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ABSTRACT OF THE DISSERTATION

Framework and Algorithms for Wearable Medical Applications

By

SeungJae Lee

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Irvine, 2016

Professor Pai H. Chou, Chair

Wearable embedded systems with sensing, communication, and computing capabilities have

given rise to innovations in e-health and telemedicine in general. The scope of such systems

ranges from devices and mobile apps to cloud backend and analysis algorithms, all of which

must be well integrated. To manage the development, operation, and evolution of such

complex systems, a framework systematic framework is needed. This dissertation makes

contributions in two parts. First is a framework for defining the structure of a wide range of

wearable medical applications with modern cloud support. The second part includes several

algorithms that can be plugged into this framework for making these systems more efficient in

terms of processing performance and data size. We propose a novel QT analysis algorithm

that can take advantage of GPU as well as in a server-client environment, and we show

competitive results in terms of both performance and energy consumption with or without

parallelization. We also propose ECG compression techniques using trained overcomplete

dictionary. After constructing the dictionary through learning process with a given dataset,

the signal can be compressed by sparse estimation using the trained dictionary. We propose

reconstructing ECG signal from undersampled data based on compressive sensing framework

that can reconstruct the ECG signals precisely from fewer samples so long as the signal is

sparse or compressible. Together, these algorithms operating in the context of our proposed

framework validate the effectiveness of our structured approach to the framework for wearable

xii



medical applications.
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Chapter 1

Introduction

1.1 Motivation

Wearable devices refer to electronic technologies or computers that are incorporated into

items of clothing and accessories that can be worn comfortably on the body. Generally,

wearable technology will have some form of communication capability and will allow the

wearer’s access to information in real time. Some of wearable devices have computing power

to solve the problem the wearer is facing. Another type of devices collect the signals or

context by using built-in sensors or context engine. Examples of wearable devices include

watches, glasses, contact lenses, e-textiles and smart fabrics, headbands, beanies, and caps.

There are more invasive versions of the concept as in the case of implanted devices such

as micro-chips or even smart tattoos. Whatever the device is worn on or incorporated into

the body, the purpose of wearable technology is to create constant, convenient, seamless,

portable, and easy to access the information in real time.

Medical-purpose wearable devices differ from general-purpose ones in several aspects[52].

First, user interaction tends to be much more limited. Second, the performance/power
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trade-off can often be made in terms of size of processor performance, data storage, and

battery capacity. Third, there is an emphasis on signal processing that does not exist to the

same degree in general-purpose wearable computing applications. Finally, wearable medi-

cal computers face more stringent requirements in terms of privacy, reliability, government

regulations, and the manufacturer’s legal responsibility. In this work, we will focus on the

medical purpose wearable devices.

1.2 Technology

Wireless Body Sensor Networks (WBSN) are revolutionizing healthcare technology. These

networks are comprised of wearable devices with sensors, which can detect physiological

signals, gateways for supporting to access the networks, and back- and front-end servers

for managing, analyzing, and displaying the information. The technology for WBSN and

wearable devices is not so new. The core technologies are about sensors, apps, and network

technology such as WiFi, Bluetooth, Zigbee and cellular networks. In these days, it tends

to connect smartphones and tablets for gateways or user interfaces to contact users such as

the doctors, caregivers, or the patient’s guardian.

1.2.1 Applications

In [19], wearable medical devices can be classified in three categories: monitoring devices,

medical aid devices, and rehabilitation assistance devices. A wearable monitoring system

helps in managing the treatment of chronic diseases such as heart diseases, asthma, and

diabetes, and monitoring vital signals from patient’s or wearer’s body. The target signals

for monitoring can be electrocardiogram, blood oxygen level, respiration, and body fat. A

medical aid device, which is designed to provide long-term assistance to patients who have

2



disabilities. For example, consider hearing aids to help the visually impaired with obstacle

avoidance and navigation. A wearable rehabilitation assistance device combines functions of

monitoring and medical aid device for patients in rehabilitation. The monitoring function

assists rehabilitation of patient to keep away from potentially dangerous situations or risks.

Further, the medical aid device can help with temporary disabilities during rehabilitation.

1.2.2 Frameworks

In general, a framework is a real or conceptual structure intended to serve as a support or

guide for building of systems or applications. Since the development of the system requires

many considerations, frameworks can enable developers to build up their target system or

application more efficiently. Some frameworks include actual programs, specific program-

ming interfaces, or programming tools. Generally speaking, a framework may provide a set

of functions within the system or application, how they interconnect, and how they com-

municate among the components in the framework. In this research work, we will focus on

existing frameworks for wearable medical devices in Chapter 2, and present how to build up

the system by using the frameworks.

1.3 Challenges

Designing wearable medical devices require several considerations. The technical challenge

stems from its use under varying and demanding conditions[19]. For example, some devices

are used in specific environments, such as hospitals, houses, or sports fields. Others can

be used during specific periods of time, as while sleeping, in periods of high risk, or during

exercise. The technical issues depend on the specific characteristics of the application [36].

3



Table 1.1: Issues to be considered when design wearable medical devices

Issue Description

Technical

Sensor What kinds of sensors needed

Data handling
Amount of data to be recorded,
stored and transmitted

Decision support
To help doctors or caregivers,
what kind of analysis needed.

Feedback How to give feedback to patients

Communication
How to transmit the data from sensor to server
or service provider
Consider interoperability issues with legacy system

Physical design
Shape, size, and weight not to interrupt patients’
movements

Reliability More reliable than general purpose devices

Non-technical
User acceptability User friendliness of using the device
Privacy & Security Issues about the patient’s rights and confidentiality

1.3.1 Technical issues

Sensors

Sensors in the wearable device measure physiological and kinesiological signal from the hu-

man body. They should have the characteristics of being non-invasive, reliable, compact,

wearable, replaceable and capable of integration with the device. The choice of the sensors

depends entirely on the target application. If the target application to build is a heart-rate

monitoring system, it is necessary to determine the specifications of the sensor such as the

resolution, the sampling rate. Then, we should choose one of the sensors that meet the

requirements.

Data handling

In general, a wearable type device has limited power and computational capability. Due to

the limitation, it is necessary to make a decision about the format and amount of data to

4



be recorded, stored and transmitted.

Decision support

The main purpose of the wearable medical device is to help doctors or caregivers by providing

useful information about the patient’s status. It does not mean raw data from sensors, but

the raw data should be processed to provide more useful information for decision making.

Hence, we need to consider about what information needs to be offered to the doctor or the

caregiver, and how to process it to obtain the useful information.

Feedback

Feedback is a means to delivering the information or the result of deciesion supports by the

wearable medical device to the wearer, the patient, or caregivers. According to the purpose

of the device, it informs a patient, a wearer, or a caregiver of the collected data itself or the

result of decision supports by the device. For example, a glucose concentration monitoring

system provides the injection of insulin by the decision support function. In this system, the

control of the actuator requires feedback.

Communication

Communication is one of the core technologies in wearable medical devices. Generally, it

involves the link between the sensor board and the back-end system and the link between

the back-end system and the healthcare provider. There is standardization issue to set aside

interoperability between a device and a device.
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Physical design

The physical design issue deals with the physical shape, size, and the weight of a wearable

and its ergonomics.

Autonomy

The autonomy of the wearable device is about the power requirements of the device, which

should be met for specified periods of use.

Reliability

Medical-purpose electronics must be more reliable than general-purpose ones, since the pa-

tient’s health or life is at stake. The reliablity of the wearable devices is particularly affected

by factors related to the conditions of their use. If the operating environment cannot be

controlled to a certain extent, then the devices may not operate reliably when exposed to

extreme factors such as humidity and temperature. The medical device should be designed

in consideration of the use environment for decreasing operational risks.

The reliability at the aspect of communications should also be considered. In general, wear-

able medical devices are assumed to have communication capabilities. It may store or trans-

mit the collected data to the gateway, servers, or health providers. Moreover, the wearable

medical devices are accompanied by the mobility of the wearer. To send the collected infor-

mation to the destination reliably, it is necessary to set aside quality-assured and efficient

communications.
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1.3.2 Non-technical issues

User acceptability

The user acceptability is the issue related to the friendliness of using the device. This issue

depends on the conditions of its use, complexity of setup and operating the device, and its

comfort and wearability.

Privacy and Security

In the medical field, privacy is defined as the right and desire of a person to control the

disclosure of personal health information [53].

To utilize wearable medical devices, health care providers must have access to the information

to use it for improved health care. To keep the privacy of individuals for medical purposes,

regulatory frameworks have been defined. According to HIPAA (The American Health

Insurance Portability and Accountability Act) Privacy Protection rules [48], all medical

records, billing, and patient accounts meet certain consistent standards with regards to

documentation, handling, and privacy. HIPAA requires that all patients be able to access

their own medical records, correct errors or omissions, and be informed how their personal

health information (PHI) is shared or used. To use the personal health information for

only medical purpose, health providers must have a broad meaning of confidence. Usually,

confidentiality is defined as the controlled release of personal health information to a care

provider or information custodian under an agreement that limits the extent and conditions

under which that information may be used or released further.

Especially due to the characteristics of the electronic records, personal health information

may be exposed to risks during storing, transmitting, and sharing. Security issue to keep
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those sensitive information secure and to utilize it confidentially is another problem. Ac-

cording to HIPAA, Security is defined as a collection of policies, procedures, and safeguards

that help maintain the integrity and availability of information systems and control access

to their contents. HIPAA also enforces to comply HIPAA Security Rules [27] to ensure the

confidentiality, integrity, and availability of all e-PHI (Electronic Protected Health Infor-

mation). Since e-PHI is a subset of the information covered by HIPAA Privacy Protection

Rules, all PHI may not be the target for protection by HIPAA Security Rules. Thus, it has

a limitation not to apply PHI transmitted orally or in writing.

Even though many regulations and rules surrounding the privacy and security issues in health

care are appeared, still they have many things to be improved [43].

1.4 Contributions

Our research work comprises two parts: a framework for wearable medical devices and a set

of algorithms for medical applications. In the framework part, we introduce the state-of-the-

art in the field of the wearable medical devices and its applications. Particularly, we classify

the frameworks for designing the applications by using wearable medical devices and sensor

network systems. Further, we depict the issues to be considered, when the wearable medical

devices and the systems for providing entire services are designed. Finally, we show a case

study of developing a wearable medical device utilizing the framework.

In the algorithms part, we propose several useful algorithms for efficient sensing, compres-

sion, and decompression using signal-specific characteristic. We apply our algorithms to

QT analysis of ECG signals as used in the case study for the framework. For evaluation, we

implement our proposed algorithm for a client-server environment and an embedded environ-

ment for real-time processing. We show that porting to a modern GPU-based architecture
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can result in improved performance in processing time significantly while saving energy.

1.5 Dissertation outline

In Chapter 2, we review widely used frameworks for designing wearable devices and show a

case study of an end-to-end system for utilizing wearable-type medical sensors. Further, we

also introduce issues to be considered for designing medical applications.

Chapter 3 to Chapter 6 cover the algorithms. Chapter 3 proposes a signal reconstruction

algorithm for an efficient sensing method. Chapter 4 proposes signal compression and decom-

pression algorithms that utilize signal characteristics of electrocardiogram (ECG). Chapter 5

introduces a novel approach to QT analysis and its efficient implementation in a server-client

environment. We also show an implementation of our proposed algorithm on an embedded

system in Chapter 6. Particularly, we show that performance improvement and energy saving

can be obtained by parallelization on the GPU.
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Chapter 2

Frameworks for Medical Monitoring

Systems

A monitoring system is not just a device but a full system from the front-end to the back-end

in the cloud. The purpose of this chapter is to show a comprehensive view for categorizing

existing frameworks. This chapter consists of three parts: categorization of frameworks,

review of existing frameworks, and a case study. We categorize existing frameworks into

three different planes to address what they pursue in common. We also review existing

frameworks and their characteristics. Finally, we present an end-to-end system for ECG

monitoring and analysis as a case study of our framework.

