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Abstract

In microscopy-based drug screens, fluorescent markers carry critical information on how 

compounds affect different biological processes. However, practical considerations, such as the 

labor and preparation formats needed to produce different image channels, hinders the use of 

certain fluorescent markers. Consequently, completed screens may lack biologically informative 

but experimentally impractical markers. Here, we present a deep learning method for overcoming 

these limitations. We accurately generated predicted fluorescent signals from other related markers 

and validated this new machine learning (ML) method on two biologically distinct datasets. We 

used the ML method to improve the selection of biologically active compounds for Alzheimer’s 

disease (AD) from a completed high-content high-throughput screen (HCS) that had only 

contained the original markers. The ML method identified novel compounds that effectively 

blocked tau aggregation, which had been missed by traditional screening approaches unguided by 

ML. The method improved triaging efficiency of compound rankings over conventional rankings 

by raw image channels. We reproduced this ML pipeline on a biologically independent cancer-

based dataset, demonstrating its generalizability. The approach is disease-agnostic and applicable 

across diverse fluorescence microscopy datasets.

Introduction

HCS efforts generate a wealth of complex phenotypic information pivotal to the drug 

discovery process. Extracting biological insight from these observations, however, often 

requires performing multiple experiments, which can demand extensive time and resources1. 

We posit that ML can extract actionable information otherwise encoded within HCS, and 

learn the phenotypic relationships between related biological processes. As a corollary, we 

can potentially glean information on related but different biological processes—increasing 

the power of computationally mining large archival HCS datasets to gain new information.

The traditional way to gather information within HCS is simply to add biological markers 

to track different processes. However, we cannot introduce new markers for archival 

datasets because the experiments are finished. Furthermore, capturing additional markers 

may be impractical due to expensive or cumbersome visualization procedures, like the 

optimization of multi-channel fluorescent immunohistochemistry or interference across 

detection wavelengths2,3. We overcame these marker limitations computationally by directly 

learning the phenotypic relationships between a highly informative but cumbersome marker 

and other similar yet more easily accessible markers. These hidden relationships were then 

projected into de novo images displaying the desired fluorescent signal of the cumbersome 

marker. In this study, we focused on an archival HCS dataset that tracked the phenotypic 

effects of small molecules for the treatment of AD.

Despite extensive drug discovery efforts, no effective treatments exist that prevent or even 

slow the progression of AD4. Of the many therapeutic targets under investigation5, the 

pathogenic6–13 misfolding and accumulation of tau protein into neurofibrillary tangles 

(NFTs) has emerged as a target mechanism10. Younger decedents tend to have more 

aggressively propagating tau prions than older decedents12. Furthermore, studies have linked 

this tau prion propagation14,15 and aggregation16 to increased tau hyperphosphorylation. 
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Although hyperphosphorylation is not required to form ordered assemblies of tau17,18, 

NFTs in the brains of deceased AD patients are highly enriched for hyperphosphorylated 

tau (pTau)16,19. Hyperphosphorylation inhibits the binding of tau to microtubules20,21, thus 

preventing normal microtubule assembly21,22 and axonal transport23. It may also increase 

the propensity of tau to be recruited into NFTs6,23,24. These factors promote disease 

phenotypes including synaptic dysfunction, enhanced neuroinflammation, and neuronal cell 

loss21,23,24.

Accordingly, discovering compounds that inhibit this tau prion propagation may improve 

our understanding of the disease and provide avenues for novel therapeutics. Our study 

focused on inhibiting the propagation and aggregation of tau in cells exposed to tau 

prions. To screen for compounds, we developed a HCS procedure that utilizes a biosensor 

cell-line overexpressing a 0N4R isoform of tau fused to the yellow fluorescent protein (YFP-

tau)25. Due to the correlation of tau oligomerization with increased hyperphosphorylation, 

we posited that tracking the level of pTau in response to drug treatment would provide 

an additional point of validation to identify molecules that inhibit prion propagation. 

Furthermore, we hoped that synthesizing pTau signal would eliminate spurious signal such 

as contamination of the YFP channel by autofluorescent cell debris. The AT8 antibody 

allows us to quantify these correlated hyperphosphorylation events and is traditionally used 

to label disease-associated paired helical filaments in human tissue samples26. This antibody 

is specific to the Ser202/Thr205 epitope27,28, which is one of the most hyperphosphorylated 

residues in AD-afflicted brains16,29. Furthermore, hyperphosphorylation of this region 

has been linked to increased prion propagation14,15 and aggregation16. Although AT8 

immunoreactivity is a useful surrogate to identify a disease-relevant phenotype and 

recognize clinically relevant pTau27, it was not used in our HCS because immunostaining 

would preclude some advantages of live-cell imaging30,31. Therefore, we turned to a 

different solution based on ML. We computationally synthesized a representation of the AT8 

channel from existing data, rather than repeating the vast HCS with this useful antibody, 

which would have been laborious and cost prohibitive. This approach of synthesizing 

biomarker phenotypes is in contrast to other HCS studies for Alzheimer’s32–34, and ML-

based methods35 such as predicting genetic risk factors36, small molecule structures37, and 

docking38,39.

Two seminal papers40,41 describe a ML method for predicting fluorescence images from 

bright-field images. Augmented microscopy approaches like these extract latent information 

from images post hoc42 and in a goal-driven way43,44,45. We reasoned that if two fluorescent 

channels were sufficiently related, we could train models to extract hidden information and 

generate “trans-channel” images depicting AT8-pTau from related YFP-tau images. Our 

logic hinged on the expectation that a ML method could both identify subtle aggregate 

morphology and exploit the phenotypic correlations between tau hyperphosphorylation and 

aggregation.

As schematized in Supplementary Figure 1, we collected a three-channel dataset—4′,6-

diamidino-2-phenylindole (DAPI) nuclear marker, YFP-tau, and AT8-pTau—one year after 

the original HCS experiment that had only used YFP-tau and DAPI. After training our 

generative model on this new three-channel dataset, we applied this model to the archival 
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HCS dataset to synthesize predicted AT8-pTau channels. We then evaluated whether the 

computed AT8-pTau images would better guide discovery efforts and improve the screen. 

To our knowledge, this is the first prospective demonstration of reliably constructing new 

fluorescent images in silico from pre-existing fluorescent markers—providing a new way 

to improve the drug discovery process and leverage complex biological features otherwise 

latent within historical HCS archives. Moreover, we assessed the generalizability of this 

trans-channel method by applying it to an entirely unrelated biological context of a genome-

wide functional screen in U2OS osteosarcoma cells.

Results

We Constructed a Dataset of Tau Propagation for ML Training

We sought to improve in vitro screening by constructing a new image channel from 

abundant, common, and relatively inexpensive channels—even after a screen’s completion. 

