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Abstract

The geothermal reservoir modeling effort at the University of Colorado
is reviewed brfefly; Technical’ accompIishments dur1ng ‘the final funding
period 1 April 1978 to 30 November 1978 are descr1bed It 1s concluded that
a physica11y viable mathemat1ca1 model of an. unexplo1ted geothermal system

can be constructed in terms of the fault zone control]ed charging of the

: thermally active sect1on of a reservoir.
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NOMENCLATURE

Dimensional quantities carry a prime wh11e non- dimens1ona1 quantities do not.
Superscript 'f’ stands for fluid.

M + cosh 1//d
vd sinh 1/vd

‘a]: Constant =

A -
M+ Xif coshﬁl//d :
/d sinh 1//d

az: Constant

f“biffg’tdnstant‘=’llvak
rbz: Constant = —:——1—-—
vd (a+2)

Cp(Cv): Specific heat at constant*bressdre (volume)

O . Reference §bécific heaé ét constant ﬁressure and To
. : Specific heat at constant volume and T

_ d: Order one constant

D, : Darcy number = K /L™

e.:  (i=x,y,z) Unit vectors in x,y,z directions

g:  Gravity vector

Grashof number = L7ATg a /v"

h: Step size . -

H: . Length of the Aquifer.

K:t  (i=x,y,z) Permeability of the medium in the €= direction
Kos :Referencefpermeabi]ity~of:the'medium*

KY(Z?: 'Permeab111ty of the med1um 1n y(z) d1rection

2:  Thickness of the clay cap, ratio of ‘the cap th1ckness to
the depth of the aqu1fer



ye:

«<i

‘Characteristic Tength, depth of the aquifer -~ o

Mass flow rate

Reference mass flow rate per unit width

Isotropic pressure, aquifer over pressure
Fault over pressure

Atmospheric pressure

Hydrostatic pressure corresponding to the‘density_po
Hot hydrostatic pressure

Reference pressure = pogLoaeAT

Prandt]l number = ocpuo/)‘om

Fault reference velocity = oae ATg KO/vO_

Aquifer r'eference velocity = ye 9

Rayleigh number = G Da Prm

Tem erature at any point in the fault. Ratio of fault temperature
he ambient temperature = T'/T;

Max1mum temperature in the system

Reference or ambient temperature

Horizontal velocity in the aquifer

(= p,x horizontal volumetric flux)

A variable = Densrty times Darcy ve]ocrty vector
Horizontal ve]oc1ty in the fault = V- gy

Vertical velocity in the fault = V-e,

Vertical velocity in the aquifer = p x vertical
volumetric flux

Length variable in x-direction

Half fault width, ratio of fault half width to depth -
of the aquifer \~9j

Hor1zonta1 length'vai;ab]e'in the fault as well as

,1n the aquifer = Y /ye



Horizontal length variable in the aquifer = y'/L'

S %

Horizontal length variable in the aquifer = y'/H'

Vertical length variable used in the fault as well as
in the aquifer = z'/ye'

N

}ZI

z*:  Vertical length variable in the aquifer =
. ye'l’

z; Vertical 1ength variable used in the fault as well
-~ as*in"-the ‘aquifer = 2'/L' = «

Greek Letters

o : Coefficient of thermal expansion

°ae: Coefficient of thermal expans1on at T,
v:  0(1) number = /Rye2

AT: Overall temperature difference across the system
* Tnax " To '

€: A small number

. g 3T et b le = oAR ol
n: Similarity variable = z%* = z/y
'Temperatufe in the aquifer,
6 :  Temperature in the clay cap

Oy* Interface temperature between cap and the aquifer

Al Thermal conductivity, ratio of the thermal conductivities
of the clay cap and the aquifer

Apd Thermal conductivity of the medium

Am: Reference thermal conductivfty'of:the medium
ue Viscosity of the fluid
Viscosity of the fluid at temperature»T0



Kinematic,viscosity = ulp

T JReférencé kinematic.yiSCOSity.atATO T

s Déns'ify

-Density atrTo

Overheat ratio = AT/T0

Porosity = volume of fluid/volume of .porous matrix

A variable = O(e%)



1. IntrodqctiOn

During the period 4/1/78 to 11/30/78 the geothermal research project em-
phasized the completion of a mathematical model of a liquid-dominated'résburce
with characteristic featdrés reminiscent of the Mesa Anomaly, Imperial Valley,
California. This modelling effort was a natural outgrowth of an extensive,
systematiC'invéSfigatioﬁ“of liquid-dominated geothermal systems supported
initially by the RANN-program of the National Science Foundation and subsequently
by the Energy Research and Development Admihistratibn’and the Department of
Energy through Lawrence Berkeley Laboratory. ' |

A comprehensive field data analysis was used to develop an understanding
of the significant physical processes occurring in the geothermal reservoir.
The Mesa Anomaly, a typical moderate température system sited in sediments was
chosen for detailed consideration because the ensemble of data was the most
complete available to the public. In addition, dri]ling actiVity by‘thréevopera-
tors implied the availability of additional information. “Results:of the analysis
are presented in Black (1975), Bailey (1977) and Goyal (1978).
T As the*déta'éhalySis ﬁfbéeéded*and'contlusions'were digested a conceptual
model of the Mesa ‘system began tb'emérge.~‘Wé*infekredAfrom“the available evi-
" dence“that water heated at depfh;?pErhaps:below the?sediment;basémeht rock inter-
face, rises byfnéturél‘conVeCtién*§n4extenéivéIy fractured zones‘asSotiaiedfwith,‘
féultiﬁg.f‘ReéervoiF’chafgingﬁbéCurs WHen~thefupWe11ingiregion~is 1nterse¢ted |
by horizontal séaiménts with refativéiy 1af§érpefmeability.~ The'driiing"fdfte
" for the convection process arises from the hydrostatic pressure difference ex-
isting between the bottom of the hot (1ight) water coIdmnfbeTOWfthe dpwe11ing

region and the cold (heavy) water far from the anomaly. Reservoir cooling occurs



as the hot water, flowing basically horizontally in various aquifers, transfers \;;;
heat to the colder surface.

The model1ling of heat and mass transfer in the conceptualized geothermal
system was found to be carried out most efficaciously in terms of fluid flow
in a thermally active, saturated porous medium. Describing equatidhs for such
modelling were developed for the project by Morland (1976) and Koe]ler}and‘f
Zebib (1977). It was envisioned that material property input(e.g., porosity,
permeability, conductivity) would be obtained from the aforementioned field -
data analysis. Similar considerations apply to the geometrical COpfiguration
used in the mathematical analysis and to the boundary conditions applied.' |
Finally we planned to compare the output of the mathematical mode].(e.g., surface
heat flux, temperature and pressure variation with depth) with the available
field data in order to validate, and when necessary to alter the model.

The culmination of our efforts is described in the technical section of
this report which is, in essense, the third chapter of a Ph.D. thesis by
K.P. Goyal. In that work Goyal, with the guidance and assistance of the Project
Director, Prof. D.R. Kassoy, has attempted to incorporate the information and
ideas made available in earlier phases of the research program into a comprehen-
sive, physically plausible analysis of a fault zone controlled goethermal , ,’
system. Since there is extensive evidence (Kas§oy and Zebib, 1978) that féu1ting
is present in the majority of geothermal systems, it is likely that'th§}¢bncéptsf
developed and approach used to model the resource will have relevancé,tO-reser- 

voirs other than the Mesa Anomaly.
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II. Technical Summary -

- a. Conceptualized Model -~

A pictorial conceptualization of a fault zone controlled geothermal -
system, shown in a plane transverse to-the fault: p1ane, {s'given in Fig.1. A _'
near-vertical strike-slip fault zone, character1zed by relative1y high vertical
permeability extends through.the‘reservoir sedimentSvof depth,zR»and_into thec
basement for a vertical distance g The~assoc1ated-near-vertiCaT,fraeture'j
system—is,assumed to be closed by clays in the cap?off‘thickness!C ahd~deep'1n'
the basement. by creep deformation of -the hot rock system assoc1ated with a local-

ized heat source: The transverse width h<<2R represents the extent of the region

of:verticallyvﬂriented fracture distr1but10n.associatediwith;the;fau]ting,processes.

A .The-local deep thermalvsource-at the‘Mesa is. unknown;;as,is,the:specific .
mechan1sm for charging the fault with water at depth Several*pleusibie.fbutf
unproven,‘processesﬁfor charg1ng;are possib]e. Since’ the basement ' rock 1s'
relatively brittle, giVen‘the seismic velocity data of'Combsfand Hadley (1977)
it is possible that an extensive genera11zed fracture: system ‘has. been created |

by cont1nua1 tectonic and periodic intrusive. activity 1n the area.~ If<this is .

3 ,(c | \ \ | cm)f cAP

m .—“ °

.g- —_ ké‘.sg.e raae o!’
—~\ 7\~ zwrfesfwgo
| =\ \~ sgormanrs —

TZéQB ZiQé?éﬁéﬂ§¥V7”
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' Fig. 1 - Conceptual Model-Transverse View
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the case, then Water may percolate downward into the hot basement very slowly o
over an area'whiéh is enormous compared to the fault zone itself. The water will
flow horizontaily toward‘the'fault, driven by the hydrostatic pressure imbalance
between the extended "cold" recharge region and the hot upflow column in the
fault zone [Doha]dson.(1970)]. Once the water enters fhe'fault, natural con-
vection processes move the water upward in the narrow fault at a velocity sig-
nificantly larger than any horizontal velocity in the system.

The liquid rising in the fault zone can charge an intersecting‘aquifer'bf'
reasonable permeabi]ity due to the cohvection-induced artesian over-pressure
- existing there. There is little communiéation between the upflow in the fault
and the ground'water system in the cap due to the 'significant shale deposits in
the latter. The complex interbedding in the reservoir also reduces communi-
cation between aquifers to a minimum [Coplen (1976)]. In-the-large, the
reservoir flow is basically horizontal in nature due to the large number of
discrete shaley layers observed.

The reservoir liquid loses heat to the surface through the sediments and
the cap. Heat transfer in the latter is primarily by conduction [Swanberg (1974)]
although horizontal ground water systems will tend to complicate the details of
the process. Near surface heat flux patterns measured in the field, Combs and
Swanberg (1977), are the resulting observable.

The deve]opmentvofthis conceptual model has been based on.the_Mesa field
data which is thé moét compléte set publicly évailable in,thernitéd States.
Because the ideas,presehted are rather general it is apparent that the model can
be used for other systems with similar physical characteriétics. For instante,
when surface expression is present the permeable sectioh'of-the fault could be
extended through the_impermeéb]e céprsection, or the Cap might‘be deleted en-

tirely. More extensive vertical motion in the aquifer might be considered. \,,f



&/

n
It should be noted that Hoagland .(1976) and Hoagland and. Elders (1977)

- have conceptualized aesimilaf mode],for:the.historicalefunctioning of :the Mesa

Anomaly. However, they conclude: that in the more recent past-the@systemvwas
altered sufficiently by deposition,to"renderitherupflowwprocess ineffective. . On
the basis of .geochemical interpretation they indicate that the entire;eystem~
is presently being cooled by a horizontal flush of cool water whichideposits ~
carbonates. as it is heated. The plausibility of this model should be tested
in the future by an approrpiate heat transfer calculation. . .

| We consider liquid convection in a rigid porous matrix. A sing]e-phase,,
is considered because there is little evidence of preexploitation in-situ boi1ing
in most moderate temperature systems. The known isotherm:distribution-is such .
that the boiling point curve is never approached. Pressure distributions as--
sociated with natural convection brocesse§ ahe sufficientiy small to preclude
the possibi]ity of matrix deformation due to the liquid flow itself. The matrix
may, however, have a var1ab1e d15tr1but1on of permeability and porosity as is’

observed from well- log data [Black, (1975)] These,var1at1ons<are caused by

: spec1f1c‘structura],features,_cqmpactlon,_hydrotherma]‘alteration,and,the complex

- stratigraphy. present.;_ .

-He: conSIder flrst the nature of- reserv01r charg1ng by - upflow in. a fault

_zone for the conf1gurat1on shown in Fig. 1. When large Ray]eigh number (R)

flows are considered it is poss1ble to develop sem1-ana1yt1ca1 so]utions.- ‘Here

R is. defined by

“ LKAQl{alF;A;T N
o RE—— P

-V

where g is the gravity constant, k.is a characteriétjc p_'e\r:r'neabi.;]A__i‘,_t:y_x,,cz-y'is;a-,w
characteristic therma],expahsion coefficient forjwater,¢£R.i;Athe reservoir

depth AT is the characteristic temperature d1fference through the reservo1r,

| v is the character1st1c k1nemat1c v1scos1ty of water and Pr s the Prandt1
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number for water based on the thermal conductivity of the staturated porods \;;w

medium. -For typical high temperature thermodynamic values, o = 5 x 10°4*/°K,

veE2X 10""3 cmzjé, a permeability k = 10"°% cm? and typical (minimal) reservoir

‘values Lo = 1.5 km and AT = 50°C, then R =~ 940. Of course, sensitivity to the -

value of k, which is a bit speculative, is noted. For deeper, hotter systems,

(Combs® (1977) prediction of the depth of the basement interface’attthe Mesa fs‘

zR =3 km -and AT 200°C) R = 6000. Even if the value of k is reduced éonsiderably

it is clear that Rayleigh.numbers of 500 should be viable. [Kassoy and Zebib -

(1975)]. o E

" Natural convection theory [Kassoy and Zebib (1975, 1978)] can be used to -

show that the vertical convection velocity in the fault zone’is-characteriied

by ,
vv'= g kaAT/v

For the first set of values used above, vy & 1 cm/day. Assuming an average
temperature of about 175°C in the convection-active section of the fault, one
“finds that 1.75 x 107 cal/s km® is convected upward. This is about 3 orders of
magnitude larger than the purely conductive flux. If a substantial fraction* of
this energy is lost to the clay cap and conducted to the surface whefe Combs

[in Rex (1971)] measured 4.88 x 10° cal/s crossing about 110 km?, then the?hori-
~zontal area of ‘the fault zone is about 2.9 km%. Since thermal activity of the
Mesa extends along the primary fault for about 16 kms., a fau1t7(fracfure-zbhe)
.widthlhza]BOm is suggested. One should recognize that this is an ordervof‘mag-
nitude estimate. Given the variable nature of the input a range 100m 5'h}§_3dbm
might:be appropriate. If-k‘were far smaller than 10™°cm? the'fau1f»zqne areé;”

estimate would be tar larger, and thus not representative of the relatively

¥In the calculation I assumed 2 10% loss. The value is based on the temperature \"#
difference between well-bores 5-1 and 6-2 in the convective zone. ‘
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) localized anomalous heat flux propert1es at the Mesa fﬁe]d
Convectlon theory [Kassoy and Zebib, (1975)] can also be used to show that
the artes1an over—pressure magnitude is g1ven by ‘ |

PA, pgz o AT

- vhere p is the characteristic,liquid.density. .APA‘is of the magnitude of 10
bars for the parameters given above. Coplen (1976) has noted that shut-in
pressures for Mesa 6-2 have .ranged from 3.5 to0 8.2 bars,;which.jndicates”that
there is reé;onab]e agreement between field daté,and theoretical(assessment for
the selected parameter values.
~ The full theoretical\ca]cuigtion emphasizes the mass tkansferyprqcess;in'
the fault and adjacent aquifer and the heat transfer prdcess in and beneath«tﬁe
- clay cap. Full convection equations are used in the fault'and aquifer,_while,:
the heat transfer in the cap is mode]ed'by the conduction equation.‘ The.tempera-
~ture is as;umedwconstanf (at‘the!averageiannUa]wvalue) at the surface and at |
thelbasementtinterface.;'The latter condition i§¥a meaningful representation of
the,actualnphysicalbsituation»if thé_gffective;basemépt thermal conductivity
1s larger than that in the aquifers.. Theiprecise‘conditian;at,dgpth,are; of
course, not known. In general, howevek,\crystal!iheuba;ement‘rocks can be ex-
pected to have 1arger,;herma1,cbndudtivity values than;thetngighbdring;éedimebtary
- material. | e | -  ”‘ | e ,
The: conditlon far from the fault is. assumed to be a conduction-controlled
temperature gradient such that the surface heat flux 1s-at‘the measured.backgrouﬁd
value,of_aboutjlas:Hfu,, Giventthat vertical velbcities;in_thefférvfigld_ate
smali. (due to barriers associated. with interbedding and c]gy»s;raia},;thg pres-
sure»distributionvwithvdepth at the far boundary can be asspmed to be hydfostatic.

Horizontal through-flow across the boundary is permitted.
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Insofar as the Mesa system is concerned, a basic re;earch goal is to pre-.
dict surface heat flux and compare with Combs' field data [Rex (1971)]. The
solution values depend upon the input mass flux into the faul;, which_isAini-¥
tially unknown. A parametric variation of the solution with the mass flux to
find the heat flux distribution which best resembles the data can be used to ,
ascertain the mass flux. Other formal comparisons involve bore-hole femperature
and pressure distributions with depth and aerial isotherm patterns.

* - “Some recognition must be given to the difficulty of interpreting the
near-surface heat ‘flux distributions, which in some cases appear to the affected
by shallow ground-water motions. Known bore-hole temperature-distributions ‘f‘
with depth are less ambiguous, because it is clear ‘that shut-in times wefé suf-
ficient to obtain thermal equilibrium with tormations, and vertical temperature
gradients were small enough to preclude large-scale circulation of liquid within
the bores.

The conceptual and mathematical models have been used to consider heat and
mass transfer in systems reminiscent of the Mesa Anomaly. First we consider
heat and mass transfer in a fault and adjacent aquifer when the latter extends
to the surface. Liquid enters the fault at a prescribed high temperature and
rises isothermaily because the Rayleigh number is large. Overpressure in the
fault drives hot 1iquid into the aquifer. Only in a thin layer adjacent to the
cool upper impermeable surface is the fault liquid cooled. This therméi.boundary
layer thickens in the upper portion of the adjacent aquifer as fluid flows
~ horizontally away from the fault. The high Rayleigh number boundary layer
theory fails at a specified large distance from the fault, because the cooled
thermal layer encompasses a significant fraction of the vertical extent of the

“aquifer. Thereafter, the heat transfer process is described by a parabolic

\o

differential equation which is solved with traditional numerical methods. - It
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is found that, over a horizontal distance in the aquifer equivalent to several
fault depths, the temperature'distribution uith depth includes a rapidly”in-
creasing section (in the thin thermal boundaryviayer) followed by a larger
vertical extent of zero gradient (due to the high Rayieighvnumber approximation).
Thus it is clear that the absence of a temperature gradient need not impiy
vertical upfiow.n Given the structural situation. specified, zero gradient con-
ditions are found in the fault (strong upfiow) and in an extensive portion of |
the neighboring;aquifer,;where only horizontai,fiow exists.. Further_from the
fault, where the aquiferjis'fully cooled by the cold»upper boundarv,fa nonzero
temperature gradient exists throughout the verticai extent of the :system.