2.1 Generic Framework for Medical Systems

Health monitoring of physiological parameters through the use of wearable biosensors has

been a research area of high interest in recent years [37]. To achieve the main goal of the

system and to improve the performance and longivity, the device may have higher system
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Figure 2.1: Generic framework for wearable medical devices and systems

complexity. Accordingly, many things should be considered during development and design.

A framework can help the system developers and designers make their system more efficient.

It provides a guide on what the developers should consider to build a system or an application.

Fig. 2.1 shows a generic framework for wearable medical systems. The generic framework

comprises several functional components. The core components are a wearable medical de-

vice, gateway, servers, and channels to connect clients such as laptops, smartphones, and

tablets over the network to the servers. The wearable medical device captures physiological

signals. Through the gateway, the signals are transmitted to the servers, which manage, an-

alyze, visualize, and share the information. Physicians or caregivers can access the processed

data over the network.
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Figure 2.2: Classification of frameworks

2.2 Taxonomy of Frameworks

In this section, we categorize the functions of frameworks into our plane knowledge according

to their functions. We also introduce the characteristics of the items in each plane to consider,

when developers build up their systems in the corresponding plane.

Fig. 2.2 shows three planes: the sensor plane, the data plane and the application plane.

Usually, target biosignals are from the patients’ body, and the processed data through the

system will be transferred to doctors, caregivers, or the patients themselves. In the sensor

plane, the main goal is to capture the physiological signals from the target. The signals will

be transmitted to the data plane through wireless or wired communications, then stored or

shared. The signals are analyzed and reproduced as processed data in the application plane.
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Table 2.1: Classification of Frameworks

Sensor Data Application
Definition - Plane for collecting

raw data from sensors
- Plane for managing
data from sensor plane

- Plane for processing
the data to provide pro-
cessed data or visualize
raw/processed data

Feature - Collecting the data
from the target

- Storing the data - User interface for
visuallization, interac-
tion, and presentation

- Communication with
the data plane

- Interfacing for storing
and retrieving the data

- Analysis

- Sensing component
depends on the target
application

- Compression and de-
compression

- Statistics

- Management function
- Categorizing, group-
ing, and sharing

Issue - Privacy : obtrusive-
ness problem

- Security for accessibil-
ity

- Security for authen-
tication and authoriza-
tion

- Power consumption
- Physical design : size,
material
- User acceptability
- Use environment
- Physical design

2.2.1 Sensor plane

We define the sensor plane to be the layer for collecting physiological or kinesiological pa-

rameters from the sensors. For a monitoring system, normally the sensors might be attached

on a target, which can be a patient or a wearer of the device. The sensor plane includes sens-

ing components, preprocessing on the sensor device such as filtering and compressing, and

communication between the sensor and data planes. The sensing components are generally

dependent on the target application. If the physician wants to monitor the concentration of

glucose in a patient, the sensing component should measure the glucose level.
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Figure 2.3: Positioning of the frameworks on our plane

Since most of the sensing devices are not equipped with powerful computational capabilities,

only simple preprocessing techniques such as filtering and compressing are usually built in.

Preprocessing can make the device more self-contained and can be useful even when the

network connection is down, but preprocessing should minimize data distortion. In general,

the sensor plane has at least one wired or wireless communication channel to transmit raw

data to the data plane sensor plane.

In the sensor plane, considerations include the lifetime and physical design of the sensor

device, user acceptability, privacy and security problem. The main considerations of the

sensor plane is related to the sensor device directly. The sensor device should consider how

much time to keep collecting the signal. If the sensor should catch the motions, it should be

actuated when the motion occurs. If the sensor needs to collect electrocardiographic signals,

it should keep on for some period of time.

According to the target application, developers should consider the lifetime of the device

related to the power consumption. User acceptability of the device depends on the conditions
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of its use, its user friendliness both during setup and operation, its comfort and wearability,

and the quality of the feedback by the users. When the system is designed, obtrusiveness of

the sensor components, which is highly related to privacy of users, should be considered as

well. Furthermore, security issue is also one of the important things to be considered, since

the medical data is critical and sensitive for both patients and physicians.

2.2.2 Data plane

The data plane is the layer that handles the data related functions in the framework. Gen-

erally, the actions in regard to managing and interfacing the data the data transmission are

performed in this plane.

Managing the data transmitted from the sensor plane includes all functions related to the

data itself such as storing, compressing and decompressing, categorizing, grouping, and

sharing. Some frameworks in this plane support device managing functions, which can acti-

vate/deactivate the sensors and control the specific parameters during sensing physiological

signals.

Since the data plane is located between the sensor plane and the application plane, it plays a

role as a bridge of the entire system. While the sensor plane or the application plane handles

specific targeted data, the data plane should set aside generality. To support collecting the

data from the multiple sensor devices, it should have the corresponding interfaces. At the

aspect of the application, it may need to combine or reuse the data by the requirements

Due to the sensitiveness of the physiological data, it should provide those interfaces with

keeping security for accessing the data. Since the data plane provides two channels for

transmitting, one for the sensor plane and the other for the application plane, it should have

different policies about accessing the data through each channel.
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Between the sensor plane and the data plane, the key of security is transmitting the data

securely. The security of this channel should support secure data transmission with keeping

away from contaminating or sniffing the data. Furthermore, the data plane only allows

registered sensor devices to transmit the data. Between the data plane and the application

plane, the security policy should focus on confidentiality. Usually, the application plane

consumes the data managed by the data plane. To keep the confidentiality of the entire

system, the data plane should give permission to access to only authorized users. The

features about the communication among the planes will be handled in Section 2.2.4.

2.2.3 Application plane

The application plane is for processing the data to provide analysis results or visualization of

the raw and processed data. Normally, it comprises application engines and user interface.

The application engine is a core component highly dependent on the kinds of analysis needs.

The user interface at this plane is for visualization, interaction to give feedback, or control

the device, and presentation in general. This plane also has communication channels with the

data plane and sometimes the sensor plane. The confidentiality issue is the most important

problem in this plane. Since many different users can access the sensitive data through

the application plane, authentication and authorization are important to give permission to

access the data to only the allowed users.

User interface is another key factor in the application plane. The application plane is the only

plane that interacts with users who are not administrators or developers. According to the

target application, the user interface should be designed to interact with users easily. User

interaction encompasses all actions by users regarding the functions of the application, such

as retrieving data, displaying results, or controlling the sensor devices. The user interface

can be a channel to obtain and provide feedback. The users, usually physicians or caregivers,
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obtain the results of their requests, then give feedback to the wearers such as instructions or

operations of the actuators for treatments through the user interface. Furthermore, appli-

cations sometimes require processing capability for a large number of requests by multiple

users simultaneously. Hence, the performance factors such as the number of simultaneous

processing requests and concurrent connected users in accordance with the requirements of

the target application should be considered before designing the application.

2.2.4 Communication among Planes

Communication among the planes is one of the important features of the frameworks for the

wearable medical systems. Communication technology is built into all levels, from devices

in the sensor plane to the data plane and application.

Communication between Sensor and Data Planes

The sensor plane handles collecting raw data, which is captured by the sensor device and

transmitted to servers in the data plane. For mobile and wearable devices, wireless com-

munication is preferred [60], although it is subject to several constraints, including power,

mobility, topology, data rate, and security.

First, the communication between sensor plane and data plane is power-constrained for

battery-powered devices, and communication consumes relatively high power to sensing and

processing in the device. Second, the mobility of the wearer impacts the communication

range during monitoring [13].

Second, the choice of type of communication interface may depend on the mobility and range.

Higher mobility may imply longer range, which may necessitate higher-power interfaces such

as Wi-Fi. Lower mobility would allow the use of shorer-range, lower-power interfaces such
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as Bluetooth, Zigbee, or IrDA.

Third, the topology of the sensor network impacts the operational efficiency. With repect

to the application, users may want to operate the entire system in a centralized manner.

In this case, the star topology is helpful to control each sensor node. However, it has a

critical problem, namely a single central point of failure. In contrast, mesh topology is more

robust and does not have the central point of failure problem, but at the expense of resource

redundancy. Some hybrid topologies have been proposed to address these problems, including

extended star topology or partially mesh topology. The topology should be determined in

consideration with the scale of network and expected usages.

Fourth, the data rate of the communication protocol should also be considered. The amount

of data is dependent on an application. The signal to be captured at the sensor plane may

have explosive quantity of data or only small amounts of data with respect to the application.

If the application requires only some feature data calculated on the sensor device, the com-

munication channel does not have to support higher data rate. Applications that perform

monitoring of the signal in real-time may require low latency and determinism, with or with-

out high data rate. Table 2.2 shows the features of the widely used wireless communication

standards. When we design an end-to-end system, the communication standard should be

selected in consideration with the data rate.

HIPAA (The American Health Insurance Portability and Accountability Act) enforces to

observe the security rules to keep the electronic protected health information secure by

HIPAA security rule [27]. To build up a HIPAA compliant system, the system should

comply the following recoomendations. First, to err on the safe side would be to combine

two methods of encryption - send encrypted files over an encrypted connection. Second, when

it comes to remote access, VPN (Virtual Private Network) should be used. Third, for web-

based data access only SSL (Secure Socket Layer) connection is allowed. Fourth, following
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Table 2.2: Wireless Communication Standards

Range Data Rate Power Consumption Freq.

Zigbee 10-75m 20-250kbps 30mW
868/915MHz

2.4GHz
Bluetooth 10-100m 1-3Mbps 2.5-100mW 2.4GHz

IrDA 1m 16Mbps - Infrared
MICS 2m 500kbps 25uW 402-405MHz

Wi-Fi(802.11g) 200m 54Mbps 1W 2.4GHz

the NIST (National Institute of Standards and Technology) standard, called the Advanced

Encryption Standard (AES) for encryption is recommended for the data encryption [47].

Communication between Data and Application Planes

Communication from the data plane to the application plane uses generic networks like ether-

net or cellular network using GSM, UMTS, CDMA and WiMAX. Generally, the application

plane organizes its own methodology for displaying, visualizing, and analyzing the data on

a generic platform such as laptops, tablets, or smartphones. Thus, the main point of the

communications between the data plane and the application plane is data exchange.

There are two different types of data exchanging methods at the application plane: closed

data exchanging and open data exchanging. A stand-alone application usually exchanges

the data with the data plane through socket network programming. Thus, it doesn’t have

higher compatibilities with other applications or platforms, however, it has an advantage in

security. In contrast, a web-based application has a great advantage in terms of compatibility.

The application works at heterogeneous platforms, by using standardized data exchanging

method such as XML over SOAP/HTTP. But, it is more vulnerable than the stand-alone

application.

At the communication between the data plane and the application plane, the most impor-

tant thing is security. Commonly, the data plane provides APIs for sharing and retrieving
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personal medical information, then application will retrieve the data through the APIs. The

data plane should give permission to only the authorized/authenticated requests, and the

communication channel should also be secured.

2.3 Frameworks

2.3.1 Rimware

Rimware[29] is middleware for IoT (Internet of Things)-Cloud integration. IoT devices are

utilized as sensor nodes or actuators in certain applications. For more efficiency of the IoT

devices, they are allowed to participate in multiple application domains by implementing

multiple profiles. Profiles are application-specific protocols supported by many personal-

area network protocols such as Bluetooth 4.0 Low Energy (BLE) technology. The use of

profiles enable nodes to standardize on the meaning of the communication. Rimware plays

a role as a middleware layer to enable profile-based IoT nodes to realize the full potential of

inter-application participation. Especially, the IoT-Cloud environment needs middleware for

several reasons. First, it is necessary to support secure, authenticated, and access-controlled

connections. Second, the cloud side needs to know the capability of each node to provide

an appropriate application to the device. Rimware performs actions to provide necessary

features for both the device side and the cloud side.