The archival HCS data contained extensive information on many compounds, but it only 

contained live-cell YFP-tau and DAPI images and could not have contained an AT8-pTau 

channel, as this required a fixed cell format. Therefore, our first task was to generate a 

completely independent dataset to train a ML model to predict the AT8-pTau channel solely 

from the YFP-tau and nuclear DAPI channels.

We constructed the new training dataset using a fixed cell system and collected all three 

channels (YFP-tau, DAPI, and AT8-pTau) representing a range of conditions. Ideally, 

ML models leverage large and diverse datasets during their training. Hence, we collected 

varied image data so that the model could learn to capture information about different 

conditions and perturbation scenarios that may be found in the HCS dataset, which itself 

has many different compounds present. In the training dataset, we curated a range of six 

small molecule perturbations, each resulting in different tau aggregation and cell viability 

phenotypes (Methods).

We collected the new training dataset to model infectious tau propagation similar to 

the archival HCS dataset (Methods). We imaged three channels—DAPI, YFP-tau, and 

AT8-pTau (Figure 1)—to obtain 57,600 non-overlapping images that were 3×2048×2048 

pixels in size. The archival HCS dataset was similar, differing predominantly in its use of 

live-cell imaging without AT8, and also containing thousands of compounds. Otherwise, the 

protocols were identical (Methods).

We Trained a ML Model to Predict Hidden Tau Phosphorylation

To learn a mapping from the input DAPI and YFP-tau channels to the output AT8-pTau 

channel, we designed a convolutional neural network (CNN) model motivated by the 

U-Net architecture43, but for a task other than segmentation. Our design employed “skip 

connections”43 that preserved lower complexity features from earlier layers and combined 

them with higher complexity features from deeper layers (Figure 2A). The model is 12% 

the size of U-Net, preserves image dimensions, and generates a non-binary image channel 

(Supplementary Figure 2). We made our PyTorch code and fully trained models openly 

available (Methods). We randomly stratified the three-channel images into a 70% train and 
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30% held-out test split. On visual inspection, the ML model removed aberrant signal and 

accurately mapped the phenotypes of the related channels to construct realistic AT8-pTau 

images with a high resemblance to the actual objectives (Figure 2B).

The ML model learned to identify and enhance regions of interest in the YFP-tau 

channel, effectively generating AT8-pTau images by gleaning visual information about the 

relationships between a hidden phosphorylation readout and the YFP and DAPI channels. It 

removed YFP-tau signal that was not present in the AT8-pTau image and selectively retained 

pertinent signal (Figure 2B). On visual inspection, there did not appear to be an intuitive set 

of visual criteria or easily predefined attributes like pixel intensity by which a human could 

accomplish the same task (e.g., see Supplementary Figure 3). The model’s decision-making 

appeared to be non-trivial.

We evaluated the model quantitatively on the held-out test set of YFP-tau and DAPI 

inputs and AT8-pTau objectives. To assess image similarity between the observed and 

predicted AT8-pTau images, we calculated the Pearson correlation coefficient (PCC) and 

also the mean squared error (MSE) metric, which is more commonly used in regression 

tasks. A PCC=1.0 indicates exactly identical images (with a possible constant scaling 

factor), whereas 0.0 indicates complete pixel-wise disagreement. We obtained an average 

PCC=0.74±0.19 over the test set of n=17,280 images (Figure 3A). This corresponded to a 

MSE=0.52±0.39 after normalizing to zero-mean and unit-variance (Figure 3B). To quantify 

its pixel-wise performance, we measured the trade-off between true positive pTau pixels and 

false positives via the area under the receiver operating characteristic (AUROC), as well 

as the tradeoff between pixel precision and recall via the area under the precision recall 

curve (AUPRC). The model achieved an AUROC=0.98 and an AUPRC=0.65 (Figure 3C). 

Cross-validation results are shown in Supplementary Figure 4. Importantly, we found that 

learning from either single channel alone was insufficient to glean the AT8-pTau signal 

(Supplementary Figure 5).

The YFP-tau and AT8-pTau channels contained substantial overlapping information. If 

they did not, the prediction task would be difficult or impossible. In theory, signal from 

the YFP-tau is a superset of the AT8-pTau signal and includes all of the introduced tau 

and aggregated protein (Supplementary Figure 6). Thus, given the similarity between the 

YFP-tau channel and AT8-pTau channel, we might theoretically achieve good “prediction” 

by simply extracting the input YFP-tau as-is and stipulating this as the model’s predicted 

output. This trivial Null YFP Model required no ML, and yielded a PCC=0.53±0.23 

(corresponding to an MSE=0.94±0.47) over the entire dataset (Figure 3A-B). The ML model 

exceeded this baseline with an increase in average PCC=0.21 (p<<0.00001; corresponding 

to a decrease in average MSE=0.42), which is consistent with the model learning to generate 

an output that more closely approximated phosphorylation state than was already provided 

by the YFP-tau input alone. We also created a Null DAPI Model that simply returned the 

input DAPI image as the output (PCC=0.18±0.13, corresponding to a MSE=1.64±0.26). 

The ML model’s test performance was consistent across all six drug perturbations 

(Supplementary Figure 7).
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As with most multichannel imaging studies, we were wary of image bleed-through that 

the model might exploit as a hidden crutch. Excitation and emission plots of the different 

fluorophores are shown in Supplementary Figure 8A. To test the hypothesis that the ML 

model leveraged undetectable but pernicious hidden AT8 signal within the input channels, 

we performed pixel-intensity ablations on the input images at increasing intensity percentiles 

to eliminate potential low-intensity bleed-through signal (Supplementary Figure 9). We did 

not detect bleed-through as a confounder. Accordingly, we note that any confounding signal 

augmenting a model’s performance would be of no help when applied subsequently to the 

archival HCS dataset, since this HCS did not undergo immunohistochemistry preparation 

and had neither AT8 antibody nor fluorophore.

ML Improved Hit Rate and Compound Triaging in Tauopathy HCS

Turning to its prospective use in drug discovery, we applied the trans-channel ML model 

to the archival HCS dataset and found practical improvements. For most HCS pipelines, 

immunostaining is not normally employed due to batch variability and increased labor and 

cost, and must be balanced against the advantages of live-cell formats such as time-course 

data collection. If ML could inexpensively infer these immunohistochemistry channels, then 

it could enhance HCS efforts by providing previously unavailable channels and inferences

—thereby improving drug discovery pipelines. Similarly, one might imagine a wealth of 

data could be mined in a hypothesis-guided way from substantial existing datasets of 

completed screens in the public and private sectors, thus advancing biological knowledge 

and improving medical therapies.

Compounds are conventionally ranked by priority, favoring those that lower tau aggregation 

for secondary dose-response testing46. Medicinal chemists also consider chemical structure. 

