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Abstract
Hydrodynamic Simulations and Tomographic Reconstructions of the Intergalactic Medium
by
Casey William Stark
Doctor of Philosophy in Astrophysics
University of California, Berkeley

Professor Peter E. Nugent, Co-chair
Professor Martin J. White, Co-chair

The Intergalactic Medium (IGM) is the dominant reservoir of matter in the Universe from
which the cosmic web and galaxies form. The structure and physical state of the IGM
provides insight into the cosmological model of the Universe, the origin and timeline of the
reionization of the Universe, as well as being an essential ingredient in our understanding of
galaxy formation and evolution. Our primary handle on this information is a signal known as
the Lyman-alpha forest (or Ly« forest) — the collection of absorption features in high-redshift
sources due to intervening neutral hydrogen, which scatters HI Lya photons out of the line
of sight. The Ly« forest flux traces density fluctuations at high redshift and at moderate
overdensities, making it an excellent tool for mapping large-scale structure and constraining
cosmological parameters. Although the computational methodology for simulating the Ly«
forest has existed for over a decade, we are just now approaching the scale of computing
power required to simultaneously capture large cosmological scales and the scales of the
smallest absorption systems. My thesis focuses on using simulations at the edge of modern
computing to produce precise predictions of the statistics of the Lya forest and to better
understand the structure of the IGM.

In the first part of my thesis, I review the state of hydrodynamic simulations of the IGM,
including pitfalls of the existing under-resolved simulations. Our group developed a new
cosmological hydrodynamics code to tackle the computational challenge, and I developed a
distributed analysis framework to compute flux statistics from our simulations. I present
flux statistics derived from a suite of our large hydrodynamic simulations and demonstrate
convergence to the per cent level. I also compare flux statistics derived from simulations using
different discretizations and hydrodynamic schemes (Eulerian finite volume vs. smoothed
particle hydrodynamics) and discuss differences in their convergence behavior, their overall
agreement, and the implications for cosmological constraints.

In the second part of my thesis, I present a tomographic reconstruction method that
allows us to make 3D maps of the IGM with Mpc resolution. In order to make reconstructions



of large surveys computationally feasible, I developed a new Wiener Filter application with
an algorithm specialized to our problem, which significantly reduces the space and time
complexity compared to previous implementations. I explore two scientific applications of
the maps: finding protoclusters by searching the maps for large, contiguous regions of low
flux and finding cosmic voids by searching the maps for regions of high flux. Using a large
N-body simulation, I identify and characterize both protoclusters and voids at z = 2.5,
in the middle of the redshift range being mapped by ongoing surveys. I provide simple
methods for identifying protocluster and void candidates in the tomographic flux maps, and
then test them on mock surveys and reconstructions. I present forecasts for sample purity
and completeness and other scientific applications of these large, high-redshift objects.
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Chapter 1

Introduction

Before diving into the main content, I refer less familiar readers to Appendix A, where
I review cosmology conventions and other standard notation. This introduction provides a
brief overview of cosmic history and the main focus of my thesis, the Intergalactic Medium,
but it is certainly not a complete substitute for other excellent educational resources, e.g.
Big History Project.

1.1 Cosmological context

The Universe is expanding from a hot big bang,
which synthesized the light elements.
There was a period of inflation, which lead to a flat Universe today,
and generated almost scale-invariant, adiabatic Gaussian fluctuations.
Structure grew from the fluctuations by gravitational instability,
dominated by (cold) dark matter.
The expansion of the Universe is accelerating,
indicating either a breakdown of general relativity
or that 3/4 of the Universe is dark energy.

Astro 228, Spring 2011
Martin White

The epigraph above is a succinct status report of our knowledge of the history of the
Universe. In just the past two decades, we have learned an incredible amount about the
Universe and answered many of the previous open questions of cosmology. Much of this
is due to the signal called the Cosmic Microwave Background (CMB), specifically, from
the information encoded in the temperature and polarization anisotropies of the CMB. In
the most recent analysis, results from the Planck mission have provided the most precise
conclusions from the CMB to date. Planck Collaboration et al. (2015) presents results that,


https://www.bighistoryproject.com/chapters/1
http://www.nasa.gov/mission_pages/planck
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assuming that the Universe is spatially flat and contains cold dark matter and a ‘cosmological
constant’ flavor of dark energy (known as the flat ACDM model), then the Universe

e is 13.8 billion years old.

1

e is currently expanding at a rate of 68 kms™! Mpc™", and the rate is accelerating under

the influence of dark energy.

e is made up of 5 per cent normal matter, 27 per cent cold dark matter, and 68 per cent
dark energy.

For someone who uses these facts almost every day without hesitation, it is easy to forget
how strange this state of affairs is (and amazing how we have learned this!).

The history of the Universe can be summed up in terms of the major events from the
Big Bang up to today. Much of this is a summary of the timeline described in (Kolb
& Turner 1990), with some supplementary information from (Dodelson 2003). The first
event that physics has been extrapolated to is the moment of inflation. In the standard
picture of slow-roll inflation (Guth 1981; Linde 1982), with an energy scale of 10 GeV, the
Universe begins inflation at t ~ 107345, increasing the horizon scale by at least €%°. Inflation
finishes (¢t &~ 1073%s) and leaves the Universe very smooth and flat on scales larger than our
current horizon, famously solving the homogeneity and curvature issues in the hot big bang
model. Quantum fluctuations during inflation also create the seeds of large-scale structure.
Standard inflationary models predict density perturbations that are Gaussian and nearly
scale-invariant. At this time, the Universe is t ~ 107%*s old (a ~ 107*®) and has a uniform
temperature of 10'° GeV (10%® K). Between energies of 10 MeV and 100 keV, atomic nuclei
formed during the era famously known as ‘the first three minutes‘ (Weinberg 1993). This
process is also known as Big Bang Nucleosynthesis, and this sets the primordial abundances
of hydrogen, helium, lithium, and beryllium. At this time, relativistic components (radition)
still dominate the energy density of the Universe. However, since radiation dilutes with the
scale factor as p, o< a=* and matter dilutes as p,, < =3, at some point the matter density
must overtake radiation. This event, known as radiation-matter equality, happens when the
Universe is about 100,000 years old. About 400,000 years after the Big Bang (7" ~ 3000 K,
z ~ 1100), nuclei and electrons combine for the first time, emitting the cosmic microwave
background. After photons and baryons have decoupled, baryons begin to fall into the
potential wells already seeded by dark matter. Structure continues to evolve and collapse
under gravity until the first stars and galaxies somewhere between z = 30 and 15 (about
400 million years after the Big Bang) (Loeb & Furlanetto 2013). These galaxies eventually
emit sufficient radiation to ionize hydrogen (and singly-ionize helium), making most of the
Universe transparent again around z = 10. Galaxies continue to form, merge, and evolve
under the influence of gravity, eventually reaching the cosmic peak of star-formation activity
around z = 2 (Madau & Dickinson 2014). At z ~ 0.7, matter dilutes enough to have an
energy density equal to that of dark energy, in the second equality event, matter-dark energy
equality. Finally, by z ~ 0.3, dark energy reverses the deceleration of the expansion of the
Universe and the expansion begins to accelerate.
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1.2 The intergalactic medium

The intergalactic medium is loosely defined as ‘everything’ between galaxies and clusters
of galaxies. More explicitly, the IGM can be thought of as all regions in the Universe
where the density is less than 100 times the cosmic mean (p < 100 p). This exact cutoff is
arbitrary, but since galaxy halos form at densities of about 200 p (the turnaround density in
the spherical collapse model is roughly 180; see also White 2001), this order of magnitude is
a reasonable choice. The intergalactic medium makes up most of the Universe in terms of
mass and volume. In one of our simulations at z = 2, for instance, over 99 per cent of the
volume has a baryon density p, < 10 p,. Gas with p, < 100 p;, also makes up about 80 per
cent of the total mass.

At a redshift of about 10, the IGM is reionized (HI and Hel are ionized, but not Helr)
by some of the first galaxies in the Universe (Meiksin 2009, and references therein). Before
this, the majority of baryons (those not in galaxies) had adiabatically cooled to tempera-
tures as low as 1K, since T o< a2 during adiabatic expansion, and there were no sources
of heating during the cosmic ‘dark ages’. During reionization, the gas is then heated to
approximately 20,000 K (Meiksin 2009; McQuinn et al. 2009). After HI reionization finishes,
the IGM is essentially transparent to radiation under the Hell photoionization limit, and
the IGM settles to photoionization equilibrium. Soon the IGM is permeated by a uniform
metagalactic UV background. Eventually, active galactic nuclei emit enough higher-energy
UV photons to finally ionize Hell. In the most common scenario, Hell reionization occurs
around z = 3, although this is poorly constrained. Recent observations provide evidence
that Hell reionization began at much higher redshifts (Worseck et al. 2014). Common UV
background prescriptions and their limitations are further discussed in Section 2.1.

The chemical composition of the IGM is close to primordial, thus the dominant radiative
processes involve only hydrogen and helium. The combination of photoionization heating
and adiabatic cooling due to the expansion of the Universe drives the gas to a tight power-
law relation between density and temperature (Katz et al. 1996; Hui & Gnedin 1997). This

is typically parameterized as )

Y
T=T, (@) : (1.1)

Pb

where Tj is the temperature at mean density and « is the IGM ‘equation of state’ parameter.
This should not be confused with the v in the common gamma-law equation of state p = Ap”.
Since we only consider atomic gases in this thesis, this v is always 5/3. For the redshifts we
are interested in, Ty ~ 10*K and v =~ 1.6 (Lee et al. 2015). As explained in Hui & Gnedin
(1997), the slope of the power-law steepens in time, asymptotically to v = 1.6, rapidly
increasing near HI reionization, and more slowly later. This relation is apparent in a density-
temperature phase diagram of baryons. In Figure 1.1, I show the volume-weighted density
and temperature distribution of gas from one of our cosmological simulations at z = 2.5. A
significant majority of the points sit on the p,-T" line (the colorscale is logarithmic). This

phase diagram shows how we typically split the IGM into four regimes based on density and
temperature. The low-density, cool gas is known as the diffuse IGM, and the hot gas is the
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condensed
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Figure 1.1:  The density-temperature distribution of gas (volume-weighted histogram) from a
simulation at z = 2.5. This phase diagram roughly illustrates the four thermodynamical regimes
for baryons.

Warm-Hot Integalactic Medium (WHIM). The high-density gas is broken down into the hot
halo phase and the cool, collapsed phase.

The structure of the IGM is largely determined by the Gaussian fluctuations set in
place during inflation that are subsequently amplified by gravitational evolution. As soon
as photons and baryons decouple at the time of the last scattering, the structure of the
IGM begins to fall into place, forming the cosmic web and first galaxies (Bond et al. 1996).
Figure 1.2 shows the structure of gas on cosmological scales. For reference, the size of the
box is 40 h~!Mpc. The different colors used in this figure correspond to the different phases
of the gas. The blue structures are the diffuse IGM (in this case, p < 10 and T' < 105 K),
the green structures are the shock-heated WHIM (p < 10p and T' > 10°K), and the white
structures are the high density hot halo and collapsed phases (p > 10 p). In this illustration,
it is clear that the diffuse IGM makes up voids and most of the filaments in the cosmic web.
These filaments are surrounded by shocked gas, heated to high temperatures when the gas
accretes onto the filaments, forming the WHIM. The high-density phases of baryons are sites
of galaxy formation, regions where matter has collapsed into virialized structures known as
halos. The collapsed phase has a distinct thin tail to higher densities — where galaxies form
— while gas in larger halos is heated to high virial temperatures.

While the structure of the IGM is mostly determined by gravitational evolution, there
are some differences between the dark matter and baryonic structures on small scales. The
standard picture of the structure (see, e.g. Meiksin 2009) is that at moderate overdensities
and scales larger than 1~ 'Mpc, baryons simply trace dark matter. With a characteristic
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Figure 1.2: A volume rendering of one of our simulations, highlighting the morphology of the
phases of the IGM. The diffuse IGM (p/p < 10 and T < 10°K) is shown in blue, the WHIM
(p/p < 10 and T > 105K) is shown in green, and the collapsed and hot halo phases (p/p > 10) are
shown in white.
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temperature 7" ~ 10K, the baryons in the IGM are pressure supported on scales of ~
100 h~'kpc and smaller, and the density fluctuations are thus suppressed relative to the dark
matter, or as often put, the baryons in the IGM are filtered on this scale. Gnedin & Hui
(1998) first provided a detailed description of this process in the context of linear theory.
The scale at which the gravitational and pressure forces are equal is the Jeans scale

T/(10K)
Ay = (1 » / =0.783 h~'Mpe . 1.2
1=01+2) \/ (I1+0)(1+42) pe (1.2)

In the case of adiabatic expansion (before reionization), T o< (1 + 2)?, and the Jeans scale
decreases with time. In the case of constant temperature (after reionization), the temperature
and Jeans scale increase with time. So at z = 2 for instance, the Jeans scale for mean density
gas at T = 10* K is 0.86 h~*Mpc.

As defined, the Jeans scale ky = 27/); is an instantaneous measure that does not take
into account the evolution of density or sound speed. Since the amount of filtering at a given
epoch also depends on the thermal history of the gas, a more interesting dynamical quantity
is the filtering scale kgy, the scale at which baryon fluctuations are suppressed relative to
cold dark matter. In linear theory, the filtering scale is

Lo bt D)+ 2HW)DL () [t dt”
k?ilt(t) B D-‘r(t)/o dat (t) k?(t’) /t’ a2(t”) (1-3)

The filtering scale in linear theory is always equal to the Jeans scale at an earlier time. This
implies that before reionization, the filtering scale is larger than the Jeans scale, and after
reionization, the filtering scale is smaller than the Jeans scale. The key point here is that
after reionization, in the case of roughly constant temperature, kg, is smaller than the Jeans
scale. A rule of thumb is that for typical growth factors and thermal histories, the filtering
scale is roughly half the Jeans scale for 2 < z < 4. In the linear regime, the filtering of
baryon power is roughly Gaussian:

(1.4)

Py(k) = Py (k) exp [_2""2}

2
kﬁlt

Unfortunately, recent studies show evidence that this is of little use since for reasonable
thermal histories, as the filtering scale is always too similar to the non-linear scale for this
to apply (Luki¢ et al. 2015; Kulkarni et al. 2015).

1.3 The Ly« forest

Most of what we know about the IGM comes from studying it in absorption. As photons
from distant sources propagate through the IGM, there is ample opportunity for the gas and
photons to interact, and for the gas to leave a signature in the light that eventually reaches
our telescopes. Although most of the Universe is underdense by volume, and the mean
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505 Mpc Quasar

Lya peak

flux
{3
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Figure 1.3: An illustration of the Ly« forest in a mock quasar spectrum. The quasar continuum
(green dashed line) is taken from Vanden Berk et al. (2001). The background is the HI density (log-
scale) from a cosmological simulation. The blue line shows the spectrum after being propagated
through the gas shown in the background.

density is incredibly low compared to terrestrial environments, the path lengths covered by
high-redshift photons is enormous. For instance, the mean proper density at z = 2 is just
over 1072 gem™3 and drops to 5 x 1073 gem™ by z = 0, but the distance to z = 2 is an
enormous 5.2 Gpc, providing an average baryon column of

z on z<1+zl)3 3
Nu(z=2) = Yy = =2 / d2' =3 x 102 em™2 . 1.
b(z =2) /0 n(z") dr moHo )y B() 2/ =3 x10% cm (1.5)

Such a substantial column makes it easy for low-density gas and relatively weak interactions
to scatter a significant amount of light.

Such a phenomenon is readily apparent in the spectra of distant quasars. Quasars are
very luminous objects at the center of active galaxies, powered by accretion events onto
supermassive black holes (Alexander & Hickox 2012). While very interesting in their own
right (Fabian 2012), for the purposes of this thesis, they can be thought of as very bright
back lights, with relatively smooth spectra. Between their large, broad HI Lya and Lyp
emission bumps, quasars have a roughly flat and featureless spectrum which provides a clear
continuum from which to measure absorption features. Vanden Berk et al. (2001) compiled
a composite quasar spectrum using about 2,200 spectra from the Sloan Digital Sky Survey
(SDSS), shown as the green dashed line in Figure 1.3. In this example, I took the composite
spectrum, redshifted to z = 2.6, and propogated the spectrum through the gas in one of
our simulations (detailed later in Section 2.1). The intervening neutral hydrogen creates a
multitude of absorption features along the line of sight and these are collectively known as
the Ly« forest. Each sightline probes roughly 500 Mpc.
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Ikeuchi (1986) and Rees (1986) were the first to suggest the Lya forest originated from
partially ionized hydrogen, in their case confined gravitationally by halos of collisionless
or cold dark matter. Using numerical simulations, Cen et al. (1994) demonstrated that
Ly« forest systems arise naturally within the framework of theories of structure formation
through gravitational instability in CDM dominated cosmologies. The installation of HIRES
at Keck (Vogt et al. 1994) made it possible to make precision comparisons with the models,
confirming the success of the gravitational instability scenario for the origin of the Ly« forest.
Today it is clear that the Ly« forest arises from the smooth, continuous structures in the
low-density IGM, rather than the historical collection of dense ‘clouds’ interpretation.

The connection between large-scale structure and the Ly« forest is clear in a set of
relations known as the fluctuating Gunn-Peterson approximation (FGPA). Starting from
the baryon density py,, we derive an expression for the optical depth to HI Ly« resonant line
scattering. As explained above, there is a tight density-temperature relation in the diffuse
IGM. The HI density is determined by the overall gas density py,, the primordial fractional
mass abundance of hydrogen X, and the rates of HII recombination and HI ionization.
At typical IGM densities and temperatures, collisional ionization can be ignored, and HI
ionization is dominated by photoionization from the UV background. The HiI recombination
rate is proportional to n.nm, 7%, and since the gas is almost entirely ionized, n. and 1y,
are proportional to py,. Altogether, the HI density ng, is proportional to p?T-%"Ty'. Finally,
the optical depth is proportional to the HI density (ignoring peculiar velocities and thermal
broadening for a moment), and we have:

7 o< iy X ppT %Iyt o pifoj(%l)f‘;hl : (1.6)

Clearly, this ignores some details, but this is an excellent qualitative guide to the Ly« forest
on large scales. Through this relation, we can see how the Ly« forest optical depth traces
the underlying density field. One caveat worth mentioning while discussing the FGPA is
that some authors use it to describe the entire process of computing the optical depth from
N-body simulations, which we will cover in Section 4.1.

Another crucial fact to note is that we do not actually observe the optical depth, but
rather, the transmitted flux fraction. Light propagating through the IGM is attenuated
such that the transmission (or transmitted flux fraction) is F' = exp(—7). It is a bit of a
misnomer, but this is typically called the ‘flux’ in the community. The flux drops to 0 when
the absorption is saturated and approaches 1 (the continuum level) when there is almost
no absorption. Another quantity of interest is the transmitted flux fraction perturbation
dp = F/(F) — 1, where (F) is the mean flux at a given redshift, and this is also sometimes
referred to as flux in the Lya forest community.

In detail, the optical depth to HI Ly« scattering through the IGM is

T = /nHIadT = Weifm/nm(@ﬁb(x)adm' (L.7)

Me

where o is the resonance line scattering cross section, e is the electron charge, m. is the
electron mass, fis is the Lya transition oscillator strength, and ¢ is the line profile. In
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Figure 1.4: A sample skewer, from a 20483 simulation in a periodic box of side length 40 h~'Mpc
at z = 2.5, showing the ingredients in the flux calculation. The top horizontal axis gives the
(comoving) distance in the line-of-sight direction through the box. The top panel shows the baryon
density, on a log scale. The middle panel illustrates how the velocity component along the line of
sight v|| shifts the line center going from real- to redshift-space. The lower two panels show the
optical depth and flux, respectively. The differences between the real- and redshift-space flux show
how the redshift-space distortions do not just shift lines, but also change the blending of the lines.
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general, the line profile is a Voigt profile, however, for the optical depths encountered in the
forest (7 < 100), the Lorentzian wings are negligible, and we can use the simpler Doppler
profile. In this case, the optical depth expression simplifies to

me? 1 v—v — v 2l '
mecflz/nmm exp [— (T) ? ) (1-8)

where b is the Doppler parameter and is typically equal to the thermal velocity of hydrogen,
Vsh = +/2ksT/my, and v is the peculiar velocity along the line of sight. We use velocity
coordinates in this version of the optical depth expression because it is usually most conve-
nient, but it is straightforward to convert to other coordinates using the relations listed in
Appendix A. We show an example of the full optical depth calculation from the density and
temperature along a line of sight in Figure 1.4.

Observations of the Ly« forest from the ground are limited to roughly 2 < z < 5. The
low-redshift cutoff is due to the fact that below z = 2, HI Ly« is not redshifted enough out
of the UV range blocked by the atmosphere (roughly A < 3600 A). It is possible to observe
the Ly forest at lower redshifts from space (specifically with the Faint Object Spectrograph
or Cosmic Origins Spectrograph on the Hubble Space Telescope), although there are only a
handful of such observations (Bechtold et al. 2002; Dobrzycki et al. 2002). At high redshifts,
observations of the Ly« forest are limited by two facts: quasar targets become increasing
rare and faint, and the absorption is often saturated, resulting in a Gunn-Peterson trough
rather than a forest (Fan et al. 2006). Broadly speaking, there are two flavors of Lyc forest
observations: those with high signal-to-noise and high resolution, meant to resolve individual
absorption systems, and those with low signal-to-noise and moderate resolution, meant to
probe a greater volume as part of a cosmological survey. The first type of observation is
necessary to measure the distributions of absorption systems (column densities and Doppler
parameters) and to measure primordial abundances (e.g. Cooke et al. 2014). The second
type of observation is a result of the optimal survey strategy for extracting cosmological
information from the Ly« forest (McQuinn & White 2011).

The last decade has seen increasing use of Lya absorption to investigate large-scale struc-
ture and cosmology. The Sloan Digital Sky Survey (SDSS) (York et al. 2000) provided an
enormous increase in the amount of Ly« forest data with thousands of quasars suitable
for 1D analysis, but at the cost of the spectra being low-resolution and fairly noisy. Still,
this volume of data allowed a much-improved measurement of the 1D flux power spectrum
(McDonald et al. 2006), placing constraints on the large-scale spectral index n, and the am-
plitude of fluctuations og. The Baryon Oscillation Spectroscopic Survey (BOSS) experiment
of SDSS-III (Dawson et al. 2013) further increased the sky density of suitable quasar lines of
sight. The close proximity of large numbers of lines of sight has enabled 3D correlations in
the forest to be measured over large scales for the first time using a sample of some 14,000
QSOs (Slosar et al. 2011, 2013; Busca et al. 2013). The 3D flux information has also been
cross-correlated with other high redshift tracers (Font-Ribera et al. 2012, 2013). The 1D flux
power spectrum has been measured to unprecedented precision (Palanque-Delabrouille et al.

T(v) =
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2013). The 3D Ly« absorption correlations are a promising means of constraining the nature
of dark energy through the measurements of the angular diameter distance and the Hubble
constant at high redshifts by detecting the large-scale Baryon Acoustic Oscillation (BAO)
peak (Slosar et al. 2011; Busca et al. 2013; Font-Ribera et al. 2014). At the same time, the
measured signal provides a novel test of the gravitational instability origin of the Lya forest
and the large-scale power in the meta-galactic ionizing background (e.g. McQuinn et al. 2011;
McQuinn & White 2011). Lee et al. (2014b) demonstrated that it is now possible to map
out the IGM on Mpc scales using closely-separated Lya forest sightlines from star-forming
galaxies. The Lya forest may also be used to constrain galaxy formation models. Galactic
winds driven by feedback effects from galaxy formation models can impact statistics of the
Lya forest flux (Viel et al. 2013b) and the circumgalactic medium. Searches for the impact
on the circumgalactic medium are underway around Lyman-break galaxies (Crighton et al.
2011; Rudie et al. 2012).

1.4 Flux statistics

As I have described above, the Lya forest provides an excellent tracer of large-scale
structure at moderate overdensities and over 2 < z < 5. Although we are sometimes
interested in specific structures found in the Lya forest (as I explore in Chapter 4 and
Chapter 5), we are primarily interested in the statistical information encoded in the forest.
In this section, I introduce the first three n-point functions of the Ly« forest and describe
what we can learn from them.

1.4.1 Mean flux

The simplest possible flux statistic is the mean transmitted flux fraction (F'), or equiva-
lently, the effective optical depth 7.4 = — log(F'). This is simply the mean of the transmitted
flux fraction of all pixels at a particular redshift. Observations show that the mean flux
smoothly evolves from (F) ~ 0.4 at z = 4, to (F) ~ 0.9 at z = 2, as expansion gradu-
ally lowers the (proper) HI density and the UVB intensity slowly increases (Becker et al.
2013). The mean flux is most sensitive to the metagalactic HI photoionization rate, which
in turn constrains average stellar and active galactic nuclei UV radiation (Faucher-Giguére
et al. 2008a). In principal, the mean flux also probes the thermal history of the IGM, as
7 oc T7%7. (Bernardi et al. 2003) reported an increase in the mean flux at z ~ 3.2 and
interpreted this feature as photoheating from Hell reionization. Unfortunately, this feature
was not found in later work (e.g. Becker et al. 2013). Measurements of the evolution of the
mean flux include Press et al. (1993); Kim et al. (2001); Bernardi et al. (2003); McDonald
et al. (2006); Faucher-Giguére et al. (2008b); Becker et al. (2013).
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1.4.2 Flux probability density function

The flux probability density function (flux PDF of FPDF) p(F) is simply the distribution
of the pixel fluxes. p(F) is normalized in the usual fashion such that the integral of p over
the full F range is equal to 1, [ p(F)dF = 1. In the case of equally-spaced F' bins, the p(F’)
values are thus the appropriately rescaled histogram. The flux PDF is a relatively smooth
function, with a shape typically peaked at F' = 0 and 1, and rising at intermediate fluxes
(although the slope will be negative and there will be no F' ~ 1 peak at a high enough
redshift). In principle, this one-point statistic is a good probe of the thermal history of the
IGM and the amplitude of density fluctuations. However, the FPDF is also very sensitive
to systematic effects such as the resolution of the spectrograph, determination of the quasar
continuum level and/or pixel noise. Recently, the FPDF was measured using a sample of
3,393 high signal-to-noise BOSS quasar spectra (Lee et al. 2015), where they found a good fit
to the data with a temperature-density slope of v = 1.6 and the results strongly disfavored
inverted p-T" models (y < 1). Other measurements of the flux PDF include Jenkins &
Ostriker (1991); Rauch et al. (1997); McDonald et al. (2000); Becker et al. (2007).

1.4.3 Flux power spectra

Spatial correlations of the Ly« forest, specifically the dr quantity, offer a promising
tracer of density fluctuations at moderate overdensities, high redshifts, and small scales.
Historically, the two-point function of flux was studied only in 1D, only correlating pixel
pairs in the same sightline. Before BOSS observed quasars at a much higher sky density,
observed quasar sightlines were so widely separated that it was too inaccurate to correlate
across sightlines.

Since the flux field is anisotropic due to redshift-space distortions and thermal broadening,
the flux 3D power spectrum is usually defined as

Pr(ky, k) = V{|or(k, k) - (1.9)

The flux 1D power spectrum is the power at a specific line-of-sight mode k|, averaged over
all sightlines:

Prap(ky) = L{|0r (k) | (1.10)
and is related to the 3D power spectrum as:
1 [o.¢]
Pran(b) = 5 [ KL Pe(k, K, (1.11)
ky

Today, the main strength of the 1D flux power spectrum is that it can probe relatively
small scales, down to ~ 0.1 A~*Mpec. Therefore, it is a good test of the nature of dark matter
and the mass of neutrinos (Seljak et al. 2006; Viel et al. 2013a). Observational measurements
of the flux 1D power spectrum include Croft et al. (1998, 1999); McDonald et al. (2000);
Croft et al. (2002); Kim et al. (2004); McDonald et al. (2006); Palanque-Delabrouille et al.



1.5. OUTLINE 13

(2013). On large scales, the shape of flux power spectrum is very similar to the matter power
spectrum (see e.g. Slosar et al. 2009). As such, the Ly« forest is a tracer of the large-scale
structure which can measure the characteristics scale of baryon acoustic oscillations (BAO)
and use it as a standard ruler to measure the distances and the expansion rate of the universe.
Recently, the first measurements of the cosmological parameters via the location of the BAO
peak in the Ly« forest was made with BOSS data (Slosar et al. 2011, 2013; Busca et al.
2013; Delubac et al. 2014).

1.5 Outline

The next two chapters of my dissertation focus on the precision of Ly« forest flux statis-
tics derived from cosmological hydrodynamic simulations. In Chapter 2, I introduce NYX,
the code developed by our team at Lawrence Berkeley National Lab to perform large cos-
mological hydrodynamic simulations. We use a suite of simulations to test how simulation
resolution and box size affect flux statistics and set requirements for future simulations.
We also discuss the effects of optical depth rescaling and a method called power spectrum
splicing. In Chapter 3, I present work on how numerical methods (specific gravity and
hydrodynamics schemes) affect flux statistics. Together with collaborators at Brookhaven
National Labs, we ran a suite of the same cosmological hydrodynamic simulations in NYX
and another code called GADGET. We compare the convergence rates of flux statistics in
the two codes and present how well they compare in the converged limit. The last two
chapters of my dissertation focus on using the Ly« forest to create 3D maps of the IGM
with Mpc-scale resolution. In Chapter 4, I introduce the method we use to tomographically
reconstruct the 3D structure of the IGM, and my high-performance implementation of the re-
construction algorithm. I also explore the prospects for using the maps to find protoclusters,
the high-redshift progenitors of the most massive structures today. Finally, in Chapter 5, I
demonstrate another application of the tomographic flux maps: finding and characterizing
cosmological voids.
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Chapter 2

Numerical convergence of simulated Ly«
forest flux statistics

In principle, it is relatively simple to directly simulate the Lya forest. The diffuse IGM
is responsible for the significant majority of the absorption features, and is only moderately
overdense. Numerically, these densities are easier to capture than higher overdensities. The
evolution of this gas only depends on gravity and pressure forces, and some simple radiative
processes. Since the gas is very close to primordial composition, the background ionizing
radiation is relatively spatially uniform, and almost all of the gas (by volume) is optically
thin to the radiation, the required simulation machinery is simple indeed. Any cosmological
hydrodynamics code modeling the evolution dark matter and gas with uniform radiative
heating and cooling should be able to adequately capture the diffuse IGM. Historically,
the challenge of simulating the Lya forest has not been the complexity of the physics or
computational techniques, but in the sheer scale of computation required.

The biggest computational challenge for accurately capturing the state of the IGM is
the required dynamic range. In order to appropriately model bulk flows, simulations must
cover linear scales, on the order of 100 h~'Mpc. The bulk flows play an important role in
determining the redshift-space distortions (and therefore, the line blending) and the temper-
ature distribution of the IGM via shock heating. At the same time, simulations must resolve
the filtering scale, which sets a natural minimum scale. The filtering scale is on the order
of 100 h~'kpc for the densities of interest and reasonable thermal histories. The required
dynamic range ends up being closer to 10* than 10® however, since adequately resolving a
given scale in a simulation means covering it with several resolution elements, so that the
simulation element scale must be on the order of 10 h~'kpc.

With modern numerical techniques and supercomputers, a dynamic range of 10* in a
3D simulation is now practical. Using Lagrangian techniques like Smoothed Particle Hydro-
dynamics (SPH) or the Eulerian adaptive resolution technique Adaptive Mesh Refinement
(AMR), it is straightforward to achieve even larger dynamic ranges. However, these tech-
niques only help simulations focused on resolving small fractions of the total domain volume.
The difficulty in simulating the IGM is that it covers almost all of the volume of the do-
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Figure 2.1: A 1 h~'Mpc thick slice of the baryon density from a cosmological simulation at z = 2.5.
Note how the mean density structures (white) cover a significant fraction of the volume.
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main. The gas responsible for the Ly« forest is close to the cosmic mean density rendering
Lagrangian methods computationally non-optimal as they spend a majority of the compute
cycles evolving dense regions. This is clear in Figure 2.1, where the mean density structures
(in white) cover most of the volume. This also gets worse at higher redshifts, e.g. z > 4,
where more of the signal comes from the underdense regions.

It is clear that the Jeans length of the gas (~ 500 h~'kpc depending on the redshift) must
be resolved to recover the correct absorption line widths and small-scale wavelet coefficients,
with a suggested resolution of at least 40 h~'kpc (comoving) at z = 2 — 3 (Bryan et al. 1999;
Schaye et al. 2000; Meiksin et al. 2001; Tytler et al. 2009; Lidz et al. 2010). Resolution on this
scale is also adequate for converging to better than 5 per cent on the hydrogen ionization rate
required to match the measured effective optical depth of the IGM (Meiksin & White 2004;
Bolton et al. 2005; Tytler et al. 2009), as well as the effective optical depth itself (Bolton
& Becker 2009). At z > 4, however, convergence on the effective optical depth diminishes
to poorer than 15 per cent at this mean resolution (Bolton & Becker 2009). A resolution of
40 h~'kpc is also inadequate for converging on the Doppler parameter and wavelet coefficient
distributions at z = 4. This is particularly the case for the narrowest features, for which a
comoving mean resolution of better than 20 h~'kpc appears necessary, with results still not
clearly well converged (Bryan et al. 1999; Lidz et al. 2010).

The results are also sensitive to box size. The inferred mean ionizing background is
converged to a few percent for comoving box sizes of 30 h~'Mpc for 2 > 2 (Meiksin &
White 2004; Bolton et al. 2005; Tytler et al. 2009). The line widths increase with box size,
possibly not converged to better than 5 per cent at z = 2 for a comoving box size as large
as 54 h~'Mpc (Tytler et al. 2009), although the distribution of smoothed wavelet coefficients
appears well converged at this redshift for the smaller box size of 25 !Mpc (Lidz et al.
2010). At z > 3, the wavelet coefficients are not well converged for box sizes as large as
50 h~'Mpec (Lidz et al. 2010).

Convergence requirements on the 1D flux power spectrum are also demanding. McDonald
et al. (2005b) found better than 5 per cent convergence from the fundamental mode up to
k < 0.025km™'s for 2 < 2z < 4, and up to k¥ < 0.1km™'s at z < 3, for a resolution of
39 h~'kpc, but in a comoving box size of only 5h 'Mpc. In larger boxes (30 h~'Mpc),
Viel et al. (2006) found 5 per cent convergence at k < 0.01km™'s for a mean resolution
of 150 h~'kpc, but of only 12 per cent for k = 0.02km™'s at z = 4. Other work found
convergence of up to 10 per cent may be achieved at k < 0.03km™'s in 20 — 40 h~"Mpc
boxes at z = 2 — 5 (although possibly as poor as 20 per cent at z = 5), with resolutions of 60
— 200 h~kpe, although requiring better than 50 A~ kpc resolution for 5 per cent convergence
at k = 0.1km™'s at z = 2, with even this inadequate at z = 5 (Meiksin & White 2004; Bolton
& Becker 2009; Tytler et al. 2009). Even at this level, the spatial flux correlation function
converges to better than 10 per cent over only 3 per cent of the box size (Meiksin & White
2004). The convergence of absorber pair and higher multiple statistics along neighboring
lines of sight are not expected to fare better, which is perhaps why they have been largely
ignored in simulation comparisons with data.

Hri (and Hel) reionization takes place at high redshift, z > 10. Therefore the details
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of this epoch are unimportant for the thermodynamical properties of the gas at redshifts
relevant for Lya forest observations (z < 4). In contrast, Hell reionization takes place
at an observationally relevant epoch (3 < z < 5) although the observational picture is
not yet resolved (e.g. Worseck et al. 2014). In addition, the size of fluctuations in the
Hell ionizing background are very poorly constrained, varying by an order of magnitude
in recent studies (Shull et al. 2010; Syphers & Shull 2014; McQuinn & Worseck 2014).
However, the main effect of Hell reionization on the IGM is that the additional photoheating
increases the temperature of the IGM. The UV background prescriptions we employ in this
study model this increase in the temperature via an increase in photoheating rates and
ionize Hell by z = 3. We note, however, that Hell reionization could result in higher
temperatures with explicit radiative transfer and significant (spatial) fluctuations of the
ionizing background. Thus, including Hell reionization correctly in simulations requires
incorporating radiative transfer (Tittley & Meiksin 2007), which remains an active area of
current research in cosmological hydrodynamics codes (Tittley & Meiksin 2007; McQuinn
et al. 2011; Meiksin & Tittley 2012; Compostella et al. 2013).

Modern hydrodynamic simulations recover many of the measured statistical properties of
the Ly« forest, such as the HI column density distribution, the pixel flux distribution function
and the flux power spectrum at a level capable of distinguishing between plausible variants
of the CDM model, with the ACDM model the most successful (Zhang et al. 1995; Hernquist
et al. 1996; Rauch et al. 1997; Zhang et al. 1997; Croft et al. 1998; McDonald et al. 2000;
Meiksin et al. 2001; Croft et al. 2002; Viel et al. 2004). However, some differences are found.
Most notable is the distribution of the absorption line widths (Doppler widths) characterized
by the b-parameter (typically about 30 km/s). While the line widths are consistent with the
amount of broadening characteristic of photoionized gas, the measured distributions show
too many broadened lines compared with the predictions of the original simulations. This
is likely an indication that Hell was reionized late, at z < 4 (Bryan & Machacek 2000;
Ricotti et al. 2000; Schaye et al. 2000; Meiksin et al. 2001; Worseck et al. 2014). Allowing
for a late Hell reionization and including radiative transfer during reionization a range of
Doppler widths may be achieved consistent with the data (Tittley & Meiksin 2007; Meiksin &
Tittley 2012). Since the line widths control the scale and number of features, the distribution
of wavelet coefficients is also strongly affected and, to a lesser extent, the column density
distribution and the pixel flux distribution (Meiksin et al. 2001). The flux power spectrum
is most affected at high wavenumbers.

