
UCLA
UCLA Previously Published Works

Title
Generating and Sampling Orbits for Lifted Probabilistic Inference

Permalink
https://escholarship.org/uc/item/47p5j23n

Authors
Holtzen, Steven
Millstein, Todd
Van den Broeck, Guy

Publication Date
2020

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/47p5j23n
https://escholarship.org
http://www.cdlib.org/

Generating and Sampling Orbits for Lifted Probabilistic Inference

Steven Holtzen and Todd Millstein and Guy Van den Broeck

Computer Science Department
University of California, Los Angeles

{sholtzen,todd,guyvdb}@cs.ucla.edu

Abstract

A key goal in the design of probabilistic in-
ference algorithms is identifying and exploit-
ing properties of the distribution that make in-
ference tractable. Lifted inference algorithms
identify symmetry as a property that enables
efficient inference and seek to scale with the
degree of symmetry of a probability model.
A limitation of existing exact lifted inference
techniques is that they do not apply to non-
relational representations like factor graphs. In
this work we provide the first example of an
exact lifted inference algorithm for arbitrary
discrete factor graphs. In addition we describe
a lifted Markov-Chain Monte-Carlo algorithm
that provably mixes rapidly in the degree of
symmetry of the distribution.

1 INTRODUCTION

Probabilistic inference is fundamentally computationally
hard in the worst case [Roth, 1996]. Thus, designers
of probabilistic inference algorithms focus on identify-
ing and exploiting sufficient conditions of the distribu-
tion that ensure tractable inference. For instance, many
existing probabilistic inference strategies for graphical
models exploit independence in order to scale efficiently
[Koller and Friedman, 2009, Darwiche, 2009]. The per-
formance of these algorithms is worst-case exponential
in a graph metric known as the treewidth that quantifies
the degree of independence in the graph.

Lifted inference algorithms identify symmetry as a key
property that enables efficient inference [Poole, 2003,
Kersting, 2012, Niepert and Van den Broeck, 2014].
These methods identify orbits of the distribution: sets of
points in the probability space that are guaranteed to have
the same probability. This enables inference strategies

that scale in the number of distinct orbits. Highly sym-
metric distributions have few orbits relative to the size
of their state space, allowing lifted inference algorithms
to scale to large probability distributions with scant in-
dependence. Thus, lifted inference algorithms identify
symmetry as a complement to independence in the search
for efficient inference algorithms.

An important challenge in designing lifted inference al-
gorithms is identifying symmetries of a probability dis-
tribution from its high-level description. Existing ex-
act lifted inference algorithms rely on relational struc-
ture to extract symmetries, and thus cannot be directly
applied to propositional probability models like factor
graphs [Getoor and Taskar, 2007]. Several approximate
lifted inference algorithms ease this requirement by ex-
tracting symmetries of the probability distribution by
computing an automorphism group of a graph, and can
thus be applied directly to factor graphs [Kersting et al.,
2009, Niepert, 2012, 2013, Bui et al., 2013]. However,
existing lifted MCMC algorithms are not guaranteed to
mix rapidly in the number of orbits.

This paper presents exact and approximate lifted infer-
ence algorithms for arbitrary factor graphs that provably
scale with the number of orbits of the probability dis-
tribution. Inspired by the success of existing approxi-
mate lifted inference techniques on graphical models, we
apply graph isomorphism tools to extract the necessary
symmetries. First, we present a motivating example that
highlights the strengths and weaknesses of our approach.
Then, we describe our exact inference procedure. Com-
putationally, our method combines efficient group theory
libraries like GAP [GAP] with graph isomorphism tools.

Next, we describe an approximate inference algorithm
called orbit-jump MCMC that provably mixes quickly
in the number of orbits of the distribution. Orbit-jump
MCMC provides an alternative to lifted MCMC [Niepert,
2012, 2013], a family of approximate lifted inference al-
gorithms that compute a single graph automorphism in

x1A

x2A

x3B

x3A

x2Bx1B

(a) The colored factor
graph encoding of the soft
pigeonhole problem.

000 000

100 000
010 000

001 000

000 100

000 010

000 001

100 100 010 010 001 001

110 000 011 000 101 000

000 110 000 011 000 101

100 010 100 001

010 100 001 100

111 000 000 111

110 100 110 010 011 001

100 110 010 110 001 011

110 001 101 010 011 100

001 110 010 101 100 011

(b) Orbits of the assignments to variables in the soft pigeonhole problem. An assignment is written
as a binary string x1Ax2Ax3Ax1Bx2Bx3B . Each orbit is boxed, and each canonical representative is
bold. Cases where there are 4 or greater true variable assignments are omitted, as these are symmetric
to previously listed cases where the true and false values are flipped.