The surface heat fiux above the fault is found to be 30-40 times larger
than the conduction contro]ied background vaiue, when parameters derived from
- Mesa data are used . Such 1arge heat transfer rates are not usua]iy observed
in systems w1thout surface expreSSion, because the geothermai waters are |
separated from the surface by a variety of structurai effects and groundwater
systems. For instance, at the Mesa, the upper 800m of sediments contain a
clay content suff1c1ent to preclude the possibility of significant verticai
water motion. The effect of th1S k1nd of layer on. the heat transfer process
is considered next._ Conduction heat transfer alone in the "“cap” rock is :
coupled with the processes in the aquifer beiow to find the temperature dis- S
tributions-and surface heat fiux ~ The verticai temperature- profiies are found
to vary with distance from the fau]t in a way quite reminiscent of analogous
variations 1n Mesa boreho]e data. | -

This may be seen by a qua]itative comparison of the boreho]e temperature
variations: in Fig. 2 and theoreticai predictions in Fig. 3.41 of the technicai
report. In the former figure, the bores 6-1, 6-2, 8-1, 44-7 and 48-7 are thought
to be close to fracture zones while the remainder are further away. In parti-

cular 18-28 is farthest trom any known fault zone.
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\hij The maximum sunface heat flux is 3;5 times larger than the background value,
for parameter rangesjtypical'ofnthe Mesa. In Fig. 3 we compare surface heat'
flux dataeand the theonetical distribution. The qualitative agreement implies

. that fau1t‘zone control]ed changtng of a geothermal aquifer represents az
phy51ca11y viable mechanism of maintenance of a liquid dom1nated system.f
Quantitative d1fferences suggest that further refinements of the model are
necessary. ‘ | N

It- 1s to be emphasized that the mode11ng described has been carried out
in order to develop an. understandlng of heat and mass transfer in systems prior
to explo1tat1on; Appropr1ate characterxzat1on of physica] processes will im-
prove resource exp]orat1on technlques, eva]uation and assessment. The con—
ceptual 1deas and the mathematical approach used here are quite unlike the
more trad1t1ona1 approach to geotherma] reservoirlenglneering, where primary
interestkfocuses on‘CQnsequences of phOddction, éxcel]ent examples of the latter
are the’sfmulation models of Mercer, Pinder and Donaldson (1975), Mercer and
Faust (1977), Pr1tchett et al (1978) and other work by Riney at Systems, Science

and. Software.
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I11. Technical Report
_FAULT ZOME CONTROLLED CHARGING OF A GEOTHERMAL RESERVOIR
.3}1 _Introduction

Over the past three decades much work has been done on '
convective heat transfer 1n a porous med1um Hortoniand Rogers
‘(1945) studled the criterlon for the onset of tree'convection in
ta porous med1um. This was fol]owed by a ser1es of papers by
rLapwood (1948), Qood1ng (1960) and Katto and Masuoka (1967) on .
. the same toplcs Combarnous and Bories (]975) have summarized

,the c]ass1ca1 work related to the natura1 convectlon in porous

- medla

Hf; For the large temperature dlfferences occurring across many
,gjpermeable geotherma1 1ayers the variation of fTuid propertles :
1Jw1th temperature is s1gnif1cant Many authors, notab]y Kassoy St
! and Zeb1b (1975) Hor]and Zebib and Kassoy (1976) and Straus and
,3¥Schubert (1976) have exam1ned the effect of varlable propert1es
don the- convect1on 1n a uniform porous med1um. A
Kassoy and Zeb1b (1975) stud1ed the effect of varlable
‘v1scosity on. the onset of convect1on 1n porous med1a and have
found that the cr1t1ca1 Ray1e1gh number is dramatica]ly reduced

'as compared with the constant v1scosity case Morland, et al.
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(1976) found that a further reduction occurred when a constant
thermal expansion coefficient, representative of the density
variation across the system, was used in the definitioh of the
‘Rayleigh number.

Straus and Schubert (1976) have stud1ed natural convect1on |
'of water in thick geothermal layers with temperature d1fferences
‘as large as 345°K and pressure differences as great as 1 kfbar.
They have ine]dded the effect of a11>variab1e water properties'
and found that a lower‘témperature gradiehtﬁts'neededﬁto start
| eonvection'ae compared with the constant property fluid in a
frock of. given permeability. o T

Convection modelling in a slab of'homogeneous-poroue'media
ie too-abstract’for geothermal applications because rea1ietfe
internal geologic structure, geometrieal boundery cbnfiguration'
and thermal boundary conditions canhot_be considered. |

Convectiqn processes related to geophysical and geotherma]:
environment have been studied with great interest. Wooding‘(1957)
examined the convection flow in a saturated porous medium witﬁ
non-isothermal boundary conditions. He appIied his method to the
geothermal area at Wairakel, New Zealand. 'Predieted isptherm _e_
locations were in fair agreement with‘temperature méasuféménts-'

made in that area.



23

’ Dona]dson (1962) stud1ed the temperatures and flow patterns
.that would be set up in a. s1ng]e permeab]e layer bounded above .
- and below by impervious conducting sheets and in a two layer
- system consisting of an upper saturated permeab]e layer and an -
underlying ]ayer of impermeable basement rock -He found that
the vo]ume flow rates of up to. Z'X'10'7 cm3ICm 'sec may occur
. in a 3000 meter th1ck layer for a Ray1e1oh number of 165 and that :
surface heat flux d1ffers by a factor of 9. between reg1ons of
- upflow and downflow. e e o
The effects of a non1sotherma1 wa]] on free convect1on were
stud1ed by Elder. (1967a b) In the f1rst paper he exam1ned the
flow in a system, un1fornﬂy heated from be]ow and found that aboveﬁi
'}a cr1t1ca1 Ray1e1gh number of. about 40 heat transfer is propor-
tional to, the square of the temperature d1fference across ine
.1ayer and 1s 1ndependent of the thermal conduct1v1ty of the medlum
- or, the depth of the layer. In the second paper he compared
b_numerlcal.and,exper1mentalfresu]tsJfor;twoitypes,Ofpnonsteady | o
, convection fiows" The first'one'developed‘when a blob‘of"hot

; ﬁf1u1d was released at the base of a porous slab and the second

ﬁs}pflow deve]oped when. a port1on of the base of a porous slab was

:fégsuddenly heated The agreement between the theory and the exper1~

tment 1n the two cases was ~good..
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Cheﬁgiand Lau (1978) have investigated the problem of steady
state free convection in an unconfined aquifer bounded by ocean
on the sides, with geothermal heating from below. Numerical
’ 7resu]tS‘of'eiliptic equations accurate to the first order approxi-
mations are obtained for température,'preséure'andEStheam”function .
as well as for the shape of the water table.

Norton (1975) developed heat transfer computer models: to-
" account for variations in fluid propérties, conductive-and
convective heat transfer, and time space variations in the
" ‘permeability. Fluids were subjected to the ranges of temperatures
(ambient - 800°C), pressures (1-1000 bars) and velocities (1-100
m[yeér); According to his studies convective heat transfer
predominates over the conductive heat transfer in the‘upper 10-15
km of the crust.

Minkowycz and Cheng (1976) studied the free convection about
a vertical cylinder embedded in a porous medium, where the
vertical surface temperature of the cylinder varies as a power
* function of the distance from the leading edge. They obtained
exact solution for the special case where surface temperature:
varies linearly with the disfance from the leading edge. This
analysis may be applied to a cylindrical magma'intrusiVE]frapped
in an aquifer. The resulting free convective flows induced in

the adjacent ground waters can then be studied.
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| Cheng and Chang (1976) obtained 51m11ar1ty so]utions for the

- convective “flow above a heated horizontal surface or be]ow a cooled.
‘Jsurface, where wal] temperature is a power function of distance
from the origin This ana1y51s has 1mportant applications to ‘

‘;convective Flow above the heated bedrock or beiow the cooled

”“rtcaprock ina 11qu1d dominated geothermal- reservoir

Kassoy and Zebib (1978) have studied the coo]ing of fluid
x':rising in a vertical porous channe] with impermeabie walls whose '
?rtemperature 1ncreases 11near1y W1th depth They have found-

ﬁﬁhentry and subsequently fuT]y deveioped solutions for 1arge
'tRayleigh numbers. For certain ranges of Ray]eigh number and

_channe1 width two-dimen51ona1 flow was not found to be p0551b1e
S Cheng (1977) studied the effect of lateral 1njection or
' withdrawal of fluid a]ong a vert1ca1 p]ane source or sink on -

"free convection boundary layers ina porous medium at high Ray]eigh

' “'anumbers, where both the temperature distribution of the f1u1d

ffalong the p]ane source or sink and its ve10c1ty distribution are
prescribed as power functions of the distance This ana1y51s may
be appiied to the 1nJect10n we]ls where the re51dua1 warm water
discharged from a geothermal power piant 1s injected The

.*resulting convective flow in ‘the adJacent ground water, can. .it-i"'

7‘f5therefore, be studied This anaiysis can aiso be usefu1 when

:'geothermal reserv01rs are charged through fau]ts or cracks : ,
Lau and Cheng (1977) have studied the effect. of dike intru51on

" on free convection in conduction dominated~geotherma1:reservoirs._
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Stream lines, temperatpre distributions and the shape of water
table in‘a two-dimensional volcanic i#]and aquifer are presented.
Recent studies of liquid dominated syétéms jike Hairakei
(Grind]ey,v1965),,Broaq1ands (GrindIey,_1970),'Lbng>Va11ey
(Rinehart and Ross, 1964), Ahuachapan (Ward and Jécobs, ]971)
suggest that geothermal anoma]iesareintimafe]y associéted with
specific patterns of faulting. | | |

In theulmperiaI,Valléy, California,_there are sévera]_geo-
thermal_gnOma]ies which are close to.or intersécted,by;active
faults (Elders, et al., 1972). The basic fie]d data forvthese
systems are described by Babcock, . Combs and Bfeh]er in Rex (1971),
Helgeson (1968), Meidav and Furgeréonv(1971), Goforth, etvaI;;
(1972), Douze and Sorrells (1972), Combs and Swanberg (1977),
Combs and Hadley (1975, 1977), Loeltz, et al. (1975), Dutcher,
et al. (1972), Elders, et al. (1972), Swanberg (1974,1975),
Elders and Bird (1974), Coplen, et al. (1975)”and Coplen (1976).
Some of the information is surveyed in'KruQer and Otte (1973)

and in a series of Bureau of Reclamation reports.
3.2 East Mesa Field Data

Black (1975) and Bailey (1977) have considered a large .
.spectrum of the available geological, geophysical, QEOchémical,
hydrological, heat flux and bore hole logging data_forAthe'burpose
of synthesizing a composite conceptual model of the Mesa system.:
A summary discussion of the phygica] nature of the East Mesa field

follows.



27

~- Location. and;Setting

The Imperial Vai]ey is a major rift val]ey, characterized by
Kshigh heat. flow and large quantities of water in storage in the
ftthick fili of a]luv1um prov1ded by the sediments of the delta of
;\the Co]orado River It occupies part of a deep sediment filled

"sttructurai ba51n that extends south from the Coachella Valley to

“'the Gu]f of California (Figure 3. 1) It is bordered on the west

}.by peninsuiar ranges, which are mostiy granitic rocks of probabie
,"Mesozoic age. On the east are the Chocolate Mountains, which in
the northern part are pr1nc1pa11y p]utonic and metamorphic rocks
;of pre-Tertiary age, and to the south are exten51ve vo]canic rocks

of Tertiary age.’ o

StratigrAphy

The ba51n contains three main rock groups.fA lower sequence of

mainiy nonmarine sedimentary rocks of eariy to middie Tertiary age

&*t\ dominate the basal un1t which unconformably overlies pre-Tertiary

‘metamorphic and igneous rocks However, this basai unit aiso s
'inc]udes vo]canics and smai] amounts of narine sedimentary rocks
The marine Imperia] formation of P]iocene age comprises the beds '
'of the niddle sequence The upper sequence con51sts predominantiykfv
-of non-marine dep051ts of late Tertiary and Quaternary age derivedf;
_rmainiy from the Coiorado River drainage area This upper sequences'
57accounts for most of the valiey fill in: the central part of the |
-trough | | ” | L
’ According to the seismic refraction studies of Bieh]er (1964)

maximum sediment_thickness in the central part.of the troughvis
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approximately 6.1 km. The depth to the basement under Mesa
anomaly is about 4 km (Combs, Hadley; 1977). This depth reflects
the fact that the‘baSin.becomes‘gradually more shallow towards

its margins.

B xdro]ogx ) N . B
With1n its th1ck accumu]at1ons of the young valley fill, the

sed1ments of the Imper1a1 Va]ley compr1se a vast water reservowr
In general. hor1zonta1 permeab111ty of these sed1ments ls much
greater than the vertical permeab111ty It 1s true because '

(i) platey and e111psoida1 grains are often a]igned dur1ng sedi-

,:mentat1on, and (11) the 1ent1cular nature of c1ays in the sedlments
restr1cts vertical permeability, . V |

) The young alluv1a1 deposits'of eastern Imper1a1 Va]]ey
rcontain more sand and grave1 than those 1n the western Imperia1
,Valley Nater table data presented by Dutcher. et al (1972) shows
; that the regional ground water f1ow 1n the Imperia] Va]ley is from

~ the southeast corner to the northwest. 1. e., towards the Sa]ton
.;Sea. Recharge to the Impertal Valley 1s provided by underflow ‘

| from the Colorado River and prec1p1tation on the up]ands border1ng”

.the Imper1a1 Valley

TfJStructure |

., The Gulf of Ca11forn1a co1nc1des with ‘the. 1ntersect1on of
tff?East Pacific Rlse and the North American continent.‘ The genera] |
?i'posit1ve'heat flow anoma]y of the,East Paclfic.rise extends north»'

‘at least to the full length of the Salton trough. The structure
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of the-Imberia] Valley is.controlled by numereus;strikefsljp
faults of the San Andreas and San Jacinto fault.system.

Three faults with no surface. express1ons, (Rex, 1970;
Babcock 1971; and Combs-Hadley, 1973) have been inferred at the
Mesa anomaly by indirect means such as res1st1v1ty surveys,v
m1crose1sm1c activity and oblique aerial infrared photography
'(F1gure 3 2) Based on m1croearthquake studies Cmes and
iHad]ey (1977) defined ‘the Mesa fau]t (also known as the Combs
{lHadley ‘fault), wh1ch funct1ons as a condu1t for the r1swng geo-v
thermal fluids of the Mesa geotherma] anoma]y In the upper 600
to 800 meters c]ayey sed1ments, 1t is un11ke]y that s1gn1fjcant
vertical water motion ean occur, VertiCally oriented fraetures
would be filled with clay gouges. However, the presenee of
slickensides and calcite filled fractures at a denth.of»2134
meters in Mesa Well 6-1 appears to subport}the cencept of &
| fracture zone associated with fan1ting, |

Strata in the central part of the Imperial‘Valley are
essentially horizontal, although dips may occur in the fau1ted
areas. The steepest dips occurlat the Valley margins. Stereo-
net plots of dip directions (Swanberg, 1975); sU§§est that{strata
at Mesa 5-1 and 31-1 dip less than 10° to the west. 'Strata-_
nenetrated by Mesa 6-2 and 8-1 show the same tendency abpye 600
meters. ‘ | o |

Using. the three~pointsmethod,_Bailey (]977)4found;thefdfp_
of 2° in the Mesa Well 6-1 at the depth of 920 meters.~:Dip direce
~ tion for this bed is N48°E. The c’orreia't,i_ng' unit, found at 930
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 meters at the Mesa Well 6-2 appears  to dip N53°E at an ang]e of 2°. \;:}
At Mesa 5-1, the unit is found at 851 meters with the dip of 3°
in a direction of N8°E These data support the deduct1ons of
V;Swanberg (1975) that shallow strata 1n the East Mesa anoma]y are
':essentlally hor;zonta]. Cores: from the Braw?ey Unit St1pek No. 1
‘ﬁell,.]ocated at the“extreme western marg1n of the study area,
displayed dips of 40° to 50° between 1220 and 1830 meters depth.
These diés increase with dépthiahd 81° to 84° dips wére‘fecdrded
“at 2590 meters depth. fhesé steep- dips probably reflect fau]ting
~since the Stipek well lieéivéry,near the trace of the;SupéhStition
Hills fault. | | N
_' Resistivity--Electrical resistivfty decreases with increasing
temperature and increasing water_sélinity. Therefore,.the’combined
:effect of high satinity waters and high temperatures in a geo- |
thermal reservoir make electrical resistivity surveys a valuable
tool in locating geothérmal anomalies Meidav and Furgérsonr
(1971) made a detailed electr1ca1 res1st1vity study of the
Imperial Valley at 305, 610 and 915 meters depth. Their. resu]ts
show a regional résistivity gradient which decreases northwest-
ward from the southeast corner of the Imper1a1 Va]Iey, near the
Colorado River, to values about two orders of magn1tude 10wer at
the Salton Sea. |
One may conéludé that:
(i) 6Ground water salinity increases with 1ncreasiﬁ9’df5tance

from the Colorado River.
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(i1) Many of the faults in the,ImperiaIHVaTIeycact as
»aQuitardsaand restrict horizontal water movement..
~ - (i11)  Resistivity lows are found at the,EastpMesa,‘Salton
Sea, Heber,;Braw]ey.and Dunes_geothermalranomalies.
'_rggjtzysﬁravity studies (Biehler, 1971) reveaIed the
presence of a broad positive grav1ty anoma]y throughout the
Imperia] ‘Valley. Poss1b]e explanat1ons are._v _
(a} vEmplacement of.h1gh dens1ty crustal material beneath‘
the trOUgh because of: . | ; |
(i) Clay- D1agenes1s Th1s is temperature dependent
rather than depth (pressure) dependent (Burst, 1969) S1gnif1cant
-fdehydrat1on (about 10% to 15% of compacted bulk .volume) occurs
‘between temperatureS'of‘]00°C and 135°C, rendering a density
‘ increase'of«about 3ig/cm3;‘ In East: Mesa, clay diagenes1s would
-occur at a depth of about 350 to 600, meters. | _
(11) Cementation.: Ca1c1te filled fractures found in
pMesa uell 6/3 at 2134 meters depth may contrvbute to the dens1ty i

o contrast.i Depos1t1on of s1lica and calcite in pores and fractures

- will raise. the density of- sandstones

v(111)' Thermal MetamorphISm' The gravity high assoc1ated
mawith Sa1ton Sea anoma]y appears to be. mainly due to density "
”jncrease by»metamorph1sm resu1t1ng from high temperatures encoune{?f
“'tered there.‘ However, a Tow grade metamorphism, below 2.4 km, .
- may also be, contr1but1ng to the density contrast 1n East Mesa area
Samples taken above 2 4 km depth do not Show: any metamorphism o

'there.
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- (b) " Seismic investigations by Biehler (1964) revealed that
the crust is thinner than average beneath the Imperial Valley.

Magnetic--No magnetic anomaly is-present at the East Mesa
area, as there is at the Buttes area near the Saltan Sea (Black,
1975). Possible explanations are (Bailey, 1977): (i) No buried
mass of high magnetic susceptibility exists, (ii) The anomaIOus
mass is buried at a depth at which thé magnetic field is tao weak
to detect. |

Microseismic--East Mesa is an active.microséismit-area.

* Combs and Hadley (1977) recorded microearthquakésiassociated with
the Mesa geothermal anomaly for five weeks duranVthé summer of
1973 and determined the locations for 36 microearthquakes having

epicenters situated in the 150 km2

areal extent. Focal depths
ranged from near surface to about 8 km. More than half of the
located events have hypocenters greéter‘than the 4 km which is
approximately the depth to crystalline basement. Based on the
results of this study, a new right 1atera1 strike sliﬁ‘fau]t, -
Mesa fault, was defined (Figure 3.2). Depths to the hypocenters
- show that the fault is active both above and be]bw the basement.
‘Heat Flux--Areas of high, near surface heat flow are
generally associated with the areas of active voléanism df geo-
thermal areas (Bailey,»1977). Figure 3.2’shOWS the heat flow
contours and the'locations of the téét wells drilled in East Mesa
area by Republic Geothermal Company , 'United'Stétés Bureau'6f :
Reclamation (USBR) and Magma Power Company. | }:
Republic Geothermal Company has drflled six wells so far,

ranging in depth from 2.25 km to 2.77 km. 'Towards‘thé south, the
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* . geothermal anomaly is being explored and assessed by U.S.B.R.