Fig. 2.4 depicts how Rimware works among nodes, gateway, smartphones, and application

specific domains. The core components of Rimware are adapters running on the gateway or

apps running on the smartphones, knowledge base running in the cloud, and access controller

running in the cloud. The adapters act as the interfacing process between a device and a

cloud. The knowledge base in the cloud plays a role to map between BLE profiles and

actions in the cloud. The access controller in the cloud enforces access control according
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Figure 2.4: Overview of rimware

to the profile mapping by knowledge base. Rimware provides secure and authenticated

connection establishment between a node and a cloud. Also, it allows a node to participate

multiple application domains.

2.3.2 SeeMon

SeeMon (a Scalable and energy-efficient context Monitoring framework for personal sensor

network) [31] is a framework for providing proactive services to mobile users by utilizing

context-based sensor networks. Under sensor-enriched and resource-limited mobile envi-

ronments, SeeMon can continuously monitor the changes of contexts on personal sensor

networks.

Fig. 2.5 shows the architecture of SeeMon framework. Its four components inside are CMQ

processor, Application broker, Sensor broker, and Sensor manager. CMQ is Context Moni-

toring Query, which is an intuitive monitoring query language that supports rich semantics

for monitoring a wide range of contexts. CMQ processor stores registered queries and per-

forms scalable context monitoring by evaluating numerous CMQs over data delivered by
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the Sensor broker. Application broker provides interfaces between SeeMon and the applica-

tion. Through the access controller, which is the inner component in Application broker, it

manages privacy and security parameters in SeeMon. Sensor broker plays a role to deliver

information from sensor nodes to CMQ processor. The Sensor broker is composed of input

handler, preprocessor, and feature generator. The input handler collects information from

the sensor node and the preprocessor removes noise and errors from the input data. The

feature generator performs computations for generating feature data, which is used on CMQ

processor for evaluating contexts. Finally, the Sensor manager provides a function to control

the sensor based on the evaluation of CMQ processor. This feedback component is one of

the features SeeMon has.

In sum, the goal of SeeMon is to provide an energy-efficient framework for context monitoring.

It focuses on the continuous detection of the context changes. Moreover, it achieves a high

degree of efficiency in computation and energy consumption by applying the bidirectional

approach.

2.3.3 SPINE

SPINE (Signal Processing in Node Environment) [7, 22, 18] is an open-source software frame-

work for designing and prototyping of WBSN (Wireless Body Sensor Network) applications.

SPINE consists of efficient implementations of signal processing algorithms for analysis and

classification of data from sensor nodes and application-level communication protocol. To

support above features, SPINE provides libraries of protocols, utilities and processing func-

tions, and a lightweight Java API to manage the sensor nodes or issue service requests.

Fig. 2.9 depicts the functional architecture of SPINE framework. It is composed of two

software components: SPINE node and SPINE coordinator. SPINE node is designed in

TinyOS environment and written in nesC language. It includes several utilities for signal
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processing: data storage buffer, math functions, and common feature extractors. The sensor

controller in SPINE node manages sensor data sampling and buffering on the sensor nodes.

SPINE node ccommunicaton manager handles the communication between the coordinator

and the sensor nodes through SPINE protocols.

SPINE Node

SPINE Coordinator

Figure 2.7: Topology of SPINE network

At SPINE coordinator side, there are two main components: SPINE APIs and SPINE host

communication manager. SPINE host communication manager acts as a counterpart of

SPINE node communication manager. To handle the data from SPINE-based network, the

SPINE Coordinator provides APIs for user applications, defined as SPINE API.
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SPINE-based network is organized as Fig. 2.7. SPINE coordinator acts as gateway to connect

the BSN with wide area networks for remote data access. Since SPINE-based network is

star topology, SPINE nodes can only be associated with a single SPINE coordinator. It has

an advantage to implement and manage easily, but simultaneously, a restriction to extend.

2.3.4 Codeblue

CodeBlue is a hardware and software platform for medical sensor networks [39, 55]. It is

designed for emergency situations in hospital. Thus, the main goal of this platform is to

enhance first responders’ ability to assess the patient’s status by providing the information

from sensors for catching vital signs.

CodeBlue is designed to provide routing, naming, discovery, and security for wireless medical

sensors. For monitoring purposes, various devices such as PDAs, PCs, and other devices

can be utilized as monitoring devices. CodeBlue is based on a publish/subscribe routing

framework for data delivery, allowing sensing nodes to publish streams of signals, locations,

and identities to which PDAs or PCs accessed by doctors can subscribe. By using ad hoc

network concepts, the action of publish/subscribe occurs between any two devices. This

mesh network topology is efficient in limited range such as in a hospital. To extend the

coverage, some fixed nodes can be utilized to detect disappeared nodes and re-route the data

to detected nodes.

Coordinator

CodeBlueQuery(CBQ) TinyADMR

Device

PPG EKG MoteTrack

StdControl PubSubDiagnostic PubSub

PPG EKG MoteTrack…

Figure 2.8: Architecture of CodeBlue framework
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The architecture of CodeBlue framework is introduced in Fig. 2.8. The main components

of the CodeBlue framework are a coordinator, CodeBlueQuery component, and an ADMR

protocol layer. The coordinator plays a role as a command center. Usually, it receives

messages, translates them and forwards commands to CodeBlueQuery. CodeBlueQuery col-

lects the signals from the sensors and transmits them to the coordinator. Another core

component is ADMR protocol. To implement publish/subscribe routing protocol, CodeBlue

employs ADMR (Adaptive Demand-Driven Multicast Routing) protocol. TiyADMR compo-

nent provides a PubSub interface. Through this interface, the sensor nodes and monitoring

device can join in a particular channel they wish to be associated with.

CodeBlue framework shows that the medical care system for emergency can be implemented

efficiently with low-power sensor nodes. By using publish/subscribe routing protocols, physi-

cians can monitor multiple patients at the same time as long as they subscribe a particular

channel, which includes their patients’ sensor nodes. However, CodeBlue framework has

several restrictions. Even though it supports multi-hop routing with several fixed nodes, It

could not show efficiency, if the coverage is too wide. Further, CodeBlue framework doesn’t

handle any security or privacy problem. As medical information is sensitive to be exposed,

privacy and security problem should be seriously considered.

2.3.5 REDCap

REDCap (Research Electronic Data Capture) [26] is a software solution to support clinical

and transitional research. The main goal of REDCap is to provide intuitive and reusable

tools for collecting, storing, and disseminating project-specific research data. Nowadays,

REDCap is a standard to collect and share the research-related electronic data.

To use REDCap system, some infrastructural components such as a web server, a database

server, a SMTP email server, and a file server, should be set up. Since REDCap system is
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a web-based application, it is easy to access the data through a web-based user interface.

However, the security problem should be seriously considered. To keep the electronic data

secure, it is recommended to set up the database server, the file server, and sometimes even

web-server behind firewall. REDCap provides user authentication and role-based security to

keep the data secure. Through the user privilege control, permission to access the data is

given to a user, since many different types of the project-based data are handled in REDCap

system.

A data export function is one of the important features in REDCap system. It also allows

users to export the data as various format, such as PDF, CSV, JSON, or XML, if the users

has permission to export them. Further, REDCap also provides APIs to import, export, and

share the data programatically. REDCap API implements the use of tokens as a means of

authenticating and validating all API request to exchange the information securely.

In sum, REDCap project provides the environment for researcher to collect, store, and share

the electronic data. Even though the concept is simple, it is very helpful and efficient to

share and reuse a wide and variety of research-related data.

2.3.6 Mercury

Mercury is a wearable sensor network platform for clinical neuromotor disorders such as

Parkinson’s Disease, epilepsy, or stroke [33]. As seen in Fig. 2.9, Mercury is composed of

two main components: sensor nodes, and a base station. Sensor nodes capture and store the

captured data, compute features, and respond to requests from the base station to download

the data and change sampling and storage modes. The sensor nodes of Mecury is designed

using the Pixie operating system [34], which supports a resource-aware programming model.

Mercury can track energy and bandwidth in real-time by exploiting the abilities of Pixie OS.

To control power consumption, Mecury provides an activity filter module in the sensor node.
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The activity filter plays a role as an actuator of the sensing modules. If the accelerometer

does not have enough meaningful movements, the activity filter drops the data from the

accelerometer and disables other sensors. The sensor node has a control interface to operate

the requests from the base station. This control interface can change the sampling rate of

each sensor and store/transfer mode. Another component of the sensor node is a feature

extractor. The feature extraction can be performed in the sensor node to save the bandwidth

and energy during transmitting the data, since it is more efficient than transmitting the raw

data. To communicate with the base station, Mercury also defines the reliable transfer

protocol.

Activity Filter

Control Interface

Feature Extractor

Reliable Transfer Protocol Application Driver

Sampling/Storage 
Controller

Node 
Status

Download 
Manager

Sensor Node Base Station

Accelerom
eter Gyro Heartbeat

Figure 2.9: Architecture of Mercury

The core component of the base station is an application driver. The application driver runs

on the base station and coordinates the sensor network’s operation to manage data sam-

pling, storage, and acquisition. However, this application driver is an application-dependent

component, which means that the core functions should be determined by the application.

Mercury provides only narrow APIs to handle the information from the sensors. More wide

range of application-specific policies can be implemented on top of this narrow API according

to target clinical requirements.
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2.3.7 MedMon

MedMon (Medical security monitoring) is a framework for securing medical devices based on

wireless channel monitoring and anomaly detection [63]. Wireless sensor network (WSN)-

based medical devices can be hacked by external attackers. Since medical sensor, actuator,

or controller handles sensitive data, it could be a severe threat to be exposed. MedMon

protects the BAN (Body Area Network) for a personal health system by monitoring the

wireless transactions and detecting abnormal behaviors.

Warning

Monitor

Attacker Warning

Monitor

Attacker

Jamming

Sensor Actuator Controller Sensor Actuator Controller

Jamming

Figure 2.10: Operation of MedMon (left) Passive mode (right) Active mode

Fig. 2.10 shows the operation of MedMon. There are two modes: passive and active. If

a potential attack is is detected at the monitoring component, the monitor can respond

passively or actively. In passive mode, it provides a warning to the patient through an alarm

or a vibration. If the detected attack may be dangerous, the monitor gives a warning and

interferes with the transmission by sending jamming signals.

The main challenge of MedMon is how to determine if the transaction is normal or abnormal.

MedMon classifies potential anomalies into two categories: physical and behavioral. The

physical anomalies can be filtered out by security policies. To build up security policies,

the monitor should collect physical characteristics of the transactions such as RSSI (received

signal strength indicator), TOA (time of arrival), DTOA (differential time of arrival), and
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AOA (angle of arrival). By setting up the normal range of each measurement, the monitor

can determine if the transaction is a potential attack or not. The behavioral anomaly

detection is based on historical information of the transactions. The monitor keeps records

of the historical data and commands. When a new transaction is executed, it compares the

transaction to the historical records to decide the abnormality.

The key benefit of MedMon is that it is applicable to existing medical devices without

changes of hardware or software. This security framework is helpful to keep the integrity

of the BAN. However, it does not cover the confidentiality of communication channels and

availability during the duration of the jamming signal. Further, more comprehensive problem

is strictness of the security policies. If the security policies are too strict, which means that

the normal range of the measurements is too narrow, false-positive rate will increase. On

the contrary, if the security policy is too loose, which means that the normal range of the

measurements is too wide, the physical anomaly detection does not work well, as it increases

the false-negative rate.

2.4 Case study: End-to-end system for ECG monitor-

ing and analysis

In this section, we introduce a case study, which is a system for a medical monitoring system.

The system is designed as an end-to-end system for ECG monitoring and analysis, which

is based on our plane knowledge of the framework. The main purpose of the system is

recording, storing, sharing, analyzing, and displaying the ECG signal with various types

of device platforms. The architecture of our end-to-end system for ECG monitoring and

analysis is shown in Fig. 2.11. As we introduce each functional plane concept in 2.2, the

system is also composed of three planes.

