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ABSTRACT OF THE DISSERTATION

Computational Methods for Analyzing Human Genetic Variation

by

Vikas Bansal

Doctor of Philosophy in Computer Science and Engineering

University of California, San Diego, 2008

Professor Vineet Bafna, Chair

In the post-genomic era, several large-scale studies that set out to characterize

genetic diversity in human populations have significantly changed our understanding of

the nature and extent of human genetic variation. The International HapMap Project has

genotyped over 3 million Single Nucleotide Polymorphisms (SNPs) in 270 humans from

four populations. Several individual genomes have recently been sequenced and thou-

sands of genomes will be available in the near future. In this dissertation, we describe

computational methods that utilize these datasets to further enhance our knowledge of

the fine-scale structure of human genetic variation. These methods employ a variety of

computational techniques and are applicable to organisms other than human.

Meiotic recombination represents a fundamental mechanism for generating ge-

netic diversity by shuffling of chromosomes. There is great interest in understanding

the non-random distribution of recombination events across the human genome. We de-

scribe combinatorial methods for counting historical recombination events using pop-

ulation data. We demonstrate that regions with increased density of recombination

xv



events correspond to regions identified as recombination hotspots using experimental

techniques.

In recent years, large scale structural variants such as deletions, insertions, dupli-

cations and inversions of DNA segments have been revealed to be much more frequent

than previously thought. High-throughput genome-scanning techniques have enabled

the discovery of hundreds of such variants but are unable to detect balanced structural

changes such as inversions. We describe a statistical method to detect large inversions

using whole genome SNP population data. Using the HapMap data, we identify several

known and putative inversion polymorphisms.

In the final part of this thesis, we tackle the haplotype assembly problem. High-

throughput genotyping methods probe SNPs individually and are unable to provide in-

formation about haplotypes: the combination of alleles at SNPs on a single chromo-

some. We describe Markov chain Monte Carlo (MCMC) and combinatorial algorithms

for reconstructing the two haplotypes for an individual using whole genome sequence

data. These algorithms are based on computing cuts in graphs derived from the se-

quenced reads. We analyze the convergence properties of the Markov chain underlying

our MCMC algorithm. We apply these methods to assemble highly accurate haplotypes

for a recently sequenced human.

xvi



Chapter 1

Introduction

The sequencing of the human genome in 2001 marked the beginning of a new

era in human genetics and biomedical research. With the availability of a reference hu-

man genome sequence, it has become possible to catalog differences between individ-

ual genomes. It is well known that differences in DNA are responsible for a substantial

fraction of phenotypic variation in humans and that a comprehensive understanding of

human genetic variation will enable the discovery of genetic variants responsible for

increased susceptibility to various diseases. This genetic variation is present in many

different forms and sizes: in the form of single letter changes known as Single Nu-

cleotide Polymorphisms (SNPs) but also as insertions, deletions and inversions of DNA

segments several thousand to millions of base pairs long.

During the sequencing and analysis of the human genome, more than a mil-

lion candidate SNPs were discovered by comparison of the genomic sequence of a

few individuals (Sachidanandam et al., 2001). Given the huge number of SNPs in the

human genome and the relative ease of obtaining SNP information, the International

HapMap project (The International HapMap Consortium, 2003) was formed in 2002 to

catalog genetic variation at SNPs in human populations. The HapMap project focused

on common SNPs, SNPs where both letters are present in a population above a mini-

mal frequency (1% of the individuals). The main goal of this project was to determine

1
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the patterns of common genetic variation in human populations which would enable

the efficient design of genome-wide association studies for finding the genetic basis

of complex diseases. The HapMap project was completed in 2007 and has generated

genotypes for more than 3 million Single Nucleotide Polymorphisms (SNPs) have been

genotyped in 270 humans from four different populations. The HapMap data has proved

useful in understanding recombination patterns and identification of genes under posi-

tive selection in the human genome(The International HapMap Consortium, 2005). In

the post-HapMap era, several commercial SNP genotyping chips have been developed,

some of which can interrogate up to a million Single Nucleotide Polymorphisms (SNPs)

in the human genome. The availability of these chips has enabled whole genome asso-

ciation studies where one can compare the DNA sequence of thousands of healthy and

diseased individuals to identify genetic variants that are associated with the disease. In

the past year alone, association studies for common diseases such as diabetes, coronary

artery disease, etc and physiological traits such as height and eye color have identified

hundreds of SNPs associated with increased risk for diseases and that can explain the

variation in traits.

The HapMap project and other projects (see e.g. Perlegen study (Hinds et al.,

2005)) have significantly enhanced our understanding of the patterns of variation at

SNPs in human populations. In comparison, until recently, very little was known about

large scale genomic variants such as deletions, insertions, duplications (copy-number

changes), and inversions. Knowledge about the location of these large scale variants,

collectively referred to as “structural variation”, has recently started to accumulate.

High-throughput techniques based on comparative hybridization which compare the in-

tensity of genomic segments between individuals have allowed biologists to discover

thousands of structural variants, in particular copy number polymorphisms (a segment of

DNA present in a variable number of copies in different individuals). Some of these have

also been linked to human phenotype variationSebat et al.(2004); Lucito et al.(2003);

Iafrate et al.(2004). Structural genetic variants have the potential to affect phenotypes

through multiple mechanisms such as gene deletion/disruption, gene fusions, changes
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in gene copy number, increasing/decreasing distance between functional elements in the

genome through inversions, etc. However, relative to SNPs, the catalog for some of these

polymorphisms is far from being complete. Furthermore, intensity based techniques are

limited by their inability to discover balanced structural variants such as inversions or

insertions of previously unknown sequences in the genome. High throughput sequenc-

ing represents a direct way for discovery of all kinds of structural variants including

copy-neutral variations such as inversions.Tuzun et al.(2005) mapped paired-end se-

quence data from large-insert clones (40 kb) from an individual genome to the reference

human genomic sequence to reveal sites of deletions, insertions and inversions. This

strategy has been applied to several different individual genomes to reveal many more

such variants. In order to obtain a comprehensive catalog of all forms of genetic vari-

ants, complete sequencing of many individual genomes represents the ideal strategy. In

the post-HapMap era, advancements in sequencing technology are driving down the cost

of sequencing and projects that aim to sequence hundreds of individual genomes have

been launched (see e.g the 1000 Genomes Project: www.1000genomes.org). In 2007,

several individuals such as J. Craig Venter and James Watson have had their complete

genomes sequenced.

The wealth of SNP population data generated by projects such as the HapMap

and the DNA sequence data from individual genome sequencing projects contains use-

ful information about human evolutionary history and the fine-scale structure of human

genetic variation. Lot of this information can be obtained by simple computational anal-

ysis. However, sophisticated computational methods especially those based on model-

ing human genetic variation have the potential to uncover hidden information and make

more accurate population-genetic inferences. In this dissertation, we address three com-

putational problems related to analysis of human genetic variation data:

• Counting historical recombination events using population haplotypes

• Reconstruction of individual haplotypes using DNA fragments from genome se-

quencing data
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• Discovery of large inversions in the human genome using whole genome SNP

haplotype data

The first two problems can be formulated as self-contained computational prob-

lems. We have attempted to explore the computational complexity of these two problems

and obtain efficient algorithms that work well on real datasets. Using whole genome

SNP haplotype data to discover large inversions represents a novel use of such data. We

address this problem in a statistical framework where we model the effect of large inver-

sions on SNP haplotype patterns and scan the genome for potential inversion breakpoints

using a simple score designed to capture deviations from expected haplotype patterns.

In the rest of this chapter, we give some background on SNPs, haplotypes and the pro-

cess of recombination. We also present the three problems listed above in more detail

and provide motivation for them.

1.1 Single Nucleotide Polymorphisms (SNPs)

The human genome can be considered as a long string over the four letter alpha-

bet: {A,C,T,G}.1 In total, the human genome has about 2.8 billion nucleotides packed

into 23 chromosomes. Humans arediploidorganisms and each individual has two copies

of each chromosome (except for the X and Y chromosomes)2. One copy is inherited

from the mother and the other from the father. As DNA is transmitted from parent to

child, many small and large scale mutations can take place in this sequence. Single

base pair substitutions or point mutations substitute one nucleotide for another. For ex-

ample, a single base pair mutation can change the DNA sequence “AACTGATAG” to

“AACT CATAG”. If a mutation is in the reproductive cells of the parent, the offspring

may inherit the mutation. Over many generations, this mutation may increase in fre-

quency in a population of individuals, remain limited to a small number of individuals

1 these correspond to the different nucleotides: A (adenine), C (cytosine), T (thymine), and G
(guanine)

2males have the pair (X,Y) while females have two copies of X
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or eventually die out. Mutations that increase in frequency such that both the origi-

nal DNA sequence and the mutation become prevalent in a population (e.g. frequency

> 1%) are known as “polymorphisms”. Note that some mutations may completely

replace the original DNA variant, e.g. if the mutation offers some form of selective

advantage to an individual. Single Nucleotide Polymorphisms are point mutations that

have become frequent in a population of individuals. Most SNPs seen in human popula-

tions are bi-allelic, i.e. there are two alleles seen in a population - the original nucleotide

and the mutation. For a SNP to have three common alleles, a new mutation must happen

at the same location in another individual and this mutation should also increase in fre-

quency. The probability of observing this in human polymorphism data is low for two

reasons: i) single base pair mutation rates in the human genome are low (of the order

of 10−9 per base pair per generation), and ii) human populations are relatively recent in

origin. For a bi-allelic SNPs with major allele ‘A’ and minor allele ‘a’, every individ-

ual can have one of three possible genotypes: two minor alleles (aa), two major alleles

(AA) or both alleles (aA). When both chromosomes carry the same allele for a SNP, the

individual is said to be homozygous. When the two chromosomes have different alleles,

the individual is heterozygous.

1.1.1 SNPs and Haplotypes

Haplotypes refer to the sequence of alleles at a collection of SNPs on a single

chromosome. In other words, a haplotype is the DNA sequence at the varying sites or

SNPs. Figure1.1.1illustrates the concept of SNPs and haplotypes. Since humans are

diploid, every individual has two haplotypes, e.g. the two haplotypes for the first individ-

ual in this region areACGTTC andAGGGAC. The genotype for this individual can

be represented asA[C|G]G[T |G][T |A]C. The process of determining the alleles that an

individual carries at a SNP is calledgenotyping. Genotyping can determine whether the

individual carries the minor allele on both chromosomes (aa), two major alleles (AA) or

allele a on one chromosome and allele A on the other (aA/Aa). Given the genotype there
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Figure 1.1: Illustration of the two copies from a region of a chromosome present in
three individuals. Only the positions which are SNPs are shown, the letters in between
are represented as ’-’.

are many pairs of haplotypes that are consistent with it. For example there are 4 pairs

of haplotypes that are consistent with the genotype for the first individual. Only one of

these is the true pair of haplotypes. In the absence of molecular methods for determin-

ing haplotypes, haplotypes are inferred computationally from SNPs genotyped in a set

of individuals from a population (Clark, 1990; Excoffier and Slatkin, 1995; Stephens

et al., 2001; Niu et al., 2002; Stephens and Donnelly, 2003). This is known ashaplotype

phasingand there are a wide variety of methods based on different evolutionary models

for obtaining haplotypes.

1.2 Meiotic Recombination

Mutation is the starting point of all genetic variation, however, there are other

biological forces that can create genetic diversity. The most important among these

is meiotic recombination. Recombination produces genetic diversity in a population

by mixing of homologous chromosomes as they are passed on to the next generation.

When DNA is passed onto the offspring from the parent, the two copies of each chromo-

some combine to produce amosaicchromosome. This process where two chromosomes

present in the parent are shuffled to produce a mosaic chromosome is called recombina-

tion (see Figure1.2 for an illustration). It is this mosaic chromosome that is passed on

to the offspring and can be different from the two chromosomes present in the parent.

In evolutionary biology, recombination is believed to be an important mechanism for
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Figure 1.2: Illustration of a recombination event between the two chromosomes (mater-
nal and paternal) in an individual. A recombination event produces two mosaic chromo-
somes, one which is passed on to the offspring.

producing new combination of genes thus allowing multiple beneficial variants which

arose separately on different chromosomes to come together. There is great interest

in understanding where recombination happens in the human genome, what genomic

features determine its extent and how recombination rates change over time. This can

provide insights into the evolutionary advantage provided by recombination in humans

and in sexually reproducing species in general.

1.2.1 Recombination Rates

Genetic distance measures the amount of recombination between two markers

(also referred to as loci) on a chromosome. Two loci are said to at a genetic distance of

1 M (Morgan) if the expected number of recombination events between them during a

single meiosis event (formation of sperm/egg cell from two homologous chromosomes)

is 1. The average recombination rate across the human genome is quite low: about 0.01

M per megabase or one recombination event per 100 Mb. In a large study, the average

number of recombination events per generation was estimated to be 44 (females) and 27

(males) (Broman et al., 1998).

A genetic mapis a sequence of ordered genetic markers3 with an estimate of the

genetic distance between every pair of adjacent markers. Genetic maps are constructed

by genotyping a large number of individuals that are closely related by a pedigree at the

genetic markers and estimating the genetic distance by a simple count of the number of

3A genetic marker is a locus in the genome that is polymorphic in a population, i.e has multiple alleles.
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recombination events in each interval averaged over all meiosis events in the pedigree.

Lot of variation has been observed in the distribution of recombination events across

the human genome in genetic maps (Kong et al., 2002a). The resolution of genetic

maps is limited to the megabase scale due to the low recombination rate in humans, i.e.

genetic maps cannot reveal variation in recombination rates at the level of genes (1-10

kilobases). In order to detect a recombination event in a 1 kb interval of a chromosome,

one will have to observe of the order of104 meiosis events, which is experimentally

infeasible.

There is great interest in understanding how fine-scale recombination rates vary

across the human genome. Recombination hotspots are regions of the genome that

have a very high rate of recombination compared to the background. Analyses of the

distribution of recombination events in sperm DNA has revealed that recombination

events cluster in small regions known as hotspotsKauppi et al.(2003); Jeffreys et al.

(2005). However, these experimental techniques for estimating fine-scale recombination

rates (recombination rates on the kilobase scale) in males (Jeffreys et al., 2000, 2001)

are very laborious and limited to small regions (about few hundred kilobases) of the

human genome. Methods for estimating fine-scale recombination rates from population

data have been shown to be useful for detecting recombination hotspotsMcVean et al.

(2004); Jeffreys et al.(2005).

1.2.2 Recombination and Linkage Disequilibrium (LD)

When markers are genotyped in a sample of unrelated individuals, one observes

that the alleles at pairs of physically close markers show non-random correlation. In

some cases, the alleles at multiple SNPs in segments of the genome are in perfect cor-

relation. Why do we see such non-random associations at markers in populations of

individuals who are not related to each other ? The answer lies in the shared ancestry of

our chromosomes. A variant arises through a mutation event on a unique chromosome

and shares a distinct combination of alleles at neighboring markers on this chromosome.



9

Individuals who inherit this variant will also tend to inherit the combination of alleles at

markers physically close to the variant. Therefore, the allele will be associated with al-

leles at neighboring markers. Recombination will break down this association between

the variant and alleles at neighboring markers by creating new combinations between

alleles. However, one can still detect this association if the recombination rate is small

and the number of generations since the variant arose is not large.

The haplotypes that we observe in a population of unrelated individuals are a

result of recombination events (and other forces) that have happened over thousands of

generations. In contrast to haplotypes of individuals related by a pedigree (typically over

a few generations), we have information about many more recombination events but in

a much weaker sense. We do not observe the underlying genealogy and hence cannot

count the number of recombination events. Undeniably, there is some information about

fine-scale recombination rates averaged over thousands of generations in this data. How

do we extract this information from this data ? Consider two physically neighboring

SNPs between which little or no recombination has happened in history of the popula-

tion. One would expect the alleles at these two SNPs to be highly correlated. On the

other hand, if the two SNPs are far apart and lot of recombination events have happened

between them, one would expect no correlation between the alleles at the two SNPs. In

population genetics,Linkage Disequilibriumquantifies this non-random correlation (or

lack of) in alleles at neighboring markers in genotype data from unrelated individuals.

Linkage disequilibrium (LD) is measured using pairwise association statistics such as

D′ andr2 (Lewontin, 1964; Hedrick, 1987a; Pritchard and Przeworski, 2001). Consider

two bi-allelic SNPsA andB with allelesA1/A2 andB1/B2 respectively. LetPAi
be

the frequency of alleleAi at locusA and similarly for locusB. LetPA1B1 represent the

frequency of the pairA1B1 and defineD = |PA1B1 − PA1PB1|. Then

D′ =
D

Dmax

whereDmax is a normalizing factor so that D’ lies between 0 and 1 independent of allele
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frequencies. Another commonly used measure of LD,r2 is defined as

D2

PA1PA2PB1PB2

Significant LD is observed in human populations between markers at short dis-

tances (10-50 kilobases). This is primarily due to the low average recombination rate

in humans (10−8 per base pair per generation) and the relatively recent origin of human

populations. Greater LD is seen in European populations as compared to African popu-

lations which are older. LD is also greatly affected by other factors such as population

history (migration and changes in population size), natural selection, etc. Nonetheless,

LD has important implications for disease association mapping. Whole genome as-

sociation studies genotype large number of cases (affected patients) and controls at a

selected subset of SNPs distributed throughput the genome and identify SNPs that show

statistically significant correlation with the disease phenotype. The rationale behind this

approach is that even if the causal genetic variant is not genotyped, a SNP in LD with this

variant is likely to show association with the disease phenotype. The HapMap project

genotyped millions of SNPs in human populations so that LD information could be uti-

lized for designing disease association studies, i.e for determining how many SNPs to

type in a region to have enough power to detect disease associations. Next, we describe

how we can detect historical recombination events using haplotype data from unrelated

individuals.

1.3 Reconstructing Evolutionary Histories from Haplo-

type data

SNPs arise as a result of a mutation event (substitution of one base for another)

that happened during human history. The commonly usedinfinite sites assumptionin

population genetics states that there is no recurrent mutation at a SNP. As there are only

two alleles at every SNP, we can label the alleles as 0/1 and hence every haplotype
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overm SNPs can be represented as a binary sequence of lengthm. Mathematically, a

recombination event at columnp, between two haplotypesA andB, produces a recom-

binant haplotypeC, which is either a concatenation ofA[1 . . . p− 1] with B[p . . .m] or

B[1 . . . p− 1] with A[p . . .m].

In the absence of recombination (for example in the Y chromosome), each chro-

mosome inherits some mutations from his parental chromosome and adds new ones that

will be shared by all his descendants. Under the infinite-sites assumption, the history of

the chromosomes can be explained by aperfect phylogeny(Gusfield, 1991). Informally,

the perfect phylogeny tree derives the set of sequences starting from a root sequence

through a sequence of mutations. The restriction that every location appears exactly

once in the tree corresponds to the infinite-sites assumption, i.e. every polymorphic

site mutates exactly once. A perfect phylogeny tree does not exist for any set of bi-

nary sequences. Gusfield (Gusfield, 1991) described an algorithm for finding a perfect

phylogeny in time linear in the size ofS (or proving that a perfect phylogeny does not

exist). Recombination events cause genetic material to be inherited from two parental

chromosomes and therefore the evolutionary history cannot be represented as a tree. In

the presence of recombination, the evolutionary history can be represented through a

directed graph known as the Ancestral Recombination Graph (Griffiths and Marjoram,

1996). In an ARG, a node with two incoming edges is called arecombinationnode. The

two incoming edges to a recombination node are referred to as recombination edges.

Nodes with only one incoming edge (a mutation edge) are called mutation nodes.

Formal Definition of Ancestral Recombination Graph Let S be a set ofn binary

sequences, of lengthm. An Ancestral Recombination GraphG for S is a directed

acyclic (no directed cycles) graph with rootR and the following properties:

1. Each nodeN of G corresponds to a binary sequence of lengthm (denoted by

seq(N )). Each sequence inS corresponds to a leaf inG.

2. Eachmutationedge inG corresponds to a set of sites.
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Figure 1.3: Example of an Ancestral Recombination Graph explaining a setS of binary
sequences with two recombination nodes (denoted by green circles). The labels of the
external nodes (leaves) are shown in blue. The incoming edges for the two recombi-
nation nodes are colored red. The recombinant sequence 10100 (d) is derived from a
recombination event between 10010 (P) and 01100 (S) where the first two columns of
d come fromP and the last three columns fromS. Hence the recombination node is
labeled3.

3. If nodesA andB are connected by an mutation edge, then the sequences seq(A)

and seq(B) differ at exactly the sites corresponding to the edge.

4. Each recombination nodev is associated with an integerrv, 2 ≤ rv ≤ m, called

the recombination point forv. Let P andS be the binary sequences corre-

sponding to the two “parent” nodes connected tov by recombination edges. The

sequence corresponding to nodev is a concatenation of the firstrv − 1 elements

of P with the lastm− rv + 1 elements ofS.

An ancestral recombination graphG that explains a setS of n binary sequences

represents apossibleevolutionary history of the sequences under the assumption that the

sequences were derived from an ancestral sequence (the root) through a sequence of mu-

tation and recombination events. Note that there could be multiple ARGs explaining the

same set of sequences each with different number of recombination nodes. Figure1.3

illustrates the structure of an ARG (example from (D.Gusfield et al., 2003)).
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1.3.1 Counting Recombination Events

Haplotype data obtained from a random sample of individuals from a population

contains information about recombination events that have happened over thousands of

generations in the history of that population. However, reconstructing the evolutionary

history of a set of sequences that have undergone recombination and mutation is diffi-

cult since many recombination events do not create new sequences. A parsimonious ap-

proach is to estimate the minimum number of recombination events required to explain

the sample of sequences. We defineRmin to be the minimum number of recombinations

required to explainS, i.e. there exists an ARG withRmin number of recombination

nodes which explainsS and there is no ARG with fewer recombination nodes that ex-

plainsS. Reconstructing the ARG with the minimum number of recombination events is

a challenging computational problem. This problem is computationally hard and lacks

even an exponential time algorithm. Hein (Hein, 1990, 1993) proposed methods for

reconstructing parsimonious ARGs, however the complexity of these methods is super-

exponential and the methods practical for about 8-10 sequences. This problem was

recently revisited by Gusfield and colleagues who gave polynomial time algorithms for

reconstructing minimal ARGs which have the property that every recombination node is

in its own edge disjoint cycle (D.Gusfield et al., 2003, 2004). Since one is interested in

the numberRmin rather than the actual evolutionary histories, research in this area has

focused on computing lower bounds onRmin. This can be achieved without explicitly

considering evolutionary histories and is a somewhat simpler problem.

Consider two SNPs A and B with0 representing the ancestral allele and1 the de-

rived allele at each SNP. There are four possible pairs of sequences{00, 01, 10, 11} that

one can observe at these two SNPs. Any sequence of two mutations starting from the an-

cestral sequence00 can produce at most 3 different pairs, one example is{00, 01, 10}.

The fourth pair11, can be produced by a recombination event between the two se-

quences10 and01. Therefore, if we observe all four pairs at the two SNPs, one can

infer that at least one recombination event happened between the two sites at some time
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in the history of the population (assuming that no site mutated more than once). This

is known as thefour-gamete testin population genetics. The first lower bound on the

minimum number of recombination events was proposed byHudson and Kaplan(1985)

using the four-gamete test. Significantly better lower bounds were proposed byMyers

and Griffiths(2003) using haplotype diversity and an indirect notion of evolutionary

histories. In Chapter 2, we mathematically describe the problem of computing lower

bounds onRmin and analyze the computational complexity of the two lower bounds

of Myers and Griffiths(2003). We propose faster methods for computing these lower

bounds and also introduce a new lower bound that is provably better than all previous

lower bounds. We show that these methods can detect higher number of recombination

events for a haplotype dataset from a region in the lipoprotein lipase gene than previous

lower bounds. We apply our methods to two datasets for whichrecombination hotspots

have been experimentally determined and demonstrate a high density of detectable re-

combination events in the regions annotated as recombination hotspots.

In Chapter 3 we explore the problem of computing lower bounds onRmin using

conflicts between pairs of sites. We analyze the conflict graph for a set of sequences and

demonstrate that number of non-trivial connected components in the conflict graph is a

lower bound on the minimum number of recombination events required to explain the

set of sequences under the infinite sites model of evolution. We show that in many cases,

this lower bound,Rc is a better bound than the haplotype lower boundRh. Our results

also offer some insight into the structural properties of this graph and are of interest for

the general ARG reconstruction problem.

1.4 Finding Inversions using SNP haplotype data

Inversions represent a type of structural variation in which a genomic segment is

reversed or inverted. Inversion polymorphisms are well known in the genus Drosophila

but less is known about the extent and frequency of inversions in the human genome.

Unlike deletions which cause miscalled genotypes and can lead to Mendelian inconsis-
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tencies (McCarroll et al., 2006; Conrad et al., 2006), inversions are copy neutral and do

not affect the SNP genotypes. However, large polymorphic inversions can affect haplo-

type patterns in a population by suppressing recombination in the inverted region for in-

dividuals who are heterozygous for the inversion, i.e. carry both the non-inverted and the

inverted allele. Lack of recombination between the two orientations also causes them to

evolve independently accumulating mutations that are specific to each orientation. We

use an indirect approach to detect large inversions for which the inverted allele (with

respect to the reference sequence assembly) represents the major allele. As described

earlier, Linkage Disequilibrium measures the correlation in alleles at two markers and

tends to decay with increasing genetic distance between the markers. Two SNPs that

are physically close tend to be show higher levels of LD than SNPs that are physically

distant. Our method tries to identify pairs of breakpoints for which the distant LD is

unusually strong while the LD between SNPs across the breakpoint is low. This type of

LD pattern is indicative of the fact that the region is actually inverted in a large fraction

of the chromosomes in a population. In chapter 4, we describe a statistical method for

detecting large inversions in the human genome based on this unusual LD pattern. We

apply our method to haplotype data from the International HapMap project to generate

a list of candidate inversions and obtain additional evidence supporting these predic-

tions through genomic analysis. Our method is applicable to population data from other

organisms and represents an useful technique for scanning for large inversions in the

absence of sequencing data.

1.5 The Haplotype Assembly Problem

Humans are diploid organisms with two copies of each chromosome (except the

sex chromosomes). The two chromosomes are homologous and differ at a number of

sites, a large fraction of which correspond to single base-pair differences commonly

known as Single Nucleotide Polymorphisms (SNPs). The genome sequence assembly

for a chromosome is an arbitrary mix of the two haploid chromosomes and does not
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contain information about which alleles are present on the same chromosome. The two

haplotypes(described by the combination of alleles at variant sites on a single chromo-

some) represent the complete information on DNA variation in an individual. SNP chips

can now interrogate up to a million SNPs in each individual, making the genotyping

effort cost-effective. However, haplotype information remains difficult to obtain experi-

mentally. Haplotypes are typically inferred from population SNP data using “haplotype

phasing” algorithms(Gusfield, 2002; Stephens et al., 2001; Bafna et al., 2003; Eskin

et al., 2003). These algorithms exploit Linkage Disequilibrium (LD); the correlation be-

tween alleles at neighboring SNPs in a population to reconstruct haplotypes. The great

variation in recombination rates and Linkage Disequilibrium across the human genome

limits the accuracy of these methods.

An alternative way to obtain haplotypic information is to reconstruct the two

haplotypes for an individual using DNA sequence fragments. A sequenced fragment

is a piece of one of the chromosomes and a fragment that is long enough will cover

multiple variant sites and provide information about the alleles at those sites present on

a single chromosome. If a large fraction of the fragments are long enough to encom-

pass multiple variant sites, and the shotgun sequencing has sufficient coverage to pro-

vide overlaps between fragments, the fragments can be assembled to reconstruct long

haplotypes. The haplotype assembly problem, also known as the Single Individual Hap-

lotyping problem, was introduced in the context of Single Nucleotide Polymorphisms

(SNPs) byLancia et al.(2001) who described three optimization formulations for solv-

ing this problem. The problem has been shown to be computationally hard under various

combinatorial objective functions(Lancia et al., 2001; Bafna et al., 2005; Cilibrasi et al.,

2005) (e.g. Minimum Fragment Removal (MFR), Minimum Error Correction (MEC),

Minimum SNP Removal (MSR)). Efficient algorithms exist for optimizing the MFR

objective when all fragments are gap-less(Rizzi et al., 2002; Lippert et al., 2002). How-

ever, the lack of real sequencing data has limited the development and evaluation of

computational methods for this problem. Recently, Levy and colleagues announced the

diploid genome sequence of a single human individual(Levy et al., 2007), referred to as
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HuRef. They also demonstrated that the quality of the data and the presence of paired-

end reads makes haplotype assembly feasible. A simple greedy heuristic was used for

reconstructing haplotypes. The heuristic works well for the HuRef sequence data, but

results indicate that it can be improved.

The final part of this thesis is devoted to the haplotype assembly problem. In

chapter 5, we describe a Markov chain Monte Carlo algorithm for this problem that is

based on the notion of computing certain cuts in graphs derived from the sequenced

fragments. This algorithm was motivated by the availability of the HuRef sequence

data. In chapter 6, using similar ideas, we describe a combinatorial algorithm for this

problem that tries to optimize a certain error measure of the haplotype assembly. In

chapter 7, we investigate the mixing properties of the Markov chain underlying our

algorithm and show that a cut-based Markov chain has polynomial mixing time for a

family of fragment matrices.



Chapter 2

Counting Recombination Events:

Lower bounds and Recombination

Hotspots

Meiotic recombination is a major mechanism responsible for creating genetic

diversity in many species. Although all genetic variation starts from mutation, recombi-

nation can give rise to new variants by combining types already present in the popula-

tion. Recombination events break up haplotypes as they are passed from one generation

to the next during gametogenesis and greatly influence the patterns of haplotype varia-

tion in human population data. Until recently, the variation in recombination rates on

a genome-wide scale was primarily studied by genotyping large number of individuals

related by a pedigree, and estimating the recombination rates between the genotyped

markers by a direct count of recombination events. However, constructing such genetic

maps (Kong et al., 2002b) requires high marker density and can only provide infor-

mation about variation in recombination rates on the mega-base scale. In contrast to

genotype data from families, population genetic data (genotype data from unrelated

individuals) contains information about recombination events accumulated over many

generations and can reveal fine-scale variation in recombination rates on the kilo-base

18
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scale. In the post-genomic era, the emergence of genome-wide diversity studies, such

as the HapMap project (The International HapMap Consortium, 2003), has enabled the

characterization of fine-scale distribution of recombination events across the genome.

Initial analyses of human polymorphism data (Gabriel et al., 2002; Daly et al., 2001;

Jeffreys et al., 2000) suggested an interesting block like structure of the genome, where

long stretches known asLD blocks(with little or no diversity) show signs of little or

no recombination and the recombination events cluster in so calledrecombination hot-

spots. To enable a more quantitative analysis of these datasets, a variety of statistical

methods based on different population genetics models have been proposed to estimate

recombination rates from genotype data (see e.g. (Fearnhead and Donnelly, 2001;

McVean et al., 2002; Hudson, 2001; Li and Stephens, 2003)). Sperm typing is an exper-

imental technique that can reveal fine scale variation in recombination rates by counting

crossover events from sperm DNA samples. Sperm crossover analysis from two regions

from the human genome (Jeffreys et al., 2001, 2005) identified several short (1-2KB)

regions with elevated crossover rates. Most of these crossover hotspots were also de-

tected using coalescent based computational methods (Li and Stephens, 2003; McVean

et al., 2004; Fearnhead et al., 2004; Stephens and Donnelly, 2003) with some differences

between the recombination rates estimated from the two methods.

In genotype data from individuals related by a pedigree, it is possible to obtain

a estimate of the number of the recombination events between every pair of markers.

In the absence of any genealogical information about the genotyped individuals, ob-

taining a direct count is not possible. Some coalescent based approaches (Fearnhead

and Donnelly, 2001) estimate recombination rates by integrating over large number of

genealogies consistent with the observed data. In contrast to explicitly modeling the

evolutionary history of chromosomes to infer recombination rates, an alternative ap-

proach for characterizing the variation in recombination is to obtain a count of obligate

recombination events. Population genetic data, in particular haplotype data contains

signature patterns left behind by historical recombination events.

A parsimonious approach to inferring recombination events from haplotypes is
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to compute the minimum number of recombination events required to construct a evo-

lutionary history of the sample assuming that each segregating sites mutates only once.

This problem is computationally challenging and has resisted efforts for even an expo-

nential time algorithm (Hein, 1990, 1993; Song and Hein, 2003; Wang et al., 2001a;

D.Gusfield et al., 2003). Therefore, research in this area has focused on computing

lower bounds on the minimum number of recombination events. Although most histor-

ical recombination events leave no imprint in the data, one expects that regions with el-

evated recombination rates will have a large number of detectable recombination events

in comparison to surrounding regions.

For almost two decades, theRM lower bound (Hudson and Kaplan, 1985) has

been used to detect the presence of recombination in haplotype data (see e.g. (Wang

et al., 2001b)). Recently, theRh lower bound (Myers and Griffiths, 2003) was demon-

strated to be much more powerful than theRM lower bound for detecting recombina-

tion events through simulation studies and detected a strong clustering of recombination

events in the center of the lipoprotein lipase gene (Nickerson et al., 1998). This region

has previously been characterized to be a putative recombination hotspot (Templeton

et al., 2000). TheRh lower bound was applied to detect recombination events in the

β-globin gene cluster (Fearnhead et al., 2004) which has a well-characterized recom-

bination hotspot. It was reported that the results obtained using the lower bound were

consistent with the estimates obtained using a full likelihood method.

Outline of chapter In this chapter, our objective is to explore the problem of com-

puting lower bounds on the number of recombination events. We present many results

on the computational complexity of computing recombination lower bounds and their

application to real haplotype datasets to reveal fine-scale distribution of recombination

events.

• We provide a theoretical formulation for the lower boundRh and show that it is

NP-hard to compute this bound. However, on the positive side, using the greedy

algorithm for the set cover problem (Johnson, 1972), we present aO(mn2) time
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algorithm which computes a lower boundRg for a dataset withn rows andm

segregating sites. Using simulations under the coalescent, we show that this new

lower bound is faster than the Recmin program1. and is more sensitive than

the Recmin bound to changes in the recombination rate, especially for higher

recombination rates.

