BestCut, BestCut g (.S;)

Final: Return BestCut

The first phase of the above algorithm (Step 1-3) is designed to find a cut in
which the highly negative weight edges do not cross the cut. The cut is initialized using
an edge of the graph and the algorithm is repeated enough times to make sure that every
edge is considered. Step 4 by itself is exactly the well-known Greedy algorithm for

computing max-cut§ahni and Gonzale1974).

6.3 Results

We used the filtered HuRef data frobevy et al, 2007 to evaluate our algo-
rithm HapCUT . The data contains a total of 1.85 million heterozygous variants for the
22 autosomes. As a typical example, chromosome 22 contaihéds variants en-
coded by103, 356 fragments. Only3, 279 of these cover more than one variant and
are therefore useful for haplotype assemHly, 119 of these fragments correspond to
mate-pairs. The chromosome is partitioned into 609 dis-connected variant “blocks” or

connected component based on the links between variants in addition to 921 isolated



140

variants. These blocks provide large haplotypes, clearly illustrating the power of this
haplotype assembly. However, as the length of our haplotypes is predetermined by the
connected components, we do not discuss this further, referring the interested reader to
Levy et al, 2007. The haplotypes for each of these blocks are assembled independently.
The average number of calls for a variant is 6.7 (see Figul(@) for distribution of the
number of variant calls per fragment). A fragment spans 9.67 variants but has only 3.25
variant calls on the average (see Figar&b) for distribution of the difference between

span and length). This clearly indicates the highly “gapped” nature of the fragment data.

6.3.1 MEC scores for HuRef chromosomes

We ran HapCUT for each of the HuRef chromosomes. For each chromosome,
the algorithm was initialized with a randomly chosen haplotype. We found that the
MEC score improves as we iteratively compute cuts and change the haplotypes. Most
of the improvement in the MEC score happens in the first few iterations with no further
improvement after 40-50 iterations. We compared the MEC scores for the HuRef data
using four different algorithms: i) the greedy heuristid ey et al, 2007, ii) Fast Hare
(implemented as describedRanconesi and Soz{@004)), iii) the Markov chain Monte
Carlo algorithm HASH and iv) our algorithm HapCUT (see Figard.

HapCUT performs significantly better than the greedy heuristic (the MEC scores
are 20-25% lower for all chromosomes) and very similar to HASH. The performance
of the heuristic Fast Hare is generally worse than that of the greedy heuristic. For a
few connected components, the MEC score for HASH was slightly lower than that of
HapCUT (run for 100 iterations). On all of these cases, a greedy choice of the cut did
not improve the MEC score (data not shown). Clearly, an MCMC sampling approach
has the advantage of being able to make sub-optimal choices and thereby reach sample
a slightly better haplotype. On the other hand, for some of the chromosomes, we ob-
served that the total MEC score of HapCUT was better than that of HASH. A possible

explanation is that while the objective of HapCUT is to find the optimal MEC solution,
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Figure 6.2: MEC scores (divided by the number of variant calls) for the HuRef chromo-
somes for four different methods. The performance of HapCUT and HASH is compara-
ble, and significantly better than the greedy heuristic and Fast Hare.

HASH is geared towards finding the maximum likelihood solution. The two may be dif-
ferent when fragments have lengths greater thaHapCUT also offers the advantage

of fast computation time in comparison to MCMC sampling algorithms such as HASH.
For chromosome 22, HapCUT takes less than 30 minutes to compute the MEC score
while HASH takes more than 10 hours. For all chromosomes, HapCUT was an order of

magnitude faster than HASH (results not shown).

6.3.2 Simulations using HuRef data

We tested the performance of HapCUT on simulated data generated using the
HuRef chromosomes. The fragment matrix for a chromosome was suitably modified to
make it “error free” or perfectly consistent with a particular haplotype. To generate a
fragment matrix with error rate of (0 < ¢ < 0.5), each variant call in the fragment

matrix was flipped with probability. We ran HapCUT on this modified fragment matrix
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Flipped versus computed MEC Switch error vs. coverage
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Figure 6.3: (a): Number of Simulated versus estimated errors and (b) Haplotype switch
error as a function of depth of coverage (number of calls for a varianty, fer0.02.
The switch error decreases with increasing depth.

and compared the reconstructed haplotypes with the true haplotypes. In Eigae
we plot the best MEC score (scaled by the number of variant calls) against the simulated
error rate, i.e. the fraction of variant calls that were flipped. We observe that the MEC
score is always less than the number of flipped calls and ratio of the MEC score to the
number of flips decreases as the error rate increases. This is to be expected, because as
the number of flipped variant calls increases, some calls might become consistent with
a different (lower MEC) haplotype.

Flipped base-calls could also result in errors in the reconstructed haplotypes. If
the depth of coverage is low, very little can be done to recover from the error. Also, if
¢ is high, the optimal haplotype could well be different from the one we started with.
However, we expect that at high depths of coverage and low-error rates, a correct hap-
lotype can be recovered accurately. In Figargb) we plot the switch error (number
of switches between the original haplotype and the reconstructed haplotype against the
depth of coverage, i.e. for a particular value on the x-axis, we ignore variants with cov-
erage below that value for computing the switch error. One can clearly see that as the
depth increases, the switch error decreases friami1.11%of the site$to 17 (0.098%).

Not surprisingly, we also find that the flipped variants are largely the same as
the one that mismatch the computed haplotype. OB#@ fragments for which some

variant call was flipped, we identifiet213 that also mismatched against the computed
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haplotype. An additional46 fragments that did not contain flipped alleles mismatched
with the computed haplotype. Overall, these results indicate the robustness of our solu-

tion to errors in the data.