2.1 Simulations

The simulations we present here are performed with the NYX code (Almgren et al. 2013).
NvYX follows the evolution of dark matter simulated as self-gravitating Lagrangian particles,
and baryons modeled as an ideal gas on a uniform Cartesian grid. NYX includes Adaptive
Mesh Refinement (AMR) capabilities, which we can use to extend the simulated dynamic
range. We do not make use of AMR in the current work, as the Ly« forest signal spans
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Table 2.1: Conversion factors versus redshift

z Ao H(z) dM\dx dv/dxy 103dz/dx

2.00 3645 285 1.16 95 0.95
2.25 3949 319 1.29 98 1.06
2.50 4253 354 1.43 101 1.18
3.00 4860 428 1.73 107 1.42
3.50 5468 508 2.06 113 1.69
4.00 6075 592 2.40 118 1.98

Conversion factors for the flat ACDM cosmology considered here with h = 0.702 and €,,, =
0.275. Wavelengths are given in A, comoving distances in h~"Mpc and velocities in kmsinv.

nearly the entire simulation domain rather than isolated concentrations of matter where
AMR is more effective. The Eulerian gas dynamics equations are solved using a second-
order accurate piecewise parabolic method (PPM) to accurately capture shock waves. Our
implementation uses a dimensionally unsplit scheme with full corner coupling (Colella 1990)
to better reconstruct the 3D fluid flow. The same mesh structure that is used to update
fluid quantities is also used to compute the gravitational field and to evolve the particles via
a particle-mesh (PM) method, using Cloud-In-Cell (CIC) interpolation to switch between
particle- and mesh-based quantities. The gravitational source terms in the momentum and
energy equations are discretized in time using a predictor-corrector approach. The addi-
tional physics of radiative heating and cooling is included via source terms in the equations
for internal and total energy. As the relevant time scale for heating and cooling can be
significantly different from the stability criterion required by the explicit discretization of
gas dynamics equations (the Courant-Friedrichs-Lewy or CFL condition), the heating and
cooling source terms are integrated in time using VODE (Brown et al. 1989) and coupled
to the hydrodynamics using a Strang splitting (Strang 1968) approach. For more details of
our numerical methods, see Almgren et al. (2013).

We simulate the WMAP 7-yr data constrained flat ACDMcosmology, with parameters:
O = 0275, Q) =1 —Q, = 0.725, Q, = 0.046, h = 0.702, og = 0.816, and ny; = 0.96
(Komatsu et al. 2011). We provide Table 2.1 to help convert between scale, wavelength, and
velocity coordinates at redshifts used in this chapter. The latest Planck constraints (Planck
Collaboration et al. 2015) differ somewhat from WMAP-7 values, most notably in the values
for the Hubble constant h and total matter content 2. These differences will not play an
important role in this work, as we aim to explore numerical prescriptions for achieving 1 per
cent accurate Ly« forest statistics. The conclusions here will inform future work for running
many viable cosmologies and understanding their numerical limitations.

The full set of simulations is listed in Table 2.2. We designed the set of simulations to
cover the expected maximum box size and minimum resolution needed to show convergence.
All simulations are initialized at z = 159, starting from a grid distribution of particles and
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Table 2.2: List of simulations

Name Box size (h"'Mpc) Elements Resolution (h~'kpc)  mgm(Me)
L10_ N128 10 1283 78 4.3 x 107
L10_N256 10 2563 39 5.4 x 108
L10 Nb512 10 5123 20 6.7 x 10°
L10 N1024 10 10243 10 8.4 x 10*
L20 N256 20 2563 78 4.3 x 107
L20 Nb512 20 5123 39 5.4 x 10°
L20 N1024 20 10243 20 6.7 x 10°
L20 N2048 20 20483 10 8.4 x 10*
L40 N512 40 5123 78 4.3 x 107
L40 N1024 40 10243 39 5.4 x 108
L40 N2048 40 20483 20 6.7 x 10°
L8O N1024 80 10243 78 4.3 x 107
L8O N2048 80 20483 39 5.4 x 10°
L8O N4096 80 40963 20 6.7 x 10°

The simulations used in this chapter. Resolution refers to the cell size, and to ease comparison
with SPH simulations we list the mass of dark matter particles in each simulation. See text
for details.
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Zel’dovich approximation (Zel’dovich 1970). Transfer functions were generated using both
analytical approximation Eisenstein & Hu (1999) and Boltzmann code CLASS (Blas et al.
2011). The conclusions presented here have no sensitivity on the particular transfer function
used, but it is of course important to maintain the same transfer function accross a series of
runs one is comparing to each other. We focus on snapshots in the range 2 < z < 4, relevant
for most observations. To simplify the comparison, simulations performed in the same box
size share the same large-scale modes, the only difference being that higher resolution runs
have more modes sampled on small scales.

2.1.1 Included physics

Besides solving for gravity and the Euler equations, we model the chemistry of the gas as
having a primordial composition with hydrogen and helium mass abundances of X = 0.75,
and Y = 0.25, respectively. The choice of values is in agreement with the recent CMB
observations and Big Bang nucleosynthesis (Coc et al. 2013). The resulting reaction network
includes 6 atomic species: Hi, Hii, Hel, Hell, Helll and e~, which we evolve under the
assumption of ionization equilibrium. The resulting system of algebraic equations is:

(Pe,Hlne + F’Y,HI) NH = O HulleMHn
(Fe,Helne + F'y,HeI) NHer = (ar,HeII + ad,HeII) NeNHen

(2.1)
[F'y,HeII + (Fe,HeH + Oy Henr + ad,HeII) ne] NHen

= Or HemnMeNHemn + (Pe,Helne + F’Y,Hel) NHer

in addition, there are three closure equations for the conservation of charge and hydrogen
and helium abundances. Radiative recombination (o, x), dielectronic recombination (aqgx),
and collisional ionization (I'. x) rates are strongly dependent on the temperature, which itself
depends on the ionization state through the mean mass per particle

T = ;?—;u Eint (2.2)
where m,, is the mass of a proton, kg is the Boltzmann constant, and ejy is the internal
thermal energy per mass of the gas. Here we assume adiabatic index for monoatomic ideal
gas. For a gas composed of only hydrogen and helium, p is related to the number density
of free electrons relative to hydrogen by = 1/[1 — (3/4)Y + (1 — Y)n./nu]. We iteratively
solve the reaction network equations together with the ideal gas equation of state, p =
2/3péiyt, to determine the temperature and equilibrium distribution of species.

We compute radiative cooling as in Katz et al. (1996), and assume a spatially uniform,
but time-varying ultraviolet background (UVB) radiation field from either Faucher-Gigueére
et al. (2009) or Haardt & Madau (2012). We do not follow radiation transport through the
box, nor do we explicitly account for the effects of thermal feedback of stars, quasars, or
active galactic nuclei; all cells are assumed to be optically thin, and radiative feedback is
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accounted for via the UVB model. In addition, we include inverse Compton cooling off the
microwave background. For the exact rates used in the NYX code and comparison of two
UV backgrounds, we refer the reader to Appendix B.

2.1.2 Optical depth calculations

As described in Section 1.3, the optical depth 7 for HI Ly« resonant scattering is

dr (2.3)

T, =

2
exp |— —”*”‘))
me? f / Ny p [ <A”D }
12 AVD \/7_1'
assuming a Doppler profile. We assume that there are no extra kinematic components to

the broadening in this work, so b = \/2kgT/my. In general, the line profile for this process
is given by the Voigt profile:

MeC

1 [~ ()
= tan) = o | T (24)

where a = I'y;/4mAvp is the ratio of the damping width to the Doppler width, and z =
(v — 1p)/Avp is the shift from line center. However, for densities and temperatures typical
in the IGM we may use the Doppler profile instead, which is just the Gaussian core of the
Voigt profile:

1
(bu,D = mexp(—a:Q) . (25)

The difference in optical depth computed with a Voigt versus a Doppler profile is very
small in the regime we are interested in (75 < 100). Figure 2.2 shows the optical depth
to a single absorber with uniform HI density and temperature, computed three different
ways. The system spans a comoving scale of roughly 300 h~'kpc, and corresponds to Av =
30kms™! for our cosmology’s H(z = 2). The difference between the left and right panels is
the column density, where a system with a typical Lya forest column density is shown on
the left and a weak Lyman Limit System is on the right. The Voigt integral and Doppler
integral versions are the full sightline integral, and only differ by the line profile assumed. A
third computation approximates the feature as a single line with line center at the center of
the absorber (‘Voigt line’). The Voigt line version follows the damping wings, but has the
wrong shape near line center. It does not account for the change in the line center of the gas
across the system and is therefore too narrow. The Doppler integral version correctly traces
the Gaussian shape near line center, but misses the damping wings. However, for the low
column density lines that make up the Ly« forest, the damping wings add optical depth at
the level of ~ 1073, After the transformation to F', such a small 7 is far from detectable. For
column densities of Lyman-Limit Systems though, the damping wings contribute 7 ~ 0.1,
which clearly shows up in F. In Lya forest observations, contamination from LLSs and
DLAs is masked out or taken into account in error estimates, so we actually want to avoid
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Figure 2.2: A comparison of the optical depth across a uniform absorber computed with three
methods, two using the full sightline integral with either a Voigt profile (‘Voigt integral’) or a
Doppler profile (‘Doppler integral’), and one approximating the absorber as a static system (‘Voigt
line’). See the text for more details.

modeling their contamination here. Additionally, our simulations do not properly model the
Hr density and temperature in the high density regions that give rise to LLSs and DLAs
since they do not include radiative transfer. Because the difference in the resulting optical
depth is very small, and the Doppler profile is simpler and faster to compute, we use the
Doppler line profile in this work.

In order to produce statistics at a single redshift, we also compute the optical depth at
a fixed redshift. That is, we do not account for the speed of light when we cast rays in
the simulation; we use the gas state at a single cosmic time. The simulated spectra are not
meant to look like full Ly« forest spectra, but just recover the statistics of the flux in a small
redshift window. The path length in the sightline integration is then dr = adx = dv/H,
where r is the proper distance, x is the comoving distance, v is the Hubble flow velocity, and
H is the Hubble expansion rate at that redshift. In velocity coordinates, the optical depth

is
e flulo 1 v — Vg 2
Ty = ol X 37y OXP | = ( 2 > dv. (2.6)

Although the gas data is fixed at the grid resolution, we can choose an arbitrary spectral
resolution Ny, along the LOS. We also take the gas values as constant across each cell. With
1 as the cell index, and j as the pixel index, the discretized version of the optical depth is

7T62 flu )\0

T =
J mecH

Z nx [erf(yi1/2) — erf(yir1/2)] (2.7)
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where y = (v; — v); — v)/b is the line center shift from the pixel velocity in terms of the
broadening scale, v); is the component of the gas peculiar velocity parallel to the sightline,
and v is the Hubble velocity. The velocity coordinates are also periodic on the domain scale
[0,aL). It is fortunate the optical depth integration reduces to an analytic expression, as
this makes the calculation more robust and straightforward. Previous studies have used
the midpoint expression for this integral, but we found that this created too large an error
when the sampling scale Av was ~ 2kms™! or larger, whereas the analytic version explicitly
conserves the optical depth for any Awv.

We have the choice to evaluate the spectra at an arbitrary resolution. Given a vector of
the simulated values s; = (nxd, Vs bi), at position v; along a skewer, we can evaluate the
optical depth at any v;. The resolution requirement here is essentially set by the line widths,
so that we capture all fluctuations that should be present in the spectra. Given that the
most narrow lines have b ~ 5kms™?, the required spectral sampling should be similar.

We tested that we have adequate spectral resolution by taking the L10 N512 snapshot
at z = 2.5, recomputing the optical depths at varying spectral resolution, and checked the
effect on various flux statistics. We computed the optical depth along the same sightlines
(the default 512 x 512), but with spectral resolutions of 128, 256, 1024, and 2048, spanning
a factor of 4 worse to 4 better than the default of 512. We do not plot these results as there
is little to no difference in all cases. We see essentially no change in the mean flux (less
than 107%) across all of these resolutions. The difference in the flux PDF is noticeable, but
still very small and does not impact our results. The RMS difference between the lowest
resolution result and highest resolution result is less than 1073, For the 1D flux power, the
RMS difference is also less than 1072 including points up to k = 30 A~*Mpc. On very small
scales (K > 50 h~'Mpc), the results do depend heavily on spectral resolution, with high
spectral resolution results having tens of per cent larger power. However, this result is of
no concern since by this scale, the dimensionless 1D power is already < 107, It seems that
even at the worst resolution, all relevant lines are resolved.

We choose sightlines, or “skewers”, crossing the domain parallel to one of the axes of
the simulation grid and piercing the cell centers. Computationally, this is the most efficient
approach. This choice of rays avoids explicit ray-casting and any interpolation of the cell-
centered data, which introduce other numerical and periodicity issues. We cover the entire
N3 grid with skewers, which provides the equivalent of N? spectra. Although large-scale
modes along different spatial dimensions are statistically independent allowing some gain
in statistics from multiple viewing directions, in this work we use a single line-of-sight axis
rather than combining together skewers using all 3 axes. The process of going from simulated
baryon values to flux F' is illustrated in Figure 1.4.

2.2 Physical properties of the Lya forest

Zhang et al. (1998) discuss the physical properties of the Ly« forest in hierarchical models
such as CDM. The discussion in this section can largely be considered as an update of that
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Figure 2.8: A slice of the baryon density, temperature, HI number density, and flux from the
L20 N2048 simulation at z = 2.5. The slice covers the domain of 20 x 20 h~'Mpc, with a thickness
of about 100 h~'kpe (10 cells). Note that the F' line of sight is the y-axis direction, so that broadened
lines show up as vertical black streaks.

work.

As described above, the state of the IGM is relatively simple with a few power laws
approximately tying together the spatial distribution of baryon density, temperature, proper
HI number density, and optical depth to HI Lya photon scattering. Figure 2.3 shows a slice
of these quantities in one of our high-resolution simulations, except with the optical depth
replaced by the transmitted flux. We choose to show flux because it highlights the range
of each quantity that is relevant for observations. That is, we want to highlight differences
between an optical depth of 1 or 2, which changes the flux drastically, but not between 10
and 100, which is essentially opaque. We adjusted the gray-scale intensity ranges of density;,
temperature, and HI number density to roughly match the morphology of the flux, which
provides a good guide to what ranges of each quantity affects the Ly« forest. We note that
over the relevant redshift range, the comoving density and temperature evolve slowly, so
that these ranges roughly apply to all redshifts. However, the physical HI density changes
drastically primarily due to expansion. The striking morphological similarity between the
fields demonstrates how well the usual approximations work. The flux field is clearly the least
like the other fields due to two effects: the optical depth is in redshift-space and is therefore
distorted by peculiar velocities; in addition it is also thermally broadened, smearing high
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Figure 2.4: Redshift evolution of v, the slope of density-temperature relation. Lines in black show
the weak dependence on the box size (the resolution is kept fixed at 20 h~'kpc), while the the red
lines show a rapid convergence with respect to the spatial resolution (in 10 A~'Mpc box). Black
and red lines are simulations with Haardt & Madau (2012) and Faucher-Giguére et al. (2009) UV
backgrounds, respectively.

temperature regions across the line-of-sight axis.

We tried fitting the density-temperature relation of the diffuse IGM several ways and
found that a linear least-squares fit is sufficient. The number of points in the diffuse IGM
phase is very large even for small simulations, so there is very little uncertainty in the fit
parameters. However, we noticed a small but systematic difference in the best-fit v depending
on the density range fit. Fitting underdense regions, i.e. points with —1 < log;, p, < 0 yields
v values a few percent higher than fitting near the mean density, —0.5 < log;,pr < 0.5.
Thus even if we neglect the scatter in the p,-T relation a single power-law approximation
breaks down at a few per cent accuracy.

Figure 2.4 shows the evolution of our best-fit values for ~ in the resolution series of
simulations and the box size series of simulations. We fit the py,-T" relation with linear least-
squares in log pp, and log T, fitting the range —0.5 < log,ypp < 0.5 and log;, T/K < 4.
We see that convergence with spatial resolution is rather fast, and that box size does not
affect recovered value of +. In addition, we see that UV background as given by Haardt
& Madau (2012), shown in black, exhibits marginally more redshift evolution than that of
Faucher-Giguére et al. (2009) (the red lines in Figure 2.4). We find similar results in the
fit Ty values, where there is a small resolution effect for poor resolution, but the fit value
remains the same between the L10 N256, 512, and 1024 runs. Box size appears to have no
effect on the resulting p,-T" line, as expected.

A large fraction of the gas lies on the p,-T relation line — about 90 per cent by volume and
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50 per cent by mass in this case. The significant scatter above the power-law relation line
is due to shock heating, whereas the small scatter just below the line is due to a subtlety in
the discretization of the gravitational source term in the total energy equation. As discussed
in Almgren et al. (2013), the most obvious discretization is to compute the product of the
momentum and the gravitational vector. While this is spatially and temporally second-
order accurate, it allows gravitational work to change the internal energy since the update
to the total energy is no longer numerically equivalent to the update to the kinetic energy
calculated using the updates to the momenta. An alternative discretization defines the
update to total energy only through the update to kinetic energy as calculated from the
momentum equation. This maintains the analytically expected behavior of gravitational
work contributing to the kinetic energy only. Through numerical testing we have determined
that the latter formulation greatly reduces the number of cells scattered below the line in void
regions, while having a negligible effect on the results otherwise. Due to the small number of
cells affected, the difference to the flux mean, pdf, and power spectrum at k < 10 h~'Mpc is
only 0.1 per cent. The fraction of gravitational work in a timestep that directly contributes
to the internal energy (thereby increasing the temperature) rather than kinetic energy ranges
from 5 x 1073 at early times to 5 x 1072 at late times for a run with CFL number of 0.5.
These numbers are quite independent of the spatial resolution employed. However, while
the two discretizations of the gravitational source produce this difference in p,-T" regardless
of the spatial resolution, they do converge to the same answer when refining the time-step:
in simulations run with a CFL number of 0.05, the two formulations yield indistinguishable
pp-1" plots, and the fraction of gravitational work that contributes to the internal energy
stays below 5 x 1072 throughout the run.

The overall shape of the p,-T" diagram is reproduced in almost any cosmological simu-
lation, even with low-resolution, as long as it includes primordial gas heating and cooling.
However, we do find that larger box size simulations produce more shocked gas around fil-
aments (a more significant WHIM). We do not see a significant resolution dependence on
the fraction of gas in the WHIM, but we see both that larger boxes have more gas in the
WHIM, and that the WHIM is shocked to higher temperatures. This is expected behavior,
as small-box simulations miss large-scale velocity components. For the most interesting,
diffuse gas region, the p,-T relation and the amount of scatter around it can also be affected
by Hell reionization. For instance, McQuinn et al. (2009) found that in their post-processed
radiative transfer simulations most of the reionization models increased T and decreased ~
while significantly broadening the p,-T' relation, mostly due to spatial variations in the p,-T
relation from RT effects like shadows. Understanding the full effects of Hell reionization on
IGM is beyond the scope of this work.

In Figure 2.5, we show the evolution of the temperature at mean density. This is calcu-
lated as an average (in log space) of the gas at mean density for temperatures 7' < 10° K at
each time step. We also show the effects of different UV backgrounds, from Faucher-Giguére
et al. (2009) and Haardt & Madau (2012), and differing atomic rates (see Appendix B).
Qualitatively the temperature of the IGM decreases at high redshifts due to the expansion
and inverse Coulomb cooling, then rises sharply during HI reionization at z ~ 10. We carried
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Figure 2.5: The mean temperature of the IGM as a function of redshift in our simulations compared
to the observations presented in Becker et al. (2011) (error bars are 2-¢). The red line shows a
simulation using Katz et al. (1996) atomic rates and the Faucher-Giguére et al. (2009) UVB. The
blue line is obtained using the rates presented in Appendix B and the Faucher-Giguére et al. (2009)
UVB. The black line shows a simulation with the rates presented in Appendix B and the Haardt &
Madau (2012) UVB. While the main figure shows the Tj evolution over the observationally relevant
redshifts, the inset figure shows the full simulation range starting at z = 159, on a logarithmic scale.
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Figure 2.6: Illustration of the effect of the filtering scale on power spectra. Here we show the
power spectra of baryon density py,, dark matter density pqm, the local flux Fjocal, the monopole of
the redshift-space (observable) flux F', and the thresholded baryon density pp, ¢hr limited to 100, 10,
and 3 times the mean density, all from the L40 N2048 simulation at redshift z = 2.

out a study spanning several orders of magnitude in initial temperature for our simulations
and have determined that, due to adiabatic expansion, Compton cooling and hydrogen reion-
ization, no memory of the initial temperature is retained at z < 10. In Figure 2.5, we also
show recent observational results from Becker et al. (2011), which is in good agreement with
the z = 2.4 measurement recently carried out by Bolton et al. (2014) but lower than the tem-
peratures inferred by Lidz et al. (2010). It is interesting to point out that the differences in
temperature evolution that different modern UV backgrounds produce, roughly 10 per cent,
are less than observational uncertainties. We also note that both of the UV backgrounds we
consider show two visible jumps in the temperature of the IGM, corresponding to HI and
Hell reionizations.

Due to the direct influence of pressure forces, baryon fluctuations are suppressed com-
pared to dark matter (which is affected by the gas pressure only because the gravitational
acceleration has a component due to the gas). Our simulations do not account for the details
of star formation, feedback from stars or Active Galactic Nuclei; the regions that should be
galaxies are only blobs of overcooled gas. Due to this overcooling inside halos, small-scale
fluctuations in the baryonic component are artificially enhanced as shown in the solid black
line of Figure 2.6 (the red line shows the dark matter power spectrum for reference). Since
we know that our simulations do not realistically represent the gas quantities in high density
regions, we can exclude them from our analysis at which point the filtering scale becomes
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Figure 2.7: Contribution of different density regions to the Ly« forest flux at z = 2, 3, 4. Meax
flux was rescaled to match Becker et al. (2011). Left: the real-space flux vs. gas density. The lines
show the medians and the filled regions show the normalized median absolute deviation (normalized
to match one standard deviation for a normal distribution). Middle: the redshift-space flux vs. gas
density. Right: the cumulative distribution of mass vs. redshift-space flux.

clear. To highlight this, in Figure 2.6, we show the baryon power spectrum with several
density thresholds. These are obtained by ‘clipping’ the original baryon density field, i.e.
resetting the densities higher than the threshold down to the selected threshold value. The
clipping is done here only for illustrative purposes. This is qualitatively similar to what
happens with the Lya forest signal — where the flux drops to zero at a certain density, and
any higher density has no additional effect. Clipping of the small-scale fluctuations also
introduce a linear bias on large scales. For clarity, we have normalized all power spectra to
be 1 at the fundamental (box-scale) mode. The different threshold value power spectra also
illustrate that there is a density dependence of the filtering scale. As the threshold density
decreases, the filtering scale increases. We also show two flux power spectra to see how they
probe the filtering and thermal broadening scale. We computed the Ly« forest flux without
redshift-space distortions or thermal broadening, which we call the local flux Fycy. In this
case, the optical depth for the local flux is just the appropriate rescaling of the HI number

density,
2
e f lu)\O _
Tlocal = —— N1 5 Flocal = € 81 . 2.8

The dashed blue line is the local flux spectrum, which shows pressure support smoothing at a
scale roughly matching the py, ¢, < 10 result. Note the little difference between thresholding
at 10 times the mean baryon overdensity and 3 times the mean. We also show the monopole
of the 3D flux power spectrum as the dashed green line, which includes smoothing not just
from pressure support but also contributions from thermal broadening and redshift-space
distortions, giving rise to even more filtering on small scales.

In Figure 2.7, we show relations between the Lya forest flux and the gas density. In the
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left panel we plot the real-space flux of cells as a function of gas density. For each density
bin we plot the median and normalized median absolute deviation (normalized to equal the
standard deviation for a normal distribution) independently above and below. This serves
as a qualitative estimate of what density regimes contribute to the Ly« forest signal at
different redshifts. For instance, we immediately see that a majority of the signal at high
redshift originates in under-dense regions, while at z = 2, it lies in the mild overdensities.
In the middle panel, we show similar info, but this time we use the redshift-space flux. As
redshift-space distortions couple regions several Mpc away and can map different cells to
the same redshift-space position (see Figure 1.4), the redshift-space flux is less correlated
with density and thus exhibits more scatter than in real space. However, the median lines
are similar at all redshifts. In the right panel, we show the cumulative mass of cells with
fluxes above some value. The sharp rise in the cumulative mass at F' = 0 shows the mass
fraction in the saturated regions of the forest, filaments and halos. This figure also shows
the difficulty of simulating Lya forest signal at high redshifts, z 2 4: we immediately see
that small fluctuations in density produce significant difference in flux. Arguably, this effect
is more critical for numerical convergence than the decrease in filtering scale described in
Section 2.1.

Historically, the Ly« forest was studied in the context of absorption line systems. How-
ever, the process of Lya forest line finding and fitting is not well-defined and results can
vary between implementations. For this reason we will explore line statistics separately
in Section 2.7, and in the following sections we will focus on the flux N-point correlation
statistics.

2.3 Resolution study

The physical resolution required to model Lya forest flux statistics varies significantly
with redshift, with higher redshifts requiring higher resolution for the same relative error.
There are several physical effects which contribute to this behavior. One is the change in
the comoving filtering scale, which decreases with increasing z. We further demonstrate the
increasing steepness of the flux-density correlation as a function of redshift in Figure 2.7,
which means that for the same relavite error in p,, or Ny, the relative error in flux will be
larger at z = 4 than at z = 2. Finally, the gas in voids is ~ 2 times colder than the gas
at the mean density (and a factor of ~ 4 colder than in mild overdensity regions), therefore
thermal broadening of lines is less at high redshifts than at low ones.

The average transmission sharply increases going to lower redshifts as the physical density
of neutral hydrogen decreases, primarily due to the expansion of the Universe, with secondary
changes due to the ionizing background radiation. Here we explore the accuracy of simulated
Lya forest flux statistics at 2 < z < 4, the relevant range for most of current and near future
observations. We focus on results in our 10 A~*Mpc boxes, as they offer the easiest path to
an increase in resolution, but we have also explicitly checked that the conclusions presented
here are valid in the case of the larger-box simulation series as well (see Table 2.2). In other
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Figure 2.8: Illustration of the effects of resolution in the 10 h~'Mpc simulations at z = 2.5. On
the left, we plot slices ~ 150 h~'kpc deep (2 cells in the 1282 simulation) of the baryon density. On
the right, we show values along the skewers marked as dashed lines in the slices. The skewers were

selected in the same position in each simulation.
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words, we do not observe that numerical errors due to missing modes (explored in the next
section of this paper) couple with resolution error at more than the per cent level. The same
behavior is observed in GADGET simulations presented in Chapter 3. The simulations we
present in this section were done with Faucher-Giguére et al. (2009) UV backround.

The results of this section are applicable to grid/Eulerian codes, where the effective
resolution of pressure forces is commonly better than the effective resolution of gravitational
forces. For example, many tests show that hydrodynamic quantities are already very accurate
at 1-2 cells away from discontinuities — see e.g. Almgren et al. (2010) for the case of the
hydro algorithm implemented in NYX but the same is true for schemes used in virtually
any other cosmological Eulerian hydro code to date. On the other hand, the gravitational
force resolution is much worse. Grid codes use a Particle-Mesh (PM) scheme to compute
gravitational forces, which is very fast but suffers from smoothing the density field at small
scales. Generally, two particles must be separated by at least 5 cell sizes for the gravitational
force to match 1/r? (for example, see Habib et al. 2009). The opposite is true in most SPH
Ly« forest simulations presented in the literature. In this case, gravitational resolution
is much higher for the same grid size/number of particles, with the gravitational forces
computed with a TreePM or particle-particle PM hybrid scheme. This provides a much
(roughly 10 times) higher gravitational resolution than the grid codes for the same grid
configuration. At the same time, the SPH kernel smooths the hydrodynamic quantities on
scales of ~ 2x the mean inter-particle spacing for gas around mean density. In this regard,
the resolution study presented here is not directly applicable to all codes. However, we
believe that the results of other studies we conduct in this paper are largely code independent.

In Figure 2.8, we provide an illustration of how the grid resolution affects relevant IGM
structures and the Lya forest flux. Here we use our four 10 h~*Mpc simulations and plot a
slice and skewer in the same position from each simulation. The baryon density slice is on
the left, while on the right we show baryon density, temperature, velocity parallel to the line
of sight, and transmitted flux along the skewer. In both slices and skewers, we see a clear
pattern of converging values. Overall, the L10_ N256, .10 N512, and L10_N1024 results
agree very well, and the L10 N128 results are similar, but have structural differences. In
the baryon density slices, we see that structures in L10 N128 are severely under-resolved.
The large cell size prevents the collapse of dense regions, and the solution contains puffy
filaments and halos, and less depleted voids. The relatively small number of resolution
elements also means that the simulation misses the rare, extremely low and high density
regions. In the L10 N256 slice we can see structure that resembles the highest-resolution
case much more closely, although the filaments and halos are still a bit puffier. Finally, the
differences between the L10 N512 and L10_ N1024 slices are minor. The filament widths
are essentially the same and the differences noticeable by eye are restricted to the very dense
galaxy-like regions. This is fortunate for modeling the Lya forest signal, since the dense
regions are saturated in absorption, rendering those differences undetectable in flux. In the
baryon density and temperature skewer values we see the same patterns. The L10 N128
simulation reproduces the broad shapes, but fails catastrophically at the extremes. The other
simulations match each other much better, and the L10 N512 and L10 N1024 values are
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Figure 2.9: Dependence of the mean flux on resolution for 6 redshifts. The lines are the best fits
of the form F(Ax) = F(0) — kAx?, and the data plotted is normalized to the case Az — 0, i.e.
F(0). The gray shaded region shows a 1 per cent interval.

very close at all positions. One difference is in the dense structure near the LOS distance of 4
h~'Mpc, where the L10 N1024 simulation resolves two temperature peaks, almost certainly
accretion shocks. The L10 Nb512 simulation just barely reproduces the two peaks while
this feature is smeared out as one bump in the two lower resolution simulations. The flux
field proves to be unaffected by those kinds of details as can be seen in the lowest panel.
Interestingly, the parallel velocity values show much less difference between runs. This
reinforces the common knowledge that bulk flows are not as sensitive to resolution as they
are to the box size. Finally, the most important differences lie in the flux values. Here, we
see that L10 N512 and L10_N1024 runs look virtually identical. Further, many of the small
differences in baryon quantities between the .10 N256 and higher resolution runs are washed
out in the optical depth calculation — the similar velocity shifts and significant broadening
provide a fortunate ‘fudge factor’ when only considering the flux. The same cannot be said
for the L10_N128 simulation fluxes though, which show significant differences, especially at
the LOS distance of 5 h™*Mpc. We have checked this for several random skewers and with
all other redshifts available and note that the overall conclusions remain the same, although
differences very mildly increase with redshift. In the following sections, we quantify the
above differences in resolution.

2.3.1 Mean flux

Figure 2.9 shows the mean flux in four of our 10 A~ 'Mpc simulations at the snapshot
redshifts. Here we immediately see that higher redshifts need higher resolution to maintain
the same accuracy. The coarsest resolution run is within 1 per cent of the highest resolution
run at z = 2, but ~15 per cent different at 2 = 4. NYX is second-order accurate in both the



2.3. RESOLUTION STUDY 34

2 |\

107 ¢ /"
1

2 NS |
0

107 | 3
o | == L10_N1024 ]

10 ¢ L10_N512 i
2 L10_N256 A\
107 F ... Li0 N128 ;

O m— —

I _g}:

I\ 5 -

S sl LT

o O | ——— ——

0 _el: "

N 5 z

<5

- Of— ———_—

I _el- b

I} S5p -

Figure 2.10: Convergence of the flux PDF with respect to grid resolution. For clarity, in the upper
panel we have multiplied the z = 2 data by a factor of 100, and the z = 3 data by 10.

gas dynamics solver and gravity. Although the Ly« forestflux is a heavily processed quantity
derived from the density, velocity, and internal energy of the gas, its mean clearly exhibits
quadratic convergence, as shown in Figure 2.9. The resolution series allows us to determine
F(0) — the simulated mean flux in the limit Az — 0. Understanding the effect of resolution
on the mean flux is important for simulation results that rescale optical depths to match an
observed mean flux, as we explore later in Section 2.6.

2.3.2 Flux PDF

We consider the convergence of the flux PDF P(F) at redshifts 2, 3, and 4, which we
show in Figure 2.10. Again, we note that the resolution requirements increase with redshift.
It appears that this is mostly due to the rarity of transmissive regions at high redshift. In
the z = 4 ratio panel, we can see that even the L10 N1024 simulation does not capture
pixels with F' =~ 1, as the black line cuts short near 0.9. It is instructive to look again at
Figure 2.7, which clearly shows how difficult it is to obtain F' = 1 cells at high redshifts, even
in very underdense regions. The L10 N512 simulation does match the highest resolution
to a few percent up to F' < 0.6. At lower redshifts however, L10 N512 is in percent
agreement with the 10243 run, while the L10 N256 is within a few percent. As expected
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Figure 2.11: Convergence of the 1D power spectrum at redshifts 2, 3, and 4. Here we do not
modify the values in the upper panel — the flux power increases with increasing redshift, so from
top to bottom are redshifts 4, 3, and 2.

from the qualitative inspection at the beginning of this section, the L10 N128 simulation
results are qualitatively different at all redshifts. At high redshift, it severely underestimates
transmissive pixels, pushing the low-flux end above the other simulations. At low redshift,
it misses the extreme fluxes at both ends, raising the probability at moderate fluxes above
other simulations.

2.3.3 Flux 1D power spectrum

Here we consider the resolution convergence of the dimensionless 1D flux power spectrum
A%JD at redshifts 2, 3, 4, as shown in Figure 2.11, leaving other effects for the subsequent
sections. We want to emphasize again that while we show results for the 10 A~*Mpc box,
we have checked that conclusions are the same in other convergence series in larger box
sizes. Figure 2.11 shows that 20 A~ 'kpc resolution run (L10 N512) agrees with 10 2~ 'kpc
run (L10_N1024) to better than 1 per cent at redshifts z = 2 and z = 3 even beyond
k = 0.1 km™!s. Those are much smaller scales than what is usable for making cosmological
constrains, as interpreting observations becomes difficult at such small scales due to metal
lines and other contaminents. Those scales are also not correctly modeled with the physics
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Figure 2.12: Convergence of the 3D flux power spectrum in 4 g bins at redshift z = 4 (the agreement
is better at lower redshifts). The leftmost panel shows the power spectrum mostly perpendicular to
the line of sight, the rightmost is mostly parallel to the line of sight. The agreement is better along
the line of sight due to thermal broadening which erases some of the differences.
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included in our simulations. The z = 4 ratio panel again shows how hard it is to get flux
statistics accurately at very high redshifts: the 20 A~'kpc run departs from the 10 h~kpc
run by 1 per cent around k = 0.03 km~!s. This is still sufficiently good for cosmological
purposes, especially since the number of observed quasars at such high redshifts is rather
small.

One important difference between density and flux fields, is that density is manifestly
conserved in our simulations, and its mean value is an input parameter. In contrast, the
mean flux will differ — even when the cosmology and physical models for cooling and heat-
ing processes are kept constant — due to numerical resolution, box size, and the random
realization of the initial density field. Another characteristic feature of the flux field is that it
is bounded in value: 0 < F' < 1. The maximum possible fluctuations around the mean value
are therefore also limited. This is again in contrast to the density fluctuations, as density
contrast can in principle go to infinity. As a result strong suppression of flux fluctuations
on small scales — for example due to numerical effects like lack of resolution — results in
increased fluctuations on large scales. This effect is also clearly visible in the Figure 2.11, and
is more noticeable when the fluxes in simulations of different resolutions are not rescaled to
the same mean (as done here). This effect is the biggest issue to getting the 1D flux power
spectrum correct in numerical simulations. Whereas the density power spectrum can, to
some extent, be simulated with low resolution simulations using a series of nested-size boxes,
each box recovering accurately only a small portion of P, (k), the flux power spectrum in an
under-resolved Ly« forestsimulation will be inaccurate on all scales.

2.3.4 Flux 3D power spectrum

The 3D flux power spectra for 4 y bins are shown in Figure 2.12. The leftmost panel
shows the power spectrum mostly perpendicular to the line of sight, and the rightmost is
mostly parallel to the line of sight. Here we show only redshift z = 4 data, since this is
where the agreement is worst. The agreement is better at lower redshifts, as expected from
previous considerations presented in Section 2.1, and Section 2.2. We immediately notice
that different resolutions agree more along the line of sight than across it. This is a result
of thermal broadening which erases much of the small scale differences, bringing the results
of lower resolution runs closer to the high resolution solution. We nevertheless see that the
20 h~'kpc resolution is good enough for most practical purposes, typically 1 per cent away
from the 10 h~'kpc result at all redshifts for & < 10 h Mpc~!. From the observed rate
of convergence we expect that the difference between a 10 h~'kpc and a (hypothetical) 5
h~'kpc run would be sub-percent.

2.3.5 Richardson extrapolation

For a convergent numerical method, it is in principle possible to increase the accuracy of
a measured quantity by carefully combining the results from a sequence of simulations where
the only difference is the spatial resolution. Here, we discuss the case of combining results
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Figure 2.13: Convergence of 1D flux power spectrum at redshift z = 4 in a 40 h~'Mpc box. We
show the results for 5123 and 10243 simulations, together with the Richardson extrapolation from
these two runs using the theoretically expected order of convergence, p = 2. The shaded band shows
+1 per cent range.

via Richardson extrapolation. A numerical method which is p-th order accurate in space
(meaning the error term is proportional to h? where h is discretization element), produces a
numerical approximation Q(h) as

Q(h) = Q + AR + O(RP*1) (2.9)

The first term on the right-hand side () is the exact value, the second term is the leading
error, and the third term is the higher-order error. The leading error can be removed with
simulations using two different values of h, for example h and rh, where r is the refinement
ratio, giving an extrapolation expression

Q) — QU

P —1

Qr

(2.10)

The order of accuracy, p, is theoretically known from the algorithm implemented, but can
also be determined from actual numerical results. This requires at least 3 simulations, in
which case p can be calculated as:

Q2h)-Q(rh)
1“( Qe —Q) )

Inr

p= (2.11)

In Figure 2.13 we show one such Richardson extrapolation, applied to our 1D flux power
spectrum results. Here we consider the results at z = 4, since the differences are largest at
this time, and we also use our 40 h~'Mpc box size simulations. We see that the run with
40 h~'kpe resolution (L40 1024) is not as accurate, differing from the 20 h~'kpc resolution
run (L40_2048) by up to 15 per cent in the range k < 10 A Mpc~t. The run shown in blue
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Figure 2.14: Dimensionless linear and non-linear matter power spectrum at z = 2. Arrows show
the scale of the fundamental mode in our boxes of 10, 20, 40, and 80 A~ 'Mpc.