- (five wells) and the Magma Power Company (three wells), Heat
’ flux5c0ntours‘of‘FigureA3.2fconf1rm the_hypothésiS'of Combs and
- Hadley (1977) that Mesa fault acts as a conduit for:rising:geo-
thermal fluids of:the Mesa geothermal anomaly;-,
| “Near ‘surface “heat fTow valuesifor"the?anOmaly 1tse1f>are
as high aS'7.9fhfu;iWith‘the highestfvalue5~}ocated'near grauity
and seismic noise*maximafandleleCtrical resistivityfminima (Swanf
: berg,'1975). *The53fhfu contour'rough1y~outlineS*the'extent of
anoma1ous1y high heat flow Areas outside ‘this contour are only
'marglnally above the reglonal background and such ‘areas can not -
be expected to yield a successfu] production well, a1though such
areas m1ght well prove 1dea1 for d1sposal of geothermal brine.
-The areavwwthjn;the 5 hfu contour can.be:considered the production
-area. ForEthe:Mesafanomaly;'6ver 40 km? of land fall within this
contourV(Swanberg,?1975). ‘Itdcanlalsoibeenotedifrom”Figure_3;2,
,that the heat floW?vélues;decrease wtth"diStance:very rapidly
. uest:of the zone of maXimum'heat flow but decrease very slowly to
o the east. »%Leakage‘ofmcold’water;?from?East:Highline CanaI/into'h
_the f1rst 400-500 m- of sed1ments causes the rap1d decrease of - ‘“
surface heat flux towards ‘the west, conform1ng with the strata o
itd1p d1rect1on there (Swanberg, 1975) There might be some con~~_
tribution from Alamo River which flows to the west of the East -
Mesa test site. Pos1tions of the heat flow contours re]at1ve to
“the Mesa fault show the upwe111ng of the hot br1ne Hin. the fau1t {
~ ‘and the direction of the flow (northeast and southwest) away from

the fault.
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Permeability: The thicknesses and depth of sand and-sandstone K‘_/

~beds hav1ng'bermeabilities greatér than 99 millidarcys. are plotted.

. in Figure-3.3 for Mesa Well"6-1. It can be seen that permeabi]ities
are lower in the.upper -600-700 meters. Middle zone up to 2-2.1

km appears to be a permeable ione-éontaining large percéntage‘of
sands and sandstones. .Lower zone beyond 2.1 km shows a decrease

in permeability. Similar plots for.other,Mesa‘Wells,are.av@i]ab]e

“+in the report9oijlaCk<(1915); Figure 3.4 c]ear1y-sh¢ws the

~- different zonesiencountered'infMesa Well 6-1 and the~re]ative

. percentage of sands OrAsandstones~and shales in these. zones.
Porosity: The aVerage_porosity~of the sandstones - in the
fifty foot intervals and the average porosity of each fifty foot

interval (according to the fbrmula;-porQSity of Sggqft feet of sand,

are plotted vs. depth for Mesa Well 6-1 in Figure 3.5. Sands in
the upper 700-850 meters haye the highest porositfes in each well,
but the-porosities-of the fifty foot interval are quite low. The
jlarge'separation~between tw6 values indicates the presence of a

: ]arge,ambunt of shale in upper 700-850 meters (porosity of shale

is takeﬁ-as‘zero), vhich is interbedded with porous sands. The

report of Black (1975) contains similar plots for other U.S.B.R.

- wells. -

| ~_Geochemistry: - Bailey (1977) has ‘summarized theiavailabTev'ﬂ‘i

chemical compositfon of:fhé:waters'ih theflmperial,Val]ey.v'His"»‘

conclusions are: = |
(i)\.Two«different types of waters arelpreéent.in'fhe'Eaﬁt o

Mesa anomaly. waterstOi1ected‘betwéen about 1400 and 2200 meters
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denth:differ from those below 2200 meters. Shallover waters are
similar to.tnose nearby ground waters, whereas deeper waters
display hiéh'salintty and a gneaten proportion of sodium chloride.

(ii) fSa]ten Sea anomaly possesses two chemically different
. brines. Deeper brine is much more saline and contain a higher
percentage of calcium than the sha]low brine. This deeper hyper-
sa11ne water appears to be 11m1ted to the Salton Sea area, as no
ev1dence of 1t s found . in the we]]s drilled outside the anomaly..
Concentrat1ons of solids in thevhypersaline brines are 50 to 100
tlmes those in the waters of East Mesa and Dunes anoma]y

(iii) Sha]low waters at the Sa]ton Sea, deeper waters at
East Mesa and Dunes anoma]y resemble the ocean water, indicating
that these waters may all have ‘the same source.
| (iv) Ch]or1de/brom1de ratio of Rex (1972) 1nd1cate that the
main sources of waters in the Imper1a1 Va]]ey are raTnfall and
prec1p1tat1on runoff, B | |

(v) AccordIng to the studies of Cop]en (1971 and 1972), the
Co]orado River is the probab]e source»of~southern Imperial Valley
geothermal waters while710ca1'precipitation.provides;forxthe
waters of Salton Sea area. - R

a11n1tx, B]ack (1975) has calculated sa11nit1es for al]

»U.S.B?R.}wells;for each 100-foot 1nterva1. Figure 3.6 shows the
plot bfisalintty vs depth in~Mesa_Ne1] 6-1. It -can be seen’that
saliﬁities are;higher and_moretvariable in the upper 750;metersv}
in a]ﬁ.the wells, Salinities are.hfgnly variab1e-becaUSe_of:inter;

bedded, unfractured sands and clays which do not allow vértica]
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depth differ from those below 2200 meters. Shallover vaters are \_
similar to thosehnearby ground waters, whereas deeper waters
display high_salin%ty and a greater proportion of sodium chloride.

(ii) Sa]ton Sea anomaly possesses two chemica]]y_different'
: brines; 'beeper brine is much more saline and contain a higher
percehtage‘df calcium than the shallow brine. This deeper hyper-
sa}ine water}appears to be']imited‘to'the Salton Sea area, as no
evidence ofitt'is.found‘fh the wells drilled outside the‘anomaly..
Concehtratidhs of solids in thewhypersaline brines are 50 to 100
tlmes those dn the waters of East Mesa and- Dunes anoma]y

. (111) Sha]low waters at the Salton Sea, ‘deeper waters at
-East Mesa and Dunes anomaly resenble the ocean water, indicating
fthat these waters may all have the same source

(iv) Chlor1de/brom1de rat1o of Rex (1972) 1nd1cate that the
‘main sources of waters in the Imperial Va]]ey are rainfall and |
precipitation runoff. V h E .

(v) Accordihg to the studies of Coplen (1971 and 1972), the
Colorado River’is the probable seurce of southern Imperial Valley
geothermal waters while localfprecipitation provides for the
waters of Sa]ton Sea. area. :

va11n1tx:- Black (1975) has ca]cu]ated salinities for a]l
»U.S.B,R..wells_for each 100 foot-lnterval. Figure 3.6 shows the
plot of saltnftyVS' depth in Mesa Well 6-1. It-can be seen that
saiinities.are‘higher andrhore-variab]e in the upper 750jmeters'.
in aT) the wells, Salinities are highly variable becaUse_pffihter-

bedded, unfractured sands andlclays vhich do not allow vertical
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flow and mixing of waters. .Salinities are higher,because‘theAuppef \a./
750-900 meters of sediments throughout the Imperial Va]]ey’confain
greater amounts of}evaporites than deeper rocks. -Furtherhpre,

ﬁater below 900 meters is more uﬁiform in sa1inity.b This méy be
because of vertical mixing. Samples below 2,2 km depth show |

increasing salinity with depth. S

Temperatures: Figure 3.7 sﬁows the temberatunes,vs, dep&h

for the five wells drilled by U.S.B.R. Most Imperial Valley geo-
‘thermal anomalies have maximbm temﬁératures of~about 15096-200°C‘
Three different gradient zones can be seen in Figure~3,2.i<5téep :
gradients in upper 700-900 meters are associated with vértfca1v
heat tfansfer by conduction. Pfesumab1y'the bresence of;Iérge
amounts of interbedded é]ays prevents vertical cOnvéCtﬁon~frbm
occurring. Temperatures are less variab]e.intthe middle zbne
which extends up to 1900-2100 ﬁeters; Heat transfer in this zone
is.pfofoundly influenced by convection, which is possibTe'in
relatively high permeability sandy zones. Steepervtemperature
gradients are seen below 1900-2100 meters in Mesa Well 6-1. It
would appear that the mode of heat transfer changes from convecfion
to conduction at this depth due to the pfesence offiﬁﬁfeasin§1y_
large amounts of shales in this zone. |
Figurev3.8 shows the temperatures in the we]]s-driiled;by,_'f 
, Republic Geothermal Company. Location of these we]Ts is shown -  ‘
in Figure 3.2._ It can be seen that the temperéqués in}thegé'We]1s 
are very close to those in Mesa Mell 31-1, Temberatures-ih,the -

vells, drilled by Magma Power Company arevshown in Figure 3.9 and -
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their relative position is shown in Figure 3.2. Temperatures in
these wells are very close to those in Mesa Well 6-1, 6-2, and 8-1.
It can be noted that Mesa Well 44-7 is very hot and is hotter than .
Mesa Well 6-1, 6-2 and 8-1 below 750 meters. Temperature profile
of this well is very flat between 1500-1850 meters. The flat -
temperature profile of Mesa Well 48-7‘is between 1800-2100 meters.
Similar flat temperature profile is also seen in Mesa Well 8-1
between 1200-1800 meters. One éould.interpret”these‘flat,portions
as zones that are strongly affected by fault zone flow. '

Synthetic Electric Log: Bailey (1977) constructed the

synthetic electric log for Mesa Well 6-1, from which the following
conclusions can be derived. The upper few hundred meters of
sediments (zone A) appear to have good porosity and sand'contents;
Beneath this upper zone is a 500-600 meters thick zone 6f sediments
of low effective porosity, restricted vertical permeability and
high clay contents (zone B). An increase in percentage of sand-
stone occurs at a depth of about 650 meters, while porosity starts
increasing at a depth of about 850 m. A gradual decrease in
percentage of sandstone occurs at approximate]y 1900 meteré and
a more abrupt'decrease at about.2250 meters'depth. This lower -
clay rich sedimentary sequence‘is;referﬁed tojas-zone D, while
-the sand dominated sediments above (which constitute“geothérmall

reservoir) are called zone C.

O
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3.3  Conceptual Model

Figure 3.10.shows the conceptual mode] of.the East Mesa
geotherma] system ) Basenent complex of granite-metamorphic rocks
is at a depth of about 4 km from the surface (Combs Hadley, 1977).
~ The basement comp]ex 1s subjected to faiiure under adequate stress.
Fractures,. once formed, woqu tend to be preserved in this high
strength rock Nearly vertical ten51on fractures probably were
the first fractures to form during evo]ution of the Salton trough.
These fractures wou]d increase the vertical permeability much more
than the horizontai permeability T

Overlying the basement is zone D domlnated by shale. it is
characterized by (1) steepenina of the temperature ‘profile in Mesa
Well 6-1 be]ov about 2100 meters depth (2) an, increase in per-
centage of shaie and corresponding decrease in sands below 2200
meters depth and (3) marked change in saiinities below 2200 meters
deptn B e R |
| Th1S layer extends from the basement complex to about 1900- -
2200 meters from the surface Here the sediments are indurated
by overburden and heat, they probably fracture, given any movement
_on the basement fau]ts The verticai permeahility of these
'sediments 1s expected to be good near the fracture zones, but i-
qu1te iow away . from the fracture zones Horizontal permeability f
’1n this 1ayer is also thought to be on]y moderate because of the

presence of clay and dirty sands.
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~Sands;dominate-thefsedimentary-zone‘(ZOne,C) from about 800-

i 7‘1900 meterSVdepth‘ Horizontal»permeabiIity-in‘thisﬁzone is

. probab1y better than in the under1y1ng material because of greater

" 'sand contents and cont1nu1ty and less compact1on. Vertwca] per-

"~f‘meabil1ty_shou1d be good near the fracture zones , andfin-genera]'

?tShouldVbe better than?in the"under1ying~beds'béCaUse‘of’the.

"' greater amount of the sand Except near the fracture zones,.

fre]at1ve1y fresh water 1n th1s sand dom1nated zone’ may be prevented

e from extensive m1x1ng ‘with the more-sa11ne water 1n~the sed1ments ‘

_be]ow by the restricted vert1ca1 permeab111ty of the sediments’ 1n
the lower zone.;._ e | |

- The next 600 meters or so of the sed1ments (zone B) is )
'dom1natedvby c1ay Fractures may form temporar11y in these
‘sedlments w1th sudden differential motion, but under 11ght loading

*i*fractures 1n these beds wou]d tend to close by s]ow f]owage unless

{ ifthere are repeated fast movements. Vertica] permeab11ity is.

»»probably veny 10w in these young sediments but the numerous

' ’*shal]ow we1ls 1n “them indlcate that their horizonta] permeab111ty

“?”1s good

The upper 200 meters of the va11ey fill (zone A) appears to :

'1‘5?fhave more sand and’ better poroswty than the under1y1ﬂ9 zone.

'”*Vertaca] permeab111ty~{s~probab1y much higher than'in:the under-
“?lylng zone. but zone A and zone B ‘probably behave in- s1mi1ar ways
jwhen subaected to stress. ;?-%é*?ifffgfj S L?*'?'”“.,‘= o
IR summary what vert1ca1 permeability exists in ‘the’ lower

: ‘four zones 1s due almost ent1re1y to fractures, whereas except in
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_the Viefhity of7a“fracture zone, horizontal flow in these zones
is ]épge1y dependent upon intergranular permeability. The major
' ; sopfce of fluidifor.southern Imperial Valley brines is‘the under-
:f]ow from the Colorado River. This water percolates gradually into
_sedlments and/or fractured basement rock over an area cons1derab1y
.larger than the anoma]y_1tse1f,theated at depth by anpas,yet
',sundefined source. the liquid can rise ,in.the'highvpefmeability
- fractured fault zone, conVecting,energy toward the surface. ~When

--a horizontal aquifer is intersected (re]ative]yflarge,horjzontal

r»g-permeabi]ity),3reservoirzchargihg will occur.

3.4. Mathematical Model

The two dimensional mathematical model of East Mesa
,geothermal system is shown in Figure 3.11. The fault,is.hypo- .
thesized to be a vertically oriented region of heavily-fractured
materia] of f1n1te width (Zye ). The vert1ca1 extent of .the fault
and the second horizontal d1mens1on of the fault are large compared

to the width.  The fault extends downward through the clay rich

region (cap) of thickness ', through the interbedded sediments of

.,thevreservoir for a distance L' and finally into the basement rock.
It is postulated that}the‘fault;is(chargedjat;depth by-the Tiquid
whieh.hes-beeniheeted'in'an extenSiVe basement fractured system.
The rate of charge cannot.be}speculated g_priggipwithoutfa glpba].
analysis of the convection proceSS«;”Liquid rises in the feservoir
jsectiOneoffthe.fauIt The presence of clays 1n “the cap suppresses

vertica],transport1there. Hater pushed out of ‘the fau]t by the

TN
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over pressure associated with convection is assumed to flow
horizontally in the aquifer. Vertical transport should be less
important in the large becaoSe'of the presence of shaley 1ayers
associated with interbeddingQ |

For mathematical purposes the fracture zone is-idealizedff
as a vertical slab of porous med1 um, The:adjacent aquifer is
represented as a,porous'nedium of lateral half width H' with
horizontal permeability on]y Fina]iy the overlying ciay:cap is
assumed to be 1mpermeable. ‘ -

Spatialiy uniform temperature boondery conditions,ere~imposed
on the cold cap surface and at the. hot bottom boundary of the
" reservoir. On the lateral boundary far from the fault (H'>>L'>>ye’)
the temperature distribution is assomed to~be.controlled by |
vertidel'condUCtion. The associated‘pressure distribotion can be
found once the density distribution is caiculeted; Finaliy- -
_horizontal mass f]ux is permitted to conserve matter.-

A quasi-analytic theory 1s deve]oped for high Ray]eiqh number
convection of a 11qu1d in a rigid porousimedium. In this approxi-
mation liquid rises up the fault and spreads into the near region
of the reservoir adiabatically. The cooling effect of the cap in -
_ the reservoir is confined to a’thin layer -adjacent to the interfece
‘The iayer grows with distance from the fau]t In the far field of |
the aquifer the fu11 depth of the reservoir is cooled by the |
surface. , :

Based on the fo]]ow1ng predictions of Combs (1977), 1t is

possible to obtain the ordersAof-magnitude-of Rayieigh‘number and'
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‘fault width for the East Mesa geothermal system.

bepth to the basenent {nterface = 4.15 kn.
’ICIay‘cap thickness,= ;8.Akn
uﬁi$6A9tyek _;»lj |
¥f3.35;kM“gs

Reservoirjthickness_
| 4= rat1o of cap th1ckness to the reservo1r depth f 238
Based on Na-K-Ca geOthermOmetry, formationvtemperaturejinfthe-East
Mesa area are 200°C +30°C (Bailey, 1977). Assuming a:mean forma-

tion ‘temperature of 200°C.-we;have;'f,¥« -
ot = 175% and T = ?587 N

For an assumed permeab111ty of 10 9 cm s one obtains R = 338.
Local Ray1e1gh number may be 10 20 t1mes higher 1f the 1oca1
1va1ues of the physical propert1es are used It 1s noted that -
-Ray1e1gh number is a1so sensitive to- changes 1n permeabi11ty
Assuming an average tewperature of about 200°C in the con-.
‘vection-actlve section’ of the fault, one f1nds that 1. 011 X 107
cal/sec km; is convected upward This 1s about 3 orders of
imagnitude 1arger than the purely conductive flux. F1u1d experi-

ences & 10% drop in the convect1on zone temperature while mov1ng

) “‘away from Mesa well 6 2 to 5 1 (Figure 3 7) Thus, cons1der1ng

o a 10% energy loss to the surround1ngs. one can then calculate the

heat transferredvto the surface This quant1ty. when measured



54

from the contours of Figure 3.2, is 4.88 x(]OS-cal/sec crossing an -

area of 110 ka, Upon equating these two quantities, ene'can theh'
obtain the horizontal tault zqhe area of 4;827km2. Since the
thermal activity of the Mesa extends along the primary fault for
aboutf2] km, a fault (fracture zone) width 2 ye' = 230‘m ts
suggested. One should recognizeﬂthat this is an'orde} dt';égni-
tude estimate. vaen the variable nature of 1nput 2 range ».
50m< ye < 150 m m1ght be approprlate If K.were far sma]ler o

»than 10 9 cm the fau]t zone area estimate would be far larger,

" and thus not representative of the relatively localized anomalous

‘properties at the Mesa‘field.

Fault Zone Equations: The following assumptions are. -
incorporated into the theory:
(1) Fault medium is isotropic,ii.e.,
K = K (x'ay'sz) | BN ERY

(ii) Fault medium in x'-y' plane is homogeneous

SRS - e
(i) : SR o BT
K (2') - el e 3.3)
: f—l?;f—~4 = constant _ '

This is a qual1tat1ve representatlon of the decrease of
v' with depth (assoc1ated with 1ncrea51nq temperature)

~ and the correspond1ngﬁdetrease 1n.permeab111ty:K'.(z )w
Aeee’to compaction. in actua].sitUations preetse[come_ —

pensation is not achieved.
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p’
The bas1c descr1b1ng equat1ons can be wr1tten in the

(1v) a C' A' are constant,

non-d1mens1ona1 form ,

B vy + w;f | (3.4)

n
DY

. ‘--",.-,.P.y L o ";_'(?'s)f

LIl ey
= - Pz“+ el g . h._(3.6)

=
"

.«R(VTY ¥ NTZ) = Tyy.thzz ) "j - 1':” - (3.7)
~given that ye.<< i; the'appropriate’fau1t'vdriab1es afe
‘vy ¥e and V’ ye | RPN (3.8) -
S Equat1ons (3 4) to (3 7) become o
"~V§'*’”z'759 S gt vt e (89)

(vr +, ) - T-- + ye2

o T, . ;v,[:l | ”h _.(3.]?)

where 537"

=Ry - o (313)

Aqu1fer Eguatlons Referr1ng to F1gure 3 10, it can be seen

'&that the area normal to the flow 1n the aquifer 1s much larger -

than in the fau]t Thus the f]ow ve]ocities in the aqulfer are .
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expected to be much lower than those in the fault for a prescr1bed
massfflow rate. In d1mens1ona1 terms, the flow area in the aquifer
is (1/ye) times that of the fault; the corresponding flow velocity in
the aquifer should be ye times the flow velocity.in the fault. Also
the continuity of the temperature and pressure is to be maintained at
'the interface of the fault and the aquifer. The following character-

istic variables are used in the aquifer:

] [ ]
Characteristic convection velocity = qf = ye qf (3.14)
f. = L) 1. f
9, =9'k'y OQZ AT/vg
f£rqf'
. as R f'_ Yo 9 '
Characteristic viscous stress tensor = o = Y L (3:.15)
fl fl .
. . f! 9% Yo
Characteristic convection pressure = Py = (3.16)
kl
0

Appropriate scale variables in the aquifer are L' in z-direction and
H' in y-direction.
The basic conservation equations in the aquifer can be non-

dimensionalized with the help of the following non-dimensional variables:

Ll_ z' Vf' Wf' 0'1-“- .
'H',’Z'L_""'—F""w'—_f?"—’oij=o7;" (3.17)
qr ye.qr r

The temperatures in the aquifer are denoted by o rather than T.
During the non-dimensionalization of the momentum equation (&-direction),
it is seen that the pressure terms is of 0(-1——0 Since the pressure

term shou]d_ba]ance the Darcy term, which is 0(1), the fo1IOWing



57

relation is obtained:

H'ye 0(1)4
or rr- :-y—e— : G (3.18)

- where d is.an 6(1) number,;whigh detgrminesv;hg,far-fje]d end of the

aquifer where liquid is fully cooled. Although horizontal motion of

" water exists, the horizontal temperature gradient is vanishingly small.