6.4 Maximum Likelihood estimate of the Switch error

rate of HuRef haplotypes

The MEC score measures the consistency of the haplotype assembly with the
fragment matrix. However, we are also interested in the absolute accuracy of the in-
ferred haplotypes. The absolute accuracy can be measured using the switch error rate,
which is the fraction of adjacent pairs of sites in the HuRef individual whose phase
is incorrect. We have used the phased haplotypes from the HapMap progedt(-
ternational HapMap Consortiyr2005 to obtain a Maximum Likelihood estimate of
the absolute accuracy of the HuRef haplotypes. As the Huref individual is European
in origin, we compare the HuRef haplotypésagainst the set of 120 CEU HapMap
haplotypes restricted to the set of SNPs heterozygous in the HuRef individual. The two
HuRef haplotypes are a mosaic of the population haplotypes and a direct comparison
of the full haplotypes with the HapMap haplotypes is not possible. We compute the
likelihood of the haplotype&? conditional on the CEU haplotypes and as a function of
the switch error rate.

Consider a pair of adjacent SNRg heterozygous in the HuRef individual. Let
foorfo1,f10 @and f1; be the frequencies of the four pairs in the HapMap CEU sample. If
H, denote the true HuRef haplotypes (unobserved), the likelihood of the phdging|
being (00, 11) is given by

PT(HT/[Z?j] B (007 11)) N fOOfll]iOZ._fl.;.Olflo

We can similarly compute the probabilityr(H,[i, j| = (01, 10)). For aswitch error
rate e, the likelihood of the phasing between the pairj) is given by

LH(ivj) = (1 - as)Pr(Ht[ivj] = H[Z’]D +55Pr(Ht[ivj] 7é H[Z7j])
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Figure 6.4: Haplotype log-likelihood curves for four different values of the switch error
rate.

The switch errors betweelf and H; are a result of sequencing errors and likely
to be distributed independent of LD. Therefore we can assume the switch errey rate

to be uniform for all pairs. We approximate the likelihood of the full haplotypas

n—1

Ly =[] Lu(i,i+1)

i=1

The haplotype likelihoodLy) is a function of the switch error rate and the
LD in the HapMap haplotypes. If there are very few switch errors betwéemd H,,
then the likelihood functiorl.y is expected to be maximum for values «fclose to
0. As the number of switch errors increases, the contribution of the second term in the
likelihood Ly (i, 7) increases and therefore the Maximum Likelihood (ML) estimate of

g, Should increase. We have used the HapMap haplotypes to evaluate if the Maximum
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Figure 6.5: The log-likelihood curve for the HuRef haplotypes for chromosome 22.

Likelihood estimator is a good estimate of the switch error rate. The haplotypes for
one of the 60 CEU individuals was chosen to represent the true haplotjpegve
then simulated switch errors randomly with varying switch error ratg® to 0.05) to
generate the haplotype pdir. The likelihood function’.; was then plotted for different
values of the error rate (see Figugel for likelihood curves for four different values of
gs). From the likelihood curves, we see that the ML estimate is a good estimate of the
switch error rate with a tendency to slightly over-estimate the switch error rate. For
a simulated switch error rate of 0.01, the likelihood was maximumefoe= 0.013.
Similarly for an error rate of 0.02, the ML estimate wag22.

We then plotted the haplotype likelihood £) for the HuRef haplotypes (in-
ferred using HapCUT) as a function of the switch error m@tésee Figure 6 for a plot
for chromosome 22). The likelihood curve is flat in the region 0.013-0.015 with a max-
ima at 0.014. From this, we can infer that the switch error rate of the HuRef haplotypes
is slightly more than 1% but no more than 1.4%. In comparison, the switch error rate
of haplotypes inferred from CEU population data is 5.4% for unrelated individuals and

0.53% for parent-child trio(archini et al, 2006).
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Chapter 7

Markov chains for Haplotype

Assembly: Mixing time analysis

7.1 Introduction

In chaptel5, we proposed a Markov chain Monte Carlo framework for the haplo-
type assembly problem. Within this MCMC framework, we saw how different collection
of subsets of the fragment matrix result in different Markov chains. In this chapter, we
analyze the mixing times of two Markov chains for a family of fragment matrices. We
derive explicit lower and upper bounds on the convergence of the Markov chains that
demonstrate that a cut-based Markov chain is more efficient at sampling the haplotype
space. The upper and lower bounds on convergence times are derived using novel cou-
pling, and conductance based technigugisdlair and Jerruml989 Jerrum and Sin-
clair, 1997. These results provide theoretical justification for the better performance of
our cut-based MCMC algorithm, HASH, for haplotype assembly and also are interest-
ing in their own right. Before we present these results, we give some formal definitions

about certain properties of Markov chains and the concept of mixing time.

Definition 7: Let M be a Markov chain on a finite state spazevith transition matrix

P = (pij); jeq- The chain is said to be ergodic if it is irreducible, i.&;; > 0 for

148
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some natural number > 0 and alli, j € 2 and aperiodic. A Markov chain is said to
betime-reversibléf there exists a probability distribution = (7;),., that satisfies the

detailed balance&ondition
DijT; = PjiTy = Q(Z,j), for all 1,] € Q

It is well-known that thisr satisfying the detailed-balance condition is the unique sta-

tionery distribution, as
(7P)j] = Y miPy =) miP =

Within our Markov chain Monte Carlo framework, a fragment matkivwith n
columns, a corresponding matxof error probabilities and a collectidn of subsets
of the columns ofX defined a Markov chain denoted bv((X,¢,T"). A fragment
matrix is a matrixX with m rows where each row is a string of lengthover the
alphabet{0, 1, —}. Corresponding to this fragment matrix, we have a matrixX error
probabilities wher® < ¢;[j] < 1if X,[j] # — andg;[j] = — if X;[j] = —. For brevity,
we will omit X andq whenever they are implicit, and denote the Markov chain as simply
M(T"). A state of this Markov chain is an unordered haplotype faie (hq, hy) where
h, andh,, are binary strings of length over the alphabef0, 1}. Moreover,h, is the
bit-wise complement of,;. The state space is the setf ! haplotype pairs. The
transition probabilities are defined based on the collection of subsétsr every state
H, there aré: + 1 possible transitions, including the self-loop, whéres the number
of subsets if".