Instead, we purposely took a naive approach by having the ML model make decisions 

based solely on cellular phenotype—unguided by human intuition. To assess the ML method 

for practical use, we directly compared it to the conventional method of drug discovery 

unguided by ML. To our knowledge, this study is the first practical application of trans-

channel ML image generation actively used in a conventional in-house screen. Using the 

archival HCS dataset, we prospectively generated an AT8-pTau channel for each compound 

using the predictive model. Due to the large dataset size, we randomly selected one run 

of the HCS (consisting of 1,600 unique compounds) for the analysis. We constructed a 

ML-derived priority queue (PQML), ranking compounds based on aggregation scores using 

the predicted, machine-learned AT8-pTau images. We then calculated aggregation scores 

using the same General Electric (GE) cellular image software (Methods) as in the original 

archival HCS evaluation pipeline a year before. The conventional method’s priority queue 

(PQC) ranked each compound solely by the aggregation scores of pre-existing YFP-tau 

images. Hence each compound received rankings in both queues and these rankings could 

disagree substantially.

We prospectively collected complete dose-response profiles for the top 40 compounds 

from each queue. We chose 40 compounds (per Methods) for each queue due to cost 

and labor limitations. Despite operating solely on a computationally generated channel, the 

PQML’s hit rate was comparable with the conventional method and effectively proposed 
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overlooked compounds that passed dose-response testing. Of the 40 compounds tested from 

PQML, 11 passed secondary testing (27.5%). Of the 40 compounds tested from PQC, 12 

were active (30%). Importantly, compounds that were highly prioritized by both the ML 

and conventional methods obtained a much higher hit rate than either method alone. Ten 

compounds ranked within the top 40 of both queues and 6 out of these 10 were confirmed by 

dose response. Taken together, progressing compounds by this combined criterion yielded a 

success rate of 60%—an improvement of 30% over the conventional method and 32.5% over 

the ML method (Supplementary Table 1). However, our sample size was smaller for these 

overlap compounds, which must be considered when assessing generalizability.

Interestingly, 5 of the 11 active compounds in PQML’s top 40 were effectively missed in 

the PQC, which ranked them 539th, 545th, 560th, 582nd, and 1,596th out of 1,600 possible 

compound ranks. The activity of one such rescued compound is shown in Figure 4A. The 

ML model eliminated YFP-tau aggregates (false-positive imaging signal) that yielded a 

poor ranking for the compounds in the PQC (Figure 4B). Supplementary Table 2 shows all 

compound dose-response profiles for reducing tau aggregation and cell count.

Additionally, the ML method achieved higher enrichment47 for active compounds. We 

discovered a total of 17 unique dose-response confirmed compounds from both lists. For 

these compounds, PQML had an area under the enrichment curve of 0.93 versus PQC’s 

area under the enrichment curve of 0.85 (Figure 5A). These active compounds achieved an 

average rank of 119 in PQML, which was better than nearly half their average rank of 235 in 

PQC (Figure 5B). Therefore, fewer compounds from PQML would need to be tested to find 

the same number of active compounds from PQC.

Of the 17 total active compounds from both lists, 5 fell outside of PQC’s top 40, and 6 fell 

outside of PQML’s top 40. However, to recover the active compounds missed in each case, 

we would need to test more than twice as many candidate compounds on average (n=764) 

by the PQC rankings as would be necessary by the PQML rankings (n=302). Hence, the ML 

method ranked missed-but-active compounds more than twice as well as the conventional 

method—including them in a smaller, more tractable search space (Supplementary Figure 

10A-B).

To compare the utility of trans-channel prediction with other imaging-based profiling 

analysis approaches45, we investigated various alternative methods, such as adding noise 

to the HCS images to prioritize compounds solely by their visual robustness; the use 

of CellProfiler48; and finally, operating instead on feature extraction via convolutional 

autoencoders (Methods; Supplementary Figure 11). The ML method achieved the highest 

AUC (Figure 5). Furthermore, when we calculated a compound’s dose-response activity 

from the ML-derived AT8-pTau images instead of scoring all queues solely by the 

conventional YFP-tau images, the ML method indeed well exceeded other methods’ scores 

(Supplementary Figure 10C-F).

We Tested ML Method on HCS with Different Conditions

To assess whether the success of our trans-channel ML approach was specific merely to 

the tauopathy HCS, we investigated whether the method of learning fluorescent signal from 
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related markers applied to a HCS unrelated in its biology and perturbagen. We performed 

the same trans-channel fluorescence learning task. However, compared to the tauopathy 

screen, this HCS used an entirely different cell line, microscope, perturbation method, and 

fluorescent markers. ML models can exploit dataset-specific patterns in subtle ways; thus, 

our goal was to assess the approach where many of the data parameters differed from the 

tauopathy screen.

We performed a functional genomics HCS in a cancer cell model. In this fluorescence-based 

arrayed whole-genome screen (details in Methods), we plated a U2OS cell line with a 

perturbation scheme that systematically knocked down all coding genes with siRNA. We 

marked cellular DNA with Hoechst fluorescent dye and tracked the cyclin-B1 protein with 

a green fluorescent protein (GFP) fusion. These two markers are biologically related, with 

cyclin-B1 specific to the G2/M phase of mitosis and also involved in DNA damage repair49. 

In theory, the two markers contain shared information, so we investigated whether the ML 

model could learn this signal relationship. We collected a total of 324,989 images.

Unlike the tauopathy dataset, we observed subtle bleed-through signal and artifacts in the 

raw Hoechst channel (Figure 6A; Supplementary Figure 8B). Hence, as a preprocessing step 

to mitigate bleed-through, we ablated all pixels below the 95th percentile in our Hoechst 

images, which inevitably removed some Hoechst signal as well (Figure 6A). We performed 

threefold cross-validation to predict cyclin-B1 signal solely from the ablated Hoechst 

channel. These models achieved an average pixel-wise PCC=0.75±0.13 (corresponding to 

an MSE=0.50±0.26) on n=108,330 test images (Figure 6B). This was 87.5% (p<<0.00001) 

higher than the Null Model that used the ablated input as its prediction (PCC=0.40±0.14; 

MSE=1.21±0.28). Despite heavy ablations to the models’ input, the models were able to 

learn the non-trivial cyclin-B1 phenotype. Upon visual inspection, predicting where high-

intensity cyclin-B1 signal resided solely from the Hoechst signal did not appear obvious. As 

an unexpected benefit, the ablation procedure resulted in image predictions that were mostly 

free of signal artifacts in the cyclin-B1 channel (Figure 6A).

When we omitted the ablation procedure and trained a threefold cross-validation on raw 

images, the ML model accurately predicted cyclin-B1 signal and produced detailed and 

realistic images that matched the observed images to which it had been blinded (Figure 

6A). This resulted in an average PCC=0.85±0.08 (corresponding to an MSE=0.30±0.15) 

on n=108,330 test images (Figure 6C). This was 93.2% higher (p<<0.00001) than the 

Null Model that stipulated the raw Hoechst image as its prediction (PCC=0.44±0.12; 

MSE=1.11±0.23). Training on raw, unablated images resulted in a 13.3% (p<<0.00001) 

increase in average PCC performance versus the ablated training procedure; we also 

quantified the performance change from progressively ablated inputs (Supplementary Figure 

12).