- Hence the major heat transfer at the far end is due to vertical conduc-
tion. ;

Again, considering the orders of magnitudes if different terms
in the momentum and energyiequafions'fbr a typical geothermal reservoir,
it can be conc1udé&'that the inertia terms and the stress tensor terms
represent insignificant effect ‘in the momentum’eQUation.~*A1so;'the
contribution o? the'§tréss tensor term 1n the energy equation is very
“small. The fo]low1ng field equations are obtained for a system of

constant porosity’ and sma11 pressure work.

v& + dwz =0 ‘ . ‘ .- (3.19)
o '_,- ky ;Az : | S
v=- > Ry . (3.20)

2, ‘ 1 :
yelu = K X, z ‘['Pz ta, e : 1] (3.21)
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2.2 v = ual ‘ 2 N
y“d“cp [? 6y + wez] = ye (Amqy),y +d (Amez),z . if3.22)

In addition to (3.2) and (3.3),the following assumptions are made
in the derivation of the aquifer equations.
]
(i) vertical permeability K¢ is zero.
It follows that equations (3.19)-(3.22) reduce to: ~ =

A

' and Am' are constant.

v(z) = - g Pg SR .;s_—_-};,-(3-23).
2 _ o2 2
Yd v(Z)Gy = yeog + d%,, o o (3.24)

where vy is given by (3.13). .From_(3.23),it.is clear that the
pressure gradiént isi a pure function of z. It is possible to
calculate the pressure gradient in the aquifer if the pressﬁre.at

~ the fault boundary ahd at the far-field boundary of the aquifer

is- known. Pressure in the fault can be obtained by-so]vfng,the ,
fauTtvfield equations. The. hot;hydrostatic.pressure,fs'speciffed
aty = 1. Once pressure gradients .in the aquifer are known,‘

equation (3.23) can be solved to obtain the aquifer ve]otity.
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3.5 Solution of the Problem

.. Without Clay Cap | o

| In this case‘z' of figure 3. 11'becomes zero and the impérmeable
top of the aquifer is at the amb1ent temperature T' The system of

equations (3.9)-(3. 12) for the fau]t are subJected to ‘the fo]]ow1ng

boundary conditions.

W (F.-1) = (3.25)

u
=

W (ilp) =  (3§25)

[
o

] '(.11',,2)" -+ -(_3‘_‘27) |

n
4+

o <
—
~N
—~—

T (0 (3.28)

.
-

1
d .
3

(3.29)

'“"f~j3%i(tgz)_='0 ;]Ff ¥u:;}: 'f y I;; g .%is : :'{.5(3.30)
where M ﬁ'%%?}téﬁd- ﬁ6;'; 2 po qz'y;i» o | ~(3;31).
A Tb‘solve the describiﬁg ma£hem§ti;ai'gyStém,A1etv

;v‘; T= o + 0 (ye )'

| u No +0 (ye )’_»

The deScribing system for 0(1)'terms is



60

- SR vTo'] o : .
My 2Pt (3.39)
QASTTLRER S e
Wy, () =M | | _‘ o - (3.37)
V; (t],z) =Vth(z) | (3;38)
T, G =1+ - i ' :(3.$9)
Ty (2) =0 | (3.40)

In a high Rayleigh number fiow, where convection heat transfer
is much greater than conduction efféct, a fluid entering the fault
will not cool until it is adjacent'to a surface where it must

lose heat by conduction. It follows that
T=14t, z2<0 } (3.41)

The solution can be written formally as

T0= 1+ 1 - o ' ' . | . (3.42)

Vo=viay R ER )]
z SR R _

%*”'I Vie)da | R € X 1)
-1 N z-.' » . X

Py = Po(-1) + 1+ z - M(1+z) + J do f v(a)de  (3.45)

-1 =1

.(J
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where v(2) remains to be found.

The major heat transfer at the far end ofvthe aquifer is by
vertical conduction. As there is no vertical motion, the pressure
* distribution with depth is simply related to the integral of the
verfféal'ﬂensit} distribution. The aquifer vé]ocityrv(Z) results
. from the overall pressure-differential;betWeen‘the fault and the
far field boundary. For vertical conduction.heat transfer and
zero horizontal temperature gradient; fhe.fafgffeld'témperature

. boundary condition is as fo]lowé:
‘e'(H".zf) =T a0’ -Lz—r o - | (3.46)
or in nonéjmen#ipnéf_%ofﬁ ' |
f-é(l.z‘)f%lt- . S - (3.47)
The far field pres§ﬁre fﬁ wrfttéﬁ as" |

. 'Zi , . »v:" o

o
- fl ; . f{ , ’ f.é;‘ 22 . . lb.

- or Py = L'9 Py (- z-a, Tot ?_J:+patmj B (3.48)
where of (') =0l [V - a (02T (349)

-~ Cold Hydrostatic,prggsufé'becpmésg -

P =~ Pg 92 * Py . - (3.50)

. .. Then because the reference pressure is

] .
of o f

ST ._ o
o Py 9 L' a, 46 (3.51)
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It follows that

2
, oz
p(]sz) = -3

(3.52)

From,(3.23), aquifer pressure gradient is a,pure function}of_z.

It follows that the aquifer pressure gradient can be written as,

[
apf

= pf'(H',Z') - pf (ye',z")
ayl Hl

In nondimensional terms:

o,
§=r0.2) - p5-, )

If (3.45) and (3.52) areused in (3.54) one finds

, R
9 _ A
S%" - %— - P (-1) -1 -z + M(1+2) - f] dé Jﬁ v{a)da

Now from (3.23), aquifer velocity becomes
2 P (-1) ' | z o
v(z) = Za-+ °d + %-+ %-- %—(1+z) + %-J do J v(a)da
' -1 -1

From (3.56)

P (-T)
v(-1) =55+ —4

Differentiation of (3.56) gives

' z
CR SR TRy e
-1
From (3.58)
dvi-1) _ _ M
dz d

(3.53)

| (3.54)

(3.55)

(3.56)

(3.57)

(3.58)

(3.59)
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;DifferehtiatiOn 6fy(3.58) leads to the following second order

ordinary differential equation.

dv(z) _

1, v(z) ~ (3.60)
dz d - o v

Q.|<
-

Although this analysis implies that the:solution to (3.60) is valid
everywhere in the aquifeh except in the fhih thermal boundary layer
near the top where temperatUrexfs not identfcal]y 1+ 7, it will
be shown that the sniutdoh:is'va]id‘to the lowest order in the

. boundary layer as well. | | | |
Therefore, the cond1t10n for the conservat1on of mass in the

aqu1fer up to the 0(1) can be wr1tten as '
, -1 S S '
Solut1on of (3. 60) with the cond1t1ons (3 57) (3 59) and

(3.61) is given as

‘v(z) = a cosh =2 + b s1nh 2. 1 S A - (3.62)
where : ‘h 1 »
M+ cosh = o
vd sinh — - ' J/d -
o Ja
. 1+M Cpsh)—]—]‘ e _ Vel
P(-1) = 8 |—— -a-F e
: ' sinh — J - ' Ce
S

Thus the dver phessure in the aquifer iébuh

p(y z) =d V(Z)(l-y)- 5=+ O(ye ) R (3'-65)'
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1t follows that the fault zone solutions obtained from (3.62),
(3.42)-(3.45) and (3.32) are

1+ : (3.66)

T =
V= yvlz) + 0lyed) (3.67)
W=-a,/d sinh =% -cosh—=+2z+1+ O(yez) ~ (3.68)
1 /a /d
o 22 2 | :
P=d v(z) - 7+ 0(ye“) (3.69)

Thermal Boundary Layer Near the Top of the Fault

The nondimensional temperafure at the'top of the fault is 1.
There should be a boundary layer to accommodate the temperature

drop from 1+t to 1. Appropriate non-dimensional variables are:

and W = (3.70)

<|=
[¢+] .

Z =

s

Substitution of (3.70) into (3.67)-(3.69), (3.62) and (3.65)

Teads to the following matching conditions for the boundary layer

solutions.
V= ¥la;-1) + ye L&+ o(ye?) (3.71)
— - 72 2  :
W= - z(a;-1) - ye 53 + 0(ye") (3.72)
P = d(a,-1) + yeZ + 0(ye?) | (3.73)
v(2) = (2y-1) + ye & + 0(ye?) (3.74)

p(7.2) = d(1-§)(a;-1) + ye(-HZ + olyed) - (3.75)
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Substitution of (3.70) ‘into (3;9)-(3.12)~1eads‘to the

fo}}owing_boqqdqry,laygrvequations:
Vy-+ u2-= 0 : ‘ o (3.7§)

yell = - po S S (3.77)

"yezv“{=--p-+ye"l:l o (3ae)

2 A -] & T —~ — | ' | » o ‘ ) .
AT+ wr) T * Ti (3.79)

Let the solut1ons of (3. 76) (3.79) and (3. 23) be expressed
in the fo]10w1ng asymptotic form for sma]l ye

7
W W

d0 L e
B L A - (3.80)

©“The Towest order terms describing the fault system have the

form: -
V.‘:+ W —= O.% ;vgviifi’iﬂsf} : -kvvl§5<~ﬁ:f*J'a(3~81)

P==0 o | | (3.83)
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2 _ N T .
Y (voToy‘+ WoToz) Toyy * Tozz

It follows immediately that P is a constant.

we find that

| (3.84)

From (3.73),

(3.35)

The 0(ye) correction is described by
V];; + W-"z— =0 (3.86)
Py = 0 (3.87)
To-]
- P.|;+ . =0 (3.88)
2 S _
While that for-O(yeZ) is described by -
Vg + Mz = 0 (3.90)
Vo = - sz (3.91)
T
Wo = - Pz-z—'i' T (3.92)
2 | Ve T 4 T
Y (VT + VaToy HHoToz HHaToz * Ty + ¥ Tig) = Togp + T3z
- {3.93)
Equations (3.87) and (3.88) imply that
Py =P(2), T, =T.(2) (3.94)
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Therefore (3.84) reduces to:

2
dT d°T
2 0 0
oz g3t S

which implies that
'wo = wo(z) : Lo (3.96) |

The aquifer pressure gradient (to the‘]owest_order) in the thermal
boundary layer as obtained from (3.52)ténd (3.85) is‘given as.
follows: |

p o '

0 _ _ q » _

W— = d(a'l 1) | _ _ (3.97)
From (3.23) and (3.97),.one obtains

p(5:2) = d(a;-1(-§) - (3.99)

The above expressions-of_the»aqﬁifek vélocity and the_preSSure
"~ match with the lowest orderktérh’dff(3.74)'and_(3.75). Therefore
the composite solution for the équffér velocity which is va]id in
the whb]e}depth of the aquifér,‘is given by (3.62)vto thfs order.
E The bodndary conditioﬁs{on_(3.81)’ahd;(3.95) are: - B

CWGhzee) =) (330
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T,(7,0) = 1 | (3.102)

Tysz » =) =1 41 (3.103)

Then we find that

V,3:2) = (2)-1)F (3.100)
wo(i,i) = -(a,-1)z | | : ;‘(3.105)
T(Z) =1-cerf(l) © (3.106)

2
where A =/3-(31°1)

Since yz = R]/zz , then a plot To vs. z is -independent of ye. _
Substitution of (3.104) and (3.105) into (3.91) and (3.92)

results into the following equations,

(a,-1)¥ = - Py | (3.107)

2y
- LN
“laz = - Pt o | (3.108)

which imply that
T] = T](E) | (3.109)

If (3.94) and (3.109) are used in (3.89), then we obtain

2
dT.I

dr y  dT
yz[wo 7 ¥ -——°] =1 | (3.110)

dz

dz?

It can be seen readily from (3.110) that

W = W](E) o (3.m)
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Use of (3.94) and (3.106) into (3.88) results in:

Py = - erf(AZ) o ©(3.112)
& e

| which can be solved fok‘the following matching’b6undary condition

(3.73)
P+ =7 )

Solution of the above system is as follows:

p2z2

Py(Z) = - 7 erf(Az) - L& (3.114)

YA | |
B TheffirstVQrder‘eokrectioh;to the‘boundary_layer;pressure
gradient fn the aquifeh as obtafned froh (3.1i4)-andv(3.52) is
as foliews: [
| ;;l = 7 erf(AZ) + A‘—ﬁ AT (3.115)
'Frbm'(3.23) and (3.115), fol]owing7expressions for the waquifer"

velocity and the over pressure are obtained .

v (7) -2 eff(Az) - _L -AH | ’('3, 1.1'6‘)
(Y _) - -(1- )z erf(A’) AR Az"2 T iy
p] " : A/F_;,,.* ' ;t;'.fi' S

| 3 It can be noted aga1n that the express1ons (3 116) and (3 n7)
'5.match w1th (3.74) and (3 75) respectively to th1s order
Now (3 86) and (3, 110) can be solved for the fo]low1ng

boundary cond1tions.
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V](tl,E) = iv](i)

— 72
N](Z - 'm) = -, 'é—d-
T] (; = 0) = 0
T-I (-Z- > 'w) = 0

The solutions are

Y (7.2) = v, (@)

2
(—) . T (1 + erf(AZ)} + 55 erf(AZ) + —=— z
| 4A2d 2 2dAVT

2 2-2 i
T,(2) = L% [E +erf(A7) - e M2 (1+A222£]
6/ndA B L

- The above results can be used in (3.80) to give .

V= (a;-1)7 + yeyv, (2) + O(ye?)

W= -(a]-l)? + yel,(z) + 0(ye?) |

p = d(a;-1) + yePy(z) + 0(ye?)
T =1 -verf(AZ) + yeT,(3) + d(ye?)
(D) - -1 + yevy(z) + o(ye?)

p(3,2) = d(a;-1)(1-9) + yep,(5,2) + 0(ye?) -

(3.118)
(3.119)
< (3.120)

(3.121)

(3.122)

e

{(3;123)

: (3.124)

(3.125)
(3.126)
(3.127)

< ‘(_3'.128.),
(3.129)

(3.130)
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Equation (3.18) shows that the far field boundary is deter-.
mined by d which is a function of the parameters M, R, T and ye
(3.24). Representative values of these parameters selected for

comparison are as follows:

R =500
T =‘1:

ye = .025

For a given set of.pérameters, d is determined,by integrating the
parabo]ic'equatiqn}(3.24) in the far field region until the
numerically determined vertical temperature gradient ez_is within
.8% of the Specified value at the far fie1d~boundary; Table I
-shows thevvalues{of d. for differentvsets of the parameters. It
can be @‘béeévéd that H'/L' = 0(1) for M < 1. As shown by (3.18),
'this'analysis-is.gglx;valid when H'/L' = 0(1/ye). Hence the ceses
“with M < 1 are not ccnsidered‘jnefhis report. |
Figure 3.12 shows the plots of the vertical velocity and the
over pressure in the fau]t vs. depth for different mass f]ow rates
as given by (3 68) and (3 69) respectively It should be noted’
that the values of din th1s figure are already corrected for the -
‘-g1ven parameters Vert1ca1 veloc1ty (w) 1ncreases with the 1ncrease
of M, as expected and becomes zero at the top of the fault. 'A11 '
the vater is pushed to the aqu1fer by the time it reaches the top

surface of the fault
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TABLE I

VALUES OF d FOR DIFFERENT SETS
OF PARAMETERS IN THE NO-CAP CASE

d i} R T ye
<.12 <] 500 1 .025
g2 500 1 .025
.3 2 500 1  .025
47 3 500 1 .025
64 4 500 1 .025
47 2 750 1 .025
64 2 1000 1 .025
35 2 500 2  .025
1.34 2 500 1 .05
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Hon

We

F1gure 3. 12 Vertical Ve1oc1ty and Over Pressure D1str1but1on
-along the Depth of the Fault for- Different Mass
~Flow Rates. - . ;

176
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Overall magnitudes of the overpressure increase with
increasing mass flow rate. For high mass flow rates (M > 2) over-
pressures are highest at the inlet of the fault, decreasing
upwards and then again increasing towards the top 6f the fault.
The pressure increase towards the top of the fault is caused by
the stagnation point at z = 0. It can be seen that the pressure
gradient changes from negative at the bottom of the.fault (z = -])
to the positive at the top (z = 0); in between preéSure is minimum
where its gradient is zero. Equation (3.10) shoﬁsﬁthat the fault
pressure gradient in the y'directioh is_very sma]j, O(yez), which
is needed to force the Tiquid in the‘y'directioh in the fault.
Also, it is observed that an increase in R incréases ¢ which, in
turn, enhances the fault over pressures required to push the fluid
through a longer aquifer. Similar effects in‘the~fau1t‘over'pres-
sures are also observed due to the increases in ye'and'f. “Also,
the higher values of R, ye and = seem to increase the vertical
fault velocity (W) in the lower half of the fault.

Figure 3.13 shows the plot of temperature vs. depth of the
fault as given by the boundary layer solution (3.128) for different
mass flow rates and the corresponding values of d; As expected
the boUndary layer gets thinner with.the increase df M. Also note
that the -depth scale is smaller in this figure‘andithe max imum
depth plotted is only 18% of the total depth of thé'fault; It is
observed that an increase in ye increases d and reduces the fault
temperatures slightly. Since the lowest order term of (3;128)‘is

independent of ye, this decrease is, therefore, caused by an

———

v,



78

Temperature

1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
o) 1 1 1 } i 1 1 ! i

Figure 3.13 “Effect of Mass Flow Rate on the Temperature of
‘the Fault as per Depth
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T

increase of d. However, fault temperatures are found to increase o
with increasing T. |

Figure 3.14 shows the boundary layer temperatures in the fault
(3.128) for different values of Rayleigh numbers. Maximum depth
plotted in this figure is also 18% of the total fault dépth.. It
can be seen that'the boundary layer thickness decreases with
increasing R. This is -caused by thé increasing effectiveness of
convection as R increases.

FiQure 3.15 shows the plots of the horizontal velocity in
the aquifer vs. depth of the aquifer for different mass flow rates
as given by (3.62). The trend of the curves is simiTar to the
over pressure curves in the Figure 3,12. Lafger velocities at the
top of the aquifer are associated with the larger pressures which |
lead to the larger pressure gradients there. An increase in the
values of R, ye and T is found to increase d, which, in effect,
reduces the water velocities at the top surface of the aquifer.

Figure 3.16 shows the variation of the over pressure vs. the
length of the aquifer at z = -.5 as given by (3.65), for different
mass flow rates and the associatéd values of d. Over pressure is
found to decrease linearly with the length of the aquifer. It
can be noted that the over pressure becomes negative 35”9
approaches 1. It is because of the dominance of the far end
pressure boundary condition in that region (3.65). - It can also
be seen that the overall values of the over pressures increase
with increasing mass flow rate, as expected. For a given M, over»'

pressures increase with the increase of d (or of R, ye and t) as
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_ Temperature
1.01.1 1.2 1.3 1.4 1.5 1.6.1.7 1.8 1.9 2.0
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Figure 3.14 Effect of Rayleigh Number on Temperature of
Fault as per Depth
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181

O
-1 , R = 500

-.2F ye = .025

M=3, d=.47

W

Figure 3.15 Horizontal Velocity in the Aquifer vs. Depth
for Different Mass Flow Rates
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R =500

F1gure 3. 16 Over Pressure in“the” Aquifer vs y for D1fferent
~ Values of Mat z = -.5" ,




higher pressures are needed to push the given amount of the fluid \.’j

through a longer aquifer.