Figure 1: A graphical model representation and orbit structure of the pigeonhole example with 3 pigeons and 2 holes.

order to quickly transition within orbits. A key advan-
tage of lifted MCMC is that transitions do not each re-
quire a call to a graph isomorphism tool. However, lifted
MCMC relies on Gibbs sampling to jump between or-
bits, and as a consequence has no guarantees about its
mixing time in terms of the number of orbits. We will
show that orbit-jump MCMC mixes rapidly in the num-
ber of distinct orbits, at the cost of requiring multiple
graph isomorphism calls for each transition.

Note, however, that purely scaling in the number of or-
bits is not a panacea. Our methods are both limited: there
are liftable probability models that still have too many or-
bits for our methods to be effective. The presented meth-
ods only exploit symmetry, which is in contrast to exist-
ing exact lifted inference algorithms that simultaneously
exploit symmetry and independence. Therefore, our
algorithms scale exponentially for certain well-known
liftable distributions, such as the friends and smokers
Markov logic network [Niepert and Van den Broeck,
2014]. Thus, we view this work as providing a foun-
dation for future work on inference for factor graphs that
exploits both symmetry and independence.

2 MOTIVATION

As a motivating example, consider performing exact
lifted probabilistic inference on a probabilistic version
of the pigeonhole problem. The pigeonhole problem is a
well-studied problem from automated reasoning that ex-
hibits nuanced symmetry. While seemingly simple, the
pigeonhole problem is in fact extremely challenging to
reason about, and is often used as a benchmark in auto-
mated reasoning tasks [Benhamou and Sais, 1994, Sab-
harwal, 2005, Raz, 2004]. A weighted set of clauses is a
set of pairs ∆ = {(w, f)} where f is a Boolean clause
and w ∈ R is a weight. A weighted set of clauses defines
a probability distribution over assignments x of variables

in ∆ according to the following:

Pr(x) =
1

Z
exp

 ∑
{(w,f)∈∆ | x|=f}

w

 ,
where Z is a normalizing constant, and x |= f denotes
that clause f is satisfied in world x. Our goal is to com-
pute Z, a task that is #P-hard in general.

Consider a set of weighted clauses for a soft pigeonhole
problem. There are n pigeons and m holes. Each pi-
geon can occupy at most one hole, and pigeons prefer
to be solitary. To encode this situation as a weighted
set of clauses, for each pigeon i and hole j, let xij be
a Boolean variable that is true if and only if pigeon i oc-
cupies hole j.

The set ∆ is a union of two sets of weighted clauses.
For each pigeon, we introduce a clause that forces it to
occupy at most a single hole:

(∞, xik ∨ xil) for each pigeon i and holes k 6= l. (1)

An infinite weight encodes a hard clause that must hold
in the distribution [Richardson and Domingos, 2006].
Then, for each hole we introduce clauses that assign a
positive weight to not having multiple pigeons:

(2, xkj ∨ xlj) for each hole j and pigeons k 6= l. (2)

Figure 1a depicts this probability distribution with 3 pi-
geons and 2 holes as a pairwise colored factor graph,
where each weighted clause is a factor (box) and each
distinct factor is given its own color [Niepert, 2012, Bui
et al., 2013]. The factors in Equation 1 are colored red,
and the factors in Equation 2 are colored black.

The symmetries of this probability distribution directly
correspond to automorphisms of the colored graph in
Figure 1a [Bui et al., 2013, Niepert, 2012]. In this pa-
per, we consider only symmetries on assignments that

arise from symmetries on the variables. Any permuta-
tion of vertices that preserves the graph structure leaves
the distribution unchanged.1 Two assignments that are
reachable from one another via a sequence of permuta-
tions are in the same orbit; all assignments in the same
orbit thus have the same probability. Figure 1b shows the
orbits of the 3-pigeon 2-hole scenario up to inversion of
true and false assignments. Each orbit is boxed. There
are few orbits relative to the number of states, which is
the property that our lifted inference algorithms exploit.