Discussion

We developed and assessed a method to computationally augment fluorescence microscopy 

and HCS. This method could be especially useful for tapping into otherwise hidden 

information in large and information-rich archival datasets. Three observations merit 
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emphasis: (1) trans-fluorescence models generated biologically informative images that were 

drop-in replacements for existing HCS workflows; (2) the model operated on an archival 

HCS dataset independent from the newly created training dataset and facilitated discovery 

of new compounds; (3) the method generalized to a different biological environment (a 

functional genomics screen in U2OS cells).

We readily integrated the trans-channel predictions into a conventional compound evaluation 

workflow because all of the in silico channel images were generated as drop-in replacements 

for the equivalent in vitro experiment. Generating a predicted AT8-pTau image from 

existing YFP-tau and DAPI images required only fractions of a second. With the proper 

hardware or cloud resources, this parallelizable method scales to large, high-volume HCS 

datasets. Its ability to accurately predict trans-channel fluorescence can potentially serve as a 

biologically informed and economically practical means of hypothesis generation, especially 

if the desired marker in question has barriers to widespread utilization. This method is 

also pragmatic where information-rich bright-field images are not available40, which was 

the case for our screen. Furthermore, accurate in silico labeling decreases variability from 

possible experimental labeling artifacts.

As measured by dose-response confirmed compounds, the ML method performed similarly 

to the conventional method in the drug discovery task. We were intrigued, however, that 

the ML method found a comparable number of active compounds, many of which were 

missed in the original screening campaign. A strong comparison could not be made between 

the approaches and their propensity to find active compounds at the small scale of 17 

unique active compounds, when the methods’ hit rates differed by one hit. Rather, the 

demonstrated utility of the ML method was to triage compounds more efficiently and to 

rescue efficacious compounds that were missed due to poor rank in the primary screen. 

Encapsulating information on AT8-marked phosphorylation and projecting it onto the HCS 

dataset facilitated compound ranking and subsequent validation. Chemical information is 

available in Supplementary Table 3.

We acquired the three-channel fixed-cell HCS training dataset using a slightly different 

protocol than the archival live-cell HCS dataset. Separated by differences in protocol, cell 

format, experimenters, and a year, the ML model relied solely on extracting hidden signal 

of phenotypic phosphorylation from YFP-tau images—with no AT8 labeling in the HCS, 

and thus no possibility of fluorescent bleed-through. This implies that the model has value 

outside of the strict data regime on which it was trained. This is not always the case in 

ML applications, which often do not generalize50. The archival HCS test dataset consisted 

completely of compounds that were not part of the training dataset, yet the model was able 

to operate on new images and a new and larger compound space greater than a thousand 

compounds to facilitate discovery.

By evaluating the method also on the biologically unrelated U2OS dataset, we showed 

that trans-channel fluorescent learning worked across disparate data domains. Intended only 

as a first test in a different disease and biological domain, we did not seek to address 

nuanced biological questions related to accurately constructing cyclin-B1 signal solely from 

Hoechst signal. Hence, we did not evaluate whether this method could improve screening 
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here. We hope that researchers can tailor the method to their own use cases in order to 

augment phenotypic screening endeavors in ways we have not envisioned. Furthermore, the 

architecture is fully convolutional, invariant to image size, and adaptable to any input shape. 

Hence, we expect this method to aid development efforts across a wide range of image 

applications.

Several caveats limit and focus the scope of this study. The tauopathy cell line was not 

neuronal, and HEK cells were chosen for practicality—HEK cell lines are frequently used 

in drug screens since they are easy to grow and transfect. Additionally, the method, as 

with most ML applications, was data intensive and required many image examples for 

learning. This could be a pragmatic hurdle, but we hope to leverage transfer learning51 

as openly shared cellular image data become increasingly common52. Accordingly, we 

have made all of the tauopathy training dataset and one full plate of the U2OS functional 

genomics HCS dataset publicly available (Methods). For new biological conditions, this 

method requires new experimental work to produce training data, and models cannot be 

applied out-of-the-box on unseen marker sets. Furthermore, the AT8-pTau images collected 

experimentally could be missing information on tau that is phosphorylated at other epitopes 

of interest. Thus, what we currently interpret as YFP off-target signal—i.e., the “false 

positive” pixels that show fluorescence in the YFP-tau but not in the AT8-pTau channels

—could represent disease-relevant phosphorylation at sites other than the Ser202/Thr205 

epitope. Since the model is trained to only recapitulate phenotype from morphological 

features between channels, the “false positive” YFP-tau aggregates would seem not to have 

been phosphorylated at the Ser202/Thr205 epitope. As positive aggregate signal contributes 

to worse ranking, removing false positives lowers a compound’s aggregation score and 

thus increases its prioritization. A future exercise would be to assess antibodies for other 

commonly hyperphosphorylated epitopes. Consequently, we did not seek with this study 

to implicate tau hyperphosphorylation as a disease-inducing mechanism, but rather used 

the AT8 marker as an approximate surrogate for a relevant disease phenotype. Lastly, the 

model had high AUROC and AUPRC, but lower Pearson performance (Figure 3). Since the 

classification metrics operate on thresholded pixels, this may indicate that the model can 

precisely predict the presence of signal, but not always its exact continuous intensity value.

Trans-channel learning is a tool for hypothesis-guided biological discovery. When a new 

biologically informative channel can be reliably predicted on an archival dataset, it decodes 

actionable high-content signal that can guide compound prioritization and rescue missed 

opportunities hidden in completed HCSs for drug discovery. Conversely, we may likewise 

attempt to learn one marker from another in order to falsify hypotheses about the relatedness 

of biological processes (Supplementary Figure 5). We hope that the techniques we make 

available here, which may be attempted on any archived high-content screen, will be of 

broad use to the microscopy, screening, and drug discovery communities.

Methods

Tg2541 Mouse Line

For all of the key resources and materials used for this study see Supplementary Table 

4. The Tg2541 transgenic mouse line expressed the 0N4R isoform of human tau, under 
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control of the murine neuron-specific Thy1.2 genetic promoter53. Tg2541 mice were 

originally generated on a mixed C57BL/6J×CBA/Ca background53 and were then bred onto 

a C57BL/6J background using marker-assisted backcrossing for eight generations before 

intercrossing to generate Tg2541 homozygous congenic mice. Homozygous Tg2541 mice 

on a congenic C57BL/6J background were kindly provided by Dr. Michel Goedert (Medical 

Research Council, Cambridge, UK). The mice were maintained at room temperature in 

a facility accredited by the Association for Assessment and Accreditation of Laboratory 

Animal Care International in accordance with the Guide for the Care and Use of Laboratory 

Animals. All procedures for animal use were approved by the University of California, San 

Francisco’s Institutional Animal Care and Use Committee.