Every transition of the Markov chain is of the formff — Hg where H is

the current state (haplotype pair) afdis a subset of columns oX. For example,
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H Hs
S={3,4,5,11}
10111000101 10003000100
01000111010 = - 01111111011

Pr(X|Hg,q)

The probability of the transitiol — H is 5 min [1, PrXg)

} and the prob-
ability of the self-loopH — H is % These probabilities completely define the transition
matrix of the Markov chainM(I"). Our first result is to show that1(I") has stationary
distribution Pr(X|H, q)(~ Pr(H|X,q)), providedl" includes a minimal collection of

subsets. Formally,

Theorem 21 LetI; = {{1},{2},...{n}}. For every fragment matriX(, error
probabilitiesg;[j] > 0 (Vi,7), and anyl' O T'y, M(T") is ergodic (i.e. irreducible &
aperiodic)with Pr(X|H, q) as its stationary distribution.

Proof: If 'y C I, then starting from any haplotype configuratiii we can reach
any other haplotype configuratiati, by flipping the locations (in an arbitrary order)
that they differ in. The probability of this sequence of transitions is non-zero since
¢[7] > 0Vi,j. Hence, for any pair of haplotype$;, and H,, P'(Hy, H,) > 0 for
somet < n wheren is the number of columns. Aperiodicity is ensured by the fact that
with probability at least /2, the Markov chain remains in the state that it is currently
in. Finally, it can be verified that the detailed balance condition is satisfiedfoe

Pr(X|H,q), as for any neighboring/, H’,
myPr(H,H') = 7gPr(H', H) = min{Pr(X|H,q), Pr(X|H' q)}

Therefore, the stationary distribution of the chaiPisg X |H, ¢).
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7.2 Mixing time of Markov chains

Mixing time represents the number of steps after which the Markov chain is
guaranteed to be “almost” sampling from the required posterior distribution. From the
perspective of sampling using Markov chains, mixing time is similar to the running time
of an algorithm, i.e. a low mixing time corresponds to an efficient Markov chain. More
formally, mixing time of a Markov chain is defined based on the distance of the chain

from the stationary distribution.

Definition 8: The distance of the Markov chain from the stationary distributicat

timet is defined as
1
t o t
[1P!, || = max o > | PG — ]

JEQ
For anye > 0, the mixing time of the Markov chain is defined as

7(e) = min{t : ||P", 7|| < e, V' >t}

A Markov chain is said to be rapidly mixing if the mixing time of chain can be
bounded from above by a polynomialinand loge~! wheren is the size of each state
of the chain. Several techniques have been developed for analyzing the mixing time of
a Markov chain in the computer science community (&eum and Sinclaif1997) for
an excellent review of these methods). In the remainder of this section, we describe

some of these techniques and results that we will subsequently use for our analysis.

7.2.1 Conductance and Mixing time

Definition 9: For a finite spaced Markov chai, consider the undirected weighted
graph with vertex sef and edge set = {(z,y) € Q* : Q(x,y) > 0}. The conduc-

tance Ginclair and Jerrupil989 of the Markov chainM is defined as

B . Q(S,5)
P(M) = SCQ,OElﬂ'l(IAlS)<1/2 ( 7(9) )

whereQ(S, S) = > Q(z,y) for all pairs(z,y) such thatr € S andy € S.
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Intuitively, the conductance measures the ability of the Markov chain to escape
from any subset of the state space. A low conductance implies that the conditional
probability of the Markov chain escaping from some suldset () in a single step is
small. The following result tightly relates the mixing time of a reversible Markov chain

to the conductance.

Theorem 22 [(Sinclair and Jerrunil989 Sinclair, 1992 Randall 2006] Let M be a
finite, reversible, ergodic Markov chain with loop probabilitiesz, z) > 1/2 for all

statesr. Then

log((207) _
49 -

for any choice of initial state.

210((rye)")
r(e) £ =B

The mixing time of a Markov chain can also be related to the spectral gap of
the transition matrixP. Let Gap(P) = \g — |\1| be the spectral gap aP where
Ao, A1, ..., Ajgj—1 are the eigenvalues d@f. Also, 1 = A\ > [A\;| > A forall i > 2. If
P(z,x) > 1/2for all z € Q, the spectral gap tightly bounds the mixing time on both

sides:

Theorem 23 [Sinclair(1992]

s (30) == Gy (Game)

7.2.2 The Coupling Argument

A coupling for a Markov chainM is a stochastic procegs(,, Y;) on 2 x Q
such that X;) (or (Y;)) considered marginally is identical to the Markov chaiv The
Coupling Lemmaldous 1986 states that the distance of a markov ch&hfrom its
stationary distributionr is bounded from above bir[X; # Y], i.e. the probability that
the coupling(X;, ;) for M has not coupled. This holds for any coupling, therefore, if
one can construct a coupling with low coupling time, it implies that the corresponding