30



Gateway

Sensor

Back-end 
server

REDCap
server

Analysis 
Engine

Front-end 
server

Sensor Plane Data Plane Application Plane

Recordings

InternetFeedback

Laptop Smartphone Tablet

Real-time Streaming

Doctors & Caregivers

Web-based Interaction

Figure 2.11: Architecture of ECG monitoring system

The wearable sensor device for ECG sensing can record the signal as raw format in the

internal flash memory. It can communicate with a gateway using BLE (Bluetooth Low

Energy Technology). Using an external BLE support monitoring device such as smart phone,

laptop, or tablet, it can monitor the ECG signals in real time. The gateway plays a role as

the proxy between the sensor plane and the data plane. It collects raw data and converts it

into the formatted data such as DICOM. Then, it transmits the signal to the data plane.

There are several servers in the data plane and the application plane of our system. In the

data plane, it is composed of a back-end-server and REDCap system. We employ REDCap

system (Section 2.3.5) for storing, managing, and sharing the ECG recordings. The back-

end server keeps the list of recordings, which are handled at the data plane, transmits,

and updates newly coming data and its information. It also provides the information to

the application server and the front-end server through its own APIs. To keep the data
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transmission secure, the token exchange based authorization is operated between the back-

end server and REDCap system.

The application plane comprises the application engine and the front-end server. The func-

tion of the application engine is dependent on the application or the request of physicians of

caregivers, which can be potential users. To analyze the data, it should collect the informa-

tion from the back-end server or REDCap system through the APIs. The analysis results

are transmitted to the front-end server. The front-end server plays a role of a contact point

with users. It collects the information the users want to see, displays the raw data or the

analysis results. It provides GUI for interacting with users or getting feedback from users.

We implement the front-end server for a web-based application, thus, the users can access the

information through browsers on various types of platforms such as laptops, smartphones,

or tablets.

Our end-to-end system is still being improved. Especially, security problem should be im-

proved. We should employ a secure channel establishment for exchanging protected health

information. Basically, our system requires token-based authorization of users who want to

access the information. To enhance the authorization for users, we need to employ the token

timeout and re-issue the token to users.

2.5 Summary

In this chapter, we describe a framework for development of wearable medical devices and

systems based on our proposed plane concepts. Our framework can encompass the state-of-

the-art in the field of wearable medical devices and applications and give many considerations

into the sensor plane, the data plane, and the application plane. Moreover, we introduce the

state-of-the art of existing frameworks for wearable medical applications. Furthermore, we
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provide a use case for our framework in the form of an end-to-end system for ECG monitoring

and analysis.
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Chapter 3

ECG Signal Reconstruction from

Undersampled Measurement

3.1 Motivation

Electrocardiogram (ECG) is one of the most significant types of signals for cardiac analyses

and diagnostics. However, ECG signals sometimes yield false-positive or false-negative cases

in the analyses of short-time recordings. To overcome these limitations, ECG signals should

be recorded for a sizable time. Due to the nature of ECG signal, more storage and bandwidth

are required to handle the signal. Furthermore, as the wearable and mobile types of health

monitoring devices are introduced, the amount of signal data has seen explosive growth while

pressures on energy efficiency increase.

The traditional approach to compressing the data is generally composed of two stages. The

whole data is obtained in the first stage, and then a compression algorithm to reduce redun-

dancies in the data is applied. In terms of compression performance, this approach can be

efficient in analyzing the data to reduce redundancies in the signal. However, it is not good
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in terms of storing data to be obtained and power consumption of the sensing device, since

the entire data must be obtained before processing.

The Compressive Sensing (CS) framework[11, 16, 12, 10] shows the underlying signal can be

reconstructed precisely from fewer samples so long as the signal is sparse or compressible in

a certain domain. According to Shannons sampling theorem, the signal should be sampled

at least twice the maximum bandwidth to be reconstructed perfectly. However, CS frame-

work shows that the signal can still be reconstructed with fewer samples than conventional

sampling theory requires if the signal is sparse or compressible.

In this chapter, we proposed a new approach to reconstructing ECG signals with compressive

sensing. Our proposed algorithm uses a trained overcomplete dictionary to be constructed

by K-SVD[5]. A comparison is presented with conventional compressive sensing signal re-

construction method using MIT-BIH arrhythmia database[21, 2].

3.2 Background

3.2.1 Sparse approximation

Sparse approximation is the representation that accounts for most of signal information with

a linear combination of a small number of elementary signals. Mathematically speaking,

if the N -dimensional signal y is a sparse signal, which has k non-zero coefficients in the

transformed domain, then the signal can be represented as

y = Φα =
k∑

i=1

αiφi (3.1)

where Φ is called a dictionary, which is the set of elementary signals. Algorithms that find

sparse approximation include matching pursuit (MP), orthogonal matching pursuit (OMP)
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[61], and least absolute shrinkage and selection operator (LASSO) [59].

3.2.2 Dictionary learning

The approximation performance in terms of the approximation quality and the sparsity of

the sparse vector a depends on the dictionary as well as signal itself. If the dictionary

contains well-estimated atoms or basis vectors, then the sparse vector will have a small

number of non-zero elements. Universally used dictionaries, such as those for discrete cosine

transform, Fourier transform, and Wavelet transform, are orthogonal dictionaries. They

have mathematical simplicity and few redundancies to represent dictionaries themselves,

but they are not suitable to represent signals with few redundancies. Due to the limitations

of the orthogonal dictionaries, researchers proposed overcomplete dictionaries by data-driven

learning. K-SVD [5] is a popular algorithms for constructing overcomplete dictionaries by

learning. Given signals Y = [y1y2 . . .yN ] ∈ Rn×N , the goal of K-SVD is to find the optimal

dictionary Φ ∈ Rn×K , where Φ is an overcomplete dictionary (K > n) and α is a sparse

code of given input signals Y , keeping the sparsity constraints; ‖αi‖0 ≤ T0,∀i.

min
Φ,a
{‖y −Φα‖2

F}, subject to ‖ai‖0 ≤ T0, ∀i (3.2)

3.3 Proposed algorithm

Our proposed algorithm is a new approach to reconstructing a signal from compressive sens-

ing system. Our proposed algorithm has a preprocessing stage for constructing a dictionary,

which can make the signal sparse or compressible in the transformed domain. Fig. 3.1 shows

the full procedure of the proposed algorithm.
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Figure 3.1: Procedure of the proposed algorithm

3.3.1 Dictionary learning stage

Fig. 3.1 shows the flow of our dictionary construction procedure for the overcomplete dictio-

nary from the given dataset. For constructing a set of training data, our algorithm performs

normalization. To remove the effects of the bias term, we also make the training data zero-

mean. After normalization and removal of the bias term, a set of normalized signal vectors

can be presented to Y = [y1, y2, , yk] ∈ Rn×k as a data set for training. Using the training

dataset Y , the optimized dictionary to represent the data under the sparsity constraint is

obtained by K-SVD dictionary learning. The trained dictionary performs well when repre-

senting signals with a few coefficients, but not signals with generality due to reflecting the

characteristics of the signal used at the training stage. To compensate for this shortcom-

ing, our proposed method uses the combined dictionary, which is made up of general basis

matrices, such as DCT or wavelet basis matrix, as atoms of the dictionary.
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3.3.2 Reconstruction stage

Our proposed algorithm assumes that the signal would be obtained by random sampling,

which means that the signal is selectively digitized in a time window. The sensing mechanism

can be represented as a sensing matrix, Φ ∈ Rm×n(m < n), which can select random samples.

The observation can be presented using the sensing matrix Φ. The key point of our proposed

algorithm is the signal model. We assume that the original signal can be presented as

x = Aα + c (3.3)

The signal is composed of two parts: the signal shape and the bias term, which defines

vector c. Our target ECG signal has a changeable baseline, so it is needs to separate the

bias term to estimate the shape part more accurately. We can take the sensing matrix and

our proposed signal model to derive the equation of observation y, thereby obtaining the

following equation:

y = Φ(Aα + c) = ΦAα + Φc (3.4)

The observation y also has two parts: the shape (i.e., the zero-mean signal part) and the bias

term. Since the sensing matrix is a simply random selection matrix, we can easily estimate

the bias term by taking the average of the observation y for the parameter estimation step

in Fig. 3.1. The bias term, called vector c, is

c = c · 1 ' E(y) · 1 (3.5)
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where 1 means a vector whose elements are all ones. After estimating the parameter and

subtracting it from observation, the simply zero-mean signal part remains.

y′ = y − E(y) · 1 = ΦAα (3.6)

The zero-mean observation part can be a simple linear equation with ill-posed conditions. In

this chapter, LASSO (Least Absolute Shrinkage and Selection Operator) is used as a solver

for the convex problem. We also use MATLAB toolbox provided by sparselab[3] as a solver

for l1 norm minimization problem.

3.4 Experimental results

For comparing the proposed algorithm with a conventional Compressive Sensing-based signal

reconstruction algorithm, we have chosen the MIT-BIH arrhythmia database as the test

signals. It provides 48 sets of 2-lead ECG signals at 360 11-bit samples/sec. Our metrics

for evaluating signal reconstruction are percentage root-mean-squared distortion (PRD) and

compression ratio (CR). PRD [30] shows the reconstruction error as a percentage and is

defined as

PRD =

√∑n
i=1(xi − x̂i)2∑n

i=1 xi
2

× 100% (3.7)

where n is the number of samples, and xi and x̂i are respectively the original data and the

reconstructed data from the proposed algorithm. CR is defined as

CR =
borig − bcomp

borig
× 100 (3.8)
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Table 3.1: Data set for training and testing from MIT-BIH Arrhythmia Database

Records for Training Records for Testing

100, 101, 102, 103, 104, 105, 106, 107,
108, 109, 111, 112, 113, 114, 115, 116,
118, 119, 121, 122, 123, 124, 200, 201

117, 202, 203, 205, 207, 208, 209, 210,
212, 213, 214, 215, 217, 219, 220, 221,
222, 223, 228, 230, 231, 232, 233, 234

where borig and bcomp represent the number of bits required for the original and compressed

signals, respectively.

3.4.1 Dictionary construction

We have chosen 24 out of 48 signals from the MIT-BIH arrhythmia database for training our

algorithm and constructing the dictionary. Another 24 signals except for the signals used

in training are utilized to evaluate the performance of our proposed algorithm.Table 3.1 de-

picts the signals included in training dataset. User-specific parameters on the procedures of

dictionary learning include sparsity, the size of dictionary, and the size of minimum signal

block. The proposed algorithm uses T0 = 10 as sparsity constraint for dictionary construc-

tion. It also uses 64 samples as a minimum signal block, and 5012 atoms as a dictionary

size, which means that the trained dictionary is a 64 × 5012 matrix. After obtaining the

trained dictionary, we combine it with 64 × 64 DCT basis and wavelet basis, and the final

size of the combined dictionary is 64× 5140.

3.4.2 Comparison of the reconstruction results

On Fig. 3.3, (a) and (b) show the results using conventional DCT and wavelet bases (daubechies4)

with half of the randomly selected samples from original signal, i.e., CR = 50%. Our method

using the combined dictionary achieves PRD = 1.34% when CR = 50%. Fig. 3.4 depicts

the performance over the MIT-BIH arrhythmia database. It shows high CR leads to high
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Figure 3.2: Original signal for comparison

Figure 3.3: Reconstruction results) (a) DCT basis (b) Wavelet basis (Daubechies4) (c)
Trained Dictionary by K-SVD (d) Combined Dictionary
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Figure 3.4: Comparison of Compression Performance between Conventional Methods

distortion. According to the dictionary or basis used into the reconstruction method, the

performance is shown differently. Our proposed method shows less distortion than the other

conventional methods do.