Phosphotungstic Acid Precipitation of Tau in Tg2541 Mice

Pooled brain homogenate from 6- to 7-month-old Tg2541 mice (both sexes) was prepared 

as previously described25. Briefly, a 10% (weight/volume) homogenate in DPBS was 

prepared using a rotor-stator type tissue homogenizer (Omni International). Phosphotungstic 

acid (PTA) precipitation of the brain homogenate was then performed as previously 

described12,54. Briefly, 10% brain homogenate was incubated with 2% sarkosyl (Sigma 

Aldrich) and 0.5% benzonase (Sigma Aldrich) at 37°C with constant agitation at 1,200 

rotations per minute for 2 hours on an orbital shaker. Sodium PTA was dissolved in water 

and the pH was adjusted to 7.0. A final concentration of 2% sodium PTA was added to the 

brain homogenate and incubated overnight under the same agitation conditions. The brain 

homogenate was then centrifuged at 16,100×g for 30 minutes at room temperature, and the 

supernatant was removed. The pellet was resuspended in 2% sarkosyl and 2% sodium PTA 

in DPBS and incubated for 1 hour at room temperature. The sample was centrifuged again 

under the same conditions, the supernatant was removed, and the pellet was resuspended in 

DPBS, using 10% of the initial starting volume, and stored at −80°C until further use.

Training Dataset for the Cellular Tau(P301S)-YFP Assay

Tau(P301S)-YFP cells were developed by transfecting human embryonic kidney 

cells (HEK293T female; ATCC) by transient transfection using Lipofectamine 2000 

(ThermoFisher) to overexpress the full-length 0N4R isoform of human tau containing 

the familial disease-linked P301S missense mutation and the yellow fluorescent protein 

(YFP) fused to the C-terminus for visualization. A stable monoclonal line was maintained 

in Dulbecco’s modified enriched medium (DMEM) supplemented with 10% fetal bovine 

serum (FBS) and 1% penicillin/streptomycin. Tau(P301S)-YFP cells in confluent flasks 

were collected using trypsin and resuspended in electroporation buffer at a concentration of 

8.4×107 cells/mL. HEK293T cells that overexpress the microtubule-binding repeat domain 

(RD) of 4R human tau with the P301L and V337M mutations13 (TauRD(P301L/V337M)-

YFP cells) were maintained in DMEM supplemented with 10% FBS and 1% penicillin/

streptomycin. Tau seeds were prepared by passaging PTA-precipitated tau protein from 

Tg2541 mouse brain samples once through TauRD(P301L/V337M)-YFP cells and then 

collecting the cell lysate, as described previously25. All cells were cultured at 37°C and 5% 

CO2 in a humidified incubator.

Wong et al. Page 11

Nat Mach Intell. Author manuscript; available in PMC 2022 November 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Cell lysate containing tau seeds was combined with the Tau(P301S)-YFP cells at 1.8 

µg/mL and electroporation was performed on an Amaxa Nucleofactor instrument (Lonza 

Bioscience) using the program #Q-001. Seeded Tau(P301S)-YFP cells were then plated 

at 5×103 cells/well in a 384-well plate (Greiner) coated with poly-L-ornithine (PLO, 30–

70kDa; Sigma Aldrich). To coat plates, PLO was dissolved at 1 mg/mL in 0.15 M sodium 

borate buffer pH 8.4 and filter-sterilized, and then further diluted to 0.1 mg/ml in sterile 

deionized (DI) water. The PLO coating solution was added to the culture plate wells and 

incubated in culture plate wells for six hours at room temperature, then removed. The wells 

were washed three times with sterile DI water and air-dried in a biosafety cabinet.

Immediately following cell plating, small-molecule drug compounds prepared in pure 

DMSO were added at a fixed concentration of 10 μM. The small molecules were selected 

to represent the range of effects on tau aggregation and cell viability by compounds in 

drug libraries of interest, such as the ChemBridge CNS-Focused Research Library. We used 

six different compounds to capture three different phenotypic spaces: reducing intracellular 

tau aggregation without affecting cell viability; reducing tau aggregation and reducing cell 

viability; and increasing tau aggregation and reducing cell viability.

Actual compound identifiers are proprietary and are obfuscated to identifiers in the form 

“DRW#”. Two compounds were selected for reducing tau aggregation and also reducing 

cell viability (DRWT1 and DRWT2); and two compounds were selected for increasing 

tau aggregation and reducing cell viability (DRWT3 and DRWT4); two compounds were 

selected for reducing intracellular tau aggregation without affecting cell viability (DRWT5 

and DRWT6). Control wells were also prepared with cells electroporated with or without tau 

seeds and the same volume of DMSO but no drug compound.

At four days post-seeding, cells were washed three times with sterile Dulbecco’s Phosphate 

(DPBS) and then fixed with 4% paraformaldehyde (PFA) in DPBS for 20 minutes at room 

temperature. Cells were washed with DPBS and then permeabilized with 0.1% Triton X-100 

in DPBS for 20 minutes at room temperature. Cells were washed and then blocked with 

3% bovine serum albumin (BSA; Millipore) in DPBS for one hour at room temperature. 

Cells were then incubated with mouse monoclonal antibody AT8 (1:500; Thermo Fisher 

Scientific) and rabbit polyclonal antibody MCM2 (1:500; Abcam) in 3% BSA in DPBS 

overnight at 4°C. Cells were washed with DPBS and then incubated with Alexa Fluor 594 

Plus-conjugated goat anti-mouse and anti-rabbit secondary antibodies (1:500; Thermo Fisher 

Scientific) in 3% BSA in DPBS for 90 min at room temperature. Cells were washed with 

DPBS and then covered with DPBS and imaged on an InCell Analyzer 6000 High-Content 

Confocal Microscopy System (GE Healthcare). Twenty-five non-overlapping, 2048×2048 

pixel fields were captured per well. We chose markers with minimal overlap of the excitation 

spectra to minimize potential image bleed-through (Supplementary Figure 8A). This full 

training dataset was uploaded here for open access (DOI: 10.17605/OSF.IO/XNTD6).

Constructing the Archival HCS Dataset

The setup for the archival HCS data was the same setup used to construct the training set 

(the cellular Tau(P301S)-YFP aggregation assay), with the exceptions that the HCS data 

did not undergo any of the immunocytochemistry steps, and live-cell imaging was used 
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instead. We constructed this HCS dataset more than one year prior to the three-channel 

training dataset. Only two imaging channels were captured: nuclear DAPI and YFP-tau. 

No AT8 antibody was plated. Thus no AT8-pTau channel was captured, and there was no 

possibility of bleed-through. Furthermore, the compound library in the HCS data was much 

larger and more diverse than that used for model training. The original six compounds used 

in the training set with AT8 were not included in the random HCS subset of 1,600 unique 

compounds evaluated by the ML model.