Temperature Distributions in the Aquifer

80

T

Velocity field and the pressure field in the aquifer, to the

Towest ordef, are given by (3.62) and (3.65) reépectively. It

can be seen from the energy equation (3.24) that the temperature

field is sensitive to the variations in the velocity field. Figdre

3.17 shows the different regionsvin the équifer, vwhere energy

equation is solved. Length variables for these difﬁerent:regionsv

are as follows:

region 1 y
region 2 y
region 3 y
region 4 y
~ region 5 3

Following are the energy equations for all the five regions.

Region 1

2 £ jo— o= -
Y v(z)ey eyy

Region 2

2 = -
Y v(z)ey eyy

Region 3

sz(zf)ey = yef

and
and
and
and

and

N|

Z

Zz

+ 6--
eZZ

yy

+ yezezz-

+ ?2*92*

(3.131)

‘:'(3..1'32_)

| - (3.133)
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Figure‘3.17 Five Different Regioﬁs,iﬁ the Aquifer.

18
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Region 4
sz(z)ey = ye(eyy} 6,,) (3.134)
Region 5 o
- de v(z)69 = yezeyy + dzeZZ | S (3.135).
] A ] N
=Y - yd =z -z
where y %T- ve * z=7v ve
,— = ' = L = IALd__ 7 = Z' ‘= L .
Y= YT Ve S TTve e (3.136)

Equation (3.131) can be solved for the following boundary

conditions.
68(1,7) = T(1,Z) = 1 - © erf (AZ) - (3.137)
o(y,0) = 1 (3.138)
B(y,—=) = 1+ 1 | - (3.139)

It is required that 6(y + =,z) is well behaved. With the lowest .

order terms of (3.129) and the transformatioh
8=1+1+8(y,7) R | (3.140)

Equation (3.131) and the boundary conditions (3.137)-(3.139) are

transformed to the following system.

ZAzéy = Bae + Bz | C(3a41)

yy zz

8(1,2) = -t 1 + érf(A?)] ~0<Z2<0 (3;14‘42)'
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(3.143)

A

<|

In
8

"6-(9',0) = -

(3.144)

A

<]

IA
8

8(y,~=) =0 1

To solve the above system, the following Fourier Sine'IntegreI

Transform is used,

es(ylw) = I/\51§}E) sinwz dz | (3.145)

-C0

Its inverse is given by

| . (0 | o
5.7 = %j o (Vo) sinuz do (3.146)
Taking the'integral transform of (3 141) with fhe boundary
conditions (3.143) and (3.144), the fo]]oW1ng ord1nary d1fferen-

tial equat1on is obta1ned

- |
d%e do, | R
2= s-wr 1<V ew (3.147)
K A T

Boundary -conditions are: -

o (1) =& (1 -8 /4Ry . R - (3.148)
0 (=) = Bounded. . (3.149)

The transform so]utlon can be expressed as .
. | g
| {- 9—2' VA4"'U) + (Az ~vA ))’
9 (y,w) = — [‘ - e 4A .
(3.150)
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An inversion of (3.150) yields

Wl A
o {-%2- A2 & /a2 + (A2 A%? )y}

G s -r-E[ e sin wz g,

w
(3.151)

-00

Thus from (3.140), one finds

2 —
o (-9 - A% + /A% + (A2 /A4 )‘}

== - 2t 2 sin wz
6(y,z) =1 - p- I e 4A m dw
- (3.152)

To find the result for y + =, substitute
7 = % >> 1 | - (3.153)

into (3.152) to obtain

o(y,z)
W2 /
9 -e . A + Az(l + )V2 A ( 1 + ——- .
_ T 2 s1nwz
=1 - = e 4A dw
m w
° | (3.154)

For £ = 0, the integrand in (3.154) is exponentially small,

except when w << 1. The integrand can be evaluated for
w<< 1 and wZ << 1 (3.155)

The asymptotic estimate can be written as

2

e 4A% 2&:11!\2 Z dw  (3.156)

{0.)
o(y,2) =1 - & r)

o

()
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“which can be integrated tbnéive‘

ey =1 -/2 0 Z—1/—2 o (3.157)
Yy LT R

where

4
1

o) L  (3.158)

) Equat1on (3 157) 1nd1cates that a s1m11ar1ty variable
(z/y]/Z) will be SIgn1f1cant in region 3. .The order of the
magnitude of z can be obtained from (3.155) and (3.158), with

the following result.
z <<»0(J~f3)7', St el | (3.159)
: 172" L .

The 11m1tat1on to be 1mposed on the solut1on (3.157), as

obtained from (3 153) and (3 159), is as fol]ows

5‘21/2 << 0(]) 3 'ﬁf’y;? L P | (3.160)

‘<|

Solution of (3.132) in the region 2 is

1.319(y;z);=51 S ’ (3']6])
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because the cooled thermal region does not extend below the thin
surface boundary layer.
Use of (3.136) in (3.62) gives the following expression for

the aquifer velocity.
v(z*) = ay - 1+ O(yel/z) (3.162)

Equation (3.133), containing 0(1) terms for the region 3,

can be written as

2A26y = 0,40, (3.163)

with the following boundary conditions
6(y,0) =1 (3.164)
o(y,-) =1+ 1 (3.165)

A similarity solution can be obtained which is compatible with
the solution in region 1 (in which the boundary layer is born)

Elementary methods yield,

* A
8(y,z”) =1 -terf (—n), n-= 3.166
y T an n 172 ( )

Expressing (3.166) in  the variables of region 1 (y,z) the

following equation results.

——

&.ii
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0(7,2) = 1 - v erf(’ 277 (3.167)
| 2y
Referring to Spiegel (1968)
erf (x) = 2_ X, X<<1 - (3.168)
\ /o :
=1/2 JFUR
For z/y << 1, (3.167) becomes
o(y,7) = 1 o - (3.169)
| TSI

1t can be seen that (3.169) matches with.the;outer Timit
(3. 157) of region 1. It is e]ear‘from (3'166)'that the tempera-
ture boundary layer tthkenS along the 11nes n= 0(1) and y + e
as shown 1n:F1gure>3.17 by Tines for N> Nys Ngs etc.

The basic‘temperature solution for region 4 is
‘ o) =lex f a0

vhere aga1n the same argument, as glven for reg1on 2 can be used.

' So]utlon (3. 166) and the quadrature solution: (3 152) are
plotted in F19ure 3. 18 at«dlfferent depths of the-aquifer and at
different va]ues of y away from the fault center11ne It can be
»noted that the quadrature solutlon approaches the s1m11ar1ty
}solut1on and f1na11y merges “in 1t for large values of y.

It is poss1b1e to obtain the ana]yt1c solut1on of (3 135) in
reg1on 5 when ¥y << 1 and 2 << j but z/,y]/2 = 0(1), wh1ch can he h
matched with (3. 166) | |

 The Taylor's series expansions;

R A B
v(z»0) = v(o) + zv'(q) +-§— v''{o) + e (3.171)
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Temperature
01.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

T T T T T T T T ] 1

Quadrature Solution
~—— Similarity Solution

Figure 3.18 MNear Fault Températures in the Aquifer
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or
v(z20) = (a)-1) + 54552 + .0 (3.172)

are used to describe the;ve]bcity field. - The temperature field is

expressed as
0320 = oyl + M0, (n) + Joyn) + 05D (3.173)
where S n - §T7§ .} S - .v | (3.174)
| Substwtut1ng (3 172) (3 173) and (3 174) into (3 135) one

:can construct the fol]owing systems

o Order (1) f

2 o |
 "'§£°4%€ g_e‘gf? ' ) (3.175)
| .,eo(y,z =0)=1 . o (3.176)
e (y - o,z) =1+ | SR (3.177)
order (y‘/z) E : S s
o d291f+ ﬁAZ‘d91ﬂ~A2-'fgezfsﬂ;i;f§2 éffﬁiﬁ"' = (3.178)

L B = I &
o(§iz=0)=0 o (3.79)
S0 =0 o (3.80)

o Sbmtibh‘s of (3!1755-("3' 1'77')' and (3.178)-(3. '180) ‘Mién substi-
: tuted in (3 173) resu]t in the fol]owing expression for the tempera-

 ture in reg1on 5 when both y and z-are small
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~1/2_ 2
6(y,z) =1 -1 erf{ Az ) + LT [:Z {1 + erf( Az )

/2d 518 a/zd A% | Vg /25
p . A
S 7170 AR S (38
/udy

It can be noted that the 0(1) terms of this expression match
with (3.166) of region 3. i

Temperatures in region 5 are obtained by integrating (3.135)
numerically as explained in Appendix A. Solution (3.181) is taken
as the initial condition at y = .05 for the numerical integration.
Figure 3.19 shows the variation of the temperature.as per depth of
the aquifer for different values of y. ¥ = 1 represents the far
end of the aquifer, which is d/ye times its dépth. This figure
shows the reduction in the temperathes of thelliquid as it moves
away from the fault, losing heat to the surroundings. It can be
noted that the far field boundary condition is satisfied
for this value of d. Figure 3.20 shows the isotherms in the
aquifer for the temperatures of Figure 3.19. It is apparent from
this figure that the horizontal temperature gradient decreases as
the liquid moves away from the fault and becomes negligibly small
near the far end.

Figure 3.21 shows the effecf of mass f1ow rate on the surface
temperature gradients both for the fau]t and the aquifer. Heat
transfer at the surface is seen to increase with fncreasing mass
flow rate, as expected. Matching of fhe thfee regions is also

shown for M = 2. It can also befnoted that the length of the
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‘Temperature

1.0 7.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
0 (| 1 T T { ) T T T

F1gure 3-19 Temperatures in the Aqu1fer at-Different Locations
Away from the Fault. T .
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Figure 3.20 Isotherms in the Aquifer
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aquifer in each case is different. It is because of different ‘st
values of d associated with different mass. flow rates.

Figures 3.22, 3.23 and 3.24 show the effects of R, Tt and ye
on the surface heat flux. As expected, an increase in R, Tt and

ye enhances the temperature gradients at the surface.

The Clay Cap Case

In this case an impermeable layer of thickness &' is supposed
to cap the aquifer as shown in Figure 3.11. Relative to the
cap]éss case there will be a reduction in the heat transfer to
the surface that depends on &' and the thermal conductivity. Two
different thermal conductivity zones are considered in this
analysis, because the impermeable clay-rich sediments have a
lower thermal conductivity than the sand rich aquifer (Bear, 1972).
Change of the temperature gradients at about .8 km in East Mesa
Wells (Figure 3.7) also supports the idea of a thermal conductivity
contrast. The boundary conditions, to which fault and aquifer
are subjected, are similar to those in the previous case. However,
at the interface between fault-clay cap and aquifer-clay cap,

temperature and heat flux must be continuous. It follows that

T(y,0) = 6%(¥,0),  6(5,0) = 6%(y,0) (3.182)
and

T,(¥,0) = 265(¥,0), 6,(5,0) = 265(§,0) (3.183)

where X is the ratio of the thermal conductivities of the cap and

the aquifer.
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F1gure 3.22 Effect of Rayleigh Number on the Surface Temperature Gradients along the
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The temperature boundary condition imposed at the far end \~f’
of the aquifer (y' = H') is again based on purely vertical

conduction and is given as -

°(1,2) = 1+ 7 (#-2)  0<z<2 (3.184)
and
= — (g- - |
0(1,2) = 1 #+ 537 (#-3z) -1<2<20 (3.185)

whefe L=/l .

The change in slope is caused by the jump in thermal conduc-
tivity at z = 0. Corresponding pressure boundary condition in
the aquifer is

2 2
pllz) = - 32222322 <740 (3.186)

Fault temperatures are expected to be higher with clay cap than
without it. Hence 0(1) temperatures given by (3.42) are valid
in the whole depth of the fault. Fault zone solutions of 0(1)
terms, given by (3.42)-(3.45) remain unchanged. Substitution of
(3.45) and (3.186) into (3.54) leads to the following horizontal

pressure gradient expression.

2, 2 z (o
op . L-20z+Az :
- LB p () <1 -z 4 M) - J qu V()
Tl (3a87)
Then the aquifer velocity is obtained by using (3.23).
2_ 2 P (-1) z o

W) < 2R s ot e 2 B + 1 o [ vioan
' -1l (3aes)  —

o



S
w

l?ihd FRa

99 .
D1fferent1at1ng (3.188) twice with respect to z yields the

fol10w1ng ord1nary d1fferent1a] equation,

2
d A ) o
d:£2) i Y§Z) taney . (3.189)

which must satisfy the conditions

P (-1) 2

Yo 8¢ + 20 + A e
V(1) = g ¢ L (3.190)

and

- dv(=1

b e (3.191)

‘,The_so]ution_can be written as

T T

SeTAl - (3.192)

v(z) = ajcosh 2 +b,sinh Z- -
2 A 2° Ja

where , :
. A ' 1
M+ cosh — - i
ap = . 1 » P2 (3193
Yd sinh — 5 vd ()
. MJ, I,JE~ S B S E S DR

L, = e .;_f :
P (-1) = - pie2etat2nd . A /d

, 2(2+A) A+2€Sinh .

i + WA coth == (3.198)
Jd

It follows that the fau]1 zone solut1ons obtained from (3 192),

f’f(s 42) (3 45) and (3 32) are

a;;T-;kl +_¢i,-5];».,» S (3a195)

V’='&V(z) sobed) T T (3.0e)
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W= - '32'/& sinh -_Z: + bz/d [1 - cosh --Z:]_ + i‘fj@“‘ ,0(}'92)
(3.197)
22 - 202 + Azz 2 .
P=dv(z) - + 0(ye®) (3.198)

2(x+2)

The over pressure in the aquifer derived from (3.23), (3.186)

and (3.192) is

2 2
p(H.2) = dv(2)(1-9) - 25 HEEA 4 o(ye?) (3.199)

The factor d, which determines the far-field boundary of the
aquifer, depends on the parameters £, A, M, R, T and yé as shown
by (3.24) and (3.192). Besides R, T and ye, other comparing

parameters in the East Mesa area are (Combs, 1977),

clay cap thickness = &' = .8 km

' .8
=33~ -4

™
n
l“_lze

Thermal conductivity of the clay cap = 4.6 x 10'3 cal/cm-sec-°K
Thermal conductivity of the aquifer = 6.4 x 1073 ca]/chsec-OK

y o 46x103
e Tl
6.4 x 10
Table II shows the values of d for different sets of the para-
meters, obtained by integrating thé'parabolic equation (3.24).
It can be observed that for M < 0.5, H'/L* = 0(1) implying that
the asymptotic analysis, based on H'/L' = 0(?%) »> 0(1), fails.

The following observations can be made frdm this table.

——
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CTABLE 1T

VALUES OF d FOR DIFFERENT SETS
OF PARAMETERS IN THE CLAY-CAP CASE

e

R
24 |
28 .50
22 2 .
i
.49 .24
78 .28
a8 e
50 4.
FTRRY

..
~5
—

500 1 .025
1 500 1 .02
N s0 1 .02
5 500 1 .025
2 500 1 .025
‘3 500 1 .025
1 3.8 1 .02
1 1000 1 .025
| 1 s00 .6 .025
.04 . 0 g0 1 .05
;f‘ﬁiz Y )

e . . ’ ) - - . . .
T~ ~N N~ ~ N N N O ~

1 338 .6 034
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An increase in A is associated with a decrease in d. Faster
convergence to the far field boundary condition occurs because
of increased cap heat transfer. An increase in M, R, T and ye,
all of which lead toienhancemehtgof convéctibn, increase d
because, in general, they ténd to increase the temperature at a
given point in the cooled part of the aquifer. The cap heat .
transfer reduction, caused by an inérease in thiékness implies
that a lonéer aquifer is required fo staﬁi]ize thé températures.

It is clear from (3.192), (3.197), (3.198) and (3.199) that
v(z), W, P, énd p depenﬁ explicitly on &, X and M.. However, an
increase 1in R, T and ye increases d (Table IV) jwhich implicitly
affect aquifer velocity, vertical faultvvelocity, fault over
pressure and aquifer over pressure. Velocity of the liquid near
the top surface and the bottom surface of the aquifer are found
to decrease with increasing d. This is required to accommodate

the existing pressure gradients there. However, the velocity

increase in the middie portion of the aquifer is due to the conser-

vation of the specified mass flow rate. The effect of cap thick-

ness on the horizontal aquifer velocity is shown in Figure 3.25.

It can be seen that the horizontal aquifer velocities are higher in

the lower half of the aquifer for higher cap thicknesses. This is

due to increased pressure gradients found in that portion of the

o
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; Velocity
.6 .8 1.01.2 1.4 1.6 1.8 2.0
= 1 1
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T =1
ye = .,025
™~

- Figure 3:25 Effect of Cap Th1aness on the Hor1zonta1 Veloc1ty,
st o in the ‘Acuifer :
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L~

aquifer because of the reduced hot hydrostatic pressure associated \~s#
with the 1ighter (warmer) liquid at the far-field boundary.

Velocities reduce correspondingly in the upper half of the aquifer

to conserve mass.,

Figure 3.26 shows the effect of the thermal conductivity -
ratio on the aquifer velocity. Lower A reduces heat transfer
throughout the cap and hence maintains higher temperatures in
the aquifer. The trend of the results is similar to that‘in
Figure 3.25 but the velocities do not differ significantly fbr
this change of A. It is also observed that an increase in mass
flow rate increases the horizontal aquifef velocity.

It is found that the vertical fault velocities increase
slightly with the increase of d. It is probably to compensate for
the corresponding decrease in the horizontal aquifer velocity.
Also fault over pressures are found to increase with increasing
d. Larger pressures - are npeeded to push the fluid through a
longer distance. A similar effect of d‘is also observed on the
aquifer over pressures.

Figure 3.27 shows the effect of cap thickness on the fault
vertical velocity and the over pressure. It can be seen that the
over pressures with the thicker cap are lower in the fault. This
difference is primarily caused by the reduced far-field pressure
boundary condition which in turn establishes a different pressure
at the fault so that the same amount of liquid is,pushed}through
the aquifer. It is also observed that the vertical fault

velocities are slightly lower for a thicker cap. This can be
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F1uure 3. 26 Thermal Conduct1v1ty Ratio Effect on the Horlzontal
Velocity 1n the Aquifer



Figure

Velocity
-4 -2 0 .2 4 .6 .8 1.0
0 ' ;
- - .24, d = .2>4:
B =.5 d= .28
i A= .7
- M=
R = 500
) =1
- / ye = .025
[ Fault Vertical Velocity
|
0 _! Fault Over Pressure
3.27 Effect of Cap Thickness on the Fault Vertical

106

Velocity and Over Pressure



107

explained with the he1p of Figure 3.25 where horizontal aquifer
velocities in the lower half of the aquifer are higher for a
thicker cap. These higher velocities transport a relatively
larger amount of fluid in the aquifer and thereby correspondingly
reduce the vertical velocities in the fault

It is also observed that the increase in A causes a very
slight increase in both the vertical velocity and the over
pressures in the fault. It is:ciearrfrom Figure 3.26 that the
horizontal aquifer velocities decrease'with increasing A in
the 1ower half of the aquifer and hence correspondingly increase
the verticaipfautt velocities. Also higher’hftransfers more

heat through the cap so that the aquifer fluid is relatively

cool.‘}The_cooi 1iquid of higher density will give. rise to higher

hot hydrostatie pressure at the far end of the aqujfer; To make
up for the needed pressure gradient, fault over pressures are
expected to 1ncrease with 1ncreas1ng X, ’

F1gures 3 28 and 3.29 show the effect of mass Flow rate on
the vert1ca1 ve]oc1ty and the over pressures in the fau]t respec-
tively. As expected both the vert1ca1 velocity and the over
pressures 1ncrease w1th 1ncrea51ng mass flow rate.