3.5 Summary

In this chapter, we propose reconstructing ECG signals from undersampled data by com-

pressive sensing. The signal reconstruction from undersampled data is performed by finding

a sparse solution using a given dictionary, and the overall performance depends on the dictio-

nary utilized in the approximation process. Dictionaries constructed by our method achieve

good approximation performance by combining the trained dictionary by K-SVD with uni-

versal types of dictionaries such as DCT or wavelet transform. Our algorithm shows good
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performance with low distortion in terms of the CR and PRD over MIT-BIH arrhythmia

database. Since the algorithm is learning-based method, the performance can be improved

if the training dataset is organized well.
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Chapter 4

Lossy Compression for ECG Signal

4.1 Motivation

Electrocardiogram (ECG) data often require compression for storage, transfer over net-

works, and handling, especially given the trend towards miniaturization and wearable health-

monitoring systems. ECG signal compression algorithm introduced in the past several

decades can be lossless [62, 9], but lossy ones achieve better compression ratios by allowing

small distortions in the parts of data that are not critical to the analysis of the signals.

Lossy algorithms can be further categorized into direct signal compression and transfor-

mation compression. The former attempts to obtain redundancies on the signals to be

compressed and extract meaningful parameters after analysis; the latter analyzes the signals

in the transformed domain and retains the coefficients of the particular features in the data

[49, 35, 28, 44].

We propose a new approach to ECG signal compression based on heartbeat and dictionary

learning. Our algorithm is divided into two stages. The training stage performs length

normalization by interpolation to construct the overcomplete dictionary. During the com-
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pression/decompression stage, it calculates the optimal coefficients, which can capture most

of the information content of the ECG signals. We compare our results with those of several

well-known ECG compression algorithms using the MIT-BIH arrhythmia database [21].

This chapter is organized as follows. We already introduce the concept of sparse represen-

tation and dictionary learning in Section 3.2, we introduce the background regarding sparse

representation and dictionary learning. In Section 4.2, we describe our proposed ECG com-

pression algorithm using overcomplete dictionary constructed by K-SVD. Section 4.3 presents

experimental and comparison results using MIT-BIH arrhythmia database.

4.2 Proposed Algorithm

Data compression can be viewed as the process of reducing the redundancies in a signal. One

type of redundancies due to the quasi-periodic nature of the ECG signals is shown in the

correlation between adjacent beats. To reduce the redundancy, we propose the beat-based

data compression algorithm with an overcomplete dictionary. Our algorithm is composed

training step and compression/decompression step. In training step, the algorithm constructs

a set of training data for the learning dictionary, which will be constructed using K-SVD

algorithm.

4.2.1 Dictionary Construction

Fig. 4.1 shows the flow of our dictionary-construction stage for the overcomplete dictionary

from the given dataset. Although ECG signals are repetitive, they do not necessarily have a

fixed period and morphology, even though they may have regular patterns. An ECG signal

between two adjacent peaks of QRS complexes may show several morphological patterns

with different lengths. To use this information for compression, our algorithm performs
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Figure 4.1: Dictionary construction process

peak detection and length normalization.

The proposed algorithm uses the Pan and Tomkins QRS peak detection method[50] to ex-

tract the patterns between the peaks of two adjacent QRS complexes. After the detection,

length and magnitude normalizations are needed to regularize the peak-to-peak ECG signal

for constructing a set of training data. To remove the DC component of the signals, the

algorithm makes the extracted pattern zero-mean. Fig. 4.2 shows that each ECG signal has

a different length. Fig. 4.3 depicts the result of normalization process.

After normalization, the kth peak-to-peak data dk, whose length is not equal to n, could be

represented as an n-dimensional column vector yk. A set of these normalized vectors could be

presented to Y = [y1y2 . . .yk], called the training dataset. Using Y , the optimized dictionary

to represent the data under the sparsity constraint is obtained by K-SVD dictionary learning.

4.2.2 Compression

Our proposed compression procedure is illustrated in Fig. 4.5. It compresses beat-based data,

so the target data should be extracted before compression. During dictionary construction,

QRS complexes should be detected to distinguish adjacent beats.Then,X, which is a selected
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Figure 4.2: Original ECG signal (Record 231 from MIT-BIH Arrhythmia Database)

0 100 200 300 400 500
−0.4

0

0.4

0.8

Index(samples)

M
ag

ni
tu

de

Shapes of heartbeats with normalized lengths

 

 
  Heartbeat1
  Heartbeat2
  Heartbeat3
  Heartbeat4
  Heartbeat5

Figure 4.3: After normalization

47



0 100 200 300 400 500
−0.5

0

0.5

0 100 200 300 400 500
−0.5

0

0.5

0 100 200 300 400 500
−0.5

0

0.5

0 100 200 300 400 500
−0.5

0

0.5

0 100 200 300 400 500
−0.5

0

0.5

0 100 200 300 400 500
−0.5

0

0.5

0 100 200 300 400 500
−0.5

0

0.5

0 100 200 300 400 500
−0.5

0

0.5

0 100 200 300 400 500
−0.5

0

0.5

Atoms of Learned Dictionary by K−SVD

0 100 200 300 400 500
−0.5

0

0.5

Figure 4.4: Atoms of Learned Dictionary by K-SVD

target beat to be compressed, should be length-normalized. To recover the signal it the

decompression step, the length of the beat should be stored.

In the sparse coding stage, the algorithm finds the sparse vector using the given overcomplete

dictionary. From Eq. (3.1), the sparse code in α is not a unique vector, since the given

dictionary is overcomplete. To obtain the appropriate coefficients, which can represent the

signal with a small amount of error, sparsity constraint should be included in the equation.
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Figure 4.5: Compression process

Sparse solutions with overcomplete dictionary can be found using MP, OMP, and LASSO, as

discussed in Section 3.2. We use OMP, a greedy algorithm, for its simplicity and efficiency.

In the parameter aggregation stage, the proposed compression algorithm needs to store

information about the heartbeats. The beat-related information to be stored is in terms of

the average value of the signal in a beat and the length of the beat. If the dimension of the

constructed dictionary is n×K, then the sparse vector α is K×1. Due to the overcomplete

requirements, K is much larger than n. Under the sparsity constraint, most of the elements

in sparse vector α are zero. Only a small number of elements have non-zero coefficients. To

reconstruct the sparse vector α during decompression, the index of the non-zero elements

should be stored.

4.2.3 Decompression

The decompression step is exactly the reverse procedure of compression except for the sparse

coding stage. For the decompression, the sparse decoding stage is replaced by the sparse

coding. Since the elements of sparse vector means the score of respective atoms of the
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given dictionary, the decoding merely requires the linear combination of the relevant atoms.

After sparse decoding, the algorithm restores the original length of signal using stored length

information.

4.3 Experimental results

For comparing the results of the proposed algorithm with those of conventional ECG com-

pression methods, we have chosen the MIT-BIH arrhythmia database [21] as the test signals,

which are widely used for evaluating the performance of ECG compression algorithms. The

database provides 48 sets of ECG signals, which are all two-lead ECG data. Each lead is

recorded at 360 samples/sec with 11-bit resolution. To quantify the performance of the pro-

posed algorithm, we employ three widely used metrics: compression ratio (CR), percentage

root-mean-squared distortion (PRD), and quality score (QS).

4.3.1 Measurement of Performance

Compression ratio (CR) is defined as

CR =
the number of bits of original signal

the number of bits of compressed signal
(4.1)

Another widely used metric is percentage root-mean-squared distortion (PRD), which shows

the reconstruction error as a percentage. It is defined as

PRD =

√∑n
i=1(xi − x̂i)2∑n

i=1 xi
2

× 100% (4.2)

where n is the number of samples, and xi and x̂i are the original data and the reconstructed

data from our proposed algorithm, respectively.
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The quality score (QS)[17] is the ratio between the CR and PRD:

QS =
CR

PRD
(4.3)

High value of QS means good performance on lossy compression. It is useful to choose the

best method while taking the compression reconstruction errors into consideration as well.

4.3.2 Parameters for Dictionary Construction

Since our proposed algorithm is learning-based, we should construct data sets for training

purpose as explained Section 4.2. We have chosen 24 out of 48 signals from the MIT-BIH

arrhythmia database. Of the 48 signals, 24 are utilized by our K-SVD based algorithm to

construct the dictionary, while the rest are used to evaluate the performance of our proposed

algorithm. Table 4.1 depicts the signals included in training dataset, totaling 51,492 beats

per lead.

Parameter selection is a key for good quality of dictionary construction. Several user-specific

parameters on the procedures include sparsity, the size of dictionary, and the size of length

normalization. The proposed algorithm uses T0 = 10 as sparsity constraint for dictionary

construction. To satisfy the overcomplete requirement, we set the dictionary size to 1024.

Furthermore, the algorithm normalizes the peak-to-peak signals to 500 samples by linear

interpolation. The size of the normalized peak-to-peak signals should be larger than the

original peak-to-peak signals for preserving the signals after the processing.

The magnitudes of the coefficients are determined by the dictionary. The coefficients are

determined by projecting the normalized data on the atoms of the dictionary. Since the

magnitude of each atom of the dictionary is unit-length, each element in the atoms dictionary

is quite small.
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Figure 4.6: Compressed data format

Table 4.1: Data set for training and testing from MIT-BIH Arrhythmia Database

Records for Training Records for Testing

100, 101, 102, 103, 104, 105, 106, 107,
108, 109, 111, 112, 113, 114, 115, 116,
118, 119, 121, 122, 123, 124, 200, 201

117, 202, 203, 205, 207, 208, 209, 210,
212, 213, 214, 215, 217, 219, 220, 221,
222, 223, 228, 230, 231, 232, 233, 234

More bits should be allocated to represent the coefficients; but to avoid over-allocation, we

scale up the dictionary. Experimentally, we use 10 as a scaling factor.

4.3.3 Data format

Fig. 4.6 shows our proposed data format after parameter aggregation for representing one

heartbeat. In the beat information header, we allocate 11 bits for representing the average

peak-to-peak value and 9 bits for the length. Due to the total dictionary size, we allocate 10

bits for each index, which is the location of the atom with respect to the coefficient value.

The size of the coefficient field varies between 8-10 bits in these experiments.

Table 4.2: Performance comparison with conventional algorithms

Algorithm spiht[35] aztec[14] cortes[4] hilton[28] djohan[15] fira[17] Ours

PRD 1.18% 28% 7% 2.6% 3.9% 0.61% 0.55%

CR 8:1 10:1 4.8:1 8:1 8:1 12.74:1 13.79:1

QS 9.3 3.57 0.68 3.076 2.05 20.88 24.75
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Figure 4.7: Signal reconstruction with the proposed algorithm(Record 205 from MIT-BIH
arrhythmia database)
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4.3.4 Evaluation

To recall, our metrics are CR, PRD, and QS. For the purpose of evaluating performance, the

first 10 heart beats of the signal are used to the compression. Table 4.1 shows the training

dataset for constructing dictionary and the testing dataset for evaluation.

Fig. 4.7 shows that the reconstructed signal contains small deviations from the original

signal. The original signal is Record 205 from MIT-BIH arrhythmia database. With Record

205, CR = 11.23, PRD = 0.30%, QS = 37.43 are achieved. The highest compression ratio

(CR = 18.27, PRD = 0.69%) is achieved for Record 117. The lowest compression ratio

(CR = 7.99, PRD = 0.75%) is achieved for Record 213. The proposed algorithm has high

CR in the range of 7.99-18.27 and low PRD in the range of 0.28-1.52(%).

The CR and PRD have close relationship in lossy compression. In general, high CR implies

high PRD, and low CR leads to low PRD. Since the proposed algorithm is a beat-based

compression algorithm, the CR is determined by the number of coefficients that represent a

heart beat. Fig. 4.8 shows the relationship between CR and PRD over entire testing dataset.

Table 4.2 shows the comparison results with the conventional methods, such as SPIHT [35],

AZTEC [14], CORTES [4], Hilton [28], Djohan [15] and Fira [17]. Our proposed algorithm,

which uses 10 coefficients to represent each heart beat, has better PRD performance than

other conventional methods do. Our algorithm has an average PRD of 0.55%, CR of 13.79:1,

and QS of 24.75 over the testing dataset.