(79 h~kpc resolution) — is even worse. However, the “continuum” value deduced from these
two runs via Richardson extrapolation, using Equation 2.10, shows remarkable agreement
with the highest resolution reference run. Here, we have used an order p = 2, since NYX is
formally second-order. The fact that the theoretical value works so well on the 1D flux power
spectrum is very reassuring. For larger k values the extrapolation fails. This is expected as
the extrapolation procedure cannot reproduce power that is not present in the underlying
low resolution simulations, nor can it work in the regime where the convergence breaks down
due to a dramatic loss of accuracy close to the resolution limit. Nevertheless, we see that
extrapolation can significantly improve accuracy from low-resolution simulations on scales
where convergence does hold. This improvement is a strong evidence that numerical errors
beyond the discretization scheme NYX employs are small to none, and a confirmation of
the desired rate of convergence even in a very processed quantity like the 1D flux power
spectrum.

2.4 Box size / missing modes

In cosmological simulations, we model a representative, but finite volume of the universe
using periodic boundary conditions in all 3 dimensions. As a result, perturbations on scales
larger than the box size are identically zeroed out while fluctuations which are smaller, but
comparable to the box size, are poorly sampled. A finite box size can compromise Ly«
forest results in at least two different ways. First, in cosmological simulations in general,
once the non-linear scale of density fluctuations becomes similar to the box size the evolution
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Figure 2.15: The matter power spectrum for different box-sizes. We show ratios to the emulated
predictions from a gravity-only simulation (Heitmann et al. 2014) at z = 2, 3, and 4. Red triangles
are 10~ 'Mpc box, blue diamonds are 20 h~'Mpc, green squares 40 h~'Mpc, and black circles
80 h~'Mpc box. The resolution is constant in all runs: 19.5 h~'kpc.

of modes is suppressed compared to what would be obtained with a larger simulation box.
Second, and relevant to the Ly« forest, a lack of large-scale modes — even linear ones — can
lead to an underestimation of the bulk flow velocities of the gas. This, in turn, leads to an
underestimation of the heating from accretion shocks. This has a significant impact on both
the thermal broadening of lines (via the amount of shock heating) and on the redshift-space
distortions of the optical depth. Thus if the simulated box is too small it cannot produce
representative Lya flux statistics for the cosmology of interest.

To estimate the non-linear scale of density perturbations, we use the power spectrum
emulator FrankenEmu (Heitmann et al. 2014), shown in Figure 2.14 for the cosmology con-
sidered here and at redshift z = 2. Since we end the simulations at z = 2, this is the
worst-case scenario in terms of the required box size. This alone indicates that 40 h~'Mpc is
the bare minimum to avoid the box-size mode becoming non-linear, with 80 h~*Mpc being a
more comfortable value. In the context of “missing modes” in simulations of the Ly« forest,
an important and thorough recent work is that of Tytler et al. (2009). The range of box sizes
they consider is even larger than the one presented here: their biggest box (54.5 h™'Mpc)
is similar to our largest, while they go to box sizes as small as 1.7 h~'Mpc. Thus most of
their simulations are over-evolved at z = 2, where the largest — anchoring — mode is deeply
in the non-linear regime according to Figure 2.14. Note that their choice of cosmology has
og = 0.9, therefore non-linearity starts at even larger scales than the cosmology we consider
here. In addition, due to the high computational expense, they had to restrict their box size
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series analysis to a spatial resolution of 53.3 h~'kpc. This resolution is significantly more
coarse than the one we find necessary in this paper (20 h~'kpc, Section 2.3), but also coarser
than what Tytler et al. would have likely run (13.3 h~'kpc, see their section 11.3) if it were
computationally feasible. Here we present a box size convergence study extending to box
sizes large enough to sample linear modes even at the end of the simulations (z = 2), but
also with the desired spatial resolution to capture Lyastatistics to the per cent level.

Before turning to flux quantities, we will first look at the convergence of the matter power
spectrum in our runs as we increase the box size while keeping the resolution constant. This
is shown in Figure 2.15. We clearly see the suppression in mode growth in the small-box
simulations with respect to 80 h~*Mpc run. The differences in the matter power are rather
significant, but as we will show later — and as shown in Tytler et al. (2009) — the differences
in the flux power are much less.

2.4.1 n-point flux statistics

In Figure 2.16, we show the mean flux in different box-sizes for a constant spatial reso-
lution. As expected, the 10 A~ 'Mpc box is significantly inaccurate, while already in the 20
h~'Mpc box we obtain reasonable mean values. As in the resolution study in Section 2.3,
we see the same trend of growing differences as we move to higher redshift. This is not
immediately intuitive behavior, as one would expect small boxes to be less affected at z = 4
rather than at z = 2. As we do not have many independent realizations of each box-size, we
cannot state with certainty how much this effect is due to runs having different realizations
versus an actual physical effect. Another thing to note is that convergence is not one-sided
(e.g. as the box size is increased the mean flux does not increase as was the case in the
resolution study). Again, this could be just statistical variance. Similar behavior is reported
in Tytler et al. (2009), see their Table 5. Overall, we see the behavior one would expect
from Figure 2.14 — namely, that there is only a small difference between 40 h~'Mpc and 80
h~'Mpc boxes. The difference increases with a further reduction in box-size, and becomes
clearly too large in the 10 h~'Mpc box.

As was done in Section 2.3, we first remove the differences in the mean flux value by
rescaling the optical depth in all boxes to the value in our “best” simulation, the 4096% run
in an 80 ~~'Mpc box. Since the rescaling is small for all but the 10 ~~*Mpc simulation this
plays a rather minor effect, and our conclusions would be the same if we presented unscaled
results with the differences being marginally higher. In Figure 2.17, we show the dependence
of the flux PDF with respect to the box-size. As in the case of the flux mean, we see that the
40 h~*Mpc and 80 h~*Mpc boxes are in per cent agreement except at the very transmissive
end, F' ~ 1, and at higher redshifts. As commented on in the resolution study, the fully
transmissive pixels become very rare at higher redshifts due to the high physical density of
neutral hydrogen and therefore the error in determining the relative fraction of such regions
decreases. Qualitatively our results at z = 2 are in line with those presented in Tytler et al.
(2009) (though note most of their boxes are smaller than ours).

Next, we turn to the 2-point correlation function of the Lya forestflux while first exam-
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Figure 2.16: Dependence of the mean flux on the box size, for 6 different redshifts. Upper panel
shows the mean flux, lower panel presents the ratio to the largest box-size run — 80 h™'Mpc.

ining the 1D P(k). In Figure 2.18, we immediately see that the differences in the flux power
are much less than in the matter power. This is not unexpected as the flux comes from only
moderate over densities, which are less affected by the sample variance than halo regions.
The convergence of the low-k region is difficult to assess due to different realizations of the
initial conditions, but overall we again see nice agreement between the 40 and 80 h™*Mpc
boxes. Here, however, the 20 h~'Mpc box is noticeably in error (by 5-10 per cent) while the
10 h~'Mpc box has no value for precision cosmology measurements. As before, our results
are in good qualitative agreement with Tytler et al. (2009). As we will show next, most of
the differences in the 1D power originate from the differences in power along the line of sight.
Despite those differences we conclude that for 1D P(k) constraints the 40 h~'Mpc box size
is a reasonable one, while 80 h~!Mpc is a safe choice.

Finally, we turn to the 3D P(k), looking at 4 u bins, going from across the line of sight
0 < pu < 0.25 to the power along the line of sight 0.75 < u < 1. This was investigated in
McDonald (2003), where they ran simulations with box-size spanning 20 to 80 h~'Mpc, very
much like the simulations presented here. However, those were HPM simulations rather than
full gas dynamics, and the cell size was kept constant at a rather large value of 156 h~'kpc.

In Figure 2.19 we see good agreement between the 40 and 80 A~ *Mpc simulations when
the spatial resolution is kept constant. At low k, there is a substantial scatter between
simulations as random phases in initial conditions differ in different box-sizes. As a result,
we cannot meaningfully compare our boxes at large scales. However, at smaller scales, we see
that a 40 h~'Mpc simulation is in percent-level agreement with the 80 A~'Mpc run. Again,
just by observing the convergence rate for different box sizes we can be confident that 80
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Figure 2.17: Convergence of the flux PDF with respect to box size. For clarity, in the upper panel
we have multiplied the z = 2 data by a factor of 100, and the z = 3 data by 10. The resolution
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80 h~'Mpc (solid black line).
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Figure 2.18: Convergence of the flux 1D power spectrum with respect to box size at redshifts 2, 3,
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3 different redshifts are shown in the lower panels. Colors and line styles follow that of Figure 2.17.
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Figure 2.19: Convergence of the flux 3D power spectrum with respect to box size in 4 u bins. As
in Figure 2.12, we show only z = 4 data, although here this is representative of the agreement at
other redshifts as well. The modes at large scales are different due to sample variance.

h~'Mpc is a very safe value to run at — most likely sub-percent accurate.

Here, we also need to comment on the large-scale Lya forest bias: on large scales, the
Lya flux is a biased tracer of the matter field, and as such is of great value for cosmology
(Slosar et al. 2011, 2013; Busca et al. 2013). At present — or in the near future — running
hydrodynamical simulations with box sizes needed to sample the BAO peak, and at the
same time obtain the resolution necessary to resolve density fluctuations in the IGM, is not
a viable approach. Still, one does not necessarily need to have a BAO-regime simulation box
to reach a regime where the redshift-space Lya flux power is related to a real-space density
power via a k-independent (Kaiser 1987) formula:

Pr(k, i) = b*(1 + Bp*)* Pun(k) (2.12)

We have examined bias in our simulations, and have found that they are all too small for
a reliable fit to b and 3 of Equation 2.12. Our 80 A~ 'Mpc box barely reaches a regime where
the parameters become scale-independent. Thus, while it is possible to obtain those values
using different approaches than directly fitting Equation 2.12, that work — and especially
the comparison with even smaller box-sizes presented here — would be incongruent with the
accuracy carried out in the rest of this paper. For now, we will leave it as a separate topic
to be carried out in a future work.
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2.5 Splicing

In the previous two sections we have confirmed and quantified both the box-size and res-
olution requirements for achieving percent-level accuracy for precision Ly« forestcosmology
studies. Although possible with today’s high-performance computing facilities, as demon-
strated with our L80 N4096 simulation, currently performing a large number of such sim-
ulations is impossible. In the past, even a single simulation with that dynamical range was
impossible. One technique used to compensate for the lack of dynamical range is splicing,
first introduced by McDonald (2003), and most recently employed in Borde et al. (2014).
Here we will assess the accuracy of splicing on a 1D flux power spectrum. For completeness,
we will first briefly review the method itself.

The mechanics behind splicing is to run three simulations, each lacking sufficient dynamic
range, and combine them into a result that accurately represents a single full dynamic range
simulation. One runs a simulation with enough large-scale power (i.e. a big enough box),
but with too coarse a resolution, and another simulation where the box is known to be too
small but with good resolution. Finally a simulation is carried out where both resolution
and box size are insufficient, the resolution set to the same as in first run, with the box
size the same as in the second. The idea is then to use two small-box runs to capture the
effect of coarse resolution on the power spectrum, and two runs with coarse resolution to
correct for the missing modes in the small-box simulations. Here we will attempt to splice
the result of our 4096 80 A~ 'Mpc run, which yields percent accurate results as shown via the
box-size and resolution convergence tests in the two previous sections. We will thus splice
the L8O N1024, L20 N1024 and L20 N256 runs, and compare the result to L80 N4096.
Mathematically expressed, in the regime k < Kuyin o0, Where kyinoo = 27/(20h~'Mpc) the
flux power is given as:

PL207N1024 (kmin,20>

P(k) = P, k , 2.13
*) Lso_noza () Pr20 N256(Kmin,20) ( )
in the range kyin20 < k < knyqso/4 where knyqso = 10247 /80 h~*Mpc is
P, k
P(k) = PLSO_N1024(]€)M ; (2.14)
Prao n2se(k)
and for k > knyqs0/4 it is
P, k
P(k) = Puao xuona(k) 180 N1024(FNyq,80) (2.15)

P L20_N256(7€Nyq,80) '

In Figure 2.20 we show the results of splicing the flux power spectrum at 3 different
redshifts. The accuracy of splicing is similar at all redshifts, and is mostly in the ~10 per
cent range. That is in agreement with the accuracy estimated by McDonald (2003), but
noticeably above the 2 per cent accuracy claimed by Borde et al. (2014). A possible reason
for this discrepancy is the fact that Borde et al. (2014) tested the splicing method on a
non-converged simulation (10242 particles in 100 A~'Mpc box).
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Figure 2.20: Comparison of a spliced 1D power spectrum and the actual one in a high-resolution,
large-box simulation. From top to bottom we have redshift z = 2, z = 3, and z = 4. In addition
to the spliced run, we show the ratios of power spectra for each of the three runs used for splicing.
All ratios are taken with respect to L80 N4096 run.
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2.6 Rescaling optical depths

Up to this point we have ignored the common practice of rescaling the simulated optical
depths. In most papers presenting the results of Ly« forest predictions from optically-thin
simulations, authors multiply the optical depth in each pixel by some factor A such that the
simulated mean flux matches the observed mean flux at the same redshift. This is easily done
with any root finding method on (exp(—Ar7)) — (F)obs and converges fairly quickly. This
fix is well-justified considering how poorly constrained the amplitude, shape, and evolution
of the ionizing background are. When we rescale optical depths, it is understood that this
is roughly equivalent to adjusting the specific intensity of the UV background used in the
simulation. Changes in the photoionization rate, I', in the simulation will most directly affect
the H1 density while sub-dominant changes will come from photoheating rates. The change
in photoheating rate affects the temperature and pressure support of the gas at times when
hydrogen or helium are not fully ionized.

In order to test the effect of rescaling optical depths, we first tried taking two runs
with different UV backgrounds (and otherwise the same input parameters) and rescaling
one to the mean flux of the other. We used a run with the Haardt & Madau (1996) UVB
(labeled L10 N1024 HM96) and a run with the Faucher-Gigueére et al. (2009) UVB (labeled
L10 N1024 FG09). One concern with starting from different UV backgrounds is that they
can result in different p,-T" relations, which would leave differences in the flux statistics no
matter how the rescaling is done. The HM96 and FG09 UV backgrounds do result in slightly
different py,-T relations, with very similar slopes but differing 7j values. In the case of HM96,
we fit Tp = 9.0 x 10? K and v = 1.55, and in the case of FG09, we fit Ty = 1.1 x 10* K and
~v = 1.55 at redshift z = 2. While this is not a significant difference, a temperature difference
like this should show up in the flux power spectrum, for instance, as a different thermal
cutoff. More importantly, while the two UV backgrounds result in similar instantenious py,-
T relation, the two have significantly different thermal histories: Haardt & Madau (1996)
reionizes hydrogen at z &~ 6, while Faucher-Gigueére et al. (2009) has this occuring at z ~ 12.
This will result in two UVBs which have a different filtering scale, even if Tj and v at a given
redshift are the same. At z = 2, the HM96 run has a mean flux (F) = 0.8117 and the FG09
run has a mean flux (F) = 0.7749. Rescaling the HM run to the FG mean flux requires
A = 1.403 (or conversely rescaling the FG run to the HM mean flux requires A = 0.7138).
We show an example skewer in the top panel of Figure 2.21. The sample spectrum shows that
between the HM96 and FGO09 runs the flux in regions of high transmission is similar, but the
absorption features are generally deeper in FG09 primarily due to the lower photoionization
rate. It is difficult to tell if either run has broader features by looking at just a few lines,
but overall we found that the HM96 run does have noticeably broader lines. We also show
the spectra after rescaling to the other mean flux. It is reassuring to know that while the
correction is an average over the entire box, individual features agree well enough that the
correction also works well for individual lines.

The flux PDF and flux 1D power from these runs and their rescaled versions are also
shown in Figure 2.21. In both statistics the HM96 and FGO09 results differ by about 30 per
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Figure 2.21:  Top: Flux statistics from the L10 N1024 HM96 and L10 N1024 FGO09 runs at
z = 2. At this redshift, the L10 _N1024 HM96 run has (F) = 0.8117, and the L10 N1024 FGO09
run has (F') = 0.7749. Also shown are the flux statistics of these runs scaled to the mean flux of
the other. Middle: the flux PDF and percent difference compared to the result with the same mean

flux. Bottom: the flux 1D power and percent difference compared to the result with the same mean
flux.
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Figure 2.22: The evolution of Tj for a simulation with Haardt & Madau (2012) UV background
(black line), and simulations where photoionization and photoheating rates for all ionic species have
been multiplied by the same constant: 1.5 (green line), 2 (blue line), and 3 (red line). The inset
panel shows the evolution of T over 2 < z < 6.

cent, but the process of rescaling to the other run’s mean flux brings them to within several
percent. The remaining differences in the flux PDF are not straightforward. The rescaled
FGO09 run has more pixels at low F, fewer pixels at intermediate F', and more pixels at high
F' compared to the HM96 result. It appears that the rescaled FG09 rises faster than the
HM96 result at ' = 0 and F' = 1. In the 1D flux power spectra, the rescaled versions
agree very well at large scales. The rescaled FG09 result has slightly more power than the
HM96 result, but it is within 1 per cent. On scales below k& > 0.4 h Mpc—!, the slopes of
the rescaled versions start to diverge significantly. This is due to the differing Ti for each,
resulting in a different thermal cutoff. Overall, the rescaling process works remarkably well
at removing differences from different UV backgrounds, although one should be careful with
results that are sensitive to the p,-1" relation.

We also made another test of the UVB rescaling, by running simulations where the
photoionization and photoheating rates for all ionic species have been multiplied by the
same constant. Here we use the Haardt & Madau (2012) rates and, since we multiply all of
them by the same factor, the spectral shape of the original UVB is preserved and only the
amplitude changes. In Figure 2.22 we show the IGM temperature evolution. As expected
modulating the amplitude of the UVB affects the temperature only when a species is not
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Figure 2.23: The 1D power spectrum from a run using the original Haardt & Madau (2012)
UVB rates where the mean flux is rescaled to match that of the run done with doubled UVB rates
(2xHM12). We show here the ratio to the actual 2xHM12 run, at 3 different redshifts: z = 2 (black,
squares), z = 2.8 (blue, circles), and z = 4 (red, triangles).

fully ionized. Changes in the hydrogen leave no imprints on T at observable redshifts, but
the same change in helium photoheating rates do change the temperature due to its partial
ionization.

We focus on two runs, one using the original Haardt & Madau (2012) rates, and one where
the multiplying factor for all photo-rates is 2, approximately a value needed to recover the
observed mean flux in optically thin simulations with this UVB. We compare the run done
with doubled photo-rates, labeled 2xHM12, with a flux-rescaled run performed with the
original HM12 rates. In other words, the rescaling is done by simply finding the factor A
which will bring the mean flux of the original run to that of 2xHM12, a procedure which
ignores the differences in the instantenious gas temperature and prior temperature history.
The rescaling factor A we recover is close to, but not exactly equal to 0.5, and it shows
the tendency to decrease with increasing redshift. For example, it is 1 per cent higher at
z =2 (A =0.505), than A = 0.5 at z = 2.4, and decreases to A = 0.479 at z = 4. The
results of these rescalings are shown in solid lines in Figure 2.23 for 3 different redshifts. The
difference on the 1D power spectrum between rescaling the mean flux and actually running
the full evolution with different rates is a few per cent, but it is present on all scales. We
have also checked the flux PDF, and found smaller differences of approximately 1 per cent.
One should note that the difference is smaller at higher redshift, z = 4, and is the greatest
at z = 2. This means that the effect of different temperature evolutions is more significant
for the IGM gas at mild overdensities, and not very significant for underdense gas in void
regions.
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Figure 2.24: The percent difference in the 1D flux power spectra between L10 N256 and
L10 N1024 at z = 2, 3, and 4, where the optical depths have been rescaled. F- is rescaled to
10 per cent smaller than the L10 N1024 mean flux, F'1 is rescaled to the same mean flux, and F+
is rescaled to 10 per cent larger. This shows how the convergence rate depends on the mean flux.
At z = 2, the F- power converges fastest, but at z = 3, the F+ power converges fastest. At z =4,
the convergence rate is not noticeably affected by 10 per cent changes in the mean flux.
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The final test we performed was to take the 10 A~*Mpc resolution series runs and test
the convergence rate of the flux statistics when changing the mean flux. We compare the
flux statistics computed from the same optical depths, but with three values of the rescaling
constant based on the mean flux of the L10 N1024 simulation: one 10 per cent larger, one
equal, and one 10 per cent smaller, respectively labeled (F+, F1, and F-). In Figure 2.24,
we show the ratio of 1D flux power spectra between the L10 N256 and L10 N1024 runs,
computed from the rescaled fluxes. From top to bottom, we show the result for z = 2,
3, and 4. At z = 2, we see that the 1D power converges faster for a lower mean flux.
The resolution error in the 1D flux power shows a characteristic slope difference (the lower
resolution result has a more negative slope), and at z = 2, the slope difference is smallest
for the lower mean flux rescaling, and largest for the higher mean flux rescaling. Rescaling
the flux to a lower mean value means shifting the flux contributing regions to a lower gas
density, or equivalently, less non-linear structures, and thus it is easier for these structures
in the simulation to be converged. At z = 3, we see the opposite trend, that the results
converge faster with a higher mean flux rescaling. This indicates a ‘sweet spot’ mean flux (or
similarly, a redshift) where it is easiest to resolve Ly« foreststructures. When the mean flux
is very high, the forest probes higher densities closer to halos which are harder to resolve.
Similarly, when the mean flux is very low, the forest has significant sensitivity to the very
underdense regions. Although we are examining purely numerical effects here, note that
these conclusions also translate to the question of the importance of additional physics in
simulations. From what we have presented in this section, one would clearly expect galactic
outflows, AGN feedback, and other processes originating within galaxies to matter much
more at e.g. redshift z = 2 than z = 3. At z = 4, we see no difference in the convergence rate
with the different mean flux rescalings. At this high of a redshift, the mean flux is low and
a rescaling of only +10 per cent does not significantly affect the density range contributing
to the forest (see the red bands in Figure 2.7).

Finally, another issue with the practice of rescaling to the observed mean flux is that few
current Ly forest simulations are converged to the percent level in (F') at high redshift.
As shown previously, even simulations with a resolution of ~ 40 h~'kpc are not converged
to a percent in the mean flux for z > 3. Taking a simulation of insufficient resolution and
performing a mean flux rescaling will result in the wrong correction. Under-resolving IGM
structures results in a mean flux lower than it should be, so a rescaling to a higher mean
flux, for instance, will require a smaller rescaling factor A than what would be needed for a
higher-resolution run.

2.7 Small-scale statistics

2.7.1 Line statistics

The Lya forest is classified as systems with Ny, < 10'7 cm~2, known for sitting in
the linear portion of the curve of growth. This makes it straightforward to fit the Ly«
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Figure 2.25: The distributions of the line H1 column density (left) and the Doppler parameter
(right) in the resolution series of the 10 h~'Mpc boxes at z = 2. The percent difference relative
to the L10__N1024 simulation is shown in the bottom panels. In the P(Ny;) panel, the gray line
illustrates the power law slope o Nﬁlm. In the P(b) panel, the thin dashed red and black lines
show lognormal distribution fits to the L10 N128 and L10 N1024 results, and the red and black
text gives the corresponding median b-parameter values (also the peak probability). The simulated
b-parameter distributions are more skewed than lognormal, but a lognormal fits the core of the
simulated distributions well.

forestlines with Doppler profiles. Each line fit provides the column density Ny, and Doppler
parameter b of the underlying system. However, this neglects the issues of significant line
blending in the forest, as well as line broadening dominated by Hubble broadening rather
than thermal broadening. Meiksin et al. (2010), for instance, mention that line shapes in
simulated spectra ignoring peculiar velocities are qualitatively different than those in the full
spectra. This indicates that the Ny, and b derived from line fitting may not correspond to
the actual column density and temperature distributions of the gas that makes up the forest.
However, line parameter distributions are a sensitive measure of line shapes in the forest.
Additionally, interpreting line parameter statistics is fairly straightforward — the column
density is a proxy for equivalent width and the Doppler parameter is the line width.

In this work, we generate spectra with a fixed resolution of Avy, = 1kms™ to avoid
possible issues of the fits depending on spectral resolution and the assumed pixel SNR. We
have chosen this resolution because it is sufficiently smaller than what we expect for the
minimum line width of gas at T = 10® K, which corresponds b = 4kms~! for hydrogen.
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We want to reduce statistical uncertainty in the distributions as much as possible, which
means having many lines in each bin. The line compilation in Haardt & Madau (2012)
(their section 3), provides dN/dz of systems above a given Ny,. At z = 3, dN/dz = 24.2 for
Ny, > 10'° em™2. The corresponding path length required to find 10* absorbers (for 1 per
cent statistics) is 2.9 x 10° h~!Mpc, or a total spectral length of about 3.1 x 10" kms™!. The
L10 N128 simulation is actually smaller than this, so we use the entire box in that case. For
all other runs, we evenly distribute the skewers throughout the volume up to the required
path length. We use the SPECFIT code (first used in Meiksin et al. 2001) to perform the
Voigt line fitting of our simulated spectra. For each spectrum, the code splits the spectrum
into regions separated by a threshold value 7 > 7,;,. In these absorption regions, SPECFIT
uses first and second derivatives of the flux to identify line centers and then performs a x?
minimization of the line parameters.

We show the effect of simulation resolution on the line parameter distributions in Fig-
ure 2.25. We show the probability distribution function of the line column density in the
range 11 < log;o( Ny, cm?) < 16 and the Doppler parameter in the range 5 < b/(kms™') <
200 and the per cent difference to the L10 N1024 results. The column density distribution
is relatively flat for Ng, < 10'%%cm ™2, and then turns over to a power law dN/d Ny, o Nﬁlm,
where the slope of the power law depends on the UV background. The annotated gray line
gives an example of the power law slope. Qualitatively, the different resolutions agree well.
The L10 N128 and L10 N256 runs do not peak as much at Ny, < 10'2% cm~2, and turn
over more slowly, resulting in an excess probability of lines in the 12.5 < log;o( Ny, cm?) < 14
range. This same trend is present in the L10 N512, but it is less significant. The lowest
resolution run, L10 N128, shows a deficit of high column density lines Ny, > 10 cm™2
compared to the other runs. The Doppler parameter distribution is close to lognormal
with a peak around b = 20kms~!. The Doppler parameters distributions show a much
clearer convergence pattern. The overall shape of the Doppler parameter distribution does
not appear to change with resolution, but the peak b value decreases with increasing res-
olution. This holds together with our qualitative picture of the resolution study — the
lower-resolution runs are like artificially smoothed higher-resolution runs, so the resulting
absorption lines are broader as well. We also show two fits of the lognormal distribution
P(b) = A/(bo) exp[—(log b —10g bimea)?/(20%)], where A, byeq, and o are the free parameters.
The red thin dashed line is the fit to the L10 N128 and the black thin dashed line is the
fit to the L10 N1024 result. From the lowest resolution to the highest resolution result, the
median b value changes from 25.8 km/s to 22.0 km/s, and the corresponding temperatures
are 3 x 10* K and 4 x 10* K. This is an important consideration for studies using small-scale
statistics to infer the temperature of the IGM. If we were to use the low-resolution runs to
infer the IGM temperature, we would be biased to lower temperatures than results based on
higher-resolution runs (the fit 7Ty values are essentially the same in these runs).

We show the effect of simulation box size on the line parameter distributions in Fig-
ure 2.26. Compared to the resolution series, the box size has little effect on the line fits.
The different UVB in the box series simulations results in a slightly steeper Ny, distribution
power law, shown with the gray line matching oc Nig'". The column density distributions
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Figure 2.26: The distributions of the line H1 column density (left) and the Doppler parameter
(right) in the box size series with a grid scale of 20 h~'kpc at z = 2. The percent difference relative

to the HM12 L80 N4096 simulation is shown in the bottom panels. In the P(Ny;) panel, the gray
line illustrates the power law slope Nﬁlm.
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Figure 2.27: Convergence of the flux discrete wavelet transform power with respect to physical
resolution in 10 A~ 'Mpc box.

across box size are very close to each other, and differences appear to be in the statistical
noise. More significant differences appear above Ny, > 10" cm™2, however, this is also
mostly due to the rarity of well-fit high column density systems. The box size has a clearer
effect on the Doppler parameter distribution, although it is still much smaller than the res-
olution effect. Again, the distribution shape across box size is essentially the same, but the
peak position increases with increasing box size. This is hard to see in the top P(b) panel,
but in the bottom difference panel, we see the curves flattening out around b = 20 km/s
with increasing box size.

2.7.2 Wayvelet statistics

In addition to line fitting, we also performed a wavelet power analysis of our spectra.
Wavelets have previously been applied to the Lya forest as a means of objectively measuring
the line widths, primarily in order to probe the IGM temperature. Meiksin (2000) introduced
wavelets as a tool for the Lya forestas a means of data compression and a measure of small-
scale power. Zaldarriaga (2002) extended the use of wavelets to search for spatially localized
line-width (temperature) fluctuations, an analysis recently repeated with a slightly different
use of wavelets in Lidz et al. (2010) and Garzilli et al. (2012). Theuns et al. (2002) used
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wavelets to search for temperature fluctuations in the IGM associated with Hell reionization.

Wavelet basis functions are orthogonal and complete, providing well-defined transforms
into wavelet coefficients and back. More importantly, wavelets are localized in real and
Fourier space. The discrete wavelet transform (DWT) is a decomposition of some signal f
into discretized wavelet bases ;1 (z), where we use j as the level (sometimes called stretch)
of the wavelet and k as the shift (or position). The DWT provides wavelet coefficients w;y,
such that f(z) = ., wix;r(x), and in this case we are transforming the flux fluctuations
0r along the line of sight. We use the Daubechies 20 coefficient wavelet, which is the most
common choice for wavelet analysis. With the wavelet coefficients in hand, we can compute
the wavelet power spectrum P,, as average of the squares of the coefficients, just as one would
with Fourier coefficients.

Py (k;) = L{w?,) (2.16)

where the average is taken over all of the shifts k& for the level j. The L factor is included
to match our previous Fourier convention and the dimensionless wavelet power spectrum is
k; Py /7. We associate the level j to the mode k; = 27/L2771.

Figure 2.27 shows the impact of spatial resolution on the wavelet power. As expected,
we see very similar behavior to the flux power spectrum, namely the percent level agreement
between the 20 h~'kpe (L10_N512) and 10 A~ 'kpe (L10_N1024) runs. As with the power
spectrum we see that inadequate resolution to capture the fluctuations responsible for the
rise of the Ly« forestproduces an error on all scales, not only scales below the resolution
limit. We have checked that the box-size behavior is also very similar to that seen in Pr(k),
Figure 2.18.

2.8 Conclusions

We have investigated simulated Ly« forest statistics over the redshift range 2 < 2 < 4. A
large suite of simulations covering box sizes of 10-80 h~'Mpc, and resolutions 10-78 h~'kpc
have enabled us to understand the numerical requirements for future sets of simulations
aimed at constraining cosmological parameters using the Lya forest. While we model gas
dynamics using a very accurate finite-volume numerical method, the additional physics which
enters as a source (heating) term in the energy equations as well as those used to calculate
the ionization state of a primordial chemistry gas is accounted for in a more approximative
way. In our optically thin simulations, the gas is rapidly ionized by the assumed UVB at
high redshift, and in a short time changes its ionization fraction by order unity — a model of
sudden reionization. We neglect the effects of self-shielding in high over-density regions as
those do not contribute to the Ly« forest signal. The temperature boost during the sudden
reionization depends only on the shape of the spectrum of ionizing radiation, and in fact one
expects a range of spectral shapes responsible for ionizing different gas elements. Modeling
the details of temperature evolution during and immediately after reionization requires full
radiative transfer simulations and is beyond the scope of our needs here, as the thermal
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memory of the IGM gradually fades after the epoch of reionization (mostly due to Compton
cooling, see Hui & Gnedin 1997).

As the IGM fills the simulation box, it is fruitless to try to resolve it with adaptive
refinement; similarly, as a large portion of the Ly« forestsignal arises from near mean and
under-dense regions (especially at at higher redshifts), Lagrangian methods do not offer
any advantage over a fixed grid PDE solver. Needless to say the fixed grid approach is
computationally expensive, especially in the 3D case presented here, and thus it is important
to determine the minimal resolution requirements needed to bring our simulations to 1
per cent accuracy. We have explored this in Section 2.3 arriving at the conclusion that
~ 20 h™'kpc resolution is good enough over the relevant redshift ranges we wish to consider
for the Lya forest. While in places — for example the flux PDF — a coarser resolution would
suffice, the study of 1D power spectra brings with it a more stringent requirement. While we
explored resolution convergence, we were also able to show that NYX behaves well on this
multi-dimensional, multi-physics problem, exhibiting the expected second order convergence.
As shown in Section 2.3, this opens the possibility of achieving a desired accuracy at reduced
cost, via extrapolation of lower-resolution runs.

We also explored other numerical artifacts which can easily mask a physical process in
the IGM and/or spoil the quality of cosmological predictions. After finding an appropriate
resolution, we have explored the effects of finite box-size, i.e. missing modes in Ly« forest-
simulations. By running simulations with all cosmological and numerical parameters but
the box-size fixed, we were able to show that 40-80 A~ 'Mpc boxes are large enough for all
relevant statistics including the 3D power spectrum in redshift space, i.e. P(k, ). For the
first time, we were able to perform a Ly« forestsimulation fulfilling both the resolution re-
quirement set by the Jeans / filtering scale and the box-size requirement set by large-scale
flows. That enabled us to examine the accuracy of splicing 1D power spectra, a common
approach in the case when a full range of simulations are not feasible (McDonald 2003; Borde
et al. 2014). We show that accuracy of splicing is only 5-10 per cent, and that the error has
a clear scale-dependence.

As the UV background is the largest uncertainty in Ly« forest simulations, it is very
common that a cosmological model is evolved with a UVB model, with the resulting optical
depth field subsequently rescaled to match desired, observed mean flux value. In Section 2.6,
we examined the effects of changing the UVB and rescaling the mean flux. We found that
while qualitatively it is possible to change the UVB post festum in analysis, one suffers a few
percent effect in the UVB rates propagating back into the gas evolution which is most visible
in the flux PDF. We note that the 1D P(k) appears largely insensitive to such rescaling for
k<3 x 1072 km™!s, the k-range relevant for current observational data.

We find that resolution requirements for convergence on the line statistics are much more
demanding than on the flux statistics. A resolution of 20 h~'kpc, adequate for reproducing
the flux statistics to 1 per cent accuracy as shown in Section 2.3, recovers the distribution
of neutral hydrogen column densities only at ~ 10 per cent accuracy in the range 12.5 <
log;o( N cm?) < 15, and even worse at higher column densities. Similarly, the Doppler
parameter (b) distribution is converged at the same level, with the peak value decreasing
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Figure 2.28: Change in the gas temperature in a standard run with 1 particle per cell (7}), and an
‘overloaded’ run with with 8 particles per cell on average (Tg). The line shows the difference in the
median temperatures and the fill shows the normalized median absolute deviation in temperatures.
The median deviation is roughly symmetric and the resulting effect on the Lya forest statistics is
negligible. In addition, we show statistical (Poisson) errorbars in each density bin.

with increasing resolution. This is not directly relevant to modern cosmological studies which
do not rely on individual line fitting, but it is important for certain studies of the IGM.

Finally, we have explored the effects that finite sampling of the dark matter particles has
on the statistics of the Lya forest. The expectation is that artificial gravitational collisionality
between dark matter particles and gas increases the gas temperature, an effect that should be
strongest in void regions. While we indeed notice, on average, temperature increases in void
regions, the effect is minor in today’s simulations even when using 1 particle per cell and CIC
particle deposition. The reason for this is the small particle mass in Lya forestsimulations
and the presence of radiative cooling, which efficiently removes excess heat.

The advent of high performance computing power and scalable numerical algorithms as
employed in NYX allows us to make accurate predictions for the Ly« flux statistics, one of the
most promising tools for precision cosmology measurements in the redshift range 2 < z < 4.
The direct simulation approach, using no ad hoc physical assumptions, is possible for this
problem. We have made a concentrated effort here in understanding the Ly« forest signal in
optically-thin hydrodynamical simulations, and quantifying the accuracy of such simulations
with respect to numerous numerical effects. We are by no means the first to attempt this
(indeed they go back to at least Cen 1992), however we have been able to consolidate
and improve upon earlier studies using modern simulations with the goal of percent-level
numerical precision, a level of accuracy required for carrying out precision cosmology over
the next decade.

We note that full-range, 40962, hydrodynamical simulations like the one presented in this
chapter are still computationally demanding today, but will be a fairly typical in coming
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years. Before one commits to running many such simulations, it is imperative that the
precision which can be obtained be understood. Convergence testing is an invaluable tool
here, as analytically soluble problems are highly artificial in nature, and experience with them
does not necessarily translate to real cosmological runs. In this work, we have used the NYX
code. While NYX is focused on Lya forest simulations, the results presented here should
be directly applicable to IGM simulations performed by the ENzO, FLASH, and RAMSES
codes. In addition, there are several lessons applicable to a large extent to the GADGET and
AREPO codes as well.
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Chapter 3

The impact of hydrodynamic methods
on Ly« forest flux statistics

In structure formation studies, exactly solvable problems either have a reduced dimen-
sionality or are highly symmetric; therefore the accuracy of different codes on such problems
(as typically reported in ‘code papers’) is not indicative of an agreement they will achieve
when solving realistic cosmological evolution involving complicated physics. Performing con-
vergence tests on an actual problem is one of the most valuable tools for establishing realistic
accuracy, but the codes can also converge on an incorrect solution (e.g. due to a constant
source of error). For this reason, comparing different codes which employ different discrete
algorithms to solve the same physical equations is important for establishing a level of con-
fidence in reported results. In this chapter, I examine the current state of the art in Ly«
forest flux statistics as reproduced by two different optically-thin hydrodynamic simulation
codes.