The screened compound collection is from the Chembridge Central Nervous System (CNS) 

library with a multiple parameter optimization score greater than four55,56. This selection 

was driven by our desire to find compounds that would be more easily progressed and 

developed as a CNS drug.

Training and Evaluation of the Models on Tauopathy Dataset

The full source code and fully trained models are available at https://github.com/keiserlab/

trans-channel-paper. The necessary python packages are PyTorch, pandas, cv2, cupy, numpy, 

and sklearn. Training and testing of the model was performed on one Nvidia GeForce GTX 

1080 graphics card, and completed in 30 epochs totaling 111 hours of training.

The full dataset consisted of six different drug perturbations: two reduced aggregation 

while maintaining cell count; two reduced aggregation while reducing cell count; and two 

increased aggregation while reducing cell count. We imaged a total of six 384-well plates, 

one plate for each drug. Each well was divided into four fields and each field was imaged, 

resulting in a full image dataset consisting of 57,600 TIFF images each of size 2048×2048 

pixels for each of the three channels. As a preprocessing step, we linearly scaled all images 

from the original TIFF range of 0 to 65,535 to the more tractable range of 0 to 255 by 

dividing each pixel by 65,535 and then multiplying by 255. We converted the resulting 

images to 32-bit floating point. The images were randomly shuffled, and then split into a 

70% training set and 30% test set.

We used the fully convolutional architecture in Figure 2A for training. As inputs to the 

model, we concatenated the transformed YFP-tau image and the transformed DAPI image 

into a tensor of size 2×2048×2048 pixels. The model generated a predicted AT8-pTau image 

of size 2048×2048 pixels.

We used a stochastic gradient descent optimizer with momentum = 0.90, a learning rate 

= 0.001, and a batch size of one. We trained the model for 30 epochs. We used a 

negative Pearson correlation loss function for training, in which we minimized the following 

objective function:

NPCC A, B =
− i Ai − Aμ Bi − Bμ

i
Ai − Aμ

2
i

Bi − Bμ
2

such that A and B were the images being compared, i was summed over all pixels, Aμ was 

the average of image A, and Bμ was the average of image B.
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Novel Model Design Considerations

Our architecture differed from U-Net in several important ways (Supplementary Figure 2). 

First, the model was tasked with assigning pixel values that resided in a greater range (0 

to 65,535) compared to U-Net’s binary zero or one objective. Hence we used a negative 

Pearson correlation loss while U-Net used a cross-entropy loss. Our architecture had fewer 

hidden layers than U-Net, resulting in an architecture that was 12% the size of U-Net. 

Also the upsampling procedure was different. We used transposed convolutions followed by 

bilinear interpolation, while U-Net had two convolutions followed by bilinear interpolation. 

We used transposed convolutions for learnable upsampling during each convolution 

operation. Finally, our architecture preserved the original pixel image dimensions, while 

U-Net returned a smaller mask. Preserving image dimensions allowed for a direct pixel-wise 

one-to-one mapping from the input to the output.

Performance Metrics

When constructing the PCC performance metric, we iterated over the test set, flattened all of 

the images to one dimensional vectors, and then found the PCC of the flattened label image 

with the flattened ML-predicted image using the Numpy library’s corrcoef function.

When constructing the MSE metric, we normalized all AT8-pTau and predicted AT8-pTau 

images to have zero-mean and unit-variance in order to account for differences in underlying 

pixel value distributions between the label images and the predicted images. Normalizing 

both distributions placed them in a more comparable regime for calculating MSE.

When calculating MSE, we normalized each image by subtracting the average of that image, 

and then dividing by the standard deviation. The MSE was determined as follows:

MSE A, B = j Aj − Bj
2

n

Such that Aj and Bj were the normalized images being compared, and j was the index of the 

image out of a total of n test images.

To construct the ROC and PRC curves, we first normalized the images to have zero-mean 

and unit-variance. We then compared the predicted image to the actual, and chose a pixel 

threshold t such that any pixel greater than or equal to t was considered as positive for signal, 

and anything lower than t was negative for signal. We chose an intensity threshold of 1.0 

to binarize the image, which retained most of the features of interest and aggregation signal 

(Supplementary Figure 13).

Hence, we performed pixel-wise classification across the full test set of images. For the 

thresholds applied to the predicted image, we chose the pixel value range 0 (permissive) to 

1,000 (non-permissive) with different increments. In the range −1.0 to −0.1 and the range 0.1 

to 1.0, we chose incrementing values of 0.1. From the range −0.1 to 0.1 we chose a more 

fine-grained increment with a step size of 0.01. In the range 1.0 to 4.0 we chose a step size 
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of 1.0, and from the range 4.0 to 22.0 we chose a step size of 2.0. Finally, we evaluated the 

pixel intensity threshold equal to 1,000 (no pixels assumed this value).

Construction and Evaluation of PQML and PQC

From the available YFP-tau fusion images and DAPI images of the HCS subset of 1,600 

compounds, we constructed predicted AT8-pTau images for each pair of YFP-tau and 

DAPI images. We took the YFP and DAPI images and linearly scaled the pixel values 

to the range 0 to 255 inclusive. We then concatenated the two images together to form 

a tensor of dimensions 2 ×2048×2048, and finally inputted this into the trained model. 

Next, we scaled the output of the model back to the original space by first dividing by 

255 and then multiplying by the maximal possible pixel value of 65,535. We then scored 

these images for tau aggregation using proprietary software from GE, called the “InCell 

Analyzer,” which yielded a score based on puncta count and area. This same algorithm was 

used for previous HCS efforts, and it was applied consistently to all images. We obtained 

each small molecule’s aggregation score by averaging over all of that compound’s images’ 

aggregation scores—which consisted of averaging over four non-overlapping fields within a 

single well treated with the compound. We ranked all of the compounds by their aggregation 

score, with compounds inducing lower aggregation being higher priority than compounds 

with a higher aggregation score. A lower rank in the queue indicated higher priority (e.g., 

compounds with ranks first, second, and third were the three highest priority compounds). 

For constructing PQC, we used the same method as the one to construct PQML, except 

that we obtained aggregation scores from the original YFP-tau images instead of their 

corresponding ML-predicted AT8-pTau images.

To calculate enrichment curve AUCs (Figure 5), we analyzed the set of known active 

compounds (n=17) discovered in the study. For each queue, we generated an enrichment 

curve using the rankings of the active compounds. We calculated AUC by integrating 

with Numpy’s composite trapezoidal function (numpy.trapz). We calculated average active 

compound ranks by averaging over each active compound’s index in the queue (Figure 5B).