Markov chain has low mixing time. We present a formal definition of a coupling:
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Definition 10: A coupling for a Markov chainM is a stochastic process(;, ;) on

2 x Q with the following two properties:
1. Pr{Xip = y| Xy = 2] = P(x,y) = Pr[Yia = y|Y; = 7]
2. |f Xt = Y;, thenXtH = )/1-54“1

We will use the following theorem:

Theorem 24 Let (X,,Y;) be any coupling for the Markov chaif and let§ be any
integer valued metric defined éhx 2. Suppose that there exists a positivel 1 such
that

E[0(Xi11,Yi)] < B(X,, Y1)

for all t. Let D be the maximum value of the metrc For 3 < 1, the mixing timer (¢)
of the Markov chainM satisfies

log(De™)
(1-7)

For 5 = 1, if there exists amv > 0 such that

7(e) <

Pr{6(Xis1, Vi) #0(X, V)] > @

for all ¢, then the mixing time-(¢) is bounded as
eD? _
v(e) < [~ 1Tlog(e )]

7.2.3 The canonical paths argument

Another technique for proving upper bounds on the mixing time of a Markov
chain is what is called the canonical path argument. Consider the undirected weighted
graph underlying the Markov chaifvf as defined previously. For each ordered pair of

states(x,y) € Q?, define a canonical path,, that goes fromr to y using edges of
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the graph. LetW be the set of all canonical paths. Define the congestion of the set of

canonical path¥’ as

p(0) =max—— 3" w(@)n(y)lny|

cer (6) Yay,e€Pzy

where|v,, | is the length of the canonical path,,. Intuitively, a Markov chain
will have a low mixing time if no edge is heavily loaded, i.e. there exists a set of
canonical patha for which p(¥) is not large. The following results formalizes this

notion.

Theorem 25 [Sinclair(1992] Let M be a finite, reversible, ergodic Markov chain with
loop probabilitiesP(z, x) > 1/2 for all statesr. For any set of canonical patlis the

mixing time of M satisfies

for any choice of initial statg.

The canonical path argument represents an useful algorithmic technique for an-

alyzing the mixing time of Markov chains.

7.2.4 Decomposition Theorem for analyzing mixing time

For many Markov chains, it is not easy to directly analyze the mixing time using
one of the techniques described previoudi§adras and Randa(R002 introduced a
new approach to analyze the mixing time of a Markov chain based on decomposing the
state space of a Markov chain into smaller pieces, each of which can then by analyzed
using the standard techniquddartin and Randal(2006 presented similar results for
a disjoint decomposition of the state space. Informally, these decomposition results
show that if the state space of a Markov chain can be decomposed into disjoint subsets

such that the Markov chain restricted to each of these subsets is rapidly mixing and, in
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addition, there is sufficient ergodic flow between the subsets, the original Markov chain
is rapidly mixing.

Let Qq,Q,,...,,, be disjoint subsets db such thaty;©2; = 2. We define the
Markov chain restriction\; of M to (); as the Markov chain obtained by rejecting all
moves between elements @f and those outside this subset. More formally; i y
andz,y € €, thenPy,(z,y) = P(x,y) andPo,(z,2) =1 -3 . ., Po,(z,y).

The Markov chain that moves between the sub&gts$2,. . .., (,, is called the
projection Markov chainM ; and is defined on the spt| = {1,2,...,m} where each

pointi corresponds to the s@t. The transition matriX’y (i, j) is defined as

}%fwvj)::

Y. w@)P(zy)

x€8);,y€);

m(€2))

Note that the Markov chain 1y is also a reversible and ergodic Markov chaino.

Theorem 26 [ Martin and Randal{2006] Let F,, and P, be as defined above. Then

1
Gap(P) > iGap(PH) Erllin Gap(Py,)

Using this inequality, the mixing time of the chaitf can be bounded using

upper bounds on the mixing time @ff; and each of the chainst;.

7.3 A Family of Fragment Matrices

We will analyze the mixing time of Markov chains for a family, ,, of matrices.
Figure7.1depicts an exampl& € X, ,. For anyX € X, ,, there are a total of sites,
andd- (n—2)+2 fragments. Each fragment occupies exa2thdjacent sites (columns)
in X. For each adjacent pair of positiofisi + 1) except the middlei(= [n/2]), there
are exactlyd fragments, each supporting the phasffag, 11). Ati = |n/2], we have

two fragment$)0, and01, which support either phasing. There are exactly two optimal
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Figure 7.1: A fragment matrix,, (n = 20, d = 2 as shown) for which two haplotypes

H, and H, have equal likelihood.

haplotypes

00000 .. 00000 = 00000...11111
11111...11111 11111 ...00000

Consider the haplotypH as two paths (corresponding/ioh) from positionl to
n. Using this, we caswitchpaths to move from one haplotype to another. For example,

we need 'one switch’ to move frorif! to H2. Let H & H' denote theswitch-distance

(the number of switches needed to transform one into the other) between haplotypes

H, andH'. For any haplotypé?, we defineD(H) = min{H & H', H ® H*}. Note
that, D(.) is a function from the state spafeof the Markov chain to the set of integers

{0,1...,n—2}. For0 < k < (n — 2), define
DF = {H|min{H ® H',H ® H*} = k}

It follows thatD® = {H', H?} and for allH € D*,

The cardinality of the seb* is 2(", ?).
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Lemma 27

-2
Dk —of"
D (k)

Proof: Once thek positions where the haplotype switches from O to 1 or 1to O
are chosen, a unique haplotype is defined. Using this definition, the total number of
haplotypes pairs 8", (", %) = 2"

)

Next, we show that(H') and7(H?) dominate the probability space for small

enough values op.
Lemma 28 Forp < 5-, m(H') + w(H?) >

1
3

Proof:

= (r(H) +7(H?) = (1+p) "
(r(H") +7(H?) = ((1+p)")

k+

Using the inequality(1 + 1) > ¢ (for all k > 1),

(r(HY) + 7(H?)) > (e) T2

1
Forp < 5-, we have

(m(HY) +7(H?) > > 1/2

(&

S
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7.3.1 M(T'1) has poor mixing time

We use the conductance argument to show that the mixing time for the Markov

chainM (X, ¢, I'1) grows exponentially witll, the depth of fragment coverage.