We present both exact and approximate inference strate-
gies that scale with the number of orbits of a probabil-
ity distribution. Our exact inference algorithm is as fol-
lows. First, generate a single canonical representative
from each orbit; in Figure 1b, canonical representatives
are shown in bold. Then for each representative, com-
pute the size of its orbit. If both of these steps are effi-
cient, then this inference computation scales efficiently
with the number of orbits, and we call it lifted. This
orbit generation procedure is at the heart of many ex-
isting lifted inference algorithms that construct sufficient
statistics of the distribution from a relational represen-
tation [Niepert and Van den Broeck, 2014]. We present
an exact lifted inference algorithm in Section 4 that ap-
plies this methodology to arbitrary factor graphs by using
graph isomorphism tools to generate canonical represen-
tatives and compute orbit sizes.

Next, in Section 5 we describe an approximate inference
algorithm called orbit-jump MCMC that provably mixes
quickly in the number of distinct orbits of the distribu-
tion. This algorithm uses as its proposal the uniform or-
bit distribution: the distribution defined by choosing an
orbit of the distribution uniformly at random, and then
choosing an element within that orbit uniformly at ran-
dom. We present a novel application of the Burnside
process in order to draw samples from the uniform orbit
distribution [Jerrum, 1993], and show how to implement
the Burnside process on factor graphs by using graph iso-
morphism tools. Thus, this orbit-jump MCMC provides
an alternative to lifted MCMC that trades computation
time for provably good sample quality.

3 BACKGROUND

This section gives a brief description of important con-
cepts from group theory and approximate lifted inference
that will be used throughout the paper.2

1We assume here w.l.o.g. but for simplicity that the factors
are individually fully symmetric. Asymmetric factors can ei-
ther be made symmetric by duplicating variable nodes [Niepert,
2012] or encoded using colored edges [Bui et al., 2013].

2See Appendix A for a summary of the notation.

3.1 GROUP THEORY

We review some standard terminology and notation from
group theory, following Artin [1998]. A group G is a pair
(S, ·) where S is a set and · : S×S → S is a binary asso-
ciative function such that there is an identity element and
every element in S has an inverse under (·). The order
of a group is the number of elements of its underlying
set, and is denoted |G|. A permutation group acting on
a set Ω is a set of bijections g : Ω → Ω that forms a
group under function composition. For G acting on Ω, a
function f : Ω → Ω′ is G-invariant if f(g · x) = f(x)
for any g ∈ G, x ∈ Ω. Two elements x, x′ ∈ Ω are in
the same orbit under G if there exists g ∈ G such that
x = g · x′. Orbit membership is an equivalence rela-
tion, written x ∼G x′. The set of all elements in the
same orbit is denoted OrbG(x). A stabilizer of x is an
element g ∈ G such that g · x = x; the set of all stabi-
lizers of x is a group called the stabilizer subgroup, de-
noted StabG(x). The subscript in the previous notation
is elided when clear. A cycle (x1 x2 · · · xn) is a permu-
tation x1 7→ x2, x2 7→ x3, · · · , xn 7→ x1. A permutation
can be written as a product of disjoint cycles.

3.2 LIFTED PROBABILISTIC INFERENCE &
GRAPH AUTOMORPHISMS

Lifted inference relies on the ability to identify the sym-
metries of probability distributions. In existing exact
lifted inference methods, the symmetries are evident
from the relational structure of the probability model
[Poole, 2003, De Salvo Braz et al., 2005, Gogate and
Domingos, 2011, Van den Broeck, 2013]. In order to ex-
tend the insights of lifted inference to models where the
symmetries are less accessible, many lifted approxima-
tion algorithms rely on graph isomorphism tools to iden-
tify the symmetries of probability distributions [Niepert,
2012, Bui et al., 2013, Mckay and Piperno, 2014].

A colored graph is a 3-tuple G = (V,E,C) where (V,E)
are the vertices and edges of an undirected graph and
C = {Vi}ki=1 is a partition of vertices into k sets. As
notation, for a vertex v, let color(v, C) = i if v ∈ Vi.
A colored graph automorphism is an edge and color-
preserving vertex automorphism:

Definition 3.1. Let G = (V,E,C) and G′ = (V,E′, C ′)
be colored graphs. Then G and G′ are color-automorphic
to one another, denoted ∼=, if there exists a bijection φ :
V → V such that

1. Vertex neighborhoods are preserved, i.e. for any
v1, v2 ∈ V , (v1, v2) ∈ E ⇔ (φ(v1), φ(v2)) ∈ E′;

2. Vertex colors are preserved, i.e. for all v ∈ V ,
color(v, C) = color(φ(v), C ′).

The color automorphism group of a colored graph G, de-
noted A(G), is the group formed by the set of color au-
tomorphisms of G under composition. The group A(G)
acts on the vertices of G by permuting them. Tools like
Nauty can compute A(G) and are typically efficient in
|V | [Mckay and Piperno, 2014].