4.4 Summary

We propose a new two-stage algorithm for ECG signal compression based on dictionary

learning from training datasets. The dictionary construction stage uses the K-SVD algo-
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rithm with given set of training data, which is zero-mean and length-normalized. The com-

pression/decompression stage first extracts the peaks of QRS complexes by using Pan and

Tomkins method and then finds the best-matched sparse codes with the trained dictionary.

The algorithm has been tested with MIT-BIH arrhythmia database and compared with ex-

isting methods in terms of the compression ratio (CR), percentage of root mean squared

distortion (PRD), and quality score (QS). Our algorithm shows good compression perfor-

mance with low distortion. Since the algorithm is a learning-based method, the performance

can improve with the training dataset.
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Chapter 5

QT Analysis Algorithm and its

implementation

5.1 Motivation

The electrocardiogram (ECG) is one of the most significant types of signals for cardiac

analysis and diagnostic purposes. ECG signals consist of a recurrent wave sequence: the P

wave, the QRS complex, and the T wave. In ECGs, most of the clinically useful information

can be found in intervals, amplitudes, or wave morphology. Of particular interest is the

QT interval, which is defined as the time interval from the onset of the QRS complex to

the offset of the T wave, and which is known as a good indicator of an increased risk for

life-threatening ventricular arrhythmia and sudden cardiac death. The process of measuring

the prolongation of the QT interval is called QT analysis, which can be a good marker

and reference for diagnostic purposes. However, there is no standard for measuring the

prolongation of the QT interval on an ECG signal [51, 23], due to subjective measurement.

Conventional recording-based QT analysis methods are generally divided into two stages:
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Figure 5.1: Corrected QT Interval

one for recording and transferring, and the other for analysis based on the recorded signal.

To automatically measure the prolongation of the QT interval, the algorithm should find the

fiducial points, namely the R peaks (for calculating heart rate), the QRS onset, and T offset

(for measuring the QT interval). It is relatively easy to find the QRS complex due to its

salient characteristics, but it is not so easy to detect the other fiducial points, especially the

onset of the QRS complex and the offset of the T wave. To find the fiducial points, recent

research employs a temporal search interval before and after the detected QRS location to

search for the T waves using adaptive filtering [58], low-pass differentiation [32], or wavelet

transform [42].

In this chapter, we propose a QT-analysis algorithm based on beat-by-beat analysis and

deploy our proposed algorithm at a server, which can provide entire analysis for doctors

and caregivers. This system comprises several components for analyzing, displaying and

interfacing. At implementation section, we introduce each components and how they work.
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5.2 Proposed algorithm

5.2.1 QT interval

An electrocardiogram (ECG) measures the electrical activity of the heart. It senses electrical

impulses generated by the polarization and depolarization of the cardiac tissue and renders it

as a waveform. It is an important instrument for cardiac analysis and diagnosis. As Fig. 5.1

shows, an ECG signal is shown as a mixed signal of several different waves. A typical ECG

tracing of the cardiac cycle consists of a P wave, a QRS complex, a T wave, and a U wave.

The U wave is usually dominated by the P and T waves and is normally invisible.

Our focus is the QT interval, which has been shown as a good marker for life-threatening

cardiac risks. It is measured by calculating the time difference between the QRS onset and

the end of the T wave. To measure the QT interval, signal segmentation should first be

performed, but this is not easy due to the characteristics of the component waves of ECG.

Since the QT interval varies with heart rate, it should be normalized for comparing the QT

values over time at different heart rates. In general, Bazzett’s formula [6] is widely used as

a method for calculating the corrected QT interval, denoted QTC :

QTC =
|QT|√
|RR|

(5.1)

where |RR|means the length of the R-R interval between the current R peak and the previous

R peak, while |QT| is the length from the onset of Q to the end of T, as shown in Fig. 5.1.

To monitor the beat-by-beat QTC , we need to segment the fiducial points such as the QRS

onset, the T offset, and the R peak in every heart beat. Our proposed method shows an

effective way to segment each fiducial point and calculate QTC for beat-by-beat analysis for

in-device processing.
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5.2.2 Making templates

To find fiducial points from a given set of signals, we need prior knowledge about the patterns

of interest. These are called templates, which are reference patterns we want to find. Our

method suggests making a template with multiple channels. Let Si(j) denote the jth sample

from the ith channel. Template T can be defined as

Ts = {T1, T2, . . . , Tn} (5.2)

Ti = {Si(j − k), Si(j − k + 1), . . . , Si(j), . . . , Si(j + k)}T (5.3)

where n is the number of channels used in analysis, and the length of the proposed model

is 2k + 1. To suppress the effect of noise, we take a center weighted mask using a Gaussian

function. Let Gi denote the one-dimensional Gaussian weighted vector for the ith channel

whose size is 2k + 1.

k(n) = exp

(
−1

2

(
‖x− k‖

σ

)2
)

(5.4)

Gi = {k1, k2, . . . , kn}T (5.5)

The Gaussian mask, G , can be defined as

G = {G1, G2, . . . , Gn} (5.6)

where G1 = G2 = · · · = Gn. The final template T we use in the analysis can be defined as

T = Mask(G , Ts) (5.7)

where Mask(A,B) returns the elementwise product of A and B.
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5.2.3 Preprocessing

Filtering

ECG signals can be easily contaminated by various types of noise. The purpose of the

preprocessing step is to remove the noise that is not a valid ECG signal. Baseline drift is

one of the phenomena commonly seen in ECG signals.

With band-pass filtering, the artifacts due to baseline drift and high frequency noise can be

removed. The proposed method utilizes a band-pass filter with cut-off frequencies of 0.5 Hz

and 100 Hz, since the majority of ECG signals are located in the lower-frequency area under

100 Hz.

QRS-Complex Detection

The ECG signal is a pseudo-periodic signal. For beat-by-beat analysis, we need to segment

every beat. The QRS Complex is a dominant signal in a beat of the ECG signal. It

could be a good separator, which distinguishes adjacent beats. Every fiducial points should

be located between the former and latter R peaks; furthermore, the R-R interval should

be found to calculate the corrected QT interval, according to Bazzett’s formula. Due to

this characteristic, our QT analysis entails finding the QRS complex. In this chapter, we

employed the Pan and Tomkins QRS detection method [41, 25], which is the most popular

method for finding the QRS complex.

5.2.4 Detection step

We already have the information about each fiducial point, the QRS onset, and the T wave

offset. The templates depict these patterns, which can explain the fiducial points, which are
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located in the center of the templates. At the detection step, t he proposed algorithm finds

the best matching location with respect to the given template. Due to the characteristics of

ECG signal, there exist only one matching point in a beat signal, which is the signal between

consecutive R peaks. Our proposed algorithm utilizes the result of the peak detection step

as a beat separator for beat-by-beat analysis. Let R = {r1, r2, . . . , rn} denote the result

of the peak detection. We can split the signal as a single R-to-R beat, which consists of

the signal between consecutive R peaks. In the proposed algorithm, the expanded signal as

much as the length of a given template will be utilized for handling the boundary. Thus, the

expanded kth single R-to-R beat signal B in the ith channel can be defined as

Bi = {Si(rk −
w

2
), Si(rk −

w

2
+ 1), . . . , Si(rk+1 +

w

2
)}T (5.8)

B = {B1, B2, . . . , Bn} (5.9)

where n is the number of channels in analysis, and w is the length of a given template.

To search for the best matching location compared with a given template, we need to compare

the similarity with a given template at each location. As an indicator for investigating

the similarity between the signal and a given model, our algorithm utilizes the Pearson

correlation coefficient, defined as

rXY =

m∑
i=1

(Xi −X)(Yi − Y )√
m∑
i=1

(Xi −X)2

√
m∑
i=1

(Yi − Y )2

(5.10)

The sliced signal Bs at a location k, which has exactly the same length as a given template,

can be defined as

Bi,s = {Bi(k), Bi(k + 1), . . . , Bi(k + w − 1)}T (5.11)

Bs = {B1,s, B2,s, . . . , Bn,s} (5.12)
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Figure 5.2: Procedure of the proposed algorithm

where w is the length of the given template, and n is the number of channels in analysis.

After the elementwise multiplication with a Gaussian mask, which is defined in Eq. (5.6),

all these signals will be investigated by calculating the Pearson correlation coefficient with

a given template. We can regard the location, which has the highest value of the Pearson

correlation coefficient that meets the threshold constraint, as the best matching location in

a single beat. According to the proposed method, we can find sets of the searched fiducial

points, Qon and Toff.

5.2.5 Data verification

Reorganization of Dataset

We should reorganize the dataset according to the result of the above method. A set can

be composed from the searched fiducial points (i.e., two consecutive R peaks, a QRS onset,

and a T offset), which are utilized to compute the corrected QT interval in Eq. (5.1). The
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ith set of the fiducial points can be defined as

QT i
c = {ri, ri+1, Qon(i− 1), Toff(i)} (5.13)

With a single set of QT i
c , we can get the ith corrected QT interval.

Decision Rule for Data Verification

To verify the validity of the searched fiducial points, we need to investigate the points that

meet the requirement related to the characteristics. According to the constraints on the

human signal, we already have the information regarding the general range of the intervals.

Our method uses the following tests to show the validity of the given set from Eq. (5.13).

a) Test for the range of heart rate In [20], the maximum heart rate can be calculated by

the formula, HRmax = 220 − Age. In other words, the heart rate of most human beings is

less than 220 bpm. Generally, normal range for adult heart rates is 60 bpm to 100 bpm,

according to [8, 56]. However, younger people have faster heart rates than adults. The article

shows the possible range of human heart rates. The proposed algorithm sets the valid range

of the heart rate to 40-200 bpm.

b) Test for the validity of Qonset and Toffset In a single beat signal, Toffset should be located

prior to Qonset. If the assumption is not met by the given points, the proposed method rejects

the points put into analysis.

Another test for showing the validity of each point is the comparison of the correlation

coefficient value with the given template and the searched location. The proposed method

has a previously set threshold value. Even though the cross correlation value of a certain

location is the maximum value in a given beat signal, it will not be accepted as long as the

value is greater than the threshold.
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c) Test for the range of the corrected QT interval Bazett’s Formula from Eq. (5.1) is the

length of the QT interval normalized by the square root of the length of the RR interval.

Many researchers have tried to show the possible range of the corrected QT interval [40, 54].

Experimentally, the range should be between 0.3 and 0.6. The given dataset must also meets

the condition to be proved as a valid dataset.

5.3 Implementation

DICOM parser

Analysis Engine

Web

Server

GUI

Renderer

Server-side Client-side

JSON/HTTP

JSON

Figure 5.3: Server structure for QT analysis

In this section, we introduce our system to deploy proposed algorithm. Fig. 5.3 shows the

structure of our system. The system comprises two parts : server side and client side. It is

web-based application, thus, the client side is made of browser based interfaces over HTTP.

5.3.1 DICOM

DICOM(Digital Imaging and Communications in Medicine)[46] is the international stan-

dard for medical images and related information. It defines the formats for medical images

such as X-ray, CT, ultrasound and MRI, that can be exchanged with the data and quality

necessary for clinical use. According to DICOM supplement 30[45], waveform data such as

electrocardiographic and hemodynamic signals, can be manipulated inside DICOM format.

Our DICOM parser is a component in server side. When the DICOM format is put into
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server over the network, the web server catches the file and puts it into DICOM parser for

processing.

At our application, we employ DICOM standard for manipulating electrocardiographic sig-

nals as inputs to the system by users, and keeping the compatibility with recordings from

widely used recording devices.

5.3.2 Data flow

According to Fig. 5.3, client-side puts the data, which is formatted as DICOM, through

GUI, then the data is transmitted to the server side. We use JSON over HTTP as a data

exchanging protocol, since it is simple and easy to implement. At DICOM parser, the

transmitted data is translated to digitized signal by parsing metadata included DICOM

format. This digitized signal can be the input of our proposed algorithm in 5.2, which is

implemented at the server component named analysis engine. The processing results are

dumped to the web server and the web server makes them JSON-formatted data, t hen send

it to the client side. We implemented the server side with python 2.7 and tornado web server

and the client side with jQuery and HTML5.