M F1gure 3.30 shows the effect of cap th1ckness on the over

pressures in the aquifer. It can be seen that the over pressures’

‘WIth a thlcker cap are 1ower 1n the aqu1fer - As the'fér ehd hot

hydrostatic pressure becomes Tower for thicker cap (1ighter liquid),

aquifer over pressures adjust to lower values to allow nearly the

same pressure gradient for any given M.
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Figure 3.28 Effect of Mass Flow Rate on the Vertical Velocity
in the Fault ' S
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Figure 3.30 Effect'of Cap Thickness on the Over P}essure in the
Aquifer at Three Different Depths.
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An increase in A seems to increase the over pressures in the
aquifer very slightly. Higher A gives rise to higher over
pressures because larger heat transfer resuits in a cooler,
heavier fluid. An additional contributing factor is the effect
of the far-field pressure boundary cOndition as explained in the
prev1ous paragraph | |

F1gure 3.31 shows the effect of mass flow rate on the over
pressures in the aqu1fer. H1gher mass f]ow rates give rise to
larger pressure gradients, as,expected. _

:Once’the'o(f) temperature solutibns in the fault zone are ob-
tained the next step is to look into the temperature distributions
in the'clay cap and the aquffer F1gure 3. 32 shows the regions
in which the temperature d1str1butions w1]1 be exam1ned Energy
equations (3, 131) to (3. 135) rema1n unchanged for the regions 1
to 5 Aan. the aquifer.; In reg1ons 6 and 7 in the c]ay cap the

energy equat1ons-are:

Region 6
oy, + 05, =0 | N (3.200)
_Region 7.
yeleGy + d%5, =0 - o (3.201)

Bes1des (3 182) and (3. 183), other boundary condltlons for
(3.200) are: S
| e;(o,z) =0 | (3.202)
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Figure 3.31 Effect of Mass Flow Rate on the Over Pressure vs.
Length of the Aquifer at Different Depths



e 0(1) — _ — 0(1/ye) —

_Jolved .y 0(ye) e (7))

lolo]l @ | e

RPVRN N R A
11 @}(@ O e (5)

gLl

W

©.Figure 3.32 Different Regions in the Fault, Aquifer and the Clay Cap -




114

‘ec(y,x) =1

(3.203)

6¢(y +»,z) = Increases algebraically at most (3.204)

Solutions in Regions 1 and 6

The basic temperature field in the clay cap near the fault

(region 6) is described by
0(C)yy * e(c>zz =0
egy(o,z) =0
eg(y,z) =1

eg(y,o) =1+, y=0(1)

where

eg(y-+m,z) is well behaved.

(3.205)

(3.206)

(3.207)

(3.208)

Since no heat flux is entering inuthe‘clay cap at y = 0 face,

the temperature solution is given by the elementary form,

eg(z) =1+ (1 - z/%)

(3.209)

The continuity of heat flux at the horizontalvinterface between

the fault and the clay cap implies the necessity of a thermal

boundary layer near the top of the fault.

Thermal BOunddh&;Layeranear the Interface

Appropriate scale variables are given by (3.70) and corres-

ponding boundary layer equations are given by (3.76)-(3.79).
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. Using the asymptotic expansions (3.80) and collecting the terms
for 0(1), 0(ye) and O(yez), the results in (3.94), (3.96), (3.109)

~and (3.111) can again be derived.

v

" Equations, describing fhetO(ye)?iérméiaréi i

o
o= (2 - 339)

gjven by
T,=1+1
Yo = (a, A+R,)y
Wy = -(ap - X%E)E-
Po=“%‘x%Y'ﬂﬁm
- The relatéd ﬁfessure an¢ velocity fiejds jnwthe §qu1fer are:
| Po,=_("f:9) 4(“2";Aiz) - 2(§f§)

-

hytWz=0
P]_ = 0
- P]E-+ 1 = 0 o .
o dTii d?T
-y (a2 A+£)z az - =2

Boundary conditions are:

V-l (+] Z) = i

bzz

dz_

" The lowest order solutions are

(3.210)

(3.211)

(3.212)

(3.213)

(3.214)

(3.215)

 (3.216)

(3.217)

“'(3.218)

(3.219)

(3.220)
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— b, o .
Wy (Y32 -0) = = —= 2 (3.221)
2/d _
Py (FuZ+-=) =2 . . o (3.222)
dT '
1(o)=-1A
7 (:0) = - | (3.223)
Ty (¥,Z+-=) = 0 L (3.224)
Solutions of this system are:
| b2 o3 (3.225)
V s — yz .
L
b : ;
Wy = - —23 | (3.226)
2vd
Py = 7 (3.227)
T = - [’zlél;_l{l +erf (B2)) . (3.228)
2
where B =vL- (a, - M/a42) (3.229)
Associated pressure and velocity fields in the aquifer are
_ Jdz A %]
P = b2 d z (1-y) + YT | ‘ (3.230)
by _ |

vd
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The above results can be used in (3.80) to give

b
A 2 -
V= (a )y + ye ——-zy + O(ye ) (3.232)
2 . AtR Jd ‘ ‘
b 32 -
W= -(a, - Aﬁz) - ye 24— 2%, o(ye?) (3.233)
oA |
A g2 - 2
o Pmdlep i) - 2(A+2,) +ye z+ 0lye") (3.234)
T=1+1-ye ‘/Z—Bz" [1 + erf (Bz)] + 0(ye?) (3.235)
— , 52 | .
v(z) = (a, - A+2) Fye oz O(ye ) o (3.236)

ply,z) = d(a, - A+£)(1 -y) - _(W+ yE[bzf z(1-9) + w,]

+ O(ye ) S ey (3.237)

~ Note that equations (3.232)-(3.235) arevalid in the fault zone
”‘only;“i;éL;';i“5_§75f1; Sd1dtions~afﬁ(3.132)”andf(3:134)"for the
regions 2 ahd 4 areigiven by.(3 161) and (3’170);'fe5ﬁeétive1y’

. The so]ut1on structure for ] < y L (the aqu1fer) appears to be

more comp1ex and w111 not be cons1dered further because reason-

o ab]e progress can “be: made without them, ~iod e T

It is poss1b1e to obta1n a s1m11ar1ty so]ution for region 3,

' there,giqnlarjtygvariab}egys:def1peq as‘follows,:” -
nezy o s

Let
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oly,7*) = 1+ T+ (y ye) /%0, (n) + Olye) ~ ~ (3.239)

Equation (3.192), when expressed in terms of z*, is as

follows:
v(2*) = (a, - 12p) * Olye'/?) (3.240)

Substitution of (3.239) in the 0(1) terms of (3.133) results

~ in the following equation for e].
) do %,
B°(6; - n—) = —5— (3.241)
1 d 2
n

ol o
3

Boundary conditions on e] are

de
En_] (n=0) = - % (3.242)
8y(n > =) =0 (3.243)

Equation (3.242) represents the continuity of the heat flux at the
interface between regions 3 and 6. The solution of the system

-(3.241)-(3.243) is )
_ 2
Pg o (1 +erf(Em) e 2 ]  (3.208)

Then the temperature in the region 3, obtained fromk(3.239)
and (3.244) is

oly.z*) = 1+ 1 - (L o )V 5 E/’Tzl B%/Z o e”f(‘,_;— 2t
y y

82*%) | o(ye) 3.245

ve & 7 | (3.268)
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It fo]lows that the interface temperature in regions 1 and

3 are:

T (7,0 =1+ Y——z'%f—h o(ye’), 1<l (3.206)
0 (3,00 = 1+ - (yye) /22T 4 g(ye) (3.247)

Temperatures in the region 6 for |y| < 1 can be expressed as
6 (y,2) = 85(2) + ye 5(y,2) + O(ye?)  (3.208)

where eg(z)‘is given by (3.209). 7
The first order correction is described by the equations

~obtained from (3.248), (3.200), (3.202), (3.203) and (3.246).

gt g
Sy * Oz '0 | (3.249)
o], (0,2) =0 (3.250)
oS (y.2) =0 (3.251)
o] (y,0) = - “Eg;}.a, yl<1  (3.252)

A]so e] (y-+w z) shou]d be well behaved. Aga1n us1ng the
~'i\lsame argument, as used to derlve (3 209) the so]ut1on of the

above_system 1s

/_TA (-l

e] (2) -7. 788 z/z), 131;5{ 1 (3.253)

From (3 209) (3 248) and (3 253), one obta1ns o
o° (y,2) = 1+ﬂ1-4 Q&‘n Z)+mm%,|ﬂs\
(3.254)



120

Solutions (3.235) and (3;254) are piotted in Figures 3.33-
3.38 where the effect of the parametérs £, A, M, R, T and’ye on
the temperature is shown. It should be noted that the vertical
scale used in the cap is different than that used in the fault
zone.

Figure 3.33 shows the effect of cap thickness:on the
temperatures in the fault and the cap. Temperatures in the
aquifer increase with increasing cap thickness because of
increased resistance to the heat flow in the cap. |

“Effect of the thermal conductivity ratio (1) on thé tempera-
tures in the fault and the cap is shown in Figure 3.34. Tempera-
tures are found to decrease with increasing A because of the
relative increase in the heat transfer. For A = 1 the slope is
continuous at z = 0 when the scale change in Figure 3.34 is
considered. Figure 3.35 shows the effect of mass flow rate on
the temperatures in the fault and the cap. Higher mass flow rate
gives rise to higher temperatures as expected.‘~€ffect of R and
7 on the temperatures in the fault and the cap is shown in Figures
3.36 and 3.37, respectively. Temperatures are found to decrease
for lower values of R and T as expected;

Figure 3.38 shows the effect of the fault half width on the
temperatures in the fault and the cap. As obvious from (3.235)
and (3.254), temperatures decrease with increased ye.

Equation (3.247) implies that.the temperature in regfon 6

can be written as
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0 (v,2) = 65(2) +ye'/2 /2T S (y,2) + O(ye) (3..255)

where e: (z) 1is given by (3.209).
It follows from (3,200), (3.202)-(3.204), (3.247) and (3.255)
that

egyy +'e§zz =0 \ (3.256)
o5 (y,2) =0 | , (3.257)
6 (v,0) = - /¥ | (3.258)
ég (0,z) = o - (3.259)
65 (yf*“,l) is non-exponential | | (3.260)

Boundary cond1t1on (3 259) shows that O(ye 1/2 ) correction
vanishes as y + 0
A so]ution'for eg can be found by using the Fourier sine
integral tranﬁform with-fespect to y.
The so]utioﬁ is

'Bc ( Z) o [r sin T (Z-Z) E
e Y 2% cosh *'(|¥~E|) + cos -(2-z)

“ T(g-2) €72 4
j“ ] (3.261)
o )

cosh " (y+£) + cos —-(2-2

A Series’so]ution also obtained for the above system, is as follows:
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65 (y.2)

o=

nm - nm .
0 - = (ly-gl) - Sy+E)
sin %f—(z-z) I E]/z[é . | e & ] dt

° | (3.262)

ne~18
-—

n=1 (-1)"

It is also possible to obtain an asymptotic solution for the
system (3.256)-(3.260) fof large values of y. As is clear from
(3.258), the leading term of the solution should be of O(yllz).

:! y’ y 2] 22 y’ .o

Substitution of (3.263) in (3.256)-(3.260) results in the following

system of equations:

%;377-651(2) + e;zyy - y?/z eglzz + egzzz =0 | (3.264)
05,(2) = 0 (3.265)
85,(0) =1 (3.266)
65,(y,2) = 0 (3.267)
05,(y,0) = 0 - (3.268)
egz(y + »,z) = Bounded | (3.269)

Boundary condition (3.259) is not to be satisfied since this
solution is applicable for large values of y only. Solutions of

the above system are:
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05(2) = 1 - 2/2 (3.270)
05,(y,2) = ‘ 22 [: 32 + 23 * zz%] (3.271)
which give
c(y-m,zﬁ) 1/2(1 -5+ 21 72 [}'322 + %;-+ 22%]
4 q(i77§9 (3.272)

Equation (3.272) can also be obtained by expanding (3.262) for
large values of y. If (3,209), (3.255) and (3.272) are combined,
one can show that. the temperatures in the cap for large values of

y are. described by

e(y+wJ)=i +TU -5)

vel/2 2o [L1/2,, 2z
/ﬂ BY [ a- )'+ 24 I

o |
3 (-322 + 2+ 202) + 0(§77§)]
+ o(ye) _Y ;} L o (3.273)

Values ofveg,'qbtained'from,(3.261) and (3.272),_are plotted
in Fighre.3.39_fér.different vé1ués of y and at different depths
of théicap It is seen ihat"the eiact solution (3.261)
approaches the asymptotic solut1on (3 272) and finally merges
in 1t,for,y > 1. Flgure 3 40 shows the temperatures 1n the

regions 6, 3 ahd 4 for different values of y.
| Témperaturés in thé region 7 can be obtained by so]vihg
(3.201). The 0(1)'temperat0res are given'by the following expres-

‘sion.



Exact Solution (3.261)

——— Asymptotic solution for large
.25 ¢ values of y (3.272)

o .1 .2 .3 .4 5 6 .7 .8 .9 1.071.1 1.2 1.3 1.4

Figure 3.39. Matching of the Exact and the Asymptotic Solutions
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o (5,2) = 0,(5) + 211 - 8, (5] (3.274)

For small ¥, let the.interface~temperatureveM(f)‘be expressed

as follows:

oy(¥) =1+ - ?‘/?;em(9) oy (3.275)
where
~ ‘A dem a2
6p(¥) = 8,(0) + ¥ = (0) + 0(¥7) - (3.276)

The temperature in the clay cap for y-+0, found from (3. 274)-
(3. 276) is

6 (§>0.2) = 1+ 7(1-2) - §7% 6 (0) [1 - 21 + 0(§) (3.277)

Matching of the asymptot1c solution (3.273) with (3. 277) resu]ts

in the fo]low1ng expression for 6 (0)

2d | |
6, (0) =/ T2 | (3.278)

Temperatures in the clay cap (region 7) for small values of y, as

obtained from (3.277) and (3.278), are

o(F+02) =140 -2 vEEI (1 - L) o) (3.279)

If is again possible to obtain an ana]ytica1}501ution of
al/2

(3.135) in region 5 when ¥ << 1 and z << 1 but z/¥ = 0(1).
The Taylor's series expansions
Wz+0)=(a, -+ 2242224  (3.280)
2 )“"1 /_ 2d ; e e e . .

P
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are used to describe the velocity field, The temperature field

is expressed as

e(§,z) =1+ 7+ 3720, + o) (3.281)
:where n is g1ven by (3 174)

Then from (3 135) (3 279), (3.280) and (3 281) one finds

o, g2 do, 2 . S (5.262
Rt I - N B T 3.
ol dNE TN
- - ._. ?—'TA -
81(n=10) = -/ a¢ . (3.283)
6yln+-=) =0 - - | S (3.288)
~ “The solution is |
e gy o 20 1 [B/R it
8;(n) = -V=== [——~ {1+ erf (———-n‘} +'e ] (3.285)
PR ¥ - R % |

Substitution” of (3.285) into (3.281) results in the
following expression for the temperature in the aquifer (region 5)

for‘smé11'Va1hes'of §"

e(y.z) 1 +tT -/:57 ',;3 [‘ji/z /T {1+ erf (—- —T—-)}
DR e
B y‘],+ o(§)'>+ R ,;;,;7‘ | (3.286)

It may be noted that (3 286) matches w1th (3 245) of reg1on 3.
Once the 1n1t1a1 cond1t1on (3 286) is known, temperatures in the
reglon 5 can be obta1ned by the numer1ca1 Integration of the para-

bolic equatlon (3.135) for the fo]]owing boundary conditions.
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P

05,0 = oy X

6(§,-1) =1+ 1 (3.288)

Interface temperature eM(y) is calculated at each step of
y for the continuous heat flux and:the temperature. For an'
assumed initial value of the inierfacé temperature, equations
(3.135) and (3.274) are solved simu]taneodS]y aﬁd a successive
value of 6M(§) is calculated. The actual interface temperature
is obtained when the difference between the two successive values
is negligibly small. Code CLAYCAP, given in Appendix B is used
to obtain the interface temperaturé

Figure 3.41 shows the temperatures in the cap and the aquifer
for different locations of ¥ and z. Again y = 1 represents the
far end of the aquifer. The value of d used for this case is
already corrected for the parameters shown in the figure. Again,
a trend similar to Figure 3.19 is seen here.

Isotherms, related to the temperatures of Figure 3.41, are
plotted in Figure 3.42. Cap surface temperature gradients for
this case are piotted in Figure 3.43. Discontinuity in the slope
in Figuré 3.43 arises because the solutions in the two regions are
known to different orders.

Figure 3,44 shows the effect of cap thickness on the surface
temperature gradients for all values of y. A thicker cap,
providing a higher resistance to heat f]qw, will féduce theiheat

transfer to the surféce. As expected, surface~temperature
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gradients are lower for higher cap thickness.

Effect of thermal conductivity ratio (1) on the surface
femperéture gradieetS‘is shown in Figure 3;45. It may be seen
that the gradients at the surface are lower for higher values of
A. An increase in A increases the heat transfer to the surface
and thusjreduces the’temperatures-in the cap and the aquifer.
.Lower teﬁperatures, in turn, give rise to lower tempereture
gradients as cohfirmed by the Figure 3.45.

Figures 3.46, 3.47, 3.48 and 3.49'ShOW'thé effects of M,
R, T and ye on the surface heat>f1ux. As expected, an increase
in M, R, T and ye enhances the temperature gradients at the

surface.
3.6 Conclusions and Remarks

A mathematicé] model - for fault zone contro]]ed‘charging‘of
a geotherma]'reservoir;is developed. The model is used to
‘describe: vz |

(A) A reservoir extending to the ‘earth's surface with an

f 1mpermeab]e upper boundary, and o
(B) A reservo1r covered by an 1mpermeable c]ay rlch 1ayer
o Tike that at East Mesa | o |

A qua51 analytic theory is deve]oped for high Ray1e1gh
"fnumber convect1on of a liquid 1n a r1g1d porous-medxum. ;In this
‘éppfoximatioh liduid rises up the'fau]t and.spreads into”the.near
regioh§ of the reservoir adiabatically. The{coo1ih§ éffeef of

the cap in the reservoir is confined to a thin layer adjacent to
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the interface. This layer grows with distance from the fault.
‘In'fhe far field of the aquifer the full.depth of the reservoir
‘is cooled by the surface and the horizontal temperaturé gradient
of the 1iquid becomes very small. The parabolic equation (3.24)
is integrated until this condition is achieved and the number d,
which defines the far end of the boundary, is thus determined.
Effects of the parameters £; A, M, R, 1 and ye are studied on
vsthe«pressures;_ve1ucities,:temperatures and their gradients at
different Yocations in the fault, cap and the aquifer. General
dependence ofathese'parametérs is»summarizedvas follows.

- (1) . Horizontal aquifer velocities are higher- in the Tower
half:forsa thicker cap..: This is;due_tOLfncreaSed pressure
gradients found in that'portioh'of the aquiferzbecause of the
reduced:hot'hydrostatic;pressure éssocfated with the lighter
(warmer) 1iquid at~the far field boundary. ?Velocities are reduced
correspondingly in the upper ha]f of the. aqulfer to conserve mass.
= The change of A (. 7 1.).does’ not seem to change aquifer ve1oc1ty
*s1gn1f1cant1y. : '

C{11) It is found that the: over pressure w1th a th1cker cap
»'is<lpwér:ih the fau]t.. This d1fference is. caused primarily by R
the'reduéedffar:field,pressurg}boundary,cond1t10h which in .turn

establishes a different ';Sre:s"guié_ at the fault to push the same
' amounit uff]iqukd”through‘the”aquifer"5Fau1t*OVer*uréSSurés~are |
'“:foundrfo“ihtréasé‘ufthzintréasihgha “This 1s true since’ larger_
' pressures will be needed to ‘push’ the fluid through a 1onger

“aquifer, An increase in X (.7-1.) also increases the fault over
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pressures, though the difference is very small. This occurs

- because of an increased hot hydrostatic pressure at the far end
of the aquifer due to relatively heavier (colder) liquid, which
in turn affects fault over pressures; An increase in mass flow
rate increases the fault over pressures as expected.