Theorem 29 Consider a fragment matriX (n, d) with n columns andi * (n — 2) + 2

rows with structure as described in Figurel Let ¢ be the uniform error probability

d
for all positions and defing = (pfﬁ‘;) . For anye > 0, the mixing time of the Markov

chainM(I'y, X (n,d), q) is Q (log () np™?).

Proof: ChooseS = {H'}. There are exactly. edges betwee andS. Of these
n — 4 have load exactly?r(H') and 4 edgesl(n/2,n/2 + 1,n) have weighiprr (H*).
Therefore,

Q(5,5) = "=ttt + pn(ir) < (o + 2 ) (i)

and
m(S) = 7(H")

Thereforep < p* + < 55 and the bound on the mixing time follows.

n

7.4 A Markov chain with polynomial mixing time

For the fragment matriX(;,, shown in Figure7.1, if we include the subséilmg
(columns 1 to n/2) i, the Markov chain in staté/; will move to H, whenever this
subset is sampled and vice versa. Intuition suggests that the mixing time of the Markov
chain should also decrease since the bottleneck in moving betifreand H, has been
removed. However, proving that the mixing time of the Markov ch&iql’; U S ,,/2)
does not grow exponentially witll is not so easy. Using a combination of tools for
analyzing the mixing time of Markov chains, we will demonstrate that the mixing time
of the Markov chain resulting from = I'; U S, ,,/2 is polynomial inn (the number of

columns) andl. The following theorem represents the main result of this chapter.
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Theorem 3Q Let X € X, be chosen arbitrarily, angl > 0 be the uniform error
probability for all positions. For any > 0, the mixing time for the Markov chain
M(Fl -+ Sl...n/27 de, q) is O(nloln(e_l)).

We will use the Markov chain decomposition toMARTIN and RANDALL,
2006 (see Theoren26) to prove this result. Our decomposition of the state space is
very simple: everyD* 0 < k < n — 2 is a subset corresponds to a subset in the
decomposition. In other words, there are 1 subsets. Note that, the sef has2 (”;2)
states/haplotypes all of which have the same probabhiliff). We denote the Markov
chain on the set of haplotype* by M. Using the coupling technique, we will prove
that the mixing time of each of the chaind, is bounded by a polynomial in. We
will use the canonical paths method to bound the mixing time of the projection Markov
chain Mpg. Using these bounds and Theorem 11, we will prove a bound on the mixing

time of the full Markov chain.

7.4.1 Mixing time of the Markov chain restricted to D*

Theorem 31 Let M, denote the Markov chaiM (I'y + S1_,./2, Xan, q) restricted to

the setD*. Then, the mixing time of\1,, is bounded as follows:

7(e) < e(n+ 1)3k2 [log(e™™)]

wherec is a small constant.

Proof:  We will construct a couplingX;, Y;) for this Markov chain. Recall that the
setD* represents all haplotypes whose minimum switch distance fildror H? is k.
Therefore, any haplotype i* can be represented as an integer vector of lekgth
(x1, 22, ..., x;) Which represent the positionBdntiers) where the haplotype switches
fromOto 1 or 1to O, except for the positionz , ;. In order to include a possibility of a
switch in the middle (this does not affect the probability of the haplotype), we include an

extra bit for each haplotype. Therefore, every haplotyp@’iis represented by a length
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k integer vector padded with a single bitry, s, ..., zx),b) whered < z; < x5... <
x < n. The “middle region” fromz; to z;1, wherez; < n/2 < x;, is always
assumed to be a single block even when there is an extra-flip.,at In the best case,
there arek + 1 new haplotypes that can be formed from a haplotypP‘ir(each of the
k frontiers can be moved to the left and right, and additionally, each haplotype can be
flipped in the middle by setting € {0, 1}). The transition probability of each of these
moves ism. With all the remaining probability, the Markov chamt,, (restriction
of M to D¥) stays in the current haplotype. We denote the haplotype formed by moving
the-th frontier to the leftas\'(i~) = ((x1,...,2;7,...,zx),b) and the one formed by
moving it to the right asX (i *) = ((z1, ..., 2", ..., %), b). Note that ifz; ., = z; + 1,
we cannot the move the frontier to the right. Similarlyyif , = z; — 1, we cannot move
the frontier left. Another observation that will be useful is the following. Consider
the block(z;, z;41). If the length of this block is 2 or more, we can flip the bjtto
transform the haplotype intdzy, z; + 1, 241, ..., 2%),b) € DF. Similarly, we can flip
the bitz;,, — 1 to transform the haplotype intdx,, z;, zi1 — 1,...,2%),b) € D*. In
either case, the frontier position shifts right or left by one. The first block is represented
as(xg = 1,z — 1) and the last block agey, n).