• Most real haplotype datasets have some amount of missing data. A simple way

of handling missing data is to not consider markers which have missing alleles

for some haplotypes. We extend the lower boundRg to compute a lower bound

utilizing information from all markers in the presence of missing data. These

bounds applied to the LPL dataset (Nickerson et al., 1998) detect many more

recombination events (in comparison to the number detected by ignoring the

sites with missing data) which provide stronger support for the presence of a

recombination hotspot (Templeton et al., 2000).

• We apply our methods to genotype data from two long regions (several hundred

kilobases) from the human genome and show that these can indicate the presence

of most of the recombination hotspots that were detected experimentally using

sperm typing (Jeffreys et al., 2001, 2005).

• We give anO(m2n) time algorithm for computingRs which enables us to apply

it to real datasets. The previous implementation (Myers and Griffiths, 2003) had

only anΩ(m · n!) bound and is intractable for more than 10-15 haplotypes.

• We show that the lower boundRs can underestimate the true number of re-

combination events since it does not consider missing haplotypes. We propose

a new boundRI which extendsRs using the notion of intermediate haplo-

types. TheRI bound for the haplotypes from the ADH locus ofDrosophila

Melanogaster(Kreitman, 1983) is 7 which is optimal for this dataset (equal to

1 Recmin is the program that implements theRh lower bound (Myers and Griffiths, 2003). Throughout
this chapter, we will refer to the bound computed using Recmin (enhance =0) as the Recmin lower bound
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the upper bound of 7). We also show that theRI bound is better than all pre-

vious bounds on several datasets from the SeattleSNP database (SeattleSNPs,

http://pga.gs.washington.edu, March 2004).

2.1 Preliminaries

2.1.1 Lower Bounds on the Minimum Number of Recombination

Events

The lower boundRM (Hudson and Kaplan, 1985) is based on thefour-gamete

test; if for a pair of SNP’s with ancestral and mutant alleles a/b and c/d respectively, all

four possible gametes (ac, ad, bc, bd) are present, then at least one recombination event

must have happened between the pair of loci under the assumption that no site mutates

more than once. Based on this idea, one can find all intervals in which recombination

must have occurred and choose the largest set of non-overlapping intervals from this

collection. The boundRM is the number of intervals in this set. However,RM is a con-

servative estimate of the actual number of recombination events (Hudson and Kaplan,

1985). One can use haplotype diversity to infer more than one recombination event in

an interval. Consider an interval withm segregating sites. Ifn(> m + 1) distinct hap-

lotypes are observed in this interval, then at mostm haplotypes can be explained using

mutation events. Assuming that the ancestral haplotype is present in the sample, the re-

mainingn−m− 1 haplotypes must arise due to recombination events. Hence, one can

infer a lower bound ofn−m− 1 for the interval. Moreover, one can choose any subset

of segregating sites for an interval and compute this difference to obtain another lower

bound for that region. Taking the maximum bound over all subsets of segregating sites

in a particular region gives the best lower bound, denoted asRh (Myers and Griffiths,

2003).

The boundsRM andRh do not explicitly consider possible histories of the sam-

ple. The lower boundRs (Myers and Griffiths, 2003), computes for every history (an
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ordering of the haplotypes), a simplified number of recombination events, such that any

phylogenetic network that is consistent with this history, requires more recombination

events than this number. By minimizing over all possible histories, one obtains a lower

bound on the minimum number of recombination events. The algorithm for computing

Rs (for a precise description see (Myers and Griffiths, 2003)) performs three kinds of

operations on a given matrix: row deletion, column deletion and non-redundant row re-

moval. A row deletioncan be performed if the given row is identical to another row in

the matrix. Such a row is also referred to as aredundantrow. A column deletioncan be

done if the column (site) isnon-informative( all but one rows have the same allele at this

site). Anon-redundant row removalis a row removal when there are no non-informative

sites in the matrix and no redundant rows. Given an ordering of then rows, the algo-

rithm performs a sequence of column deletions, row deletions and non-redundant row

removals until there is no row left in the matrixM . The minimum number of non-

redundant row removal events over all possible histories gives the boundRs. Since,

the procedure considers alln! histories, the worst case complexity of this procedure is

Ω(m.n!).

2.1.2 Combining Local Recombination Bounds

Myers and Griffiths(2003) presented a general framework for computing re-

combination lower bounds from haplotype data. This framework can combine local re-

combination bounds on continuous subregions of a larger region to obtain recombination

bounds for the larger parent region. Consider a matrixM with m segregating sites la-

beled1 tom. Suppose that one has computed, for every interval(i, j) (1 ≤ i < j ≤ m),

a lower boundbij on the number of recombination events between the sitesi andj. Each

local lower boundbij can be computed by any lower bound method described previously

and bounds for different intervals may be obtained by different methods.

In the second step, which is essentially a dynamic programming algorithm, one

computes a new lower boundBij on the minimum number of recombination events



24

between the sitesi and j using the local boundsbi′j′ , i′ ≤ i < j ≤ j′. The local

boundBij can be computed asBij = maxj−1
k=i+1 (Bik + bkj). Note that the combined

lower boundBij can be substantially better than the corresponding local boundbij for

an interval(i, j). It is important to note that all the practical results are obtained by com-

puting lower bounds (by using the corresponding lower bound method) for all intervals

of lengthw (specified as a parameter) for the given dataset, and combining them using

the dynamic programming algorithm.

2.2 Bounds based on Haplotype Diversity

Consider a matrixM and letS ′ ⊆ S be a subset of sites inM . For a subsetS ′ of

segregating sites, we denote the set of distinct haplotypes induced byS ′ asH(S ′). The

Rh bound(Myers and Griffiths, 2003) is based on the observation that|H(S ′)|−|S ′|−1 is

a lower bound on the number of recombinations for every subsetS ′. Since the number of

subsets is2w for a region of widthw, The Recmin program (Myers and Griffiths, 2003)

use the approach of computing this difference for subsets of size at mosts wheres < w

is a specified parameter. Increasings can provide better bounds with an increase in

computation time since the running time is exponential ins. We define the algorithmic

problem associated with the computation of the boundRh as follows:

MDS: Most Discriminative SNP subset problem

Input: A binary matrixM and an integerk.

Output: Is there a subsetS ′ of S, whereS is the set of columns ofM , such that

|H(S ′)| − |S ′| − 1 ≥ k.

Computing theRh bound is equivalent to finding the largest value ofk for which

the MDS problem has a solution. We show that MDS problem is NP-complete by using

a reduction from theTest Collection Problem(Garey and Johnson, 1979). An instance

of the test collection problem (TCS for short) consists of a collectionC of subsets of a

finite setS and an integerk, and the objective is to decide if there is a sub-collection

C ′ ⊆ C such that for eachx, y ∈ S there existsc ∈ C ′ that contains exactly one ofx
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andy and |C ′| ≤ k. An instance of the test collection problem can be encoded as a

binary matrixM of size|S| × |C|. Each row of the matrix corresponds to an element of

the finite setS andM [x, c] = 1 if the subsetc contains the elementx and0 otherwise.

Here, the objective is to find a subsetS ′ of the columns ofM of size at mostk such that

for every pair of rows inM , there is a column inS ′ that can distinguish between them,

i.e. |S ′| ≤ k andH(S ′) = |S|. Using this encoding we show that the MDS problem is

NP-complete.

Lemma 1: The MDS problem is NP-complete.

Proof: We prove thek-TCS and the(n − k − 1)-MDS problems to be equivalent.

Consider a subsetS ′ of S such that|H(S ′)| = n and|S ′| ≤ k, i.e. S ′ is a valid solution

of thek-TCS problem. It follows that for the subsetS ′, |H(S ′)| − |S ′| − 1 ≥ n− k− 1.

Therefore,S ′ is a valid solution for the(n− k − 1)-MDS problem.

Now, letS ′ ⊆ S be a solution of the(n− k − 1)-MDS problem, i.e.|H(S ′)| −

|S ′| − 1 ≥ n − k − 1. Consider a haplotypeh ∈ H such thath /∈ H(S ′). For such

a haplotype, there is exactly one haplotypeh′ in H(S ′) that is identical toh, since all

haplotypes inH(S ′) are distinct. Also, there is a sites ∈ S−S ′ such that the character at

this site inh is different from the character at this site in haplotypeh′. Hence, we can add

the sites toS ′ and the haplotypeh toH(S ′) to get another setS ′′ such that|S ′′| = |S ′|+1

and |H(S ′′)| = |H(S ′)| + 1. Clearly,S ′′ is also a solution for the(n − k − 1)-MDS

problem. Inductively, we can add all haplotypes not present inH(S ′) to obtain a subset

of sitesS∗ such thatH(S∗) = H. Therefore,|S∗| ≤ |H(S∗)| − (n− k) = k. HenceS∗

is a solution for thek-TCS problem.

Therefore, thek-TCS problem and the(n−k−1)-MDS problem are equivalent.

The NP-completeness of the MDS problem follows. ♣

2.2.1 The lower boundRg

From the encoding for the MDS problem, it is easy to see that computing the

boundRh is equivalent to finding a a smallest subset of columnsC such that for every
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pair of rows(x, y), there is at least one columnc ∈ C such thatM [x, c] 6= M [y, c].

We adapt the standard greedy algorithm for the set cover problem (Johnson, 1972) to

devise an algorithm for computing a lower bound; denoted asRg. It is well known that

the greedy algorithm gives a(1 + 2 ln n) approximation for the test collection problem

wheren = |S|, the size of the ground set. However, this approximation ratio does not

apply to the MDS problem.

Algorithm for computing the lower bound Rg:

1. If two rows inM are identical, coalesce them. If a columns is non-informative,

remove the columns. Repeat while it is possible to perform one of these opera-

tions.

2. LetM ′ be the reduced matrix withn rows andm sites

3. Initialize I = φ andd(x, y) = 0 for all x, y ∈M ′

4. while d(x, y) = 0 for some pair of rows

5. Let s′ be the column for which
∑

(x,y)(1− d(x, y)) ∧ (M ′[x, s′]⊕M ′[y, s′])

is maximum

6. setd(x, y) = 1 for all (x, y) s.t.M ′[x, s′] 6= M ′[y, s′]

7. I = I ∪ {s′}

8. endwhile

9. Return|H(I)| − |I| − 1

2.2.2 Comparison of the lower boundRg with previous bounds

In order to compare the new lower boundRg against previous bounds, we use

simulated data generated under the coalescent (Kingman, 1982; Hudson, 1990; Rosen-

berg and Nordborg, 2002) using the MS program (Hudson, 2002). The coalescent is a
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Table 2.1: Properties of the three lower bounds:Rg, Recmin program (Myers and Grif-
fiths, 2003) andRM (Hudson and Kaplan, 1985) and two other summary statistics for
samples of sizen = 100 andθ = 10 and a region of length 10KB. HereH is the number
of distinct haplotypes andR is the actual number of recombination events in the geneal-
ogy of the sample (generated using the MS program). Each point was obtained using
10000 samples. Recmin program was run with the default settings (w=12 and s=5). The
coefficient of variation (denoted by c.v.) for a statistic is the standard deviation divided
by the mean for that statistic.

Recombination rate
Statistics 1 2 5 10 20 25 50 100
H Mean 25.27 26.09 28.35 31.84 37.80 40.53 50.84 63.60
H c.v. 0.16 0.15 0.15 0.14 0.13 0.12 0.11 0.10

Rg Mean 1.23 2.27 5.09 9.03 15.80 18.94 31.54 49.69
Rg c.v. 0.89 0.65 0.44 0.34 0.27 0.25 0.21 0.19

RM Mean 1.02 1.68 3.03 4.44 6.29 7.55 9.39 12.07
RM c.v. 0.83 0.61 0.44 0.37 0.31 0.29 0.25 0.23

Recmin Mean 1.23 2.29 4.88 8.26 13.58 15.90 24.86 36.80
Recmin c.v. 0.88 0.63 0.43 0.34 0.28 0.26 0.23 0.22

R Mean 5.21 10.49 27.19 57.49 126.45 165.58 388.76 966.77
R c.v. 0.49 0.38 0.29 0.23 0.20 0.19 0.15 0.13

Rg (secs) 37 47 82 173 391 515 1150 2449
Recmin (secs) 34 59 168 410 880 1068 1880 3160

standard framework for simulating population genetic data. Under the coalescent, the

history of a sample ofn sequences is a stochastic process governed by two parameters:

the scaled mutation rateθ = 4Nµ and the recombination rateρ = 4Nr. Here,N is

the effective population size, andµ andr are the per generation mutation rate and re-

combination rate for the whole region respectively. We simulated data under a neutral

model with no population structure, constant population size and assuming the infinite

sites model for mutations. Most simulations were done with a sample size of 100 and

mutation rate in the range 1-2 per kb.

In table 2.1, we compare the mean and the coefficient of variation of various

lower bounds with recombination rate varying from 0.1 per kb to 10 per kb. It is clear

that our new lower boundRg is more sensitive than the Recmin lower bound (using
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default parameters) to changes in recombination rate, especially for higher recombina-

tion rates. Furthermore, the time to compute the boundRg is always less than that for

the Recmin program (except forρ = 0.1/kb). Note that the Recmin lower bound will

increase as one increases the parametersw ands and eventually will be at least as good

as theRg bound. To see how the performance of Recmin changes as we increase the

parameters, we ran Recmin for 100000 samples generated withθ = 10 andρ = 50

with three different parameter settings. For the default settings ofw = 12 ands = 5,

the mean Recmin bound is 24.86 computed in about 30 minutes. Increasingw to 15

ands to 8, the mean increases to 27.31 but the running time doubles. With parameters

w = 20 ands = 10, the mean increases to 30.03 but the program takes more than 25

hours to complete. In contrast, theRg lower bound with a window size of 30 returns a

mean of 31.54 in less than 20 minutes. The running time of Recmin is proportional to∑s
i=2

(
w
i

)
wherew is the maximum number of segregating sites in a region for which

the local bound is computed ands is the maximum subset size used for computing the

bound. In comparison, in order to compute the best bound by combining the localRg

bounds, we require only one parameter, i.e maximum width and the overall running time

isO(n2mw2).

Note that since theRg lower bound is computed using a greedy procedure and

is not guaranteed to be optimal, it may be worse than the Recmin lower bound for an

individual dataset. However, comparison of the lower boundRg with the Recmin bound

for individual datasets revealed that the lower boundRg was rarely worse than the cor-

responding Recmin bound. Moreover, it is difficult to decide what values ofs andw

will find the best Recmin bound. Choosing large values will result in prohibitive run-

ning times (as demonstrated above), while the bound with the default settings becomes

increasingly sub-optimal as the recombination rate increases. Although Recmin can

be used to compute the best bound for an individual sample, in order to empirically

estimate the properties of the haplotype lower bound and it’s sensitivity to the recombi-

nation rate, it is important to have a fast method for computing the lower bound. In this

respect, theRg bound has the advantage that it can compute a bound equal to (or close
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Figure 2.1: Distribution of theRg lower bound and the number of distinct haplotypes
for different recombination rates. On the left are frequency histograms ofRg andH
for θ = 20 and two differentρ values (10 and 20). The histograms on the right are for
θ = 20 and two differentρ values (10 and 50). The plots were generated using 10000
samples each.

to) the optimalRh bound for a large range of recombination rates.

The number of distinct haplotypesH in a sample and the lower boundRM have

been shown to be good summary statistics for estimating the recombination rate from

a sample of haplotypes using coalescent simulations (Wall, 2000). The estimated mean

value of the lower boundsRh andRg show that these lower bounds are much more

sensitive to changes in recombination rate thanRM . It is an interesting question as to

whether these bounds could be better recombination summary statistics for a sample.

In figure 2.1, we plot the distribution of the two summary statistics,Rg andH for two

different values ofρ. In the first plots on the left, we compare the histograms forρ = 10

andρ = 20. From the plots, it is apparent that the distribution of the lower bound
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shifts towards the right as the recombination rate is doubled and furthermore there is

almost no overlap between the two distributions with a recombination rate difference of

five-fold. Looking at the corresponding plots forH, we observe thatRg seems to be

more sensitive to changes in recombination rate, although the distribution forH has a

smaller spread. In general, the probability distribution of theRh lower bound or any

other summary statistic such asH is a function of the two variablesθ andρ. A summary

statisticX is expected to be a good estimator of the recombination rate if the random

variable(X, ρ|θ) is sensitive to changes in the recombination rateρ and has a small

coefficient of variation for a fixedρ. Preliminary results indicate that the lower bound

is a good summary statistic for estimating recombination rates after correcting for the

variation in the number of segregating sites. (Bafna and Bansal, unpublished results)

2.2.3 Bounds for Haplotypes with Missing Data

A complete haplotype is an element of{0, 1}m wherem is the number of SNP’s

and thej-th component indicates the allele at that position. However, due to genotyping

errors or other reasons, the genotype at a particular position for a individual is sometimes

undetermined. In such a scenario, some of the haplotypes are partial or incomplete. A

partial haplotype is an element of{0, 1, ?}m where? represents the positions where

the allele is unknown. Since most real haplotype datasets have some amount of missing

data, it is important to find efficient methods for computing recombination lower bounds

for haplotypes with missing data. We show how the greedy algorithm for computingRg

can be extended to handle haplotypes with missing data without much increase in the

computational complexity. We first need to modify the definition of a non-informative

site. A site is defined to be non-informative if it has all but one alleles of one type (ignor-

ing the missing alleles). With this modified definition, the algorithm for computingRg

described in section2.2.1remains unchanged for the first 8 steps. Recall that in the last

step of the algorithm, we return the boundH(I)− I − 1. For a matrix with missing en-

tries, it is not straightforward to computeH(I). However, consider an assignment to the
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?’s that minimizesH(I). Then the differenceH(I)−I−1 gives a valid lower bound, i.e.

a bound which is valid for all possible assignments to the missing entries. However, for

minimizingH(I) one has to solve the minimum haplotype completion problem; where

given an haplotype matrix with missing entries, the objective is to complete the missing

entries so as to minimize the number of distinct haplotypes. This problem was shown

to be NP-hard (Kimmel and Shamir, 2004). To get a lower bound on the number of dis-

tinct haplotypes induced by the given data, we construct the compatibility graph on the

set of haplotypes, where two haplotypes are connected by an edge if they are identical

(treating the missing entries as don’t cares). The number of connected components in

this graph gives a valid lower bound on the minimum number of distinct haplotypes.

2.2.4 Application to Haplotype Data from LPL locus

A 9.7-kb region from the human LPL gene was sequenced by Nickerson. et.

al. (Nickerson et al., 1998) in 71 individuals from three different populations. The hap-

lotype data comprised of 88 haplotypes defined by 69 variable sites with about 1.2%

missing data. This data has previously been analyzed for haplotype diversity and re-

combination (Clark et al., 1998; Templeton et al., 2000; Myers and Griffiths, 2003). In

table2.2, we compare the bounds obtained for different sub-regions of the LPL region

for various populations. The overall bound for the whole region is 70 if one ignores the

sites with missing data (see (Myers and Griffiths, 2003)), while our method for comput-

ing lower bounds including missing data detects 87 recombination events. Templeton et.

al. (Templeton et al., 2000) had found that the 29 recombination events detected using

their method to be clustered near the center of the region (approximately between the

sites 2987 and 4872). It is interesting to note that number of detected recombination

events (37) in this region increases significantly (from 22) when one takes into account

the sites with missing alleles. Thus, the bounds obtained using our improved methods

which can handle missing data, seem to provide strong support for the presence of a

recombination hotspot suggested by Templeton et. al. (Templeton et al., 2000). This
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Table 2.2: The number of detected recombination events using bounds for missing data
for the LPL datasets. The number in bracket indicates the density of detected recom-
bination events per kb. The middle region (2987-4872) corresponds to the suggested
hotspot (Templeton et al., 2000).

Site Range
Region 106-2987 2987-4872 4872-9721 Full
Jackson 10(3.47) 11(5.84) 17(3.51) 39(4.06)
Finland 2(0.69) 13(6.90) 13(2.68) 31(3.22)

Rochester 1(0.35) 13(6.90) 7(1.44) 22(2.89)
Combined 13(4.51) 37(19.63) 36(7.42) 87(9.05)

demonstrates that the ability to extract past recombination events can be crucial to de-

tecting regions with elevated recombination rates.

2.2.5 Application of Lower Bounds to reveal Recombination Hotspots

In humans, individual hotspots have been identified using pedigree studies and

sperm crossover analysis. However, characterizing fine-scale variation in recombination

rates using pedigree studies (at the kb scale) is difficult and performing sperm analyses

on a genome-wide scale is experimentally infeasible. Recombination hotspots are de-

fined as regions in which the crossover rates are significantly larger than the rates in the

surrounding regions. Detecting hotspots is important for disease association studies and

understanding the biological mechanisms behind the origin and evolution of hotspots

(for some recent work see (Ptak et al., 2004, 2005; Winckler et al., 2005)).

Linkage Disequilibrium analysis of a 210 kb region in the MHC class II re-

gion (Jeffreys et al., 2001) followed by sperm crossover analysis on a few males re-

vealed five crossover hotspots of length 1-2 kb separated by long haplotype blocks con-

taining tightly linked markers. This region contains another hotspot near the TAP2 gene

identified earlier (Jeffreys et al., 2000) using the same technique. For this region, the

locations of the sperm crossover hotspots and their intensities were in good agreement

with the historical recombination rates estimated from coalescent analysis of the geno-
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type data (McVean et al., 2004). Note that the two methods measure different quantities;

sperm analyses measures current recombination rates in males while population genetic

methods estimate the sex-averaged recombination rates averaged over many genera-

tions. We also applied our lower bounds to the population data genotyped from the 50

UK individuals (Jeffreys et al., 2001). Since the data is unphased, we applied our lower

bounds to the haplotypes estimated by the PHASE program (Stephens et al., 2001). In

Figure 2.2 (top half of the figure), we plot recombination lower bounds for short seg-

ments (0.5KB to 5KB) from the MHC region. We use a simple statistic of plotting the

recombination lower bound scaled by the length of the segment for which the bound

was computed. (see (Myers and Griffiths, 2003)). The regions with high density of re-

combination events can easily be distinguished from the plot and correspond to putative

recombination hotspots. We find that four hotspots: DNA2, DNA3, DMB2 and TAP2

are clearly identifiable. The hotspot DNA1 is difficult to distinguish from DNA2 since

the centers of these hotspots are very close (3-4KB apart). Similarly the two hotspots

DMB1 and DMB2 appear as a single cluster. It may be possible to further analyze the

two regions to separate the hotspots. Note that the density of detected recombination

events in a region is not directly interpretable in terms of the underlying recombination

rate.

More recently, (Jeffreys et al., 2005) genotyped 200 SNP’s for 80 UK males in

a 206KB region of chromosome 1q4.23. LD analysis of this region revealed long haplo-

type blocks (upto 80kb) disrupted by five regions of low LD. Sperm crossover analysis

of the regions with breakdown of LD identified seven new hotspots in addition to the

MS32 hotspot. The genotype data was analyzed using three different coalescent based

methods (Fearnhead et al., 2004; Li and Stephens, 2003; McVean et al., 2004). The

LDHot method (McVean et al., 2004) found 4 hotspots with no false positives while

the Hotspotter method (Li and Stephens, 2003) found 5 hotspots with 3 false positives.

In comparison, the approximate likelihood method (Fearnhead et al., 2004) seemed the

most accurate; it could detect 7 hotspots with a single false positive. The hotspots

NID2 actually consists of two hotspots NID2a and NID2b and no coalescent based
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method could separate these two hotspots. Similarly, the MSTM1 hotspot is a dou-

blet of two closely spaced hotspots. As for the MHC region, we plotted recombination

lower bounds for short segments for this region (see bottom of Figure2.2). From the

plot, one can visually identify five hotspots: NID2, NID1, MS32, MSTM1 and MSTM2.

The hotspot NID3 is not detectable, a possible reason being the low recombination rate

in this hotspot. From these results, it is clear that haplotype lower bounds can provide

a first hand idea of the location and to some extent the intensities of most of the recom-

bination hotspots detected using sperm crossover analysis. Although LD analysis can

also identify many hotspots, the evidence for hotspots is much better from lower bounds

than pairwise LD plots in some cases (see e.g. theβ-globin hotspot (Fearnhead et al.,

2004)).

In the remainder of this chapter, we present results for improving the complex-

ity of the Rs lower bound and describe a new lower boundRI that can detect more

recombination events that eitherRg orRs for many datasets.

2.3 History Based Lower Bounds

(Myers and Griffiths, 2003) only give a procedural definition of the boundRs,

and their description is somewhat informal. The time complexity of their procedure (as

described in Algorithm 3 in (Myers and Griffiths, 2003)) is O(mn!), wheren is the

number of rows, andm the number of columns. We give a theoretical formulation of

the boundRs which allows us to develop an exponential time algorithm for computing

it.We define a history for a set ofn rows as simply an ordering of the rows. We start by

redefiningRs in terms of appropriate cost of a row in a given history. Consider a history

H = r1 → r2 . . . → rn. The cost of rowri in the history, denoted byCs(ri), is 0 if

after removing non-informative columns fromr1, r2, . . . , ri, the rowri turns out to be

identical to one of the rowsr1, . . . , ri−1 and1 otherwise. Then we have

Cs(H) =
∑
i

Cs(ri) andRs(M) = min
historyH

Cs(H)
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We defer the discussion of whyRs, as we have defined it, is a lower bound to Theorem2

(where we prove thatRI is a lower bound).Consider a bit vector~r of lengthsn. LetM~r

denote a submatrix ofM which contains only rowsi such thatri = 1. Define a partial

order on the vectors as follows:~v1 ≤ ~v2 if v2[i] = 1 wheneverv1[i] = 1. Define the

vector~v−i as the~v with the i−th bit set to0. Let RS[~v] denote theRs bound for the

corresponding sub-matrix.

Dynamic programming algorithm for computing Rs(M):

1. For all row subsets~r: RS[~r] = 0

2. for all subsets~r picked in an increasing order

3. if ∃ a redundant row in~r: RS[~r] = RS[~r−i]

4. else RS[~r] = mini{1 +RS[~r−i]} (* for all rows i s.t. ri = 1 *)

The running time of the procedure above isO(m2n). Using a non-trivial reduc-

tion from the MAX-2SAT problem, we have shown that computing the boundRs for a

matrix is NP-hard(Bafna and Bansal, 2005).

TheRs bounds searches over possible histories of the set of haplotypes and one

would expect the bound to be better than the diversity based boundRh. However, in

practice,Rs does not improve overRh in most cases. Next, we describe a new lower

boundRI that improves overRs.

2.3.1 Recombinant Intermediates and the boundRI

We use an example to demonstrate howRs can be improved. Consider the set of

n+ 2 haplotypes withn sites shown in Figure2.3.1. For illustrationn = 7.

Note that if the history was forced to start with the first two haplotypes, each of

the followingn rows could only be removed through a non-redundant row removal, and

we would have a recombination bound ofn. However, if we choose1111111 to be the
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Figure 2.3: A set of 9 haplotypes for whichRs is 1 and a phylogenetic network for the
set of haplotypes with 6 recombination eventsR(I= 6).

last haplotype in the history, then removing it makes every column non-informative. As

Rs is the minimum over all histories,Rs(M) = 1. However, at least6 recombinations

are needed. Note that for this particular example, we can boost theRs bound to the

correct value by applying the dynamic programming algorithm (Myers and Griffiths,

2003) for combining local bounds. However, the example illustrates a problem withRs,

which is that in explaining a non-redundant row-removal, we only charge aSINGLE

recombination event. Therefore, if1111111 was indeed the last haplotype in the true

history, then adding it would require5 recombinants (the haplotypes in dashed boxes)

NOT from the current set (as explained in Figure2.3).

We use this idea to improve theRS bound. Consider a historyH = r1 →

r2 . . . → rn. Let Ij(H) denote the minimum number of recombination events in ob-

taining rj, given any phylogenetic network forr1, . . . , rj−1. We allow the use of re-

combinant intermediates, and soIj(H) can be greater than one. In general, the use of

recombinant intermediates is tricky because the intermediates may help explain some
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of the existing haplotypes by simple mutations. In order to prove a lower bound, we

introduce the concept of adirect recombination. We defineCd(ri) for a haplotyperi in

a given historyH as follows:

Cd(ri) =


0 ri is different from allrj<i in a non-informative column.

0 ri is identical torj<i after removing non-informative columns

1 Otherwise
(2.1)

We observe that the definition ofCd(ri) holds for a set of haplotypes{r1, r2, . . . ri−1, ri}

and denote this generic definition asCd(ri, {r1, r2, . . . ri−1}). Note thatCd(ri) ≤ Cs(ri)

for all i in a history. However,Cd can be used to give a new lower bound on the total

number of recombinations.

Theorem 2: LetH denote the set of all histories over the set of haplotypesM . Then

RI = min
H∈H

max
j
{
∑
i<j

Cd(ri) + Ij(H) +
∑
i≥j

Cs(ri)}

is a lower bound on the number of recombinations.

Proof: Recall thatmM denotes the minimum number of recombinations in any

history ofM . We construct one historyH = r1 → r2 . . . → rn in which which∑
i<j Cd(ri) + Ij(H) +

∑
i>j Cs(ri) is a lower bound onmM for all choices ofj. This

is sufficient because we minimize over all histories. Consider an phylogenetic network

A that explainsmM with a minimum number of recombinations. Each nodev in the

phylogenetic network corresponds to a haplotyperv, which may or may not be inM .

Haplotyper ∈M is adirect witnessfor a recombinant nodev if r = rv. It is anindirect

witnessif it can be derived fromrv solely by mutation events. A predecessor relation-

ship<P is defined for some haplotypesri, rj ∈M . Specificallyri <P rj if ri is a (direct

or indirect) witness to a recombinant node on a path from the root torj. Note that<P

is a partial order. Next, choose a historyH (a total ordering) that is consistent with<P .

Note thatCs(ri) = 1 if and only if ri is the first witness to a recombination node inA

to appear inH (thereby proving thatRs(M) is a lower bound). LikewiseCd(ri) = 1 if
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and only ifri is the first direct witness to a recombination node inA to appear inH. As

each recombination node contributes at most1, Rs =
∑

iCs(ri) is a valid lower bound

on the number of recombinations. Consider an arbitraryrj with Cs(rj) = 1. Instead of

charging1 to the number of recombination events, we charge a valueIj(H) equal to the

minimum number of recombinations needed to obtainrj from r1, r2, . . . , rj−1. Consider

the sequence of intermediate recombination events that were used to obtainrj. None of

these nodes have a direct witness. Therefore the nodes inr1, r2, . . . , rj−1 that had aCd

value of1 correspond to other recombination nodes.

Next, the haplotypesri>j that followri are chargedCs(ri). Whenever,Cs(ri) =

1, it is becauseri is the first witness to a recombination node inA to appear inH. By

construction, this recombination node is not on any path from root torj, and therefore

wasn’t charged when considering intermediates forrj. Therefore, each recombination

node is charged at most once and the bound holds. ♣

The algorithm below describes how to computeRI in timeO(n2nI(m.n)) time,

whereI(m,n) is the time to computeIj[~r] for any subset~r. Ii[~r−i] denotes the min-

imum number of recombinant intermediates needed to compute haplotyperi given the

subset~r with ri removed.

Dynamic programming algorithm for computing RI(M):

1. For all row subsets~r: Rd[~r] = 0, RI [~r] = 0

2. for all subsets~r picked in an increasing order

3. if ∃ a redundant row in~r

4. Rd[~r] = {Rd[~r−i]}; RI [~r] = {RI [~r−i]}

5. elsefor all rowsi s.t. ri = 1

6. Rd,i = mini{Cd(ri, ~r−i)+Rd[~r−i]};RI,i = mini{max{1+RI [~r−i], Rd[~r−i]+

Ii[~r−i]}}
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7. Rd[~r] = mini{Rd,i}; RI [~r] = mini{RI,i}

8. returnRI(M)

It is easy to see thatRI ≥ Rs. In order to computeRI , we need to compute

Ij(H) for all haplotypesj, and all historiesH. To do this more efficiently, we defineIj
over subsets, instead of histories. We denote a subset of haplotypes by the bit-vector~r

of sizen where~ri = 1 iff ri ∈ ~r and defineIj[~r] as minimum number of recombination

events needed to obtainrj, over any history of the haplotypes in~r. Likewise, define

Rd(~r) as the minimum number of direct recombinations in any history of the haplotype

subset~r.

2.3.2 Computing Recombinant Intermediates

Our goal is to computeIi[~r] efficiently. Haplotypei is assumed to arise later

in history the in~r and is therefore a mosaic of sub-intervals of the haplotypes in~r.

The mosaic can be expressed by a sequence of pairsM = (h1, j1), (h2, j2) . . . , (hk, jk)

interpreted as follows: Inhi, columns1, . . . , j1 came from haplotypeh1, columnsj1 +

1, . . . , j2 + 1 from h2, and so on. IfM were the true mosaic, thenhi would needk − 1

recombinant intermediates. Thus, we need to minimize this.

First, we can ignore all columns that are identical for all haplotypes in~r. If hi

has a different value in any of these columns, it can be explained by a mutation. If it

has the identical value, the column can be explained using any haplotype and will not

contribute to recombination. Ignoring these columns, the following is true: if columns

j1, . . . , j2 of hi arise from haplotypeh, then the values ofh andhi must be identical in

columnsj1 throughj2. If any columnsc was different (hi[c] 6= h[c]), to explain it by a

mutation would violate the infinite-sites assumption. This observation allows us to solve

the problem of computingIi[~r] efficiently.

For columnc, 1 ≤ c ≤ m and haplotypeh, let I[c, h] denote the minimum num-

ber of recombinations needed to explain the firstc columns of haplotypehi such that the
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c-th column arose from haplotypeh. This is sufficient becauseIi[~r] = minh{I[m,h]}.