Similar comparisons have been done in the past, most notably in Regan et al. (2007),
where the authors compared the GADGET-2 and ENZO codes. The authors reported agree-
ment at the 10 per cent level. Due to advances in both computational methods and comput-
ing power, it is again of interest to examine how well different codes agree using improved
simulations and to consider implications for measurements of cosmological parameters. The
version of GADGET we use in this work, GADGET-3 we use here has the same SPH algo-
rithm as GADGET-2, but significantly improved scalability, allowing us to push the method
to higher resolutions. In addition to proven scalability to ~100,000 cores, NYX also has an
improved hydrodynamical scheme over ENZO as it uses a dimensionally unsplit hydrody-
namics scheme. In Bird et al. (2013), the authors compared the GADGET-3 and AREPO
codes. These two codes share the same pedigree and are very similar to each other besides
the hydrodynamics solver. While Bird et al. (2013) focuses on the damped Lya (DLA)
and Lyman-limit systems (LLS), they note that typical low-column density systems that are
mostly probed by the Lya forest agree at the per cent level. This is complementary to our
work, where we compare substantially different codes, representative of virtually all results
reported in recent literature on this topic.
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We note that more general comparisons of SPH and Eulerian techniques were performed
in Agertz et al. (2007); Mitchell et al. (2009). Both papers argue that the main differences
between SPH and Eulerian codes (in an astrophysical context) can be tracked down to the
inability of SPH to resolve fluid instabilities such as Kelvin-Helmholtz or Rayleigh-Taylor
and their consequential effects on mixing of multi-phase media. While these processes are
important in many astrophysical contexts, it is unlikely that they influence the state of the
gas making up the Ly« forest signal. The intergalactic gas that creates the Ly« forest signal
is in a single phase and smooth, besides accretion shocks onto higher density structures.
While differences in the shock structure could create differences down the line in the Lya
flux, we will show that we do not find significant differences.

3.1 Simulations

In principle, it is relatively simple to directly simulate the Lya forest. The gas that
creates the significant majority of the absorption features, known as the diffuse IGM, is at
moderate overdensities, 6 = p/p < 10. Numerically, these densities are easier to capture
than higher overdensities. The evolution of this gas depends on gravity and pressure forces,
and some simple radiative processes. Since the gas is very close to primordial composition,
the background ionizing radiation is relatively spatially uniform, and almost all of the gas
(by volume) is optically thin to the radiation, the required simulation machinery is simple
indeed. Any cosmological hydrodynamics code modeling the evolution dark matter and gas
with uniform radiative heating and cooling should be able to adequately capture the diffuse
IGM. See Meiksin (2009) for a more thorough review of the relevant physics. We note here
that there are secondary effects such as inhomogeneity of the ionizing background, heating
from helium reionization, and galactic feedback, but they are beyond the scope of this work.
We aim to use the simplest physics possible for the problem at hand, and test the level of
agreement in this most basic case.

3.1.1 Nyx

NYX is a cosmological Eulerian hydrodynamics code with Adaptive Mesh Refinement
capabilities, built on the BOXLIB AMR framework. We summarize the algorithms here,
but direct more interested readers to the NYX code paper, Almgren et al. (2013). Nyx
implements an Eulerian formulation of hydrodynamics, evolving 5 conserved variables on an
adaptive mesh. In addition to the conserved quantities, Nyx also solves for the evolution of
the internal energy density, implementing the dual-energy formalism (see Bryan et al. 1995).
In our simulations, the dual-energy formalism will play a much smaller role than in adiabatic
cosmological simulations, as the UV background imposes a relatively high temperature floor.
The hydrodynamics solver is a higher-order Godunov scheme, with a piecewise parabolic
method (PPM) reconstruction, and uses unsplit fluxes with full corner-coupling (Colella
1990). The Riemann solver in Nyx iteratively solves the Riemann problem using a two-shock
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approximation (Colella & Glaz 1985). Nyx models dark matter as N-body particles updated
with a standard Particle-Mesh (PM) method with symplectic timestepping. Particles are
deposited with the cloud-in-cell (CIC) kernel to the same grid where the baryon quantities
are defined. The Poisson equation is solved using a multigrid method. Finally, Nyx finds
cell-centered gravitational acceleration using 7-point stencil. The gravitational acceleration
is coupled to the hydrodynamics solver via source terms in the momentum and energy
equations and the dark matter particle positions and momenta are updated with Kick-Drift-
Kick stepping. In this work, we do not use the mesh refinement features of Nyx so the root
grid of the simulation is the only grid (typically referred to as ‘unigrid’ simulations in the
literature).

3.1.2 Gadget

GADGET-3 is a cosmological Smoothed Particle Hydrodynamics (SPH) code (Springel
2005), which has become a standard community code over the past decade. Gadget imple-
ments the conservative entropy formulation of SPH, as described in Springel & Hernquist
(2002). In SPH schemes, each particle serves as a Lagrangian fluid element with a given
mass, position, velocity, and internal energy. At each step, the particle’s density is esti-
mated by smoothing over a prescribed number of neighboring SPH particles determined by
an adaptive SPH kernel. Gadget also models dark matter as N-body particles evolved with
a Tree-PM scheme, where the long range force is solved using a PM method, as in Nyx.
However, the gravitational acceleration algorithm in Gadget also adds a short-range force
computed with a Tree multipole method (Barnes & Hut 1986).

For this work, we run Gadget with the quicklya option as described in Springel (2005).
With quicklya enabled, Gadget uses an extremely simple star formation method, where any
SPH particle that reaches a maximum density setting is converted into a star particle. This
process appears to have a violent effect near high-density regions, as we will show later
in Figure 3.4, likely due to the sudden drop in pressure support. However, we expect these
glitches to be isolated to small volumes, where the flux is already saturated, and will therefore
have little impact on flux statistics. The upside is that quicklya runs are computationally
much cheaper than runs with no star formation, mainly because the size of the timestep is
determined by the high gas-density regions and can become restrictively small without use
of this option.

3.1.3 Code discussion

In both codes, we use the primordial composition, optically-thin radiative heating and
cooling described in Katz et al. (1996). We have checked that both codes use the same atomic
rates for radiative recombination, dielectric recombination, and collisional ionization rates
given in (Katz et al. 1996) (corresponding to the oldrates option in Gadget). We noticed
and corrected for a 4 per cent difference in the Compton cooling rate coefficient in the Gadget
source due to 1 per cent difference in the assumed CMB temperature (2.7 K vs. 2.73K), but
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the effect should be negligible when considering the post-reionization statistics. As pointed
out in Luki¢ et al. (2015), these atomic rate fits are not very accurate, so they should not be
used for precision work, but this should of course not affect the results of relative comparison.
The equations for optically-thin radiative heating and cooling are completed by assuming
a redshift-dependent photoionization rate and heating per ionization. We use the ionizing
background tabulation of Faucher-Giguére et al. (2009). The total heating and cooling is
included as a source term in the energy conservation equation. In Gadget, the source term
is applied at the end of a timestep. In Nyx, the heating/cooling operator is applied in the
middle of the step via Strang splitting.

The codes handle high-density regions differently. Simulations that include optically-thin
radiative heating and cooling typically suffer from the so-called overcooling problem Balogh
et al. (2001). As gas density rises, the cooling becomes more efficient, allowing the gas
collapse more, and the whole process can run away. This is the case in Nyx, since there is
no star formation or extra heating processes to prevent this collapse. This produces large
overdensities, which in turn create significant small-scale power in the baryon density power
spectrum. The quicklya star formation in Gadget was introduced to prevent this situation.
Gas particles above the quicklya density cutoff and below a temperature cutoff are converted
to star particles, and further collapse is minimal. One issue with the quicklya process is that
it creates a sudden drop in pressure support whenever it converts gas particles. The star
particle formation appears to disrupt areas of high density, as we will show in a later figure.
We believe this difference in subgrid physics could be the main cause of differences between
the codes.

The two codes also present an interesting mix of sampling trade-offs due to their dif-
ferent numerical designs. For the same grid and number of particles, the effective spatial
resolutions of gravitational and pressure forces can differ significantly. Both codes model the
gravitational influence of dark matter with collisionless N-body particles. The Lagrangian
nature of N-body methods means that resolution (in phase space) is closely tied to density,
sampling high-density regions very well, but undersampling low density regions. Structures
near and under mean density are heavily affected by the shot noise resulting from the finite
particle sampling, and these structures are the most relevant to the Lya forest signal, espe-
cially at high redshift. The sampling of hydrodynamic quantities between the codes differ
much more. In the case of Gadget, SPH has the characteristics of any other Lagrangian
particle sampling method and high densities are naturally resolved better than low densities,
and low density structures are subject to shot noise. In addition, SPH inherently smooths
hydrodynamic quantities on the kernel scale. Most Gadget simulations (including those in
this work) use an SPH kernel that weights over the 32 neighboring particles. This means
that at mean density, the kernel scale (and pressure resolution) is about twice the initial
interparticle spacing. In Nyx, the hydrodynamic resolution is tied to the grid scale, which
is fixed and uniform in this work. This means that Nyx should sample underdense regions
more evenly, at the cost of resolution in high-density regions and dynamic range. Gadget has
a much better spatial resolution of gravity than Nyx, due to the additional short-range force
calculation. This will surely affect the collapse of structures with sizes near the grid scale,
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Table 3.1: Simulations used in this chapter.

Name Box size (h"*Mpc) Elements Resolution (h~'kpe)  magm (Mg)
G_L10_N128 10 1283 78 4.3 x 107
G_L10_N256 - 2563 39 5.4 x 106
G L10_N512 ; 5123 20 6.7 x 10°

G_L10_N512_ B64
G_L10_N512_ B128

10243

5.4 x 10°

G L40 N1024 40 39

N L10 N128 10 1283 78 4.3 x 107
N_L10_N256 - 2563 39 5.4 x 106
N L10_N512 - 5123 20 6.7 x 10°
N L10 N1024 - 1024° 10 8.4 x10?
N L40 N2048 40 20483 20 6.7 x 10°

The top section lists the Gadget simulations (names starting with G). The bottom section
lists the Nyx simulations (names starting with N). Dashes indicate a repeated value. The
Gadget simulations use a gravitational softening of € = 1/3 of the initial interparticle
separation, a quicklya star formation with a threshold density of 1000 py,, and 32 neighbors
in the SPH kernel by default. The extra Gadget L10_N512 simulations ending with B64
and B128 use 64 and 128 neighbors, respectively. The Nyx simulations use one particle per
cell. All simulations were initialized at 2,5 = 159. See text for more details.

implying that Nyx might need more resolution elements to reproduce the same high-density
regions seen in Gadget. It is very difficult to say what mix of resolution will more adequately
capture the Jeans scale structures near mean density without directly testing. We emphasize
that the arguments above are very qualitative and should not be relied on in detail. The
resolution effects are much better understood by directly testing the convergence of the flux
statistics of interest.

3.1.4 Simulation suite

Our simulation suite consists of 6 Gadget simulations and 5 Nyx simulations, listed in
Table 3.1.4. The first letter in the simulation name indicates which code was used — G for
Gadget and N for Nyx. In the elements column, we list the number of resolution elements,
meaning the number of DM and SPH particles in Gadget and the number of grid cells and
DM particles in Nyx. In the resolution column, we list the interparticle spacing in Gadget
and Nyx, which is the same as the PM grid in Gadget and the PM and hydro grid in
Nyx. We have 5 Gadget simulations and 4 Nyx simulations in a 10 h~*Mpc box, with the
same large-scale initial perturbations, and varying resolutions. Simulations with the same
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resolution use the same initial perturbations. These simulations are designed to achieve
high resolution in a small box so we can compare the codes’ convergence properties and
compare directly with converged statistics in the highest resolution simulations. Fixing the
initial conditions, cosmology, and the ionizing background between the simulations allows
us to isolate differences created by the codes, and primarily the different hydrodynamics
algorithms. Additionally, we will present one Gadget simulation and one Nyx simulation in
a 40 h~'Mpc box, again with matching initial perturbations, that will serve as a best-case
test for either code. All simulations were initialized at z = 159, and assume a primordial
mass fraction of helium Y = 0.24. As mentioned above, the Gadget simulations in this work
use the quicklya star formation prescription. We use a standard setting for quicklya critical
density of 1000 times the mean, above which SPH particles are converted to star particles. In
early testing, we found that lower values of around 100 times the mean change flux statistics
significantly. We also found that the standard gravitational softening e = 1/30 is unnecessary
for this application, and that simulations with ¢ = 1/3 produce indistinguishable flux statistic
results. Since simulations with higher gravitational softening values are less expensive, we
use € = 1/3 in this work. In 4 out of the 6 Gadget simulations, we use the standard 32
neighbors for the SPH kernel. In order to test the effect of a higher resolution kernel, we
reran the G_L10 Nb512 simulation with 64 and 128 neighbors.

We generated initial conditions matching the WMAP7 ACDM power spectrum. The
corresponding ACDM cosmological parameters are €, = 0.046, Q,, = 0.0275, Q) = 0.725,
h = 0.702, og = 0.816, and ny, = 0.96. The positions and velocities of the dark matter
particles were initialized using a Zel’dovich approximation. The gas is assumed to trace the
dark matter at the initial redshift. This is not quite the case in the Universe, since the
baryon and dark matter transfer functions are still significantly different at z = 159 and the
radiation contribution to the expansion rate is non-negligible at this redshift. However, since
the simulations do not contain a radiation component, the initial conditions are generated
by calculating the linear power spectrum at z = 0, which is then suppressed by the linear
growth factor in a radiation-less universe back to the initial redshift. This construction
ensures that the linear power spectra at the redshifts of interest are matched (the linear
baryon and dark matter transfer functions are indistinguishable at these redshifts). This
is a standard procedure in simulations, although it has never been shown explicitly, to our
knowledge, that the initialization to the same initial conditions does not produce unwanted
artifacts. For numerical reasons, Gadget starts with each mass element being split between
an SPH and a dark matter particle. The two are shifted by half of the interparticle spacing
in order to avoid coupling between the DM and SPH particles. This is not correct in detail,
but we do not modify this as it is the most common way to initialize Gadget simulations and
it is very unlikely that correcting this would change our results. We start with an isothermal
initial temperature, T'= 1000 K, and results are insensitive to a particular value chosen.

The Nyx simulations were run on Cray XC30 system (Edison) at NERSC. Each Edison
node has 24 Intel Ivy Bridge cores running at 2.4GHz and 64GB of RAM, and we ran Nyx
in MPI-++OMP mode, which is not optimal for small problems (less than tens of thousands of
cores). On each node we loaded four 1283 grids and accompanying particles, meaning that,
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for example, the N 110 N1024 simulation was done on 3072 cores, the N L10 N512 was
on 384 cores, and so on. As an example of the total runtime, the N _L10 N1024 run took us
about 15,500 core-hours from z = 159 to z = 2 including I/O, or about 5 hours of walltime.

The Gadget simulations were performed on the Cray XEG6 system (Hopper) at NERSC.
Each Hopper node has 24 AMD Magny-Cours cores running at 2.1GHz and 32GB of RAM.
The Gadget simulations were run in MPI mode only which is effective for small problems
described in this work. The G _L10 N512 simulation was run on 768 cores and took a total
of 12,596 core-hours which translates to a walltime of 16.4 hours.

We caution readers not to use this benchmark to draw conclusions about relative code
performance for general problems. For the simulations in this work, Nyx and Gadget were
run with different sets of parameters (typical to each code) which determine the accuracy of
the simulation. We include these runtime numbers only to show the relative computational
expense expected for science-grade Ly« forest simulations between the codes. The main
conclusion is that for the same number of resolution elements, the codes cost about the same
in total CPU hours. The difference is that Nyx is able to effectively scale to a much larger
number of cores. This makes it possible to run the same problem in less walltime, and also
to run larger problems than those possible with Gadget.

3.1.5 Comparison data details

One major difference between the Nyx and Gadget output data is that SPH data is
naturally adaptive, while finite-volume data is fixed to the original grid. In order to compare
the Nyx and Gadget data at the same positions, we evaluate the SPH data on specific grids
and test that our choice of sampling does not degrade the SPH results. Evaluating the SPH
data on a fixed grid destroys the adaptivity of the SPH particle data, but the signal we
are interested in mostly comes from densities of about 10 times the mean or less. In these
regions, the kernel scale is still similar to the mean inter-particle spacing, and we do not
require very fine grids (as we will demonstrate later).

We evaluate the SPH data at a position x; by first solving for the density p; and kernel
scale h;. The density is

pi = p(xi) = ijWﬂXi = x5, hi) (3.1)

where the sum is over all particles, m; is the mass of particle j, and W is the SPH kernel.
Gadget uses a cubic spline for the kernel (Springel 2005):

W(z,r) =s(qg=x/r)
q 1-6¢>+6¢>, 0<q<1/2,
= — — )3 <
5 20 —a), 1/2<q<1,
qg=>1

(3.2)

Y
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We iteratively solve for the kernel scale h; so that

pihz:'s = %NSpthPh ) (3.3)
where Ngpp, is the SPH number of neighbors and mygpy, is the SPH particle mass. One detail
to note is that there is an offset of 1 between the typically quoted number of neighbors in
Gadget and Ngpp as used here. When Gadget is quoted as being run with say, 32 neighbors,
this means Ng,, = 33, since it is understood as the current particle plus its 32 neighbors.
Also note in Equation 3.1 that the scale h used in the kernel is evaluted at the same point,
not at the position of the neighbor particle. This is a common mistake which we will return
to later in this section. Once we have the density and kernel scale estimates, we can evaluate
any other SPH quantity A as

A= A(x;) = Z mjA—?wqxi — x|, i) (3.4)

j J

The optical depth to HI Ly« scattering is

7762
Cf12/nH1¢y dr (3.5)

m

T, =

where v is the observed frequency, e is the electron change, m, is the electron mass, ¢ is the
speed of light, fi5 is the oscillator strength for the transition, and ¢, is the line profile. In
general, the line profile is a Voigt profile, but we use the Doppler profile instead for several
reasons. For line center optical depths of less than 1000, the Doppler profile gives identical
fluxes. We are only interested in Ly« forest systems, which have line center optical depths
less than 10. For LLS and DLAs, our simulations do not produce the correct density and
temperature to HI density mapping in any case. The HI density in these systems should
have self-shielding corrections, which we cannot evaluate properly without coupled radiative
transfer-hydrodynamics in the simulations. If we were to use Voigt profiles with these high
column density systems, the damping wings would not only be inaccurate, but those errors
would then contaminate nearby regions. In addition, almost all other simulated Ly« forest
works have used Doppler profiles for the same reasons, so this makes the comparison to
previous work simple. The Doppler profile is

1 v— (1= L)\
gbu - ﬁ exXp | — ( AI/D > s (36)

where 1y is the rest-frame frequency, vp is the Doppler width, and v is the peculiar velocity
along the line of sight. We assume that the Doppler broadening is purely thermal (vp = “21

and vy, = \/2kT/my). Since we evaluate the optical depth at a fixed redshift (that of the
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snapshot), it is much simpler to work in velocity coordinates, i.e. adx = dv/H, where x is
the comoving scale. In this case, the full optical depth expression is

S me? fiado /@exp [_ (v —v — 11)2] av' , (3.7)
meC Vth Vth H
where \q is the rest-frame wavelength. We perform the integral as described in Lukié¢ et al.
(2015), where we assume the line-of-sight data are piecewise constant, and the integral has
an analytic form. This is similar to a simple midpoint evaluation, but more reliable (will not
miss contributions from narrow lines, for instance).

In general, the process of calculating the H1 Lya optical depth from simulation quantities
is a straightforward process. The steps are choosing the sightlines, sampling the quantities
(nui, v, T) on each sightline, and performing the path integral. This is simple in a finite-
volume code like Nyx, which already provides these quantities at uniformly spaced points.
However, we found that there are many paths going from SPH particle data to Ly« optical
depths.

The first possible difference we noticed is that some SPH Ly« forest analyses codes use
SPH kernels different from the form used in Gadget. For instance, in an early version of the
analysis for this work, our code used a kernel with the form A; =3, AjTZ—J_jW(|XZ~ — x|, hj).
That is, instead of evaluating the kernel with the smoothing length of the point x;, using the
smoothing lengths of the neighbor particles in the sum at x;. Of course, this is inconsistent
with the kernel used to evolve the quantities in the simulation. However, as we inherited
this analysis code, we felt we should mention this as a possibility for other works that are
not explicit about their SPH evaluation method. This produces significant differences in the
flux statistics as shown in Figure 3.1.

We also checked that the tolerance of the iterative solve for the density and smoothing
length (p;, h;) does not affect flux statistics. Since the optical depth is roughly proportional
to the square of the density, we thought small errors in the density could produce noticeable
differences in flux statistics. The iterative solve for the smoothing length at a point is stopped
based on a a tolerance setting for the mass enclosed in a sphere of radius h;. The default
Gadget setting is a mass tolerance of the mass of one SPH particle. However, for most of
our analysis we used a mass tolerance of 1 per cent of the SPH particle mass. As we show
in Figure 3.1, this change in the density-smoothing length solve tolerance has essentially no
effect on the flux statistics, demonstrating that the default Gadget setting is sufficient.

Another possible difference we noticed is the order of operations in evaluating ny, and 7.
One choice is to evaluate (ny;, T') given (p, ey ) of the SPH particles, then to SPH interpolate
(nm, T') along the sightlines. This is the method used in Theuns et al. (1998), for example.
The other option is to first evaluate (p,e;:) along the sightlines, and to then solve for
(nm;, T'). Given fine enough particle sampling, these two methods should recover the same
(np;, T') values, however we find small differences that end up affecting the flux statistics
at the level of a few per cent, as shown in Figure 3.1. The first method tends to produce
slightly lower temperatures at low densities, resulting in thinner absorption features, and
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Figure 3.1: Ratios of flux statistics using different methods for computing the optical depths
compared to our standard method. ‘bad kernel’ refers to the case of using the alternate kernel,
‘large tol.” refers to using a larger tolerance in the density-smoothing length solve, and ‘species
interp.” refers to interpolating (nyy, T') rather than (p, eint). Top left: mean flux vs. redshift. Top
middle: flux PDF. Top right: 1D flux power. Bottom: 3D flux power.

more transmission at high redshift. Although the choice is somewhat arbitrary, we believe
it should be more accurate to interpolate the conserved quantities (p, ei,) rather than the
EOS-dependent quantities (ngy,, T).

In Figure 3.1, we compare the flux statistics using the three different cases described
above, compared to our standard method. In the legend, ‘bad kernel’ refers to the case
of using the alternate kernel, ‘large tol.” refers to using a larger tolerance in the density-
smoothing length solve, and ‘species interp.” refers to interpolating (ny,,7") rather than
(p, eint)- As described above, the tolerance setting makes a noticeable, but extremely small
difference. It appears that the tolerance could be increased even more with essentially no
impact on the flux statistics accuracy. The bad kernel and species interp. methods both
predict a higher mean flux than the standard method, mainly due to lower temperatures in
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underdense regions. The flux PDF differences are small for F' < 0.9, but the high transmis-
sion tail is much higher in the other methods. In the 1D flux power, the species interp. result
appears to have a different slope, with more power on large scales and less power on small
scales. The bad kernel result, on the other hand, only has excess power on small scales. In
the 3D flux power, the two alternative methods behave similarly, with decreased power along
the line of sight, and increased power transverse to the line of sight. While these differences
are not very large, it is worrisome that differences of this magnitude can be created from the
same Gadget snapshot using slightly different analysis methods. For this reason, we urge
future precision SPH Ly« forest work to be explicit about the details of their calculations.

As mentioned above, another issue in using SPH data is how finely the quantities should
be sampled. While the Nyx finite-volume data has a natural resolution, the Gadget SPH
data is adaptive, and can be sampled at arbitrary resolution. Since we perform most of our
analysis on a fixed grid, we must test how the grid resolution affects the Gadget results.
There are three resolution parameters that determine the results: the number of simulation
elements NV, the grid resolution perpendicular to the LOS N, and the grid resolution parallel
to the LOS V. We tested each of these individually and found that N, has essentially no
effect (above our minimum resolution), V| has a small, sometimes negligible effect, and N
is the driving factor in differences in the results, as we would expect.

We show the ratios of flux statistics (most at z = 2.5 again) using the Gadget L10 N256
simulation evaluated with NV, = 128 and 256 compared to N, = 512. We hold N fixed to
256 in this case. The perpendicular resolution appears to make no noticeable difference in
the mean flux, flux PDF, and 1D power spectrum. There is some noticeable noise in the
N, = 128 ratio, but this appears to be driven by the fine binning, as the N, = 128 data
provides 16 times fewer pixels than the 512 case. In the 3D flux power spectra, we can see
the effect of limited perpendicular resolution (as we are now Fourier transforming along the
transverse axes), and the lower resolution runs have excess power at small scales. The errors
in the N, = 128 case are significant, but the errors in the N, = 256 case appear to be
isolated to small enough scales to not be a concern. This suggests we should use at least
N, = 256 (or equivalently Az, = 40 h~'kpc) when generating flux statistics.

In Figure 3.3, we show the ratios of flux statistics using the Gadget L10_N256 simulation
evaluated with N = 128 and 256 compared to N = 512. We hold N, fixed to 256 in this
case. In the mean flux and flux PDF, there is a noticeable, but very small error N = 128
results. The main effect appears to be a small slope difference in the flux PDF, where
the N = 128 result has more pixels at low transmission and fewer satured pixels than the
N = 512 case. However, the differences are much larger in the power spectra. In the & range
we are interested in, the N = 128 and 256 results differ by more than a per cent compared
to the Ny = 512 results. This suggests we should use at least N = 512 (or equivalently
Ax; = 20h 'kpc) when generating flux statistics.
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Figure 3.2: Ratios of flux statistics from the Gadget N256 simulation, evaluated on grid with
N| =256 and varying N, . Top left: mean flux vs. redshift. Top middle: flux PDF. Top right: 1D
flux power. Bottom: 3D flux power.
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Figure 3.3: Ratios of flux statistics from the Gadget N256 simulation, evaluated on grid with
N, =256 and varying N|.
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Figure 8.4: Two skewers from the L10 Nb512 simulations at z = 2.5. From top to bottom, we
show the baryon density pp, temperature 7', velocity parallel to the sightline v, optical depth T,
and transmitted flux fraction F'. The skewer on the left is an example of where the codes agree
fairly well passing through moderate densities, while the skewer on the right is an example of where
the codes do not agree near high densities (note the difference in the density scales).
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3.2 Morphological comparison

We start by comparing the morphological characteristic of quantities in the two codes.
This section is not very quantitative and its purpose is mainly to build intuition of how
the codes come to somewhat different results. In subsequent sections we will make the
comparison more quantitative by considering directly observable quantities, such as power
spectra and probability density functions.

Figure 3.4 shows two example skewers through our simulations. We show the baryon
density py, temperature T, velocity along the skewer v, the optical depth 7, and transmitted
flux F' = e77. The skewer on the left pierces only moderate densities (0.1 < p,/pp < 10),
while the skewer on the right pierces a high density region (meaning p, ~ 100 py,). We chose
these two skewers to show a common, good agreement case and a rare, poor agreement case.
Overall, the codes agree very well (ignoring the flux on the right for a moment). Although
the initial conditions are the same, there is no guarantee that the codes will evolve the
structures in the same way, to the same positions at z = 2. There was no fine tuning of the
skewer position between the codes, just a choice of the same sightline (z,y) position. The
most apparent difference between the codes is the noise-like jitter in the Gadget density,
temperature, and velocity compared to the relative smoothness in the Nyx data. This does
not mean that the Nyx data is inherently more accurate or reliable, but it certainly highlights
the difference in the properties of the simulation data between the codes. The jitter in the
Gadget skewers is due to the shot noise behavior of particle sampling (‘seeing’ the particles).
If we were to deposit the Gadget particle data to a coarse enough grid, it would appear
much smoother, like the Nyx data. However, too coarse a grid would mean undershooting
many extrema in the data, and it is much simpler to use the same grid. In the left skewer,
the Nyx and Gadget fluxes are overall very similar, with small deviations around x = 4 and
7h~'Mpc. These differences appear to originate in differences in the density peaks between
the codes, where the Nyx peaks are smooth and the Gadget peaks have more small-scale
structure. The skewer on the right intersects a high-density spike around x = 6 h~*Mpc
— a region affected by the quicklya processing in Gadget. This produces sharp features in
density, temperature, and velocity. Although this region covers only about 1 A~ !Mpc in real
space, the combination of the high temperature and large velocity gradient creates large
differences in the flux. The disrupted region distorts the spectrum from z = 3 to 8 h~!Mpc.
After visually inspecting many skewers, we believe that the rare skewers passing through
high densities account for all of the major differences in flux between the codes. That is,
in low density regions, the two codes produce very similar structures and, qualitatively, the
same flux signal with some small deviations in line centers and widths. However, near high
densities, the overcooled halos in Nyx and the disrupted halos forming stars in Gadget create
significant flux differences. More importantly than the code differences, we want to highlight
this contradiction of the standard lore that high-density regions do not affect the forest. The
absorption is saturated near the position of the density spikes, but the differences in the Hi
column and temperature give different line shapes in the spectra. In addition, high-density
regions typically have large velocity gradients, meaning that any difference is spread over
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much larger scales in redshift-space.

Figure 3.5 shows an example slice through the G L10 N512 and N L10 Nb512 sim-
ulations. We show the baryon density and temperature, the HI number density and the
transmitted flux from the L10 N512 simulations at z = 2.5. We also include difference
images on the bottom. The line-of-sight (LOS) axis is plotted vertically, so that in the flux
images, each column of pixels is a separate sightline. Again, the qualitative agreement is
very good and we see the same structures in all panels. In the baryon density slices, we again
see that the Nyx image appears smoother than the Gadget image. In particular, looking at
the low density regions in the Gadget image, we can see the wavy structure of the initial
particle lattice. These wavy structures are also mirrored in the other Gadget fields. The
major differences in density (darker patches in the ratio image) come from the higher density
regions, such as the halo near the center, the filament to the bottom right, and the smaller
halo farther in the bottom right. The highest density region is more extended in Gadget,
due to the quicklya processing. Nyx on the other hand, allows baryons to cool and collapse
more, producing more concentrated halos. The filament in the bottom right appears a bit
wider in Nyx, seen as dark blue streaks in the difference image. In the halo in the lower
right, the Gadget density appears much more extended again, creating a red blob in the
difference image. In the temperature panel, we see the largest differences mostly in accretion
shocks enveloping the filaments and halos. The shocks in Gadget are a bit puffier and spotty.
In the difference image, the filaments are outlined in blue then red. This suggests that al-
though filaments have similar density profiles between the codes, the accompanying shocks
are somewhat narrower in Nyx. The HI density panel shows the multiplicative differences
in density and temperature that end up producing the differences in flux. The flux image
is qualitatively different than the rest. Structures appear very similar in the other panels,
but in flux, they are distorted in position along the LOS by peculiar velocities and fattened
along the LOS by thermal broadening. Where the other panels also show smooth transitions
between extreme values, the flux has a limited dynamic range and therefore much sharper
features, quickly changing from a saturated region (red) to a transmissive region (blue). The
largest differences in flux once again come from the high-density regions. In addition, we
noticed a pattern in the flux difference image, where there are blue spots surrounded by red
lines. We believe this is a result of the small difference in the temperature profiles around fil-
aments. The sightlines pass through similar H1 columns, but the Gadget temperature bumps
are wider, resulting in broader lines. Nyx has more absorption near line center and Gadget
has more absorption in the edges. Although these are small differences, at some level, this
could affect estimates based on linewidths.

In order to check these slight morphological differences between the codes, we also com-
pared cross sections of a single filament. It was more difficult than expected to find an
isolated filament — an object that looks like a filament in one projection often turns out
to be a sheet-like structure, or in other cases the filament turned out to be merging with
another one. However, filamentary structures are abundant and even the small volume of
the 10 h~*Mpc box provides enough good samples. Figure 3.6 shows cross sections of a sin-
gle filament found in the L10 N512 simulations at z = 2. We found this filament nearly
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Figure 3.5: A slice through the L10 N512 simulations at z = 2.5, showing the baryon density
pb, the temperature T', the HI number density ny;, and transmitted flux fraction F'. From top to
bottom, we show the Gadget data, the Nyx data, and the difference.
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Figure 3.6: Slices along and across a filament in the L10 N512 simulations at z = 2. In the left
panels, we show the baryon density pp, and in the right panels, the temperature T'. In each panel
section, we show a cross section across the filament on the left and along the filament on the right.
From top to bottom, we show the Gadget values, Nyx values, and the difference. The slices are
about 1.6 h~'Mpc across. A black cross marks the center (common point) of the slice in both views.
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aligned to the grid in our simulations, but we did slice at an angle in order to look as closely
as possible down the axis of the filament. The slice values were computed using trilinear
interpolation on the 8 neighboring grid values of each slice point. The figure is split into
two vertical panels, showing the baryon density on the left and temperature on the right.
Both panels include the two views of the filament with the filament into the page on the
left and cutting along the filament on the right, with the common point marked by a black
cross in the center of the image. As before, we include the Gadget and Nyx values and
their difference from top to bottom. The slices are all about 1.6 h~*Mpc across (80 x 80 grid
points). There is clearly more substructure in the Gadget density slices. The blue regions
(excess in Nyx) mostly appear in the regions within the filament where gas has evacuated
in Gadget. The structural differences in the temperature images are more striking, where
the shocks surrounding the filaments have qualitatively different shapes. The shocks in Nyx
are sharper overall, creating thin blue lines in the difference images. The shocks in Gadget
are wider, producing the dark red patches around the blue lines in the difference. This is
particularly clear in the far right column.

3.3 Density and temperature statistics

We start by presenting the one- and two-point functions of the baryon density, the prob-
ability density function and the power spectrum. We are interested in the material that
contributes to the Ly« forest flux, therefore in the case of Gadget, we ignore the density
contribution from star particles. The star formation prescription is far from realistic, and
is employed only to speed up the computation by removing SPH particles in high-density
and low-temperature regions. While lower density regions should not be affected by this,
we want to be clear that ‘baryon density’ in this work refers to the gas density for Gadget,
where we have deposited SPH particles onto the same grid as the matching Nyx runs, and
we do not include the star particle mass. In order to keep the number of figures manageable,
we choose to show statistics at z = 2.5. This redshift is in the most observationally relevant
redshift range and is fairly representative of the agreement at the other redshifts we consid-
ered. Overall, the code differences decrease with decreasing redshift, but the high redshift
differences are not so much larger as to be worth showing here.

The volume-weighted baryon density probability density functions (PDF) from the small
box simulations are shown in Figure 3.7. To illustrate the effects of convergence and code
differences separately, we include two other axes showing the ratios of results between sim-
ulations. The Gadget ratio shows the percent differences relative to the highest resolution
Gadget simulation, computed as 100(p/phires — 1). This shows the behavior of Gadget’s con-
vergence with respect to resolution. We also include the highest resolution Nyx simulation
ratio on the same plot to compare the code results at the best resolution. We repeat the
same process for the Nyx results in the Nyx ratio panel. The codes converge in a similar
way for this statistic. The lower resolution runs miss low-density elements and overproduce
high-density elements. The codes converge on the low end at about the same rate, but Nyx



3.3. DENSITY AND TEMPERATURE STATISTICS 81

101 ! ! ! !
0 = G_LION512 |
10 =+ G_L10_N256
107 4 G_L10 N128 |
102 — N_L10_N1024
- T = N_L10_N512
< 1073 - =+ N_L10_N256 |
= .. N_L10 N12
= 10¢ _L10_N128
107 4 L
10° 4 L
10»7 Ny
X 304 L
g 154 ) 3
b= -
& 0d = = = el e SR —— L
-
o -15- -
=]
& -30- L
g 304 /z - s\ -
< 159 e 23 |
2 04 T e = = T
s 2 \
x -154 I'/ \ L
r \
“ -304wy \ r
10* 10° 10* 102 10°

pb/i)l)

Figure 8.7: The baryon density PDFs p(py,) in the 10 A~ '!Mpc simulations at z = 2.5, and their
ratios. Top: the baryon density PDFs. Middle: the differences relative to the highest resolution
Gadget simulation, G_L10_ N512. Bottom: the differences relative to the highest resolution Nyx
simulation, N L10 N1024. The codes show similar convergence patterns, peaking at lower py,
and probing the tails of the distribution better with increasing resolution. Gadget converges much
faster at higher density due to its Lagrangian nature, and also appears to converge faster to the
low-density peak position. The highest resolution runs between the codes agree well in the relevant
density regime of 0.1 < pp/pp, < 10, with the G_L10 N512 result falling between the N L10 N512
and N1024 results. The differences between the codes for p, > 100 py, are due to different subgrid
physics in high-density regions.
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Figure 3.8: The baryon power spectra in the 10 A~ Mpc simulations at z = 2.5, and their ratios.
Left: the dimensionless power spectra of baryon overdensity AQb(k:). Right: the dimensionless power
spectra of the thresholded baryon overdensity Aathr(k), where the baryon density was limited to
10 pp. The large-scale power offsets are due to different amounts of mass lost either to stars or to
thresholding.

appears to converge much more slowly at the high end. This is most likely due to the La-
grangian nature of Gadget, which should capture high-density structures more easily. Over
the relevant density range of 0.1 < py,/p, < 10, the highest resolution PDFs have very similar
shapes and are within 10%. This is a good sign as this is the density range probed by the
Lya forest. Above densities of 100 times the mean, the high-resolution results diverge, and
Nyx has higher probabilities. This is a combination of the quicklya star formation removing
high densities in Gadget and overcooling in Nyx.

In Figure 3.8, we show the baryon power spectra in the small-box simulations. We
compute the density perturbations &, = p,/pr — 1, take the power spectrum of the field,
and average in bins of width Ak = kguq = 27/ L. We plot the dimensionless power spectra
A? = k3P/(27%) (for our Fourier convention and being in 3D). The codes behave very
differently in this statistic. First, the Gadget power spectra have different large scale values
because of the mass lost to stars. The total baryon density is still conserved in Gadget, but we
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do not include the mass converted to stars in this power spectrum, hence the large-scale offset.
The Nyx runs show convergence characteristic of a PM code. The large scales agree, but lower
resolution runs have suppressed power at small scales. This is due to the PM gravity solver
in Nyx, where we can see the effect of cloud-in-cell (CIC) filtering in the suppressed growth
of the baryon perturbations. In addition, the overcooling produces smaller, denser structures
than in Gadget, resulting in a significant nonlinear tail in Nyx, which depends much more
strongly on resolution. These very high-density regions are unphysical, but these regions
should not contribute to the Ly« forest signal anyway. Nevertheless, as their overdensity
is very high, they end up dominating the power spectrum shown here. In the same figure,
we also show the power spectra of the thresholded baryon density on the right. We limited
the baryon density to 10 times the mean (where flux is essentially saturated for z > 2), and
used the new mean when computing the overdensity. Since the thresholding operation does
not conserve mass, the large-scale power varies between runs. The thresholding operation is
very effective at removing differences between the Gadget runs. The Gadget runs converge
much more quickly than the Nyx runs in this statistic, mostly because a large fraction of
the mass removed by the thresholding operation has already been taken care of by the star
formation in Gadget. The codes agree well at best resolution, better than 10 percent up to
k ~ 10 hMpc™'. At smaller scales, Nyx still has more power than Gadget. This suggests
that high densities are not as isolated as we typically imagine. Although the high-density
regions saturate the flux, they still affect the nonlinear evolution of nearby lower density
regions.