Let X = ((x1,22,...,2%),b;) @ndY = ((v1,v2, - .., yx), b,) be any two haplo-

types inD*. We define a distance metrddoetween these two haplotype as

5(X,Y) = (2 2 —yi|> T |b, — by

i=1...k
This distance metrié is what we will use for constructing the coupling. Note that if
J(X,Y) = 0, the two haplotypes are identical. The following lemma proves that the
above distance metric is a valid metric in the sense that there is a sequence of valid tran-
sitions of lengthy (X, V') that transforms the haplotype€ into Y. Also, the maximum

value that this metric achieves @ is bounded byin + 1)k.

Lemma 32 For any pair of haplotype&X;,Y;) where X;,Y; € DF, there exists a

sequence of transitions i of lengthd(X;,Y;).
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Proof:  We use induction o, the number of frontiers to prove the result. The result
clearly holds fork = 0. There are only two haplotypes in” and the distance between
these two haplotypes is 1. Flipping the subSgt,,/, transforms one haplotype into the
other. Note that in general, b, # b,, the first transition will be to flip the subsét. ., .

of one haplotype to makig, andb, equal.

Let us assume that the result holds for= r, i.e. for any two haplotypes of
length< n andr frontiers, there is a sequence of transitions with lergtk,;, Y;) that
transforms one haplotype into another. DéandY be two haplotypes itD"*!. Con-
sider the first frontier ofX’ andY” starting from the left. Ifz; = y;, then we can ignore
the part of X andY before the first frontier and consider the two haplotypes =
(29, ..., 2m41) @andY_y = (4o, ..., y,+1) €ach withr frontiers. Clearlyd(X,Y) =0+
§(X_1,Y_y). Using the induction hypothesi§(X_1,Y_1) = (3, .1 |z — uil) +
b, — b,|. Therefore, it follows that(X,Y) = (},_, .., |z —wl) + |b. — b, and
the result holds. Now consider the case where+# ;. Without loss of general-
ity, we will assume thatr; > y; > 1. We can flipz; — y; bits in the sequence
x4+ 1,21, — 1,...,y; + 1 in the haplotypeX until the first frontiers of both haplo-
types match. All these moves do not change the number of frontieXsaofd therefore
are valid moves. After this sequence of moves, we can again consider the two haplo-
typesX_ 1 = (zo,...,2,41) @ndY_; = (ya,...,y,4+1) €ach withr frontiers. Using the
induction hypothesis,

0(X,Y) = |or — | +6(X 0, Vo) = ( > wi- yi|> + [bs — by

i=1..r+1

which proves the required result.

Lemma 33

max 6(X,Y)<(n—-2k+1
X,Y €Dk

Proof: ~ The maximum value ofr; — y;| cannot exceed — 2 for a haplotype of length

n. Therefore, the sur®® ., , |z; — v;|) cannot exceefr — 2)k. The result follows.
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&

Now, we will construct a couplingX;, Y;) — (X;11, Y;+1) for any pair of hap-
lotypes(X;,Y;) whereX,,Y; € D* such that the expected distanEés(X;,,Y;11))
is no less than(X;, ;) and in additionpar((5(X;+1, Yis1)) is sufficiently large. This

allows us to use the bound on the mixing time for the gasel.

Theorem 34 For any pair of haplotypeX,, Y; € DF, there exists a couplingX;, Y;) —
(Xi41, Yiq1) suchthaty (6(Xiq 1, Yiqr)) > 0(Xe, Y2) @andPr(0( X1, Yig1) # 6(X3, Y1)] >

1
2(n+1)"

Proof: Letk; be the number of blocks of, of size 2 or more anél, be the number of
blocks ofY; of length 2 or greater. We assume that> k. without loss of generality. As
we saw before, there a?&, +1 valid moves for any haplotyp&, ¢ D* where0 < k; <

k. Each such move has transition probabi%. With probability 1 — 25’;;1*‘21, the

haplotypeX; does not change. One can think of this probabilitgas- 2 - k; + 1 moves,
each with probabilityﬁ that takeX; to X;. This notion of splitting the probability
will be useful to describe the coupling. For every pa¥;,Y;), we will add 2k, + 1
transitions to the coupling that changg. Some of these will be coupled with moves
that also chang#;, others will be coupled with moves that do not chaihgeSimilarly,
the coupling will havek,+ 1 moves for whicht;,; # Y;. All transitions in the coupling
will have probability;-.

We first define the coupling transition for the bitsandb, as follows: Ifb, = b,,
we add the two transitionsX;, Y;) — (X, Y;) and(X;, Y;) — (Xi(1—b,), Yi(1—0by)).
If b, # b,, we add the two transition§X,,Y;) — (X;(1 — b,),Y;) and (X,,Y;) —
(X%, Yi(1—0,)). Clearly,d (X (1—0b,),Y:)+0(Xy, Yi(1—by)) = 2x0(X}, Ys), therefore
the expected distance is unchanged. ARO[ (X 1, Yiy1) # 0(X,, Yi)] > 2(”—1“)

We first consider the first blocl0, z; — 1) in the haplotypeX, and the corre-
sponding block ofY;. If the block of X; is of length 1 and the block df; has length

at least 2, we add the following transition to the coupliig, ;) — (X, Yi(17)).
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If the block of Y; is of length 1 and the length oX; is greater than 1, we add the
move (X;,Y;) — (X;(171),Y;) to the coupling. In both cases, the following is true:
(X1, Y1) < 0(Xy,Yy) and Pr(d(Xiq1, Yig1) # 6(Xs, V3] = m If both blocks
are of length at least 2, we add the transitio, ;) — (X;(17),Y;(17)) to the cou-
pling. We can similarly define transitions for the last block\gfandY;. Transitions for
all other pairs of blocks are defined according to the following rules: Consider a block
(x;, i1 — 1) of X, and let(y;, y;41 — 1) be the corresponding block ®f.
Case l:y;.1 = y; + 1.