I[c, h] can be computed using the following recurrence:

I[c, h] =


0 c = 0

∞ hi[c] 6= h[c]

min {I[c− 1, h],minh′ 6=h{1 + I[c− 1, h′]} o/w

2.3.3 Results forRI bound

Besides the simulated example (in Figure2.3), real datasets are known where

Rs andRh are sub-optimal. As an example, theRh andRs bounds for Kreitman’s

data (Kreitman, 1983) from the ADH locus ofDrosophila Melanogasterare both 6.

Song and Hein (Song and Hein, 2004) showed that their set theoretic lower bound gave

a bound of 7 and proved this to be optimal by actually constructing an phylogenetic

network which requires 7 recombination events. Our new lower boundRI also returns

the optimal bound of 7. However, the set theoretic-bound (Song and Hein, 2004) does

not have an explicit algorithmic description. On the other hand, theRI bound can be

computed for large datasets (100×500 matrix can be analyzed in few hours on a standard

PC) and gives improved bounds for a number of real datasets (see table2.3for a partial

list).

2.4 Discussion and Future Work

We have presented new computational methods for computing lower bounds on

the minimum number of recombination events from a sample of haplotypes. We have

shown that one of these lower bounds is very fast to compute and more sensitive to

changes in recombination rate than previous bounds. Plots of this lower bound for two

regions from the human genome for which recombination hotspots have been identified

experimentally, provide a strong signal for most of the detected hotspots.
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Table 2.3: Comparison of the number of detected recombination events usingRs and
RI for the phased haplotype datasets for various genes obtained from the SeattleSNP
project (SeattleSNPs, http://pga.gs.washington.edu, March 2004).

Dataset

CSF3

MMP3

ABO

DCN

F2RL3

HMOX1

EPHB6

Size R_s  R_I

21 x 41

15 x 17

34 x 53

28 x 29

31 x 62

3 4

6 9

70 73

16 18

14 16

10

23 25

68 x 197

31 x 117

11

There is an inherent stochasticity in the number of historical recombination

events for a region of fixed length given a fixed recombination rate. This stochasticity

is independent of the number of segregating sites in the region. On the other hand, any

method for detecting historical recombination events is highly dependent on the number

of mutations (segregating sites). In the worst case of no mutations, no method can detect

any recombinations. Furthermore, the power to detect historical recombination events

depends greatly on ancient mutations, i.e. mutations which happened before the recom-

bination events. Note that any mutation that happened after a particular recombination

event is non-informative for detecting that particular recombination event. It is interest-

ing to note that (Jeffreys et al., 2001) choose markers with high rare allele frequency

(> 0.15) under the assumption that these are likely to be ancient and hence provide

greater evidence for breakage of haplotypes by recombination events. Therefore, one

needs to incorporate this bias for high frequency mutations in methods which use sum-

mary statistics for estimating recombination rates using coalescent simulations (Wall,

2000). This will possibly provide greater power to detect hotspots when these methods
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are applied to real datasets. We are currently pursuing this line of research.

Previous papers (Myers and Griffiths, 2003) have suggested that the minimum

number of recombination events will miss most historical recombination events and

should not be used as an indicator of the true number of historical recombination events

or directly used to estimate the recombination rate. One should use full likelihood meth-

ods (Fearnhead and Donnelly, 2001) or approximate likelihood methods (Fearnhead

et al., 2004; Li and Stephens, 2003; Hudson, 2001) for estimation the underlying re-

combination rate. However, the computational burden imposed by these methods can be

sometimes prohibitive for large scale datasets. Results of (Wall, 2000; Hudson, 2001)

suggest that estimates of the recombination rate obtained in a maximum-likelihood

framework using easy to compute summary statistics of the data, are comparable to

estimates using pairwise likelihoods (Hudson, 2001; McVean et al., 2002). Therefore,

it remains to be seen whether using new summary statistics for recombination (such as

lower bounds described in this chapter) and correcting for the bias in the number of

mutations and mutations with low rare allele frequency, one can obtain good estimates

of the recombination rates and detect recombination hotspots reliably.

From the computational standpoint, there are several open questions. How close

are these recombination lower bounds to the minimum number of recombination events

for a sample ? We believe that the difference between the lower bounds and the true

minimum could increase as the recombination rate increases, although it is difficult to

verify this and may not be true. The recombination lower bounds described here and

almost all previous lower bounds are applicable to haplotype data. Unfortunately it is

experimentally difficult and expensive to obtain phase information for genotypes. We

obtain nice results for recombination hotspots using computationally phased haplotype

data. However, computing recombination lower bounds from unphased data remains an

interesting computational problem (Wiuf, 2004).
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Chapter 3

Counting Recombination Events:

Conflict Graph and Lower Bounds

In the previous chapter, we investigated the computational complexity of two

lower bounds on the minimum number of recombination events. We also described

efficient algorithms for computing these lower bounds and a new lower bound that is

better than all previous lower bounds. All of these recombination bounds are explicitly

or implicitly based on haplotype diversity. The lower bound of Hudson and Kaplan

(1985) is based on estimating the maximum possible number of conflicting pairs of

sites. The conflict graph for a set of sequences represents the pairs of sites that do not

satisfy the four-gamete test. The conflict graph was used byD.Gusfield et al.(2003) to

obtain a polynomial time algorithm for the galled tree problem, which is a special case

of the Ancestral Recombination Graph (ARG) reconstruction problem. In this chapter,

we show that the number of non-trivial connected components in the conflict graph

for a given set of sequences is a lower bound on the minimum number of recombination

events required to explain the set of sequences under the infinite sites model of evolution.

We show that in many cases, this lower bound,Rc is a better bound than the haplotype

lower boundRh. Our results also offer some insight into the structural properties of this

graph and are of interest for the general ARG reconstruction problem.

45
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In particular, we demonstrate the following results:

1. The number of non-trivial connected componentsRc in the conflict graph of a

set of haplotypes is a lower bound on the number of recombinations required to

explain the history of the sample under the infinite-sites model. This bound can

be computed inO(nm2) time for a matrix of sizen×m.

2. The number of recombinations required does not increase if sites are deleted.

Based on this idea, we introduce theMax-NTCCproblem of deleting sites so that

the number of non-trivial connected components is maximized (to give improved

lower bounds). We show that this problem is NP-complete using a reduction

from the Maximum Independent Set problem.

3. We show that for any set of haplotypes,Rs ≥ Rc. AlthoughRc is generally a

weaker lower bound thanRh, there are many instances where it can be greater

thanRh. We show that for any matrixM , Rh ≥ 2
3
Rc − 1

3
and also provide

infinitely many examples for whichRh = 2
3
Rc. Additionally, we show how

Rc can be combined with the other bounds to reduce the computation time in

practice, and present a real dataset where it offers improvements.

3.1 Definitions

We will use the same notation and definitions as used in the previous chapter. We

provide some definitions of conflicts and the conflict graph introduced byD.Gusfield

et al.(2003).

Definition 1: A pair of columns(i, j) in M are said toconflict if there is set of 4 rows

with the pairs{00, 01, 10, 11} in these two columns. If the ancestral type at each site is

known and assumed to be 0, the presence of three rows with the values{01, 10, 11} in

these two columns implies a conflict, since we can infer the existence of the ancestral

type00. A pair of columns(i, j) is said to becompatibleif i andj do not conflict.
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Definition 2: [from D.Gusfield et al.(2003)] The conflict graphGC(M) = (V,E) for

a given setM of n sequences is a graph with vertex setV = {i| i is a column ofM }

andE = {(i, j)| columnsi andj conflict }. Note that matrixM defines an ordering

for the vertices ofGC(M). We define two edges(a, b) and(c, d) in GC(M) to benon-

interleavingif max{a, b} < min{c, d} or max{c, d} < min{a, b}.

Definition 3: We defineRc(M) to be the number of non-trivial connected components

(components of size more than one) in the conflict graph of a set of sequencesM .

Definition 4: Let M be ann × m matrix, andS = {1, 2, . . . ,m} denote the set of

sites inM . For a subsetS ′ ⊆ S, letM(S ′) denote the submatrix obtained by restricting

columns to be inS ′, and removing all redundant rows. For a sites, denoteM(S − {s})

byM−s.

3.2 Connected Components in the Conflict Graph

We begin by showing that removing sites from the matrix corresponding to the

given set of sequences does not increase the required number of recombination events.

Lemma 3: For any subsetS ′ ⊆ {1, 2, . . . ,m} of the columns of a matrixM ,mM(S′) ≤

mM , and therefore any lower bound on the number of recombinations for the matrix

M(S ′) is also a lower bound onmM .

Proof: Consider an ancestral recombination graphG(M) explainingM . For any

arbitrary sites ∈ S, we show how to transformG(M) into a ancestral recombination

graph explainingM−s without increasing the number of recombination cycles inG(M).

Consider the edgee = (u, v) labeled withs in G(M). If the edgee is labeled with other

sites as well, we simply delete the labels and keep the ancestral recombination graph

unchanged. Therefore, the interesting case is whens is the only label on the edgee. If v

is a leaf node, we simply removee and the nodev. Clearly, this can only happen if the
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sequence labeling the leaf node was the only sequence inM with a mutation onc, and

hence is not present inM−s.

In the case wherev is an internal node inG(M), we collapse the edgee and

makeu to be the starting vertex of all outgoing edges fromv. It is easy to see that

collapsing the edgee does not induce a cycle in the graphG(M). Hence, the modified

graph is an ARG for the matrixM−s. Using an inductive argument, it is easy to see that

mM(S′) ≤ mM ∀S ′ ⊆ S

♣

Corollary 4: Let S ′ denote a subset of the sitesS in M . ThenmaxS′⊆SmM(S′) is a

lower bound onmM .

Lemma 5: For a matrixM and a set of sitesS ′ ⊆ S,Rs(M(S ′)) ≤ Rs(M) ≤ mM .

Proof: Observe that any sequence of non-informative column deletions, row dele-

tions and non-redundant row removal (from the definition of boundRs) operations that

reduces the matrixM to an empty matrix, also reduces the matrixM(S ′) to an empty

matrix. Hence,Rs(M(S ′)) which is the number of row removal operations in a sequence

which uses the minimum number of row removal operations, is at mostRs(M).

♣

The main idea behind the proof of the connected components lower bound is

based on the computation of the lower boundRs. In theRs computation, we delete

rows and columns, but we only charge a recombination event when we are deleting a

non-redundant row. We will show that a row that is non-redundant when restricted to

sites in a connected component MUST be redundant when restricted to sites of any other

connected component. In order to show this, we must prove a structural property of two

connected components described in the2 edge theorem (Theorem8). The proof of this

theorem depends on two technical lemmas which we prove next.
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Lemma 6: Let S = {i, j, k, l} be four columns in a matrixM such that the pairs(i, j)

and(k, l) conflict and(i, k), (i, l), (j, k) and(j, l) are compatible. Then there is at most

one paira ∈ {00, 01, 10, 11} such that[ab1] and[ab2] are distinct rows inM(S), where

b1, b2 ∈ {00, 01, 10, 11}.

Proof: The proof is by contradiction. Suppose there are 4 distinct rows[a1b1], [a1b2],

[a2b3], [a2b4] in M(S). Without loss of generality, we can assume thata1 = b1 = 00

(we can relabel the columns without changing the conflict graph). We now consider two

cases wherea2 = 01 anda2 = 11. Since the ordering of the columns is not important,

the case wherea2 = 10 is the same asa2 = 01.

Casea2 = 01 : Sinceb3 6= b4, they differ in at least one of the sites{k, l}. We can

assume that they differ in the columnk (as the order of the columns is not relevant).

Also, as(i, j) conflict, the rowsa3 = 10, anda4 = 11 exist. The remaining entries in

the matrix are constrained to have particular values (see Figure3.1). For the last matrix

in Figure3.1, we observe that the pair of columns(j, l) contains the four distinct pairs

00, 01, 1z, and1z̄. This is a contradiction to the fact that the pair of columns does not

conflict.

Casea2 = 11 : The argument for this case proceeds along the same lines as the previous

one. Since the only conflicts possible are between the sites(i, j) and(k, l) the submatrix

is constrained to contain the following distinct set of rows:

i j k l
0 0 0 0
0 0 0 1
1 1 1 z
1 1 0 z
1 0 0 z
0 1 0 z
x y 1 z

If y = 0, then(j, k) conflict. If y = 1, then(j, l) conflict, a contradiction! ♣

Lemma 7: Let S = {i, j, k, l} be four columns in a matrixM such that(i, j) and(k, l)

conflict and(i, k), (i, l), (j, k) and (j, l) are compatible. There the submatrixM(S)
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does not have three distinct rows of the form[a1b1], [a2b2], [a3b3] wherea1 6= a2 6= a3

andb1 6= b2 6= b3.

Proof: Suppose to the contrary we have 3 distinct rows[a1b1], [a2b2], [a3b3] in M(S).

Without loss of generality we can assume thata1 = b1 = 00 anda2 = 01 (we can

relabel the columns without changing the conflict graph and the ordering of the rows

and columns is not important). As before, we proceed using a case-by-case analysis.

Case:a3 = 11 andb2 = 01 :

i j k l
0 0 0 0
0 1 0 1
1 1 1 -
1 0 - -

(j, k) can’t
contain01 &
(k, l) conflict

=⇒

i j k l
0 0 0 0
0 1 0 1
1 1 1 z
1 0 0 -
- 1 1 z

(i, k) can’t
conflict

=⇒

i j k l
0 0 0 0
0 1 0 1
1 1 1 z
1 0 0 -
1 1 1 z

But now(i, l) contains00, 01, 1z, and1, z̄, a contradiction!

Case:a3 = 11 andb2 = 11 :

i j k l
0 0 0 0
0 1 1 1
1 1 0 1
1 0 - -

(j, k) cannot
contain01 &
(k, l) conflict

=⇒

i j k l
0 0 0 0
0 1 1 1
1 1 0 1
1 0 0 -
- 1 1 0

(i, l) must
not conflict

=⇒

i j k l
0 0 0 0
0 1 1 1
1 1 0 1
1 0 0 1
− 1 1 0

Now, the pair of columns(j, l) conflict, which is a contradiction.

Note that, since the ordering of the columns does not matter, the cases where

b2 = 10 is identical to the case whereb2 = 01.

Case:a3 = 10 andb2 = 01 :
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i j k l
0 0 0 0
0 1 0 1
1 0 1 -
1 1 - -

(j, k) cannot
contain01 &
(k, l) conflict

=⇒

i j k l
0 0 0 0
0 1 0 1
1 0 1 z
1 1 0 -
- 1 1 z

(i, k) cannot
conflict

=⇒

i j k l
0 0 0 0
0 1 0 1
1 0 1 z
1 1 0 -
1 1 1 z

But now(i, l) contains00, 01, 1z, and1, z̄, hence a conflict.

Case:a3 = 10 andb2 = 11 :

i j k l
0 0 0 0
0 1 1 1
1 0 0 1
1 1 - -

(i, k) cannot
contain11 &
(k, l) conflict

=⇒

i j k l
0 0 0 0
0 1 1 1
1 0 0 1
1 1 0 -
- − 1 0

(j, k) must
not conflict

=⇒

i j k l
0 0 0 0
0 1 1 1
1 0 0 1
1 1 0 −
− 1 1 0

Now, the pair of columns(j, l) conflict, which is a contradiction. This completes the

proof of the lemma. ♣

Theorem 8: [2-edge theorem] LetS = {i, j, k, l} be four columns in a matrixM such

that(i, j) and(k, l) conflict and(i, k), (i, l), (j, k) and(j, l) are compatible. Then there

exists pairsaij andbkl, such that every row in the submatrixM(S) is of the form[aijb]

or [abkl] whereaij, bkl, a, b ∈ {00, 01, 10, 11}.

Proof: Consider 3 distinct rows in the submatrixM(S) of the form[a1b1], [a2b2], [a3b3]

where a1 6= a2 6= a3. From Lemma7 it follows that it cannot be the case that

b1 6= b2 6= b3.

First, we consider the special case whereb1 = b2 = b3. Then consider the 3

rows [a4b4], [a5b5], [a6b6] whereb4 6= b5 6= b6 6= b1. Since the columns(k, l) conflict,

three such rows exist. Now ifa4 = a5 = a6, then there cannot be a row of the form

[ab] wherea ∈ {a1, a2, a3} and b 6= b1, since then we would have 4 distinct rows

[ab1], [ab], [a4b4], [a4b5] which violate lemma6. Hence, the only other row we can have
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is [a4b1] and therefore the lemma holds withaij = a4 andbkl = b1. If we havea4 =

a5 6= a6, then we cannot have another row of the form[ab] wherea 6= a4, since then we

would again have 4 distinct rows violating the constraint of lemma6. Hence, the lemma

is satisfied withaij = a4 andbkl = b1.

In the case whereb1 = b2 6= b3, lemma6 enforces that there is exactly one row

of the form[a4b4] whereb4 is different from bothb1 andb3 anda4 ∈ {00, 01, 10, 11}.

Similarly, there is one and only one row of the form[a5b5] whereb5 is different from

either of b1, b3 or b4 and a5 ∈ {00, 01, 10, 11}. If a4 6= a3 and a4 6= a2, then the

three rows[a2b1], [a3b3], [a4b4] violate lemma7. Applying lemma7 to the three rows

[a1b1], [a3b2], [a4b4], we get that eithera4 = a1 or a4 = a3. But both the previous con-

straints can be satisfied if and only ifa4 = a3, sincea1 6= a2. Using similar arguments,

it follows thata5 = a3. Hence, the lemma is true withaij = a3 andbkl = b1.

♣

Definition 5: Let S = {i, j, k, l} be a subset of columns of a matrixM such that

the pairs(i, j) and(k, l) conflict and(i, k), (i, l), (j, k), (j, l) are compatible. Then we

denote byaij andbkl the pairs, such that every row in the submatrixM(S) is of the form

[aijb] or [abkl].

The next lemma explains how a non-redundant row removal (a row removal is

said to be non-redundant when a column deletion or a row deletion cannot be done) can

only destroy one connected component. The connected component theorem will follow

from a simple application of this lemma and Lemma3.

Lemma 9: Consider a matrixM such that each connected component in the con-

flict graphGC(M) has size 2, i.e. it consists of two sites which are in conflict. Then

Rs(M) ≥ Rc(M).

Proof: We show that every possible sequence of non-redundant row removal events

which reduces a matrixM (whose conflict graph has the structure described above)

to the empty matrix, requires at leastRc(M) non-redundant row removal operations.
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Since, the boundRs is the minimum number of row removal operations performed for

some sequence of non-redundant row removal events, it follows thatRs(M) ≥ Rc(M).

We claim that any column or row deletion cannot remove an edge in the conflict graph

(or equivalently destroy a connected component). A site is deleted only when it is non-

informative, i.e. there is either only a single haplotype with a 1 at that site or a single

haplotype with a 0 at that site. Clearly, such a site cannot be involved in a conflict with

another site, since one needs at least 2 ones and 2 zeroes at a site for it to be involved in

a conflict. Similarly, a row is deleted when there are two identical haplotypes. Clearly,

a removal of one of them cannot remove a conflict between two sites.

Now, consider a non-redundant row removal operation which destroys a con-

flict between two sites(i, j), i.e it removes one of pairs{00, 10, 01, 11} from the two

columns. Denote the pairs removed by(ab). Consider a pair of conflicting sites(k, l)

and the submatrixM(S) restricted to the 4 sitesS = {i, j, k, l}. Clearlyab 6= aij (where

aij is as defined above), sinceaij is present in more than one row ofM(S). From the

2-edge lemma it follows that the pair in the columns(k, l) in the row that was removed is

also present in other rows inM(S). Hence, the removal of the row containing(ab) in the

columns(i, j) cannot destroy a conflict between the sites(k, l). Hence, a non-redundant

row removal operation can destroy at most one connected component (or conflict) in the

conflict graph. Therefore, by induction, any sequence of column deletions, row dele-

tions, or non-redundant row removal events requires at leastRc(M) non-redundant row

removals to reduce the matrix to the empty matrix. ♣

Theorem 10: For every matrixM ,Rc(M) ≤ Rs(M) ≤ mM .

Proof: For every non-trivial connected component inRc(M), we remove sites such

that only two conflicting sites remain in each connected component. Clearly, we can

do this for every connected component with 2 or more sites. Hence, after removal of a

subset of sites, we have a reduced matrixM(S ′) whereS ′ is the set of remaining sites.

From lemma5, mM ≥ Rs(M(S ′)). Also from lemma9, it follows thatRs(M(S ′)) ≥

Rc(M), which proves the required result.
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Note that the 2-edge theorem (Theorem8) imposes a strong structure on the

underlying matrix. We can extend this theorem to the general case where we have a

connected component instead of an edge. The theorem below, shows that the rows

conferring haplotype diversity to a connected component are disjoint for each connected

component.

♣

Theorem 11: Let A,B be disjoint subsets of columns representing distinct connected

components in the conflict graph. Leta1, . . . , ak andb1, . . . , bl be the distinct rows (hap-

lotypes) inM(A) andM(B) respectively. There exist haplotypesai andbj, such that

all distinct rows of the matrixM [A∪B] are of the type[ai b] for someb ∈ {b1, . . . , bl},

or [a bj] for somea ∈ {a1, . . . , ak}.

Proof: We prove by induction on the total number of columns inM . As the two

components are non-trivial,M has at least4 columns containing an edge in each com-

ponent.

Base case (4 columns): Each component has4 distinct haplotypes00, 01, 10, and11.

The base case follows directly from Theorem8.

Induction step (k+1 columns): Assume that the hypothesis is true for all matrices con-

taining two non-trivial components with a total ofk columns. LetA be the component

with the larger number of columns. Remove a columni fromA to getA′, such that the

columns inA′ still form a single connected component1.

By the induction hypothesis, there exist haplotypesa′i andbj, such that all dis-

tinct rows ofM [A′∪B] are of the type[a′i b] for someb ∈ {b1, . . . , bl}, or [abj] for some

a ∈ {a1, . . . , ak}. Thus, the distinct rows ofM(A′ ∪B) are:

1 such a column always exists, since one can remove a vertex from a connected graph such that the
remaining vertices still form a connected graph
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A’ B
a′i b1
a′i b2
...
a′i bl
a′1 bj
a′2 bj
...
a′k bj

Now add thei-th column back to getM(A ∪ B). Consider all the rows containinga′i.

We claim that all rows containinga′i must have the same valuez in the ith column. If

this is true, the rows ofM(A ∪B) are

i A’ B
z a′i b1
z a′i b2

...
z a′i bl

a′1 bj
a′2 bj
...
a′k bj

Let ai = [z a′i]. Then each row is of the form[ai b], or [a bj], and we are done.

Next, consider the case when the rows containinga′i have instances ofz andz̄ in

thei-th column. Without loss of generality, rename the haplotypes ofB so that the rows

of M(A ∪B) contain

i A’ B
z a′i b1
z̄ a′i b2

...
a′i bl
a′1 bj
a′2 bj
...
a′k bj

Next, consider an arbitrary columnj ∈ A′ such thati, j conflict, and denote the value

of row a′i in columnj asx. Consider the connected componentX = {i, j}, andB. As



57

(i, j) conflict, all four rowszx, z̄x, zx̄, z̄x̄ must appear. On the other hand, asa′i only

containsx, all rows containinḡx must line up againstbj. The columns ofM(X ∪ B)

contain

X B
zx b1
z̄x b2
...

bl
zx̄ bj
z̄x̄ bj
...

bj

It is easy to verify that the componentsX andB violate the inductive hypothesis

even though theyX ∪B has fewer thank columns, a contradiction! ♣

Definition 6: For a pair of non-trivial connected components(A,B), denote the com-

mon haplotype ofA with respect toB ash(A,B).

3.2.1 Extensions to theRc lower bound

In this subsection, we show how the connected component lower bound can be

extended to obtain improved bounds. We show that we can apply the lower boundRs

independently to each connected component of the conflict graph of a matrixM to

obtain a recombination lower bound forM .

Lemma 12: ∑
C∈CC

Rh(M(C)) ≤
∑
C∈CC

Rs(M(C)) ≤ Rs(M) ≤ mM

Proof: Consider an optimal history forRs for the matrixM , i.e. a sequence of col-

umn deletions, row deletions and non-redundant row removal events which reduces a
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matrixM to the empty matrix and requiresRs(M) non-redundant row removal oper-

ations. This history can be used to obtainRs histories for each connected component

as follows. Consider any non-redundant row removal operation in the optimal history

and letr denote the row removed. There is at least one connected componentC such

that the rowr is non-redundant in the submatrix restricted to the sites inC. LetC ′ be

another connected component in the conflict graph ofM . We claim that the rowr is

redundant is the submatrix restricted to the sites in this componentC ′. If this was not

the case, it would contradict Theorem11. Hence, the rowr is non-redundant in the

submatrix restricted to the sites of exactly one connected component. Therefore, every

non-redundant row removal can be assigned to theRs history of one connected compo-

nent. For all other components, this row removal corresponds to a row deletion event in

the history. Therefore, the sequence of column deletion, row deletion and row removal

operations in the history of a connected component is identical to that in the optimalRs

history forM . Moreover, the total number of non-redundant row removal operations

summed over histories of all connected components is exactlyRs(M). It follows that∑
C∈CC Rs(M(C)) ≤ Rs(M). SinceRs(S) ≥ Rh(S) for any set of sitesS, the sum of

Rh bounds on the connected components is also a valid lower bound. ♣

Note that computingRs is intractable in general. However, we can possibly

speed up the computation of theRs bound by computing the bound independently on

each connected component of the conflict graph. Moreover, in practice the above lemma

can be used to obtain improved bounds as follows. For each connected component, it

is easy to check in polynomial time ifRs = 1 or more. If it is not then it cannot be

explained by a single recombination event. Hence, instead of one event, one can infer

two recombination events. In fact for any small constantc, one can check ifRs < c or

not. We illustrate this on a real dataset in subsection3.3.1. Moreover, the above lemma

also allows us to combine the boundsRh andRc. For a given set of sites, one can get a

bound that is at least as good as the maximum of the boundsRh andRc.
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We can use lemma3 in conjunction with the connected component lower bound

to obtain a somewhat stronger lower bound onmM . For a subsetS ′ of the sites inM ,

let CC(S ′) denote the non-trivial connected components in the conflict graph forM(S ′).

For every matrixM ,

max
S′⊆S
|CC(S ′)| ≤ mM (3.1)

We introduce the Max-NTCC problem for finding a subset of sites whose conflict

graph has the maximum number of non-trivial connected components. Unfortunately,

we show that this problem is NP-complete.

Max-NTCC problem:

Input: A matrixM with n sequences and a setS of s sites.

Output: S ′ ⊆ S, such that the number of non-trivial connected components in the

conflict graph ofM(S ′) is≥ k.

Theorem 13: The Max-NTCC problem is NP-complete.

Proof: It is easy to see that the problem is in NP. To prove the NP-hardness, we give a

reduction from the Independent Set problem. The independent set problem is defined as

follows: Given an undirected graphG = (V,E), is there a subsetV ′ of V of cardinality

≥ k such that there is no edge between any pair of vertices inV ′.

We construct a matrixM with 2|V | sites (columns) and3|V | + 3|E| rows as

follows. Label the nodes inV arbitrarily from 1 to|V |. For every vertexvi in V we

define 2 sitesvi andv′i. We initially start with no rows and add new rows to the matrix

keeping the number of columns fixed as2|V |. For every vertexvi, we add 3 rows with

the pairs{01, 10, 11} in the columns{vi, v′i} and with value 0 in all other columns.

Hence, we obtain a matrix with3|V | rows, such that there is a conflict between the sites

{vi, v′i}, 1 ≤ i ≤ |V | and no other conflicts. Now, for every edge(vi, vj) ∈ E, we add

three new rows with the pairs{01, 10, 11} in the columns{vi, vj} and with value 0 in all

other columns. As a result, we obtain a matrixM with 2|V | columns and3|V | + 3|E|
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rows. We claim that the only edges in the conflict graph for this matrix are of the form

{vi, v′i}, vi ∈ V or {vi, vj}, where(vi, vj) ∈ E. This is true since the only pairs of

columns for which there is a row with pair{11} are{vi, v′i}, vi ∈ V and{vi, vj} where

(vi, vj) ∈ E.

Suppose that there exists an independent setV ′ ⊆ V of cardinality k in G.

Consider the conflict graph forM(S ′) whereS ′ = ∪u∈V ′{u, u′}. Each pair of sites

{u, u′}, u ∈ V ′ forms a connected component of size 2, since there is no conflict be-

tween a pair of sites(u, v) whereu, v ∈ V ′. Hence the conflict graphGC(M(S)′)) has

k non-trivial connected components.

Now, let S ′ ⊆ S be such that the conflict graph forM(S ′) hask non-trivial

connected components. It is easy to see that every non-trivial connected component has

at least one non-primed vertexu ∈ V . For each connected component, we choose one

non-primed vertex to form the setI ⊆ V . Now,I is an independent set inG since if there

was an edge between two vertices inI then they would have been in the same connected

component inCC(M(S ′)) and therefore not both in the setI. Also, the independent set

I has cardinalityk. Hence, there is an independent setV ′ ⊆ V of cardinality at leastk

iff there exists a subsetS ′ of S such that the conflict graph ofM(S ′) hask non-trivial

connected components. ♣

3.3 Comparison ofRc with other bounds

In this section, we compareRc to the boundsRm andRh. We have already

proved (see Theorem10) that the history based boundRs is always better than the bound

Rc, however it is not feasible to computeRs for a set of 10 or more haplotypes (see

Myers and Griffiths(2003)). First, we observe that if we apply theRc method to subsets

of continuous columns, and compute the best bound using dynamic programming on the

local lower bounds, thenRc is always better thanRm. Note that the running times for

computing the boundsRh andRs are exponential and super-exponential respectively.

In general, the best lower bound that can be obtained using the connected component
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approach ism/2 wherem is the number of columns. If the number of distinct haplotypes

n > m + m/2, then the boundRh is trivially better than the connected component

lower bound. For example, for a set of2k haplotypes withk columns, theRh bound

is exponentially better than the connected component lower bound. For regions of low

diversity in haplotype data, the connected component lower bound can possibly offer

better bounds that the haplotype diversity boundRh. Here, we provide an example of

a matrixM for which Rh = 2
3
|CC|, whereCC is the set of the non-trivial connected

components in the conflict graph forM . Although this example is not real, it serves to

illustrate the kind of haplotype data for which the boundRc could offer improvements

over the boundRh.

Theorem 14: For alln0, there exists a matrixM with n ≥ n0 rows such thatRh(M) =

2
3
Rc(M).

Proof: We choose the number of rows for the matrixM to be3k ≥ n0, wherek ≥ 2.

Starting from an empty matrix, we add new columns keeping the number of rows fixed.

We add columns in groups of 2, which represent a connected component in the conflict

graph. The following procedure defines the matrixM (depicted in Figure3.2) :

1. for j = 1 to k − 1

2. for i = 0 to 3k−j − 1 do

3. add two new columns with the following values:

4. 01 in3j−1 rows starting from row3j−1(3i+ 1)

5. 10 in3j−1 rows starting from row3j−1(3i+ 2)

6. 11 in3j−1 rows starting from row3j−1(3i+ 3)

7. 00 in the remaining rows

Claim: Every column conflicts with only one other column.

Proof: Consider a columni where0 ≤ i ≤ 2 ·3k−1−1. There are only two rows with

a 1 at this site and every other site (apart from the one site this site conflicts with) has

the same value in these two rows. Hence, every sitei, 0 ≤ i ≤ 2 · 3k−1− 1 is involved in
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Figure 3.2: The structure of the matrix M for whichRh = 2
3
Rc

only one conflict. Next, consider a columnj where2 ·3k−1 ≤ j ≤ 2 ·3k−1 +2 ·3k−2−1.

There are six rows with a 1 at this site and every other site (except the column with

which j conflicts) has the same value in these rows. Hence, every sitej in the range

[2 ·3k−1, 2 ·3k−1−1+2 ·3k−2−1] is involved in only one conflict. Similar arguments are

applicable to each submatrix added in steps 2-6 of the procedure above which describes

the matrixM . Hence, the required property holds for every column in the matrixM .

♣

Lemma 15: Rh for the matrixM (constructed above) is exactly2
3
CC.

Proof: After adding new rows as defined by this procedure, the matrixM has

2(3k−1 + 3k−2 + . . . + 3) = 3k − 3 columns. Also, there is a conflict between any

two new columns added. Therefore, we have
[

3k−3
2

]
non-trivial connected components.

Hence|CC| =
[

3k−3
2

]
.

Observe that the first two columns are the only columns that can distinguish rows 1, 2

and 3. The next 2 columns are the only columns that can distinguish rows 4, 5 and 6.

In general, columns2i and2i + 1 are the only columns that can distinguish between

rows3i, 3i + 1 and3i + 2, 0 ≤ i ≤ 3k−1 − 1. Let I be the set of the first3k−1 sites.

Observe that|D(MI)| = 3k. Restricting the matrix to the first2 · 3k−1 sites, we obtain
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Rh ≥ 3k − 2 · 3k−1 − 1 = 3k−1 − 1. Now, we need to show that for every subset of

rowsS, (|D(MS)| − |S| − 1) ≤ 3k−1 − 1. Suppose on the contrary, there is a sub-

setS for which (|D(MS)| − |S| − 1) > 3k−1 − 1. If S does not contain a pair of

columns(2i, 2i + 1), 0 ≤ i < 3k − 1, then we can add the pair of columnsS to ob-

tain a set of columnsS ′ such that(|D(M ′
S)| − |S ′| − 1) > (|D(MS)| − |S| − 1). In

the other case, whereS does not contain one of the columns(2i, 2i + 1), we can add

that column to get a setS ′, for which (|D(M ′
S)| − |S ′| − 1) = (|D(MS)| − |S| − 1).

Inductively, we can add columns toS to obtain a set of columnsS∗ = S ∪ I such

that (|D(MS∗)| − |S∗| − 1) ≥ |D(MS)| − |S| − 1) > 3k−1 − 1. We know that

|S∗| ≥ |I| = 2 · 3k−1. Hence, we obtain|D(MS∗)| > 3k−1 + 2 · 3k−1 = 3k, which

is a contradiction since we only have3k rows. Therefore, it follows thatRh = 3k−1− 1.