Experimental Setup for Secondary Dose-Response Experiments

For the dose-response experiments, we performed the same protocol as the cellular 

Tau(P301S)-YFP aggregation assay, with the exceptions being the drug doses and the 

compounds that we tested. We plated drug concentrations in half logs from 10 nM to 10 

μM. We tested the top 40-ranked compounds of PQML and the top 40-ranked compounds 

of PQC. In accordance with the cellular Tau(P301S)-YFP aggregation assay, we did not 

use AT8 because it would demand extensive time and labor. For each compound, we 

independently replicated each concentration in four separate wells. We calculated the 

average aggregation scores at each concentration, and used these averages to construct a 

dose-response plot (e.g., Figure 4A).

Assessing Activity from Dose Response Curves

A compound that succeeded in a secondary dose-response test demonstrated a dose-

dependent decrease in aggregation as a function of concentration, while maintaining a 

therapeutic window that preceded a noticeable drop in cell count. A compound did not need 
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to induce a perfect sigmoidal shape to be considered active. A compound was considered 

active if and only if all of the following four conditions were satisfied.

1. The best fit curve strictly had an aggregation score that decreased with increasing 

concentration of compound.

2. The effective response was at least 6,000 aggregation units. We required this 

so that only compounds were chosen that induced an effective decrease in 

aggregation. Medicinal chemists who worked closely on the screen chose 6,000 

subjectively as a minimal threshold before we began the analyses. If the curve 

was monotonically increasing with increasing concentration, this condition was 

automatically not satisfied, and the compound was considered inactive.

3. The half maximal effective concentration (EC50) was lower than 10 μM.

4. The concentration at which aggregation began to be ameliorated at half maximal 

response was lower than the concentration at which the compound decreased 

cell count by half. If the cell count trend increased with concentration, or 

was unaffected, then this condition was automatically satisfied. Otherwise, the 

logarithm of the EC50 of the aggregation curve minus the logarithm of the EC50 

of the cell count curve must be less than −0.10. We chose −0.10 as a more 

stringent threshold, as opposed to the difference being anything less than 0.0. 

This ensured that the compound’s concentration at which it exhibited half of its 

maximum response occurred at a lower concentration than when the compound 

began to decrease cell count by half, and that this difference was not effectively 

zero.

Compound Enrichment Comparison with Other Methods

We compared different methods against the trans-channel ML approach to assess active 

compound enrichment (Figure 5, Supplementary Figure 11). As a strawman enrichment 

baseline, we added random noise to the raw YFP-tau HCS images by assigning 10% of the 

pixels to the maximum pixel value 65,535 (Supplementary Figure 11A). We then reranked 

the compounds by their new aggregation scores using the same GE software for deriving 

PQC and PQML.

The next comparison method was a non-ML based image analysis platform called 

CellProfiler48. We set up a pipeline to extract image features from the YFP-tau channel, 

such as puncta count, intensity metrics, and morphological features (Supplementary Figure 

11B). We include the full pipeline (YFP_only.cpproj) in https://github.com/keiserlab/trans-

channel-paper. Once the HCS images were featurized, we grouped images belonging to the 

same compound, and averaged the features to obtain a representation of each compound. 

We did the same for control wells with neither prion seed nor compound. We had 224 

control wells (896 2048×2048 pixel images) evenly split among seven 384-well plates. After 

averaging to derive a latent representation for each compound and for the control condition, 

we performed a principal component analysis (PCA) with three principal components. 

Supplementary Figure 11C shows the 1,600 compounds plus controls plotted in PCA space. 

The proximity of control conditions to each other indicated a meaningful dimensionality-
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reduced representation. To derive a new priority queue of compound ranks, we sorted the 

1,600 compounds by their Euclidean distance to the average of the control wells in PCA 

space, with smaller distances being higher priority. Finally we calculated an enrichment plot 

for the new compound ranking (Figure 5).

In a third test, we compared the trans-channel method with feature extraction via a 

deep convolutional autoencoder. We designed an autoencoder similar to the trans-channel 

architecture (see GitHub repository). We removed skip connections and forward propagated 

through a bottleneck of size = 2,064,512 (approximately half of the image feature space). 

We trained the network on the HCS dataset until we obtained a near perfect reconstruction 

of the input YFP-tau (Supplementary Figure 11D). After training, we extracted the hidden 

state for each image of the HCS, and averaged the latent representations by compound. 

As with the CellProfiler analysis, we also derived a representation for each of our control 

wells, and averaged the latent representations. We then performed a PCA reduction with 

three principal components. We sorted the 1,600 compounds by their Euclidean distance to 

the average of the control wells in PCA space, with smaller distances being higher priority 

(Figure 5).

Validation Assay of Functional Genomics Screen in U2OS Line

We generated a completely different HCS than the tauopathy study in order to assess 

the ML method’s generalizability. This osteosarcoma dataset was subjected to different 

biological conditions. U2OS cells (female) expressing a stable CCNB1-GFP construct were 

plated into 384-well plates with 500 cells per well and reverse transfected with an esiRNA 

library (10 ng, Sigma Aldrich) using Hiperfect transfection reagent. The U2OS cells were 

cultured in DMEM medium containing 10% foetal bovine serum. The library can be found 

at https://iccb.med.harvard.edu/sigma-esirna-human-1 and also https://iccb.med.harvard.edu/

sigma-esirna-human-2. Our method was inspired by the assay presented in Bray et al.57 

We performed 16,194 unique functional genomic perturbations. After 72 hours, cells were 

stained with 5 μg/mL of Hoescht 33342 dye (ThermoFisher), incubated for 60 minutes at 

37°C, washed with PBS, fixed in 4% PFA, and scanned on a Thermo Cell Insight NXT high 

content microscopy system using a 10X objective. We captured the two channels, resulting 

in 324,989 Hoechst and cyclin-B1 image pairs, each of dimension 1104×1104 pixels.

Training and Evaluation of ML Models for the U2OS Dataset

We performed two training experiments, one using ablated Hoechst images, and one using 

the raw Hoechst images. For training with ablated images, we ablated Hoechst at the 95th 

percentile pixel-intensity threshold. Afterwards, we performed the same training procedure 

as the one used for the tauopathy experiment, except for the following: 1) the input to the 

model was one dimensional (Hoechst channel) instead of two; 2) we trained for 10 epochs 

instead of 30; 3) we trained a threefold cross-validation instead of a single training-test split.

For training using the unablated, raw images, we applied the same preprocessing and 

training procedure as the one used for training with ablated images, except for the following: 

1) we left the images intact and did not perform any ablations; 2) we trained for 5 epochs 
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instead of 10 (the model converged faster likely because the task of learning from raw 

unablated images was easier).

Quantification and Statistical Analyses

For all statistical significance tests, we used a two sample, one-sided z test. The null 

hypothesis stated that performance means were equal. The alternative hypothesis stated 

that the average performance from ML is greater than the average performance from the 

non-ML approach. Significance was set at p < 0.05. The values of n correspond to the 

number of instances in the test set (see Methods: Training and Evaluation of the Models on 

Tauopathy Dataset). Sample sizes were sufficiently large to perform the test. A sample is one 

comparison between a predicted channel and the actual channel. We assume normality due 

to the large sample size.