Independent of the position of the blo¢k, y;+1 — 1), flipping z; andz;,; — 1
will always have the opposite effect an We will add two transitions to the cou-
pling: i) (X;,Y;) — (X:(i7),Y;) and ii) (X, Y;) — (Xi((i +1)7,Y;). The expec-
tation E(5(X¢41, Yir1)) = 0(Xy, Y;) for the two transitions combined together and
Pri6(Xepr, Yeer) # 0(Xe, Yy)] = ﬁ
Casell: z;yy = z; + 1.

Using symmetry, we can define the coupling transitions based on Case | above.

Case lll: y; < z; andy; 11 < x;11 andy;.1 > y; + 1.

As before, flipping the positiom; will increase the distance betweéf andY;
and flippingx;,; — 1 will decrease’. Flipping y; decreases while flipping y;,1 — 1
increases. We will add the following two transitions to the coupling: (iX;, Y;) —
(X,(i7),Yi((i +1)7) and ii) (X, Y;) — (X,((i +1)7),Y:((:)"). For the first transi-
tion, 0( X1, Yie1) = 0(Xy, ;) + 2 and for the othery (X1, Yii1) = 0(Xy, Vi) — 2.
Therefore, the expectatiofi(6( X, 1, Y1) = §(X;,Y;) for the two transitions com-
bined together andr[5(X, 1, Yi11) # 6(X, Yi)] = 5525
Case V. y; > x; andy; 1 > ;.1 andy; 1 > y; + 1.

Using symmetry we can define coupling transitions for this case similarly to case
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Case Viy; < z; andy; 1 > x;41 andy,; 1 > y; + 1.

We will add the following two transitions to the coupling:

) (X0, Yi) — (X,(i%), Yi(i%)) and i) (X;, Yi) — (Xa((i + 1)), Yil(i + 1)7).
For both transitionsy( X1, Yi11) = 0(X¢, Y3).

Case Vl:y; > x; andy; 11 < ;11 andy;.1 > y; + 1.

Using symmetry we can define coupling transitions for this case similarly to case

Case VII: Y = X5 andyi+1 < Tt andyiH >y + 1
We again add two transitions(X;,Y;) — (X;(i"),Y;(s")) and (X;,Y;) —
(Xe((i 4+ 1)7),Y((s 4+ 1)7)). For both transitionsy( X1, Yi+1) = (X3, Yy).

Case VIII: Yi = T andyiﬂ > Tiy1 andyi+1 >y + 1
Using symmetry we can define coupling transitions for this case similarly to case
\l

We have defined 2 coupling transitions for every blockXgf(andY;) of size
2 or greater. For blocks iX; of size 1 whose corresponding block ¥ is also of
size 1, we can define two identical coupling transitiofs;, Y;) — (X;,Y;). In total,
we will have 2k coupling transitions fof X, Y;) each with probabilityQ(nl—H). We add
2n — 2k coupling transitions of the fornmiX;,Y;) — (X, Y;) each with probability
m. The coupling transitions farX;, Y;) sum to 1. Itis also easy to verify that there
are2k; + 1 transitions forX, alone such thak,;,; # X,;. Hence, marginally, botlX,
andY; represent exact replicas of the Markov chaify,.

Now, we will analyze the expectation and variance of the distance function in one

move of the coupling. In all cases, we have defined the coupling moves in pairs to ensure

that £(6(X41,Yie1)) > 6(X;,Y;). In all the following casesPr(d(Xiy1, Yii1) #
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(X, V)] > 2(ﬂ_1+1) since there is at least one transition with probabi% that

changes the distance betwegeXy 1, Y;.1)

1. There exists a pair of blocks:;, ;.1 — 1) of X, and(y;,y;+1 — 1) of Y; such

that one of them has size 1 and the other one has size at least 2

2. by # b,

3. There exists a pair of blocks;, z;.; — 1) of X; and(y;,y;.1 — 1) of Y; such

that (y; < z; andy; 1 < xi1) Or (y; > x; andy; 1 > x441)

Therefore, the pair&X,, Y;) left to analyze are those which do not satisfy any of

the above three conditions.

Lemma 35 For all pairs of haplotypegX;, Y;) such thatX;, Y; € D*, X, # Y; and the
pair do not satisfy any of the three conditions listed above, there exist two non-trivial
(length> 2) blocks (z;, z;+1 — 1) and(z;, z;41 — 1) in X, that satisfy the following

conditions:
® Ty <Xy

® Y1 >y +landy; . —y; > 1

T; 7 Yi OF i1 7# Yira

® Y Y OrTj1 # Yjn

O(X((1+1)7), Y1) +0(Xu(57), Ya) = 2-6(X, Vi)

Proof: A trivial block is a block of size 1 and a non-trivial one with size at least
2. Clearly,k > 0 sinceb, # b, and there are only two haplotypes #f. It is also
easy to see that there is at least one non-trivial blocKjmotherwiseX; = Y; and

k =mn — 2. Let(x;, ;.1 — 1) be the first non-trivial block inX; starting from the left.
The corresponding blodky;, v;., — 1) of Y; is also non-trivial otherwise the pair would

satisfy the first condition listed above. Clearly,= 3, as all blocks before this one are
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of size 1. Now, ifr; ;1 = y;.1, we ignore this block and consider the first non-trivial
block (z;, z;+1 —1) starting from the left such that, , # y;.;. Such a block exists since
otherwise the pair violates one of the three conditions abové, et Y;. Now, since no
trivial block in one haplotype can be matched to a non-trivial block in the other, there
exists another pair of non-trivial blockszr;, z; 11 — 1) and(y;, y;+1 — 1) such that the
pair is not perfectly aligned, i.ey; # y; Or z,;41 # y,4+1. Furthermore, if; 11 < yi41,
thenz; < y; and vice versa. This implies that flipping,,; — 1 andz; has opposite
effect on the distanc& Henceg(X:((: +1)7),Y;) + 0(Xe(57),Y:) =2 6(Xy, Y2).