Hence,

Rh = 3k−1 − 1 =
2

3

(
3k − 3

2

)
=

2

3
|CC|

This shows thatRh = 2
3
Rc for the matrixM . For this particular example, one can also

show thatRs = |CC|. ♣

This completes the proof of Theorem14. ♣

Although theRh bound for the matrixM is 3k−1 − 1, by obtaining local bounds

usingRh on subregions of the matrix and using the framework of Myers and Grif-

fiths (Myers and Griffiths, 2003) to combine these local bounds, the overall bound for

the whole matrix can be improved to|CC|. However, by permuting columns appropri-

ately, the overall bound obtained by combining the localRh bounds can be forced to be

3k−1−1, while the connected component bound is unchanged. The next theorem shows

that the above example is in fact a worse case scenario.

Theorem 16: For any matrixM ,Rh(M) ≥ 2
3
Rc(M)− 1

3
.

For a given matrixM , we can remove columns such that every non-trivial connected

component is of size 2 and the number of non-trivial connected components does not

decrease. Therefore, it suffices to prove the above theorem for a matrixM in which



64

every connected component has size 2. Next, we prove a series of lemmas for a matrix

M in which every connected component is of size 2. For such a matrixM with n distinct

rows, we show that the number of non-trivial connected components cannot exceedn/2.

For a matrix withn rows, we denote the number of non-trivial connected components

byC(n). Since every component is of size 2, the number of sites is2 · C(n).

Lemma 17: For a matrixM in which every connected component is of size 2, there ex-

ists a connected component (pair of columns), such that 3 of the 4 pairs{(00, 01, 10, 11}

appear exactly once.

Proof: Consider a connected componentC. Let C(ab) denote the set of rows with

valueab in the columns ofC, whereab ∈ {00, 01, 01, 11}. Let C(2) denote the set

of rows corresponding to the second largest among the four values:{|C(ab)| : ab ∈

{00, 01, 01, 11}}. andxy denote the pair in the componentC in the rowsC(2). Let

Cmin be the connected component for which|Cmin(2)| = minC∈CC{|C(2)|}.

If |Cmin(2)| = 1, then clearly|Cmin(2)| = |Cmin(3)| = |Cmin(4)| = 1, and

therefore 3 of the 4 pairs appear exactly once in the connected componentCmin. If

|Cmin(2)| > 1, since all the rows in the matrixM are distinct, there exists a connected

componentC ′ such that the pairs in the componentC ′ in the set of rowsCmin(2) are

not all equal. Hence,h(Cmin, C ′) = xy (hereh(A,B) denotes the common haplotype

of componentA with respect toB) and therefore 3 out of 4 pairs in the component

C ′ are present in the rowsCmin(2). LetC ′(2) denote the set of rows corresponding to

the second largest among the four values:{|C ′(ab)| : ab ∈ {00, 01, 01, 11}}. Clearly,

|C ′(2)| < |Cmin(2)|. However,|Cmin(2)| = minC∈CC{|C(2)|} which leads to a contra-

diction. Therefore,|Cmin(2)| = 1 and there is a connected component such that 3 of the

4 pairs{00, 01, 10, 11} appear exactly once.

♣

Lemma 18: For a matrixM in which every connected component is of size 2,Rh(M) ≥

n/3− 1.
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Proof: The proof is by induction on the number of rows. For a matrix with at most 6

rows and at least one connected component(pair of columns), we can restrict the matrix

to a single connected component for computingRh and henceRh ≥ 4 − 2 − 1 = 1 ≥

6/3− 1. This proves the base case. Suppose the induction hypothesis is true fork < n,

i.e for every matrixM with k rows (k < n) and in which every connected component is

of size 2,Rh(M) ≥ k/3− 1. Now, consider a matrix withn rows, wheren > 6. From

the previous lemma, there is a pair of conflicting columns (connected component), such

that 3 of the 4 pairs appear exactly once. LetM ′ denote the matrix after removing the

two columns with 3 of the 4 pairs occurring only once and the three rows corresponding

to the three pairs. Note that removing the two columns does not cause any other rows to

become identical, since all rows apart from the three removed had the same value in the

two columns. (see lemma6) One can writeRh(M) ≥ Rh(M
′) + 3− 2 = Rh(M

′) + 1.

From the induction hypothesis, we haveRh(M
′) ≥ (n − 3)/3 − 1. Combining, we

obtainRh(M) ≥ n/3− 1, which proves the lemma.

♣

Lemma 19: For a matrixM in which every connected component is of size 2,C(n) ≤

n/2− 1.

Proof: Consider a matrixM with n rows in which every connected component has

size 2. From Lemma17, there exists a connected componentC, such that 3 of the

4 pairs occur exactly once inC. Denote the 3 rows containing these pairs asR(C).

Moreover, applying the 2-edge theorem, we also have the property that the pairs in the

rowsR(C), in every component apart fromC are identical. Hence, if we remove the

columns inC, three rows inM become identical. Therefore, we have the equation:

C(n) ≤ 1 + C(n− 2). We also haveC(4) = 1 and henceC(n) ≤ n/2− 1. ♣

From the above two lemmas, it follows thatRh ≥ n/3− 1 ≥ 2
3
C(n)− 1

3
, which

completes the proof of Theorem16. Note that the theorem still holds ifRc(M) is

replaced bymaxS′⊆S Rc(M(S ′)).
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
A 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0
B 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0
C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
D 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
E 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 1
F 0 1 0 0 0 1 0 0 0 1 0 1 0 1 1 1
G 0 1 0 0 0 1 0 0 1 1 1 1 1 1 0 1
H 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 1
I 1 1 1 1 0 1 0 0 1 1 1 1 1 1 0 1

Figure 3.3: A reduced haplotype matrix for alcohol dehydrogenase locus of Drosophila.

3.3.1 Application to a Drosophila Dataset

Next, we consider a real dataset taken from the alcohol dehydrogenase locus

from 11 chromosomes of Drosophila melanogaster (Kreitman, 1983). The original

dataset had 11 haplotypes and 2800 sites. We coalesce two identical haplotypes and

remove all sites that are not incompatible with any other sites and sites that are identical

to an adjacent site. This leaves us with a reduced set of 9 haplotypes typed at 16 sites

(see Figure3.3).

If the alleles at the sites 2 and 3 had not been determined, then the haplotypes

would be restricted to the sites:{1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}. We denote

a recombination lower bound for the sites between sitesa andb byBab. For this smaller

dataset, the recombination lower bound that we would get usingRm is 4. However, the

conflict graph for the subset{1, 4, 5, 6} has 2 connected components, which implies a

local recombination lower bound of 2 between the sites1 and6, i.e.B1,6 = 2. Hence, the

connected component lower bound for the smaller dataset is 5. However, for the set of

sites between7 and15, there are two conflicting pair of sites:(7, 15) and(14, 15). One

can check that the removal of one sequence does not destroy both these conflicts. Hence,

one can infer a recombination bound of2 for this subset (see Lemma12), i.e.B7,15 = 2.

Therefore,B1,16 = B1,6 + B6,7 + B7,15 + B15,16 = 2 + 1 + 2 + 1 = 6 which gives an

overall lower bound of6. For this dataset, Song and Hein (Song and Hein, 2004) showed

that the minimum number of recombination events is 7. This example illustrates, that
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if we have the alleles at fewer sites, then the connected component bound can provide

improvements over the boundRm.
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Chapter 4

Detecting large inversions from

whole-genome SNP haplotype data

4.1 Introduction

Long before SNPs were discovered as a form of genetic variation and even be-

fore the discovery of DNA, Dobzhansky, in early 20th century, had detected large ge-

nomic rearrangements that were polymorphic in Drosophila strains. These were the first

known examples ofgenetic variationthat Darwin’s theory had described as the ’raw

materials for evolution’. Advancements in modern biology have allowed us to study

and cataloger the smallest form of genetic variation (SNP). However, with sequencing

of complete mammalian genomes, large chromosomal rearrangements have come un-

der increasing attention with extensive work on their discovery, mechanisms of origin

and impact on genomic evolution. Study of chromosomal rearrangements is also im-

portant for reasons of medical importance since genomes of tumor cells are known to

undergo extensive rearrangements. These chromosomal rearrangements include inver-

sions, duplications, translocations and deletions of genomic segments of sizes ranging

from a gene to several megabases. Large scale structural changes such as deletions,

duplications, inversions and translocations of genomic segments are known to be asso-

68



69

ciated with susceptibility to disease (Lakich et al., 1993; Osborne et al., 2001; Lupski,

1998). In the past 2-3 years, increasing evidence suggests that the human genome con-

tains large scale DNA variants, collectively referred to as ‘structural variants’. High-

throughput experimental techniques based on comparative genomic hybridization have

enabled the discovery of hundreds of copy number polymorphisms in human individu-

als (Sebat et al., 2004; Iafrate et al., 2004; Sharp et al., 2005). The HapMap genotype

data has also been used to discover insertion/deletion polymorphisms (Conrad et al.,

2006; Hinds et al., 2006; McCarroll et al., 2006).

In sharp contrast, knowledge about the location and genome-wide extent of in-

version polymorphisms has not accumulated at the same pace, primarily due to the

lack of a high-throughput technique for detecting inversions. Inversion polymorphisms

are well known and quite common in species of Drosophila. Sturtevant discovered in

1921 (Sturtevant, 1921) that the genomes of two Drosophila species differ a large in-

version on one of the chromosomes. Inversion polymorphisms were shown to reduce

recombination rates in the inverted region and increase recombination rates in other

chromosomes (SCHULTZ and REDFIELD, 1951). Recombination is suppressed in in-

dividuals who are heterozygous for the inversion: carry both the non-inverted and the

inverted haplotype. This leads to an overall reduction in the recombination rate in the

region. Lack of recombination between the two haplotypes causes them to evolve in-

dependently accumulating mutations that are specific to each clade. Large inversion

polymorphisms are generally believed to be rare in humans due to their expected dele-

terious effects and very examples of such polymorphisms are known. A notable one is

the recently discovered 900kb long common inversion polymorphism on 17q21.31 (Ste-

fansson et al., 2005). The inverted orientation had a frequency of 21% in Europeans but

was rare in individuals of African (6%) and Asian (1%) origin. The inverted haplotype

was dated to be about 3 Myr old but shows little evidence for recombination, leading

to a distinct haplotype pattern and extended LD across the region in the CEU popula-

tion (see Figure4.1 for a graphical display of the unusual haplotype pattern for this

region). Interestingly, genotype-phenotype analysis in an Icelandic population showed
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that women carrying the inverted haplotype had more children than those who didn’t,

providing direct evidence that the inverted arrangement is under some form of selection.

Stefansson et. al. (Stefansson et al., 2005) suggested that an computational approach

to detecting inversion polymorphisms would be to look for regions with unusually high

LD especially long range LD. However, there is great variation in recombination rates

across the human genome, and high LD can arise just to an underlying low recombi-

nation rate. There are patterns that one would expect to see in a region harboring an

inversion polymorphism that are unlikely due to fluctuation in recombination rates and

under neutral evolution.

Another large common inversion polymorphism discovered previously, lies in

the chromosome band 8p23.1 - 8p22. This inversion was initially detected when un-

usual recombination patterns were observed in recombination analysis of CEPH pedi-

gree data (Broman et al., 2003) and later verified and analyzed using Fluorescentin situ

hybridization (FISH) (Giglio et al., 2001). Subsequently, the frequency of the inversion

polymorphism was determined to be about 26% in the CEU population and 39% in the

Japanese population (Sugawara et al., 2003) and the inversion breakpoints were mapped

quite precisely. For this unusually long inverted region (4.7 MB), the reference assem-

bly (Build 34) has the orientation of the minor allele while the ordering in the deCODE

genetic map (Kong et al., 2002a) matches the major allele.

A recent study (Tuzun et al., 2005) mapped fosmid paired-end sequence data

from a fosmid DNA library of a North American female (not represented in the refer-

ence human genome assembly) to the reference human assembly. Fosmids that showed

discrepancy by size were indicative of deletions/insertions between the two genomes,

while fosmids whose ends mapped on the same strand of the reference genome (discor-

dant by orientation) pointed to potential inversions. This strategy revealed 56 putative

inversion breakpoints in addition to 139 insertions and 102 deletions. For 228 of the 297

variants, the fosmid library also contained clones consistent with the reference assembly,

suggesting that these are unlikely to be genome assembly errors. Although the method is

effective in determining inversions, it will require extensive re-sequencing in a popula-
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tion of individuals to fully determine the extent and frequency of these polymorphisms.

An indirect approach that has been adopted for finding inversion polymorphisms is to

test human-chimp inversions for polymorphism in humans using FISH and PCR analy-

sis (Feuk et al., 2005; Szamalek et al., 2006). Out of 23 regions that were tested (Feuk

et al., 2005), 3 were found to be polymorphic in humans with the largest being a 800kb

inversion on chromosome 7.

In this chapter, we describe a statistical method to detect large inversion poly-

morphisms in the human genome using whole genome SNP genotype data. Unlike dele-

tions which cause miscalled genotypes and can lead to Mendelian inconsistencies (Mc-

Carroll et al., 2006; Conrad et al., 2006), inversions are copy neutral and do not affect

the SNP genotypes. Our method is based on the detection of an unusual Linkage Dis-

equilibrium pattern that is indicative of inversions for which the inverted orientation

(w.r.t reference human genome sequence) is present in a majority of chromosomes in

a population. The method can also detect assembly orientation errors in the human se-

quence assembly, i.e. genomic segments which are present in the reverse orientation

in the assembly. Using simulations, we show that our method has statistical power to

detect such inversions. We have applied our method to data from the first phase of the

International HapMap project to generate a list of 176 candidate inversions in the three

HapMap ‘analysis panels’ (CEU, YRI and CHB+JPT). Although it is difficult to esti-

mate how many of these represent true inversions, a crude estimate of the false positive

rate using coalescent simulations indicates that about half of the 78 predictions in the

YRI ‘analysis panel’ represent true inversions. The false positive rate could be higher

(about 80%) for the inversions in the CHB+JPT ‘analysis panel’ , according to a conser-

vative assessment. Even with the high false positive rates, our method is a cost-effective

approach to discovering inversion polymorphisms. We have looked for supporting ev-

idence for our predicted inversions in the form of discordant fosmid pairs, assembly

discrepancies and presence of a pair of inverted repeats near inversion breakpoints. This

has resulted in a smaller list of 15 inversions, two of which represent previously known

inversions.
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4.2 Methods

Genetic maps are constructed by genotyping a large number of genetic markers

in a pedigree and ordering the markers based on estimates of the recombination frac-

tion between genetic markers. Markers that are physically close to each other in the

genome are also expected to be close to each other in the recombination map and vice

versa. On the other hand, the human genome assembly represents the genomic sequence

of a few individual(s) and a second, possibly different, ordering of the markers (SNPs

for example) can be determined by mapping the sequence flanking the markers to this

reference. Recently a high resolution genetic map was constructed using data for an

Icelandic population (Kong et al., 2002a). Comparison of the genetic map to the refer-

ence sequence revealed several regions where the ordering of the genetic markers was in

opposite orientation to that suggested by the reference sequence. Given the incomplete

nature of the draft human sequence at that time, the sequence was modified in the re-

gions where the genetic map strongly indicated a different marker order. The possibility

that some of these discrepancies are a result of an inversion polymorphism in the par-

ticular region cannot be discounted. For example, if the human sequence represents the

minor allele in a particular region of the human genome which has two orientations, one

would expect the ordering of the markers (inside the inverted segment) in the genetic

map to be consistent with that of the major allele and hence be opposite to that of the

sequence. In fact, this is true for a 4.5 megabase long inversion on chromosome 8 where

the reference human sequence represents the minor allele (frequency 20-30% in human

populations) and the genetic map (Kong et al., 2002a) matches the marker order of the

major allele. However, the low resolution of genetic maps makes it difficult to detect

such discrepancies in general.

In genotype data from unrelated individuals,Linkage Disequilibrium (LD)refers

to the non-random association of alleles at physically neighbouring markers (SNPs in

our case). In human population data, significant LD is observed at close distances and

little or no LD is observed at long distances. This correlation of LD with distance is
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Figure 4.2: Unusual Linkage Disequilibrium observed in SNP data when the inverted
haplotype (w.r.t the reference sequence) has very high frequency. SNPs are ’mapped’ to
the reference sequence using the flanking sequence (denoted by shaded boxes). There-
fore close SNPs in high LD are mapped to distant regions1 and3 (the shaded boxes).
Consequently, the two regions show unusually high LD for that distance.

very noisy due to multiple factors, largely due to the fine-scale heterogeneity in the

recombination rates in the human genome (McVean et al., 2004; Crawford et al., 2004;

Myers et al., 2005). Although it may not be possible to determine a physical ordering of

SNPs using LD alone, it is possible to distinguish between SNPs that are physically close

from physically distant SNPs using LD. Our method utilizes high density SNP haplotype

data to find regions of the human genome where the ordering of the SNPs suggested by

Linkage Disequilibrium patterns is opposite to that of the physical sequence.

4.2.1 Using LD in population data to detect inversions

Consider a genomic region that is inverted (w.r.t the reference sequence) in a

majority of the chromosomes in a population and assume that we have genotyped mark-
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ers on either side of the two breakpoints. For a graphical illustration, see Figure4.2.

In such a scenario, we would expect to see unusually high long range LD (LD13 and

LD24) than would be expected between markers that are physically distant. Further,

one would also observe low LD (LD12 andLD34) between pairs of markers that are

physically close according to the reference sequence. The strength of this effect will be

proportional to the frequency of the inverted allele. Our statistic is designed to search

for pair of breakpoints showing this kind of signal.

4.2.2 The Inversion Statistic

Consider a pair of breakpoints whereB1 andB2 denote two blocks on either

side of the left inversion breakpoint andB3 andB4 are the blocks of SNP’s spanning the

other inversion breakpoint (See Figure4.2). We compute a pair of log likelihood ratios,

one for each inversion breakpoint which represent the log of the ratio of the probability

of the region being inverted in the population vs being non-inverted. LetLDij denote

the LD between blocksi and j, anddij denote the corresponding distance. The log

likelihood ratio for the left breakpoint is defined as

LLRl = log

(
φd13(LD12) · φd12(LD13)

φd12(LD12) · φd13(LD13)

)
(4.1)

Similarly, the log likelihood ratio for the right inversion breakpoint is defined as

LLRr = log

(
φd24(LD34) · φd34(LD24)

φd34(LD34) · φd24(LD24)

)
(4.2)

If the pair of breakpoints represent inversion breakpoints (with the inverted allele

having high frequency), we would expect the long range LD (LD13 andLD24) to be

stronger than the short range LD (LD12 andLD34) and both log likelihood ratios to be

positive. However, most measures of LD, including D’ show some dependence upon

allele frequencies. Therefore, even in the absence of an inversion, the log likelihood

ratios could be positive (due to the long range LD being larger in magnitude than the

short range LD just by chance). Therefore, we estimate the significance of the two log-

likelihood ratios using a permutation test. For a pair of breakpoints denoted by(l1, l2)
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and(r1, r2), we permute the haplotypes inside the inverted region (from the blockl2 to

r1). The two log-likelihood ratios are computed for this permutation and the p-value is

defined as the fraction of permutations for which at least one of the two log-likelihood

ratios is greater than its corresponding original value. We use10, 000 permutations to

compute each p-value. Using simulations, we found thep-value to have much better

specificity and almost equal sensitivity at detecting inversions as compared to the log-

likelihood ratios. Therefore, we use thep-value for a pair of breakpoints as our statistic

for the presence of an inversion. Thep-value for the log-likelihood ratios cannot be

interpreted as a typicalp-value; it estimates the chance that at least one of the two log-

likelihood ratios would achieve the corresponding computed value even if there was no

LD between the blocks.

4.2.3 Measuring LD

Most measures of LD are defined for a pair of bi-allelic sites, and have high

variance. We are interested in assessing the strength of association between blocks of

SNP’s across the inversion breakpoints. Therefore, we use themulti-allelic version of

the LD measureD′ (Lewontin, 1964; Hedrick, 1987b) by considering a block of SNPs as

a multi-allelic marker. LetA andB denote two blocks with haplotypesA1, A2, . . . and

B1, B2, . . . respectively. Letpi (qj) denote the frequency of haplotypeAi (Bj). Define

Dij = hij − piqj wherehij is the frequency of the haplotypeAiBj. The extent of LD

between each pair of haplotypes is defined as

D′
ij =

Dij

Dmax

where

Dmax =

 min{piqj, (1− pi)(1− qj)} if Dij < 0

min{pi(1− qj), (1− pi)qj} otherwise

The overall measure of LD betweenA andB is

D′
AB =

∑
i

∑
j

piqj|D′
ij|
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We computed the LD measure between all pairs of multi-SNP markers on a chromosome

(defined above) within a certain maximum distance. Using these LD values for the

22 autosomes, we obtained probability distribution curves of LD at a fixed distanced,

denoted asφd. The X chromosome was excluded since it has a reduced recombination

rate as compared to the autosomes.

4.2.4 Defining multi-SNP markers

For each ‘analysis panel’ , all SNPs with a minor allele frequency smaller than

0.1 in the ‘analysis panel’ were discarded since they are less informative about LD

patterns. After this filtering, we selected a multi-marker SNP block for every remain-

ing SNP as follows. For each SNPS, we considered all SNPs in the genomic region

L(S) . . . L(S)+W whereL(S) is the genomic location of SNPS andW is the window

size. If this window had less thank SNPs, it was discarded. For anyk SNPs, an indi-

vidual sequence is described by a haplotype of lengthk, induced by the allelic values

of thek SNPs. Denote the set of haplotypes asA1, A2, . . ., with frequenciesp1, p2, . . .

respectively. For each window, we chose a subset ofk SNPs that maximize the entropy

of the haplotypes(−
∑

i p1 log pi) defined by any subset ofk SNPs. The subset of SNPs

with maximum entropy best captures the haplotype diversity of the window and is po-

tentially most effective for measuring LD with other multi-allelic SNP markers. These

k SNPs defined a multi-SNP marker with a left and right physical boundary defined by

the physical location of the first andkth SNP. The average SNP density of the HapMap

‘analysis panels’ is about one SNP (with MAF>= 0.1) per 5-6 kb (across different

chromosomes). The parametersk andW were chosen to be 3 and 18kb respectively

based on this SNP density. The results are not greatly affected by increasing or decreas-

ing W by a few kb. Simulations indicate that the power to detect inversions is smaller

for k = 4 as compared tok = 3.
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4.2.5 Simulating Inversions

It is straightforward to simulate an inversion with frequencyf = 1, however,

to the best of our knowledge, there is no existing program that can simulate human

population data accommodating polymorphisms. The effect of decreasing the frequency

of the inverted haplotype (on our statistic) is to essentially decrease the strength of long

range LD and increase short range LD. Hence, we adopted a simple simulation strategy

which could mimic this effect of the inversion frequency on our statistic directly. For a

given chromosome, we chose at random two SNPsS andE that define the region with

the inversion polymorphism. Let1, 2 . . . s denote the SNP’s in this chosen region. To

simulate an inversion with frequencyf = 1, we just flip the values of the alleles at SNPs

i ands+ 1− i, for all 1 ≤ i ≤ s/2 for all haplotypes. In order to simulate an inversion

of frequencyf (0 < f < 1), we randomly select a subset of haplotypes of sizef × n,

wheren is the total number of haplotypes. For every haplotype in this set, we simply

flip the values of the alleles at SNPsi ands+ 1− i, for all 1 ≤ i ≤ s/2. Notice that this

may have the effect of combining the alleles at two different SNPs.

We used the phased haplotype data from the International HapMap project to

simulate inversions. In order to simulate an inversion of given length, we choose one

breakpoint randomly and the second breakpoint using the length of the inversion. After

planting the inversions, we scan the chromosome for regions with lowp-value for the

log-likelihood ratios. A simulation inversion is considered to be detected if predicted

inversion(l1, l2, r1, r2) has the property that the interval(l1, l2) overlaps the left endpoint

of the inversion and(r1, r2) overlaps the right endpoint. Power is defined as the fraction

of simulated inversions which are detected. Each point in the power plots is based on

simulating about 500 inversions.



79

4.3 Results

4.3.1 Power to detect Inversion Polymorphisms

Our statistic is suited to detect long inversions (long enough for little or no long

range LD to be present) for which the inverted orientation (w.r.t. the reference sequence)

is the major allele. Many factors influence the power of our statistic, including back-

ground recombination rates, the length of the inversion, and the frequency of the inverted

haplotype. We used simulations to assess how these factors affect the power of our statis-

tic. Currently, only a few instances of inversion polymorphisms are known, and existing

work on simulating population data incorporating the effect of inversion polymorphisms

is of a theoretical nature based on Drosophila inversion polymorphisms (Navarro et al.,

2000a). Therefore, we adopted a simple strategy to simulate inversions of varying fre-

quency using haplotype data from the HapMap project.

As our simulations were over real data with high variation in recombination

rates, we effectively average over the effect of recombination rate variation. Figure4.3(a)

describes the power of the statistic to detect inversions as a function of the frequency of

the inverted allele (f ), keeping the length fixed at500 kb for the three HapMap ‘analysis

panels’. The power is measured by the fraction of simulated inversions in which the

inverted region was detected with ap-value less than a fixed cutoff (0.02). Figure4.3(b)

describes the power for different lengths of the inverted region. The results indicate

that the power of the method is low for small inversions (0.45 for inversions of length

100kb) and increases with increasing length, saturating around 500kb. Although the

simulations cannot completely capture the effect of an inversion on LD patterns, they

suggest that our method has good statistical power to detect long inversions segregating

at high frequency in a population. They also indicate that the power is maximum in the

YRI ‘analysis panel’ (see Figure4.3(a)). We show later, through independent assess-

ment of the false-positive rate of our predicted inversions on the HapMap data, that the

error rate is lowest for the YRI ’analysis panel’.



80

(a) (b)

Figure 4.3: (a) Power of the method to detect inversion polymorphisms in the three
HapMap ’analysis panels’. Inversions of varying frequency (100% to 50%) of a fixed
length (500 kb) were simulated using the HapMap data for the three ‘analysis panels’
separately (YRI, CEU and CHB+JPT). The y-axis represents the fraction of simulated
inversions for which there was at least one pair of predicted breakpoints withp-value≤
0.02 matching the breakpoints of the simulated inversion. (b) Power to detect inversions
of four different lengths in the YRI ’analysis panel’.

4.3.2 Scanning the HapMap data for inversion polymorphisms

We utilized the genome-wide SNP data from Phase I of the International HapMap

project consisting of genotypes of 269 DNA samples for approximately 1 million SNPs.

These samples consist of 90 CEPH individuals (30 parent-child trios) from Utah, USA

(abbreviated as CEU), 90 Yoruban individuals (30 trios) from Ibadan, Nigeria (YRI),

44 unrelated individuals from Tokyo, Japan (JPT) and 45 Han Chinese individuals from

Beijing, China (CHB). We combined the individuals from the JPT and CHB populations

to obtain a larger set of 89 individuals (referred to as the CHB+JPT ‘analysis panel’). For

the CEU and YRI ‘analysis panels’, our data consisted of 120 chromosomes (from the

60 parent individuals) each. We used the phased haplotype data (downloaded from the

HapMap website) which was computationally phased using the program Phase 2 (The

International HapMap Consortium, 2005; Stephens and Scheet, 2005).

We searched the phased haplotype data from the three HapMap ’analysis panel’

individually using our statistic to determine sites of inversion. To reduce the number of
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false positives, we considered predicted inversions with length in the range 200kb-4Mb.

After clustering and filtering the initial list of predicted inversions for each ‘analysis

panel’ separately (see Appendix for details of the clustering method), we had a total of

176 putative inversions in the three HapMap ‘analysis panels’ with ap-value of0.02 or

less Of these,26 were detected in the CEU ‘analysis panel’ ,78 in the YRI ‘analysis

panel’ and72 in the CHB+JPT ‘analysis panel’ . Most of the predicted inversions were

unique to one of the ‘analysis panels’ , but three regions were predicted in two ‘analysis

panels’ each. The predicted list includes two sites of known inversion polymorphisms:

a800kb inversion polymorphism on 7p22.1 and a1.1 megabase long inversion on chro-

mosome 16p12.2. The 800 kb inversion at 7p22 was identified previously (Feuk et al.,

2005) using interphase FISH with 2/20 CEPH individuals found to be heterozygous for

the inversion. Our method gave a signal for this region in the YRI ‘analysis panel’

matching the known breakpoints (p-value of 0.012). For this inversion, the breakpoints

were previously identified to a resolution of about 200kb (Feuk et al., 2005). For one of

the breakpoints, our method can narrow down the location to a region of length 45kb.

The chromosome16 inversion was identified through the analysis of discordant fosmid

pairs (Tuzun et al., 2005). Interestingly, we detected this inversion in both CEU (p-value

0.008) and the YRI ‘analysis panels’ (p-value0.018) with identical pair of breakpoints

(see Table4.1). Analysis of the sequence around the breakpoints revealed that presence

of a pair of long highly homologous inverted repeats (see Figure4.4).

The current list of inversion polymorphisms in the human genome is small, with

only about15 inversions larger than 200kb that are known to be polymorphic in nor-

mal humans (from the Genome Variation Database at http://projects.tcag.ca/variation/).

We looked for additional evidence that would support some of our predicted inver-

sions. As noted earlier, sequence from different individuals (in the form of fosmid

end pair sequences) can be mapped to the reference sequence to identify inverted re-

gions (Tuzun et al., 2005). Another source of evidence comes from comparing the two

human sequence assemblies produced by the International Human Genome Sequencing

Consortium (International Human Genome Sequencing Consortium, 2001) and Celera
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21.2Mb 21.4Mb 21.6Mb 21.8Mb 22.0Mb 22.2Mb 22.4Mb 22.6Mb

Pair of Inverted Repeats

Left Breakpoint: 21.279..587 Mb Right Breakpoint: 22.356...643 MbCEU inversion

YRI inversion

Human−Chimpanzee Inversion: 21.504...22.723 Mb

Disease Genes

NM_001014444
NM_001888

NM_144672

NM_170664

Left Breakpoint: 21.279..557 Mb Right Breakpoint: 22.300...682 Mb

Inversion: 21.544...22.654 Mb

Inversion: 21.559...22.645 Mb

16p12 inversion

Figure 4.4: Genomic overview of a 1.4 Mb region at 16p12 predicted to have an in-
version in both the CEU and YRI ‘analysis panels’ . The left predicted breakpoint (the
dotted line) overlaps with a≈ 80kb long segment that is highly homologous to a seg-
ment (in the inverted orientation) near the other breakpoint. The region contains several
disease-related genes (from the OMIM database).

Genomics (Venter et al., 2001). Regions that are inverted in orientation between the two

assemblies represent sites of assembly error in one of the two assemblies or polymor-

phic inversions, since these assemblies were generated using different sets of individ-

uals. The Celera whole genome shotgun assembly (Istrail et al., 2004) was aligned to

the reference sequence assembly (Build 34) to discover such regions (B. Walenz, pers.

comm.). If the orientation of the Celera assembly supports a predicted inversion, then it

is highly likely that the inverted orientation is present in the population.

One of our predictions was supported by two fosmid pair sequences discordant

by orientation (Tuzun et al., 2005). This≈ 1.2Mb inversion on chromosome 10 (p15.1-

p14) was predicted in the CHB+JPT ‘analysis panel’ with ap-value of 0.005. The left

end of the fosmid pair mapped in the reference assembly about 40kb before the pre-

dicted left breakpoint while the right end mapped just before the right breakpoint (see

Figure4.5). Since the insert size of fosmids ranges between 32 and 48 kb, the two dis-

cordant fosmids are consistent with the predicted breakpoints. There were no gaps in

the genome assembly near the breakpoints and there were fosmids and BACs consistent
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6.1Mb 6.5Mb 6.7Mb 6.9Mb 7.1Mb

CHB+JPT inversion

Discordant Fosmid pairs

6.233...240 Mb 7.432..517 Mb

6.274...280 Mb 7.152...172 Mb

6.3Mb 7.5Mb7.3Mb

chr 10: p15.1−p14

CHB+JPT inversion

Figure 4.5: Overview of a≈ 1.2 Mb long inversion on chromosome 10 predicted in
the CHB+JPT ‘analysis panel’ . Also shown are two fosmid pairs (discordant by ori-
entation) whose one end maps to before the predicted left breakpoint and the other end
maps to a region before the right breakpoint. These discordant mappings support the
predicted inversion breakpoints. In this region, there is another overlapping inversion
predicted in the CHB+JPT ‘analysis panel’ . The region has several genes proximal to
the left breakpoint, one of which is known to be over-expressed in tumor cells (Sampath
et al., 2003).
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with the reference assembly (UCSC Human Genome Browser: http://genome.ucsc.edu).

This suggests that the inversion represents a previously unknown inversion polymor-

phism.

There were two regions for which we obtained evidence for the inverted orienta-

tion from the Celera assembly. One of these regions is a∼ 200 kb long region on chro-

mosome 13 which was predicted to be inverted in both the CEU and CHB+JPT ‘analysis

panels’ . The region is also present in the inverted orientation in the Celera assembly

and both breakpoints span large gaps (100kb) in the sequence assembly. Another large

predicted inversion on chromosome 2p25 overlaps with a 1.4Mb region that is inverted

between the two recent human genome assemblies (Build 34 and 35). The orientation of

the Celera assembly of the human genome is concordant with the Build 35 assembly for

the 1.4Mb region. There are gaps on each breakpoint which are not spanned by fosmids

indicating that it is difficult to determine the correct orientation. This region was tested

for polymorphism in a ‘analysis panel’ of 10 CEPH individuals (Feuk et al., 2005) but

was not found to be polymorphic.

A 2Mb long predicted inversion on chromosome 10q.11 was predicted in both

the YRI and CHB+JPT ‘analysis panels’ . Further, both the breakpoints for this re-

gion span gaps in the human sequence assembly suggesting that this could represent an

assembly orientation error. Two segments in this region are inverted between the Cel-

era sequence assembly and the public assembly. The analysis of the genomic sequence

around the breakpoints revealed the presence of several hundred kb long inverted repeats

of very high sequence similarity.