5.3.3 Web GUI

For the client side, we need to figure out several GUI pages for interfacing user action and

visualizing the input and processed data. Fig. 5.5 shows the GUI page for transferring

input DICOM formatted recording. By clicking the button, we can put DICOM formatted

recording into server. After completing the data transfer, the signal, which is the result of

baseline correction at 5.2.3, is rendered. Fig. 5.5 shows the rendering signal after baseline

correction.

65



Figure 5.4: DICOM upload at GUI

Figure 5.5: Rendering ECG signal at GUI

According to our analysis scenario, the models about the fiducial points, which is described

in 5.2 should be set up. Fig. 5.6 depicts the GUI page for fiducial point selection. By

intervention of users through this page, the models for QRS onset and T wave offset are

automatically generated.

After generating models for searching for each fiducial points, we need to set up initial

parameters as Fig. 5.7 . Our proposed algorithm utilizes single channels for searching for the

R peaks. Thus, users have to choose which channel is included in peak detection. Another

parameter, threshold, is a minimum value to meet the similarity level between models and

signals. If the candidate fiducial points has less crosscorrelation value than threshold, our

proposed algorithm ignore that points in analysis. We also determine the number of bins for
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Figure 5.6: Fiducial point selection for making templates at GUI

Figure 5.7: Setting up initial parameters

result of QT analysis. Our GUI will visualize the QT analysis result as displaying distribution

like histogram. Fig. 5.8 shows the QT analysis result with histogram.

Our GUI also provides functions to mimic the standard format for helping doctors to analyze.

Fig. 5.9 depicts that the signals are visualized like real standard paper format. In order to

provide convenient method to measure intervals for manual analysis by doctors, Caliper

function is included in the GUI page. The red circle in Fig. 5.10 is interval measuring result

of two different points on signal.
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Figure 5.8: Graphical QT analysis result on client side

5.4 Summary

QT analysis is a significant measurement as a good marker of heart-threatening disease. But

due to the features of the component waves of ECG signal, subjectiveness of measurements,

lack of references, and large volume of data, it is not easy to analyze automatically.

In this chapter, we proposed a new algorithm for beat-by-beat QT analysis algorithm. Fur-

ther, we built a web-based system for QT analysis by utilizing our proposed algorithm.

Our system also provided several useful tools for manual/automatic QT analysis. To meet

compatibility with the existed recording device, we employed DICOM recording format.
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Figure 5.9: ECG snapshot following to standard ECG format

Figure 5.10: Measuring time intervel by caliper function
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Chapter 6

In-device QT Analysis

6.1 Motivation

Existing methods for determining the prolongation of the QT interval can be generally

classified into two types: global analysis and beat-by-beat analysis. In global analysis, the

prolongation of the QT interval can be computed from the representative beats of each lead

by calculating the median or mean. In contrast, beat-by-beat analysis utilizes every beat of

each lead to compute the prolongation of the QT interval. Global analysis is more robust to

noise artifacts than the beat-by-beat analysis but is not suitable for a real-time monitoring

system. On the other hand, beat-by-beat analysis is affected by noise from the muscles,

devices, or the environment, and its computational complexity is too high for most

embedded systems today [24]. The existing analysis methods, mathematical modeling

based analysis[38], and SVD-based analysis [57] have a runtime complexity of at least O(n3).

In this chapter, we propose a QT-analysis algorithm based on beat-by-beat analysis for real-

time prolongation of the QT interval. The lower complexity of O(n2) and its robustness

to noise make it suitable for implementation on wearable embedded systems. Experimental
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results show that the proposed algorithm achieves real-time performance while consuming

low power.

6.2 Data Stream Model

We assume that the signals from the ECG monitoring system are composed of a set of

streams, each of which generates an infinite sequence of items with a particular period. Each

stream is called a channel. The set of input channels is denoted by S =
⋃

i=1,2,... {Si}, where

i is the index of the respective channel. Each stream Si is recorded in every time interval hk

and generates a new item Iki each moment in time khi, where k = {0, 1, 2, ...}. Our system

records the signals with a certain sampling rate, f , for all channels. Thus, hk is defined as

1/f sec. I is the set of all items I =
⋃

i,k{Iki }.

To analyze the data, the system should collect the signals from each channel, which is called

a data slice, for several seconds, and then process them until the next data slice has arrived.

The timing constraint from the current data slice to the next data slice is called the deadline,

D. If the deadline is too short, the analysis result will be less accurate due to the lack of

data. On the other hand, if it is too long, the system’s response may exceed the deadline.

6.3 Implementation on single core architecture

6.3.1 Serialized implementation

In Section 5.2, we proposed new algorithm for QT analysis. Using the proposed algorithm,

we show the implementation for real time QT analysis on embedded system. We already

assumed the data stream model mentioned in Section 6.2. According to reflect data stream
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model, ECG sensor will put the signals of 12 leads into memory. Our proposed algorithm

waits for a deadline, analyzes the signals at the point, and then obtains the analysis result

before the next data slice coming in.

Algorithm 1 depicts the algorithm for implementation on single core embedded platform.

Algorithm 1: Pseudo code for serialized implementation

input : 12-lead ECG signal

output: Array of corrected QT Intervals(QTc)

initialization

q tmpl← LoadModel(q) /* load model information for QRS onset */

t tmpl← LoadModel(t) /* load model information for T offset */

numData ← sampling rate×input interval /* length of data */

ptr ← 0

QRSDet(Init) /* Initialize QRS Detector */

while ptr < maxIter do

dataP tr ← ptr × dataNum /* data pointer */

for i← 0 to numLead do

Sig[i]← loadData(dataP tr, dataNum, i) /* load the ith lead data */

end

for i← 0 to numLead do

h Filtered[i] = filter(Sig[i],′ highpass′) /* Filtering */

l F iltered[i] = filter(Sig[i],′ lowpass′)

end

QRSDet(l F iltered[′II ′]) /* QRS detection */

FindFiducialPoint(q) /* Finding fiducial points */

FindFiducialPoint(t)

V erifyCandidate() /* Data verification */

CalcQTc() /* Calculate corrected QT intervals */

ptr + +

end
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6.3.2 Experimental result

Experimental environment

The algorithm is ported to an ARM7-based single-core embedded platform. The signal used

in the analysis is recorded using a wearable 12-lead ECG board based on the TI ADS1298

connected to standard wet electrodes at 250 Hz. To show the performance with respect to

different sampling rates, the signal is expanded to 500 Hz and 750 Hz by linear interpolation.

We initially set the template size at 200 ms, deadline at 3 s, and threshold value at 0.5.

Performance evaluation
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Figure 6.1: Processing time of each stage over the different sampling rates

Fig. 6.1 shows the processing time of each analysis stage on the target platform with respect

to the different sampling rates. Fig. 6.2 displays the ratio of the processing time for each

stage. According to the figures, most of the processing time is spent on searching for fiducial

points. The complexity of searching for fiducial points is O(n2), which means this takes more

processing time for a higher sampling rates. This processing time can’t meet the timing
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Figure 6.2: The ratio of each stage in entire processing time (left) and energy (right)

requirement at a 750 Hz sampling rate. In this case, parallelization or further optimization

is needed.

Energy consumption evaluation

Measurment Circuit

Target Platform

Figure 6.3: Prototype board with energy measurement circuit.

Table 6.1 shows the energy consumed at each stage. Since the target embedded platform on

which the proposed algorithm runs is single-core, the energy consumed scales linearly with

processing time. Fig. 6.2 also shows that the searching stage consumes most of the energy,

and that energy scales linearly with the sampling rate.
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Table 6.1: Average and standard deviation of the energy consumed in each stage

250Hz 500Hz 750Hz
avg. (µJ) std. avg. (µJ) std. avg. (µJ) std.

Filtering 1.2211 0.4842 3.0588 0.5614 4.3718 1.3677
Peak Detection 0.0732 0.0290 0.1433 0.0257 0.1674 0.0528
Find Fiducial Points 7.6976 1.3725 35.7051 2.8731 85.8586 6.6277
Verification 0.1392 0.0590 0.0744 0.0732 0.0890 0.0507

6.4 Implementation using CUDA

According to Section 6.3.2, the significant bottleneck would be the stage for finding fiducial

points. For real-time processing, the stage should be optimized or parallelized. Since our

proposed algorithm is correlation-based algorithm, it has a large amount of convolutional

computations, which can be applied to pipeline for parallelization on GPU. In this section,

we will introduce parallelized implementation of our proposed algorithm using CUDA. We

also evaluate the performance after parallelization.

6.4.1 Overview of CUDA

Memory

CPU CPU

Memory

GPU

UCI Embedded System Lab.22

Figure 6.4: Architecture of GPGPU

GPU is the processor applied in graphic processing. Since computation for graphical process-
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ing is complicated and repetitive, it has lots of simple cores in parallel processing to enhance

performance. When the needs of powerful computing is increased, the GPU can be used in

various applications, not even graphical computations, as the concept of GPGPU(General

Purpose GPU). The concept of GPGPU is shown at Fig. 6.4. GPGPU has both latency

processor(CPU) and throughput processor(GPU). Generally, a CPU consists of a few cores

optimized for sequential serial processing, while a GPU has a massively parallel architecture

consisting of many simple cores designed for handling multiple tasks simultaneously.

Shared Memory

Register Register Register

Multiprocessor 1

Multiprocessor 2

Multiprocessor N
…..

Instruction UnitScalar Processor 1

Constant Cache

Texture Cache

Scalar Processor 2 Scalar Processor N

Texture Cache

……

Figure 6.5: Architecture of CUDA

CUDA(Compute Unified Device Architecture) is one of the well-known parallel computer

architecture developed by NVIDIA. Fig. 6.5 shows the CUDA programming model and

architecture[1]. Device defines as a GPU chip, which is composed of several MPs(Multiprocessors)

or a single MP. Each MP is composed of SPs(Scalar Processors), register, instruction unit,

shared memory, and cache. Each SP operates independently. In CUDA programming model,

a task to be processed on the GPU is divided into grid, block, and thread. The thread is a

minimum task, which is executed on a SP. The block is composed of several threads, and the

grid is composed of several blocks. The block is executed on a MP, and the grid is executed

76



on the device. The threads from the same block can cooperate with each other by sharing

data of synchronizing their executions through shared memory. However, if the threads are

from different blocks, there is no way to cooperate with each other.

GPU-based application

Serial Code

Parallel Code

Host : CPU

…

Device : GPU

Serial Code

Parallel Code
…

Device : GPU

Host : CPU

Figure 6.6: Execution flow of parallelized algorithm

The execution flow of parallelized algorithm on the GPU is shown at Fig. 6.6. A GPU-

based application is composed of serial codes and parallel codes. The serial code is executed

on host(CPU), and the parallelized code is executed on the device(GPU). Generally, the

parallelized portion of an application is called as a kernel. Only one kernel is executed at

a time on the device, and it has many threads executed each kernel. As mentioned above,

the threads in the same kernel are independently executed at SP. Thus, general strategy

of parallelization is that the entire algorithm should be separated to independent modules,

which has no feedback or relationship during execution.
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Figure 6.7: Algorithm parallelization

6.4.2 Parallelized implementation

According to Section 6.3, the serialized implementation faces a limitation for processing

with a large amount of data. If the data is getting larger, the computational complexity

is increased exponentially. In order to solve this problem, we make the proposed algorithm

parallelized using GPGPU. Fig. 6.7 shows the strategy of our parallelization. As seen in

Fig. 6.2, most of processing time is occupied by filtering and finding fiducial point step.

Since these steps comprise repetitive calculations, we can expect the performances of our

proposed algorithm to be improved. Algorithm 2 depicts pseudo code of our parallelized

method for implementation on GPGPU.