Code Availability

The full source code and fully trained models are available at https://github.com/keiserlab/

trans-channel-paper58, DOI: 10.5281/zenodo.6336183

Data Availability

All image data is freely available at https://osf.io/xntd659, DOI: 10.17605/OSF.IO/XNTD6

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: We constructed a cellular Tau(P301S)-YFP aggregation assay that modeled prion 
propagation in vitro with an additional AT8-pTau channel for ML training.
An overview of the experiment used to model the adverse propagation and aggregation of 

tau. We used brain lysate from a tauopathy mouse model to infect a human cellular model of 

mutant tau that has a higher propensity to aggregate. The experiment yielded three channels 

used for training the ML model: DAPI, YFP-tau, and AT8-pTau. Images were enhanced with 

ImageJ’s auto-enhance feature solely for visualization purposes.
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Figure 2: The ML model generated a phosphorylated AT8-pTau channel, solely from DAPI and 
YFP-tau channels.
(a) Given two image channels (DAPI and YFP-tau) as input, the neural network predicted 

the desired AT8-pTau image. The architecture, motivated by U-Net43, comprised two 

phases: an “encoding” half which increased the cardinality of convolutional filters while 

reducing the image dimensions, and a “decoding” half which decreased the cardinality of 

filters while upsampling the image dimensions with bilinear interpolation and learnable 

transposed convolutions. The numbers above each box indicate the number of filters used. 

(b) From the input DAPI image (left column) and the input YFP-tau image (second column), 

the in silico predicted AT8-pTau image (fourth column) is shown versus the actual, hidden 

AT8-pTau image (third column). White boxes mark where the AT8-pTau images most 

diverged from YFP-tau on visual inspection. These held-out test images were not seen 

during model training. For visualization purposes only, images were cropped to 512×512 

pixels, auto-enhanced using ImageJ, and colored using the python library Matplotlib. PCC 
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values between the predicted and actual images displayed are 0.88, 0.92, 0.93, and 0.86 

from the top row to the bottom. The rightmost column is a heatmap of the absolute value 

difference between the input YFP-tau channel and the actual AT8-pTau channel after scaling 

both images to the range zero to one. Red regions indicate areas of lowest image similarity, 

while blue regions indicate regions of highest similarity.
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Figure 3: The ML model outperformed all others.
(a) The average PCC performance over the held-out test set for three models: the ML model 

and two null models derived from each of the input channels. Error bars show one standard 

deviation in each direction centered at the mean. Assessing the ML model’s superior 

performance over each of the null models resulted in statistical significance of p<<0.00001. 

(b) Equivalent MSE results after normalizing all images to zero-mean and unit-variance 

(Methods). (c) A binary pixel threshold of 1.0 was used to binarize the label image, while 

the predicted images were assessed across a range of pixel thresholds (Methods). Left: the 

receiver operating characteristic (ROC) curves for the ML model (red) exceed the Null YFP 

Model (yellow) and the Null DAPI Model (blue). Right: Precision recall curves. The dashed 

horizontal line is the percentage of positive pixels (0.02) after thresholding the labels. Both 

ML and Null YFP models did similarly well at balancing true positives with false positives, 

but the ML model consistently maintained higher precision.
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Figure 4: Transforming the archival HCS data with ML-predicted AT8-pTau images revealed 
previously unknown active compounds.
(a) We rescored a plate consisting of 1,600 compounds from the archival HCS, and 

prospectively collected dose-responses for compounds that resulted in the lowest tau 

aggregation according to either PQML or PQC. Example dose-response (left) and cell count 

assay (right) of an active compound. Although an indicator of cell viability, cell count is not 

a perfect metric for toxicity, since it is possible for the compounds to inhibit the innately 

prolific nature of HEK293T cells. These curves are drawn from the compound DRW545, 

which was ranked well by the ML method (22nd), but poorly (545th) by the conventional 

method. (b) Example images for active compounds that the ML-based rescoring rescued. 

Top row: Compound DRW1596 (ranked 1,596th in PQC versus 14th in PQML), Middle: 

compound DRW560 (ranked 560th in PQC versus 15th in PQML), Bottom: compound 

DRW545 (ranked 545th in PQC versus 22nd in PQML). YFP-tau images from the archival 

HCS dataset (left column) differed from the ML-predicted AT8-pTau images used for 
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rescoring the HCS (right column), with white boxes highlighting example regions. In these 

regions of interest, the ML predicted the aggregate signal as not being phosphorylated at the 

residue of interest. We auto-enhanced and colored images with ImageJ and Matplotlib solely 

for visualization.
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Figure 5: ML triaged active compounds better than other methods.
(a) Enrichment plots comparing the conventional compound testing method and several 

alternatives with the prospective, trans-channel ML-guided dose-response assays. We 

considered the set of all active compounds (n=17). The y-axis shows what fraction of active 

compounds were discovered in the top x% of the ranked priority queue (x-axis) (100% 

corresponds to rank 1,600). The ML method’s area under the enrichment curve (AUC) 

indicates that its compound ranking achieved the highest success rate on prospective dose-

response testing. (b) Box plots of rank accounting for all active compounds. The median line 

is in orange, whiskers are set at 1.5x interquartile range, and outliers are anything outside 

the 1.5x interquartile range (plotted as dots). PQML on average prioritizes active compounds 

about twice as well as PQC.
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Figure 6: The trans-fluorescence learning method generated accurate cyclin-B1 signal from 
Hoechst signal, on an independent and biologically unrelated dataset.
(a) Given ablated Hoechst images (leftmost column) a ML model trained to output cyclin-

B1 images (rightmost column) achieved high in silico prediction of this channel (second 

column). Given unmodified Hoechst stain images (third column), a separate ML model 

constructed high-fidelity and detailed predictions (fourth column) of the actual cyclin-B1 

channel. This panel contains images from the test set (n=108,330 images) never seen 

during model training. For visualization, all images were auto-enhanced and colored as 

in prior Figures. (b) Assessing the Hoechst-ablated model’s performance. Left: average PCC 

coefficient when assessing pixel-wise similarity between actual and predicted Cyclin-B1 

images in threefold cross-validation of a dataset of n=324,989 total image pairs, across 

g=16,194 unique functional genomic perturbations; Right: MSE from the same analysis. 

Assessing the ML Model’s superior average performance over the Null Model resulted in 

statistical significance of p<<0.00001. (c) Assessing the model trained using raw, unablated 
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Hoechst images, performing the same analysis as in (b). The ML Model’s superior average 

performance over the Null Model likewise resulted in p<<0.00001. Error bars show one 

standard deviation in each direction centered at the mean.
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