Many of our predicted inversions overlap with regions that are inverted between

the human and chimpanzee genomes (Newman et al., 2005; Feuk et al., 2005) (see

Table4.1 for a list). One of these is the 800kb inversion on chromosome 7 that was

tested for polymorphism in humans since it was found to be inverted between the human

and chimpanzee sequences (Feuk et al., 2005).
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4.3.3 Sequence Analysis of Inversion Breakpoints

Segmental duplications have been shown to be highly overrepresented near sites

of structural variation in the human genome (Iafrate et al., 2004; Tuzun et al., 2005).

Mechanisms have been proposed as to how a pair of low copy inverted repeats may

mediate inversion events in the genome (Giglio et al., 2001; Lupski, 1998; Shaw and

Lupski, 2004). Pairs of inverted repeats have also been detected near the inversion

breakpoints for several known inversion polymorphisms (Sugawara et al., 2003; Feuk

et al., 2005). We checked for the presence of pairs of low-copy homologous repeats near

the breakpoints of our predicted inversions. We found that 18 of our predicted inversions

had pairs of highly homologous repetitive sequences near the breakpoints. There were

11 distinct regions for which there were inverted repeats near the breakpoints1 (listed in

Table4.1). The significance of finding inverted repeats near the inversion breakpoints

was estimated using a simple empirical method (see Appendix for details). Thep-value

was estimated to be 0.006.

Many examples of apparently benign chromosomal deletions that in many cases

delete entire genes have recently been reported in the HapMap ‘analysis panels’ (Con-

rad et al., 2006; McCarroll et al., 2006). Less is known about inversions affecting genes

by truncating the coding sequence in normal human individuals. Recurrent inversions

disrupting the factor VIII gene on the X chromosome are known to be a common cause

of severe hemophilia A (Lakich et al., 1993; Deutz-Terlouw et al., 1995; Bagnall et al.,

2002). We analyzed the sequence around inversion breakpoints to see if they overlap

with known genes in the human genome. The resolution of our predicted inversion

breakpoints varies from a few kilobases in some cases to several hundred kilobases

in others, making it difficult to say with certainty whether the inversion actually af-

fects some gene. Assuming that purifying selection acts on inversions disrupting genes,

one would expect a under-representation of inversion breakpoints disrupting genes. We

found that 66 of our predicted inversion breakpoints are completely covered by one or

1Some of these regions correspond to two predicted inversions
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gb:AB070452

ATN−1 HT−1

gb:BC035062

124.336...341 Mb 124.628...634 Mb

6q22 inversion (YRI)

Figure 4.6: A predicted inversion on chromosome 6 (YRI sample) overlaps with the
TCBA1 gene. The dashed line describes the location of the predicted breakpoints. The
previously mapped breakpoints of the gene in T-cell lymphoma/leukemia cell lines are
shown by the blue lines.

more genes (for 6 inversions, both breakpoints are spanned by gene(s)). This is signifi-

cantly less than what one would expect by chance (p-value of 0.02).

Many of the genes that intersect with breakpoints are previously known to be

disrupted in diseases. The T-cell lymphoma breakpoint-associated target 1(TCBA1)

gene spans a genomic region of over900kb on chromosome 6, and is associated with

multiple splice isoforms, as well as alternative start sites. As the name suggests, the

gene is structurally disrupted in T-cell lymphoma cell lines (Tagawa et al., 2002), and

developmental disorders (Yue et al., 2006). A sketch of the previously mapped break-

points and our predicted inversion breakpoints with respect to the known isoforms of

the gene is shown in Figure4.6.

We also detect a number of disrupted genes with alternative splice forms, with

some of the splice isoforms consistent with the inversion breakpoint. An interesting

example is the Islet cell antigen (ICAp69) gene, which is a target self-antigen in type

1 diabetes. The gene is known to have multiple isoforms (Gaedigk et al., 1996). As

shown in Figure4.7, a predicted inversion breakpoint on chromosome 7 removes the

3’ end of the gene (gb:BC008640), approximately consistent with the expression of

alternative splice forms (gb:BC005922,U38260). These and many other examples hint

at the important role of structural variation in mediating gene diversity.
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gb:BC008640

gb:BC005922

gb:U38260

 7.944...985 Mb
7p21 inversion (YRI)

Figure 4.7: Splice isoforms of the ICAp69 gene that are approximately consistent with
a predicted YRI inversion breakpoint on chromosome 7. The region of the left insertion
breakpoint is denoted by a dashed line. The exons are not drawn to scale.

4.3.4 Assessing the false positive rate

Several of our predicted inversions represent known inversion polymorphisms

and many others are supported by independent forms of evidence such as matching

fosmid end sequences showing discordancy by orientation, regions inverted between

different human assemblies, etc. Given the incomplete nature of our knowledge of in-

version polymorphisms in the human genome, this does suggest that many of our other

top predictions could represent inversions. Although LD generally decays with increas-

ing distance between the markers, it is now well known that there is significant variation

in recombination rates across the human genome (McVean et al., 2004; Myers et al.,

2005). This variation in the recombination rates could potentially result in false posi-

tives using our statistic. Therefore, it is useful to estimate how many of our predicted

inversions are correct. Estimating the false positive rate reliably is difficult, given the

state of our knowledge.

We used coalescent simulations to estimate the frequency of predicted inversions

on haplotype data with ‘no inversions’. To incorporate the heterogeneity in recombina-

tion rates in the simulated data, we used a recently developed coalescent simulation

program (Schaffner et al., 2005) which can generate population data incorporating vari-

ation in recombination rates and a wide range of demographic histories for different

populations (see Appendix for details of the coalescent simulations). The program is

calibrated to produce haplotype data that has considerable variation in LD such as that
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seen in real population data. The same thresholds and parameters were used for scan-

ning the simulated datasets using our statistic as for the HapMap data. We analyzed the

number of predicted inversions in the simulated data separately for each ‘analysis panel’

. Given the small number of predicted inversions in the HapMap data and many caveats

in matching the simulation parameters with the real data, it is difficult to estimate the

false positive rate based on a direct comparison. The number of pairs of breakpoints

for which the statistic is computed is huge (≈ 40 million in the YRI ‘analysis panel’ )

while the number of predicted inversions is small (78 with ap-value of 0.02 or smaller).

One cannot compare the ratio of the number of breakpoints examined to the predicted

inversions in the HapMap and the simulated ‘analysis panels’ . Therefore, we use an

indirect estimate.

For ap-value cut-offπ, denoteγ(π) to be the ratio of the number of predicted

regions with ap-value at mostπ in the HapMap ‘analysis panel’ to the corresponding

number in the simulated data. If a lowerp-value implies a greater chance of a prediction

being real, one would expectγ(π) to increase with decrease inπ. Note that if the number

of true predictions (which is unknown) is small or if thep-values for the real predictions

are not concentrated in the tail of the distribution, it would be difficult to observe an

increase inγ(π). For the YRI ‘analysis panel’ ,γ(π) ranges from1.73−1.75 for π in the

range0.1− 0.06, but increases toγ(0.02) = 2.85, andγ(0.01) = 4.86. For ap-value of

0.02, this represents a1.7-fold enrichment in the number of predictions in the HapMap

data vs the simulated data. Under the assumption that the increase in the number of

predictions in the tail of thep-value distribution is a result of true predictions, the false

positive rate at cut-off of 0.02 can be estimated to be∼ 58%. For the CEU ‘analysis

panel’ , we didn’t observe a gradual increase inγ(π) and also the number of predictions

smaller than 0.02 is only 26, making it difficult to get a meaningful estimate of the false

positive rate via this method. For the CHB+JPT ‘analysis panel’ , this method suggests

a higher false positive rate of 80% at a cutoff of 0.02. This could reflect the low power of

our method to detect true inversion polymorphisms in the CHB+JPT haplotype ‘analysis

panels’ due to less accurate long range haplotype phasing in the CHB+JPT ‘analysis
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Figure 4.8: Length distribution of predicted inversions in the YRI ‘analysis panel’ . For
this plot, we consider inversions with length in the range 200kb to 10Mb.

panels’ as compared to the CEU and YRI ‘analysis panels’ . Our analysis suggests that

the false positive rate is the smallest in the YRI ‘analysis panel’ and about half of the

YRI predicted inversions could be real. This is also supported by the fact that the two

previously known inversions (that we detect across the 3 HapMap ‘analysis panels’ )

are detected in the YRI ‘analysis panel’ and about10 predicted inversions in the YRI

‘analysis panel’ are supported by the presence of inverted repeats.

We also looked at the length distribution of the predicted inversions using our

statistic in each of the three HapMap ‘analysis panels’ independently. For this we con-

sidered inversions with length in the range 200kb-10Mb. For the YRI ‘analysis panel’

, the number of predicted inversions seems to drop after 4Mb and remains essentially

constant after that (see Figure4.8). The number of predicted inversions with length in

the range 1-4 Mb is 30 while the number of predicted inversions in the range 4-8 Mb

is only 10. In contrast, for the CHB+JPT ‘analysis panel’ , the numbers are 62 (in the

range 1-4 Mb) and 51 (in the range 4-8 Mb). These results indicate that there is a 3-fold

clustering of predicted regions in the smaller range for the YRI ‘analysis panel’ . If most

of the predictions were false, one would not expect to see any clustering. The higher
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clustering in the YRI ‘analysis panel’ versus the CHB+JPT ‘analysis panel’ is consistent

with the results from the coalescent simulations which also predict a smaller false pos-

itive rate for the YRI ‘analysis panel’ . While the above estimates of the false positive

rate are crude, they nevertheless indicate that many of our predictions, especially those

in the YRI ‘analysis panel’ , are likely to be real.

4.4 Discussion

We have presented a statistical method that has power to detect large inversion

polymorphisms using population data. Our method can also detect large regions where

the reference assembly has erroneous orientation. Applying our method to the HapMap

data, we have identified176 putative inversions in the three HapMap ‘analysis panels’

. The false positive rate for the predicted inversions in the YRI sample indicates that≈

30 of the 78 YRI predictions could represent real inversions. We have looked for inde-

pendent evidence in the form of discordancies between the NCBI and Celera assembly,

discordant fosmid pairs and presence of inverted repeats near inversion breakpoints for

our predicted inversions. We have identified a novel 1.2 Mb long inversion on chro-

mosome 10 that is supported by two discordant fosmid pairs and has not been reported

before. For two of our predicted inversions, both breakpoints span gaps in the human

reference assembly and the inverted orientation is represented in the Celera genome as-

sembly, indicating orientation errors in the reference assembly. For about 10 regions,

the inversions breakpoints are flanked by a pair of highly homologous inverted repeats.

A recently proposed method called ‘haplotype fusion’ can assay single haplotypes for

the presence of an inversion even when the breakpoints lie within long inverted re-

peats (Turner et al., 2006). The set of predicted inversions flanked by inverted repeats

represent ideal candidates for validation using this technique.

Our method is designed to detect long inversions for which the inverted allele

(w.r.t the reference sequence orientation) in a population has high frequency. Therefore,

it is unlikely to detect inversion polymorphisms for which the inverted allele is the minor



92

variant. However, the allele frequencies of structural polymorphisms can vary signifi-

cantly across populations. For 5 of the 10 deletion polymorphisms that were genotyped

in the HapMap ‘analysis panels’ , the minor allele in one ‘analysis panel’ was the major

allele in another ‘analysis panel’ (McCarroll et al., 2006). The availability of data from

multiple populations increases the chance of detecting the inversion using our method

in the population where the inverted allele is the major variant. Furthermore, in many

cases the reference sequence assembly is likely to represent the minor variant in the

population. For a 18-kb inversion polymorphism at 7q11 (Feuk et al., 2005), the minor

allele (frequency of 30%) was represented in the reference assembly while the major al-

lele matches the orientation in the chimpanzee sequence. Although the method seems to

be robust to the variation in recombination rates, it is possible that this heterogeneity in

recombination rates and other events can produce a signal using our statistic. One such

scenario is where the two breakpoints represent gene conversion hotspots while there is

no recombination across the entire region. Gene conversion events would reduce short

range LD while absence of recombination would maintain long range associations.

From a computational perspective, our method represents a novel strategy for us-

ing population data for detecting large rearrangements. It is becoming increasingly cost-

effective to generate genome-wide SNP genotype data and our method can be applied

to any such data. Other strategies have been suggested for computationally mining SNP

data for potential inversions. Inversion polymorphisms have been extensively investi-

gated for Drosophila, and it has been observed that the presence of inversion polymor-

phisms leads to strong and extended Linkage Disequilibrium across the inverted region

since recombination in inversion heterozygotes is suppressed (Andolfatto et al., 2001;

Navarro and Gazave, 2005; Navarro et al., 2000b). This reduces the overall recombina-

tion rate in the region and also tends to produce two divergent haplotype clades (Navarro

et al., 1997; Andolfatto et al., 2001). The best known example of this effect in the hu-

man genome is the 900kb polymorphic inversion on chromosome 17 (Stefansson et al.,

2005). However, it remains to be seen if this pattern is true of all (or most) human in-

version polymorphisms. In fact, our analysis of haplotype patterns of the few known
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inversion polymorphisms does not indicate that all inversion polymorphisms lead to

such distinctive haplotype patterns (unpublished data).

Our results also indicate that many large inversion polymorphisms remain to be

discovered in the human genome, and it may require extensive re-sequencing in multi-

ple populations to find all such inversions. The presence of a large number of inversion

polymorphisms could have major implications for evolution of the human genome. In-

versions are known to directly suppress recombination in inversion heterozygotes. The

lowering of recombination between inversion heterozygotes may also create effects sim-

ilar to population sub-structure even without geographic isolation of the individuals.

Characterization of inversion variants in human populations will be required to deter-

mine to what extent large inversions affect the recombination landscape of the human

genome. Inversions could also represent an alternative mechanism for creating diversity

in gene regulation, and splice isoforms. Such variation may also influence phenotypes

and associations with diseases.

4.5 Appendix

4.5.1 Haplotype Data

We utilized genotype data from Phase I of the International HapMap project con-

sisting of 269 individuals genotyped on about 1 million SNPs. These individuals consist

of 30 trios from Utah region (CEU), 30 trios from Ibadan, Nigeria (YRI), 44 unrelated

individuals from Tokyo, Japan (JPT) and 45 Han Chinese individuals from Beijing area

(CHB). Since the JPT and CHB populations are genetically similar, we pooled the data

from these two populations to obtain a larger ‘analysis panel’ of 89 individuals. For the

CEU and YRI ‘analysis panels’ , we used the 60 unrelated parents from the respective

populations. We analyzed each of the three ‘analysis panels’ : CEU, YRI and CHB+JPT

separately. We used the phased haplotype data for these ‘analysis panels’ (HapMap data

release #16 available at http://www.hapmap.org/downloads/phasing/2005-03phaseI/full/).
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Since the SNPs in this data were ordered based on the NCBI Build 34 (hg16) assembly

of the human genome, all our results are with respect to NCBI Build 34 assembly. We

used the phased data since it is difficult to detect long range LD without phasing infor-

mation. The phasing is highly accurate for the CEU and the YRI ‘analysis panels’ due

to the presence of trio information. For the JPT and CHB populations, in the absence of

trios, the haplotype phasing is less accurate (a switch error every 0.34 Mb (The Interna-

tional HapMap Consortium, 2005)). This can destroy long range LD, thereby potentially

reducing the power of our method to detect inversions in the CHB+JPT ‘analysis panel’

.

4.5.2 Identifying potential inversions

For every chromosome, we considered the region between every pair of adjacent

SNPs as a potential breakpoint. If a pair of adjacent SNPs showed high correlation

using ther2 measure (a cutoff ofr = 0.6 was used), the region in between is highly

unlikely to be a breakpoint and was excluded. For every breakpoint, we choose a multi-

SNP marker to the left of the breakpoint and another one to the right of the breakpoint

(these were chosen to be the physically closest multi-SNP markers to the breakpoint

from the set of multi-SNP markers defined previously). Each breakpoint is reported as a

pair of genomic coordinates corresponding to the right physical boundary of the multi-

SNP marker closest to the left of the breakpoint and the left physical boundary of the

multi-SNP marker closest to the right of the breakpoint. For every pair of breakpoints

within a certain maximum distance, we computed the two log-likelihood ratios and the

correspondingp-value. All pairs of breakpoints with lowp-value are considered as

potential candidates for inverted regions. A predicted inversion is reported as a 4-tuple

(l1, l2, r1, r2) corresponding to a pair of left(l1, l2), and right(r1, r2) breakpoints.

For analysis of the HapMap data, we ignored pairs of breakpoints within 200kb

of each other since considerable LD is observed at short distances in the HapMap data

and power simulations also indicate that our method has low power to detect inversions
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of small length. Our results for the estimation of the false positive rate indicated that

there was some enrichment for true positives in the predicted inversions withp-value

smaller than 0.02. Therefore we choose ap-value cutoff of 0.02 for generating the pre-

dicted inversions. We also limit the size of the largest predicted inversion that we con-

sider to 4 megabases. The largest known polymorphic inversion in the human genome is

about 4.5Mb in length (Genome Variation Database at http://projects.tcag.ca/variation/).

Also, the distribution of the length of the predicted inversions suggests that predicted in-

versions larger than 4Mb represent false positives rather than true inversions. All pairs of

predicted inversion breakpoints with length in the range 200kb-4Mb and with ap-value

of 0.02 or smaller were enumerated for each chromosome in the three HapMap ‘anal-

ysis panels’ . For each ‘analysis panel’ and chromosome, we clustered the predicted

inversions based on the physical location of the breakpoints. For two predicted inver-

sions(l1, l2, r1, r2) and(p1, p2, q1, q2), if the segment(l1, l2) and(p1, p2) overlapped and

similarly if (r1, r2) and(q1, q2) overlapped, these two predicted inversions were grouped

together. After clustering, we had 215 predicted inversions in the three ‘analysis panels’

. For every cluster we report the pair of inversion breakpoints with the smallestp-value.

In order to further reduce potential false positives, we removed predicted inversions for

which there was strong LD between the block to the left of the left breakpoint (block1 in

Figure4.2) and the block to the right of the right breakpoint (p-value of the multi-allelic

LD smaller than 0.02).

4.5.3 Sequence Analysis

We used the repeat-masked June 2003 (NCBI Build 34) human genome se-

quence from the UCSC (University of California, Santa Cruz) Human Genome Browser

website for analyzing the inversion breakpoints. For each predicted inversion, the ge-

nomic sequence in the window[l1 − 200000 . . . l2 + 200000] was blasted against the

sequence in the window[r1 − 200000 . . . r2 + 200000] to find pairs of homologous se-

quences. Only hits with an e-value less than1e−25 and length at least 100bp were
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considered. We also removed pairs of homologous sequences that were less than 100kb

apart. The statistical significance of the number of inversion breakpoints flanked by a

pair of inverted repeats was estimated empirically as follows. We simulated 1000 ran-

dom lists of inversions and computed the number of inversions with a pair of inverted

repeats. Each random list of inversions was generated by shifting each predicted inver-

sion (on the HapMap ‘analysis panels’ ) to a random location on the same chromosome

on which it was detected. Thep-value was estimated to be 0.006 using this method. Ad-

ditionally, we observed that the length of the inverted repeats for many of the predicted

inversions was generally much longer than those for the random lists.

Analysis of genes near inversion breakpoints was performed using the UCSC

KnownGenes II list from the UCSC Genome Browser. A gene was defined to cover an

inversion breakpoint, if the transcriptional start position of the gene was before the left

boundary of the breakpoint and the transcriptional end location after the right boundary

of the breakpoint. In order to assess the statistical significance of the number of inversion

breakpoints covered by one or more genes, we used an empirical method similar to the

one used above for inverted repeats. We simulated 1000 random lists of inversions and

computed the number of genes covering breakpoints for each list.

4.5.4 Coalescent Simulations

We simulated population data using the Cosi program (Schaffner et al., 2005)

which implements a coalescent model similar to the MS program (Hudson, 1990) but

allowing for complex demographic histories and variable recombination rates. We used

the bestfit model which has been calibrated using genome-wide human population data

for different populations. The bestfit model uses the large-scale variation in recombi-

nation rates obtained from the deCODE genetic map along with fine-scale variation in

recombination rates. We used the default parameters of this model which are listed in

Table 1 of the paper describing the method (Schaffner et al., 2005). The program gen-

erates data for four populations, each with its own demographic scenario. We used the
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data for three of the populations: West African, European and East Asian. These three

populations were considered as proxies for the YRI, CEU and CHB+JPT ‘analysis pan-

els’ respectively from the International HapMap project. We matched each HapMap

‘analysis panel’ to the corresponding simulated ‘analysis panel’ in the number of chro-

mosomes. We didn’t model SNP ascertainment bias (present in the HapMap ‘analysis

panels’ ) for the simulated data since it is unlikely to affect our results as we discard

SNPs with low minor allele frequency (less than0.1). We generated100 datasets of

length 20Mb (it is computationally infeasible to generate chromosomal length regions

using the cosi program) for each of the three ‘analysis panels’ . We simulated data with

a fixed number of SNPs and then thinned the SNPs so that the average SNP density (for

SNPs with minor allele frequency>= 0.1) matched that of the HapMap data.
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Chapter 5

Haplotype Assembly from

Whole-genome sequence data

5.1 Introduction

Humans are diploid organisms with two copies of each chromosome (except the

sex chromosomes). In recent years, the development of high-throughput technologies

has made it incredibly easy and cost-effective to read the DNA sequence at millions of

SNPs across the genome. However, these genotyping methods determine the two alleles

at a individual SNP and are unable to provide information about haplotypes, the com-

bination of alleles present at multiple SNPs along a single chromosome. Haplotypes

observed in human populations are a result of shuffling of ancestral haplotypes through

recombination and contain much more information about human genetic variation than

genotypes. In chapters2 and 3, we have seen how population haplotypes are useful

for detecting historical recombination events and identifying recombination hotspots.

In chapter4, we also saw how highly accurate and long genome-wide haplotypes are

useful for searching for large inversion polymorphisms in the genome. Haplotypes from

the HapMap project have proven to be invaluable for whole-genome association studies

in multiple ways. To reduce cost, disease association studies are performed using a sub-

98
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set of SNPs in the human genome. The HapMap haplotypes are useful for evaluating

the power of these subsets to detect association at the untyped SNPs in human popula-

tions. Further, the haplotype data has also been used for fine-scale mapping of variants

identified in association studies (Gudmundsson et al., 2007) and improving the power

of whole-genome association studies (Zaitlen et al., 2007; Pe’er et al., 2006; Marchini

et al., 2007).

In the absence of molecular methods for determining haplotypes, haplotypes are

inferred computationally from SNPs genotyped in a set of individuals from a popula-

tion (Clark, 1990; Excoffier and Slatkin, 1995; Stephens et al., 2001; Niu et al., 2002;

Stephens and Donnelly, 2003). All haplotype phasing methods, explicitly or implicitly,

exploit Linkage Disequilibrium (LD), the correlation of alleles at physically proximal

SNPs in the human genome. In short regions of the genome, high LD reduces the

number of distinct haplotypes, allowing these methods to piece together haplotypes for

an individual. The great variation in recombination rates and Linkage Disequilibrium

across the human genome limits the accuracy of these methods. A popular haplotype

phasing method, PHASE(Stephens et al., 2001), has a switch error rate of 5.4% for unre-

lated individuals from a European population(Marchini et al., 2006); this corresponds to

one switch error between the maternal and paternal chromosomes approximately every

50kb. In general, population data from unrelated individuals does not contain enough in-

formation to reliably estimate the haplotypic phase between distant markers (>100kb).

Accurate long-range haplotypes may prove useful for finding multiple genetic variants

that contribute to complex diseases. For accurate long range haplotyping, additional in-

formation such as family data is invaluable. For example, the presence of trios in two of

the HapMap populations (CEU and YRI) has allowed the inference of highly accurate

haplotypes. However, family data is hard to obtain for every population sample.

The availability of full diploid genome sequences for a large number of indi-

viduals would be ideal for obtaining a comprehensive understanding of all forms of

genetic variation and especially useful for finding rare genetic variants associated with

disease. Advancements in sequencing technology are driving down the cost of sequenc-
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ing and it should be possible to completely sequence many human individuals in a few

years (Schuster, 2008; Shaffer, 2007). Whole-genome sequence data from a single in-

dividual represents an alternate resource from which the two haplotypes can potentially

be determined. Each sequence read represents a fragment of a chromosome. A read

that spans multiple variant sites can reveal the combination of alleles present at those

sites on that chromosome. Using the overlaps at heterozygous sites between a collec-

tion of reads, one can potentially assemble the two haplotypes for a chromosome (see

Figure5.1 for an illustration). This “haplotype assembly” represents a different com-

putational challenge in comparison to genome sequence assembly, where one uses the

sequence overlap between reads (ignoring the variant sites) to piece together a haploid

genomic sequence.

Figure 5.1: Illustration of how haplotypes can be assembled from sequenced reads.
Each read is a fragment of one of the two chromosomes. Reads that share a allele
at a common variant can be inferred to come from the same chromosome and joined
together. Reads that differ at a particular variant can be inferred to come from different
chromosomes and similarly extend the two haplotypes.

Haplotype assembly refers to the problem of reconstructing haplotypes from a

collection of sequenced reads given a genome sequence assembly. A more challenging

problem is to separate out the two haplotypes during the sequence assembly process it-



101

self. This has recently been done for some small, highly polymorphic genomes (Vinson

et al., 2005), but remains difficult to accomplish for large eukaryotic genomes such as

humans. Large eukaryotic genomes include many repetitive sequences, and a sequence

assembly must therefore distinguish between two (almost identical) instances of a se-

quence that lie on the same chromosome as well as separating the chromosomes. The

haplotype assembly problem may seem easier but the objectives are different. By work-

ing with a reference sequence, one can focus on obtaining highly accurate haplotypes

and estimating their reliability rather than just obtaining ‘a single’ haplotype assembly.

Also, as many individuals in a population are sequenced, it is computationally more ef-

ficient to generate a reference assembly once, and assemble haplotypes for each of the

individuals.

For haplotype assembly to be feasible, one requires a high sequence coverage

(sufficient overlaps between reads) and reads that are long enough to span multiple vari-

ant sites. Given the level of polymorphism in the human genome (∼ 0.1%), single

shotgun reads (about 800-1000 base pairs long) at 5-8x coverage would result in short

haplotype segments. However,paired endsor mate pairs (pair of sequenced reads de-

rived from the same shotgun clone) provide linkage information that can substantially

increase the length of inferred haplotypes. Even with mate pairs, it is not possible to

link all variants on a chromosome. A haplotype assembly for a diploid genome is a

collection of haplotype segments or disjoint haplotypes. In the absence of errors in se-

quenced reads, the correct haplotype assembly is unique and is not difficult to derive.

Errors in reads increase the space of possible solutions making this problem computa-

tionally challenging. The problem of finding the haplotype assembly that optimizes a

certain objective function (e.g. minimize the number of conflicts with the sequenced

reads) has been explored from a theoretical perspective (Bafna et al., 2005; Rizzi et al.,

2002; Halldorsson et al., 2003; Lippert et al., 2002), and has been shown to be com-

putationally intractable for gapped reads (e.g. mate pairs). A statistical method was

proposed (Li et al., 2004) for reconstructing haplotypes from sequenced reads aligned

to a reference genome. The method is based on inferring local haplotypes using a Gibbs
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sampling approach and joining these local haplotypes using overlaps. This method has

recently been extended (Kim et al., 2007) to include polymorphism detection as part of

the haplotype reconstruction pipeline and applied to the genome ofCiona intestinalis.

Recently, Levy and colleagues (Levy et al., 2007) have sequenced the complete

diploid genome of a single human individual. Approximately 32 million sequenced

reads (from clone libraries of various lengths), were used to generate a genome as-

sembly referred to as “HuRef”. More than 4.1 million genomic variants were detected

by identifying heterozygous alleles within the sequenced reads and through compari-

son of the HuRef assembly with the NCBI version 36 human genome assembly. Of

these, 1.8 million heterozygous variants were used for haplotype assembly. The pres-

ence of paired-end sequences or mate-pairs with different insert sizes (ranging from 2kb

to 40kb) increases the length of the haplotype segments that can be inferred, but also

results in links between physically distant variants. As mentioned earlier, there are no

efficient algorithms for haplotype assembly in the presence of mate-pairs, and statisti-

cal methods for haplotype assembly (Li et al., 2004; Kim et al., 2007) which start by

inferring short local haplotypes are not particularly suited for the HuRef data. A simple

greedy heuristic was implemented to build haplotypes incrementally starting from single

reads (see Material and Methods, Levy et al., 2007Levy et al.(2007)). More than 70%

of the 1.8 million heterozygous variants used for haplotype assembly were assembled

into haplotypes that cover at least 200 variants. In addition,1.5 Gb of the genome could

be covered by haplotypes longer than 200kb in length. Comparison of sequenced reads

to the reconstructed haplotypes showed that 97.4% of the variant calls are consistent

with the haplotype assembly. Notwithstanding the reasonable accuracy of the haplo-

type assembly for HuRef, the greedy strategy represents a relatively simple approach

for this problem. It incrementally reconstructs a single haplotype assembly and does

not attempt to find a haplotype assembly that is optimal under a probabilistic or combi-

natorial model. In Levy et al., 2007Levy et al.(2007), we had briefly mentioned that

it is possible to obtain a more accurate haplotype assembly using Markov chain Monte

Carlo (MCMC) methods and had implemented one such algorithm. In this chapter, we
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describe a novel MCMC algorithm,HASH (Haplotype Assembly of Single Human)for

haplotype assembly. The MCMC approach represents a natural way to search the space

of possible haplotypes to find likely haplotype reconstruction(s) and also allows us to

estimate the reliability of the reconstructed haplotypes. The transitions of the Markov

chain underlying our algorithm are determined using the graph structure of the links

between the variants and are not restricted to be local.

Results on the HuRef sequence data demonstrate that the haplotypes recon-

structed using HASH are more consistent with the sequenced fragments than the hap-

lotypes obtained using the greedy heuristic. Using haplotypes sampled by the MCMC

algorithm, we estimate that the HuRef haplotypes have a switch error rate of 0.9%.

Using simulations, we also demonstrate that our MCMC algorithm can reconstruct hap-

lotypes to a high degree of accuracy and determine which variant calls are likely to be

incorrect. Based on comparison to population haplotypes from the HapMap project, we

estimate a switch error rate of approximately 1.1% for the HuRef haplotypes inferred

using HASH. In comparison, the switch error rate for the haplotypes reconstructed us-

ing the greedy heuristic is 3.1%. Although we describe results using data from a human

genomic sequence, our methods are valid for performing haplotype assembly from se-

quenced reads generated using any sequencing technology as long as the polymorphism

rate for the sequenced organism and the length of sequenced reads allow the linking of

multiple variants. They are also applicable to inferring haplotypes using short haploid

sequences from other sources (see e.g. Konfortov et al.,2007Konfortov et al.(2007)).

5.2 Methods

We assume that a list of genetic variants such as SNPs, short insertions/deletions,

etc is available. A list of polymorphic variants can be generated while performing se-

quence assembly or can be obtained from a database of genetic variants such as db-

SNP (Sherry et al., 2001). We restrict ourselves to variants that have been identified

to be heterozygous in the genome of the individual under consideration as homozygous
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variants are uninformative about phasing of other variants. Note that certain variants that

are truly heterozygous in the genome may be reported as homozygous as both alleles

are not sampled sufficient number of times during sequencing.

Each sequenced read is mapped to the reference genomic sequence to obtain

the alleles it has at each of the heterozygous sites. For a variant, reads with sequence

matching the consensus sequence are assigned as ’0’ while those not matching are as-

signed as ’1’. The assumption of just two alleles makes sense in the absence of errors.

However, the presence of base-calling errors makes actual data more complex with tri-

allelic variants. Here, we assume that such sites are filtered out (described in Levy et

al. (Levy et al., 2007). Paired-end reads from the same clone that map to the assembly in

the expected orientation and whose physical separation is within the expected range are

represented as a single fragment. Mated reads that show some inconsistency in orienta-

tion or distance are split into two separate fragments. Note that these aberrant mapping

pairs might represent chimeric errors, but also, heterozygous structural variation in the

HuRef genome; Levy et al., 2007Levy et al.(2007) describe some of these variations.

Here, we ignore this additional information.

5.2.1 Haplotype Likelihood

Formally, each fragmenti is represented by a ternary stringXi ∈ {0, 1,−}n,

where the− corresponds to the heterozygous loci not covered by the fragment. The

complete data can be represented by afragment matrixX with m rows andn columns

where each row represents a fragment and each column corresponds to a variant site.

Corresponding to each variant callXi[j], we have an error probabilityqi[j], which de-

notes the probability that the variant call is incorrect. Asqi[j] cannot be estimated

from the fragment data, we use quality scoressi[j] that usually accompany sequence

data. For example, the quality scores might be obtained using Phred (Ewing and Green,

1998). Sequence quality scores are integer values related to the error probabilities as

qi[j] = 10−
si[j]

10
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For SNPs,si[j] describes the quality value for the allele call; for multi-base variants,

si[j] is the lowest of the quality values for the base-calls in the variant; for the case

of a gap (insertion/deletion),si[j] corresponds to the lower of the two quality values on

either side of the gap. If information about the sequencing quality values is not available

or for performing simulations, we assume a uniform error probabilityqi[j] = q̂ for all

variant calls. In what follows, we will assume thatq is available and fixed.

Let H = (h, h) represent the unordered pair of haplotypes whereh is a binary

string of lengthn andh is the bit-wise complement ofh. The problem of reconstructing

the most likely pair of haplotypes given the fragment data (known) is given by

arg max
H

Pr(X|H, q)

However, we are interested in samplingH from a probability distribution. Using Bayes

rule, we can write

Pr(H|X, q) =
Pr(X|q,H)Pr(H|q)∑
H′ Pr(X|q,H ′)Pr(H ′|q)

(5.1)

Assuming a uniform prior on the space of haplotypes, we have

Pr(H|X, q) ∝ Pr(X|H, q) (5.2)

In the following discussion, we will refer toPr(X|H, q) as a distribution overH for

notational convenience. Define the functionδ(Xi[j], h[j]) = 1 if Xi[j] = h[j] and 0

otherwise.