Colored graph automorphism groups are related to factor
graphs via the following:

Definition 3.2. Let F = (X, F) be a factor graph with
variables X, and factors F , where F are symmetric func-
tions on assignments to variables X, written x. Then the
colored graph induced by F is a tuple (V,E,C) where
V = X ∪ F , the set of edges E connects variables and
factors in F , and C is a partition such that (1) factor
nodes are given the same color iff they are identical fac-
tors, and (2) variables are colored with a single color that
is distinct from the factor colors.

This definition is due to Bui et al. [2013], where the fol-
lowing theorem is proved (with different terminology):

Theorem 3.1 (Bui et al. [2013], Theorem 2). Let F be a
factor graph and G be its induced colored graph. Then,
the distribution of F is A(G)-invariant.

4 EXACT LIFTED INFERENCE

In this section we describe our exact lifted inference pro-
cedure. First we discuss the group-theoretic properties
of orbit generation that enable efficient exact lifted infer-
ence. Then, we describe our algorithm for implement-
ing orbit generation on colored factor graphs. Finally,
we present some case studies demonstrating the perfor-
mance of our algorithm.

4.1 G-INVARIANCE AND TRACTABILITY

In this section we describe the group-theoretic underpin-
nings of our orbit-generation procedure and describe its
relationship with previous work on tractability through
exchangeability. We will capture the behavior of a G-
invariant probability distribution on a set of canonical
representatives of each orbit:

Definition 4.1. Let G be a group that acts on a set
Ω. Then, there exists a set of canonical representa-
tives Ω/G ⊆ Ω and surjective canonization function
σ : Ω → Ω/G such that for any x, y ∈ Ω, (1) Orb(x) =
Orb(σ(x)); and (2) Orb(x) = Orb(y) if and only if
σ(x) = σ(y).

In statistics, σ is often called a sufficient statistic of a
partially exchangeable distribution [Niepert and Van den
Broeck, 2014, Diaconis and Freedman, 1980]. The mo-
tivating example hinted at a general-purpose solution for

exact inference that proceeds in two phases. First, one
constructs a representative of each orbit; then, one effi-
ciently computes the size of that orbit. We can formalize
this using group theory:

Theorem 4.1. Let Pr be a G-invariant distribution on
Ω, and evidence e : Ω → B be a G-invariant function.
Then, the complexity of computing the most probable ex-
planation (MPE) is poly(|Ω/G|) if the following can be
computed in poly(|Ω/G|):

1. Evaluate Pr(x) for x ∈ Ω;
2. (Canonical generation) Generate a set of canonical

representatives Ω/G,

Moreover, if |Orb(x)| can be computed in poly(|Ω/G|),
then Pr(e) can be computed in poly(|Ω/G|).

Proof. To compute the MPE, choose:

arg max
{x∈Ω/G | e(x)=T}

Pr(x). (3)

The G-invariance of e allows us to evaluate e on only x
without considering other elements of Orb(x). To com-
pute Pr(e), compute∑

{x∈Ω/G | e(x)=T}

|Orb(x)| × Pr(x). (4)

Both of these can be accomplished in poly(|Ω/G|).

Niepert and Van den Broeck [2014] identified a connec-
tion between bounded-width exchangeable decomposi-
tions and tractable (i.e., domain-lifted) exact probabilis-
tic inference using the above approach. Exchangeable
decompositions are a particular kind of G-invariance. Let
Pr(X1,X2, · · · ,Xn) be a distribution on sets of vari-
ables Xi. Let Sn be a group of all permutations on a
set of size n. Then, this distribution has an exchangeable
decomposition along {Xi} if, for any g ∈ Sn:

Pr(X1,X2, · · · ,Xn) = Pr(Xg·1,Xg·2, · · · ,Xg·n)

Niepert and Van den Broeck [2014] showed how to per-
form exact lifted probabilistic inference on any distri-
bution with a fixed-width exchangeable decomposition
by directly constructing canonical representatives. How-
ever, this construction does not generalize to other kinds
of symmetries, and thus cannot be applied to factor
graphs which may have arbitrarily complex symmetric
structure. In the next section, we show how to apply The-
orem 4.1 to factor graphs.