We show two samples of the p,-T" joint PDFs from the L10 N512 at high and low redshifts
in Figure 3.9. We plot a large range in p;, and 7" in order to show all phases of the IGM as
captured in both codes. The effect of quicklya processing is apparent in the Gadget images,
where there is a sharp cutoff at p, = 1000 p,. As expected, the diffuse phase is similar
between the codes. The p,-T relation overlaps at both redshifts, seen as the sharp white line
in the difference images. However, the scatter around the sharp p,-7" line differs. Gadget has
more points that scatter under the line, while Nyx has more points which scatter above the
line. The Gadget contours also seem to have a bump in the density range 0.1 < py,/p, < 1.
At z = 4, Gadget appears to extend to much higher temperatures and has a much more
substantial warm-hot intergalactic medium (WHIM) phase. At z = 2, the WHIM phases are
much more similar, although Gadget has more underdense points in the 4 <log,, 7/K < 6
range. At both redshifts, Nyx seems to have many more points in collapsed phase, seen as
the dark blue patch in the difference images for p, > 10 py,.

Next, we focus on small differences in the p,-T relation, since they are the most relevant
for the properties of the flux. Figure 3.10 shows boxplots of the temperature distribution
vs. density in the 10 A~'Mpc simulations at z = 2.5. We use density bins over 0.1 <
pv/Ppp < 10 with 0.2 dex spacing. For each density bin, the line in the center of the box
shows the median of log,,7"/K, the box extends from the 16th to 84th percentiles (roughly
the one sigma percentiles for a normal distribution). The whiskers extend down to the 2nd
percentile and up to the 98th percentile (roughly two sigma percentiles). The density binning
is the same for the Nyx and Gadget data, and the boxes are offset from the center only for
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Figure 3.9: The joint PDFs of baryon density and temperature P(py,/pn,T/K) in the L10 N512
simulations. From left to right are the Nyx and Gadget PDFs and their ratios, computed as
100(N — G)/(N + G). Top: the distributions at z = 2. Bottom: the distributions at z = 4.
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Figure 3.10: Boxplots of the temperature distributions vs. density in the 10 A~ Mpc simulations
at z = 2.5. There are 10 density bins over the range 0.1 < py/p, < 10 with 0.2 dex spacing. For
each density bin, the box and whiskers show the shape of the log;y7/K distribution. The line in
the middle of the box shows the median, the box extends from the 16th to 84th percentiles, and
the whiskers extend to the 2nd and 98th percentiles. The density binning is the same for the Nyx
and Gadget data, and the boxes are offset from the bin center only for clarity.
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clarity. The exact shape of the p,-T' relations in the simulations and how they change with
simulation resolution is much more apparent in this figure. This was the one statistic we
considered in which the codes appear to converge differently. With increasing resolution,
the Gadget temperature distributions appear to shift up slightly, while the Nyx temperature
distributions shift down. The spread of the Nyx temperature distribution decreases with
increasing resolution in the low-density bins (p, < 0.2 p,) and increases with resolution for
higher densities. The spread of the Gadget temperature distribution increases with resolution
for all densities shown. Although the codes seem to converge from different directions, at
high resolution, the temperature distributions agree very well. The RMS difference between
the medians is 0.012, for instance, with the Nyx median being about 1 percent higher in all
bins.

3.4 Flux statistics

In this section, we compare the observationally-relevant zero-, one-, and two-point func-
tions of the Lya forest flux — the mean flux, the flux probability density function (PDF),
and the flux power spectrum — in the small-box simulations. We show the mean flux at all
available redshifts, but again we show the flux PDF and flux power only at z = 2.5 for the
sake of brevity. We did find the expected trend in the flux PDF and power that they agree
better at low redshift than at high redshift.

3.4.1 Mean flux

The mean flux (F') is the simplest direct flux statistic, which is a measure of the opacity
evolution in the IGM. We compute the mean flux using all pixels in the box. Figure 3.11
shows the mean flux (F') in the small-box simulations vs. z. We also include the latest obser-
vational results in Becker et al. (2013) on the same panel, rescaled to match the simulation
value at z = 2.5 (note that observationally the well-constrained quantity is the evolution,
rather then the absolute value of the mean flux). We also show the ratios between the codes
in mean flux and the effective optical depth. Again, the codes appear to converge in a sim-
ilar way and with similar ratio values — lower resolution runs have more absorption than
the best resolution. We also find the expected trend that the mean flux is less converged
with increasing redshift. This trend has been shown in previous works (e.g. Luki¢ et al.
2015), and can mainly be attributed to a constant error in the effective optical depth. This
can be seen in the effective optical depth ratio panels, where the 2563 simulation result has
a roughly constant offset from the highest-resolution simulation result. When this error is
compared in the mean flux though, the error is much larger for low mean flux values (high
redshift). At worse resolution though (1283), there are clearly other effects. We found that
lower resolution runs tend to have more absorption not because they miss dense absorption
systems, but because they miss low density extremes.

The mean flux evolution differs between the two codes and both differ significantly from
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Figure 8.11: The mean flux vs. redshift (F)(z) in the 10 ~~'Mpc simulations, and their ratios.
Top panel: (F)(z) in our simulations and compared to the Becker et al. (2013) observed mean
flux fit result, multiplied by a constant to match the z = 2.5 value. Second and third panels: the
percent differences in (F)(z) relative to G_L10_N512 and N_L10_N1024 respectively. Second
and third panels: the percent differences in 7og(z) = —log(F')(z) relative to G_L10_N512 and
N L10 N1024 respectively. The codes converge with respect to resolution at all redshifts, but the
redshift evolution between the codes only agrees to a few percent. Both codes do not agree well
with the observational result. See text for discussion concerning the UV background prescription.
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observations. At the best resolution, Nyx starts at a higher mean flux, but evolves less
than Gadget, so that they are about one per cent different by z = 2.5. Overall, the Gadget
runs have more absorption at all redshifts. Because of this, the G_L10 Nb512 results are
between the N L10 N128 and N _L10 N256 results. We found that this difference mostly
comes from differences in the HI density, which we will explore in Subsection 3.4.5. It is
surprising how much both codes disagree with the evolution of the observed mean flux.
Even with rescaling the observed (F'), the observed (F') evolves less than the simulations at
all redshifts. The codes appear to converge at all redshifts to a precision much better than
the difference between the simulations and the observation. This points toward problems
with the assumed UV background. Again, we use the prescription of Faucher-Giguére et al.
(2009), however, in Luki¢ et al. (2015), we found similar mean flux evolution differences in
simulations using the prescription of Haardt & Madau (2012).

3.4.2 Rescaling optical depths

Simulations of the IGM must assume a particular ionizing background. Common pre-
scriptions of the ionizing background include Haardt & Madau (1996); Faucher-Giguére et al.
(2009); Haardt & Madau (2012), which provide a table of the photoionization rate and heat-
ing per atom for the primordial species Hi, Hel, and Hell at many redshifts. Bolton et al.
(2008); Becker et al. (2011) also implemented parameterized versions of the ionizing back-
ground. The reality is that our constraints on the ionizing background are much weaker
than our knowledge of cosmology, and we often parameterize out our ignorance by rescaling
the simulated optical depths so that the simulated mean flux matches the observed mean
flux. This rescaling operation is roughly equivalent to changing the photoionization rate I'
in the simulation, since 7 o« n o 1/T". The idea is that small changes in I" should only
impact the species fraction to first order and any dynamic effect like changing the density
or temperature is subdominant.

Unfortunately, we found that the mean flux in our simulations are very far from the
observed mean flux and rescaling to the observed mean flux would not be a small correction.
At redshift 2.5 for instance, in our highest resolution runs, Nyx has (F) = 0.664 and Gadget
has (F') = 0.661, whereas Becker et al. (2013) gives (F') = 0.789. We found that in order to
match the observed mean flux at each redshift, we had to rescale optical depths by about
1/3. This is partly due to the low temperatures in our simulations — because we assume
all material is optically thin, the simulations are missing some heating from Hi and Heill
ionization. A hotter IGM in the simulations would produce a higher mean flux, although
the dependence is not so strong, as 7 oc 797, Instead, we believe that most of the
difference is due to the low HI photoionization rate in our ionizing background prescription.
We found that simulations run with the Haardt & Madau (1996) or Haardt & Madau (2012)
prescriptions have mean fluxes much closer to the observed mean flux.

Although we do not need to rescale our optical depths all the way to the observed mean
flux, we do want to remove the effect of the different mean fluxes when comparing other
flux statistics. We found that having different mean fluxes drives most of the differences in
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Figure 3.12: The flux PDF p(F) in the 10 A~!Mpc simulations at z = 2.5, and their ratios. Top:
the flux PDFs. Middle: the percent differences to G_L10_N512. Bottom: the percent differences
to N L10 N1024.

the results. In the case of power spectra, for instance, rescaling a small amount changes the
amplitude much more than the slope. All comparisons between simulation results and data
are done with rescaled fluxes as well, so testing with rescaled fluxes is more relevant in any
case. To keep the rescaling constants small, we decided to scale all optical depths so that
the mean fluxes match that of the mean flux of the simulation with the highest mean flux

(N_L10 N1024 at all redshifts). That is, for the following flux statistics, we use F/ =¢e™ ",
7= Ar,and |A—- 1] < 1.

3.4.3 Flux PDF

We compute the flux PDFs using the full box, with 50 bins evenly distributed in 0 < F' <
1. We show the flux PDFs at z = 2.5 in Figure 3.12. The flux PDF is generally peaked at
the tails of the distribution, although the transmissive end of the distribution is not peaked
at high enough redshift. For all redshifts considered in this chapter, the PDF shows a peak
in the lowest bin due to saturated pixels. At high redshifts (z > 3.5), the distribution is
heavily skewed to saturated fluxes and transmissive F' > 0.5 pixels are very rare due to the
larger opacity of the IGM. By a redshift of about 3, the distribution turns over, and there is
another peak at ' ~ 1, with a drop in the highest bin. The falloff at very high transmission
is due to the fact that the optical depth cannot reach 0 anywhere. In both codes, the flux
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Figure 3.13: The dimensionless 3D flux power spectra AZ(k, u) in the 10 h~!Mpc simulations at
z = 2.5, and their ratios. Top: the dimensionless power spectra, binned in k£ and 4 p bins (each p
bin plotted separately from left to right vs. k). Middle: the percent differences to G110 N512.
Bottom: the percent differences to N L10 N1024.

PDF values converge surprisingly quickly, but the codes converge to slightly different values,
mostly driven by differences at the edges. The 2563 runs appear to agree with the high-
resolution result to a percent in almost all bins, with the most disagreement at the high-F
end, where P falls off quickly. Between the codes, Nyx has a larger probability of /' ~ 0 and
F > 0.9, and the integral constraint pushes the intermediate probabilities down relative to
the Gadget values. The difference at high F' comes from a small difference in position of the
probability peak at F' ~ 0.9 between the codes, where the Gadget P falls off at lower F.

3.4.4 Power spectra

Spatial correlations of the Ly« forest flux provide an excellent probe of matter fluctuations
on relatively small scales (compared to other cosmological probes). The main reason for this
is that we can hope to study them ab-initio, since majority of flux fluctuations do not depend
on complex small-scale astrophysics like galaxy formation, but is instead driven by weakly
non-linear gas dynamics. Flux perturbations are usually defined as dp = (TF> — 1, where (F))
is averaged over all sightlines. We compute the power spectra using this definition of the
flux perturbation, which is the standard used in observations.

The flux field is not isotropic, so it is not appropriate to simply average over k-space
shells to compute a power spectrum. There are many ways to visualize the anisotropy of the



3.4. FLUX STATISTICS 91

power spectrum, but we follow the convention of using P(k, 1) where p is the cosine of the
angle between the mode and the LOS, i.e. u = kj/k. We chose to average the power over
the same k bands as before and 4 y bins. The resulting 3D flux power spectra are shown in
Figure 3.13. From left to right, the power ; wedges shown are increasingly parallel to the
LOS. That is, the panel on the left can be thought of as transverse power and the panel on
the right as LOS power. Lower-resolution runs tend to have more large-scale power, with
a larger tilt, so that they fall off at smaller £ than higher-resolution runs. The rescaling
operation changes this trend a bit, so that along the LOS, some of the lower-resolution runs
do not have more large-scale power. The LOS power tends to agree much better, between
resolutions and codes. This is due to the thermal broadening along the LOS, which acts
to smooth out fluctuations in this direction. Still, it is reassuring that the thermal cutoff
between the codes agrees well. The perpendicular perturbations do not have such a fudge
factor, and show much more small-scale power, which acts to separate the different resolution
simulations much more. The 5123 simulations runs are converged to percents up to k = 10
h Mpc~!, and agree with each other at large scales. Parallel to the line of sight, the codes
agree to 2 percent, and perpendicular to the line of sight, the codes agree to 6% up to
k = 10 h Mpc™!. The main difference between the codes is that Nyx has more small-scale
power, and the small-scale difference is more significant in transverse power. The position
and magnitude of the excess power here matches the result in the thresholded baryon power
in Figure 3.8. We believe this is a result of the high-density regime differences between the
codes, which results in more small-scale growth in Nyx.

Another key Ly« forest observable is the 1D flux power spectrum. Although the 1D flux
power spectrum can be computed by an appropriate integral over the three- dimensional
power spectrum, it is easier and numerically more robust to extract it directly from the
simulations. We compute the 1D power by taking the Fourier transform of ér along each
skewer and averaging the power in bins of k. We show the dimensionless 1D flux power
spectra Apip = kj P/ in Figure 3.14. Again, lower-resolution runs tend to be steeper and
fall off at smaller k. The best resolution results between codes agree decently well up to
about 0.1 km™' s (to 6%), although they clearly have different slopes. The G_L10 N512
result, for example, looks most like the unconverged N L10 N256 result. The disagreement
in the 1D power is driven by the disagreement in the transverse 3D power, which can be
seen considering Pip kH = 5- fo kH, ki)k,dk, .

3.4.5 Remaining differences

Our highest-resolution Nyx and Gadget simulation results agree well, but there are some
remaining differences at the level of a few percent in all common flux statistics. We aim to
find the origin for the small differences in this section. Many of the remaining differences are
mentioned in the flux statistic sections, but we summarize here. In the mean flux, Gadget is
lower at high redshift and evolves more than Nyx, so they are within a percent by z = 2.5.
In the flux PDF, Gadget rises slightly faster than Nyx approaching high transmission, and
Nyx has a higher F' ~ 1 probability. In the flux power, Nyx has more transverse power on
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Figure 3.14: The dimensionless 1D flux power spectra A%‘,lD(kH) in the 10 A~'Mpc simulations at
z = 2.5, and their ratios. Top: the dimensionless 1D power spectra,. Middle: the percent differences
to G_L10_ Nb512. Bottom: the percent differences to N _L10 N1024.
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Figure 3.15: Flux statistics in the L10 N512 simulations using the original fluxes and FGPA-like
fluxes. Top: the dimensionless 3D flux power spectra A%(k, u), and percent differences. Bottom:
the mean fluxes vs. z, the flux PDFs at z = 2.5, and the 1D flux power spectra at z = 2.5.

small scales (> 0.6 h~'Mpc).

In order to reduce the number of variables as much possible, we also tried making new,
simplified flux fields with the L10 N512 simulations. We first removed the effect of high-
density regions by thresholding to densities less than 30 times the mean. We chose a value of
pp = 30 again based on the p, PDF, since the codes have a similar distribution of densities
below 30. For each cell in both simulations, if the density in both simulations exceeded 30,
we set p, = 30. If the density in just one simulation exceeded 30, we used the minimum of
either p;, = 30 or the average of the two original densities. By considering the densities of
both simulations at one time, we ensure the thresholded cells match between the codes. We
know the high-density regions in Nyx are more concentrated and we wanted to prevent this
from creating any differences. We then set the temperature of the gas using a fluctuating
Gunn-Peterson approximation (FGPA; Croft et al. 1998; Gnedin & Hui 1998; Meiksin 2009),
with an equation of state log7 = log Ty + (v — 1) log p,, with parameters matching what
was found in the simulations, Ty, = 11000 K and v = 1.55. We then recalculated nyg, and
computed 7 the normal way. This process of constructing what we call the ‘FGPA-like’ flux
removes differences originating in high-density regions, differences in the p,-T scatter and
even the p,-T line since they are now the same. One possible remaining difference is the effect
of the peculiar velocity, since we did not mask that field. We tried repeating the following
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analysis with the real-space optical depths (v = 0) and found virtually no difference from
the redshift-space results, indicating that the v differences are insignificant.

In Figure 3.15, we compare the original flux stats with the FGPA-like flux stats. In the
top panel, we show the 3D flux power A%(k, 1) and in the bottom panel, from left to right,
we show the mean flux at z = 2, 2.5, 3, and 3.5, the flux PDF at z = 2.5, and the 1D flux
power at z = 2.5. For each of the statistics, we also show ratios between the original flux
results and the ratios between the FGPA-like flux results. The reason for this is to check
if the differences between codes remain the same after simplifying to FGPA-like flux, which
should only depend on the density. In the 3D flux power ratio panels, for instance, we show
the Gadget over Nyx original ratios, the Gadget over Nyx FGPA-like ratios, and the Nyx
FGPA-like over Nyx original ratios. The original flux ratio and FGPA-like ratio lines tell us
if the code differences are preserved between the two flux fields, while the Nyx original to
FGPA-like flux ratio line shows us the difference the FGPA-like flux makes.

The two Gadget to Nyx ratio lines are very similar, indicating that the FGPA process
has not removed the differences between the codes. Although we have removed high-density
regions in the FGPA-like flux, we cannot remove the effect of high-density regions on the
evolution of lower densities. Especially in the transverse power, we see that Nyx FGPA-
like still has about 10 per cent more power than Gadget FGPA-like on small scales around
k = 20hMpc™t. In the mean flux, flux PDF, and 1D flux power panels, we see the same
pattern that the original and FGPA-like ratios lines agree very well. The FGPA-like flux
fields reproduce the mean flux evolving more in Gadget, and has almost the same amplitude.
In the flux PDF, the Gadget FGPA-like flux also has lower edge probabilities, although the
F' ~ 0 probability is a bit higher. We found that the agreement around F' = 0.2 depends on
the density thresholding, and that the ratios agree better as we remove the density threshold.
Although high-density regions are mostly hidden in saturated flux regions, they appear to
have a small contribution to the shape of the low-transmission probability. The agreement
in the 1D flux power is not as clear as in other panels, but we see similar features of the
lower power on large scales and the dip at &k = 10 hMpc™*. The fact that the ratio between
Nyx and Gadget results changes very little going from the full fluxes to the FGPA-like fluxes
suggests that differences between the codes is driven by the differences in the baryon density,
rather than differences in temperatures and velocities.

Overall, we found that the agreement between the original and FGPA-like flux statistics
is increasingly better at high redshift. This agrees with the intuition that there is less scatter
in the density-temperature relation and less mass at high densities at higher redshifts. In
addition, the flux signal at higher redshift is sensitive to lower densities, so that the high-
density regions contribute much less to the signal. As the mean flux increases, the flux signal
becomes more sensitive to high densities, bringing out the differences in how the codes handle
those regions.
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Figure 3.16: Combined flux statistics from the 40 h~!Mpc runs, along with results from the 10
h~'Mpc of the same spatial resolution. Top left: mean flux vs. redshift. Top middle: flux PDF.
Top right: 1D flux power. Bottom: 3D flux power.

3.5 Large-box results

So far, we have only used flux statistics from our small box simulations. Although the 5123
simulations appear converged with respect to resolution, they are definitely not converged
in box size. By z = 2, the box scale mode is significantly nonlinear, and the simulations
are missing growth from modes larger than the box size. Missing large scale modes outside
the small box scale also has significant effects on the bulk flows in the simulations. This
is generally the least converged quantity in small box simulations, and results in a lower
temperature distribution of shocked gas and smaller peculiar velocities (affecting the redshift-
space distortions). In order to compare more representative predictions from both codes, we
also compare flux statistics from larger box simulations at the best resolutions available for
each code. In this case, we have a 40 h~!Mpc simulation from both codes, where the Gadget
run has 2 x 10243 particles, and the Nyx run has a 20483 grid.

In Figure 3.16, we show the combined flux statistics in the 2 large box simulations, along
with the matching resolution small box simulations for comparison. The codes agree to 3
percent at z = 3.5 and are within a percent by z = 2.5, but the large box simulations are
2 to 3 percent higher at all redshifts. The 40 h~'Mpc simulations have a larger mean flux
than the 10 A~'Mpc, and the box size error appears to be roughly constant over redshift (a
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bit larger at high redshift). This is clear in the mean flux ratio plot, where the 10 h~*Mpc
G/N values (red) and the 40 h~'Mpc G/N values (blue) are similar. The Nyx 10 A~'Mpc
over Nyx h~!Mpc ratio values (green) show the magnitude of the box size error. In the flux
PDF, we see a similar trend that the difference between the codes at 10 and 40 h~'Mpc is
similar. In both cases we see that the code error, namely difference between the results of
two codes taken as an estimate of the difference with respect to the truth, is independent of
box size.

When comparing the power spectra, we find, both for 1D and 3D that at the scales shared
between the 10 A~ !Mpc and 40 h~'Mpec, the ratio between the two codes is the same to better
than percent, again indicating that the code error is effectively independent of the box size.
More worringly, however, it appears that the large scales in our 10h~Mpc simulations just
happen to lie correspond to the scales where the two codes agree very well and that the
differences are again more pronounced for the largest scales probed by 40h~! Mpc boxes.
The general trend is that Gadget has less small-scale power and more large-scale power. The
codes are about 4 per cent different for the largest scales, but the difference might be even
bigger had we had resources to run even larger boxes.

3.6 Conclusions

We have performed a detailed comparison of the IGM as captured in the cosmological
hydrodynamic codes Gadget and Nyx. The simulations performed in this work were not
chosen to fit the data, but instead to be a typical problem with which we can thoroughly
assess the numerical accuracy of the two codes under investigation.

Our results can be summarized as follows:

e The two codes agree within several percent precision, when converged results are com-
pared. However, they can approach convergence from different directions and discrep-
ancies can appear to be larger for runs with insufficient precision.

e The differences in the flux probability distribution are dominated by differences at the
extreme fluxes, but the shapes of PDF agree better than per cent level for 0.1 < F' <
0.9.

e The main differences are mostly associated with different behavior of the two codes in
the very dense regions. For Gadget, the particles are transformed to ‘star particles’
with an unrealistic precision, while in Nyx the lack of feedback results in a run-away
overcooling process. While the real-space flux is zero in regions where this effect is
significant, the surrounding regions are affected and the real- to redshift-space trans-
formation accentuates these differences.

e When performing a FGPA-like transformation on the field, we noted that relative
differences remained the same between the codes even though this uses a different
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optical depth — this suggests that the differences seen in the flux statistics originate in
the distribution of baryons.

e Both three and one-dimensional power spectra show differences that are around a few
percent on scales around k& = 1 h~'Mpc, but can be considerably larger (10 per cent
level) for much smaller scales. The same is true for larger scales. In the 40 h~'Mpc
boxes, the differences are around 4 per cent on large scales but naive extrapolation
would indicate it would be even larger on larger scales. This implies that the inferred
large-scale density and velocity bias parameters for the Lya forest are inferred with
similar percent-level accuracy.

We have shown that choice of the code and hence the numerical method leads to irre-
ducible uncertainties that are not negligible compared to the current level of precision in
the measurements of the one-dimensional power spectrum. These uncertainties are mostly
associated with how the codes treat the high-density regions and in data-fitting comparison
they will be naturally marginalized over as part of marginalization over unknown astro-
physics. However, at the same time, results in this work can and should be used to create
new templates that will allow a careful fitting operation to marginalize over the uncertainties
in prediction associated with a choice of a given code.
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Chapter 4

Finding protoclusters using Lya forest
tomographic flux maps

Galaxy clusters are the largest and most massive gravitationally-bound structures in
the Universe, the endpoint of a long process of hierarchical structure formation. Due to
their large mass, deep potential wells and dynamic formation histories they are important
laboratories for studying galaxy evolution, plasma physics, and our models of gravity and
cosmology (Fabian 1994; Kravtsov & Borgani 2012; Feretti et al. 2012). Despite keen interest
in how clusters form, the study of early cluster formation, at high z, is observationally lim-
ited: clusters are rare and surveying large volumes is expensive. Indeed, the total comoving
volume of even the largest surveys for distant galaxies at z ~ 2-3 (e.g. KBSS, Rudie et al.
2012) is only ~ 107 Mpc®, which would barely contain a single rich cluster locally. In the
past decade small samples of protoclusters have been compiled (see e.g. Chiang et al. 2013,
2014, for a recent compilation) but important questions regarding the formation of clusters
and the evolutionary tracks of member galaxies remain unresolved (e.g. Peterson & Fabian
2006; Dolag et al. 2009; Martizzi et al. 2014). There has been progress in the theoretical
understanding of cluster formation through the use of N-body simulations and semi-analytic
galaxy formation models (Baugh 2006; Benson & Bower 2010; Benson 2012) and hydrody-
namical simulations (Sijacki & Springel 2006; McCarthy et al. 2010; Yang et al. 2012; Skory
et al. 2013; Vogelsberger et al. 2013; Genel et al. 2014), although it is a notoriously difficult
problem to predict member galaxy properties from first principles. It is an area of ongoing
research to validate and extend the numerous assumptions and subgrid recipes which are
made in these works.

With the advent of large surveys in the optical and near-IR (Postman et al. 1996;
Kochanek et al. 2003; Gladders & Yee 2005; Koester et al. 2007; Wilson et al. 2009; Muzzin
et al. 2009; Hao et al. 2010; Szabo et al. 2011; Murphy et al. 2012; Rykoff et al. 2014; Bleem
et al. 2014), sub-mm (Marriage et al. 2011; Reichardt et al. 2013; Planck Collaboration et al.
2013b) and X-ray (Ebeling et al. 2000; Bohringer et al. 2004; Burenin et al. 2007; Pierre
et al. 2006; Finoguenov et al. 2007) bands, we now have large samples of clusters, with a tail
extending beyond z ~ 1-2. These surveys leverage the fact that ‘mature’ clusters contain
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large overdensities of (typically red) galaxies and a hot intracluster medium. Protoclusters,
at z = 2 or earlier, lack these signatures making them more difficult to find and study. At
the time of writing only a few tens of protocluster candidates are known at z > 2 (see Chiang
et al. 2013, 2014; Finley et al. 2014; Cucciati et al. 2014), and most candidates were found
via the the signpost technique, i.e. using a radio-galaxy, Ly« blob, or another source as a
marker.

Assuming a mean interior density of 200 times the background density, the linear size
of the mean-density region from which material is accreted into a halo should be about 5-6
times the virial radius of the final halo. For protoclusters this can be up to 10 A~*Mpc,
i.e. we expect that the z ~ 2 progenitors of massive clusters should lie in overdense regions
many (comoving) Mpc in radius. This expectation is born out of numerical simulations (e.g.
Chiang et al. 2013) which also show that the most massive clusters today form not from
the most overdense regions at high z but from large, possibly only moderately overdense
regions (Angulo et al. 2012). The progenitor regions of massive low-z clusters should thus
be identifiable in relatively low-resolution large-scale structure maps of the high-z Universe.
Systematic searches in large, deep, galaxy redshift surveys or multi-band photometric surveys
are one promising way to find protoclusters (e.g. Chiang et al. 2014; Diener et al. 2014; Yuan
et al. 2014), although projection effects pose a challenging problem. Spectroscopic surveys
with sufficient sampling of Mpc-scales take care of this problem, although redshift errors
can still be significant and covering large volumes with such high resolution is prohibitively
expensive.

An alternative is tomographic mapping using Ly« absorption from neutral Hydrogen
in the intergalactic medium (IGM) (Caucci et al. 2008; Cai et al. 2014; Lee et al. 2014a).
Lee et al. (2014a) demonstrated that IGM tomography allows large volumes of the Universe
to be efficiently searched for protoclusters in the z ~ 2-3 range using existing facilities.
By targeting star-forming Lyman-break galaxies (LBGs) as well as quasars at g = 24.5, at
signal-to-noise ratios achievable with existing facilities, we can obtain hundreds of sightlines
per deg?. This sightline density corresponds to average spacings of several Mpc, which
is also the correlation scale of the Lya forest. By sampling the IGM absorption along
and across sightlines with Mpc spacing, we are able to tomographically reconstruct the 3D
Lya forest flux field. These tomographic maps have a resolution similar to the average
transverse sightline spacing and naturally avoid projection effects or redshift errors. In
Lee et al. (2014b), we constructed a tomographic IGM map using 24 LBG spectra with
an average sightline separation (d,) = 2.3h~'Mpc, obtained with two 2-hour exposures
on Keck LRIS. These observations made up the pilot data of the COSMOS Lyman-Alpha
Mapping And Tomography Observations (CLAMATO) survey, which we plan to extend to
cover 1 deg?. These observations will result in a tomographic map with a volume of roughly
70 x 70 x 230 A~ *Mpc and 2 h~!Mpc resolution. Such a map will provide an unprecedented
view of the intergalactic medium and provide a large volume to search for protoclusters.

Given the diversity of protoclusters, the ability to construct large samples is important
if we are to draw robust conclusions about cluster formation. Optical, sub-mm and X-ray
facilities could then be used to follow up the most promising candidates looking for galaxy
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over densities, Compton decrements or faint, diffuse X-ray emission. The HETDEX (Hill
et al. 2004) and Subaru Prime Focus (Takada et al. 2014) spectrographs would be particularly
powerful for following up such candidates in the optical. As we shall show later, the most
massive progenitors of the most massive clusters today (M > 3 x 10 h~'My) can reach
the rich group scale (M ~ 3 x 10 h='M)) before z ~ 2. Such structures could well have
observable galaxy overdensities and a hot gas component at early times.

4.1 Simulations

In order to validate our protocluster search strategy, and to study the purity and com-
pleteness of the sample we obtain, we make use of cosmological N-body simulations. We
require a simulation which simultaneously covers a large cosmological volume (to have a
statistically fair sample of the rare clusters and protocluster regions) while having a suffi-
ciently small inter-particle spacing to model transmission in the IGM. The requirements are
sufficiently demanding that we have used a pure N-body simulation, augmented with the
fluctuating Gunn-Peterson approximation (FGPA; Petitjean et al. 1995; Croft et al. 1998;
Meiksin & White 2001; Meiksin 2009). This simulation was also used in Lee et al. (2014b).

4.1.1 N-body simulation

Our simulation employed 25603 equal mass (8.6 x 107 h~1 M) particles in a 256 h~'Mpc
periodic, cubical box leading to a mean inter-particle spacing of 100 A~ kpc. This is sufficient
to model the large-scale features in the IGM at z ~ 2 — 3 using the FGPA (Meiksin & White
2001; Rorai et al. 2013) and more than sufficient to find clusters at z = 0. The assumed
cosmology was of the flat ACDM family, with Q,, ~ 0.31, Quh% ~ 0.022, h = 0.6777, n, =
0.9611, and og = 0.83, in agreement with Planck Collaboration et al. (2013a). The initial
conditions were generated using second-order Lagrangian perturbation theory at z. = 150,
when the rms particle displacement was 40 per cent of the mean inter-particle spacing. The
particle positions and velocities were advanced to z = 0, using a TreePM code (White 2002)
assuming a spline-softened force with a Plummer equivalent smoothing length of 3 h~'kpc.
This TreePM code has been compared to a number of other codes and shown to perform
well for such simulations (Heitmann et al. 2008).

4.1.2 Halo catalogs

At z = 0 and z = 2.5, we generated halo catalogs using a friends-of-friends (FoF; Davis
et al. 1985) algorithm with a linking length b = 0.168. This algorithm partitions particles into
groups bounded approximately by isodensity contours of roughly 100 times the mean density
(e.g. Lacey & Cole 1994; White 2001, and references therein). Since we focus only on the
most massive objects in our simulations, FoF halos are sufficient — more sophisticated halo
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finding methods will recover more detailed halo and subhalo properties, but with increased
complexity and computational cost?.

4.1.3 Lya flux field

For the output at z = 2.5, we also generated mock Ly« forest spectra on a 2560° grid
with the FGPA. This approximation makes use of the fact that adiabatic cooling of the gas in
the presence of a photoionizing ultraviolet background leads to a tight density-temperature
relation in the low density gas responsible for the Lya forest seen in absorption against
bright objects (Gnedin & Hui 1998; Meiksin 2009). The approximation has been shown to
match more detailed hydrodynamical computations at the ten percent level (Meiksin et al.
2001; Viel et al. 2002; McDonald 2003; Viel et al. 2006), and is certainly sufficient for our
purposes.

The dark matter particle positions and velocities were deposited onto the grid using
CIC interpolation (Hockney & Eastwood 1988). We then Gaussian filtered the density and
velocity on the grid in order to approximate the pressure smoothing which affects the gas
density. We assumed an IGM temperature at mean density Ty = 2 x 10* K, which gives a
filtering scale of about 100 2~ 'kpc at the redshifts of interest here (e.g. Gnedin & Hui 1998;
Viel et al. 2002; White et al. 2010; Rorai et al. 2013). Our results are largely insensitive to
the details of this pressure smoothing procedure, since we are probing fluctuations on much
larger scales (Mpc). We set the temperature according to the density-temperature relation
T = To(p/p) !, with a standard choice for the equation of state parameter v = 1.6 (Lee
et al. 2015). We compute the optical depth to H1 Ly« scattering 7 and the transmitted flux
fraction F' = e~ 7 assuming the HI density is proportional to the ratio of the recombination
and photoionization rates ng, o< p?T~%"T'~! and that the line profile is a Doppler profile,
and we normalize the optical depth such that the mean flux (F') = 0.8, matching the recent
observational result in Becker et al. (2013) for this redshift. This scheme ignores several
phenomena that could affect the Lya forest including spatial fluctuations in the tempera-
ture of the IGM due to reionization inhomogeneities, spatial fluctuations in the ultraviolet
background due to the shot noise of sources, and galactic outflows. Fortunately, at the Mpc
scale, the effects of galactic outflows and temperature fluctuations on flux should be rather
small, while we expect the ultraviolet background to fluctuate on scales of several hundred
Mpc (McDonald et al. 2005a; Greig et al. 2014; Pontzen 2014; Gontcho et al. 2014). In the
remainder of the chapter, when we refer to flux, we mean the Ly« forest transmitted flux
fraction perturbation dp = F/(F) — 1.

The final products we use from the simulation, then, are the halo catalogs at z = 0 and
2.5, including the positions of the particles within those halos at z = 2.5, and 3D grids of
density and flux. We begin by studying the relationship between this ideal flux field and the
halos and protoclusters. In Section 4.5, we will look at the impact of finite sightline density,
resolution and noise on the recovery of the flux field.

1For a recent review and comparison of halo finding methods see Knebe et al. (2011).
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Figure 4.1: The halo mass functions for all halos at z = 0 (black), all halos at z = 2.5 (blue),
protocluster halos (red), and the most massive halos in each protocluster (green). The massive end
of the high redshift mass function is dominated by protocluster halos. The most massive halo in a
protocluster is typically 103 h~'Mg at this redshift.

4.2 Protoclusters in density and Lya forest flux

The boundary between a rich group and a cluster is somewhat arbitrary, but we shall
define a cluster at z = 0 as a halo with a FoF mass larger than 10 h=*M,. We have 425
halos above this mass in the simulation at z = 0 which form our sample. A protocluster
is the high-redshift progenitor of such massive halos, but due to the hierarchical process by
which halos form, there is some ambiguity as to what constitutes the progenitor. At z ~ 2 —
3, the mass which will eventually lie within the z = 0 halo is spread among several relatively
large progenitor halos and in the nearby IGM, spread over tens of (comoving) Mpc. We
tracked the cluster progenitor halos by finding all halos at z = 2.5 that contributed half
or more of their mass to the resulting cluster. We show the mass functions of all z = 2.5
halos, of protocluster halos, and of the most massive halo in each protocluster in Figure 4.1.
The high-mass end of the mass function is dominated by the halos that form clusters, but
the protocluster halos do not make up all of the high mass halos. Protocluster halos only
make up about half of the halos near 10'® h~!Mg for instance. We found that the most
massive progenitor halo is typically about 10® A=!M,, with more massive clusters having
more massive progenitor halos on average. Only the most massive such halos are likely to
host a hot, X-ray emitting ICM or be found as significant overdensities of galaxies. We also
computed the second moment of the progenitor halo positions />, m;(x; — x)?]/[>_, ml,
where X is the average position and m; and x; are the halo masses and centers, as done in
Chiang et al. (2013) to confirm the extent of the halos they found at this redshift. We found
that the progenitor halos are spread over 4 — 8 h™!Mpc, in good agreement with their values
at z = 2 — 3. However, in contrast to Chiang et al. (2013), we are interested less in the
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Figure 4.2: Slices through the density and flux fields centered on two protoclusters. The line-of-
sight direction is horizontal. The upper row shows a cluster/protocluster which is easily found by
our method, while the lower row shows a more problematic case. The upper row cluster has a mass
M = 9 x 10" h~'Mg, while the lower row cluster has a mass M = 3 x 10 h~'Mg. We chose
these sample protoclusters based on the dp value at the protocluster center of mass (COM), where
the top protocluster has the smallest dr value, and the bottom protocluster has the largest. The
slices are 40 x 40 h~'Mpc on a side and 5 h~'Mpc thick. In each row, the color scale shows the log
overdensity or flux perturbation: (Left) the z = 0 density (centered on the cluster COM), (Middle)
the z = 2.5 density (centered on the protocluster COM), (Right) the z = 2.5 flux perturbation,
d0r. Note that overdense regions correspond to regions of increased absorption, or more negative
0, and that correlation is quite strong on these scales. The small differences in the z = 2.5 density
and flux fields are due to the density is shown in real-space while the flux is in redshift-space.