Then,

Pr(Xi|q, h) =
∏

{j:Xi[j] 6=−}

δ(Xi[j], h[j])(1− qi[j]) + (1− δ(Xi[j], h[j]))qi[j] (5.3)

Extending this to a haplotype pairH = (h, h), we define

Pr(Xi|q,H) =
(Pr(Xi|q, h) + Pr(Xi|q, h))

2
(5.4)
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Then,Pr(X|q,H) can be computed as a product over fragments (assuming that frag-

ments are independently generated):

Pr(X|q,H) =
∏
i

Pr(Xi|q,H) (5.5)

5.2.2 Markov chain Monte Carlo algorithm

Instead of computing the most likely solution, it is potentially more useful to

sample from the posterior distribution of haplotypes. As the number of possible haplo-

types grows exponentially with the number of variants, we construct a Markov chain to

sample from the posterior distribution ofH given the fragment matrixX and the matrix

of error probabilitiesq. The states of the Markov chain correspond to the set of possible

haplotypes. Transitions of the Markov chain are governed by subsetsS of columns of

the fragment matrixX. Specifically, each transition is of the form:H → HS whereH

is the current state (haplotype pair) andHS is a new haplotype pair created by ‘flipping’

the values of the columns inS. For example,

H S

10111000101[ ] 10000000100
01000111010 01111111011[ ]

S={3,4,5,11}

H

Note that at columns not inS, such as column1, H andHS are identical. How-

ever, columns inS = {3, 4, 5, 11} are flipped inHS.

If Γ = {S1, S2 . . . Sk} is a collection of subsets of columns ofX, then for each

stateH, there arek + 1 possible moves to choose from, including the self-loop. The

Markov chain in stateH chooses a subsetSi ∈ Γ and moves to the new stateHSi
with

a certain probability. The transition probabilities are chosen to ensure that they satisfy

the detailed balance conditions. The MCMC algorithm is described as follows:

Initialization: Choose an initial haplotype configurationH(0).

Iteration : For t = 1, 2, . . . obtainH t+1 fromH t as follows:
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1. With probability1/2, setH t+1 = H t

2. Otherwise sample a subsetS from Γ with probability 1
|Γ|

3. With probabilitymin
[
1,

Pr(X|Ht
S ,q)

Pr(X|Ht,q)

]
, setH t+1 = H t

S. Otherwise setH t+1 =

H t

As can be seen, our algorithm uses the Metropolis update rule (Metropolis et al.,

1953), and is completely specified byΓ, fragment matrixX and the matrixq of error

probabilities. We denote the corresponding Markov chain asM(X, q,Γ) or simply by

M(Γ), wheneverX andq are implicit. Note that Step 1 of the above algorithm which

represents a a self-loop probability of1/2 is added to ensure aperiodicity which is re-

quired for analysis of the mixing time of the Markov chain (Randall, 2006). In practice,

it is not essential and can be removed as most Markov chains are indeed aperiodic.
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Figure 5.2: a) Example of a fragment matrixX(n, d) for which two haplotypesH1 and
H2 have equal likelihood. The matrix hasn columns with each pair of adjacent columns
(except the pair(n/2, n/2 + 1)) covered byd fragments (d = 2 andn = 20 as shown).
b) Plot of hitting time (number of steps taken by the Markov chainM(Γ1) to go from
H1 to H2) as a function of the depth of fragment coverage (d). For eachd value, the
Markov chain was run 100 times (each value represented as a circle) withq̂ = 0.05.
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5.2.3 ChoosingΓ

A simple choice forΓ is Γ1 = {{1}, {2}, . . . {n}}. It is easy to show that

any Markov chainM(X, q,Γ) is ergodic and has the desired posterior distribution

Pr(H|X, q) if Γ1 ⊆ Γ (See Supplementary Methods for proof). However, we also

want the Markov chain to have a low “mixing time”, i.e after a small number of steps,

the Markov chain should be “almost” sampling from the stationary distribution. Empir-

ical results suggest that the chainM(Γ1) does not sample the haplotype space quickly

enough and in particular takes a large number of steps to move from a haplotypeH

to another haplotypeH ′ such thatH andH ′ differ in a large block of columns and

Pr(H ′|X, q) ≈ Pr(H|X, q). The reason for this is that in order to sampleH ′, the

Markov chain has to go through several intermediate haplotype configurations, each of

low-probability. As an illustrative example, Figure7.1(a) describes the case of a frag-

ment matrix for which there are two equally likely haplotype configurationsH1 andH2

which differ by a single flip of half of the columns. The fragment matrix which we

denote byX(n, d) hasn columns and every column is spanned byd fragments (n = 20

andd = 2 in the example shown).

For this fragment matrix, we empirically estimate the hitting time of the Markov

chain to reachH2 starting fromH1 as a function ofd (see Figure7.1(b)). The error

probability q̂ is identical for all positions. Asd increases, the likelihood of all haplo-

types other than the two haplotypesH1 andH2 decreases. Therefore,M(Γ1) will take

increasingly longer time to move fromH1 to H2. The plot shows that the hitting time

increases exponentially withd. For d = 5, the expected hitting time (averaged over

100 runs) is roughly 10 million steps. For larger sized examples and smallerq, the hit-

ting time will be much greater. The above experiments suggest that the mixing time of

M(Γ1) is unlikely to be small. Indeed, we prove theoretically that the mixing time of

M(Γ1) grows exponentially withd (see Supplementary Methods for formal definition

of mixing time and proof of this result).

Clearly, the Markov chainM(Γ1) is not a desirable chain for sampling the hap-
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lotype space. A natural question to ask is: can the mixing time be reduced with inclusion

of larger sized subsets inΓ ? For the fragment matrixX(n, d) shown in Figure7.1, if

we include the subsetS1...n/2 (columns 1 to n/2) inΓ, the Markov chain will move from

H1 toH2 whenever this subset is sampled. Therefore, the hitting time should reduce to

O(n log n) , which we empirically observe to be true (results not shown). Intuition sug-

gests that the mixing time of the Markov chain should also decrease since the bottleneck

in moving betweenH1 andH2 has been removed. Using a combination of methods for

analyzing the mixing time of Markov chains, it can be shown that the mixing time of

the Markov chainM(Γ1 ∪ S1...n/2) is indeed polynomial inn andd. (V. Bansal and V.

Bafna, unpublished results).

These results demonstrate thatM(Γ1) has poor mixing time for a specific frag-

ment matrix, but augmentingΓ1 slightly can dramatically improve the mixing time. In

addition, we gain an insight into howΓ1 should be augmented. Results on mixing time

of Markov chains (Sinclair and Jerrum, 1989; Sinclair, 1992) imply that if there is a

subset of haplotype(s)H for which the probability of moving to a haplotype outsideH

in a single step (scaled by the probability of being in stateH) is low, the Markov chain

has poor mixing time. For the fragment matrixX(n, d) (Figure7.1) and the Markov

chainM(Γ1), H1 represents such a subsetH. While there are such “bottlenecks” in

the transition matrix, the mixing time is bad. Subsets of columns (such asS1...n/2) that

remove such bottlenecks represent good candidates to include inΓ. However, for a gen-

eral fragment matrix it is not obvious how to choose these subsets computationally and

how many subsets to include. We do not want the number of subsets inΓ to be very

large since the probability that a specific subset is picked decreases with increasing|Γ|,

thereby increasing the mixing time. Therefore, we restrict ourselves to choosingΓ with

size linear in the number of columns of the fragment matrix.

To motivate our approach for constructingΓ, we return back to the example of

the fragment matrixX(n, d) in Figure7.1. As we saw before,S1...n/2 represents a good

candidate to include inΓ since it allows the Markov chain to move easily between the

two haplotype configurationsH1 andH2. The set of columns in this subset is linked
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to the rest of the columns by two fragments and in addition, these two fragments are

inconsistent with each other. Subsets that contain columns from bothS1...n/2 and from

outside this subset are not particularly important for adding toΓ. Therefore, the problem

of constructingΓ can be considered independently for the fragment matrix restricted to

S = S1...n/2 and the matrix restricted toS. This suggests a recursive partitioning strategy

for constructingΓ, which we describe next.

5.2.4 A graph-partitioning approach

We construct an undirected weighted graphG(X) with each column of the frag-

ment matrix as a separate node of this graph and an edge between two nodes if there is

some fragment that covers both columns. The weight of an edge between two columns

is the number of fragments that cover both columns. Acut inG(X) is simply a subsetS

of vertices, with weight equal to the sum of weights of the edges going across the cut. A

Minimum-cutis a cut with minimum weight in the graphG(X). From the perspective of

the Markov chain, a cut represents a subset of variants, and a cut with low-weight repre-

sents a good candidate to include inΓ. We partition the graphG(X) into two piecesS

andS using a simple min-cut algorithm (Stoer and Wagner, 1994) and add the two sub-

setsS, S to Γ. We apply the same procedure recursively to the two induced sub-graphs

G(S) andG(S) adding two new subsets toΓ every time we compute a new cut. The

recursive graph-partitioning approach ensures thatΓ includesΓ1 and hasn additional

subsets.

We construct a graphG(X) with vertex setV as the set of all columns ofX and

edge setE as all pairs of columns(i, j) of X for which there is at least one row inX

covering both columns, i.e.Xk[i] 6= − andXk[j] 6= − for some rowk. The weight of

the edge(i, j) is the number of such rows covering both columns. Acut (S, S) in G(X)

is a partition of the vertices ofG(X) into two disjoint set of vertices. The weight of a

cut (S, S is equal to the sum of the weights of edges going across the cut fromS to the

S.
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GraphPartitioning(X, Γ)

1. If the number of columns inX is less than 2, returnΓ

2. Compute a min-cut(S, S) in the graphG(X)

3. Γ = Γ ∪ {S, S}

4. GraphPartitioning(X(S),Γ)

5. GraphPartitioning(X(S),Γ)

6. returnΓ

Information about the variant calls in the fragment matrix can be used for as-

signing weights to the edges inG(X). This is potentially more informative than just

using the number of fragments. Consider the example fragment matrix in Figure7.1.

The subsetS1...n/2 is a good candidate forΓ not only because the cut corresponding to

this subset has low weight (two edges) but also because the two fragments linking this

subset of columns to the rest of the matrix are inconsistent with each other. We have

developed a scheme that assigns weights to the edges ofG(X) based on the consistency

of a haplotype pairH with the fragment matrix. A fragment adds1 to the edge weight

between two columns if the phase suggested by the fragment is consistent with the cur-

rent haplotype assembly. If not, it contributes−1 to the edge weight. Hence, a cut with

low or negative weight corresponds to a subset of columns whose current phase with

respect to the rest of the columns is inconsistent with the fragment matrix.

Consider a pair of columnsi, j in X. W.l.o.g, assume that the current haplotype

H is described byH = [00 . . . 0, 11 . . . 1]. For a fragmentf , we describe a function

match that scoresf on being consistent (or not) with the haplotype at positionsi, j.

Formally

matchH(f, i, j) =

 1 if (f [i], f [j]) ∈ {00, 11}

−1 otherwise
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We use the match function for assigning weights to edges in the graphG(X). Define

wH(i, j) =
∑
f

matchH(f, i, j)

If wH(i, j) is highly positive, it implies that the current haplotype pairH is consistent

with the phasing suggested by the fragments for the pair(i, j). On the other hand, a

negative value forwH(i, j) indicates that the phasing for the pair(i, j) in the haplotype

pair H is likely to be incorrect. We denote the graph with edge weightswH(i, j) by

G(X,H), and would like to compute Min-Cuts. As negative weights onwH(i, j) make

the problem equivalent to the Max-Cut problem, which is known to be computationally

hard(Garey and Johnson, 1979), we use the heuristic of removing all edges(i, j) for

which wH(i, j) < 0 from G(X,H). We denote the the graph partitioning algorithm

based onG(X,H) for computingΓ asWeightedGraphPartitioning(X,H).

The recursive graph-partitioning approach for constructingΓ is greatly moti-

vated by the nature of the sequencing data that we have analyzed. The example that

we presented in Figure7.1 is quite typical of real data. Figure5.4 depicts an exam-

ple of a fragment matrix from chromosome 22 of HuRef. Shotgun sequencing leads to

non-uniform sampling of variants creating “weak” links in the fragment matrix that the

graph-partitioning approach can exploit to constructΓ.

5.2.5 The complete MCMC algorithm

The collection of subsetsΓ computed using the weighted graph-partitioning ap-

proach is dependent upon the haplotype pairH. As we sample haplotypes with greater

likelihood, it is potentially useful to updateΓ. The complete algorithm which we call

“HASH” (short for HaplotypeAssembly forSingleHuman) is as follows:

HASH(X,q)

1. SetΓ(0) ← Γ1.

2. SetH(0) at random or otherwise.
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Figure 5.3: Illustration of the weighted graphG(X) derived from the fragment matrix
X and a haplotype pairH and the recursive graph-partitioning algorithm for comput-
ing Γ. The graph is shown on the top right and the tree stucture below demonstrates
the recursive partitioning of the graph using min-cut computations. The first cut (la-
beled as 1), partitions the columns ofX into two subsets:S = {1, 2, 3, 4, 5} and
S̄ = {6, 7, 8, 9, 10, 11, 12, 13}. The second cut (labeled 2), further partitions the sub-
setS into two smaller subsets:{1, 2, 3, 4} and {5}. Γ is obtained from the subsets
labeling the nodes of the tree (except the root node).

3. For t = 1, 2, . . .

(a) LetH(t) =M(Γ(t−1), X,H(t−1), c) be the haplotype obtained after running

M(Γ(t−1)) for c · n steps (c ≈ 1000).

(b) ComputeΓ(t) = WeightedGraphPartitioning(X,H(t)).

4. SetΓ← Γ(t) and discard all previous samples.

5. Run the chainM(Γ) initialized withH(t) for ≈ 106 · n steps.
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Figure 5.4: An example of a fragment matrix for a haplotype segment from chromo-
some 22 of HuRef. “Inconsistent fragments” (one on each line) correspond to fragments
that are inconsistent withH. “Consistent fragments” (multiple independent fragments
on each line, two independent fragments separated by whitespace) that perfectly match
one of the two haplotypes inH. This example illustrates two common features of the
HuRef data relevant for haplotype assembly: (i) the “gapped” nature of the fragment
matrix, i.e. the presence of links between non-adjacent variants, (ii) haplotypes do not
always link all variants that they span.

Steps 1-3 in the above algorithm represent anΓ determination phase where we

start from a haplotypeH0 andΓ initialized toΓ1. We run the Markov chain for a certain

number of steps (c · n wherec ≈ 1000) and then compute a newΓ using the current

haplotype pair. This is repeated until we see no improvement in the likelihood of the

best haplotype sampled by the Markov chain. After this initialΓ determination phase,

we run the Markov chain initialized using the current haplotype and the finalΓ for

≈ 106 · n steps. The samples used to make inference about the posterior distribution are
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drawn only from this Markov chain. For drawing samples fromM(Γ), we discard the

first 10000 · n samples and thin the chain every1000 · n steps.

5.3 MEC score for haplotype assembly and posterior er-

ror probabilities

Given a haplotype assemblyH, we would like to evaluate how “consistent” it

is with the fragment matrix (sequenced reads)X. Each fragment represents a chunk

of DNA from one of the two chromosomes and in the absence of sequencing errors,

the alleles at variant sites covered by the fragment should perfectly match one of the

two haplotypes. We defineεi[j, h] = 1 if Xi and h disagree at positionj, and let

MEC(Xi, h) =
∑

j εi[j, h] denote the number of alleles mis-matched betweenXi and

h.

For a haplotype pairH = (h, h̄), let 0 ≤ Zi(H)) ≤ 1 denote the probability that

the fragmentXi is derived from the haplotypeh. Define

MEC(Xi, H) = Zi(H) ·MEC(Xi, h) + (1− Zi(H)) ·MEC(Xi, h̄)

The total MEC score is defined as the fraction of mismatched variant calls(Bafna et al.,

2005; Rizzi et al., 2002)

MEC(X,H) =
1

n

∑
i

MEC(Xi, H)

The MEC score gives an estimate of the quality of the reconstructed haplotypes, i.e.

lower this number, better the haplotypes. For a single haplotype pairH, we can set

Zi(H) = 1 if MEC(Xi, h) < MEC(Xi, h̄) and 0 otherwise. On the other hand, if

we are given a probability distributionπ on the haplotypes and the matrixq of error

probabilities, we can compute

Zi(H) =
Pr(Xi|q, h)

Pr(Xi|q, h) + Pr(Xi|q, h)
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and the expected MEC score as

Eπ(MEC(X)) =
∑
H

πHMEC(X,H)

Additionally, π can also be used to used to compute posterior error probabilities on the

base callXi[j] as

Pr(εi[j] = 1|π) =
∑
H

πH{Zi(H) · εi[j, h] + (1− Zi(H)) · εi[j, h̄])}

An MCMC algorithm that samples from the posterior distribution of haplotypes

can be used to compute the posterior error probabilities whereπH = Pr(X|H, q). These

error probabilities represent probabilistic estimates of the reliability of each variant call,

i.e. an error probability of 0.9 implies a 90% chance of the call being incorrect. To illus-

trate, consider the example of a fragment matrix with two columns and two fragments:

00 and01. Let qi[j] = q̂ = 0.05 be identical for all variant calls. The two haplotypes for

this matrix areH1 = (00, 11) andH2 = (01, 10) with πH1 = πH2 = 0.5. The posterior

error probability for each variant call can be easily computed to be≈ 0.5. Therefore,

none of the variant calls is reliable and there is no information about the phase between

the two variants present in the data.

5.4 Results

5.4.1 HuRef sequence data

The HuRef genome assembly (Levy et al. (Levy et al., 2007)) represents the

sequence of a single human individual using traditional Sanger sequencing technology.

It was derived from approximately 32 million reads and has a sequence coverage of

7.5. Using the HuRef sequenced reads and comparison between the HuRef genome

assembly and the NCBI reference genomic sequence, a list of potential DNA variants

was compiled. These variants are not restricted to single nucleotide polymorphisms, but

also include short insertions/deletions, etc. The sequenced reads were mapped to the
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HuRef assembly to determine the alleles at each variant. For each sequenced read, the

sequencing quality values were used to assign a error probability for the variant sites.

After applying various filters to define a set of reliable heterozygous variants, there were

about 1.8 million heterozygous variants for the 22 autosomes (see (Levy et al., 2007) for

details).

To illustrate the coverage and connectivity of the sequenced fragments, we present

some statistics for chromosome 22, which has 24,967 heterozygous variants. For this

chromosome, the fragment matrix had 103,356 rows where each row corresponds to a

DNA fragment from one of the two copies of the chromosome. Hence, paired-end reads

(sequenced ends of clones) are represented as a single row. 18,119 of these fragments

correspond to such paired-end reads. About half of the fragments (53,279) link two or

more variants and therefore are potentially useful for haplotype assembly. These 53,279

fragments correspond to 173,084 variant calls (≈ 7 calls per variant) in the fragment

matrix. Using the overlap between these fragments, the chromosome can be partitioned

into 609 disjoint haplotypes (in addition to 921 isolated variants) of varying lengths, the

largest of which links 1008 variants. In terms of the actual physical distance spanned

by haplotypes, the N50 haplotype length (length such that 50% of the variants are con-

tained in haplotype segments of the given length or greater) is≈ 350kb. Note that a

haplotype segment does not link all variants it spans (see Figure5.4 for an illustration

of a haplotype segment). Even if haplotype length is measured in terms of the number

of variants linked, the N50 length is about 400 variants.

The importance of paired-end reads for haplotype assembly can be gauged from

the comparison of the distribution of the number of variants among haplotypes of dif-

ferent sizes for a) reads including paired-end information vs b) unpaired reads (see Fig-

ure5.5). If we ignore the paired ends, and split them into separate fragments, the linkage

between the variants and consequently, the haplotype block sizes are greatly reduced.

The number of disconnected haplotypes increases to4378 with no haplotype having

more than100 variants.
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Figure 5.5: Distribution of the number of variants among haplotypes of different sizes
(haplotype size is measured as the number of variants linked together in a haplotype)
for chromosome 22 of HuRef. The y-axis is the aggregated number of variants that are
part of haplotypes of a certain size. Haplotype size ‘1’ corresponds to isolated variants
not connected to any other variant. The ‘reads with mates’ distribution corresponds to
the complete fragment matrix. The ‘unmated’ distribution is obtained by splitting mate
pairs into separate fragments.

5.4.2 Performance of HASH on Simulated data

To test the performance of HASH, we generated simulated data with varying

error rates as follows: first, the fragment matrixX was modified to make it perfectly

consistent with a particular haplotype. Next, to simulate an error rate ofε (0 ≤ ε ≤

0.1), each variant call in the fragment matrix was “flipped” (changed from 0 to 1 or

vice versa) independently with probabilityε. For this modified fragment matrix, we

know the true haplotypes and also the variant calls that are correct (those that were not

flipped) and also those that are incorrect (the ones that were flipped during simulations).

Therefore, we can assess the performance using two different criteria: a) the distance of

the reconstructed haplotypes from the true haplotypes and b) the ability to predict which
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variant calls are incorrect.
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Figure 5.6: Comparison of the switch error rate for the algorithm HASH and the MCMC
algorithm withΓ1. The y-axis is the average switch distance of the reconstructed hap-
lotypes from the true haplotypes. The x-axis (simulated error rate) is the fraction of
variant calls in the fragment matrix that were flipped.

In Figure5.6, we plot the average switch distance of the Maximum Likelihood

reconstructed haplotypes from the true haplotypes as a function ofε. Average switch

distance or switch error rate (Lin et al., 2002) is defined as the fraction of positions for

which the phase between the two haplotypes is different relative to the previous position.

The switch error rate increases roughly linearly with increasing error rate and is (∼ 2×)

lower for HASH than for the MCMC algorithm withΓ1. This is expected given the

slow convergence of the Markov chain withΓ1. The switch error rate for the greedy

heuristic (Levy et al., 2007) is also high in comparison with HASH (results not shown).

Using an MCMC procedure, one can estimate the posterior error probability for

each variant call in the fragment matrix. Given a haplotype pairH = (h, h̄), letZi(H)

denote the probability that fragmentXi is sampled fromh. Denoteεi[j, h] = 1 if Xi and

h disagree at positionj. Finally, letεi[j] = 1 to denote thatXi[j] is called incorrectly,
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and εi[j] = 0 otherwise. Then, the posterior error probability can be computed as

follows:

Pr(εi[j] = 1|π) =
∑
H

πH{Zi(H) · εi[j, h] + (1− Zi(H)) · εi[j, h̄])}
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Figure 5.7: Fraction of variant calls with a posterior error probability≥ 0.5 using the
HASH algorithm for different values ofε. (a)False-positive rate, given by the fraction
of “correct” variant calls with high posterior error probabilities. (b)True-positive rate,
given as the fraction of “flipped” variant calls with high posterior error-probability.

HereπH = Pr(X|H, q) is a probability distribution overH. See Supplementary

Methods for a complete description. We compare the posterior error probability for the

“correct” variant calls with those for the “incorrect” variant calls to demonstrate that our

algorithm HASH can predict the incorrect variant calls. In Figure5.7(a), we plot the

false positive rate (fraction of correct variant calls that had a posterior error probability

greater than 0.5) for different values ofε. For an error rate of 0.02 (typical of the HuRef

sequence data, see Figure5.9), the fraction of incorrect variant calls with a high posterior

error probability (> 0.5) is almost 80%. In Figure5.7(b), we plot the true positive

rate (fraction of flipped base calls that had a posterior error probability greater than

0.5). Increasing the cutoff value for the posterior error probability reduces both the true
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positive rate and the false positive rate. For an error rate of 0.02, 65% of the incorrect

(or flipped) variant calls have a posterior error probability greater than 0.95 while only

0.015% of the correct variant calls have such a high posterior error probability.

The plots suggest that the error in reconstruction is very low for typical sequenc-

ing errors, but increases with increasing error rate. Also, our measure for estimating

accuracy is (perhaps, overtly) conservative. For example, if there is a single call for a

variant and this variant call is flipped, it is not possible to reconstruct the true haplotype

or predict that this variant call is incorrect. Flipping a variant call not only affects the

posterior error probability of that variant call, but the error probability of variant calls

that cover the same column. Therefore, increasing the error rate is expected to increase

the number of ‘correct’ variant calls with a high posterior error probability. Also, if the

error rate is large and the number of fragments covering each variant is small, it may not

be possible to reconstruct the true haplotype exactly from the mutated fragment matrix.

5.4.3 HASH versus other MCMC algorithms

Our goal in devising HASH is to enable the Markov chain to move out of

local optima and transition to haplotypes with greater likelihood. We compared the

performance of HASH against two other MCMC algorithms: i) M(Γ1), the Markov

chain withΓ1 and ii) M(Γ) whereΓ was computed once using the recursive graph-

partitioning onG(X). Recall that HASH is similar to (ii) except thatΓ is updated

iteratively. For this, we used data from chromosome 22 and looked at the maximum-

likelihood haplotype pair sampled by each algorithm. The results shown are for a block

with≈ 200 columns from chromosome 22 (see Figure5.8(a)). In each case, the Markov

chain was initialized with a random haplotype pair. As expected, HASH dominates both

in the likelihood of the sampled solution, and in the speed with which the solution is

reached.M(Γ1) gets stuck in a local optima and will take a prohibitively large number

of steps to sample the maximum likelihood solution.

In Figure5.8(b) we zoom in on the ‘Γ update’ phase of the HASH algorithm



122

0 2 4 6 8 10

x 10
5

−180

−160

−140

−120

−100

−80

−60

−40

−20

0

# steps 

Lo
g−

lik
el

ih
oo

d

 

 
HASH

Γ
tree

 (no updates)

Γ
1

0 2000 4000 6000 8000 10000
−500

−400

−300

−200

−100

0

# steps

Lo
g−

lik
el

ih
oo

d

 

 

HASH starting from random H0

Γ
tree

(no updates) starting from good H 0

(a) (b)

Figure 5.8: Results of running the MCMC algorithm with differentΓ on a fragment
matrix with n = 200 columns (from chromosome 22 of HuRef genome). a) A com-
parison of the HASH algorithm against two other MCMC algorithms: i) M(Γ1), ii)
M(Γ) whereΓ was computed using the recursive graph-partitioning algorithmG(X).
All algorithms were initialized with a random haplotype pair. b) Comparison of HASH
algorithm initialized with a random haplotype vsM(Γ) (graph-partitioning) started with
a good haplotype. Note that we are zooming in on the first 10K steps in the iteration.

for the above example. The HASH algorithm was initialized with a completely random

haplotype. We observe that the likelihood of the best haplotype sampled by the HASH

algorithm after a few updates toΓ is identical to that of the Markov chain with the graph-

partitioning basedΓ started from a good quality solution. Although the results shown

in Figure 5.8 are for one particular example, they are similar for all data-sets (data

not shown). The two results combined show that the sample space has many locally

optimal solutions that one could be trapped in, but dynamic updates to the Markov

chain architecture, as described by HASH allows for rapid convergence, increasing the

likelihood of sampling the globally optimum solution.

5.4.4 Haplotypes for HuRef

We compared the most likely haplotype assembly obtained using HASH with the

greedy haplotype assembly (Levy et al., 2007) for each of the 22 autosomes of the HuRef

individual. HASH was run independently on each of the disjoint haplotype blocks for
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a chromosome. For each chromosome, we compared the haplotype assembly against

the fragment matrix and computed the MEC (Minimum Error Correction) score (Bafna

et al., 2005), defined as the minimum number of variant calls in the fragment matrix

that need to be modified for every fragment to perfectly match one of the two haplo-

types. The MEC score represents a parsimonious estimate of the discordance between

the haplotypes and the fragment matrix. A more detailed formulation of the MEC score

is given in the Supplementary methods. In Figure5.9, we compare the MEC scores for

three different methods: Greedy heuristic (Levy et al., 2007), MCMC algorithm withΓ1

and HASH. The haplotype assembly derived using HASH has a lower MEC score for

each chromosome, reflecting the greater accuracy of the haplotypes. For chromosome

22, the MEC score for HASH was 20% lower than the greedy algorithm. Note that the

MEC score is not expected to be zero, even for the true haplotypes, due to errors in

base-calling.
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Figure 5.9: The percentage of variant calls that are inconsistent with the best haplotype
assembly for three different methods: Greedy heuristic (Levy et al., 2007), MCMC
algorithm withΓ1 and the HASH algorithm for the 22 autosomes of HuRef.

We also compared the log likelihood of the haplotype assemblies for the greedy

algorithm and HASH. The log-likelihood was computed using the sequencing quality
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values to estimate theq matrix. We found that the log likelihood for the haplotypes

reconstructed using HASH was consistently higher than that of the greedy haplotypes

indicating that the haplotypes are significantly more accurate. For example, the log-

likelihood of the greedy haplotype assembly for chromosome 22 (summed over all dis-

joint haplotypes) was -15683.4. In comparison, the most likely haplotype assembly

using the HASH algorithm had a log-likelihood of -11944.25 (a reduction of 23.8%).

We compared the posterior error probabilities for each variant call against the

sequencing quality values. To allow an unbiased comparison, the HASH algorithm was

run using uniform error probabilities estimated from the greedy haplotypes (q̂ = fraction

of inconsistent variant calls). For chromosome 22, 3919 of the 173804 variant calls had

a posterior error probability greater than 0.5. If we restrict the comparison to variant

calls with a sequencing quality value below 20 (q ≥ 0.01), 1203 out of 28532 such

variant calls had a high posterior error probability. This represents a 2-fold enrichment

of “erroneous” variant calls in the tail of quality value distribution. In Figure5.10,

we can see that the fraction of variant calls with a high posterior probability increases

with increase in the error probability (or decreasing sequencing quality values). This

correlation between high posterior error probabilities and low sequencing quality values

represents an independent confirmation of the quality of the reconstructed haplotypes

and also indicates that some of the inconsistencies between the reconstructed haplotypes

and the fragments are a result of sequencing error.

5.4.5 Estimating accuracy of HuRef haplotypes

The HuRef haplotypes obtained using HASH are highly consistent with the se-

quenced fragments and have a low MEC error rate (see Figure5.9). However, we also

want to be able to estimate the absolute accuracy of the HuRef haplotypes. The absolute

accuracy can be expressed in terms of the “switch error rate”(Lin et al., 2002) or the

fraction of adjacent pairs of variants whose phase in the HuRef haplotypes is incorrect.

We have computed two independent estimates of the switch error rate; one based on the
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Figure 5.10: Fraction of variant calls with high posterior error probability (≥ 0.5) for
different values of the error probabilityq (derived from the sequencing quality values)
for chromosome 22 of HuRef.

haplotypes samples generated by our MCMC algorithm and another through compari-

son of the HuRef haplotypes to the population haplotypes from the HapMap project.

Switch error estimates using samples from the MCMC algorithm We used the

haplotypes sampled by the algorithm HASH to estimate the reliability of the phase be-

tween adjacent pairs of variants in a haplotype segment. For a pair of adjacent variants

(i, j), if we denote the two alleles at each site by 0 and 1, there are two possible hap-

lotype pairs:(00, 11) and(01, 10). Based on haplotypes sampled by the Markov chain,

the switch error probability for a pair(i, j) was estimated as the fraction of times the less

frequent haplotype pair was observed. See Figure5.4for a plot of switch error probabil-

ities for a haplotype segment from HuRef. The switch error rate for a chromosome can

be approximated as the average of the switch error probabilities for adjacent pairs. For

chromosome 22 of HuRef, the switch error rate was estimated to be 0.009 using 1000

samples.
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Switch error rate based on comparison to HapMap haplotypes One of the benefits

of inferring haplotypes from sequence data is that the local accuracy of the haplotypes

is unlikely to be affected by the level of Linkage Disequilibrium in a region. This also

presents the opportunity of using LD in population data to detect switch errors in the

HuRef haplotypes. For a pair of variants that are in strong LD in population data, the

correct HuRef phasing is expected to match the more likely population based phasing.

If the inferred HuRef phasing does not match the preferred population phasing, one

can infer a switch error with some probability (the probability value depends upon the

strength of LD between the pair of variants). We use this idea to empirically estimate

the switch error rate of the HuRef haplotypes. As the HuRef individual is of Caucasian

origin, we have used the haplotypes from the CEU population in the HapMap project

for this comparison. We identified the subset of SNP variants in HuRef that were also

genotyped in the HapMap project. For each pair of adjacent SNPs in this subset, there

are two possible haplotype phasings:(00, 11) and (01, 10). Let f00, f11, f01 andf10

represent the frequencies of the four haplotype pairs in the HapMap CEU sample. If

(f00 · f11) > (f01 · f10), the pair(00, 11) is defined to be the preferred HapMap phasing.

Otherwise,(01, 10) is the preferred HapMap phasing. For a pair of adjacent HapMap

SNPs in the HuRef haplotypes (that were part of the same haplotype segment), the

phasing of the HuRef individual is compared to the preferred HapMap phasing for that

pair. The mismatch rate is defined as the fraction of pairs for which the HuRef phasing

does not match the preferred HapMap phasing. In Figure5.12, we plot the mismatch

rate of the HuRef haplotypes for chromosome 22 (estimated using HASH) as a function

of LD (measured usingr2). The mismatch rate is lowest for pairs with high levels of LD

(0.008 for pairs withr2 > 0.8) and increases to 0.031 for all pairs. The mismatch rate

for pairs with high levels of LD can mainly be attributed to switch errors in the HuRef

haplotypes. For pairs of SNPs with low LD, mismatches between the HuRef haplotypes

and the preferred HapMap phasing can represent switch errors or chance mismatches

(see Figure5.11for an illustration).