(iii) Temperatures in the fault and clay cap.seem to
“increase with increasing 2. This is because of a relative
reduction in heat conduction in the cap. Temperatures are found
"to decrease with increasing A as expected. Anvincrease,in M, R
and T enhances the temperatures in the fault and the cap. -
However, temperatures are found to decrease with increase in
fault width. This is probably due to increased d associated
with the larger fault width.

(iv) Effects of d, 2, X and M on aquifer over pressures
are similar to those on the fault over pressures.

(v) Temperatures in the aquifer are found to decrease with
increasing y. This is due to the loss of heat to the surface.
Surface temperature gradients are lower for a thicker cap because
of increased thermal resistance. On the other hand, an increase
in X increases the surface heat flux. Also an increase in M, R,

T and ye enhances the temperature gradients at the surface.
 (vi) Flat temperature profiles exist in Mesa Wells 8-1,

44-7 and 48-7 in the depth intervals of 1200-1800 m, 1500-1850 m
and 1800-2100 m, respectively. One cou]d_interprgtlthese flat
'portipns as zones that are strongly affectedrby;fault zone f1ow.

Temperature variations in the hotter wells are smaller compared
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With those in the colder wells. These lower gradients represent
the upflow in the Vicinity of the wells. 1ncreased temperature
gradients below about 2 km (low permeability zene) represent heat
transfer basically by conduction. This model does not a11ow‘for
such a low permeability zone, It is a]so_bossib]e that the high
Ray1e1gh number assumpt1on is too strong.
(v11) The rat1o of the heat transfer near the fault to that
in the far f1e]d region can be obtained from (3 184) and (3.209):
e(Oz) |
6, (1 z)
Wheh;h ; 715 and g = 238 then the ratio is about 4 A similar

o
+ .
',ze]>—' :

ratio can.also be obta1ned from the Flgure 3 2. .Thus the results

'ftpredlcted from the ana]ys1s are very close to those measured at

the East Mesa site. -
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APPENDIX A’
Numerical Methpds

Basic temperatures in the far field of the aquifer are
obtained‘byfihfegfatihg the parabolic equation (3.135), which is

as foHdws:
YZV(Z)e" =' d'e' - f | (A 1)
y' Zz *

The Crank N1colson method (Ketter and Prawel. 1969) is used
to develop the fol]ow1ng fin1te difference expression for the

| ;above equation
2

X V'i | d
(91 j+1 91,3) [m ;1+1 + 811,541

= ‘~‘<-:°,i+.1 ;31 8a ,j'f.??i-',j]: o A2)

g T et e D

- 20 ,5+1

 where "

:' o .'~;;"
" R

Cstep size

J,i+l,...

steps in y direction
Upon simplification (A.2) yields
Ai1B5-q * AggBy + AysBiu = Ay e (A.3)

where
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Ay = - —g— (A.4)
2h ¥ Vi
d

Ao, = 1.4+ —9 (A.5)

i2 " h Y2 v, .

Ajz = Ay (A.6)
A.,, = —5—0_..(i-1) + (1 -~ —— ) 6,74(1)
ey, ot Ry, ot

+ G By14(i41) o w

2h v vj . -

%-1 = Oi1,540 85 T %5010 B4n T By gn (AB)

So14(i-1) = @ So1a(1) = 84,50 Oo1qli*1) = 6449 5 (A9)

i-1,3° j’
‘The range of irdetermfhesithe number of equations in (A.3)
Subroutine 'Band 3' in the code 'CLAYCAP' solves the system of
equations (A.3). Code 'CLAYCAP' is given in Appendix B and
determines the temperatures and the isotherms in the aquifer and
the cap. It also calculates the temperature gradients at the

surface. Other programs, used in the Technical Report, are also

included 1in Appendix B.



155

APPENDIX B

PROGRAM VELPT (INPUT,OUTPUT)

000003 " SINH(2)=(EXP(Z)-EXP(~2))/2.
000016 COSH(2)= (EXP(Z)+EXP(=2))/2.
000030 W(Z)= -At1+COSH(Z)+ DD*SINH(Z)~-1.
000044 DIMENSION T1(101),7T2(10%),T3(101)
000044 COMMON P,YE,CO

000044 100 FORMAT(1H ,11F9.6)
1000044 101 FORMAT(9F12.8)
000044 105 FORMAT(5F15.6)

000044 D0 6 KK=1,10
000046 READ 105,TF,AM,RA,YE,D
000063 PRINT105,TF,AM,RA,YE,D
000101 DD=1./SQRT(D)

. 000105 E=EXP(DD)
000107 , F=EXP(=DD)
000113 COSH1=(E+F)/2.. % SINHI=(E~F)/2.
000117 PI=4.+ATAN(1.)
000123 SQP1=SQRT(PI)
000125 C0=2./SQRT(PI)
000130 A1z DD* (AM+COSH1 )/stHI
000133 GA=SQRT(RA*YE*YE) -
000140 P=SQRT(GA*GA*(A1-1. )t.s)
000146 Cc:vE*GA#GA*TF/(G tsoPItDt(Ptta))
000154 Ovy=.1 §$ D2=.1
000157 DZ1=.0f .
000160 DO 2 11,11,
000162 Y=(1l- 1)#DY
000166 DO 1 Jdst, 1t
000167 Bs-(d-t)ODZ#DD

..000174. .. - : Z=B/DD" :
000176 VA=W(B) -
000200 PA=D*VA#(1.-Y) -2*2/2-
000205 WF==(A1/DD)*SINH(B)-COSH(B)+1. +z
000221 VFaY*VA

000223 1 PRINT 101,Y,Z,AM,VA,PA, WE,VF
000246 2 CONTINUE

000250 DO 5 1=1,101

000252 2x-(1-1)+D21

000256 Z1=2/YE -

000260 Z2:=P*21

000262 " CALL ERF1(22,E1)

000264 TI(1)=1.~TFE1

000270 T2(1)=CCe(t.+E1-(1. +22¢22)~Exp(-22t22) )
000303 s TI(Iy=TI(1)4T2(1)

000307 PRINT 100, (T1(K),K=1,10)
000315 PRINT 100, (T1(K).K=11,20) ~
000323 PRINT 100, (T1(K),K=21,101,10)
000335 PRINT 100,. (T2(K), K=1,10)
000343 PRINT 100, (T2(K), K=11,20)
000351 PRINT 100, (T2(K), K=21,101, 10;
000363 PRINT 100, (T3(K).Kx1,10)
000371 PRINT 100, (T3(K).K=11,20)
000377 PRINT 100, (T3(K).K=21,101,10)

000411 ] CONTINUE
000413 - END
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000005
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SUBROUTINE ERFY (Z,E)
DIMENSION DUt (101)

COMMON P,YE,CO :

N=100

NtzN+1

H2Z/N

Do 1 I=1,N1

X=(I=1)*H

DUt (1)=EXP(=X*X)

E1=0, .

DO 2 1=23,Nt1,2 )
Et1=E14(DUI(1~2)+4.+DUT(I=1)+DUL(1))*(H/3.)
E=CO=E1

‘RETURN -
- END
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PROGRAM INTEGRL (INPUT,OUTPUT)

- DIMENSION DU(5000)

FORMAT (8F15.6)
FORMAT(5F15.6)

DO 8 KK=1,10

READ 105,TF,AM,RA,YE,D
PRINT105,TF,AM,RA,YE,D
DD=1./SQRT(D)
PI=4.*ATAN(1.)
C0=2./SQRT(P1)
E=EXP(DD)

F=EXP(-DD)
COSH1=(E+F)/2.
SINH1=(E~F)/2.
At1=(AM+COSH1)*DD/SINHY
GA=SQRT (RA*YE*YE)
P=GA*GA*(A1=1.)/2,
Y=1.

K=1

.FE=4,

N=200
N1=N+1
H=FE/N
DO { I=1,N1

" X=(1- l)'H
DU ) EXP((=XsX/(4. QP))+(P'SQRT(P‘P+X*X))tY-P+SQRT(P*P+X‘X))

sum=0.

PO 2 1=2,Nt

Sum= SUM+(DU(I)+DU(I-1))‘( SOH)
Q2=2.%TF+SUM/P1L

IF(K.EQ. 1) GO T0 3
IF(ABS(OQ-O!) LT.'.OOOOi)GO TO 4
K=K+1 ;

Q1=Q2

FE=FE+t.

N=N+50
GO T0 5
Q3=TF+SQRT (2. 'P/(PI‘Y))

CY1=YE+Y

Y2=Y1*YE/D

QUA=Q1/YE

SIM=Q3/YE -

PRINT 100,Y Yi.va FE, Oi.oa.QUA,SIM

IF(Y.GT, 240 ) GO TO

YsY+1, : ST R i
GO 70 6 A el
CONTINVE B e
END . ‘ BRI DR
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PROGRAM INTGRL2 (INPUT,OUTPUT)
000003 DIMENSION DU(5000)
000003 COMMON P,CO
000003 100 FORMAT(8F15.6)
000003 105 FORMAT(5F15.6) -

000003 READ 105,TF,AM,RA,YE,D
000021 ~ PRINT105,TF,AM,RA,YE,D
000037 DD=1./SQRT(D)

000043 PI=4,*ATAN(1.)

000046 C0=2./SQRT(PI)

000051 E=EXP(DD)

000053 F=EXP(-DD)

000057 COSH1=(E+F)/2.

000062 SINH1=(E-F)/2.

000063 A1=(AM+COSH1)*DD/SINH1
000067 GA=SQRT (RA*YE=YE )
000073 P=GA*GA*(A1=1.)/2.
000077 v=45.

000100 Yi=YEsY

000102 Y2=YE*Y1/D

000104 PRINT 100,Y,Y1,Y2

000115 8 Z=0.
000116 6 K=1

000117 FE=4.

000121 N=200

000122 5 N1=N+1

000124 H=FE/N

000126 DU(1)=2

000130 DO 1 1=22,N1

000131 X=(I-1)*H

" 000135 1 DU(I)= EXP((~X*X/(4.%P))+(P~SQRT(P*P+X*X))*Y~P+SQRT(P*P+X*X))*SIN

1(X*2)/X

000173 SUM=0.

000174 DO 2 I=2,Nt

000175 2 SUM=SUM+ (DU(1)+DU( I~ 1)):( S4H)

000206 Q2=2.*TF+SUM/PI

000211 IF(K.EQ. 1) GO TO 3

000213 IF(ABS(Q2-Q1).LT. .00001)GO TO 4

000220 3 K=K+1

000222 Q1=Q2

000223 FE=FE+1,

000225 N=N+50

000227 GO 10 &

000227 4 T=1.-Q2

000231 Z1=YE*2

000233 22=21/SQRT(YE)

000237 IF(Y.GT. O.)CALL ERF(Y1,22, Ez)

000243 Ti=1.-TF+E2

000246 PRINT 100,2,21,FE,Q2,T,T1

000266 IF(ABS(Z).GE.10.) GO TO 7

000272 2=2-.2

000273 GO 10 6

000274 7 IF(Y.GT. 80.) STOP

000301 Y=Y+4,

000303 Yi=YEsY

000305 Y2=YEsY1/D

000307 PRINT 100,Y,Y1,Y2

000320 GO TO @

000321 END
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.SUBROUTINE ERF(Y,Z,E)
" DIMENSION oui(101)

COMMON P,CO

N=100

Ni=N+1
FE=2+SQRT(P/(2.*Y))
H=FE/N

DO1 I=1,N1

X=(1= 1)*H
DUT(1)=EXP(=X*X)'
E1=0.

DO 2 1=2,N1 .
EisEi*(DUi(I 1)+ou1(x))-( ,5*H)
E=CO*E1

RETURN

END .
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TN

PROGRAM PROFILE (INPUT,OQUTPUT)
SINH(2Z)=(EXP(ZZ)-EXP(=22))/2.
COSH(22Z)=(EXP(2Z)+EXP(-22))/2.
W(ZP)=A1+COSH(ZP)+B1+SINH(2ZP)~1.

DIMENSION NSCALE(4),LABEL(3),2(101),TOLD(101), TNEW({101),A(101,4),V
1(101),T(101,101),X(101),FP(6),Y0(1000),20(1000)
COMMON M,N,DY

FORMAT(1HO,//5X*Y* SX*TEMPERATURE AT DIFFRENT DEPTHS IN THE AQUIFE
2R*//)

FORMAT(1HO,F5.2,F5.2,11F9.6/)

FORMAT(11F9.6/)

FORMAT(////4X*THE POINTS(YD,Z0) ON THE ISOTHERM T=#F7.4/(7(3X2F7.4
1))}

FORMAT(5F15.6)

FORMAT(4F20.6)

FORMAT(F15.5)

FORMAT(16) _ }
R=DY+D/(2.*DZ*D2+GA*GA) WHERE GA=SQRT(RA*YEYE)
DATA YMAX,NFRPR,NFRPL,NPLOTS/%.,10,10,10/

DATA (FP(1),1=1,8)/1.,1.2,%.4,1.6,1.8,1.999/
DY=.01 $§ DZ=.0%

M=101

N=101

Mi=M-1

PI=4.*ATAN(1.)

C0=2./SQRT(P1)

DO 12 126,M

T(1,1)=1,

00 107 KK=1,12

READ 105,TF,AM,RA,YE,D

PRINT105,TF,AM,RA,YE,D

DD=1./SQRT(D)

E=EXP(DD)

F=EXP(-DD)

COSH1=(E+F)/2. $ SINHI=(E-F)/2.
GA=SQRT(RA*YE*YE)

R=D /(2.+*DZ*GA*GA)

A1=(AM+COSH1)*DD/SINHY

81=DD

P=SQRT(GA*GA*{A1=1,)».5)

DEFINE 2(1),V(I),T(I)X(I)

00 13 I=21,M

ZT=(1-1)*DY

X(I)=2T

DO {1 1=t ,M

2T==(1-1)*DZ

Z(1)=27

ZTT=21+0D

V(1)=w(2TT)

PRINT 101

SPECIFY TEMPERATURE AT Y=.05

Y=.01 .

Y1=Y*D/YE

NDT=1

J=2



000226
000227

000231 -

000234
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000306
000312
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000327
000346

000354
000356
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000362

000363
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000366
000373
000374

000412
000414
000415
000421
000423
000425
000427
00043t
000436
000444
000450
000454
. 000465
000504

000512

1000517, ., .

000535
000543
000550
000554
000565
000566
000604
000605
000607
000615
000634
000636
000640
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27=0,

00 7 l=st M.
- CALL east( D, P,Y,ZT.EV) .

TOLD(I)si--TFtE1+ (TE*GA*GA*SQRT( . 5*Y/D)/(4 #«P2P))»((2ZT/SQRT(2.#D
15Y)) #( 1.4E1)-( P*ZT*ZT/(D*Y*SORT(PX)))‘EXP(-PtP¢ZT*ZT/(2 *D*Y)))
IF(1.EQ. 2) DT=(TOLD(2)~ TOLD(1))/DZ ‘
T(J,I)=TOLD(1) :

2T=27-D2

PRINT 102,Y,Y1,(TOLD(1),I=1,10) ..

PRINT 102,Y,Y1,(TOLD(I), I=11,M, 10)

PRINT 111,07 .

CALCULATE TNEW, THE TEMPERATURE AT Y+DY

Y=Y+DY _ ,

Y1=Y*D/YE L

Jayg+1

NDT=NDT+1

COMPUTE A(1,V)

A(1,1)=R/V(1)

A(T,2)8=1.-2,*R/V(1) - A

A(1,3)=A(1,1)
3¢§1 4)-»(R/V(1))~70Lo(x 1)+(2. -R/V(x)-1 )*TOLD(1)=R/(V(1))sTOLD(I+
MODIFY THE MATRIX A(IJ)

A(2,4)5A(2,4)=A(2,1)

A(2,1)=0,

A(M1,4)=A(M1,4)=A(M1,3)*(1.4TF)

A(M1,3)=0.

CALL BAND3(M1,A,TNEW)

Do 4 1=2,M1

TOLD(1)=TNEW(I)

IF(1.EQ. 2) DT-(TOLD(2)’TOLD(1))/DZ

T(J,1)=TOLD(1) . ,

T(J,M)=1.4TF oo

IF(Y GT. .1) GO 108 L

PRINT 102,Y,YY,(TOLD(I),I=1 10)

PRINT 102,Y,¥1,(TO0LD(1), I=11,M, 10)

PRINT 11%,DT

PRINT VELOCITY. WHEN NDT#N*NFRPR N BEING A Posxrzve INTEGER AND PLOD
T 1T WHEN NDTz=N+NFRPL,N#f%, 2.*--,NPLOTS.

1F( (NDT/NFRPR)*NFRPR,NE; NDT) GO 10 5

" PRINT 102,Y,Y1, (TOLD(I) I= 1 0M 10)

PRINT 111,07

IF( (NDT/NFRPL)*NFRPL.NE.NDT) GO 10 e
IF( (NDT/NFRPL).GT. NPLOTS) GO 70 6
IF(Y,LT.YMAX .AND, ¢.LT.7101) GO 70 2
PO 1Q =t ,M,10

CPRINT 103,(T(J,1), J=1,M,10)

DO 11 Ke1,6

FA=FP(K) = - ‘
CALL POINTS(X,Z,T,FA,Y0,20, KMAXO) g
PRINT 104, (FA.((YD(L).ZO(L)).L-‘,KMAXD))
CONTINUE -

CONTINUE

END
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SUBROUTINE POINTS (X,Y,F,FA,X x YY, KMAX) S
DIMENSION X(101), ¥Y(101),F(10 1,101}, xx(1000).vv(1000)
COMMON #,N,DY ~ " _

K=0 A

1=0

J=1

I=1+1

1F(1.67, M) GO 707

P=F(I,J)=FA~

1F(ABS(P).LE., .oooot) 60 T0 6

BOENLD]

1F(J.GT. N) GO 7O 1
Q=F(1,J)=FA

IF(P+*Q) 5,5,4

P=Q

GO 10 3

K=K+t

XX(K)=xX(1)
YY(K)*V(d)+DY*ABS(Q)/(ABS(P)+ABS(°))
P=Q

GO 70 3

K=K+1

XX(K)=X(1)
YY(K)=Y(J)

Js=Jd+t

IF(J.GT. N) GO TD 1
GO 10 2

KMAX=K

RETURN

END

SUBROUTINE BAND 3 (N,A,X)
DIMENSION A(101,4),X(101)
FORMAT(3F30.10) °
M=N=-1
M1=M=-1
DO 10 1=3,M
A(T1,2)=A(1,2)*A(I-1,2)-A(I,1)*A(1-1,3)
A(I,3)sA(1,3)*A(1~-1,2)
A(L,4)sA(1,8)*A(I~1,2)~A(1,1)*A(I~1,4)
X(N) (A(N, 4)-A(M 2)-A(N 1)*A(M 4))/(A(N 2)*A(M.2)-A(N 1)*A(M,3))
00 20 K=t,M1
J=N=K -
X(J)=(A(J,8)=A(U,3)*X(U+1))/A(J,2)
RETURN
END

SUBROUTINE ERFY ( DO, P,Y,Z,E)
DIMENSION DU1(101)
Pled.*ATAN(1,).

C0=2./SQRT(PI)

N=100

Nt=N+1

FE=P*2/ SQRT(2.*D*Y)

H=FE/N

DO1 I=1,N1

X=(I-1)*H

DUt (1)=EXP(~X*X)

E1=0.

DO 2 l=3,Nt,2
E1=E14(DU1(1~2)+4.+DUt(I~=1)4DU1(1))*(H/3.)
E=CO+E1

RETURN

END
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PROGRAM CAPVELP (INPUT,OUTPUT)
COSH(22)=(EXP(2Z)+EXP(=22))/2.

~ SINH(Z2)=(EXP(2Z)-EXP(~2ZZ))/2.
< W(ZP)=A2+COSH(ZP)+B2*SINH(2P)~-C2

WA(ZA)-SQRT(D)t(-A2*SINH(ZA)+B2*(1.-CDSH(ZA))+C2*ZA)
DIMENSION VAQ(101), WF(101) VF(11), PF(161) PAQ(101)
FORMAT(7F10.4)
M=11 -
DZ=.1
DY=.1 .
DO 111 J=1, 12
READ 101,D,CAPL,ALEMDA, AM RA TF,YE

“PRINT101,D,CAPL,ALEMDA ,AM,RA,TF,YE

0D=1. /SQRT(D)

E=EXP(DD)

F=EXP(=-0D)

COSH1=(E+F)/2. $ stH1=(E-F)/2.