4.2. PROTOCLUSTERS IN DENSITY AND LYa FOREST FLUX 104

progenitor halos and more in the large-scale overdense region from which the mass of the
cluster will be assembled.

In order to define the protocluster center, we tracked particles that form the core of the
z = 0 cluster back to z = 2.5, and computed their center of mass (COM). The choice of
particles that constitute the ‘core’ of the cluster is arbitrary, but the exact choice of particles
does not matter as long as the resulting COM does not change significantly. We chose
to select the particles within 200 2~ 'kpc from the most bound (densest) cluster particle at
z = 0. We refer to this collection of particles that makes up the cluster core as the N-densest
particles. We found that changing the cutoff radius from 100 to 500 h~'kpc results in small
changes to the protocluster center, on the level of 100 ~'kpc, which is negligible for objects
spanning several Mpc. Inspired by Chiang et al. (2013), we define the protocluster radius
Tpe as the radius of a sphere, centered on the protocluster center, enclosing 50 per cent of the
particles which belong to the halo at z = 0. We found the expected trend that more massive
clusters have larger protocluster sizes. The 10" percentile radius is 3.3 h~'Mpc, the 50"
percentile is 4.1 A~'Mpc, and the 90" percentile is 5.4 h~'Mpc. The largest half-mass radius
we found in the simulation is 8.9 h~'Mpc, and this protocluster forms a 10'° =M, cluster.
This, in combination with the moment of the progenitor halo positions, gives us good reason
to believe that protoclusters will stand out on scales of ~ 4 h~'Mpc at this redshift.

We show two examples of protoclusters, as seen in density and Ly« forest flux, in Fig. 4.2.
The upper row shows a protocluster with a large coherent structure which will be easily found
by our method, while the lower row shows a case where the protocluster is spread out and will
prove much more difficult to find. The upper row cluster has a mass M = 9 x 101 A~1M,,
while the lower row cluster has a mass M = 3 x 10! h='M,. From left to right, we show the
2z = 0 density, z = 2.5 density, and the flux in a slice 40 h~*Mpc across and 5 h~'Mpc thick.
Due to the physics of the IGM, the flux is tightly correlated with the matter density on large
scales, with overdense regions leading to more absorption (low flux). In the protocluster in
the upper row, the progenitor halos that merge to form the cluster can be easily seen in the
middle column and lead to a large, coherent flux decrement in the right column. The flux
decrement in the lower row is still visible, but it is not as pronounced, because the halos
making up the protocluster are more diffuse. We compared the progenitor halos of these
clusters and found that at fixed mass, the protocluster in the upper row has three times as
many halos and that the most massive halo is twice as massive, indicating that the upper
row cluster forms earlier. The most massive progenitor halo in the upper row cluster has a
mass of 3 x 1013 h~tM, — a typical rich group mass — meaning that it should be easier to
follow up at high redshift. Overall, we found that 40 per cent of the protoclusters contain a
halo with a mass M > 103 h~!M,.

Not surprisingly, all of the protocluster regions lie on the high-density tail of the density
distribution. We smoothed the density field with Gaussian filters of scales 2, 4, and 8 h~*Mpc
(labeled po, p4, and pg respectively) and compared the distributions of the full field and the
protoclusters. We smooth the fields for two reasons: to mimic the characteristic resolution of
our tomographic maps and because protoclusters should stand out most on scales of several
Mpec. The top panel of Figure 4.3 shows the probability density function of the density p(p)
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Figure 4.3: Distributions of the matter density and flux, smoothed with Gaussians of o = 2, 4, and
8 h~!Mpc (labeled pa, ps4, and pg with the broadest distributions having the smallest o). Solid lines
show the PDF for the entire volume while the dashed lines indicate the densities or fluxes at the
protocluster positions. The top two panels show the matter density PDF, P(p), and the cumulative
distribution, C(p), plotted as 1 —C' to highlight regions of high density. The horizontal dotted black
line shows the 95" percentile. We see that protoclusters preferentially lie in the highest density
regions of the density field, smoothed on Mpc scales. The lower two panels show the PDF and
cumulative distribution for the flux perturbation, §r. We see that protoclusters preferentially lie in
the negative tails of the distribution.



4.2. PROTOCLUSTERS IN DENSITY AND LYa FOREST FLUX 106

individual — stack fit

12} o=>5.1|

5F/‘75F

S & A O M L o _onN b~ o ®

é 8 10
r (h™*Mpc)

o
Ny
I

Figure 4.4: The radial density and flux profiles of the protocluster regions (from the 4 A~ Mpc
smoothed fields). We show the individual profiles in grey, the average profiles in black, and Gaussian
fits in dotted red. (Top) the density profiles. We plot p/o,, where o, is the standard deviation of
the field, since we are interested in how extreme the protocluster regions are. (Bottom) repeated
with flux. The fit Gaussian scale ¢ is annotated in red.

for random positions (solid) and for the protocluster regions (dashed). The majority of the
protoclusters have densities exceeding the 95" percentile of the density distribution. This is
clearer in the second panel showing the cumulative distribution C(p), plotted as log-scaled
1 — C to highlight the high-density tail. Here, it is easy to see the 95" percentile density for
the field, and compare to the protocluster distribution. Regardless of the smoothing scale,
nearly all protoclusters have densities in the 95" percentile tail. In the bottom two panels,
we show the probability density and cumulative distribution of the flux. Since the large-
scale flux is so tightly correlated with the density, we find that the majority of protoclusters
similarly lie in the low-flux tail of the distribution. Protoclusters can thus be found quite
efficiently by searching for large-scale flux decrements (see also Cai et al. 2014). In 1D, large-
scale flux decrements can also be created by damped Ly« systems (DLA) (Meiksin 2009).
However, DLAs have physical extents of < 100 h~'kpc, much smaller than our transverse
scales, which make it very unlikely for DLLAs to contaminate several nearby sightlines at the
same redshift.

The radial profiles of the protocluster in density and flux are shown in Figure 4.4. These
profiles were constructed by radially binning the 4 h~!Mpc smoothed fields, from the center
of each protocluster (grey lines) and by stacking all protocluster profiles (black lines). Again,
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we use the smoothed fields to mimic the tomographic map resolution and to highlight proto-
cluster scales. On the y-axis in both panels, we plot the standard-deviation normalized values
(where we use the standard deviation of the smoothed field) to see how much protocluster
profiles stand out relative to other fluctuations at this scale. The overdensity and flux decre-
ment near the center is significant. We found that the profiles are even more pronounced
in the 2~ 'Mpc smoothed fields, while in the 8 h~!Mpc smoothed fields, the profiles are
shallow, and do not stand out significantly in the center. This indicates that smoothing at a
scale of 8 b~ Mpc is likely too aggressive for our application. We fit Gaussian profiles to the
average density and flux profiles, and show the fits with dotted red lines. We also annotated
the fit Gaussian o values, which indicate that the protoclusters are overdense/under-fluxed
over several Mpc. These results validate our strategy for finding protoclusters by looking for
large-scale flux decrements in the Ly« forest.

In Figure 4.5, we show three protocluster properties vs. the resulting cluster mass M (z =
0). We plot the individual protocluster values with light gray dots, and M (z = 0) binned
results (with std. dev. error bars) in black. The red dashed lines show approximate scalings
for each quantity. The top panel shows the protocluster half-mass radii, which scales with the
cluster mass. We expect the half-mass and virial radii to scale similarly with mass. The red
line shows the r oc M/? relation, which fits the protocluster sizes well. This falls in line with
the expectation that more massive clusters form from larger overdense regions. The second
panel shows the protocluster flux decrement dp/0s,., evaluated at the protocluster centers
from the 4 h~*Mpc smoothed flux field. In this case, the red line is entirely empirical. We
noticed that the flux decrement scales roughly linearly with log M (z = 0) and found a good
fit using 6p x —2.9log M(z = 0). This means that more massive clusters stand out more
significantly in the flux field, although the flux decrement from low mass clusters is not very
significant. Some low mass clusters have decrements of only 1 or 2 o, which are probably
too difficult to distinguish from other background fluctuations. Clusters with a mass greater
than 3 x 10 h~'M,, however, mostly originate in regions that are greater than 3o flux
decrements. For this reason, we expect to focus on finding more massive protoclusters.
Finally, in the bottom panel, we show the mass of the most massive protocluster halo. The
red line shows the linear scaling M (z = 0) o« M (z = 2.5), although the cluster masses appear
to grow a bit faster than this. Although there is significant scatter in this relationship, this
confirms that more massive progenitor halos form the more massive clusters. This is similar
to what Conroy et al. (2008) found, where halos roughly maintain mass rank order as they
evolve from z = 2 to z = 0. Altogether, these trends suggest that finding progenitors of the
most massive clusters will be easiest, because they host the most massive halos, their flux
decrement is more significant, and because the decrement covers a larger volume. We check
if this expectation holds up in Section 4.5.

This section contains a basic characterization of protocluster environments, but it is im-
portant to note that our protoclusters have a wide range of sizes, profiles and overdensities
(see also Chiang et al. 2013). We have presented a simplified view of protoclusters focused on
properties that will allow us to identify them in flux maps. The full picture of these environ-
ments is probably much more complex, as illustrated by the examples in Figure 4.2. Large
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Figure 4.5: Several protocluster properties vs. the resulting cluster mass M (z = 0). In each panel,
we plot each protocluster as a gray dot, and the M (z = 0) binned result with std. dev. error bars in
black. The red dashed lines show an approximate scaling. Top: the protocluster half-mass radius
Tpe- The red line is the r oc M 1/3 relation, which fits well. Middle: the flux decrement dp /055,
evaluated at the protocluster center, smoothed with a 4 h~!Mpc Gaussian. We show dr/0s, on
the y-axis to show how extreme the protocluster regions are. The protoclusters that stand out the
most form the most massive clusters. The red line is an empirical fit of ép x —2.9log M (z = 0).
Bottom: the mass of the most massive halo in the protocluster. The red line assumes linear growth,
M(z = 0) o« M(z = 2.5). The high mass clusters appear to grow faster than the linear scaling,
although this could be due to small numbers.
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statistical samples are required to obtain a representative view of protocluster formation and
the impact of the protocluster environment on galaxy formation and evolution.

4.3 Reconstruction method

We have argued that an efficient method for finding protoclusters is to look for large-
scale decrements in the flux field. In this section we discuss how to make intermediate-
resolution maps of the flux field, suitable for protocluster searches, from observations of
closely-separated sightlines.

We use a Wiener filter (Wiener 1949; Press et al. 1992) to estimate the 3D flux field from
the noisy observations along multiple sightlines, as advocated by Caucci et al. (2008); Lee
et al. (2014a). The Wiener filter provides the minimum variance, unbiased linear estimator of
the field (under the assumption of a normal distribution) and can be used to interpolate the
data into regions which are not directly sampled, making it ideal for our purposes?. We briefly
review the derivation of the Wiener filter, as we use it, in Section C.1, where we also describe
our efficient numerical implementation. Collecting all of the observations of normalized flux
into a data vector, d, which is the sum of a signal and noise d = s + n, the Wiener filter
estimate of the signal at an arbitrary position is § = Ld with L = S,,,,,(S,, + N)~!. Here S
is the assumed signal covariance, where m and p indicate map or pixel coordinates, and N
is the noise covariance. The reconstructed map is thus

8§ =S,,(S,, +N)~'d (4.1)

Following Caucci et al. (2008), we model S as the product of two Gaussians for separations
along and transverse to the line-of-sight:

(x1i—x15)° (@ —7p)°
Si; = opexp | — 27 I 2lﬁ ! (4.2)

For the noise covariance, we assume that the pixel-to-pixel noise is independent, so that
N;; = n?d;;. These assumptions are approximations, but they are reasonably accurate in
the context of the Lya forest and the reconstruction is not sensitive to the form assumed
(see tests in Section C.2). Assuming this form for the signal covariance and that the noise
covariance is diagonal provides a huge advantage computational advantage, as it allows us
to never store the matrices directly and instead compute them as needed. This reduces the
space complexity of the algorithm from N? to N so that we can still fit large problems on a
single node. We provide more details of our implementation in Section C.3.

In this work, we only discuss reconstructing the flux field since it is sufficient for our ap-
plication of finding protoclusters. However, we note here that other authors have considered
schemes to reconstruct the matter density in the context of galaxies as tomographic tracers

2See Pichon et al. (2001) for a more general method than Wiener filtering and Cisewski et al. (2014) for
a non-parametric method
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(Willick 2000; Kitaura et al. 2009; Courtois et al. 2012) and the Ly« forest (Kitaura et al.
2012) and how to account for redshift-space distortions in the reconstruction.

4.4 Protocluster identification

As shown in Section 4.2, protoclusters are significant outliers in density and flux on scales
of several Mpc. In this section, we show how we can exploit this fact to identify protoclusters
in the flux maps.

There are many ways we could test for large-scale outliers, but we start with a simple
process of smoothing with a preferred scale and applying a threshold. We smooth the flux
field with a 3D Gaussian filter, typically with a scale o = 4 h~!Mpc. Since the protocluster
profiles are roughly Gaussian with a similar scale, this acts much like a matched filter. We
tried running this procedure with the different o values of 2, 4, and 8 h~*Mpc and found that
the 4 h~*Mpc version performs best. Next, we select all points below some threshold, and
group nearby points together. The grouping process is also simple, where we merge points
within 4 h~!Mpc. This merging process ensures that we do not mistakenly break up low-flux
regions and also that each region has a buffer from other regions. Finally, for each group of
points, we define a protocluster candidate as a 4 h~*Mpc sphere centered on the minimum
flux point in the group. In principle, we could adjust the choices of the smoothing scale,
merging distance, and candidate radius independently to optimize the candidate selection,
but we found it was not necessary for our purposes, where this simple procedure already
performs well.

We also tested a more advanced procedure for identifying protoclusters in the flux maps
to be sure our protocluster efficiency was not too limited by our simple method though. We
exploit the fact that we know the shape of the protocluster signal. We assume the flux map
d(x) is a combination of the protocluster signal and the background fluctuations of the Ly«
forest. That is, d(x) = A7(x) + 0p(x), where 7(x) is the shape of the protocluster profile
and A is the strength of this signal.

In this case, the derivation of the optimal filter is shown in Appendix A of Haehnelt &
Tegmark (1996), which we briefly review. We estimate the protocluster signal by convolving
with a filter 1(x), so that A = [ ¢)(x)d(x)d*z. The filter is normalized such that the estimate
is unbiased, requiring [ ¢ (x)7(x)d*z = 1. In Fourier space, the unbiased, minimum variance
estimator is then (k) = C7(k)/P(k), where tildes indicate the Fourier transform of a
quantity, P(k) is the power spectrum of §z(x), and C' is the normalization constant.

The optimal filter requires models for the protocluster profile and Ly« forest power spec-
trum. We model the protocluster profile as a Gaussian product parallel and perpendicular to
the line of sight. This is similar to the data and model shown in Figure 4.4, although in this
case we break spherical symmetry into the perpendicular and parallel components. We found
that the average protocluster has a Gaussian o scale of about 7 h~'Mpc perpendicular to the
line of sight, and is reduced to about 4 h~'!Mpc along the line of sight due to redshift-space
distortions. We fit the Lya forest power spectrum with a Kaiser and isotropic Gaussian-
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Figure 4.6:  'The optimal filter ¢ in the z,,z plane. The black dashed line shows the ¢ = 0
contour.

damped redshift-space power spectrum model, P(ky, k) = ak*(1 + ﬂkﬁ/k‘Q)Q exp(—k?0?).
The normalization of the power is set by a combination of the bias of the Ly« forest the
normalization of the primordial power spectrum. The k% term accounts for a simple form of
the primordial power spectrum scaling, which is sufficient for the scales in the simulation.
The Kaiser term (1+ ﬁkﬁ /k?) handles the effects of redshift-space distortions on large scales.
We include an isotropic, Gaussian damping term in order to capture suppression of small-
scale fluctuations either due to pressure support or the smoothing effect of the Wiener filter.
We found that the values @ = —1.85, 3 = 1.07, 0 = 2.06 h~'Mpc provided a good fit. The
resulting filter, in configuration space, is shown Figure 4.6. It is encouraging to see a neg-
ative region in the plot of 9 (x,,2|). This means that the filter will naturally downweight
modes which are dominated by background Ly« forest fluctuations. This is an improved
filter compared to the 3D Gaussian filter used in the rest of the text, but we found that it
did not make a significant difference in the candidate identification result.

To get an idea of how this identification procedure performs, we first tested identifying
protocluster candidates from an ideal flux field. We took the high-resolution flux field from
the simulation, smoothed with a 4 h~'Mpc Gaussian, and downsampled to a typical map
resolution (grid spacing) of 1A 'Mpc. We chose a threshold of —3.5 times the standard
deviation of the field, because we found this value performed best for finding protoclusters
forming > 3 x 10" h~'M,, clusters (see Figure 4.5). When we used more negative thresh-
old values, we only found the most massive protoclusters, and when we used more positive
threshold values, the protocluster purity decreased and very large protoclusters were mis-
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Figure 4.7: Halo statistics in 4 h~*Mpc spheres centered on protocluster candidates (selected by
flux decrement) compared to centered on random points. In each row, we plot the candidates as
points on the left and on the right, we plot the cumulative distribution of the candidates and random
points. Top: The number of halos in the sphere. Middle: The mass of the maximum mass halo,
where the marker indicates the candidate category based on the z = 0 mass (green dots for clusters,
blue triangles for rich groups, and black crosses for anything smaller). Bottom: The z = 0 mass of
the maximum mass halo.
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takenly merged. These threshold points make up about 1072 of the simulation volume, and
were grouped into 68 candidates.

For each candidate, we computed the number of halos in the 4 h~!Mpc radius sphere
and found the maximum mass halo within the sphere. We assigned each maximum mass
halo to a z = 0 halo by tracking its particles to z = 0 and checking which z = 0 halo
contained the most of its particles. The candidate is a protocluster if this z = 0 halo mass is
> 10" h~!M,. We also computed these basic halo statistics for randomly positioned spheres
to compare to a field distribution. The results are shown in Figure 4.7, where we plot the
candidate number of halos, maximum 2z = 2.5 halo mass, and resulting z = 0 halo mass vs.
the candidate dp /05, value. These panels clearly show that the low-flux selected candidates
have large halo overdensities and are almost all protoclusters. In the top panel, we plot the
number of halos in the protocluster candidate regions which shows that the candidates are
all fairly rich environments. The candidate regions are on average 5 times the field median
value and the cumulative distributions are well-separated. We note that our minimum halo
mass is about 4 x 10° h~'M, corresponding to the requirement that an FoF halo contains
at least 50 particles. The middle panel shows the candidates’ maximum-mass halo masses,
with markers indicating the candidate category based on the z = 0 mass. The green circles
are clusters, the blue triangles are nearly clusters, and the black cross is a failure. We also
plot the z = 0 halo masses in the bottom panel. The four ‘nearly’ protocluster candidates
have z = 0 masses of 5.6, 8.1, 8.5, and 9.4 x 103 h=!M,, while the failure candidate has
a z = 0 mass of 2.4 x 101¥ h~'M,. In all panels, we see the expected trend that the more
significant candidates (in terms of the minimum flux value) have richer environments and
result in more massive clusters. This also illustrates how the identified protoclusters are
more than overdense regions — they already host many galaxies and massive galaxies that
can be followed up.

The candidate and random sphere cumulative distributions for the maximum z = 2.5
mass halos are particularly interesting. Half of the candidate maximum mass halos are in
the mass range of 102 — 10 h~!M, and the remaining half are in the 10 — 10 A=1M,
range. In the random distribution, half of the maximum mass halos are < 102 h=1M,, but
there is a significant tail to high masses and the distributions cross at 3 x 101¥ h=*M,. We
checked the total population of 3 x 10'2 h~!M, halos at z = 2.5 and found that only 30
per cent end up in clusters by z = 0. This suggests that our identification procedure is not
just picking out the most massive halos, but finds massive halos with the right environments
to form clusters. This is supported by the cumulative distributions in the bottom panel,
where the candidate and random position distributions are well-separated again. Despite
our simple identification procedure, these results demonstrate that searching flux maps for
large flux decrements is very effective for finding protoclusters.

We used a fairly conservative threshold value (—3.505,) in order to achieve a high can-
didate sample purity of 93 per cent, compared to the random sample purity of 5 per cent.
However, this comes with the cost of missing many of the low-mass protoclusters. We checked
the candidate completeness vs. cluster mass, and found that above 3.5 x 10 h~!Mg, the
completeness is constant and around 80 per cent. Below this mass, the completeness falls
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off, reaching 50 per cent around 2.4 x 10** h=*M), and 25 per cent around 1.5 x 10* A~ M.
As shown in Figure 4.5, we expect only more massive protoclusters (those forming > 3 x
10 =M., clusters) to stand out significantly in the flux maps, using a simple threshold
at least. At the same time, the number of clusters quickly increases as we lower the mass,
since these objects are on the tail of the mass function. This unfortunate combination drives
our sample completeness to very small numbers for protoclusters forming low-mass clusters.
However, for moderate-mass protoclusters (forming > 3 x 10 h~'Mg, clusters), the method
performs well and successfully identifies 70 — 80 per cent of the population.

4.5 Mock surveys

In this section, we construct several tomographic mock surveys and run reconstruc-
tions on the synthetic data to test how our protocluster identification will perform on re-
alistic data. Specifically, we are interested in what we can achieve with different values
of the average sightline separation (d ), as Lee et al. (2014a) demonstrated that this is
the most important factor in determining the quality (effective SNR) in the reconstructed
maps. Lee et al. (2014a) provides a simple relation between the exposure time e, the
minimum signal-to-noise ratio (SNR) per A SNRy,, and the average sightline separation:
texp OC SNRminz(d 1)716. We assume a fixed SNRy, of 1.5, similar to the recent observa-
tions of Lee et al. (2014b), so that the exposure time is just a proxy for the desired average
sightline separation. In principle, we could vary the sightline density and the SNR indepen-
dently, but in practice this is not a useful test. If we increase the exposure time to build up
the SNR, it is more advantageous (in terms of the reconstruction quality) to target fainter
sources and increase the sightline density. We initially chose values of (d,) = 2, 2.5, 3, 4,
and 6 h~'Mpc. We expect that a resolution of 2 h~'Mpc will be difficult but possible with
existing instruments, while a spacing of 4 h~!Mpc is fairly coarse, and we expected 6 h~Mpc
to perform poorly for our application. We note that the sightlines in Lee et al. (2014b) have
an average separation of 2.3 h~!Mpc. When we found that the (d,) = 6 h~'Mpc separation
run still performed decently, we added a survey configuration meant to mimic the Baryon
Oscillation Spectroscopic Survey (BOSS) survey (Dawson et al. 2013). For the BOSS-like
configuration, we chose an average sightline separation of 15h~'Mpc, which is roughly the
spacing for the 200 deg? of the survey with a source density of 1.5 — 2 times the mean.

We construct mock surveys using our full (256 A~'Mpc)® box. We first choose skewer
positions by drawing random (z,y) coordinates in the box. We take the ideal F' values along
the skewer, smooth the signal based on a typical instrumental resolution R = 1100, and bin
in pixel widths of 1.2 A. We call this smoothed and binned flux Fl.. For each spectrum,
we choose a constant per pixel SNR. We draw a random SNR value from a simple SNR
distribution described below. Next, we realize noise for each spectrum based on its per pixel
SNR value. For each pixel, we draw a random noise value from a normal distribution with
scale 0 = (F') /SNR. We add the noise vector Fyoise t0 Fingt to get the final mock fluxes Fyy,,.
Altogether, the input to the reconstruction includes the pixel positions x, the data vector
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d = F,/(F) — 1, and the noise vector n = 1/SNR.

We model the sightline SNR distribution as a power law, with a scaling based on the
LBG luminosity function and the observed distribution in Lee et al. (2014b). We define
the number of sightlines per deg? as ni, = (70 h~*Mpc/(d, ))? deg™? for our cosmology and
z = 2.5. Our model is dnj,s/dSNR o« SNR™, and we want to determine values of a.
Based on fits to the LBG luminosity function, Lee et al. (2014a) found that dlogn.s/dg is
close to unity for the sources we are interested in, where g is the source g-band magnitude.
Combined with the relation dlog SNR/dg = —2.5, we have a = —dlog nj.s/dlog SNR = 2.5.
This is a good approximation, but as we probe brighter in the luminosity function and
sit more on the exponential tail, we know that |dlogmn.s/dg| must increase. To correct
for this, we take the SNR distribution from our pilot observations, rescale them based on
SNRyew/SNRobs = ({d1 ) new/{d1)obs) "%, and fit a power law. For our choices of (d,) = 2,
2.5, 3, and 4 h~'Mpc, we found a = 2.7,2.9, 3.5, 3.6. For larger separations, we did not have
enough bright sources in the pilot observations to reliably estimate «, so we kept a = 3.6.
We note that for large separations, we would also target more QSOs, which have a smaller
|d1og nyes/dg| value at these magnitudes, and provides a natural maximum value for a.

Altogether, we ran 30 mock surveys and reconstructions. For each choice of (d, ), we ran
5 reconstructions to check how the results varied with a fixed ideal d, but different skewer
sampling and noise realizations. For all reconstructions, we fixed 0% = 0.05, [j = 2h~*Mpc,
and [, = (d,) as done in Lee et al. (2014a). The small-separation runs were much more
time consuming than the large-separation runs since Ny, o (d L>_2 and the reconstruction
algorithm scales with Ngix, so that a run with a half the average sightline separation takes
16 times longer.

We tested the success of the surveys by running the protocluster identification procedure
on the mock maps and comparing to the halo catalog, just as we did for the ideal field in the
previous section. Again, we used a smoothing scale of 4 h~!Mpc, a threshold of —3.5 times
the standard deviation, and a region size of 4 h~!Mpc. Overall, we found an good agreement
between protocluster candidates in the ideal and reconstructed fields, and that the success
rates decrease with increasing average sightline spacing, as expected. In Table 4.1, we list
the number of candidates identified in each map, and the fraction of candidates that fell into
classes of protoclusters (PC), nearly protoclusters (NPC), and failures (fail). These classes
follow the definitions used earlier in Figure 4.7, where protoclusters form clusters (M >
10 =My, nearly protoclusters almost form clusters (1035 h=1Mg < M < 10 h=1My),
and failures are anything less massive (M < 10'35h~'M,). The mock results are averaged
over the 5 survey realizations for each configuration. The number of candidates in the
reconstructed maps is consistent with the result for the ideal field, although slightly higher,
except for the BOSS-like survey which is much lower. If we scale the number of candidates
(Neana ~ 70) found in the simulation volume of (256 h~'Mpc)? to the final CLAMATO
volume of 70 x 70 x 230 (h~'Mpc)?, we should find 5 candidates. However, using a smaller
threshold will yield many more candidates, if the decrease in purity can be accommodated.

There is a clear trend of the success rates vs. the average sightline separation. As the
sightline separation increases, the map quality decreases, and the sightlines begin to miss
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Table 4.1: Protocluster candidates and success rates

Map Zfexp (hI’S) Ncand fPC fNPC ffail
ideal N/A 68 0.93 0.06 0.01
random spheres N/A 1000 0.05 0.07 0.88
(di) =2h 'Mpc 2.7 73 0.89 0.08 0.03
(dy) =25h"Mpc 1.9 68 0.89 0.09 0.01
(dy)=3h"'"Mpc 14 76 0.84 0.10 0.06
(dy) =4h 'Mpc  0.90 77 0.78 0.15 0.07
(di) =6h"'Mpc 047 72 0.61 0.20 0.20
(d ) =15 '"Mpc N/A 26 035 0.10 0.55

Protocluster identification success rates for the ideal d field and randomly-positioned spheres
compared to the mock survey reconstructions. fe., is the corresponding exposure time
to achieve the desired sightline spacing (rescaled from the Keck/LRIS setup in Lee et al.
(2014b)). Neanqg is the number of candidates found in the map and the f values are the frac-
tions of candidates broken into three class: protoclusters (PC), nearly protoclusters (NPC),
and failures (fail). The numbers reported for the mock reconstructions are averages over the
5 realizations of sightline positions and noise. The (d,) = 15 h~'Mpc configuration is meant
to reproduce the relatively high sightline density areas of the BOSS survey.

protocluster structures leading to the decline in success. Additionally, as the noise in the
map increases, the false positive rate increases. When we increase the sightline separation
to larger than 10 A~ *Mpc, the quality of the map degrades significantly, which is reflected
in the BOSS-like success rates and lower number of candidates. For small separations, the
protocluster identification success rate is close to ideal — 93 per cent in the ideal case and 89
per cent for (d;) = 2 and 2.5 h~*Mpc. Even with a coarse sightline separation of 4 h~'Mpc,
the success rate is 78 per cent, and this only drops to 60 per cent with the 6 A~ Mpc separation
that we thought might be catastrophic.

In the BOSS-like separation surveys, the candidate purity is much lower. This is expected
since the average spacing in this case is larger than all but the largest protoclusters. However,
with random positions, it is possible for several sightlines to overlap with a protocluster and
this configuration still performs significantly better than random. We believe the purity in
the BOSS-like configuration could also be improved if we considered sightline positions, and
only saved candidates with many overlapping sightlines.

In Figure 4.8, we show the candidate completeness and failure rates for the various survey
configurations. On the left, we plot the fraction of candidates that did not form clusters.
The mock map values are averages over the 5 realizations and we show the std. dev. error
bars. We see a steady increase in the candidate contamination as the sightline separation
increases. On the right, we plot the candidate completeness measured in four cluster mass
bins. For reference, the numbers of protoclusters from the full sample in these bins are
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Figure 4.8: Candidate failure fractions and completeness identified in the ideal and mock maps.
Left: Fraction of candidates that are failures (M (z = 0) < 10" A~!Mg). Right: Candidate com-
pleteness measured in 4 cluster mass bins, where the mass range in m = log,o[M/(h~'My)] is
indicated on the x-axis. The mock map counts are averages over 5 realizations, with std. dev. error
bars. As the sightline separation increases, we see a steady increase in contamination, and the
success fraction decreases. In the low-mass cluster bins, the mock survey completeness is sometimes
higher than the noiseless map. This is a result of noise in the mock reconstructions pushing some
less significant protoclusters over the chosen threshold value.
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251, 123, 31, and 20. In the two high mass bins, the completeness of the (d,) = 2, 2.5,
and 3 h~'Mpc surveys is similar to the ideal result. The completeness decreases for larger
separations, although it is still about 50 per cent for the (d,) = 4 and 6 h~'Mpc, but only 5
— 10 per cent for the BOSS-like survey. For the two low mass bin, the completeness overall
is much lower, as discussed in the previous section. The completeness falls off for very large
separations, as before, but for small separations, the completeness is sometimes larger than
the ideal map. This is due to the noise in the reconstructions scattering some low mass
protoclusters over the threshold value. That is, for some protoclusters that did not make
the cut in the noiseless map, the reconstruction noise fortunately pushes them over the edge.
Overall, this result makes us confident that we can find a large fraction of the protoclusters
that form > 3 x 10" h='Mg, clusters with a CLAMATO-like survey.

In order to understand the cases where our protocluster identification method failed (ei-
ther missing protoclusters or selecting false positives), we looked at many slices of individual
candidates. We performed a union of all candidates identified in the ideal map and in the
mock reconstructions, based on the candidate’s z = 0 halo ID, and tracked which candidates
were identified in which maps. After visually inspecting many candidates, we found that
we could group the failures into four categories which we called dropout, bad merge, false
positive, and borderline protocluster. We illustrate these cases with example candidates in
Figure 4.9. Each row is a separate candidate, and the columns show the same slice from the
ideal map and the (d,) = 2, 3, 4, and 6 h~*Mpc mock maps. If the candidate was identi-
fied in the map, we marked the center with a black cross. We also annotated the dp/oy,
value from each map (at the candidate center) under the image. In the top row, we show a
successful case, where the candidate forms a massive cluster, and the protocluster is found
in all of the maps. This case was not very common when we included the large 6 h~'Mpc
separation maps, but it was usually the case for the most massive protoclusters that created
a significant (> 50) flux decrement.

The first failure case, dropout, is the most common scenario for a missed protocluster
identification. The protocluster creates a clear flux decrement in the ideal map and small
separation survey maps, but the signal drops out in the large separation survey maps. An
example is shown in the second row of Figure 4.9. In the example shown, the protocluster
is successfully identified in the ideal and small (d;) maps, but as the sightline separation
increases, the region is less well-sampled and the flux values in the region never drop below
the threshold. We also found plenty of cases where the candidate is missed in the (d,) = 3 or
4 h~'Mpc maps, but found again in the larger separation maps, just due to how the sightlines
and the protocluster line up in a given random survey realization.

The second failure case, bad merge, is another scenario that results in missing a proto-
cluster, and is due to a weakness in our method for merging points during the identification
procedure. We found a few cases where two protoclusters were linked by a dense filament,
so that the two regions that should have been separate candidates were mistakenly merged.
The grouped points were usually similar shapes in the different maps, but the flux minimum
could end up in either protocluster depending on the reconstruction noise. If these candi-
dates were correctly partitioned during the merging step, there would be another successful
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Figure 4.9: Slices from the ideal and mock maps centered on four candidates scenarios. The images
show the dp /05, values in slices that are 40 h~!Mpc across and 2 h~*Mpc thick. From left to right,
we show the ideal field and the mock reconstructions with increasing (d, ), and we mark successful
identifications with a black cross. We also annotate the /o5, value in the center of the map under
each image. For each row, we annotate the case name and candidate mass m = log;o[M/(h~'Mgy)]
on the left. Top row: A success case where the protocluster is identified in all maps. Second row:
As the average sightline separation increases, the sightlines do not sample the low flux region well
enough and the candidate ‘drops out’. Third row: A moderately low flux region with additional
noise can create a false positive. Bottom row: A borderline protocluster where the reconstruction
noise scatters the candidate over the threshold value. There is another failure case (bad merge) not
shown here, but explained in the text.
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identification in each map.

In regions of moderately low flux, it is possible for the reconstruction noise to scatter low,
and create false positives. This scenario is origin of the increasing contamination (failure
fraction) with increasing sightline separation. The third row of Figure 4.9 shows an example
of this, where the candidate is not a protocluster, but is mistakenly identified in one of the
maps. Of course, sometimes this reconstruction noise also scatters low mass protoclusters in
the right direction. This is the origin of the final scenario we called borderline protoclusters.
In this case, the protocluster creates a flux decrement just under the threshold, so that it is
not identified in the noiseless map, but noise can scatter it over the threshold, so that it is
identified in the mock reconstruction. An example is shown in the bottom row of Figure 4.9,
where the flux decrement in the noiseless map is just under the threshold. In the (d,) = 3
and 4 h~'Mpc reconstructions, the noise scatters the flux decrement to over 40, which makes
it a successful candidate.

4.6 Conclusions

In this chapter, we characterized the signature of protoclusters at z ~ 2-3, and demon-
strated the success of a simple method for finding these protoclusters from the associated
Ly« forest flux decrement. The tomographic reconstruction of the 3D Ly« forest transmitted
flux field from individual sightlines is the crucial step to this method. In order to handle
datasets with large numbers of pixels, we implemented a new fast Wiener Filter code, which
we are making publicly available. This code will make it possible to run reconstructions on
the scale of Ny = 108, larger than the expected size of the ongoing CLAMATO survey.

We identified protoclusters at z = 2.5 using a large cosmological N-body simulation with
sufficient resolution to capture individual absorption systems comprising the Lya forest and
covering enough volume to contain a respectable cluster sample. We constructed FoF halo
catalogs for each simulation snapshot and defined clusters at z = 0 with a mass cut of
M > 10" h~'M,. We then identified protoclusters by tracking cluster member particles
from z = 0 back to z = 2.5 (by particle ID) and characterized the protocluster regions. The
key signature of protoclusters is that they are outliers in density and flux on large scales.
We found that protocluster centers are above the 95" percentile of the density and flux
decrement and that the half-mass radius of typical protoclusters at this redshift is 4 A~*Mpc.
The density and flux profiles of protocluster regions are well fit by a Gaussian with a scale
of 5 h~!Mpc, suggesting that maps with several Mpc resolution should easily resolve these
structures. We also found that the flux decrement and radius of a protocluster increases
with its z = 0 mass, so that it is easiest to find the protoclusters that form the more massive
clusters.

We reviewed our tomographic reconstruction method (a Wiener Filter) and some specifics
of our application. Specifically, we assume a certain form of the signal covariance and that the
noise covariance is diagonal. These assumptions significantly reduce the space complexity of
our algorithm, so that we can easily fit the calculations on a single node, avoiding significant
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communication costs and taking advantage of shared-memory parallelism. Additionally, this
design will easily take advantage of upcoming compute architectures, where the number of
cores per node is expected to increase in the near future, and could easily be extended to
run on GPUs.

We designed a procedure to identify protocluster candidates in the flux maps. To choose
candidates we smooth the map, apply a threshold, and group the remaining points into
candidates. We ran the procedure on noiseless maps and compared to the simulation halo
catalog, finding that we can achieve 90 per cent candidate purity with this simple method.
We also confirmed that the method tends to find protoclusters that form the most massive
clusters (> 3 x 10 h~'My). The most massive halos in the identified protoclusters have
masses of about 10" A~1Mg — still very difficult to find at these redshifts using alternative
methods.

Finally, we created realistic mock surveys (similar to the recent observations of Lee et al.
(2014b)) and reconstructed the flux maps with our code. We found that surveys with an
average sightline spacing (d ) = 2.5 h~*Mpc perform essentially the same as the ideal, noise-
less map. Such surveys should identify protoclusters with a 90 per cent success rate, and
find 70 — 80 per cent of the protoclusters that form clusters with masses > 3 x 10 h='M,).
Using the same conservative threshold, we would identify 5 protoclusters in the planned
CLAMATO volume. However, the volume should contain about 30 protoclusters including
those that form lower mass clusters.