The filtering and searching for fiducial steps are windowed calculation. Each windowed data

block is independent from other blocks, and further repetitive, since there is no feedback
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Algorithm 2: Pseudo code for GPU parallelization

input : 12-lead ECG signal

output: Array of corrected QT Intervals(QTc)

initialization

q tmpl← LoadModel(q) /* load model information for QRS onset */

t tmpl← LoadModel(t) /* load model information for T offset */

numData ← sampling rate×input interval /* length of data */

ptr ← 0

QRSDet(Init) /* Initialize QRS Detector */

while ptr < maxIter do

dataP tr ← ptr × dataNum /* data pointer */

for i← 0 to numLead do

Sig[i]← loadData(dataP tr, dataNum, i) /* load the ith lead data */

end

cudaMemcpy(Sig, Sig Dev) /* memcopy from host to device */

/* Execute kernel for filtering */

h cuFiltered, l cuF iltered← cudaF ilterKernel(Sig Dev)

cudaMemcpy(h cuFiltered, h F iltered) /* memcopy from device to host */

cudaMemcpy(l cuF iltered, l F iltered)

cudaDeviceSynchronize()

QRSDet(l F iltered[′II ′]) /* QRS detection */

cudaMemcpy(lF iltered, cuF iltered) /* memcopy from host to device */

/* Execute kernel for searching for fiducial points */

cudaCandT, cudaCandQ < −cudaSearchKernel(cudaF iltered)

cudaMemcpy(cudaCandT,CandT ) /* memcopy from device to host */

cudaMemcpy(cudaCandQ,CandQ)

cudaDeviceSynchronize()

V erifyCandidate() /* Data verification */

CalcQTc() /* Calculate corrected QT intervals */

ptr + +

end
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Figure 6.8: NVIDIA Tegra K1 Mobile Processor on Jetson TK1

from the other blocks during calculation. These indicates that these steps are suitable for

parallel implementation on the GPU. As seen in Algorithm 2, these steps are designed to

CUDA kernel.

6.4.3 Experimental results

We used Jetson TK1 for evaluating the proposed parallelized algorithm. This board is based

on the hybrid processor Tegra K1. It consists of a quad-core ARM Cortex A15 CPU and a

NVIDIA Kepler core with 192 computational cores. Fig. 6.8 is shown to the architecture of

Tegra K1 on Jetson TK1 evaluation board.

We compare the performance of the sequential implementation and parallelized implemen-

tation. Mainly, the performance metrics are the running time and energy consumption of

each parallelized step. The dataset used in analysis is recorded at 250Hz by standard 12
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lead ECG recording system, and it would be expanded to 500Hz, 750Hz and 1kHz through

linear interpolation.
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Figure 6.9: The comparison of CPU implementation and GPU parallelization for filtering
stage(left) and searching for fiducial points stage(right)

Fig. 6.9 shows the performance of each step. The left figure on Fig. 6.9 depicts the running

time of the filtering step. According to the result, the processing time on the CPU only, is

proportional to the square of the sampling rate, since the filtering has convolutional com-

putations. On the contrary, we would get better performance after parallelization with the

CPU and the GPU. The right figure on Fig. 6.9 shows the running time of searching for

the fiducial point stage. Our proposed method is based on the comparison of the Pearson

correlation coefficients, which is also convolutional compuation, the running time on CPU

implementation is also proportional to the square of the sampling rate. According to the

performance comparison, we would get benefits about the running time after parallelized

implementation. As getting larger volumes of data, the running time of the serialized code

on the CPU only gets exponential increase. On the contrary, the running time of the par-

allelized implementation looks more stable. Even though the data size is doubled, the total

running time is increased at a minimum.

Fig. 6.10 shows the average power consumption for filtering stage and searching for fiducial
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Figure 6.10: The comparison of average power consumption between CPU implementation
and GPU parallelization for filtering stage(left) and searching for fiducial points stage(right)
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Figure 6.11: The comparison of energy consumption between CPU implementation and GPU
parallelization for filtering stage(left) and searching for fiducial points stage(right)

point stage. To calculate the power consumption, we measure the power consumed in each

stage, then subtract the base power, which is consumed in default. According to Fig. 6.10, the

average power consumption of the parallelized implementation using the CPU and the GPU

is higher than that of the implementation on the CPU only. However, energy consumption of

the parallelized implementation is much less than the serialized implementation on the CPU

only, since the parallelized implementation obtains much gain from processing time using

throughput processor. Fig. 6.11 explains that the energy consumption of the parallelized

implementation is much lower than that of the serialized implementation. Table 6.2 shows

the consumed energy of each stage. According to the characteristic of the CPU and GPU
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architecture, the CPU and GPU architecture needs more power for operating than the CPU

based architecture. Even though the higher base power of the CPU and GPU architecture,

the total energy consumed at each step is lower than the CPU only. It is because the running

time is much shorter than the CPU only implementation.

Table 6.2: Comparison of energy consumption(µJ)

Architecture 250Hz 500Hz 750Hz 1kHz

Filtering
CPU 541.5564 1203.8120 2247.7450 4137.362

CPU+GPU 478.7691 767.6780 810.0001 883.4907

Find fiducial points
CPU 361.8818 1079.3800 1693.9180 2667.817

CPU+GPU 50.4509 95.6088 135.5463 222.8812

6.5 Summary

In this section, the in-device implementation is discussed. There are two different types of

approaches introduced : One is the serialized implementation and the other is the parallelized

implementation. We also implement our proposed QT analysis algorithm on single core

architecture, however, it would not show enough performance for real-time processing. Since

the size of data to be processed is increasing if the higher sampling rate is used in the device,

parallelization using throughput based processor is one of the good solutions to achieve

the real-time processing.To achieve the real-time processing, we use the CPU and GPU co-

designed platform for parallelization of the algorithm. We show that the timing performance

using the CPU and GPU together is much better than the implementation on single core

architecture. Furthermore, we can obtain another benefit, which is energy saving. Even

though the average power consumption of the implementation on the CPU and GPU is

higher than that of the implementation on the CPU only, the energy consumption is much

less than the CPU only implementation due to the timing performance.
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Chapter 7

Conclusion and Future Works

7.1 Conclusions

This dissertation describes a framework for development of wearable medical devices and

systems. Our framework can encompass the state-of-the-art in the field of wearable medical

devices and applications. It organizes the many considerations into the sensor plane, data

plane, and application plane. Furthermore, we provide a use case for our framework in the

form of an end-to-end system for ECG monitoring and analysis.

This work also proposes algorithms for several aspects of the ECG application. First, we

propose a novel approach for QT analysis and its implementation, and we show a real-

time implementation of our proposed algorithm to be feasible on an embedded system as

well as in a server-client environment. For effective data handling, we also propose a new

compression/decompression algorithm for ECG signals using a trained dictionary. It utiliizes

patterns learned with a given dataset and helps improving the compression ratio with low

distortion. We also explore reducing sensing power by compressive sensing and support the

reconstruction of the signal from undersampled data. Using our collection of algorithms,
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we expect ECG devices in general to be able to reduce energy consumption during data

collection, a feature especially important for battery-powered wearable systems.

7.2 Furture Work

Much work remains to take our proposed framework to its full realization. Many components

in each of the planes may be in existence but need to be integrated. Directions for future

work include security and privacy, performance and feature enhancements of the algorithms,

and expanding the application base. Ultimately, the goal of the framework is to build up a

full database of medical data that can be accessible to medical practitioners globally, and

it requires not only raw data but more importantly annotations either manually by medical

professionals or automatically by algorithms. The annotated data will enable improvement

to our learning-based algorithm depicted in Chapters 3 and 4 in both performance and

accuracy.

At the same time, our proposed analysis algorithm in Chapter 5 can still be further improved.

Its current limitation is that it focuses on the normal type of signal only. Many abnormal

cases in ECG signal such as monophasic, biphasic, and triphasic cases currently cannot be

handled reliably. Someone with a cardiovascular disease such as arrhythmia may have a

varying type of signal. Future work therefore must consider such abnormal cases.
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Chapter

Compressive Sensing Framework

A Introduction to compressive sensing(CS)

Digital world is driving the development and deployment of new kinds of sensing system

with ever-increasing fidelity and resolution. The pioneering work of Nyquist, Shannon and

Whittaker on sampling continuous-time band-limited signals leads new types of sensing tech-

noloies. Digitization has enabled the creation of sensing and processing systems that are more

robust, flexible, cheaper and consqequently, more widely-used than their analog technology.

The Shannon/Nyquist sampling theorem specifies that to avoid losing information when

capturing(or digitizing) a signal, one must sample at leat two times faster than the signal

bandwidth. However, in many applications, the Nyquist sampling rate is too high that too

many samples results, which means that the result includes redundancies, making compres-

sion a necessity prior to storage or transmission.

Compressed sensing or compressive sensing(CS)[10] was introduced as a new sensing frame-

work, which is more efficient and less redundant than the Shannon/Nyquist sampling method.
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A.1 Sparse representation

Sparse approximation is the representation that accounts for most of signal information with

a linear combination of a small number of elementary signals. Mathematically speaking, if

signal x, which can be represented as an N × 1 column vector in RN . Any signal in RN

can be represented in terms of a basis of N × 1 vectors {ψi}Ni=1. For simplicity, let the basis

be orthonormal. Using N × N basis matrix Ψ = {ψ1|ψ2| . . . |ψN} with the vectors {ψi} as

columns, a signal x can be expressed as

x = Ψs =
N∑
i=1

siψi (A.1)

where s is the N × 1 column vector of weighting coefficients si = 〈x, ψI〉 = ψT
i x. Clearly, x

and s are equivalent representations of the signal, with x in the time or space domain and s

are in the Ψ domain. The signal x is K-sparse if it is a linear combination of only K basis

vectors. That is, only K of the si coefficients in A.1 are nonzero and (N −K) are zero. The

cas of interest is when K << N . The signal x is compressible or sparse if the representation

A.1 has just a few large coefficients and many small coefficients.

A.2 Restricted Isometry Property (RIP)

Restricted Isometry Property(RIP) is one of the important notion in CS framework. Gen-

erally, measurement y can be modelled as

y = Ax+ z (A.2)

where A is an m× n matrix(m < n), known as a sensing matrix, and z is an unknown error

term for describing noisy environment. For the robust signal recovery from undersampled

measurements in noisy environment, RIP condition was introduced by D. Donoho, E. Candes
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ans T. Tao in 2004.

Definition 1. Let A be an m × n matrix and let 1 ≤ K ≤ n be an integer. if there exsits

δK of a matrix A as the smallest number that

(1− δK)‖x‖2
2 ≤ ‖Ax‖2

2 ≤ (1 + δK)‖x‖2
2 (A.3)

holds for all K-sparse vector x, we could say that a matrix A satisfies RIP condition of order

K.

As a noiseless case, the reconstructed signal can be defined x̂ subject to Ax̂ = y. If x̂ is a

sparse solution, x̂ can be solved by the following linear program.

min
x̂∈Rn
‖x̂‖1 subject to Ax̂ = y (A.4)

If we consider the noisy environments, the measurement can be handled like A.2. Hence, the

reconstruced solution x̂ can be solved by the following linear program.

min
x̂∈Rn
‖x̂‖1 subject to ‖Ax̂− y‖ = ε (A.5)

Where ε bounds the amount of noise in the signal. D.Donoho, E. Candes, and T. Tao proved

that the solution x̂ can be recovered if the matrix A obeys RIP condition and the isometry

constant δ2K <
√

2− 1.
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A.3 Coherence

Definition 2. The coherence between the sensing basis Φ and the representation basis Ψ is

defined as

µ(Φ,Ψ) =
√
n · max

1≤k,j≤n
|〈φk, ψj〉| (A.6)

According to A.6, the coherence means the largest correlation between any two elements of Φ

and Ψ. The range of the coherence is defined as µ(Φ,Ψ) ∈ [1,
√
n]. If the coherence between

the bases is 1, we have maximal incoherence. Compressive sampling is mainly concerned

with low coherence pairs, which means that the pairs are largely incoherent with each other.

Random matrices are known as largely incoherent with any fixed basis. Thus, CS framework

utilizes random matrices as a sensing matrix for compressive sampling.
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