To correctly estimate the error rate, we first compute an expected mismatch rate
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Figure 5.11: Comparison of haplotypes assembled using sequence data with the pre-
ferred HapMap phasing for each pair of adjacent SNPs inferred from the HapMap hap-
lotypes. For three pair of adjacent SNPs, the phase of the sequence-based haplotypes
mismatches the preferred HapMap phasing (indicated by crosses). The first pair shows
strong linkage disequilibrium (r2 = 0.95) and therefore the mismatch is more likely to
represent a switch error in the sequence-based haplotypes. For the second pair of SNPs,
the sequence based haplotypes are correct and the mismatch is due to low LD between
the SNP pair. For the third pair, LD is low and the mismatch is due to a switch error in
the sequence-based haplotypes.

for the HapMap haplotypes as follows: for every pair of adjacent SNPs, we sample one

of the two haplotype pairs ((00, 11) or (01, 10)) based on the haplotype frequencies in

the HapMap haplotypes. The expected mismatch rate is the fraction of pairs for which

the sampled pair mismatches the preferred HapMap phasing. For a particular value

of r2, we define the “adjusted mismatch rate” as the mismatch rate minus the expected

mismatch rate. The adjusted mismatch rate represents an estimate of the switch error rate

of the HuRef haplotypes that is adjusted for variation in LD in the HapMap haplotypes.

In Figure 5.12, we plot the “adjusted mismatch rate” for HASH and for the greedy

heuristic. We observe that the adjusted mismatch rate for HASH is nearly independent

of LD, ranging from 0.011 for all pairs to 0.0078 for pairs of SNPs withr2 > 0.8.

The adjusted mismatch rate for the greedy heuristic is almost three times that of HASH,
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providing the strongest proof of the greater accuracy of the haplotypes inferred using

HASH.

Both internal and external estimates indicate that the switch error rate of the

HuRef haplotype assembly is about 0.01. The switch error rate for HapMap individuals

from the CEU and YRI samples has been estimated to be 0.0053 and 0.0216 respec-

tively (Marchini et al., 2006). The haplotypes for these individuals have been inferred

using a combination of trio and population information. The increased error-rate for

YRI is due to lower levels of LD in the Yoruban population. Switch error rates for

haplotypes inferred without trio information are typically much higher (0.054 for CEU

individuals). An advantage of inferring haplotypes using sequence data is that the error

rates are expected to be independent of the ancestry of the individual. Moreover, since

the switch errors are distributed independent of LD, the error rate could be reduced fur-

ther by incorporating LD information from population data in the haplotype assembly.

5.5 Discussion

With the rapid development of new sequencing technologies (Bentley, 2006)

comes the promise of individualized sequencing, wherein the complete genomic se-

quence of individuals will be available. As shown by Levy et al. (Levy et al., 2007),

individual sequencing in the presence of paired-ends allows one to reconstruct accurate

long haplotypes using a simple method. There are two challenges to sequence-based

haplotype inference: the high cost of whole genome shotgun sequencing at a reasonable

sequence coverage using Sanger sequencing and the feasibility of haplotype assembly

using other sequencing methods. In the past few years, next-generation sequencing tech-

nologies have drastically reduced the cost of sequencing complete genomes. Addition-

ally, some of these technologies have the ability to generate paired-end sequences which

is critical for haplotype assembly. Haplotype assembly is feasible when the sequenced

fragments are long enough to cover multiple variants, and the sequence coverage is high

enough to overcome base-calling error. Although the read lengths for these methods
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Figure 5.12: Mismatch Rate and the “Adjusted Mismatch Rate” (Error Rate) of the
HuRef haplotypes estimated by comparison with the CEU HapMap haplotypes. The
error rate is plotted as a function ofr2, i.e. computed for all pairs of adjacent SNPs with
r2 greater than a certain value.

are much shorter than traditional Sanger sequencing, continued enhancements in these

technologies will make haplotype assembly feasible in the near future.

Haplotype assembly from sequenced reads of an individual genome has several

advantages over haplotypes obtained by computationally phasing SNP genotypes from

a population. First, the accuracy of the phasing is not limited by regions of low link-

age disequilibrium and it is possible to recover very long haplotypes spanning several

hundred kilobases. Second, it is possible to assemble “complete” haplotypes linking

alleles at all variants such as SNPs, insertion/deletions, etc that are heterozygous in the

individual. Third, the accuracy of haplotypes inferred from genotype data depends a

great deal on the knowledge of ancestry of the individual, while haplotype assembly

from sequence data does not require knowledge of the population of origin of the in-

dividual. It is important to note that these two approaches for inferring haplotypes are



130

complementary to each other. As individual genomes are sequenced, population data

could be combined with sequence data to obtain longer and more accurate haplotypes

for an individual. Linkage Disequilibrium from population data could be used to deter-

mine the phase between variants that are not linked by sequenced reads, while sequence

data could be used to infer haplotypes across regions of low LD. The highly accurate

haplotypes generated by the HapMap project for the CEU and YRI samples could prove

especially useful for improving the quality of haplotypes assembled using individual

sequencing.

We have described a Markov chain Monte Carlo algorithm for haplotype as-

sembly that samples haplotypes given a list of all heterozygous variants and a set of

sequenced reads mapped to a genome assembly. Our emphasis has been on describing

how a particular choice of moves for the Markov chain enables it to sample the haplo-

type space more efficiently than a naive Markov chain. We have shown that haplotypes

reconstructed using HASH are much more consistent with the sequenced reads than

haplotypes inferred using a greedy heuristic. Comparison of the HuRef haplotypes to

the HapMap haplotype data suggests that the error rate of haplotype reconstruction us-

ing HASH is low (∼ 1.1%), and independent of the local recombination rate. Instead,

simulations show that the error rate depends upon the sequencing error and depth of cov-

erage. As technologies improve, the cost and error rates will improve further, increasing

the power and accuracy of haplotype assembly.

There are some aspects of haplotype assembly that could be investigated further.

In our approach, we assume that the list of variants is compiled in advance using the

sequenced reads and haplotype assembly is performed using this list. Detection of SNPs

and variant sites from sequencing data is a challenging problem in itself and one can

possibly integrate the variant detection phase with the estimation of haplotypes. This

approach has recently been adopted by Kim et al. (Kim et al., 2007) and can have certain

advantages for genomes whose variant sites are not well characterized. Our model for

haplotype likelihood considers each variant call independently. One can incorporate

more complex error models where all the variant calls for a read are erroneous e.g. as a
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result of the read being incorrectly mapped, or some of the variant sites do not represent

real polymorphic variants, e.g. paralogous SNPs. The HASH framework is independent

of the likelihood model and can be easily adapted for such models.

Finally, we note that there are some novel aspects of our Markov chain Monte

Carlo algorithm, HASH. We have shown, both empirically and theoretically, that a sim-

ple Markov chain with local moves, i.e. a chain in which all transitions are between hap-

lotypes that differ in a single column, is unable to sample the haplotype space efficiently.

We have proposed a Markov chain with non-local moves that allows transition between

haplotypes that differ in multiple columns. The transition matrix of this Markov chain is

determined by min-cut computations on an associated graph derived from the sequenced

reads. Moreover, the Markov chain architecture is dynamically updated periodically, to

escape local minima.
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Chapter 6

A Combinatorial Algorithm for the

Haplotype Assembly Problem

6.1 Introduction

In the previous chapter, we described HASH, a Markov Chain Monte Carlo

(MCMC) algorithm for the haplotype assembly problem and demonstrated that the

HuRef haplotypes based on HASH were much more accurate than those using the

greedy heuristic. In this chapter, we describe a novel combinatorial approach for the

Haplotype Assembly problem based on a problem related to the MAX-CUT problem.

Our algorithm HapCUT tries to minimize the MEC score of the reconstructed haplo-

types by iteratively computing max-cuts in graphs derived from the sequenced frag-

ments. Our algorithm is motivated by the HuRef sequence data and is applicable to

sequenced fragments of any length with an arbitrary number of gaps. Using the HuRef

sequence data, we demonstrate that our algorithm is significantly more accurate than

the greedy heuristic ofLevy et al., 2007. We also compare the performance of HapCUT

with a previously proposed heuristic for this problem, namely Fast Hare(Panconesi and

Sozio, 2004), and find that our algorithm consistently outperforms this heuristic. The

MEC score of the haplotypes reconstructed using HapCUT is comparable to those using

132
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a Markov chain Monte Carlo algorithm while being much faster to compute. While the

problem of optimizing the MEC score is NP-hard even for gap-less fragments(Cilibrasi

et al., 2005), and unlikely to admit an efficient algorithm, HapCUT represents a fast

and accurate heuristic for haplotype assembly using real sequence data. We will also

describe a Maximum Likelihood based estimator of the switch error rate of the HuRef

haplotypes based on the CEU HapMap haplotypes and show that the HuRef haplotypes

inferred using HapCUT have a low switch error rate (1.1− 1.4%).

6.2 Methods

6.2.1 Preliminaries and Optimization

The genome sequence assembly for a chromosome is a mix of the two haploid

chromosomes. If we align all of the fragments to the assembly, certain sites (columnsin

the alignment) will show identical values (homozygous) for all fragments, while others

will have different values (heterozygous) for different fragments. Note that heterozy-

gous sites in the alignment could correspond to a single base pair (SNPs) or multiple

base pairs, e.g. deletion/insertion variant. Sites that are homozygous are discarded, as

they are not useful for haplotype phasing. Likewise, all sites with more than 2 alleles

are discarded, as all variant sites should be bi-allelic for a diploid genome. Arbitrarily

re-labeling the variant alleles as 0 and 1, the input data can be represented as a ternary

matrix X of sizem × n, wherem is the number of fragments andn is the number

of heterozygous sites. Thei-th fragment (rowi of X) is described by a ternary string

Xi ∈ {0, 1,−}n, where′−′ corresponds to the variant loci not covered by the fragment.

The objective of haplotype assembly is to reconstruct the two haplotypes, i.e. determine

the combination of alleles present on a single chromosome at the heterozygous sites.

The haplotypes can be represented as an unordered pairH = (h1, h2) of binary strings,

each of lengthn. Since we only consider sites that are heterozygous in the individual

genome,h2 is constrained to be the bit-wise complement ofh1.
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In the absence of any errors, the rows of the fragment matrix can be partitioned

into two disjoint sets such that every column is homozygous in each set(Lancia et al.,

2001). Further, the consensus values can be used to reconstruct the two haplotypes.

However, such a perfect bi-partition is not possible when there are errors in the fragment

matrix. In the presence of errors, the objective of haplotype assembly is to find a bi-

partition or a pair of haplotypes that minimizes some objective function. Under the MEC

(minimum error correction) criterion, the objective is to change the smallest number of

entries in the fragment matrix such that the resulting matrix admits a perfect bi-partition.

The MEC objective is also equivalent to finding a pair of haplotypesH for which the

MEC score of the fragment matrix MEC(X,H) is minimum.

If d(Xi, h) denotes the number of mismatches between the fragmentXi and

haplotypeh (ignoring the ‘-’ inXi), then

MEC (Xi, H) = min{d(Xi, h), d(Xi, h̄)}

and the overall score is given by

MEC (X,H) =
∑
i

MEC (Xi, H)

This leads to the natural parsimony based optimization problem of computing haplo-

types with minimumMEC score. For notational convenience, we will denote the error

for a haplotype pairH asMEC (H), wheneverX is implicit. We will focus on designing

an algorithm for the MEC objective function. Other objective functions for haplotype

assembly have previously been proposed, such as MFR (Minimum Fragment Removal)

where the objective is to remove the smallest number of fragments to make the fragment

matrix error free, and MSR (Minimum SNP Removal) which models false variant sites.

However, the simplest (and most-common) source of error is due to base-miscalling and

the MEC objective serves as a good model for this type of error. Moreover, MEC can

also indirectly model other sources of error, e.g. a haplotype assembly with a low MEC

score is also likely to be good under the MFR objective.
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6.2.2 MEC optimization using max-cuts

Among the various objective functions for the haplotype assembly problem,

MEC seems to be the most difficult to optimize. While MFR and MSR can be solved

optimally for gap-less fragments, finding the optimal MEC solution has been shown

to be NP-hard even for gap-less fragments (Lippert et al., 2002; Cilibrasi et al., 2005).

MEC has been shown to beO(log n) approximable in the general case by Panconesi

and Sauzio(Panconesi and Sozio, 2004), who also describe a heuristic Fast Hare for the

problem. Here, we provide a formulation for MEC optimization based on graph-cuts,

which leads to a simple but effective algorithm.

Given a fragment matrixX, and a haplotype pairH, we define the graphGX(H),

with vertices defined by columns ofX. We abuse notation slightly by referring to the

vertex set asX. The setEH of edges of this graph is defined by pairs of columns

that are linked by some fragment. LetXi[j, k] andH[j, k] represent the fragmenti and

haplotype pairH respectively, when restricted to the pair of columns(j, k). The weight

of the edge(j, k) ∈ EH connecting columnsj, k is defined as

wH(j, k) = ‖{i |MEC (Xi[j, k], H[j, k]) = 1}‖−

‖{i |MEC (Xi[j, k], H[j, k]) = 0}‖

Informally, the weight of the edge(j, k) is the number of fragments inconsistent with the

current phase between the pair minus the number of fragments consistent with the phase

H[j, k]. In other words, the weight represents the “weakness” of the phasing between

columnsi andj. A Cut in the graphGX(H) is defined by a subsetS ⊆ X of vertices.

The weight of a cutS in GX(H) is given by

wH(S) =
∑

j∈S,k∈X−S

wH(j, k)

Given a haplotype pairH, and a cutS in GX(H), the haplotype obtained the flipping

the values of the columns inS is denoted byHS, as illustrated in the example below:
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H S

10111000101[ ] 10000000100
01000111010 01111111011[ ]

S={3,4,5,11}

H

Such transformations are effective for improving the MEC score, as exemplified

by the following theorem.

Theorem 20: Let X be a fragment matrix with each fragment of length 2. For any

haplotype pairH, let S ⊆ X be a positive weighted cutwH(S) > 0 in the graph

GX(H). Then

MEC(HS) = MEC(H)− wH(S) < MEC(H)

If S is a MAX-CUT in the graphGX(H), thenHS is an optimal MEC solution

for X.

Proof: Consider a cutS in the graphGX(H). LetHS be the haplotype obtained by

flipping the columnsS ofH. Clearly, MEC(H)−MEC(HS) is equal to the value of this

cutwH(S). The maximum value of this difference is reached when the cut is a max-cut

and thereforeHS is an optimal MEC solution. ♣

The above theorem implies that given a current haplotype pairH, anypositive

weight (wH(S) > 0) cut leads to a haplotype(HS) with a lower MEC score. This can

be repeated iteratively resulting in haplotypes with decreasing MEC scores. If we can

compute the MAX-CUT in a single step, we can find the optimal MEC solution, how-

ever this is not necessary. Based on this observation, an algorithm that looks for positive

cuts inGX(H) can be used to optimize the MEC score as below.

Procedure HapCUT

Initialization: Choose an initial haplotype configurationH1 randomly.

Iteration: For t = 1, 2, . . .

1. Construct the graphGX(H t)
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2. Compute a cutS in GX(H t) such thatwH(S) ≥ 0

3. If MEC(H t
S) ≤ MEC(H t),H t+1 = H t

S

4. ElseH t+1 = H t

The iterative procedure HapCUT is run until we can no longer get an improve-

ment in the MEC score. While Theorem20 holds only when all fragments have length

2 (and also for fragments of length 3 as we show in the next section), the algorithm

HapCUT as described above works for arbitrary sized fragments. In order to ensure that

HapCUT has good performance on real data, it is important to be able to compute high-

scoring cuts in the graphGX(H). First, we show how the edge weights of the graph

GX(H) can be weighted appropriately for long fragments.

6.2.3 Assigning weights to edges ofGX(H)

In the previous section, we described a simple formula to assign a weight to each

edge of the graphGX(H). This formula gives disproportionately more weight to longer

fragments, i.e. a fragment of lengthk contributes a total absolute weight of
(
k
2

)
to the

graph. The weighting scheme can be modified to ensure that Theorem20 also holds

for fragments of length 3. We simply scale the contribution of the fragment to each

edge by 1/2. Now, a fragment of length 3 can have a MEC of 0 or 1. An MEC of 0

corresponds to the three vertices (columns of the fragment) being on the same side of

the cut and therefore contributing 0 to the cut value. An MEC of 1 corresponds to two

of the vertices being on one side and therefore the fragment contributes exactly 1 to the

cut after scaling. As the scaling of1
k−1

for a fragment of lengthk is consistent with the

weights for fragments of length 2 and 3, we adopt it for computing the edge weights

of arbitrary length fragments. Results on real data indicate that this works well, even

though we do not know of a scaling under which Theorem20 holds for arbitrary length

fragments.
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6.2.4 Computing Max-Cuts

The problem of computing a maximum-weighted cut is known to be NP-complete

(Garey and Johnson, 1979), even when all edge weights are restricted to be 1. However,

we only need to find a positive-weighted cut in order to improve the MEC score. Simple

heuristics can find good cuts if all weights are positive. Indeed, a greedy heuristic(Sahni

and Gonzalez, 1974) will give a cut which has at least0.5 of the total weight of the

edges of the graph. When the MEC score ofH is poor and far away from the optimal

MEC value (e.g. for a random haplotype pair), most of the edges of the graphGX(H)

have positive weights and finding a positive-weighted cut is easy. However, when the

MEC score ofH is close to the optimum, most of the edges of the graphGX(H) have

negative weights, and the greedy algorithm is not guaranteed to find a positive-weight

cut. On the other hand, presence of a highly negative weight edge between two vertices

s andt of the graph also implies that a positive-weight cut is unlikely to separates and

t. Therefore, for the purpose of computing a positive-weight cut, we can “contract” the

edge(s, t). We use a two-step greedy algorithm for computing a max-cut inGX(H).

First, we find a cut where most of the negative weight edges do not go across the cut. In

the second step, we move vertices from one side of the cut to the other if this improves

the weight of the cut. The complete greedy heuristic is described below:

Greedy-Cut(GX(H))

Initialization : BestCut = -∞

Iteration : IterateO(m logm) times

1. Chose an edge(s, t) of the graph uniformly at random

2. Initialize S1 = {s} andS2 = {t}

3. While S1 ∪ S2 6= V

(a) For each vertexv 6∈ S1∪S2 compute the scoreA(v) =
∑

s1∈S1
wH(v, s1)−∑

s2∈S2
wH(v, s2)
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(b) Let vmax be the vertex for which|A(v)| is maximum

(c) If A(vmax) < 0, S1 = S1 ∪ v

(d) else ifA(vmax) > 0, S2 = S2 ∪ v

(e) else addv uniformly at random toS1 or S2

4. repeat

(a) OldCut= wH(S1)

(b) If v ∈ S1 andA(v) > 0, movev from S1 to S2

(c) If v ∈ S2 andA(v) < 0, movev from S2 to S1

until wH(S1) ≤ OldCut

5. If wH(S1) > BestCut, BestCut =wH(S1)

Final: Return BestCut

The first phase of the above algorithm (Step 1-3) is designed to find a cut in

which the highly negative weight edges do not cross the cut. The cut is initialized using

an edge of the graph and the algorithm is repeated enough times to make sure that every

edge is considered. Step 4 by itself is exactly the well-known Greedy algorithm for

computing max-cuts(Sahni and Gonzalez, 1974).

6.3 Results

We used the filtered HuRef data fromLevy et al., 2007 to evaluate our algo-

rithm HapCUT . The data contains a total of 1.85 million heterozygous variants for the

22 autosomes. As a typical example, chromosome 22 contained24, 968 variants en-

coded by103, 356 fragments. Only53, 279 of these cover more than one variant and

are therefore useful for haplotype assembly.18, 119 of these fragments correspond to

mate-pairs. The chromosome is partitioned into 609 dis-connected variant “blocks” or

connected component based on the links between variants in addition to 921 isolated
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variants. These blocks provide large haplotypes, clearly illustrating the power of this

haplotype assembly. However, as the length of our haplotypes is predetermined by the

connected components, we do not discuss this further, referring the interested reader to

Levy et al., 2007. The haplotypes for each of these blocks are assembled independently.

The average number of calls for a variant is 6.7 (see Figure6.1(a) for distribution of the

number of variant calls per fragment). A fragment spans 9.67 variants but has only 3.25

variant calls on the average (see Figure6.1(b) for distribution of the difference between

span and length). This clearly indicates the highly “gapped” nature of the fragment data.

6.3.1 MEC scores for HuRef chromosomes

We ran HapCUT for each of the HuRef chromosomes. For each chromosome,

the algorithm was initialized with a randomly chosen haplotype. We found that the

MEC score improves as we iteratively compute cuts and change the haplotypes. Most

of the improvement in the MEC score happens in the first few iterations with no further

improvement after 40-50 iterations. We compared the MEC scores for the HuRef data

using four different algorithms: i) the greedy heuristic ofLevy et al., 2007, ii) Fast Hare

(implemented as described inPanconesi and Sozio(2004)), iii) the Markov chain Monte

Carlo algorithm HASH and iv) our algorithm HapCUT (see Figure6.2).

HapCUTperforms significantly better than the greedy heuristic (the MEC scores

are 20-25% lower for all chromosomes) and very similar to HASH. The performance

of the heuristic Fast Hare is generally worse than that of the greedy heuristic. For a

few connected components, the MEC score for HASH was slightly lower than that of

HapCUT (run for 100 iterations). On all of these cases, a greedy choice of the cut did

not improve the MEC score (data not shown). Clearly, an MCMC sampling approach

has the advantage of being able to make sub-optimal choices and thereby reach sample

a slightly better haplotype. On the other hand, for some of the chromosomes, we ob-

served that the total MEC score of HapCUT was better than that of HASH. A possible

explanation is that while the objective of HapCUT is to find the optimal MEC solution,
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Figure 6.2: MEC scores (divided by the number of variant calls) for the HuRef chromo-
somes for four different methods. The performance of HapCUT and HASH is compara-
ble, and significantly better than the greedy heuristic and Fast Hare.

HASH is geared towards finding the maximum likelihood solution. The two may be dif-

ferent when fragments have lengths greater than2. HapCUT also offers the advantage

of fast computation time in comparison to MCMC sampling algorithms such as HASH.

For chromosome 22, HapCUT takes less than 30 minutes to compute the MEC score

while HASH takes more than 10 hours. For all chromosomes, HapCUT was an order of

magnitude faster than HASH (results not shown).

6.3.2 Simulations using HuRef data

We tested the performance of HapCUT on simulated data generated using the

HuRef chromosomes. The fragment matrix for a chromosome was suitably modified to

make it “error free” or perfectly consistent with a particular haplotype. To generate a

fragment matrix with error rate ofε (0 ≤ ε ≤ 0.5), each variant call in the fragment

matrix was flipped with probabilityε. We ran HapCUTon this modified fragment matrix
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Figure 6.3: (a): Number of Simulated versus estimated errors and (b) Haplotype switch
error as a function of depth of coverage (number of calls for a variant), forε = 0.02.
The switch error decreases with increasing depth.

and compared the reconstructed haplotypes with the true haplotypes. In Figure6.3(a),

we plot the best MEC score (scaled by the number of variant calls) against the simulated

error rate, i.e. the fraction of variant calls that were flipped. We observe that the MEC

score is always less than the number of flipped calls and ratio of the MEC score to the

number of flips decreases as the error rate increases. This is to be expected, because as

the number of flipped variant calls increases, some calls might become consistent with

a different (lower MEC) haplotype.

Flipped base-calls could also result in errors in the reconstructed haplotypes. If

the depth of coverage is low, very little can be done to recover from the error. Also, if

ε is high, the optimal haplotype could well be different from the one we started with.

However, we expect that at high depths of coverage and low-error rates, a correct hap-

lotype can be recovered accurately. In Figure6.3(b) we plot the switch error (number

of switches between the original haplotype and the reconstructed haplotype against the

depth of coverage, i.e. for a particular value on the x-axis, we ignore variants with cov-

erage below that value for computing the switch error. One can clearly see that as the

depth increases, the switch error decreases from198 (1.11%of the sites) to 17 (0.098%).

Not surprisingly, we also find that the flipped variants are largely the same as

the one that mismatch the computed haplotype. Of the3321 fragments for which some

variant call was flipped, we identified3213 that also mismatched against the computed
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haplotype. An additional146 fragments that did not contain flipped alleles mismatched

with the computed haplotype. Overall, these results indicate the robustness of our solu-

tion to errors in the data.

6.4 Maximum Likelihood estimate of the Switch error

rate of HuRef haplotypes

The MEC score measures the consistency of the haplotype assembly with the

fragment matrix. However, we are also interested in the absolute accuracy of the in-

ferred haplotypes. The absolute accuracy can be measured using the switch error rate,

which is the fraction of adjacent pairs of sites in the HuRef individual whose phase

is incorrect. We have used the phased haplotypes from the HapMap project(The In-

ternational HapMap Consortium, 2005) to obtain a Maximum Likelihood estimate of

the absolute accuracy of the HuRef haplotypes. As the Huref individual is European

in origin, we compare the HuRef haplotypesH against the set of 120 CEU HapMap

haplotypes restricted to the set of SNPs heterozygous in the HuRef individual. The two

HuRef haplotypes are a mosaic of the population haplotypes and a direct comparison

of the full haplotypes with the HapMap haplotypes is not possible. We compute the

likelihood of the haplotypeH conditional on the CEU haplotypes and as a function of

the switch error rate.

Consider a pair of adjacent SNPsi, j heterozygous in the HuRef individual. Let

f00,f01,f10 andf11 be the frequencies of the four pairs in the HapMap CEU sample. If

Ht denote the true HuRef haplotypes (unobserved), the likelihood of the phasingHt[i, j]

being(00, 11) is given by

Pr(Ht[i, j] = (00, 11)) =
f00f11

f00f11 + f01f10

We can similarly compute the probabilityPr(Ht[i, j] = (01, 10)). For aswitch error

rate εs, the likelihood of the phasing between the pair(i, j) is given by

LH(i, j) = (1− εs)Pr(Ht[i, j] = H[i, j]) + εsPr(Ht[i, j] 6= H[i, j])
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Figure 6.4: Haplotype log-likelihood curves for four different values of the switch error
rate.

The switch errors betweenH andHt are a result of sequencing errors and likely

to be distributed independent of LD. Therefore we can assume the switch error rateεs

to be uniform for all pairs. We approximate the likelihood of the full haplotypeH as

LH =
n−1∏
i=1

LH(i, i+ 1)

The haplotype likelihood(LH) is a function of the switch error rateεs and the

LD in the HapMap haplotypes. If there are very few switch errors betweenH andHt,

then the likelihood functionLH is expected to be maximum for values ofεs close to

0. As the number of switch errors increases, the contribution of the second term in the

likelihoodLH(i, j) increases and therefore the Maximum Likelihood (ML) estimate of

εs should increase. We have used the HapMap haplotypes to evaluate if the Maximum
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Figure 6.5: The log-likelihood curve for the HuRef haplotypes for chromosome 22.

Likelihood estimator is a good estimate of the switch error rate. The haplotypes for

one of the 60 CEU individuals was chosen to represent the true haplotypesHt. We

then simulated switch errors randomly with varying switch error ratesεs (0 to 0.05) to

generate the haplotype pairH. The likelihood functionLH was then plotted for different

values of the error rate (see Figure6.4 for likelihood curves for four different values of

εs). From the likelihood curves, we see that the ML estimate is a good estimate of the

switch error rate with a tendency to slightly over-estimate the switch error rate. For

a simulated switch error rate of 0.01, the likelihood was maximum forεs = 0.013.

Similarly for an error rate of 0.02, the ML estimate was0.022.

We then plotted the haplotype likelihood (LH) for the HuRef haplotypes (in-

ferred using HapCUT) as a function of the switch error rateεs (see Figure 6 for a plot

for chromosome 22). The likelihood curve is flat in the region 0.013-0.015 with a max-

ima at 0.014. From this, we can infer that the switch error rate of the HuRef haplotypes

is slightly more than 1% but no more than 1.4%. In comparison, the switch error rate

of haplotypes inferred from CEU population data is 5.4% for unrelated individuals and

0.53% for parent-child trios(Marchini et al., 2006).
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Chapter 7

Markov chains for Haplotype

Assembly: Mixing time analysis

7.1 Introduction

In chapter5, we proposed a Markov chain Monte Carlo framework for the haplo-

type assembly problem. Within this MCMC framework, we saw how different collection

of subsets of the fragment matrix result in different Markov chains. In this chapter, we

analyze the mixing times of two Markov chains for a family of fragment matrices. We

derive explicit lower and upper bounds on the convergence of the Markov chains that

demonstrate that a cut-based Markov chain is more efficient at sampling the haplotype

space. The upper and lower bounds on convergence times are derived using novel cou-

pling, and conductance based techniques (Sinclair and Jerrum, 1989; Jerrum and Sin-

clair, 1997). These results provide theoretical justification for the better performance of

our cut-based MCMC algorithm, HASH, for haplotype assembly and also are interest-

ing in their own right. Before we present these results, we give some formal definitions

about certain properties of Markov chains and the concept of mixing time.

Definition 7: LetM be a Markov chain on a finite state spaceΩ with transition matrix

P = (pij)i,j∈Ω. The chain is said to be ergodic if it is irreducible, i.e.P n
ij > 0 for

148
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some natural numbern > 0 and alli, j ∈ Ω and aperiodic. A Markov chain is said to

be time-reversibleif there exists a probability distributionπ = (πi)i∈Ω that satisfies the

detailed balancecondition

pijπi = pjiπj = Q(i, j), for all i, j ∈ Ω

It is well-known that thisπ satisfying the detailed-balance condition is the unique sta-

tionery distribution, as

(πP )[j] =
∑
i

πiPij =
∑
i

πjPji = πj

Within our Markov chain Monte Carlo framework, a fragment matrixX with n

columns, a corresponding matrixq of error probabilities and a collectionΓ of subsets

of the columns ofX defined a Markov chain denoted byM(X, q,Γ). A fragment

matrix is a matrixX with m rows where each row is a string of lengthn over the

alphabet{0, 1,−}. Corresponding to this fragment matrix, we have a matrixq of error

probabilities where0 ≤ qi[j] ≤ 1 if Xi[j] 6= − andqi[j] = − if Xi[j] = −. For brevity,

we will omitX andq whenever they are implicit, and denote the Markov chain as simply

M(Γ). A state of this Markov chain is an unordered haplotype pairH = (h1, h2) where

h1 andhn are binary strings of lengthn over the alphabet{0, 1}. Moreover,h2 is the

bit-wise complement ofh1. The state space is the set of2n−1 haplotype pairs. The

transition probabilities are defined based on the collection of subsetsΓ. For every state

H, there arek + 1 possible transitions, including the self-loop, wherek is the number

of subsets inΓ.

Every transition of the Markov chain is of the form:H → HS whereH is

the current state (haplotype pair) andS is a subset of columns ofX. For example,
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H S

10111000101[ ] 10000000100
01000111010 01111111011[ ]

S={3,4,5,11}

H

The probability of the transitionH → HS is 1
2k

min
[
1,

Pr(X|Ht
S ,q)

Pr(X|Ht,q)

]
and the prob-

ability of the self-loopH → H is 1
2
. These probabilities completely define the transition

matrix of the Markov chainM(Γ). Our first result is to show thatM(Γ) has stationary

distributionPr(X|H, q)(≈ Pr(H|X, q)), providedΓ includes a minimal collection of

subsets. Formally,

Theorem 21: Let Γ1 = {{1}, {2}, . . . {n}}. For every fragment matrixX, error

probabilitiesqi[j] > 0 (∀i, j), and anyΓ ⊇ Γ1, M(Γ) is ergodic (i.e. irreducible &

aperiodic)with Pr(X|H, q) as its stationary distribution.

Proof: If Γ1 ⊆ Γ, then starting from any haplotype configurationH1 we can reach

any other haplotype configurationH2 by flipping the locations (in an arbitrary order)

that they differ in. The probability of this sequence of transitions is non-zero since

qi[j] > 0 ∀i, j. Hence, for any pair of haplotypesH1 andH2, P t(H1, H2) > 0 for

somet < n wheren is the number of columns. Aperiodicity is ensured by the fact that

with probability at least1/2, the Markov chain remains in the state that it is currently

in. Finally, it can be verified that the detailed balance condition is satisfied forπH =

Pr(X|H, q), as for any neighboringH,H ′,

πHPr(H,H
′) = πH′Pr(H ′, H) = min{Pr(X|H, q), P r(X|H ′, q)}

Therefore, the stationary distribution of the chain isPr(X|H, q).

♣
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7.2 Mixing time of Markov chains

Mixing time represents the number of steps after which the Markov chain is

guaranteed to be “almost” sampling from the required posterior distribution. From the

perspective of sampling using Markov chains, mixing time is similar to the running time

of an algorithm, i.e. a low mixing time corresponds to an efficient Markov chain. More

formally, mixing time of a Markov chain is defined based on the distance of the chain

from the stationary distribution.

Definition 8: The distance of the Markov chain from the stationary distributionπ at

time t is defined as

||P t, π|| = max
i∈Ω

1

2

∑
j∈Ω

|P t
ij − πj|

For anyε > 0, the mixing time of the Markov chain is defined as

τ(ε) = min{t : ||P t′ , π|| ≤ ε, ∀t′ ≥ t}

A Markov chain is said to be rapidly mixing if the mixing time of chain can be

bounded from above by a polynomial inn and logε−1 wheren is the size of each state

of the chain. Several techniques have been developed for analyzing the mixing time of

a Markov chain in the computer science community (seeJerrum and Sinclair(1997) for

an excellent review of these methods). In the remainder of this section, we describe

some of these techniques and results that we will subsequently use for our analysis.

7.2.1 Conductance and Mixing time

Definition 9: For a finite spaced Markov chainM, consider the undirected weighted

graph with vertex setΩ and edge setE = {(x, y) ∈ Ω2 : Q(x, y) > 0}. The conduc-

tance (Sinclair and Jerrum, 1989) of the Markov chainM is defined as

Φ(M) = min
S⊂Ω,0<π(S)<1/2

(
Q(S, S)

π(S)

)
whereQ(S, S) =

∑
Q(x, y) for all pairs(x, y) such thatx ∈ S andy ∈ S.
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Intuitively, the conductance measures the ability of the Markov chain to escape

from any subset of the state space. A low conductance implies that the conditional

probability of the Markov chain escaping from some subsetS ∈ Ω in a single step is

small. The following result tightly relates the mixing time of a reversible Markov chain

to the conductance.