Finding protoclusters at z ~ 2 — 3 remains an observationally challenging problem. With
relatively simple methods, we have demonstrated a promising new technique for finding
protoclusters at these redshifts. As shown in Lee et al. (2014a) IGM tomography offers a
novel method for mapping large volumes with high efficiency using existing facilities. The
method can return large samples of protoclusters and does not suffer from projection effects
(or redshift errors). The Ly« forest also has the advantage of only probing mildly nonlinear
densities, allowing for ab initio calculation of the density-observable relation (i.e. the bias)
via numerical simulations. Future work can easily extend this to reconstruct density maps,
include redshift-space distortions, and incorporate more advanced models of protoclusters.
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Chapter 5

Finding cosmic voids using Lya forest
tomographic flux maps

The majority of the cosmic web, by volume, is made up of large, almost empty regions
known as voids which are surrounded by walls, filaments and clusters (see e.g. van de Wey-
gaert & Platen 2011, for a review). Within this paradigm, voids are regions which are
practically devoid of galaxies. They are slightly prolate in shape and occur on a wide range
of sizes from Mpc to tens of Mpc (Vogeley et al. 1994; Ceccarelli et al. 2006; Lavaux &
Wandelt 2012).

The study of cosmic voids has received renewed theoretical attention recently. Voids are
intrinsically interesting as a major constituent of the Universe (by volume) and one of the
most visually striking features in galaxy maps. They form an interesting environment for the
study of galaxy evolution. They may present an excellent laboratory for studying material
which clusters most weakly (e.g. dark energy or massive neutrinos), and for testing modified
gravity models. Future surveys are expected to find large samples of voids at a range of
redshifts, enhancing the potential of void science.

The pristine environments of voids present an interesting setting for the study of early
galaxy formation. Galaxies in low-redshift voids generally have smaller stellar masses, appear
bluer, have a later morphological type, and have higher specific star formation rates than
galaxies in average density environments (van de Weygaert & Platen 2011; Beygu et al.
2015), although the latter properties might be solely due to their lower stellar mass (Hoyle
et al. 2005; Kreckel et al. 2011). Extending similar studies to higher redshifts to see whether
similar trends hold is a pressing observational challenge.

Ryden (1995) was the first to discuss using voids as probes of cosmology. Park & Lee
(2007) anticipated using void ellipticity as a cosmological probe and Lee & Park (2009);
Bos et al. (2012) discussed constraining dark energy using voids. Lavaux & Wandelt (2012)
investigated the potential for using stacked voids as a probe of geometrical distortions (the
AP test; Alcock & Paczynski 1979). Chan et al. (2014) have studied the clustering of
voids and Hamaus et al. (2014d) describe constraining cosmology with void-galaxy cross-
correlations. Hellwing et al. (2010); Li (2011) have investigated studying the nature of dark
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matter using the properties of voids and Li et al. (2012); Clampitt et al. (2013) have suggested
that void properties may provide a strong test of some modified gravity theories.

Observationally, studies of voids date back over three decades (Gregory & Thompson
1978; Longair & Einasto 1978; Kirshner et al. 1981). Recent redshift surveys have identified
large samples of voids (e.g. 2dF: Ceccarelli et al. 2006; SDSS: Sutter et al. 2012, 2014a;
VIPERS: Micheletti et al. 2014) and a measurement of the AP effect from voids in the
local Universe has recently been reported by Sutter et al. (2014b); Hamaus et al. (2014a).
Being underdense in both galaxies and dark matter, voids act like objects with an effectively
negative mass, bending light rays away from them. This effect has been recently detected at
high significance by Clampitt & Jain (2014).

In the absence of large-scale dynamical and environmental influences, voids would become
increasingly isotropic as they evolve (Icke 1984). However, in modern theories of structure
formation the frequent encounters with surrounding structures and the influence of large-scale
tidal fields serve to reverse the simple trend expected for isolated voids (van de Weygaert &
Platen 2011). As matter in the center of voids streams outwards faster than matter towards
the boundary, the interior evolves into an almost uniform low density region surrounded by
‘ridges” marking the void edge: often referred to as a ‘bucket-shaped’ density profile (see
Ceccarelli et al. 2006; Hamaus et al. 2014c, for recent fits). The density in the center has a
characteristic value of 6 ~ —0.8.

Historically, surveys of voids over large volumes have come from large, galaxy redshift
surveys. However, finding voids in this manner requires a significant investment in telescope
time due to the necessity of a high spatial sampling of tracer galaxies. For example, the void
catalog presented in Sutter et al. (2012) found voids in the distribution of SDSS DR7 galaxies.
Their ‘bright’ cut found voids with radii larger than 7 h~!Mpc with galaxies separated by
8h~'Mpc. To find comparable galaxy separations at z = 0.5, 1.0, and 2.0 will require
obtaining complete galaxy redshift samples for apparent limiting magnitudes of [ = 22.5,
24.2, and 25.7, respectively (assuming galaxy luminosity functions from Dahlen et al. 2005
at z < 1, and Reddy et al. 2008 at z = 2). So while such galaxy number densities are just
achievable up to z ~ 1 with existing telescopes, it becomes increasingly challenging at higher
redshifts.

In light of the aforementioned challenges, it is understandable that little attention has
been given to studying voids at z > 1 (although see D’Aloisio & Furlanetto 2007; Viel et al.
2008). However, recently it has been noted that given sufficient sightlines, the Ly« forest
observed in a dense grid of faint background galaxies and quasars can be used to create
three-dimensional maps of large-scale structure and that the observational requirements to
map out cosmological volumes (V =2 10 h=>Mpc®) are within reach of existing facilities (Lee
et al. 2014a). Indeed, the first pilot map on a small field has already been made using just
a few hours of data from Keck telescope (Lee et al. 2014b). This method is ideally suited
to finding extended structures at high redshift. In Stark et al. (2014), we investigated the
possibility of finding protoclusters in tomographic Ly« maps. Here, we study the signature
of cosmological voids in the Lya forest.
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5.1 Simulations and void finding

5.1.1 N-body simulations

In order to study the signal of voids in the Lya forest, we make use of cosmological N-
body simulations. We require a simulation which simultaneously covers a large cosmological
volume while having a sufficiently small inter-particle spacing to model transmission in the
IGM. The requirements are sufficiently demanding that we have used a pure N-body simula-
tion, augmented with the fluctuating Gunn-Peterson approximation (FGPA; Petitjean et al.
1995; Croft et al. 1998; Meiksin & White 2001; Meiksin 2009). This same simulation was
also used in Lee et al. (2014a) and Stark et al. (2014) so we only review the salient features
here.

The simulation employed 2560 equal mass (8.6 x 107 h='M,) particles in a 256 h~'Mpc
periodic, cubical box. This provides sufficient mass resolution to model the large-scale fea-
tures in the IGM at z = 2-3 using the FGPA (Meiksin & White 2001; Rorai et al. 2013)
and sufficient volume to find large voids. The assumed cosmology was of the flat ACDM
family, with Q,, ~ 0.31, Quh? ~ 0.022, h = 0.6777, n, = 0.9611, and og = 0.83, in agree-
ment with Planck Collaboration et al. (2013a). The initial conditions were generated using
second-order Lagrangian perturbation theory at z;. = 150, when the rms particle displace-
ment was 40 per cent of the mean inter-particle spacing. The particle positions and velocities
were evolved using the TreePM code of White (2002). Throughout the text, we will use the
particle positions and velocities from the output at z = 2.5. Using the particle positions and
velocities at z = 2.5, we generated mock Ly« forest spectra on a 25603 grid with the FGPA
as described in Stark et al. (2014). In all, we generated 2560° grids with the matter density
and Ly« forest flux in real- and redshift-space. For many purposes in this work, we did not
need the high resolution provided by the 2560% grids and found it much easier to work with
smaller grids. For this reason, we also downsampled the fields to 256° by simply averaging
neighboring grid points. In the remainder of the chapter, when we refer to flux, we mean
the Lya forest transmitted flux fraction perturbation

p=F/(F)—1. (5.1)

5.1.2 Void finding

There are a variety of methods and tools used to find voids in large-scale structure
(Kauffmann & Fairall 1991; Platen et al. 2007; Neyrinck 2008; Sutter et al. 2015). We use a
simple spherical underdensity method on the low resolution, gridded densities to construct
our z = 2.5 void catalog. This technique is similar to spherical overdensity (SO) halo finding,
but instead applied to underdensities. We identify voids by taking the 256® density grid and
selecting points under some threshold value, then growing spheres around the points until
the average density enclosed reaches a target value. We handle overlapping voids by only
saving the void with the largest radius, and we also discard any remaining voids with a
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Figure 5.1: A slice through our simulation and a mock reconstructed flux map centered on a large
void, with a radius of 9.7 h~!Mpc. The slice is 40 h~!Mpc across and 6 h~'Mpc into the page. The
vertical axis, z||, is the redshift direction, along the line of sight, and the horizontal axis, x|, is
one of the directions transverse to the line of sight (the other transverse direction is into the page).
(Left) The matter density, in real space. The void center and radius are indicated with a black dot
and dashed circle. Positions of halos with M > 102 h~'M, are plotted as green dots and positions
of halos with M > 3 x 10" =M, are plotted as yellow dots. These halos would host galaxies at
the spectroscopic limits for existing instrumentation. (Middle left) The matter density, in redshift
space. (Middle right) The ‘true’ flux field over the same volume, in redshift space. (Right) A
reconstructed flux field from a mock survey (also in redshift space) with average sightline spacing,
(d1) =2.5h"Mpc (see text).



5.1. SIMULATIONS AND VOID FINDING 126

radius r < 2h~'Mpec.

The free parameters in this void-finding method are the threshold value pinresn and en-
closed average target value pen.. For the density field, there is a well-motivated threshold
value of pgresn = 0.2 p. This threshold value is a canonical density for a void core, corre-
sponding to the central density at shell-crossing for spherical void models (van de Weygaert
& Platen 2011). This critical density value is a standard choice in other void-finding codes
(e.g. Neyrinck 2008). The choice of the average target value, however, is somewhat arbi-
trary. We first tested an average target value of pe,. = 0.2 p, but found that it produced
voids that were far too small — the spheres never reached the apparent ‘edge’ surrounding
the low-density core. We experimented with several other average target values and found
that a value of pep. = 0.4 p resulted in good agreement between the sphere sizes and the
apparent void edges.

In principle, there is nothing special about the specific threshold and average density
values we chose, and these parameters should depend on the redshift. That is, as voids
continue to evacuate, the core and average densities of the void will decrease. In practice,
we found the final void catalog is not very sensitive to these settings, although the void radii
clearly scale with the average target density setting. Since most large voids have central
densities < 0.2 p already, the exact value of the threshold mostly makes a difference in terms
of how many points we must search over, and less of a difference in the void centers. We
did find that a very small threshold (say < 0.1 p for this redshift) forces voids to grow from
positions that often look off-center by eye. This is due to the hierarchical nature of voids,
in that the lowest-density point in a large void is typically the center of a smaller subvoid,
sometimes referred to as the void-in-void scenario (c.f. fig. 6 of Neyrinck 2008 and Sheth &
van de Weygaert 2004). Using the SO parameter values of the threshold pguresn = 0.2 p and
average target penc = 0.4 p, we found 16,167 voids which cover 15 per cent of the simulation
volume.

Subsection 5.1.2 shows a slice through our simulation, centered on one of the largest voids
in our catalog with r = 9.7 h~*Mpc. The slice is 40 h~*Mpc across and 6 h~'Mpc projected
into the page. The four panels show the void in real-space density, redshift-space density, Ly«
forest flux, and a tomographic flux map constructed from a mock survey. In each image, we
marked the void center and radius with a black dot and dashed line, respectively. In the first
panel, we also overplotted the positions of halos found in the same slice. Green dots mark
the positions of halos with mass M > 10 h~'M, (roughly an L, halo at this redshift),
while yellow dots mark the positions of halos with 3 x 10'*A~IM, < M < 1022 A~1M,.
Based on simple abundance matching (see Figure 5.1.2), these halos should host galaxies
with apparent magnitudes R < 24.7 and 24.7 < R < 25.6, just bright enough for redshift
determination with existing facilities. The second panel shows that in redshift space the void
has a larger density contrast and extent in the line-of-sight direction due to the outflow of
matter from the void. Such a large structure is easily visible in the redshift-space density
and flux. Although the tomographic flux map is a blurred version of the true flux, the
void structure is so large that it can still easily be picked out by eye. For reference, the
tomographic map is one of the realizations from Stark et al. (2014) with an average sightline
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spacing of (d;) = 2.5 h Mpc, similar to the ongoing survey of Lee et al. (2014b). At the
same time, the void is not captured by the galaxy positions even if we assume a complete
galaxy sample. The relative sparsity of such halos highlights the difficulty in finding voids,
even large ones, at high redshift using galaxies as tracers.

We compared our void catalog with that produced by a watershed void finder, similar to
the zOoBOV code. The watershed method finds the set of connected elements all under some
threshold. In ZOBOV, the elements are the Voronoi cells in the tessellation of the dark matter
particle positions (where the density is estimated from the volume of the Voronoi cell), but in
this case, we use the density values on the 2560% grid for simplicity. The watershed algorithm
on a uniform grid is straightforward. We find the set of points under the given threshold, and
keep a list of the under-threshold points that have not been assigned to a specific watershed.
Starting with the minimum value point, we search grid neighbors to see if they are also under
the threshold and add them to the current watershed if so. The search stops when there
are no remaining neighbors under the threshold. These points are then removed from the
list of unassigned points and we move on to the next watershed. After we assign all points
under the threshold, we discard watersheds with an effective radius reg = (3Vipea/47)"/? less
than 2h~'Mpc, as we did with the spherical underdensity voids. Using this method with
the same threshold of p < 0.2 p, we found 6,364 voids, covering 5 per cent of the simulation
volume.

The sets of large voids in the spherical underdensity (or SO) catalog and the watershed
catalog agree very well. We visually inspected the 100 largest voids in the SO catalog, and
found matches in the watershed catalog. In most cases the watershed void effective radius was
slightly smaller (by 1-2 h~'Mpc), which explains the total count and volume difference, and
the watershed voids typically have complex morphologies. The watershed voids often have an
ellipsoidal core, with fingers stretching out into smaller low-density regions. We compared the
SO void centers to the watershed void value-weighted centroids Xshea = x;ip; /) > ot
where the sums are over all the points in the shed, and we weight by the inverse of the
density so that the centering is driven by lower-density points. Unfortunately, the non-
spherical geometries of the watershed voids tend to drive the centroid away from the center
found with the SO method and the centers in the two catalogs tend to disagree by several
Mpec.

In Figure 5.2, we show a slice centered on a large void. The left and right panels show
the same void structure from two angles (the xz-plane and yz-plane). The top panels show
the density field in this region, while the bottom panels show the void shape in the different
catalogs. The black dot and circle are the center and radius of the void found with the SO
method. The blue dot and circle show the value-weighted centroid and effective radius of
the void found with the watershed method, and the blue triangle shows the ‘core’ point (the
minimum value point within the shed). We also show the points in the void watershed in the
bottom panels with the blue colorscale, where the color scales with the number of points in
the projection. In order to damp out some of the complex structure of the original watershed
void, we also tried running the watershed finder on a 2 h~!Mpc smoothed density field (with
an adjusted threshold of 0.45 p). The watershed void found in the smoothed field is shown
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Figure 5.2: A density slice centered on a large void with a radius of 9.6 h~'Mpc. Just as in
Subsection 5.1.2, the slice is 40 h~!Mpc across and 6 h~!Mpc into the page. The panels on the left
show the view along the simulation y axis, while the panels on the right show the view along the
simultion z axis. (Top) The matter density. (Bottom) The corresponding voids from the SO catalog
(black), the watershed catalog (blue), and the smoothed density watershed catalog (red). The dots
and dashed line circles show the center of the voids and the SO radius or watershed effective radius.
The triangles show the minimum value (core) points of the watersheds. The blue and red colorscales
show the projection of the points in the watershed (the darker the color, the more points into the
page). See the text for more details.
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in red.

The SO and watershed voids have reasonably similar shapes as seen in the yz-plane (right
panel). The extent of the watershed points (blue region) overlaps almost entirely with the SO
circle (black), besides the small wayward blue blob at (y, z) = (5,15) h~!Mpc. However, seen
in the xz-plane, the voids have very different shapes indeed. The slightly overdense region
at (z,z) = (—10,0) A~ 'Mpc limits the growth of the SO void, but the watershed region
reaches around this structure to the underdense region on the other side. This extension
from the main underdense region is also seen in the smoothed version of the watershed
void. The SO radius is 9.6 h~!Mpc and the watershed effective radius is 7.8 h~'Mpc, and
9.1 h~*Mpc in the smoothed version. Although the radii are all fairly similar, it’s amazing
to see just how different the extents and centers differ. The SO center is 7.2 h~*Mpc away
from the watershed centroid and 5.3 h~'Mpc away from the watershed core. At the same
time, the watershed core and centroid are separated by a whopping 11.9 A~ 'Mpc, far more
than the effective radius. Overall, the watershed void spans 39, 26, and 32 h~'Mpc in the
x, y, and z directions respectively, meaning the small finger-like voids extending from the
central underdensity are very long.

It is reassuring that these two methods for finding voids in the density field qualitatively
agree well, but we decided to use the SO void catalog for the remainder of this work due to
its simplicity. Overall, the centers and simple shapes of the SO voids provide cleaner radial
profiles and should be easier to find in the tomographic maps later. We were also concerned
that the non-trivial noise we expect in the maps from tomographic reconstruction might ar-
tificially combine or split watershed regions, whereas the spherical average in the SO method
will be less affected by such noise. Since our tomographic maps come with a noise estimate,
one could imagine a more sophisticated algorithm (e.g. a matched filter or likelihood-based
method) for finding voids could be implemented. We leave such investigations to future
work.

5.2 Voids at z = 2.5

In Figure 5.4, we show the cumulative number density of voids as a function of void
radius. We plot the distribution of our z = 2.5 voids in black, and show the distribution
of low-redshift voids with a green dashed line (z =~ 0.5), computed from eq. 21 of Lavaux
& Wandelt (2012). As expected, there are many more small voids and voids are generally
smaller at z = 2.5 than at z ~ 0 (c.f. fig. 1 of Ceccarelli et al. 2006 or fig. 7 of Lavaux &
Wandelt 2012). While voids with radii of 7 h~'*Mpc are common for low-redshift studies, we
have only 126 voids with » > 7h~'Mpc, which cover two per cent of the simulation volume.
We note, however, that it is difficult to compare void sizes across works using different
void-finding methods and working at different redshifts. For instance, we could increase the
number of r > 7 h~'Mpc voids by simply increasing the average target value in our SO void
finder. For the most part, this does not change which large voids are identified, but does
shift centers and increase the cumulative number density at a particular value. See Colberg
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Figure 5.8: The cumulative, halo mass function in the simulation at z = 2.5, as a function of (FoF)
halo mass. The dotted lines indicate the abundances of galaxies brighter than the listed apparent
R-magnitude limits, derived from the luminosity function of Reddy et al. (2008). Since at this
redshift and these masses satellites make up a small fraction of galaxies by number, this plot allows
us to approximately equate our mass-limited halo catalogs into flux-limited galaxy catalogs. Note
we have used volumes and masses without factors of h in this figure to match the scalings adopted
in Reddy et al. (2008).
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Figure 5.4: The cumulative, comoving number density of voids with radii greater than r vs. r. In
black, we show the distribution of our SO density voids at z = 2.5. The green dashed line is the
distribution of the voids found in Lavaux & Wandelt (2012), which are generally larger, as expected.

et al. (2008) for more detail about the difficulties of defining voids and differing results from
various void finders.

Figure 5.5 shows the radial profile of voids in density, radial peculiar velocity, and real-
space flux, stacked by radius. The gray lines show the profile for individual voids, while the
thick black lines show the mean. We chose to stack the voids in our catalog with radii in
the range 5 < r < 6 h~'Mpc, of which there are 511. We note that the central density is
about 0.2 p in the dark matter distribution, as a result of our choice of void finder. The
average profile then rises almost continuously to the void edge, though individual voids show
substructure within them (also visible in Subsection 5.1.2). The slope of our profile contrasts
with the profile of more evolved voids at lower redshifts, which exhibit a ‘bucket’ profile !.
We used the z = 0 simulation output to create a low-redshift SO void catalog (with adjusted
threshold and average target values) and found that these voids do exhibit such a ‘bucket’
profile. The voids we are studying at z = 2.5, however, have not yet evolved to such a state
and are still in the process of evacuating. The real-space flux profiles illustrate just how
well the flux profile mirrors the density profile. The center of the voids have F' ~ 1, which
translates to dp ~ 0.25 for our setting of (/') = 0.8. In both the density and flux value, the
stack profile almost reaches the mean value by » = 10 h~*Mpc.

The middle panel of Figure 5.5 shows the radial velocity profiles of the voids. The
profiles are linearly increasing up to the void radius, where they peak around 120kms™!

For example Ceccarelli et al. (2006) propose p(r)/p = Ao + As (r/Ry)* while Hamaus et al. (2014b)
proposes a 4-parameter model with a similar shape.
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Figure 5.5: Radial profiles centered on voids with 5 < r < 6 A~ 'Mpc. Gray lines are individual
profiles, and the thick black line shows the mean. (Top) The matter density profile. (Middle) The
radial peculiar velocity profile. The dashed red line shows the linear theory prediction using the

density stack profile above. (Bottom) The real-space flux profile.
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before turning over. The radial velocity profiles also have a fairly small scatter — at the
average radius of 5.4 h~'Mpc, the mean velocity is 119.7kms~! with a standard deviation
of 5.4kms™! or about 5 per cent. Within the context of linear theory v(r) o« VV—24(r). If
we assume a spherical mass distribution, this can be solved to yield v, o< 6(< r)/r?, where
d(< r) is the ‘overdensity enclosed within r’ in analogy with the Newtonian gravitational
acceleration due to a spherical mass distribution. The radial velocity profile around spherical,
or averaged, voids then becomes (Peebles 1993; Hamaus et al. 2014b) 2

o(r) = —a fH% Or (@ _ 1> 2 da (5.2)

where f ~ Q%55(2) is the growth factor, which at z = 2.5 is close to 1. This form was
shown in fig. 1 of Hamaus et al. (2014b) to fit the velocity profile of stacked voids in N-
body simulations well at z ~ 0. The dashed red line in Figure 5.5 shows this linear theory
approximation, which we see compares favorably to the profile measured in our z = 2.5 voids
(within 10 per cent over the range plotted). It is somewhat surprising that the linear theory
prediction matches our simulated radial velocity profile result down to Mpc scales and for
|0| = 0.8. The fact that this prediction also matched void radial velocity profiles at z = 0,
with voids from a different finder method is impressive (Hamaus et al. 2014b).

Figure 5.6 shows the two dimensional profiles (in mass and flux) of stacks of voids with
radii 5 < r < 6 h~'Mpc in both real and redshift space. Apart from some noise near the
line-of-sight axes, the contours in Figure 5.6 are isotropic in the real-space panels but show
extended, anisotropic profiles in redshift-space. This is an indication of the effect of peculiar
velocities, which appear visually to be larger in our case than at lower redshifts when voids
are traced by galaxies. We note that the profiles are much better measured at small radii
where there is less scatter. Beyond the radius of the stack r ~ 5.5 h~!Mpc, the scatter in
the individual profiles increases significantly. We believe this is the source of the extended
orange contour in the bottom right panel, for instance.

Since we expect the stacked voids to be isotropic in real space, by symmetry, any observed
anisotropy offers an opportunity to study such peculiar velocities. This could be particularly
interesting for constraining models with modified gravity. For example, Clampitt et al. (2013)
find that, driven by the outward-pointing fifth force, individual voids in chameleon models
expand faster and grow larger than in a ACDM universe. Such effects would modify the
profile of the stacked voids in a potentially observable manner, allowing observations of voids
in the Ly« forest to test such models. Based on the radial velocity profiles shown in Figure 5.5
and the measured standard deviation, one would need only about 20 voids with a radial
velocity measurement to reach one per cent standard error (assuming Poisson errors). With
accurate enough radial velocity measurements from void anisotropies, it should be possible
to detect deviations at the 10 per cent level with relatively small samples. Conversely, the

2Note, we have an additional factor of a in this expression compared to eq. 2.2 of Hamaus et al. (2014b),
perhaps due to a difference in proper vs. comoving quantities. Again, we always use comoving scales and
densities, and peculiar velocities.
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Figure 5.6: Contour plots of a stack of the voids with 5 < r < 6 h~!Mpc, showing the impact
of redshift-space distortions. The four panels show the density and flux in real and redshift space,
binned in the distances parallel (x)) and perpendicular () to the line of sight. In the redshift-space
fields, the radial profiles are clearly extended in the line-of-sight direction.
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Table 5.1: Void catalogs

Field SO Thresh. SO Avg. Count Vol. Frac.
p 0.20p 0.4p 16,167 0.152
Pred 0.15p 0.3p 16,338 0.151
OoF 0.224 0.167 16,296 0.150
hires map 0.224 0.167 16,586 0.203
midres map 0.224 0.167 8,724 0.181
lores map 0.224 0.167 5,565 0.153

The spherical under/overdensity void catalogs used for comparison, found in our V =~
1.7 x 107 h=3Mpc?® simulation. We use the original p catalog as our ‘truth’ and varied
the SO parameters for the p,.q and dp catalogs to qualitatively match. The hires map
uses a d = 2.5h~'Mpc sightline spacing mock survey, while the midres map comes from
a d = 4.0 *Mpc configuration, and the lores map from a d = 6.0 h~'Mpc configuration.
The noise and smoothing inherent in the tomographic reconstruction process create larger
differences in the catalog properties.

larger impact of redshift-space distortions in the Ly« flux field means they must be modeled
in order to make a measurement of the Alcock-Paczynski effect (Alcock & Paczynski 1979)
from stacked voids in the flux field (see Subsection 5.4.2).

5.3 Finding voids in flux

Underdense regions show up as high transmission regions in the 3D Ly« forest flux for
z = 2 — 3, as shown in Subsection 5.1.2 and Figure 5.5. This is not necessarily the case
at lower redshifts, since the characteristic density probed by the forest increases with time
(Becker et al. 2011; Luki¢ et al. 2015). At lower redshifts, it is difficult to see differences in
transmission passing through an underdense region vs. a moderately overdense region, since it
takes a significant overdensity to create an observable absorption feature. Fortunately, there
is a large overlap between the redshift range of the forest accessible from the ground and
the redshift range where mean density structures scatter an observable fraction of the light.
Given this, finding voids in flux at z = 2-3 is a matter of finding coherent high-transmission
regions. In Stark et al. (2014), we outlined a simple method using tomographic flux maps to
find protoclusters (coherent low-transmission regions) at these redshifts. We now adapt these
methods to find coherent high-transmission regions, corresponding to high-redshift voids.

The void catalogs used in this section are listed in Table 5.1, including voids found in the
redshift-space density, the flux, and three tomographic flux maps. In each case, we modified
the SO threshold and average target parameters to create a void catalog with roughly the
same void count and radius distribution as the real-space density catalog. For reference, we
use three of the tomographic flux maps created in Stark et al. (2014). These maps were
constructed by mocking up a realistic survey covering the simulation volume with signal-to-
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noise distributions similar to the pilot observations of Lee et al. (2014b), and several other
settings of the average sightline spacing and minimum spectral signal-to-noise ratio. The
tomographic maps were then generated by running our reconstruction code on the mock
spectra. The three maps we use are generated from mock surveys with average sightline
spacings of (d,) = 2.5, 4, and 6 h~*Mpc. The smallest sightline separation configuration is
similar to the ongoing CLAMATO survey, and the larger separation configurations are similar
to what we expect from large-area surveys on 8-10 m telescopes like the Subaru Prime Focus
Spectrograph (PFS; Takada et al. 2014) or the Maunakea Spectroscopic Explorer (Simons
et al. 2014). We refer to these tomographic maps as the hires, midres, and lores flux maps.
We discuss the characteristics of the individual catalogs in the following subsections and
focus on our method to compare catalogs for now. Comparing across void catalogs, we want
to confirm that there are nearby pairs of voids with similar radii. We expect to find the
same set of voids in density and flux, as we have demonstrated how well-matched the fields
are in previous sections. This is mostly a matter of determining the best SO parameters for
the flux. The tomographic flux maps, however, are contaminated by and spectral noise in
individual mock spectra and shot noise due to sparse sampling of the field, and this noise
will certainly affect our capability of finding voids.

We use two metrics to compare the catalogs of voids found in different fields. The first
metric is essentially the sum of the difference in the center positions and radii, which we call
the match error. If we are comparing voids in catalog A with voids in catalog B, for each
A-B pair, we compute the match error

V(ra—rp)? + [xa — xp[?/3?
TA

€ =

where r is the radius and x is the center position. We chose this form of the error for
several reasons. First, this form of the error also allows for trading off differences in radii
and centers. We want to consider the differences relative to the size of the void, which will
allow for larger center and radii differences for larger voids. Note that this form of the error
assumes the radius of void A is the reference. Finally, we compare 1/3 of the center difference
to the radius difference just due to the dimensionality (and empirically we found that the
mean center difference is about 3 times the mean radius difference). Later in this section,
we will show that a match error ¢ < 0.3 qualifies as a good match for a void between two
catalogs, and we will use this cut to count which voids are ‘matched’. The second metric we
use is the total volume overlap between the voids in both catalogs. Clearly, this metric is
less useful for telling if a catalog A void is well-matched by a single catalog B void. However,
it is a useful measure of how well-matched the catalogs are overall and does not depend on
a specific form of the error nor a specific value to cut at. It is also useful in cases where
noise in the tomographic maps artificially combines or splits voids — although the centers and
radii might not match across catalogs, there will still be a sizable volume overlap. We can
use these metrics to get a sense of void completeness and purity of each of the flux catalogs
with respect to the density void catalog. The number of ‘matched’ density voids compared
to the total number of density voids (the match fraction) is a measure of completeness. We
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Table 5.2: Catalog comparison for r» > 6 h~'Mpc voids
Density Flux Hires map Midres map Lores map Random

Density - 0.994 / 0.937 0.660 / 0.631  0.478 / 0.568  0.269 / 0.517 0.0194 / 0.152
Flux 0.988 / 0.933 - 0.683 / 0.637  0.471 / 0.569  0.292 / 0.514 0.0188 / 0.153
Hires map 0.581 / 0.567  0.576 / 0.567 0.356 / 0.484  0.238 / 0.430 0.0261 / 0.153
Midres map 0.284 / 0.409  0.282 / 0.408  0.258 / 0.425 - 0.171 / 0.344  0.0243 / 0.152
Lores map 0.186 / 0.349  0.184 / 0.347 0.191 / 0.377  0.192 / 0.359 - 0.0204 / 0.153
Random 0.0193 / 0.151 0.0191 / 0.150 0.0368 / 0.204 0.0480 / 0.182 0.0398 / 0.149 -

The catalog void match fraction and volume overlap fractions (separated by a slash in each
cell), for r > 6 h~*Mpc voids. For each row, we compute the fraction of voids with a match
error € < 0.3 and the fraction of the total volume overlapped by voids in the catalog of that
column.

also measure completeness by comparing the overlapping volume between two catalogs to
the total volume in density voids (the overlap fraction). The purity of the flux catalogs can
be measured by matching in the other direction (the fraction of matched flux voids) and by
comparing the overlap to the total volume in flux voids.

Using these metrics, we first found that redshift-space distortions can create large differ-
ences in the centers and, to a lesser extent, the radii of the voids. In order to more easily
compare voids found in density and flux, we created a void catalog using the redshift-space
density. Voids found in redshift-space density matched those found in real-space density best
(in terms of detecting the same voids with similar radii) when we used a threshold of 0.15 p
and an average target of 0.3 p. These densities are lower than the real-space values since
outflows from voids drive densities lower.

Before applying these metrics to the void catalogs derived from the various flux maps,
we also compared the redshift-space density void catalog to random void catalogs, mainly
to get a sense of the worst-case performance. We created ten catalogs of 16,338 voids (the
same number as the redshift-space density catalog), with centers uniformly distributed in the
simulation domain, and with radii randomly drawn from the same distribution as that in the
redshift-space density catalog. We compared each random void catalog against the density
catalog, computing the fraction of density voids with a match error € < 0.3 and the fraction
of the total volume overlap to the total volume in density voids. Overall, 2.7 per cent of
the density voids were matched by voids in the random catalogs on average. It is reassuring
to see that a small fraction of the density voids are matched by random voids which tells
us that our cut of € < 0.3 is stringent enough. We also noticed that for the largest voids
(r > 8 h~'Mpc), the average match fraction drops to 1.3 per cent. This is due to the fact
that both the density and random catalogs contain just a few very large voids and it is even
less likely that they will overlap enough to meet the match error cut. The average volume
overlap fraction between density voids and voids in the random catalogs was 15 per cent,
and did not change with the radius considered. This is not surprising since the voids cover
roughly 15 per cent of the total volume, so random points will overlap about that often.
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5.3.1 Ideal flux

We ran our SO void finder on the ‘true’ flux grid (256%) using a threshold of §p > 0.224
and an average target of 0 = 0.167. We experimented with several values of the threshold
and average target fluxes and found that these values resulted in a number of voids and
radius distribution similar to the catalog of voids found in density. The mapping from flux
to density evolves quickly with redshift, so these SO parameters would have to be adjusted
for other redshifts and UV background prescriptions.

The flux void catalog matches the redshift-space density catalog very well. For all voids
(r > 2h~'Mpc), 84 per cent of the density voids and the flux voids are matched. The volume
overlap fraction is also very high, at 86 per cent of the density void volume and also 86 per
cent of the flux void volume. For larger voids (r > 6 h~'Mpc), the catalogs are even better
matched. In this case, 99.4 per cent of the density voids and 98.8 per cent of the flux voids
are matched, and the volume overlap fraction is 93.7 per cent of the density voids and 93.3
per cent of the flux voids. For reference, the density catalog contains 335 of these large voids,
while the flux catalog contains 325.

5.3.2 Tomographic flux maps

We constructed the map void catalogs by running the SO void finder on the maps with
the same SO parameters we used for the ideal flux field. We tried several other SO pa-
rameter settings on the maps, but found that the default value catalogs performed best in
comparison to the density and flux catalogs. Small changes to the SO parameters resulted
in slightly better performance, but changes larger than about Adr = 0.01, resulted in simi-
lar or worse performance, so we did not bother optimizing these parameter choices further.
Unfortunately, our simple void-finding method does not consider noise in the map which can
contaminate the set of thresholded points and the spherical averages. The noise in the map
acts to scatter points below or above the SO threshold, creating false negatives and positives
respectively. In the same way, the noise can affect the spherical averages used in the SO
finder, resulting in inaccurate radii. However, this should be less of an issue for coherent
structures spanning several map resolution scales, which is apparent in our results for small
vs. large voids. The effects of the noise are apparent in the radius distribution of the map
catalogs. In the hires map catalog, the number of very small voids (r < 2.5 h~Mpc) is 3,902,
about half of the number found in the density catalog (6,157). This is likely due to shot
noise where sightlines did not sample these smaller structures well enough. The number of
medium voids (3 *Mpc < r < 6 h~'Mpc) is about double that in the density catalog, and
the number of large voids (r > 7h~'Mpc) about the same (147 vs. 121). This explains why
there is a similar total number of voids in the density and hires map catalogs, but more total
volume in the map catalog (see Table 5.1). The radius distributions of the midres and lores
map catalogs are more distorted by the noise. The midres map catalog contains about a half
the number of small voids (r < 5h~'Mpc) compared to the density catalog and the lores
map catalog contain about a quarter. There are approximately double the number of large
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Figure 5.7: A box and whisker plot of the distributions of match errors vs. radius. The match
error is computed between the redshift-space density voids and the voids in the flux catalog (gray),
the hires map catalog (blue), and in one of the random catalogs (red). The line in the middle of the
box is the median, the box extends from the 25th to the 75th percentile, the whiskers extend down
to the 5th and up to the 95th percentiles, and points outside of this range are plotted individually.
The match error threshold of € = 0.3 is marked with a dashed line. The flux catalog matches the
density catalog exceptionally well. The hires map catalog is essentially random for small voids, but
performs much better for large voids. The random catalog match error is fairly flat across radius
bins.

voids (r > 7h™'Mpc) in both map catalogs compared to the density catalog.

In Figure 5.7, we plot distributions of the match errors between the voids in the redshift-
space density catalog and voids in the flux, hires map, and one of the random catalogs vs.
radius. The line in the middle of the box shows the median, the box extends from the 25th
to the 75th percentiles, the whiskers extend from the 5th to the 95th percentile, and samples
outside this are plotted individually. The match error cut value of € = 0.3 is marked with a
dashed line. The match errors against the random catalog tend to fall around € = 0.6, and
there are few points under our cut of € = 0.3, again showing that this is a safe choice. It is
also reassuring that the random errors are relatively flat over radius bins because we defined
the match error relative to the original void radius. The gray distributions show just how
well-matched the flux and density catalogs are and that the flux match errors overlap very
little with the random errors. Overall, the hires map catalog misses a significant fraction
of the small voids in the density catalog, but performs well for larger voids. For all voids
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(r > 2h~*Mpc), the hires map catalog matches only 16.3 per cent of the density voids and
the volume overlap fraction is 49.4 per cent. This can also be seen in the smallest radius
bin in Figure 5.7, where the hires map is just a bit lower than the random distribution.
However, considering larger voids (r > 6 h=*Mpc), the hires map catalog performs much
better matching against 66 per cent of the density voids and overlapping with 63 per cent of
the volume. In Figure 5.7, there is a clear trend that the hires map match errors decrease
with radius, separating from the random distribution. The match fractions in the other
direction (purity of the hires map voids) are similar at 17.8 per cent for all voids and 58.0
per cent for large voids. The lower match fractions for large voids in this case is driven by
the hires map catalog having more large voids.

The midres map void catalog performs worse for all voids, but still matches a considerable
fraction of the density voids. Overall, the midres map catalog matches only 6.2 per cent of
the density voids, although it still overlaps with 40 per cent of the density void volume. If
we consider larger voids (r > 6 h~'Mpc), the midres map catalog matches 48 per cent of the
density voids, and matches 60 per cent of even larger voids (r > 8 h~!Mpc). The lores map
catalog performs worse than this, but is still useful for finding large voids. The lores map
catalog matches only 2.5 per cent of the density voids — consistent with the random catalogs
— although it overlaps with 30 per cent of the volume. This indicates that the void finder
is still able to find regions containing voids from the map, but does not recover an accurate
center or radius. If we consider some of the largest voids (r > 8 h~!Mpc), the match fraction
increases to 48.9 per cent and the volume overlap fraction is 61.9 per cent, again confirming
that the larger the void, the better the maps perform.