- ¢2= ALEMDA/ (ALEMDA+CAPL)

B2= DD=*C2

A2z DD#(AM+CZ*COSH1)/SINH1

CALCULATEMAND PRINT. PRESSURE AND VELOCITIES IN THE FAULT.
DO 1 I=1

2T=-(1-1)*D2 -

2TT=DD#*2T

VAQ(I1)=W(2ZTT) -

WF(1)=WA(ZTT)

PF(I;;D‘VAO(I) (CAPL#CAPL-2.*CAPL'ZT+ALEMDA*ZT*ZT)/(2.*(ALEMDA+
1CAPL

PRINT 101,VAQ(1),WF(1), PF(I)

2==-.5*DD

VA=W(2Z)

DO 2 I=1,11 -

YT=(I-1)+DY

VFE(1)=VA*YT

PRINT 101,YT,VF(1)

CALCULATE AND PRINT PRESSURE IN THE AOUXFER
Y=0.

00 3 1=4,M,5 : .~«}
PAQ(I)-PF(I)‘VAQ(I)#Y‘D

PRINT 101,Y,PAQ(1) :

IF(Y. GE. c98) GO 10 &

YzY+.1 S

GO TO 4

Y=0. ’

“:CONTINUE

CONTINUE
END
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PROGRAM CPFAULT (INPUT,OUTPUT)
DIMENSION TCAP(S51),TAQ(101)
FORMAT(7F10.4)
FORMAT(1HO,F10.6)

0Z=.01

PI=4.*ATAN(1.)

SQPI=SQRT(PI) :

DO 107 KK=1,9 - -

READ 101,D,CAPL,ALEMDA,AM,RA,TF,YE
PRINT101,D,CAPL,ALEMDA ,AM,RA, TF YE
DD=1. /SQRT(D)

E=EXP(DD) :

F=EXP(-DD) )
COSH1=(E+F)/2. $ SINHI=(E~F)/2.
GA=SQRT(RA*YE*YE)

Bi= ALEMDA/(ALEMDA+CAPL)

A1=DD* (AM+B1*COSH1) /SINH1
P=SQRT(GA*GA*(A1-B1)*.50)
C1=(YE*SQPI*ALEMDA)/(2.*P*CAPL)
L=CAPL/DZ2+1.2

DO 1 I=1,L

2T=(1-1)+DZ
TCAP(1)=1.4TF=(1.-2T/CAPL)*(1.~C1)
DO 2 I=1,101

2T==(1-1)*D2

CALL ERF (YE,P,ZT,E1)

TAQ(1)=1 ,+TF-C1*TFe(1.+E1)

00 3 I=1,L

PRINT 102,TCAP(I)

DO 4 1I=1,31

PRINT 102,TAQ(1)

DO S I=31,101,10

PRINT 102,TAQ(1)

CONTINUE

END

SUBROUTINE ERF(YE,P,2T7,E)
DIMENSION DU1(101)

N=100

N1=N+1

PI=4.*ATAN(1.)
C0=2./SQRT(P1)

FE=P*2T/YE

H=FE/N

DO t l=1,N1

X=(I=1)*H

DUT (1) =EXP(=~X*X)

Et1=0.

DO 2 1=23,Nt1,2
Ei-Ei+(DUi(I-2)+4 ‘DU‘(I-1)4001(1))¢(H/3 )
E=CO*E"

RETURN

END



000003
000003
000007
000011
000032
000054
000056
000062
000064
000070
000074
000101
000103
000110
000115
000121
000122
000123
000131
000133
000156

000171

000175
000176
000177
000203
000204
000204
000211
000213
000214

000006
000006
000011
000014
000015
000017

000022

000023
000025
000031
000042
000043
000044
000057
000060
000061

101 .
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PROGRAM MATCH (INPUT,OUTPUT)
FORMAT(7F10.4)

PI=4.*ATAN(1.) .
SQP1=SQRT(P1) v

READ 101,0,CAPL,ALEMDA,AM,RA,TF,YE
PRINT101,D,CAPL ,ALEMDA,AM,RA,TF,YE
DDT=CAPL=.01

DD=1./SQRT(D)

E=EXP(DD)

" F=zEXP(-DD)
. COSHiI=(E+F)/2. § sxnni-(s-r)/z.

GA=SQRT(RA*YE*YE)

B1=ALEMDA/ (ALEMDA+CAPL)
A$=DD*(AM+B1#COSH1) /SINH1
P=SQRT(GA*GA* (A1~B1)*.25)
C1=(TF+ALEMDA)/(SQP1+CAPL*P)

Y=O .

ETA=0. .

Z=ETA*SORT(YE*Y) o )
CALL ERF(P,ETA,ER) |

TAQF=1, +TF-01‘SQRT(Y*VE)#(SQPI#PtETA*(1.+ER)+EXP(-P#P*ETA¢ETA))
PRINT 101,2,ETA,Y,TAQF )
XF(ABS(ETA) GE. 7. ) GO'TO'S
ETA=ETA~.5

GO T0.6 . -

IF(Y.GT, 1,) GO T0 1

Y=Y+,01

GO T0 7 -

IF(Y.GT. 2¢) SYOP

YaY4+,4

GO T0 7

END

SUBROUTINE ERF(P,ETA,E) .

‘DIMENSION DU1(101)

PI=4.+ATAN(1.)
C0=2./SQRT(P1)
N=100.

N1=N+1

FE=P*ETA

H=FE/N .

DO 1 I=t, N1
X=(1=- 1)*H
DU1(l)lEXP(-X#X)
E1=0. .
00 2 1=3,NY1,2

insEi+(DU1(1‘2)+4.t001(!-1)4DU1(!))t(H/G )

E=CO*E1
RETURN
END



1000003
000016
000030
000030
000030
000030
020030
000030
000034
000036
000037
020060
000702
000105
090110
000112
000113
1000122
000125
000131
000135
000143
000150
000165
000166
000170
000171
000175
000201
000203
000204
000205
000207
000211
000215
000223
00234
000236
000240
000241
000245
000254
000260
000267
000270
000274
000276
000277
000302
000304
000305
000311
000315
000317

10y
102
103
104

i2
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PROGRAM REGIONG (INPUT.OUTPUT}
COSH(Z2Z)=(EYP(ZZ)+EXP(-22))/2.
SINH(2Z)=(EXP(2Z)-EXP(-22))/2.
DIMENSION DU1{10¢.0), T(41,26)
FORMAT{7F10.4) .
FQRMAT(16)

FORMAT(1HO,10F12.6)

FORMAI(7F15.8)

Pi=q4.%ATAN(1.)

SQPI=SQRT(PI)

DO 107 KK=1,8

READ 101,D, CAPL ALEMDA ,AM,RA, TF YE
PRINT10%,D,CAPL, ALEMDA AM,RA,TF,YE
SQYE:SQRT(YE)

DD=1./SQRT(D)

E=EXP(DD)

-F=EXP(-DD) _
‘COSH1=(E+F)/2. $ SINHT=(E~F)/2,

B1= ALEMDA/(ALEMDA+CAPL)
GA=SQRT(RA*YE*YE)

A1z (AM+B1*COSH1 ) ¥DD/SINH1
P=SQRT(GA*GA*(A1-B1)*.25)

B2= TF*ALEMDA*SQYE/(PtCAPL*SQPI)
ORINT 104,B1,GA,A1,P,P2

L=7

2Z1=.05

022=.02"

IF(CAPL.GE. .49) L=10
IF(CAPL.GE. .49) DZ1=.1
DY$2,02

DY2=s.1

M=41

Lizk=-1

DO 12 I=t.M

YT=(1=1)+DY1

IF(1.GT. 26) YT=(I-28)*DY2+.5
T(I,1)=t . +TF=B2*SQRT(YT)
21=CAPL~.C1

D0 14 J=1,M

DO 1411=2,L

Y=(J~1)*0Y1

1F(J.GT. 26) Y=(J-26)*DY2+.5
Z=(11-1)=DZ1 )
IF(1I.GT. 5) 2= (11-5)*D22+4.*DZ1
N=200

A= PI*(1.-2/C\PL)

FE=4.

K=1

H=FE/N

Ni=N+1{

DO 1 I=1,Nt

X={I=1)+H

C=PI*ABS(Y-X)/CAPL
Di1aPI=("V‘X)/CAPL

DUt (I)s( SQRT(X)*SIN(A)) *{(1, /(COSH(C’+COS(A)) 1./(COSH(D1)+COS(A)
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L )
000351 120 _
. 000352 .. 'DO 2 1=3,N1,2
000333 2  E1=E1+(DUT(I-2)+4. tDui(I 1)+DUi(I))*(H/3 )
000366 E3==E1/(2.*CAPL)
000371 IF(K.EQ. 1) GO TD. 3
000373 IF(ABS(E3-E33).LT. .001 G0 o0 4
000377 . 3  K=K+1 , o
000401 .. E33£E3
000402 . FE=FE+1.. ‘
00U404 N=N+20 SRR
000406 GO T0 §

000406 4 T(J,I1)= 1. +TF*(1.-Z/CAPL)+82*E3
000420 14  CONTINUZ

000425 D0 10 Is=f,M
000427 _ DT=(T(1, L1) 1.)/022
0004385 10 PRINT 101,DT

000445 . DO 11 I=1,L .

€00446 11 PRINT 103,(T(J,1), J=1,10)
000464 DO 16 I=1,L..

000465 - 16 PRINT 103, (T(d I),J=11 M, 10)
000504 107 CONTINUE
000506 END



000003
000016
000030
000044

000044
000044
000044
000044
000044

000044

000044
000044
000044

000044
000044
000044
‘000047
000050
000053
000054
000075
000117
000123
000125
00013t
000135
000142
000144
000150
000152
000155
000163
000165
000170
0001714
000172
000174
000175
000176

000177
000200
000202
000206
000211

000215
000216
000223

101
102
103
104

105

106
111
112

168
291

PROGRAM CLAYCAP (INPUT,OQUTPUT)
COSH{2Z)=(EXP(ZZ)+EXP(~22))/2.

SINH(22Z)=2(EXP(2Z)-EXP(-22))/2.

W(ZP)=A1+COSH(ZP)+B2* SINH(ZP)-B1

DIMENSION 2(151),TOLD(101),TNEW(101),A(101,4),V(101),X(101),
1TCOMB(101,151) LEP(6),YD(1000),20(1000),DT(101),Y1(101)
COMMON P,M,N,DY

FORMAT(7F10.4)

FORMAT(1HO,F5.2,F5.2,11F9.6/)

FORMAT ( 1HO, 10F12. 6)

FORMAT (////4X*THE POINTS(YD,20) ON THE ISOTHERM T=aF7.4/(7(3X2F7.4
1))

FORMAT ( {HO,//5X*Y* ,5X*TEMPERATURE AT D1FFRENT DEPTHS IN THE AQUIFE
2R AND CLAY CAP#//) o
FORMAT(16,4F16.5)

FORMAT(F15.5)

FORMAT(16) o
R=DY#+D/(2.*D2*DZ2*GA*GA) WHERE GA=SQRT(RA*YE*YE)

DATA YMAX,NFRPR,NFRPL,NPLOTS/1.,10,10,10/

DATA (FP(I),I1=1,6)/1.,1.2,1.3,1.4,1.5,1.599/

pY=.01 $ DZ=.01

M=109

PI=4.*ATAN(1.)

DO 107 KK=1,23

READ 101,D,CAPL,ALEMOA,AM,RA,TF,YE
PRINT101,0,CAPL,ALEMDA,AM,RA,TF,YE

DO=1. /SQRT(D)

E=zEXP(DD)

F=EXP(-DD)

COSH1=(E+F)/2. $ SINH1=(E~F)/2.

" GA=SQRT(RA*YE=*YE)

Bt= ALEMDA/(ALEMDA+CAPL)
R=D /(2.*DZ*GA*GA)
B2=DD*B1
At=(AM+B1*COSH1)*DD/SINH1
P=SQRT(GA*GA*(A1-B1)*.25)
M1=M=-1

L=CAPL/D2+1.2

L2=4

Li=L2+1

IMAX=L4+M=1

N=IMAX

NDT=1

J=2

DEFINE X(I) WHICH 1S SAME AS Y(I)
Y¥=.01

DO 13 I=1,M

2T=(1-1)+DY
Y1(1)=2T«D/YE

X(1)=27

DEFINE V(1)

DO S I={,M

2T==(1~- 1)*DZ*DD
v(1)=w(2T)

DEFINE Z(I)

—



000232
000233

000243
000244
000251
000276
000301
000304
000306
000310
000313
000321
000323

000354
000362

000365

000367
000371
000372

000373
000375
000377
000404
000405

000423
000426
000427
000433
000435
000437
000447
000453
000454
000454
000456
000457
000461
000463
000471
000475
000477

000504

000515

000521

-

c

14

1

18

3

17
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DO 20 I=1,IMAX R v
Z(1)=CAPL=DZ*(I-1)

CALCULATE TEMPERATURE AT Z=0. AND FOR DIFFRENT VALUES OF Y KEEPING
HEAT TRANSFER AND TEMPERATURE CONTINUOUS AT Z=0.

CALCULATE AND PRINT THE TEMPERATURES IN THE CLAY CAP

SPECIFY THE TEMPERATURE AT Y=.01 ‘

DO 14 I=1,L°

ZT=CAPL-DZ*(I1~-1)
TCOMB(2,1)=1.4(1.~2T/CAPL)TF#(1.~ALEMDA*SQRT(Y*D/P1)/(CAPL+P))
DT(2)=-(TCOMB(2 2)-TCOMB(2,1))/D2

PRINT 105

DO 1 I=2,M

Ll=L+I=1

2T=-(I-1)*DZ

ETA=ZT/SQRT(Y*D)

CALL ERF1(ETA,E1) ~

TOLD(1)=1. +YF-(ALEMDA*TF‘SORT(Y#D/PI)/(CAPL*P))t(SORT(FI)*P*ETA*(i
1.+E1)+EXP(=P*P+ETA*ETA))

TCOMB(2,LL)=TOLD(1)

TOLD(1)=TCOMB(2,L)

SPECIFY TEMPERATURE IN THE AQUIFER AT ¥20.01

- CALCULATE TNEW, THE TEMPERATURE AT Y+DY

© Y=Y4DY g

J=d+i

NDT=NDT+1

TCOR1=TOLD(1)

COMPUTE A(I,J)

DO 3 1=2,Mi

A(I,1)=R/V(I)

A(1,2)==1.=2.*R/V(I)

A(I,3)=A(1,1) ~
a?gl 4)--(R/V(l))*TDLD(I 1)+4(2. vn/vcx)-1 )#TDLD(I)-R/(V(I))*TOLD(I+
"MODIFY THE MATRIX A(I,V)
A(2,4)=A(2,4)~A(2,1) *TCOR1
A(2,1)=0.
A(M1,4)=A(M1,8)=A(M1,3)*(1. +TF)
A(M1,3)=0.

CALL BAND3(M1,A,TNEW)

TCOR=( (TNEW(2))/DZ+ALEMDA/CAPL) /(
1F(ABS(TCOR-TCOR1 ) .LT. .000001
TCOR1=TCOR

GO TO 18 -

TOLD(1)=TCOR

DO 4 122,M1

LL=L+1-1

.éDZ+ALEMDA/CAPL)

1
) GO TO 7

. TOLD(1)=TNEW(1)

TCOMB(J,LL)=TOLD(I)

TCOMB(JU;N)=1.+TF

DO 18 1s=t,L .

2T= CAPL‘DZ*(! 1)

TCOMB(J,1)= (1.-TOLD(1))‘ZT/CAPL+TDLD(1)

DT(J)= (1.-TOLD(1))/CAPL

PRINT VELOCITY WHEN NDT=N*NFRPR,N BEING A POSITIVE INTEGER AND PLO
T IT WHEN NDT=N#NFRPL,N=1 2.---.NPLOTS. '
XF((NDT/NFRPR)ONFRPR.NE.NDT) GO 10 5



170 .

000526 8 IF((NDT/NFRPL)*NFRPL.NE.NDT) GO TO 6
000533 IF((NDT/NFRPL).GT. NPLOTS) GO TO 6
000537 6 IF(Y.LT.YMAX .AND. J.LT. 101) GO TO 2
000550 DO 28 J=2,M

000551 28 PRINT 103,X(J),Y1(J),DT(V)

000565 DO7 1=1,L2

000566 7 PRINT 103,(TCOMB(J,1),y=2,10)

000603 i DO 10 I=L1,L,10

000605 10 PRINT 103,(TCOMB(U,1),v=2,10)

000622 00 12 1=L,IMAX,10

000623 12 PRINT 103,(TCOMB(J,I),y=2,10)

000640 00 11 I=1,L2

000641 11 PRINT 103,(TCOMB(uU,1),J=11,M,10)
000657 DO 15 I=Lt1,L,10 ’

000661 15 PRINT 103,(TCOMB(J,I),d=11,M,10)
000677 DO 27 I=L,IMAX,10

000700 27 PRINT 103,(TCOMB(U,I),J=11,M,10)
000716 DO 22 K=1,6

000717 FA=FP(K)

000721 CALL POINTS (X,Z,TCOMB,FA,Y0,Z0,KMAXO)
000727 PRINT 104,(FA,{((YO(L),20(L)),L=1,KMAXD))

000746 22 CONTINUE
000750 107 CONTINUVE

000752 END
: ‘SUBROUTINE POINTS (X,Y.F,FA,XX,YY, KMAX)

000012 DIMENSION X(101),Y(151),F(101,151),XX(1000),YY(1000)

000012 COMMON DuUMMY(1) ,M,N,DY

000012 K=0

000013 1=0

000014 1 Js1

000015 I=1+1

000017 IF(1.GT. M) GO TO 7

000022 2 P=F(1,J)=FA

000027, 1F(ABS(P).LE. .00001) GO TO 6

000032’ @ J=d+i .

000034 IF(J.GT. N) GO 10 1

000037 Q=F(1,V)-FA

000043 1F(P*Q) 5,5,4

000045 4 P=Q

000047 GO T0 3

000047 5 Kz=K+1

000051 XX(K)=X(1)

000054 YY(K)=Y(J)+DY*ABS(Q)/(ABS(P)+ABS(Q))

000067 P=Q

000071 GO 10 3

000071 6 K=K+1

000073 XX(K)=X(1)

000076 YY(K)=Y{dJ)

000101 Jad+

000103 IF(J.GT. N) GO TO 1

000106 GO 1O 2

000106 7 KMAX=K

000110 RETURN

000111 END



m

SUBROUTINE ERF1(2,E)

000005 DIMENSION DU1{101)

000005 COMMON P

000005 N=100

000006 Ni=N+1

000010 PI=4.*ATAN(1.)

000013 ) €0=2./SQRT(P1)

000016 FE=P*2Z

000024 ' H=FE/N

000023 DO 1 I=1,Nt

000025 X=(I=1)*H

000031 1 DU1 (I)=EXP(=X#X)

000042 " E1=0.

000043 DO 2 1=3,N1,2

000044 2 El=E1+(DU1(I-2)+4.*DU'(I°1)+001(I))*(H/3.)
000057 - E=CO*E1 ' -
000060 RETURN

000061 END

' SUBROUTINE BAND 3 (N,A,X)
000006 DIMENSION A(101,4),X(101)

000006 M=N=-1

000010 Mi=M-1

000011 DO 10 1=3,M

000012 o A(1,2)=A(1,2)*A(1-1,2)-A(I,1)*A(1-1,3)

000020 A(1,3)=A(1,3)*A(1-1,2)

000023 10 - A(I,8)=A(I,4)*A(1-1,2)=A(1,1)*A(1-1,4)

000033 . X(N)t(A(N.4)*A(M.2)~A(N,1)tA(M.4))I(A(N.2)tA(M.2)-A(N.1)tA(M.a))
000047 DO 20 Kei,Mt ‘ :
000051 J=N~K : ~

000052 20 X(U)e(A(J,8)=A{J,3)*X(J+1))/A(Y,2)

000062 RETURN

000063 END
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