)

We have established that for all pait&;, ;) for which the coupling does not
guarantee the conditior?r[§( X1, Yii1) # 0(Xy, Yi)] > m there are non-trivial
blocks (z;, ;41 — 1) and (z;, 2,41 — 1) in X; whose corresponding blocks k) are
also non-trivial and satisfy certain conditions listed above. For such pairs, accord-
ing to the rules of the coupling defined above, we added the transitions;) —
(Xe((i+1)7),Y((i+ 1)) and(X;, Y:) — (Xe(57)), Yi(47)) to the coupling for these
two blocks. Each transition independently does not change the disfarigg us as-
sume that (X,((i + 1)7),Y;) = 6(X;, Y;) + L andd(X,, Yi((i +1)7) = (X, Y;) — 1.

It follows that 6(X.((5)7),Y;) = 6(X,, V) — 1 and6(X,,Yi((5)") = §(X, V) +
1. We will remove the two transition§X;,Y;) — (X,((i+1)"),Yy((¢+1)") and
(X1, Y:) — (Xi(51)),Y:(y7)) and replace them by the two transitions:(X,,Y;) —
(Xi((i+1)7),Y (1)) and, i) (X, ;) — (Xi(j7)),Yi((i + 1)7)). For these two new
transitions(§(X;11, Yiz1)) = 6(X,, Yy) and Pr[d( Xy 1, Yig1) # 6(Xy, Y3)] > m
&
In our modified coupling, for all pairs of haplotypéX,;, Y;), (0(Xy1, Yie1)) >

(X, Y:) and Pr(o( Xy, Y1) # 0(Xe, Yy)] > Hence, we can apply the bound

_1
2(n+1)"
for the cased = 1 on the mixing time:

2

7(6) <[22 log(e )] < eln +1)*FTlog(e )]
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wherec is a small constant. In the worst case, the bour@(is’log(e')).

7.4.2 Mixing time of the projection Markov chain

The Markov chain that moves between the subggts),, ..., ,, is called the
projection Markov chainM 5 and is defined on the spt] = {1,2,..., m} where each

pointi corresponds to the s&t. The transition matrix’y (i, j) is defined as

S w(@)Pla,y)

™(6%)) e,
For our Markov chainmm = n — 1 andQ, = D°,Q, = D', ..., Q,_1 = D" 2
Consider two adjacent subsdd$—! and D*. Every haplotype inD* for whichz; = 1

or z;, = n — 1 has a neighbor in the sé&t*~!. The number of such haplotypes is

(321 +2(i20) —2(:20) =2 20

Therefore

Q((D*, DY) > n(HY)p2 (” - 3) 2(; . (n - 3) w(H')p*

Similarly,
1\ k
k=1 pky) > ety (M3 P> g JLRLL
QD™ D%)) = w(H")p™ 2 (k_l)Q(TH—l)_ k—=1) n+1

We will use the canonical path argument to bound the mixing time of this Markov
chain. The canonical path frof¥’ to D’ wherej > i will use the neighboring edges
(D*, D¥1) i < k < j and has lengthi — i. Similarly, the canonical path fromy; to
D' uses the edggdD*, D*71), j < k < i and also has length— i. Note that there are
also edges betweell* and D*~2 in the Markov chain, but we do not use these edges

and hence the congestion on these edges is zero. Consider an-edd#, D*~1). We
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will upper bound the congestion on this edge using the above inequalities.

(e)

IN

IN

IN

IN

IN

IN

IN

<

The congestion on the edge=

L > w(@)m(y) Nyl

Qfe) &,
>

(n+1)
m(HYoF (7))

pxpy (n ) 2)
(",

P (k

H

0..k—1,y=k..n—2
An+1) - (HY) Lé_lp( )] [ kHZZ;Z;].
2(n+1) > 127r(H1)p ( ) L > 2”y(ny2)] .

(")
2(n—+1 Y
( ! ) y—;—2 pk(Z::l)))

B n— k—2
2(n+1) _nk2 ( lj]){:(il)")p.n—i— ‘n
1 1

20+ 1)(n-2) {k+k(k+l)+k(k:+1)(k:+2)+ }”
4n?

(D*=1, D¥) can be also be bounded identically

sinceQ)(e) is same for both edges. Therefore, it follows that

7i(e) < 4n® (In(e ™) + n(Tpin 1)) < 40 (Z”(e_l) i (p1)>

= 7h(€) < 4n® (In(e™") + nin(p™))

We are now ready to prove Theore@®.

Proof:

We have the following inequality:

An® (In(e") +nIn(p™")) > 7(e) > mlog (%)
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The above inequality is true for dll< ¢ < 1. Choosing: = 2ip we get

Gap(Ppy) > n_z

for some constant;. We have also shown that for each of the Markov chaitg,

Ta(e) < e(n +1)°k2n(e™t)
It follows that

Co
nb

Gap(My) >

for some constant, and allk. Using Theorem 11, we have

for some constant;. Finally, the mixing time of the complete Markov chaW can be

bounded as follows

1 1 n’ -1 !
0 % G (i ¢) 5 O+

Gap min, C
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