Our results are also summarized in Table 5.2. In this table, we give the match and
overlap fractions between the redshift-space density, flux, hires map, midres map, lores map,
and random catalogs for the voids with 7 > 6 h~*Mpc. We note again that the first five
catalogs are single catalogs while the random results are averages over the ten random
catalog realizations. The trends between the catalogs are the same as described above: the
random catalogs match 2 — 3 per cent and overlap about 15 per cent, and the correspondence
between the density and flux catalogs is very high. Comparing the density (or flux) catalogs
to the map catalogs, the match fraction drops to 60 — 70 per cent for the hires case, to 40 —
50 per cent for the midres case, and down to 20 — 30 per cent for the lores case. However, the
volume overlap fraction remains relatively high for all of the maps indicating that the poor
matching is more the fault of our simple void finding method than the maps truly missing
the voids.

Overall, the maps perform decently matching voids with radii larger than the map reso-
lution, but it is surprising that the maps still do not perform better for the largest voids. We
visually inspected many of the large voids to see why the flux map void catalogs sometimes
miss these large voids. We show two example slices of large voids in the flux, hires map, and
lores map in Figure 5.8. The top row shows a successful void match in both maps, while
bottom row shows a failure case. In the flux panels, we overplot the original void with a black
dot and circle. In the map panels, we overplot the best match void and annotate the match
error. In the top panels, the matching hires map void is a bit smaller and offset just a bit to
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Figure 5.8: Slices of two large voids showing the flux, hires map, and lores map (from left to
right). A void that is well-matched in the map void catalogs is shown on top, and a poor match
case is shown on the bottom. The top void has a radius of 10.9 A~'Mpc and the bottom void has
a radius of 8.3 h~!Mpec. Just as in Fig. 5.1.2, the slice is 40 h~'Mpc across and 6 A~ 'Mpc into the
page, although in this case, the redshift direction is into the page. The black dot and circle in each
panel show the void as found in each catalog. The flux panels show the original void (very close to
the one found in density), while the map panels show the map voids with the lowest match error.
We also annotate the match error of the map voids in the top-left corner of the images.
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the bottom left. In the lores map, a noise feature around (z,y) = (5, —5) h~'Mpc pushes the
matching void center up farther, but with a similar radius, resulting in a sufficiently small
match error. In the bottom hires map panel, there is significant noise around the center of
the original void which pushes the center of the void up and restricts the growth of the void
radius to a much smaller size. In the bottom lores map panel, the filamentary structure
around (z,y) = (5, —5) h~'Mpc is missing, which allows the void radius to grow much larger
and results in a poor match. Interestingly, in the bottom row, the overall structure of the
lores map matches the structure of the ideal flux better than the hires map by eye. However,
we have not considered estimate of the noise in the map. Using the tomographic recon-
struction method outlined in Stark et al. (2014), it is possible to compute the covariance of
the map or to run Monte Carlo error estimates. Considering the amount of noise apparent
in Figure 5.8, much could be gained by incorporating a noise estimate into a void finding
procedure. We believe future work can make significant gains in void finding performance
by considering the structure of voids beyond simple spheres and taking the map noise into
account.

5.4 Discussion

5.4.1 Survey prospects

For the cosmology of our simulation, the comoving radial distance to z = 2.5 is
4050 h~'Mpe, thus one degree subtends 70 A 'Mpc. Assuming a 250 h~'Mpc depth (e.g.
2.2 < z < 2.5), each square degree of survey area translates into a volume of 1.2 X
10% A=3Mpc 2. Given the number densities in Figure 5.4, we see that surveys like CLAMATO
with V ~ 106 A=3Mpc® would encompass about 150 voids larger than 5 A~'Mpc in radius. If
we assume a conservative void finding efficiency of 60 per cent, our simple method would re-
cover ~ 90 voids. This would be the first detection of a significant population of high-redshift
voids. Of course, this is a lower bound on the efficiency of identifying voids with a map of
this resolution due to our conservative choice of what constitutes a match, and that there is
still room for improvement in the method. Using the PFS; it is possible to double the target
density, covering a larger redshift range at the cost of sightline density. In Lee et al. (2014a),
we discussed piggybacking on the planned galaxy evolution survey described in Takada et al.
(2014). Such a survey would provide a map of roughly 16 deg® or 8 x 10* h~2Mpc? area and
700 h~'Mpc depth (2.3 < z < 3.2) for a total volume of 6 x 107 A~3Mpc?®, although at a
coarser resolution of about 5h~'Mpc. This much larger volume would encompass ~ 3000
voids with r > 5 h~!Mpc, and would detect voids with an efficiency better than 30 per cent,
providing a sample of around ~ 1000 voids. With an extended program on PFS of 100
nights, it is possible to construct a tomographic map covering ~ 200deg® with the same
redshift coverage and resolution, providing a tenfold increase in volume, and therefore, the
number of voids (~ 10%).

For comparison, similar volumes have been explored to find voids in low-redshift galaxy
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Figure 5.9: Fap as a function of redshift for different cosmological models, divided by the prediction
from our fiducial model. We show 5 per cent variations in €, 1 or 2 per cent variations in €2 per
cent, and 10 per cent variations in wg. For all models, the value of the Hubble parameter h has
been adjusted to keep the angular scale of the CMB oscillations s = djs /75 fixed. State-of-the-art
measurements of Fap have 5 per cent uncertainties, measured at z = 0.5 up to z = 2.4 (Blake et al.
2011; Aubourg et al. 2014; Beutler et al. 2014; Samushia et al. 2014).

positions, although for somewhat larger voids. Pan et al. (2012) searched for r > 10 h~*Mpc
voids in the Sloan Digital Sky Survey Data Release 7 main galaxy sample (out to z =
0.1), corresponding to a volume V = 107 A~'Mpc®, finding ~ 1000 voids. Sutter et al.
(2012) also found a similar number of voids in the SDSS DR7 main galaxy sample (out
to z = 0.2) and the luminous red galaxy sample (out to z = 0.44). In total, the galaxy
samples were split into 6 samples covering volumes from 10° to almost 10° h~!Mpc (see
their table 2). However, the larger volume samples were covered by brighter, more massive
galaxies, with larger separations. By z = 0.1, the average galaxy separation in DR7 is
already larger than 5 h~'Mpc, making it difficult to find statistically significant small galaxy
voids. Sutter et al. (2014a) provided an update to this analysis using the Baryon Oscillation
Spectroscopic Survey Data Release 9 CMASS sample, split into 6 samples, each covering
about 5 x 108 h=*Mpc®. This work found ~ 1500 voids with large radii (> 20 h~'Mpc).

5.4.2 High-redshift void cosmology

Much of the recent discussion of voids as cosmological probes has focused on them as a
means to measuring the Alcock-Paczynski (AP) parameter,

DAH | (5.3)
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where D, is the angular diameter distance and the Hubble parameter, H, encodes distortions
in the line-of-sight (LOS) direction. Note that this measurement measures H(z) directly,
rather than an integral as measured by e.g. Type Ia supernovae. In Figure 5.9, we show how
specific variations in cosmological parameters affect the AP parameter, giving a qualitative
idea of how accurate these measurements must be. Specifically, we show changes in the AP
parameter with 5 per cent variations in §2,,, 1 or 2 per cent variations in €2 per cent, and
10 per cent variations in wy.

Lavaux & Wandelt (2012) have proposed measuring the AP parameter using the
anisotropy of stacked voids, in the context of voids identified in galaxy surveys. Even though
voids should be spherically symmetric when averaged, each void will have a certain random
asymmetry that will add noise to the global stack. Lavaux & Wandelt (2012) showed that
the uncertainty due to this intrinsic scatter when averaging N voids can be approximated
by (their eq. 35): ,

OAP

o Nl (5.4)
In terms of cosmological parameters, Figure 5.9 shows that it requires substantial changes
in cosmological parameter values, by today’s standards, to produce one or two per cent
changes in Fap. Therefore, in order to be competitive with other cosmological probes, the
stack should be done using several thousand voids.

In order to accurately estimate the uncertainty when stacking N voids identified in the
flux field, we would have to study the intrinsic scatter in the asymmetry of the void flux
profiles, as a function of redshift and void size. We would also have to take into account
the effect of potential systematics like errors in centering and measuring radii, as well as
different sources of contamination in the Ly« flux. But assuming that we would also need
ten thousand voids to have a one per cent measurement, we can use the discussion above
to estimate that we could achieve this uncertainty with a CLAMATO-like survey over 100
square degrees, or with a PFS-like survey over 200 square degrees.

Moreover, Fap can also be robustly constrained from anisotropic measurements of the
Baryon Acoustic Oscillation (BAO) scale (Eisenstein & Hu 1998; Seo & Eisenstein 2003).
BAO measurements typically report ratios of separations with respect to a fiducial model
along the line of sight (oyj£0y) and transverse (a; &0 ) directions, as well as their correlation
coefficient (7). One can translate these values into a ratio of Fap with respect to Fap in the
fiducial model:

Fap  ay
Jap=—pr = —, (5.5)
Fig o
with an uncertainty given by
2 2
o 9 i _HTI1L (5.6)
2, a2 o ajo; '
AP I 1 L

For instance, recent BAO measurements from the BOSS collaboration (Aubourg et al. 2014;
Samushia et al. 2014) can be translated into ~ 5 per cent measurements of fap both at



5.5. CONCLUSIONS 145

z = 0.57 (from the galaxy survey) and at z = 2.4 (from the Ly« survey), raising the bar for
measurements from voids.

5.5 Conclusions

In this chapter, we characterized the signal of cosmological voids in the high-redshift
matter density field and demonstrated how we can use Ly« forest tomographic maps to find
high-redshift voids. We used a simple spherical over/underdensity approach to identifying
voids in a large cosmological simulation (with a box size of 256 h~'*Mpc or a volume of
1.7 x 10" h=3Mpc?) at z = 2.5, resulting in a catalog of ~ 16,000 voids with radii of 2-
12 1Mpc. We also tested finding voids with a watershed approach and found that the
resulting catalog was similar to that produced by the spherical overdensity method, but
with more complex geometries that changed the void centroid non-trivially. For simplicity,
we used the spherical overdensity void finding method throughout. This makes our results
somewhat conservative, i.e. it is likely that more sophisticated void-finding methods will have
improved performance.

Overall, the signature of high-redshift voids in flux is similar to what has been found
for low-redshift voids in density. The radial density profile of voids is low (p/p = 0.2-0.4)
and rises more steeply closer to the radius of the void. One difference we noticed is that
the high-redshift voids are typically less evacuated than their low-redshift analogues, giving
them a steeper inner profile and less pronounced rise at the edge. The shape of the density
profile is clearly mirrored in flux with high transmission inside the radius (0p = 0.25-0.15),
and dropping down to the mean flux beyond the radius. Interestingly, the radial velocity
profiles show very little scatter and the mean radial velocity profile matches up to the linear
theory prediction very well. This could be a promising testbed for any (modified gravity)
theory predicting differences in void outflow velocities.

Using our void finding method, we identified voids in an ideal flux field and in three
tomographic flux maps generated from mock surveys with spatial samplings of (d,) = 2.5,
4, and 6! (hires, midres, and lores maps). We compared the flux void catalogs to the
density void catalogs by considering how well ‘matched’ pairs of voids are in terms of their
centers and radii. We found excellent agreement between the density and ideal flux void
catalogs, where 99 per cent of the large voids (r > 6 h~!Mpc) are well-matched. The noise in
the tomographic maps clearly impacts the efficiency of finding voids, reducing the fraction
of well-matched large voids down to 66, 48, and 27 per cent in the hires, midres, and lores
maps, respectively. However, when we inspected individual cases of poorly matched voids,
we found that many of these are due to noise in the maps artificially breaking up or merging
high-transmission regions. It is clear that a more sophisticated void finder, especially one
that models a noise component, would perform much better on the tomographic maps.
Implementing such a method is beyond the scope of the current work.

Using these matching results, we can provide a conservative forecast for the number of
voids that can be found in dense Ly« surveys. Our hires map has a signal-to-noise ratio
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distribution and sightline spacing similar to the ongoing CLAMATO survey. With a sky
coverage of one deg?, the CLAMATO data would produce a tomographic map covering
V ~ 10 h~'Mpc?, and our proposed void-finding method would identify about 100 voids
with r > 5h~'Mpc in such a volume. With a 16 deg® survey on the PFS, we would identify
about 1000 voids with r > 5 h~'Mpc, although at a degraded purity. A 100-night dedicated
Lya forest survey across 200 deg? on the PFS would increase this number by a further order
of magnitude to > 10* voids.

These populations of high-redshift voids could be useful for many purposes, including
tests of modified gravity, as an AP test and for studying high-redshift void galaxies. Previ-
ous works have considered voids as a clean environment for studying galaxy evolution, where
galaxies are very isolated and their evolution is not complicated by environmental effects
(e.g. see van de Weygaert & Platen 2011, sec. 5). However, existing studies of void galaxies
are concentrated at low redshift, where such objects are much easier to find (van de Wey-
gaert et al. 2011). At low redshifts, the evidence points to the different properties of void
galaxies being caused by their low stellar mass, independent of other influence from their
void environment (Hoyle et al. 2005; Kreckel et al. 2011; Tinker et al. 2008). It would be very
interesting to see whether similar behavior is seen at higher redshifts, where we expect the
processes of galaxy formation could be different. Current galaxy redshift surveys can probe
only down to L ~ L, in galaxy luminosity at these redshifts, and we would naively expect
high-redshift voids identified through Ly« forest tomography to also be void of such bright
galaxies. However, the James Webb Space Telescope and its NIRSPEC spectrograph ? will
have the ability to target L ~ 0.3L, galaxies within voids identified through CLAMATO
and PFS.

With dense Ly« forest surveys covering larger volumes, such as a dedicated program on
the PFS covering 200 deg?, it is possible to identify a population of 10* voids. Such a large
number of voids would naively translate to a one per cent AP measurement, although this
is just a statistical estimate and it is possible that there would be larger systematic errors
in such a measurement.

The data used in this project are available at:
http://tinyurl.com/lya-tomography-sim-data. We hope that making this data publicly
available will reduce the barrier to future work on Ly« forest tomography and high-redshift
voids. The data release includes gridded simulation quantities, the tomographic flux maps, a
grid of hires flux skewers, FoF halo catalogs, void catalogs, and the protocluster catalog from
(Stark et al. 2014). Due to space limitations, we downsampled the gridded quantities from
the full 2560% grid to a 6403 grid. Although this process erases some small-scale structure,
the resolution is still more than enough for our purposes. The gridded quantities include the
z = 2.5 density, redshift-space density, flux, real-space flux, and peculiar velocities and the
z = 0 density and peculiar velocities. We also include example Python and C++ sources for
reading the files.

Shttp://www.stsci.edu/jwst/instruments/nirspec
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Appendix A

Notation

In this thesis, I stick to standard community conventions and symbols. In order to
make this explicit, I have attempted to make a complete list of notation that often goes
unmentioned.

e The most common time coordinates in cosmology are the redshift z or the scale factor
a= ﬁ At the Big Bang, z is infinite and a is 0, and today, z is 0 and a is 1.

e The Hubble rate is H = (da/dt)/a = HoE, where Hy is the Hubble rate today. The

Hubble rate today is typically parameterized as Hy = 100 h Mpc ' kms!.

e The (proper) time since the Big Bang is ¢t = HLO Oa g(‘i‘fl) = Hiof; (1+Zd,—)z/E(z,). The
evolution function E(z) depends on the cosmological model adopted, based on which

energy components are included and how their energy density dilutes with expansion.

For any numbers quoted in this dissertation that require an assumed cosmology, I take a
fiducial flat ACDM model with:
O, =0.05, Q, =0.3, Q2 =0.7, h=0.7, and o5 = 0.8.
In this model, the Universe includes radiation (relativistic components), baryons and dark
matter (collectively referred to as matter), and a ‘cosmological constant’ type of dark energy.
The symbols for the energy densities of these components are, respectively, p., pr, and pam

(Pm = pb + Pam), and py.

e The ratio of the mean energy density of a specific component X to the critical density
is QX7 €.g. Qm = ﬁm/pcrit-

e These values are typically evaluated at z = 0, sometimes indicated with a 0 subscript,
e.g. {0, although this is usually omitted for brevity or to annoy readers.

e Since the Universe is flat in this model, Qr + Q,, + 2, = 1 always.

e The evolution function is E(a) = 1/Q0a* + Qa3 + Qa .
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We can relate time, distance, and wavelength coordinates assuming traveling at the speed
of light.

e The comoving scale x is related to the proper scale r = az, and dr = cdt = adx =

~=da = —mdz. Thus, the comoving distance x to some redshift is z(z) =
c % _dZ

Ho Jo EGY-

e The peculiar velocity v = dr/dt — ax = ai is then related as dr = %dv.

e Finally, we can also use wavelength or frequency coordinates: if the observed wave-

length is A and the rest-frame wavelength is Ao, A = (1 + 2)Ao, so that dr = 5dA.

All distances and scales are comoving and are quoted in ‘h units’ such as h='Mpec. All

densities are comoving and typically in mean units. Masses are typically in units of A~1Mg,.

Velocities are always the peculiar velocity, and are typically in units of kms™!.

A.1 Fourier convention and power spectra

The comoving mode k corresponding to the comoving scale z is k = 27/ z. The Fourier
transform of a periodic field f, sampled over a volume V' in n dimensions, is f.

f10 = [ seockira

1 R —ik-x gn
f&%=@ﬂn/f&k ak

(A1)

Note that if f is dimensionless, this convention forces f to have dimensions of volume.
The auto-correlation field of f is

$rr(x) = (fE) (X +x)) (A.2)

where the brackets indicate a volume-weighted average over all x'. The auto-power spectrum
field of f, Pss(k) is defined as the Fourier transform of £;(x). After some manipulation, we
have

Pryk) =V (k) f (k) , (A.3)
where the * superscript means the complex conjugate. When we mention the power spectrum
in cosmology, P(k), we typically mean the spherically-averaged auto power spectrum field

of some quantity. This is because if the field is isotropic, the spherically-averaged power
spectrum contains all of the information of the power spectrum field. Thus,

P(k) = V{f(k)[* (k) , (A.4)
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where the average is over shells of k = |k|. Note that the power spectrum also has units of
volume. Sometimes we consider the dimensionless power spectrum instead:

do?

(k) = dlogh ’ (A.5)

where 0? = @#fP(k)dnk is the mass variance. So in 3D, A%(k) = sz;g‘“), and in 1D,
A (k) = L0,

™
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Appendix B

Atomic rates

Here we provide some details on the reaction rates implemented in the NYX code. In
order to provide an easy comparison to the GADGET code, we have also implemented the
atomic rates from Katz et al. (1996). However, we also implement more accurate rates which
will be used in future NYX studies exploring cosmological effects in Ly« forest statistics.

We explicitly keep track of the net loss of thermal energy resulting from atomic collisional
processes. Those rates are shown in Table B.2. In addition to the tabulated cooling rates,
NvX includes cooling from inverse-Compton scattering off CMB photons as in Peebles (1968):

Lo =000 Tn(2) [T~ Tows(2)] | (B.1)
meC
where o7 is the Thomson cross section, a is the radiation density constant, kg is the Boltz-
mann constant, m, is the electron mass, c is the speed of light, and Toyg is the temperature
of the microwave background, which we take to be Toyp = 2.725.

The atomic rates are a compilation of observed laboratory data, and as such, the fitting
functions are used to interpolate and extrapolate between and beyond these data points. In
the literature many different fits to the atomic rates have been used in IGM simulations. To
build intuition for the differences they make on the Lya forest flux, we present the different
hydrogen recombination rates found in several works, including the Enzo and Gadget codes
used for most of the Ly« forest simulations in recent years. Since 7 o< ng, &< oy, an error
in the hydrogen recombination rate directly propagates to the same error in 7. As Figure B.1
demonstrates, some of the fits are inaccurate by ~ 20 per cent at T = 10* K, even though
it can be calculated from first principles, as done e.g. in Ferland et al. (1992). We show a
large temperature range for completeness; at low temperatures three-body recombination is
dominant at most densities, whereas at very high temperatures the neutral hydrogen fraction
is vanishingly small.

Another essential ingredient in modeling the thermal and ionization history of the IGM is
the ultra-violet background, and especially the hydrogen photoionization rate, I'g;. Due to
its low surface brightness this is not a directly measurable quantity in observations, however,
indirectly it can be seen via such astrophysical phenomena as the quasar proximity effect.
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Figure B.1: Left: A comparison of different hydrogen recombination rates used in recent simu-
lations in the literature and Verner & Ferland (1996) calculated data. Right: Comparison of pho-
toionization rates published in recent works: solid lines are Haardt & Madau (2012), and dashed
lines are Faucher-Giguére et al. (2009) (revised in Faucher-Giguére et al. 2011).

Table B.1: Atomic rates in NYX

Coefficient Fitting formula [cm3s™!] Comment
1-b 14+5] 71
a {\/m (1 + \/T/TO) (1 + \/T/Tl) } Verner & Ferland (1996)
Q@ =7.982 x 10711, b= 0.7480, Ty = 3.148, T} = 7.036 x 10°
QrHen @ =3.294 x 10711, b = 0.6910, Tp = 15.54, T} = 3.676 x 107 (T < 10%)

Qrgen @ =9.356 x 10710, b = 0.7892, Ty = 4.266 x 1072, T} = 4.677 x 105 (T > 10°)
Qrgem @ = 1.891 x 10710, b = 0.7524, Ty = 9.370, T} = 2.774 x 108

04, Hen 1.9 x 1073 (1 +0.3e _9‘415104) G%T*% Aldrovandi & Pequignot (1973)
1+ P UY? 11604.5F
WUmeU 5 U = % VOI'OHOV (1997)

Pein A=291x107% E =136, P=0, X =0.232, m = 0.39
Pefa A=175x10"8 E =246, P=0, X =0.180, m = 0.35
Cefon A=205x107% E =544, P=1, X =0.265, m = 0.25

Recombination (a;) and collisional ionization (I'¢;) rates in the NYX code. aqpen is the
dielectronic recombination rate of singly-ionized helium. Temperatures are in K, and rates
are tabulated in the code in the temperature range 1 < T < 10° K.



161

Table B.2: Cooling rates in NYX

Type

Fitting formula [erg cm3s™!]

Comment

Bremsstrahlung

1426 % 1077T3 22(gs) : {957) = {

0.79464 + 0.1243log(T/Z%); T/Z* <32 x 10°K
2.13164 — 0.1240 log(T/Z2);

T/Z2 > 32 x 10°K

Shapiro & Kang (1987)

Neutral Hydrogen

1072 exp(213.7913 — 113.9492y + 25.06062y> — 2.762755y° + 0.1515352y*

—3.290382 x 1073y> — 1.18415 x 10°71)

10~2exp(271.25446 — 98.019455y + 14.00728y? — 0.9780842y* + 3.356289 x 10~2y1—

—4.553323 x 107%y° — 1.18415 x 10°T1)
y=In(T)

Scholz & Walters (1991)
2x10% < T <10°

T>10°

Helium

Her

Herr

-1
T
—2270L —285335.4/T
9.38 x 1072z~ 280335.4/ <1+ S 107)

—1
(554 x 10717T70.3976747363S/T +4.85 x 10722T%e—631515/T> 1+ L
5 x 107

Black (1981)

Recombinations
Hit
He1r

Her1t

2,851 x 1072774 (5,914 — 11n T+ 0011847

—9.4x10%

1.140 x 107273 (6.607 — 1In T+ 7.459 x 10’3T%)

—4.7x10°
2 T

1.55 x 1026703647 | 1 94 » 1013 (1 + 0.3617) e

T 2

3

Black (1981)

The Cooling rates used in NYX. Note that the helium rates are from Black (1981) but
were modified by a different temperature factor than in Cen (1992). In the Bremsstrahlung
expression, Z = 1 for Hil and Hell, and Z = 2 for Helll. Temperature is in K, and the rates
are tabulated in the code in temperature range 1 < T < 10° K.
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These kinds of measurements are quite uncertain, and instead one often tries to calculate the
UVB intensity and spectral shape by combining all possible sources of ionizing flux (Haardt
& Madau 2012). These calculations are also quite uncertain and have a large number of
input assumptions.

It is beyond the scope of this work to examine all the potential physical processes and
simulations used to create these different models of the UVB, as well as their accuracy; we
refer interested readers a recent work by Kollmeier et al. (2014). Instead, in Figure B.1 we
simply show the differences in photoionization rates of the most recent works on this topic
by Haardt & Madau (2012) and Faucher-Giguére et al. (2009). Note that the latter rates
were updated in 2011 (Faucher-Giguére et al. 2011). The right panel of Figure B.1 clearly
demonstrates that differences between the two works — and therefore our understanding of
the UVB — are rather significant. The effect of different rates on the temperature of the IGM
we show in Figure 2.5, confirming that the ‘feedback’ onto the dynamical evolution of the
gas is much smaller.
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Appendix C

Reconstruction derivation and
implementation

In this appendix, we briefly review the Wiener filter, to establish our notation, and
describe our efficient numerical algorithm for map making.

C.1 Wiener filter

We assume our data is made up of the signal we are interested in and additive noise
d = s, + n. In order to keep coordinates clear, we use a p subscript to indicate ‘pixel’
coordinates, and an m subscript to indicate ‘map’ coordinates. Note that some other texts
characterize this difference with the instrumental response matrix R as s, = Rs,,. We want
to make a linear estimate of the signal § = Ld, with minimal error ¢ = E[s,, — §|*]. We
start by simplifying the error expression.

€=tr (E[smsﬁ] — E[sm8’] — Efssl] + E[ééT])

The first term E[s,,s’ ] is just the signal covariance S,,,,,. The second term is

E[s,8"] = Els,n(Ld)"] = E[s,,d" L]
Elsp(s] +n")L"]

(El[sms,] + E[spn’)L" = S,,,L”

since we assume E[s,,n’] = 0. By a similar manipulation, the third term E[8s]] = LS,,,.

The fourth term is
E[ss8"] = LE[dd”]L”
= L(E[sys,] + E[s,n’] + E[ns]] + Enn”])L"
= L(S,, + N)L"
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Figure C.1: The signal correlation function (solid line) compared to our assumed Gaussian form
(dashed line), with amplitude, [, , and [ | fit to the signal data.

Altogether, the error is

€ = t18,m — t1(SpmL") — tr(LS,,,) + tr(L(S,, + N)L")
= t1Sm — 2tr(LS,,) + tr(L(S,, + N)L")

Taking the derivative of the error with respect to the operator, we have

0
a_ri = =28, +2(S,, + N)'L”

And then evaluating de/0L = 0 to find the minimum error, we have the optimal operator
L=S,,(S,+N)"

C.2 Signal covariance

The form we assume for the signal covariance is a product of two Gaussians, as shown
in Equation 4.2. The flux correlation function should roughly have this form, but it is
certainly not correct in detail. In this section, we consider the difference between the true
signal covariance and our model (with appropriate [, and [ values), and how this model
inadequacy might affect our reconstruction results.

In Figure C.1, we compare the correlation function of §r from the simulation (labeled
signal) and our model fit to the ideal signal (labeled Gaussian fit). We have smoothed
the signal along the line of sight to match a typical spectrograph resolution (R ~ 1100).
From left to right, the three panels show different slices through the (x,,z)) plane, first all
perpendicular, for ;, = x|, and for all parallel. We also annotated the fit Gaussian scales
[y and [j. The Gaussian product shape does well along the line of sight, due to the fact that
we have mocked the instrumental smoothing with a Gaussian filter, and the unsmoothed
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Figure C.2: Slices through reconstructions run on the same pixel data, varying the signal covariance
parameters /| and a%. The slices are 2 h~'Mpc thick, projected over the x-axis (perpendicular to
line of sight). The vertical axis of the images is along the line of sight. From left to right, we
double the | value, from 1 to 4. From bottom to top, we double the J% value, from 0.025 to 0.1.
Any reasonable deviations from the best case parameter values do not affect the morphology of the
resulting map.

flux correlation is small for scales larger than the filter scale. Across the line of sight, our
model does much worse. In a future iteration, we will consider using a sum of Gaussians.
Such a mismatch between the simulation and model might be worrying, but we argue that
this is not a concern for our application. In the case of Wiener filtering, most elements of
the operator S(S + N)~! are close to 0 or 1, and the shape of S only changes values in the
intermediate regime (see e.g. Press et al. 1992, for discussion).

In order to test the effect of an inaccurate covariance assumption on the reconstruction, we
ran several reconstructions of the same pixel data, varying the signal covariance parameters
[, and o%. The same slice from each reconstruction is shown in Figure C.2. We vary [, from
left to right and 0% from top to bottom. Overall, it appears that any reasonable changes
to the parameter values (relative to the best-fit values) do not affect the morphology of the
structures in the map. Increasing the flux variance increases the variance in the final map.
This is due to the increase in all S elements relative to IN so that pixels have larger weights
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in the reconstruction. That is, increasing the flux variance parameter should have the same
effect as reducing all pixel noise estimates. Varying the correlation scale [, (or /) has a
more dramatic effect. With a fixed sightline sampling and a smaller correlation scale, the
noise will obviously have a larger effect on the map, as the pixels are less correlated. As we
increase the correlation scale, structures become increasing smoothed out. We found that
changes in [ behave the same as changes in [}, so we did not add it to the plot.

C.3 Numerical implementation and scaling

Computationally, the map making process consists of two steps. First, there is the matrix
inversion and matrix-vector multiply x = A~'b = (S,, + N)7'd. The second step of the
map process is just the multiplication m = S,,,x. The matrix A is symmetric and positive
definite, so there are several computationally efficient methods for obtaining the solution x.
Since our signal and noise matrices are both relatively sparse, we use the preconditioned
conjugate gradient (PCG) method with a Jacobi pre-conditioner (Saad 2003) !. PCG is
an iterative method which converges rapidly for sufficiently sparse matrices. For reasonable
survey strategies, we do not expect a large number of pixels within a flux correlation scale
(several Mpc), so methods that perform better for sparse matrices should be advantageous.
We use the stopping condition that the residual is smaller than the norm of the data times
a tolerance parameter, |r| = [b — Ax| < tol|b|.

The real advantage of PCG for our problem, however, is that it never uses A directly, but
only products of A and a vector. Since we know the functional form of S,,, and we assume
N is diagonal, we do not have store the matrix A, and instead compute elements when
needed. This changes the space complexity of the algorithm from Nﬁix to Npix. For a typical
problem where Ny = 10° the difference in storage is about 8 TB (for A stored in double
precision), demanding several hundred nodes on modern systems, versus six vectors of length
Npix, requiring about 50 MB and easily fitting on a single node. Clearly, the performance of
the PCG solve depends on how quickly we can compute elements of A. We speed up the
element lookup by using a small table of exp(z) for the Gaussian. This reduces each element
lookup to 10 add/multiply operations.

Altogether, the cost of the reconstruction algorithm is Nlookup(NiterNgiX + NmapVpix),
where Nigokyp 1s the number of operations involved in computing elements of A and Nige,
is the number of iterations before the PCG reaches the stop condition. We expect problem
sizes of up to 10° pixels and 10° map points, so assuming 100 iterations, the calculation takes
10'® operations. This estimate indicates that we will likely not need to parallelize the code
beyond shared memory, especially since the number of cores per node is expected to increase
in coming years.

In order to choose a tolerance value for the PCG stop condition, we tested the PCG result
against a direct Cholesky factorization for small problems. We generated a mock dataset
with Npix = 4000, fixed the pixel positions and signal, and generated 10 noise realizations

LAlso see http://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf
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with SNR = 5. With multiple noise realizations, we can estimate the map variance due to
noise compared to the error of the PCG solve. For each of the 10 noise realizations, we
ran the reconstruction with the Cholesky solve and with the PCG solve with tol values of
1, 0.1, 0.01, and 1073. The Cholesky reconstruction took 18 seconds on average while the
lowest tol PCG reconstruction took 0.9 seconds on average. The average number of PCG
iterations to reach the various tol values were 5, 13, 29, and 37. We computed the standard
deviation of the Cholesky map values over noise realizations o, to have a measure of the
variance due to the noise at each map point. The average o,, is 0.06 and the max is 0.11.
We then computed the absolute difference of the PCG maps and Cholesky maps relative to
the map noise std., € = [Spcg — Schol|/0m- This error captures the fact that the PCG error
must be smaller for map points with small noise variance. We found that the errors have
an exponential distribution, with maximum values over all map points of 30, 4.5, 0.47, and
0.059 respectively for the 4 PCG tolerance settings. Since the max error of the tol = 0.01
PCG maps is less than unity and the error distribution is exponential, this tolerance setting
is in the safe regime where the PCG residual error in the map is significantly smaller than
the noise. In practice the PCG tol value should be adjusted for the problem at hand (if
the SNR is very different), but this is a conservative choice for Ly« forest data in the near
future.

One practical issue with the expressions in Equation 4.1 is that it does not easily allow
for masking bad pixels. If we have any pixels with n = inf, the PCG routine will return
nan’s. The ability to mask data is critical for Lya forest data, where we may run into sky
lines that add significant noise, or any pixels that should be masked entirely. We can rewrite
the map expression using the fact that the noise covariance may be formed as a product

of a lower triangular matrix with its transpose. In the case of our noise covariance, this
Nij = (nlélk)(njéjk)T It follows that

m = S,,w(wS,,w +I)"'wd (C.1)

where w = n~!. In this new expression, the matrix to be inverted is definite even for pixels
with w = 0, and the PCG solves will work as expected. This expression requires more
operations than the simpler Equation 4.1, but they add negligible overhead.

The reconstruction code implemented for this work consists of a static library and a few
executables, written in C++, with no dependencies. The code can be compiled and run with
no parallelism, but we recommend enabling OpenMP if available. The code is publicly avail-
able at http://github.com/caseywstark/dachshund, and includes some documentation
and a test suite.

We performed scaling tests of our code to give an idea of what problem scale the code is
able to handle within a reasonable wall time. We ran the test problems on the Edison machine
at NERSC. Each Edison node has two 12-core Intel “Ivy Bridge” processors clocked at 2.4
GHz. We created mock surveys like the ones in Section 4.5 with an average sightline spacing
of (d,) = 2h~'Mpc and adjusted the volume to make problem sizes of log, Ny = 15, 16, 17,
18, and 19. We ran the log, Npix = 15, 16, and 17 problems with OMP_NUM_THREADS
set to 1, 2, 4, 6, 8, 12, 16, 18, and 24. We set the number of threads to test the standard
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Figure C.3: Three scaling tests for our code. Left: 3 strong scaling tests, where we fix the problem
size and increase the number of threads. As long as all threads are given enough work, the speedup
should be linear. We show the efficiency estrong = tn /(nt1) where n is the number of threads and
the ¢ is the walltime. Middle: a weak scaling test, where we fix the work per thread, increasing the
problem size and number of threads. We show the efficiency eyeax = tn/t1. Right: The element-wise
time for several problem sizes.

powers of two, but also included multiples of 6 to test the Edison NUMA boundaries, which
have a significant effect.

In the first panel of Figure C.3, we show the strong scaling efficiency (the walltime
compared to what is expected for linear scaling) for these problems. We show the efficiency
€strong = tn/(nt1) where n is the number of threads and the ¢ is the walltime for each run.
The result is independent of the problem size. The relative speedup drops from 1.0 to 0.87
as the number of threads increases from 1 to 6, and then remains the same up to a full
node. This suggests there is an increasing (but small) cost for threads to access memory
until we hit the first NUMA barrier at 6 threads and is constant after that. In the middle
panel, we show a weak scaling problem, increasing the number of threads from 1 to 4 to
16 as the problem size doubles (since the algorithm scales as Ngix). We show the efficiency
eweak = tn/t1. The decrease in efficiency is similar to the strong scaling case, where the 16
thread case is 0.88 of the max efficiency. Finally, in the third panel we show the walltime
per N7, element from problems all run with 24 threads, doubling in size. The up-down
pattern in this panel is not due to random system behavior, but instead the number of PCG
iterations. The bottom runs took 12 iterations while the top took 13 due to small differences
in the noise realizations. This test confirms the expected Ngix scaling of the code and also
demonstrates how fast the code is. If we consider the number of threads n = 24, the number
of iterations i = 12, the clock speed s = 2.4ns™!, and the element-wise time ¢ = 3.2ns,
the number of clock cycles taken per element per iteration is nsti~! = 15. This is close to
our estimate of 10 operations per lookup and multiply, even though the element-wise time

measurement is an overestimate, including other operations like the S,,,x multiply.
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C.4 Error estimation

There are two possibilities for estimating the errors of the map values. First, we can com-
pute the map covariance M = S,,,,(S,, + N)™'S,,, directly. This option is straightforward,
but prohibitively expensive computationally. The inverse and product on the right of the
map covariance is now a matrix instead of a vector, meaning we must run a PCG solve for
each row of the solution matrix. One could also abandon an iterative method and perform
a direct inverse. Either way, the computational complexity of the covariance calculation is
a factor of Nk greater than the map calculation. For any interesting problem, this is very
expensive indeed.

Instead, we propose using Monte Carlo error estimation. We run n reconstructions on
data with random noise realizations (consistent with the noise estimates), and estimate the
map variance over the n results. We expect the required number of reconstructions n to be
much smaller than N, making this method much cheaper. For synthetic data sets, such as
in this work, this method also allows us to test the effect of noise in the data and the effect
of the sightline sampling independently.

C.5 Alternate smooth map construction

For our protocluster application, we are primarily interested in large-scale fluctuations.
A simple way to pick out large-scale fluctuations is to smooth the field on the scale we
are interested in, as we did earlier. This acts as a basic matched filter. However, instead
of smoothing a high-resolution reconstruction, we could start with a different estimator
that picks out large-scale fluctuations. We can think of our signal split into low and high-
frequency components s = s; + s,. The Wiener Filter estimate of the low-frequency signal
is § = (Sy + Su)(S + N)~'d. We can split the signal with a Gaussian filter G such that
s; = Gs and s, = s—Gs. It follows that §; = SG(S+N)~!d. Compare this to the expression
for a smoothed map, G§ = GS(S + N)~!d. These expressions only differ by the position
of the Gaussian filter, but it is an important distinction. In the case of the smoothed map,
the filter acts on the map values, whereas in the case of the smooth signal reconstruction,
the filter acts on the weighted pixel values. However, for any practical case where the filter
scale is larger than the pixel and map spacing, these expressions will be very close to one
another, and the distinction is no longer important.
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