Theorem 22: [(Sinclair and Jerrum, 1989; Sinclair, 1992; Randall, 2006)] LetM be a

finite, reversible, ergodic Markov chain with loop probabilitiesP (x, x) ≥ 1/2 for all

statesx. Then

log((2ε)−1)

4Φ
≤ τ(ε) ≤ 2 log((πyε)

−1)

Φ2

for any choice of initial statey.

The mixing time of a Markov chain can also be related to the spectral gap of

the transition matrixP . Let Gap(P ) = λ0 − |λ1| be the spectral gap ofP where

λ0, λ1, . . . , λ|Ω|−1 are the eigenvalues ofP . Also, 1 = λ0 > |λ1| ≥ λi for all i ≥ 2. If

P (x, x) ≥ 1/2 for all x ∈ Ω, the spectral gap tightly bounds the mixing time on both

sides:

Theorem 23: [Sinclair(1992)]

1

2Gap(P )
log

(
1

2ε

)
≤ τ(ε) ≤ 1

Gap(P )
log

(
1

(minx∈Ω πx) ε

)

7.2.2 The Coupling Argument

A coupling for a Markov chainM is a stochastic process(Xt, Yt) on Ω × Ω

such that(Xt) (or (Yt)) considered marginally is identical to the Markov chainM. The

Coupling Lemma(Aldous, 1986) states that the distance of a markov chainM from its

stationary distributionπ is bounded from above byPr[Xt 6= Yt], i.e. the probability that

the coupling(Xt, Yt) forM has not coupled. This holds for any coupling, therefore, if

one can construct a coupling with low coupling time, it implies that the corresponding

Markov chain has low mixing time. We present a formal definition of a coupling:



153

Definition 10: A coupling for a Markov chainM is a stochastic process(Xt, Yt) on

Ω× Ω with the following two properties:

1. Pr[Xt+1 = y|Xt = x] = P (x, y) = Pr[Yt+1 = y|Yt = x]

2. if Xt = Yt, thenXt+1 = Yt+1

We will use the following theorem:

Theorem 24: Let (Xt, Yt) be any coupling for the Markov chainM and letδ be any

integer valued metric defined onΩ×Ω. Suppose that there exists a positiveβ ≤ 1 such

that

E[δ(Xt+1, Yt+1)] ≤ βδ(Xt, Yt)

for all t. LetD be the maximum value of the metricδ. Forβ < 1, the mixing timeτ(ε)

of the Markov chainM satisfies

τ(ε) ≤ log(Dε−1)

(1− β)

Forβ = 1, if there exists anα > 0 such that

Pr[δ(Xt+1, Yt+1) 6= δ(Xt, Yt)] ≥ α

for all t, then the mixing timeτ(ε) is bounded as

τ(ε) ≤ deD
2

α
edlog(ε−1)e

7.2.3 The canonical paths argument

Another technique for proving upper bounds on the mixing time of a Markov

chain is what is called the canonical path argument. Consider the undirected weighted

graph underlying the Markov chainM as defined previously. For each ordered pair of

states(x, y) ∈ Ω2, define a canonical pathψxy that goes fromx to y using edges of
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the graph. LetΨ be the set of all canonical paths. Define the congestion of the set of

canonical pathsΨ as

ρ(Ψ) = max
e∈E

1

Q(e)

∑
ψxy ,e∈ψxy

π(x)π(y)|ψxy|

where|ψxy| is the length of the canonical pathψxy. Intuitively, a Markov chain

will have a low mixing time if no edge is heavily loaded, i.e. there exists a set of

canonical pathsΨ for which ρ(Ψ) is not large. The following results formalizes this

notion.

Theorem 25: [Sinclair(1992)] LetM be a finite, reversible, ergodic Markov chain with

loop probabilitiesP (x, x) ≥ 1/2 for all statesx. For any set of canonical pathsΨ, the

mixing time ofM satisfies

τ(ε) ≤ ρ(Ψ)

(
ln

(
1

π(y)ε

))
for any choice of initial statey.

The canonical path argument represents an useful algorithmic technique for an-

alyzing the mixing time of Markov chains.

7.2.4 Decomposition Theorem for analyzing mixing time

For many Markov chains, it is not easy to directly analyze the mixing time using

one of the techniques described previously.Madras and Randall(2002) introduced a

new approach to analyze the mixing time of a Markov chain based on decomposing the

state space of a Markov chain into smaller pieces, each of which can then by analyzed

using the standard techniques.Martin and Randall(2006) presented similar results for

a disjoint decomposition of the state space. Informally, these decomposition results

show that if the state space of a Markov chain can be decomposed into disjoint subsets

such that the Markov chain restricted to each of these subsets is rapidly mixing and, in
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addition, there is sufficient ergodic flow between the subsets, the original Markov chain

is rapidly mixing.

Let Ω1,Ω2, . . . ,Ωm be disjoint subsets ofΩ such that∪iΩi = Ω. We define the

Markov chain restrictionMi ofM to Ωi as the Markov chain obtained by rejecting all

moves between elements ofΩi and those outside this subset. More formally, ifx 6= y

andx, y ∈ Ωi, thenPΩi
(x, y) = P (x, y) andPΩi

(x, x) = 1−
∑

y∈Ωi,y 6=x PΩi
(x, y).

The Markov chain that moves between the subsetsΩ1,Ω2, . . . ,Ωm is called the

projection Markov chainMH and is defined on the set[m] = {1, 2, . . . ,m} where each

point i corresponds to the setΩi. The transition matrixPH(i, j) is defined as

PH(i, j) =
1

π(Ωi))

∑
x∈Ωi,y∈Ωj

π(x)P (x, y)

Note that the Markov chainMH is also a reversible and ergodic Markov chain on[m].

Theorem 26: [ Martin and Randall(2006)] Let PΩi
andPM be as defined above. Then

Gap(P ) ≥ 1

2
Gap(PH) min

i=1...m
Gap(PΩi

)

Using this inequality, the mixing time of the chainM can be bounded using

upper bounds on the mixing time ofMH and each of the chainsMi.

7.3 A Family of Fragment Matrices

We will analyze the mixing time of Markov chains for a familyXd,n of matrices.

Figure7.1depicts an exampleX ∈ X2,n. For anyX ∈ Xd,n, there are a total ofn sites,

andd ·(n−2)+2 fragments. Each fragment occupies exactly2 adjacent sites (columns)

in X. For each adjacent pair of positions(i, i+ 1) except the middle (i = bn/2c), there

are exactlyd fragments, each supporting the phasing(00, 11). At i = bn/2c, we have

two fragments00, and01, which support either phasing. There are exactly two optimal
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Figure 7.1: A fragment matrixXd,n (n = 20, d = 2 as shown) for which two haplotypes

H1 andH2 have equal likelihood.

haplotypes

H1 =

 00000 . . . 00000

11111 . . . 11111

 H2 =

 00000 . . . 11111

11111 . . . 00000



Consider the haplotypeH as two paths (corresponding toh, h̄) from position1 to

n. Using this, we canswitchpaths to move from one haplotype to another. For example,

we need ’one switch’ to move fromH1 toH2. LetH ⊕H ′ denote theswitch-distance

(the number of switches needed to transform one into the other) between haplotypes

H, andH ′. For any haplotypeH, we defineD(H) = min{H ⊕ H1, H ⊕ H2}. Note

that,D(.) is a function from the state spaceΩ of the Markov chain to the set of integers

{0, 1 . . . , n− 2}. For0 ≤ k ≤ (n− 2), define

Dk = {H|min{H ⊕H1, H ⊕H2} = k}

It follows thatD0 = {H1, H2} and for allH ∈ Dk,

π(H) = ρkπ(H1) = ρkπ(H2)

The cardinality of the setDk is 2
(
n−2
k

)
.
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Lemma 27:

|Dk| = 2

(
n− 2

k

)
Proof: Once thek positions where the haplotype switches from 0 to 1 or 1 to 0

are chosen, a unique haplotype is defined. Using this definition, the total number of

haplotypes pairs is2
∑

k

(
n−2
k

)
= 2n−1.

♣

Next, we show thatπ(H1) andπ(H2) dominate the probability space for small

enough values ofρ.

Lemma 28: Forρ < 1
2n

, π(H1) + π(H2) > 1
2
.

Proof:

1 =
∑
H

π(H)

=
n−2∑
k=0

2

(
n− 2

k

)
ρkπ(H1)

= 2π(H1) (1 + ρ)n−2

→ (π(H1) + π(H2)) = (1 + ρ)−(n−2)

(π(H1) + π(H2)) =
(
(1 + ρ)

1
ρ
+1
)−(n−2) ρ

1+ρ

Using the inequality
(
1 + 1

k

)k+1
> e (for all k > 1),

(π(H1) + π(H2)) ≥ (e)−
ρ

1+ρ
(n−2)

Forρ ≤ 1
2n

, we have

(π(H1) + π(H2)) ≥ 1√
e
> 1/2

♣
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7.3.1 M(Γ1) has poor mixing time

We use the conductance argument to show that the mixing time for the Markov

chainM(Xd,n, q,Γ1) grows exponentially withd, the depth of fragment coverage.

Theorem 29: Consider a fragment matrixX(n, d) with n columns andd ∗ (n− 2) + 2

rows with structure as described in Figure7.1. Let q be the uniform error probability

for all positions and defineρ =
(

2pq
p2+q2

)d
. For anyε > 0, the mixing time of the Markov

chainM(Γ1, X(n, d), q) is Ω
(
log
(

1
ε

)
nρ−1

)
.

Proof: ChooseS = {H1}. There are exactlyn edges betweenS and S̄. Of these

n− 4 have load exactlyρ2π(H1) and 4 edges (1, n/2, n/2 + 1, n) have weightρπ(H1).

Therefore,

Q(S, S̄) =
n− 4

n
ρ2π(H1) +

4

n
ρπ(H1) ≤

(
ρ2 +

4ρ

n

)
π(H1)

and

π(S) = π(H1)

Thereforeφ ≤ ρ2 + 4ρ
n
≤ 5 ρ

n
and the bound on the mixing time follows.

♣

7.4 A Markov chain with polynomial mixing time

For the fragment matrixXd,n shown in Figure7.1, if we include the subsetS1...n
2

(columns 1 to n/2) inΓ, the Markov chain in stateH1 will move toH2 whenever this

subset is sampled and vice versa. Intuition suggests that the mixing time of the Markov

chain should also decrease since the bottleneck in moving betweenH1 andH2 has been

removed. However, proving that the mixing time of the Markov chainM(Γ1 ∪ S1...n/2)

does not grow exponentially withd is not so easy. Using a combination of tools for

analyzing the mixing time of Markov chains, we will demonstrate that the mixing time

of the Markov chain resulting fromΓ = Γ1 ∪ S1...n/2 is polynomial inn (the number of

columns) andd. The following theorem represents the main result of this chapter.
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Theorem 30: Let X ∈ Xd,n be chosen arbitrarily, andq > 0 be the uniform error

probability for all positions. For anyε > 0, the mixing time for the Markov chain

M(Γ1 + S1...n/2, Xd,n, q) isO(n10ln(ε−1)).

We will use the Markov chain decomposition tool (MARTIN and RANDALL,

2006) (see Theorem26) to prove this result. Our decomposition of the state space is

very simple: everyDk, 0 ≤ k ≤ n − 2 is a subset corresponds to a subset in the

decomposition. In other words, there aren−1 subsets. Note that, the setDk has2
(
n−2
k

)
states/haplotypes all of which have the same probabilityπ(H). We denote the Markov

chain on the set of haplotypeDk byMk. Using the coupling technique, we will prove

that the mixing time of each of the chainsMk is bounded by a polynomial inn. We

will use the canonical paths method to bound the mixing time of the projection Markov

chainMH . Using these bounds and Theorem 11, we will prove a bound on the mixing

time of the full Markov chain.

7.4.1 Mixing time of the Markov chain restricted to Dk

Theorem 31: LetMk denote the Markov chainM(Γ1 + S1...n/2, Xd,n, q) restricted to

the setDk. Then, the mixing time ofMk is bounded as follows:

τ(ε) ≤ c(n+ 1)3k2dlog(ε−1)e

wherec is a small constant.

Proof: We will construct a coupling(Xt, Yt) for this Markov chain. Recall that the

setDk represents all haplotypes whose minimum switch distance fromH1 or H2 is k.

Therefore, any haplotype inDk can be represented as an integer vector of lengthk:

(x1, x2, . . . , xk) which represent the positions (frontiers) where the haplotype switches

from 0 to 1 or 1 to 0, except for the positionXn
2
+1. In order to include a possibility of a

switch in the middle (this does not affect the probability of the haplotype), we include an

extra bit for each haplotype. Therefore, every haplotype inDk is represented by a length
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k integer vector padded with a single bit((x1, x2, . . . , xk), b) where0 < x1 < x2 . . . <

xk < n. The “middle region” fromxi to xi+1, wherexi ≤ n/2 ≤ xi+1 is always

assumed to be a single block even when there is an extra-flip atxn
2
+1. In the best case,

there are2k+ 1 new haplotypes that can be formed from a haplotype inDk (each of the

k frontiers can be moved to the left and right, and additionally, each haplotype can be

flipped in the middle by settingb ∈ {0, 1}). The transition probability of each of these

moves is 1
2(n+1)

. With all the remaining probability, the Markov chainMk (restriction

ofM toDk) stays in the current haplotype. We denote the haplotype formed by moving

thei-th frontier to the left asX(i−) = ((x1, . . . , xi
−, . . . , xk), b) and the one formed by

moving it to the right asX(i+) = ((x1, . . . , xi
+, . . . , xk), b). Note that ifxi+1 = xi + 1,

we cannot the move the frontier to the right. Similarly, ifxi−1 = xi−1, we cannot move

the frontier left. Another observation that will be useful is the following. Consider

the block(xi, xi+1). If the length of this block is 2 or more, we can flip the bitxi to

transform the haplotype into((x1, xi + 1, xi+1, . . . , xk), b) ∈ Dk. Similarly, we can flip

the bitxi+1 − 1 to transform the haplotype into((x1, xi, xi+1 − 1, . . . , xk), b) ∈ Dk. In

either case, the frontier position shifts right or left by one. The first block is represented

as(x0 = 1, x1 − 1) and the last block as(xk, n).

LetX = ((x1, x2, . . . , xk), bx) andY = ((y1, y2, . . . , yk), by) be any two haplo-

types inDk. We define a distance metricδ between these two haplotype as

δ(X,Y ) =

( ∑
i=1...k

|xi − yi|

)
+ |bx − by|

This distance metricδ is what we will use for constructing the coupling. Note that if

δ(X, Y ) = 0, the two haplotypes are identical. The following lemma proves that the

above distance metric is a valid metric in the sense that there is a sequence of valid tran-

sitions of lengthδ(X, Y ) that transforms the haplotypeX into Y . Also, the maximum

value that this metric achieves onDk is bounded by(n+ 1)k.

Lemma 32: For any pair of haplotypes(Xt, Yt) whereXt, Yt ∈ Dk, there exists a

sequence of transitions inMk of lengthδ(Xt, Yt).
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Proof: We use induction onk, the number of frontiers to prove the result. The result

clearly holds fork = 0. There are only two haplotypes inD0 and the distance between

these two haplotypes is 1. Flipping the subsetS1...n/2 transforms one haplotype into the

other. Note that in general, ifbx 6= by, the first transition will be to flip the subsetS1...n/2

of one haplotype to makebx andby equal.

Let us assume that the result holds fork = r, i.e. for any two haplotypes of

length≤ n andr frontiers, there is a sequence of transitions with lengthδ(Xt, Yt) that

transforms one haplotype into another. LetX andY be two haplotypes inDr+1. Con-

sider the first frontier ofX andY starting from the left. Ifx1 = y1, then we can ignore

the part ofX andY before the first frontier and consider the two haplotypesX−1 =

(x2, . . . , xr+1) andY−1 = (y2, . . . , yr+1) each withr frontiers. Clearly,δ(X, Y ) = 0 +

δ(X−1, Y−1). Using the induction hypothesis,δ(X−1, Y−1) =
(∑

i=2...r+1 |xi − yi|
)

+

|bx − by|. Therefore, it follows thatδ(X, Y ) =
(∑

i=1...r+1 |xi − yi|
)

+ |bx − by| and

the result holds. Now consider the case wherex1 6= y1. Without loss of general-

ity, we will assume thatx1 > y1 ≥ 1. We can flipx1 − y1 bits in the sequence

x1 + 1, x1, x1 − 1, . . . , y1 + 1 in the haplotypeX until the first frontiers of both haplo-

types match. All these moves do not change the number of frontiers ofX and therefore

are valid moves. After this sequence of moves, we can again consider the two haplo-

typesX−1 = (x2, . . . , xr+1) andY−1 = (y2, . . . , yr+1) each withr frontiers. Using the

induction hypothesis,

δ(X, Y ) = |x1 − y1|+ δ(X−1, Y−1) =

( ∑
i=1...r+1

|xi − yi|

)
+ |bx − by|

which proves the required result.

♣

Lemma 33:

max
X,Y ∈Dk

δ(X, Y ) ≤ (n− 2)k + 1

Proof: The maximum value of|xi−yi| cannot exceedn−2 for a haplotype of length

n. Therefore, the sum(
∑

i=1...k |xi − yi|) cannot exceed(n− 2)k. The result follows.
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♣

Now, we will construct a coupling(Xt, Yt) → (Xt+1, Yt+1) for any pair of hap-

lotypes(Xt, Yt) whereXt, Yt ∈ Dk such that the expected distanceE(δ(Xt+1, Yt+1))

is no less thanδ(Xt, Yt) and in addition,var((δ(Xt+1, Yt+1)) is sufficiently large. This

allows us to use the bound on the mixing time for the caseβ = 1.

Theorem 34: For any pair of haplotypesXt, Yt ∈ Dk, there exists a coupling(Xt, Yt)→

(Xt+1, Yt+1) such thatE(δ(Xt+1, Yt+1)) ≥ δ(Xt, Yt) andPr[δ(Xt+1, Yt+1) 6= δ(Xt, Yt)] ≥
1

2(n+1)
.

Proof: Letk1 be the number of blocks ofXt of size 2 or more andk2 be the number of

blocks ofYt of length 2 or greater. We assume thatk1 > k2 without loss of generality. As

we saw before, there are2k1+1 valid moves for any haplotypeXt ∈ Dk where0 ≤ k1 ≤

k. Each such move has transition probability1
2(n+1)

. With probability1 − 2·k1+1
2n+2

, the

haplotypeXt does not change. One can think of this probability as2n−2 ·k1+1 moves,

each with probability 1
2n+2

that takeXt to Xt. This notion of splitting the probability

will be useful to describe the coupling. For every pair(Xt, Yt), we will add2k1 + 1

transitions to the coupling that changeXt. Some of these will be coupled with moves

that also changeYt, others will be coupled with moves that do not changeYt. Similarly,

the coupling will have2k2+1 moves for whichYt+1 6= Yt. All transitions in the coupling

will have probability 1
2n+2

.

We first define the coupling transition for the bitsbx andby as follows: Ifbx = by,

we add the two transitions(Xt, Yt)→ (Xt, Yt) and(Xt, Yt)→ (Xt(1− bx), Yt(1− by)).

If bx 6= by, we add the two transitions(Xt, Yt) → (Xt(1 − bx), Yt) and (Xt, Yt) →

(Xt, Yt(1−by)). Clearly,δ(Xt(1−bx), Yt)+δ(Xt, Yt(1−by)) = 2×δ(Xt, Yt), therefore

the expected distance is unchanged. Also,Pr[δ(Xt+1, Yt+1) 6= δ(Xt, Yt)] ≥ 1
2(n+1)

.

We first consider the first block(0, x1 − 1) in the haplotypeXt and the corre-

sponding block ofYt. If the block ofXt is of length 1 and the block ofYt has length

at least 2, we add the following transition to the coupling:(Xt, Yt) → (Xt, Yt(1
−)).
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If the block of Yt is of length 1 and the length ofXt is greater than 1, we add the

move(Xt, Yt) → (Xt(1
−1), Yt) to the coupling. In both cases, the following is true:

δ(Xt+1, Yt+1) < δ(Xt, Yt) andPr[δ(Xt+1, Yt+1) 6= δ(Xt, Yt)] = 1
2(n+1)

. If both blocks

are of length at least 2, we add the transition(Xt, Yt) → (Xt(1
−), Yt(1

−)) to the cou-

pling. We can similarly define transitions for the last block ofXt andYt. Transitions for

all other pairs of blocks are defined according to the following rules: Consider a block

(xi, xi+1 − 1) of Xt and let(yi, yi+1 − 1) be the corresponding block ofYt.

Case I:yi+1 = yi + 1.

Independent of the position of the block(yi, yi+1 − 1), flipping xi andxi+1 − 1

will always have the opposite effect onδ. We will add two transitions to the cou-

pling: i) (Xt, Yt) → (Xt(i
+), Yt) and ii) (Xt, Yt) → (Xt((i+ 1)−, Yt). The expec-

tation E(δ(Xt+1, Yt+1)) = δ(Xt, Yt) for the two transitions combined together and

Pr[δ(Xt+1, Yt+1) 6= δ(Xt, Yt)] = 2
2(n+1)

.

Case II: xi+1 = xi + 1.

Using symmetry, we can define the coupling transitions based on Case I above.

Case III: yi < xi andyi+1 < xi+1 andyi+1 > yi + 1.

As before, flipping the positionxi will increase the distance betweenXt andYt

and flippingxi+1 − 1 will decreaseδ. Flipping yi decreasesδ while flipping yi+1 − 1

increasesδ. We will add the following two transitions to the coupling: i)(Xt, Yt) →

(Xt(i
+), Yt((i+ 1)−) and ii) (Xt, Yt) → (Xt((i+ 1)−), Yt((i)

+). For the first transi-

tion, δ(Xt+1, Yt+1) = δ(Xt, Yt) + 2 and for the other,δ(Xt+1, Yt+1) = δ(Xt, Yt) − 2.

Therefore, the expectationE(δ(Xt+1, Yt+1)) = δ(Xt, Yt) for the two transitions com-

bined together andPr[δ(Xt+1, Yt+1) 6= δ(Xt, Yt)] = 2
2(n+1)

.

Case IV: yi > xi andyi+1 > xi+1 andyi+1 > yi + 1.

Using symmetry we can define coupling transitions for this case similarly to case

II.
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Case V:yi < xi andyi+1 > xi+1 andyi+1 > yi + 1.

We will add the following two transitions to the coupling:

i) (Xt, Yt) → (Xt(i
+), Yt(i

+)) and ii) (Xt, Yt) → (Xt((i+ 1)−), Yt((i+ 1)−).

For both transitions,δ(Xt+1, Yt+1) = δ(Xt, Yt).

Case VI: yi > xi andyi+1 < xi+1 andyi+1 > yi + 1.

Using symmetry we can define coupling transitions for this case similarly to case

V.

Case VII: yi = xi andyi+1 ≤ xi+1 andyi+1 > yi + 1:

We again add two transitions:(Xt, Yt) → (Xt(i
+), Yt(i

+)) and (Xt, Yt) →

(Xt((i+ 1)−), Yt((i+ 1)−)). For both transitions,δ(Xt+1, Yt+1) = δ(Xt, Yt).

Case VIII: yi = xi andyi+1 > xi+1 andyi+1 > yi + 1

Using symmetry we can define coupling transitions for this case similarly to case

VII

We have defined 2 coupling transitions for every block ofXt (andYt) of size

2 or greater. For blocks inXt of size 1 whose corresponding block inYt is also of

size 1, we can define two identical coupling transitions:(Xt, Yt) → (Xt, Yt). In total,

we will have2k coupling transitions for(Xt, Yt) each with probability 1
2(n+1)

. We add

2n − 2k coupling transitions of the form(Xt, Yt) → (Xt, Yt) each with probability

1
2(n+1)

. The coupling transitions for(Xt, Yt) sum to 1. It is also easy to verify that there

are2k1 + 1 transitions forXt alone such thatXt+1 6= Xt. Hence, marginally, bothXt

andYt represent exact replicas of the Markov chainMk.

Now, we will analyze the expectation and variance of the distance function in one

move of the coupling. In all cases, we have defined the coupling moves in pairs to ensure

that E(δ(Xt+1, Yt+1)) ≥ δ(Xt, Yt). In all the following cases,Pr[δ(Xt+1, Yt+1) 6=
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δ(Xt, Yt)] ≥ 1
2(n+1)

since there is at least one transition with probability1
2(n+1)

that

changes the distance between(Xt+1, Yt+1)

1. There exists a pair of blocks(xi, xi+1 − 1) of Xt and(yi, yi+1 − 1) of Yt such

that one of them has size 1 and the other one has size at least 2

2. bx 6= by

3. There exists a pair of blocks(xi, xi+1 − 1) of Xt and(yi, yi+1 − 1) of Yt such

that (yi < xi andyi+1 < xi+1) or (yi > xi andyi+1 > xi+1)

Therefore, the pairs(Xt, Yt) left to analyze are those which do not satisfy any of

the above three conditions.

Lemma 35: For all pairs of haplotypes(Xt, Yt) such thatXt, Yt ∈ Dk,Xt 6= Yt and the

pair do not satisfy any of the three conditions listed above, there exist two non-trivial

(length≥ 2) blocks(xi, xi+1 − 1) and(xj, xj+1 − 1) in Xt that satisfy the following

conditions:

• xi+1 < xj

• yi+1 > yi + 1 andyj+1 − yj > 1

• xi 6= yi or xi+1 6= yi+1

• yj 6= yj or xj+1 6= yj+1

• δ(Xt((i+ 1)−), Yt) + δ(Xt(j
−), Yt) = 2 · δ(Xt, Yt)

Proof: A trivial block is a block of size 1 and a non-trivial one with size at least

2. Clearly,k > 0 sincebx 6= by and there are only two haplotypes inD0. It is also

easy to see that there is at least one non-trivial block inXt otherwiseXt = Yt and

k = n − 2. Let (xl, xl+1 − 1) be the first non-trivial block inXt starting from the left.

The corresponding block(yl, yi+l − 1) of Yt is also non-trivial otherwise the pair would

satisfy the first condition listed above. Clearly,xl = yl as all blocks before this one are
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of size 1. Now, ifxl+1 = yl+1, we ignore this block and consider the first non-trivial

block(xi, xi+1−1) starting from the left such thatxi+1 6= yi+1. Such a block exists since

otherwise the pair violates one of the three conditions above orXt = Yt. Now, since no

trivial block in one haplotype can be matched to a non-trivial block in the other, there

exists another pair of non-trivial blocks:(xj, xj+1 − 1) and(yj, yj+1 − 1) such that the

pair is not perfectly aligned, i.e.yj 6= yj or xj+1 6= yj+1. Furthermore, ifxi+1 < yi+1,

thenxj < yj and vice versa. This implies that flippingxi+1 − 1 andxj has opposite

effect on the distanceδ. Hence,δ(Xt((i+ 1)−), Yt) + δ(Xt(j
−), Yt) = 2 · δ(Xt, Yt).

♣

We have established that for all pairs(Xt, Yt) for which the coupling does not

guarantee the condition:Pr[δ(Xt+1, Yt+1) 6= δ(Xt, Yt)] ≥ 1
2(n+1)

, there are non-trivial

blocks (xi, xi+1 − 1) and (xj, xj+1 − 1) in Xt whose corresponding blocks inYt are

also non-trivial and satisfy certain conditions listed above. For such pairs, accord-

ing to the rules of the coupling defined above, we added the transitions(Xt, Yt) →

(Xt((i+ 1)−), Yt((i+ 1)−) and(Xt, Yt)→ (Xt(j
+)), Yt(j

+)) to the coupling for these

two blocks. Each transition independently does not change the distanceδ. Let us as-

sume thatδ(Xt((i+ 1)−), Yt) = δ(Xt, Yt) + 1 andδ(Xt, Yt((i+ 1)−) = δ(Xt, Yt)− 1.

It follows that δ(Xt((j)
+), Yt) = δ(Xt, Yt) − 1 and δ(Xt, Yt((j)

+) = δ(Xt, Yt) +

1. We will remove the two transitions(Xt, Yt) → (Xt((i+ 1)−), Yt((i+ 1)−) and

(Xt, Yt) → (Xt(j
+)), Yt(j

+)) and replace them by the two transitions: i)(Xt, Yt) →

(Xt((i+ 1)−), Yt(j
+)) and, ii) (Xt, Yt) → (Xt(j

+)), Yt((i+ 1)−)). For these two new

transitions,(δ(Xt+1, Yt+1)) = δ(Xt, Yt) andPr[δ(Xt+1, Yt+1) 6= δ(Xt, Yt)] ≥ 1
2(n+1)

.

♣

In our modified coupling, for all pairs of haplotypes(Xt, Yt), (δ(Xt+1, Yt+1)) ≥

δ(Xt, Yt) andPr[δ(Xt+1, Yt+1) 6= δ(Xt, Yt)] ≥ 1
2(n+1)

. Hence, we can apply the bound

for the caseβ = 1 on the mixing time:

τ(ε) ≤ deD
2

α
edlog(ε−1)e ≤ c(n+ 1)3k2dlog(ε−1)e
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wherec is a small constant. In the worst case, the bound isO(n5log(ε−1)).

♣

7.4.2 Mixing time of the projection Markov chain

The Markov chain that moves between the subsetsΩ1,Ω2, . . . ,Ωm is called the

projection Markov chainMH and is defined on the set[m] = {1, 2, . . . ,m} where each

point i corresponds to the setΩi. The transition matrixPH(i, j) is defined as

PH(i, j) =
1

π(Ωi))

∑
x∈Ωi,y∈Ωj

π(x)P (x, y)

For our Markov chain,m = n − 1 andΩ1 = D0,Ω2 = D1, . . . ,Ωn−1 = Dn−2.

Consider two adjacent subsetsDk−1 andDk. Every haplotype inDk for whichx1 = 1

or xk = n− 1 has a neighbor in the setDk−1. The number of such haplotypes is

2

(
n− 3

k − 1

)
+ 2

(
n− 3

k − 1

)
− 2

(
n− 4

k − 2

)
≥ 2

(
n− 3

k − 1

)
Therefore

Q((Dk, Dk−1)) ≥ π(H1)ρk2 ·
(
n− 3

k − 1

)
1

2(n+ 1)
≥
(
n− 3

k − 1

)
π(H1)ρk

n+ 1

Similarly,

Q((Dk−1, Dk)) ≥ π(H1)ρk−12 ·
(
n− 3

k − 1

)
ρ

2(n+ 1)
≥
(
n− 3

k − 1

)
π(H1)ρk

n+ 1

We will use the canonical path argument to bound the mixing time of this Markov

chain. The canonical path fromDi to Dj wherej > i will use the neighboring edges

(Dk, Dk+1), i ≤ k < j and has lengthj − i. Similarly, the canonical path fromDj to

Di uses the edges(Dk, Dk−1), j ≤ k < i and also has lengthj − i. Note that there are

also edges betweenDk andDk−2 in the Markov chain, but we do not use these edges

and hence the congestion on these edges is zero. Consider an edgee = (Dk, Dk−1). We
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will upper bound the congestion on this edge using the above inequalities.

ρ̄(e) =
1

Q(e)

∑
γxy3t

π(x)π(y)|γxy|

≤ (n+ 1)

π(H1)ρk
(
n−3
k−1

) ∑
x=0...k−1,y=k...n−2

4π(H1)
2
ρxρy

(
n− 2

x

)(
n− 2

y

)
(y − x)

≤ 4(n+ 1) · π(H1)

[ ∑
x=0...k−1

ρx
(
n− 2

x

)][ ∑
y=k...n−2

ρy
(
n−2
y

)
ρk
(
n−3
k−1

)] · n
≤ 2(n+ 1) ·

[ ∑
x=0...k−1

2π(H1)ρx
(
n− 2

x

)][ ∑
y=k...n−2

ρy
(
n−2
y

)
ρk
(
n−3
k−1

)] · n
≤ 2(n+ 1) ·

[
π(D0) + π(D1) + . . .+ π(Dk−1)

] [ ∑
y=k...n−2

ρy
(
n−2
y

)
ρk
(
n−3
k−1

)] · n
≤ 2(n+ 1)

[ ∑
y=k...n−2

ρy
(
n−2
y

)
ρk
(
n−3
k−1

)] · n
≤ 2(n+ 1)

[
n− 2

k
+

(n− 2)(1− k−2
n

)

k(k + 1)
ρ · n+ . . .

]
· n

≤ 2(n+ 1)(n− 2)

[
1

k
+

1

k(k + 1)
+

1

k(k + 1)(k + 2)
+ . . .

]
· n

≤ 4n3

The congestion on the edgee′ = (Dk−1, Dk) can be also be bounded identically

sinceQ(e) is same for both edges. Therefore, it follows that

τH(ε) ≤ 4n3
(
ln(ε−1) + ln(πmin

−1)
)
≤ 4n3

(
ln(ε−1) + ln

(
1

ρn−2

))

⇒ τH(ε) ≤ 4n3
(
ln(ε−1) + nln(ρ−1)

)
We are now ready to prove Theorem30.

Proof:

We have the following inequality:

4n3
(
ln(ε−1) + nln(ρ−1)

)
≥ τH(ε) ≥ 1

2Gap(PH)
log

(
1

2ε

)
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The above inequality is true for all0 < ε < 1. Choosingε = 1
2ρ

, we get

Gap(PH) ≥ c1
n4

for some constantc1. We have also shown that for each of the Markov chainsMk,

τH(ε) ≤ c(n+ 1)3k2ln(ε−1)

It follows that

Gap(Mk) ≥
c2
n5

for some constantc2 and allk. Using Theorem 11, we have

Gap(P ) ≥ 1

2
Gap(PH) min

i=1...m
Gap(PΩi

) ≥ 1

2

c1
n4

c2
n5
≥ c3
n9

for some constantc3. Finally, the mixing time of the complete Markov chainM can be

bounded as follows

τM(ε) ≤ 1

Gap(P )
ln

(
1

minx π(x)
· ε
)
≤ n9

c3
(
nln (ρ−1) + ln (ε−1)

)
♣
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