4.2 ORBIT GENERATION

The previous section shows that inference can be effi-
cient if we can (1) construct representatives of each orbit

x1A

x2A

x3B

x3A

x2Bx1B

Figure 2: A colored graph of the 3-pigeon 2-hole prob-
lem that encodes the assignment x = 000 111. True vari-
able nodes are gray and false variable nodes are white.

class, (2) compute how large each orbit is. In this section,
we give an algorithm for performing these two operations
for colored factor graphs. First, we describe how to en-
code variable assignments directly into the colored factor
graph, allowing us to leverage graph isomorphism tools
to compute canonical representatives and orbit sizes for
assignments to variables in factor graphs. This colored
assignment encoding is our key technical contribution,
and forms a foundation for our exact and approximate
inference algorithms. Then, we will give a breadth-first
search procedure for generating all canonical representa-
tives of a colored factor graph.

4.2.1 Encoding Assignments

Our objective in this section is to leverage graph isomor-
phism tools to compute the key quantities necessary for
applying the procedure described in Theorem 4.1 to fac-
tor graphs. Let G be the induced colored graph of F .
As terminology, an element x ∈ BX is an assignment
to variables X. We will use graph isomorphism tools to
construct (1) a canonization function for variable assign-
ments, σ : BX → BX/A(G); and (2) the size of the orbit
of x ∈ BX under A(G). To do this, we encode assign-
ments directly into the colored factor graph, which to our
knowledge is a novel construction in this context:

Definition 4.2. Let F = (X, F) be a factor graph, let
x ∈ BX, and let G = (V,E,C) be the colored graph
induced by F . Then the assignment-encoded colored
graph, denoted G(F ,x), is the colored graph that col-
ors the variable nodes that are true and false in x with
distinct colors in G.

An example is shown in Figure 2, which shows an encod-
ing of the assignment 000 111. The assignment 000 111
is isomorphic to the assignment 111 000 under the action
of A(G), specifically flipping holes. Then, assignments
that are in the same orbit under A(G) have isomorphic
colored graph encodings:

Theorem 4.2. Let F = (X, F) be a factor graph, G
be its colored graph encoding, and x,x′ ∈ BX. Then,
x ∼ x′ under the action of A(G) iff G(F ,x) ∼= G(F ,x′).
Proof. See Appendix B.1.

Canonization Our goal now is to use graph isomor-
phism tools to construct a canonization function for vari-
able assignments. In particular, it maps all isomorphic
assignments to exactly one member of their orbit. We
will rely on colored graph canonization, a well-studied
problem in graph theory for which there exist many im-
plementations [Mckay and Piperno, 2014]:

Definition 4.3. Let G = (V,E,C) be a colored graph.
Then a colored graph canonization is a canonization
function σ : V → V/A(G).

A colored graph canonization function applied to Fig-
ure 2 will select exactly one color-isomorphic vertex
configuration as the canonical one, for example putting
all pigeons in hole A. Then, the canonization of the
assignment-encoded colored graph is a canonization of
variable assignments:

Definition 4.4. Let F = (X, F) and x = {(x, v)}
be a variable assignment, where x ∈ X and v ∈ B.
Let σG(F,x) be a canonization of G(F ,x). Then, let
σ′ : BX → BX be defined σ′(x) = {(σG(F,x)(x), v) |
(x, v) ∈ x}. Then σ′ is called the induced variable can-
onization of BX.

Intuitively, an induced variable canonization computes
the canonization of the assignment-encoded colored
graph, and then applies that canonization function to
variables. Then,

Proposition 4.1. For a factor graph F with colored
graph G, the induced variable canonization is a canon-
ization function BX → BX/A(G).

Computing the size of an orbit Theorem 4.1 requires
efficiently computing the size of the orbit of an assign-
ment. To accomplish this, we will apply the orbit-
stabilizer theorem in a manner similar to Niepert [2013].
The size of a stabilizer is related to the size of an orbit
with the following well-known theorem:

Theorem 4.3 (Orbit-stabilizer). Let G act on Ω. Then
for any x ∈ Ω, |G| = |Stab(x)| × |Orb(x)|.

Thus, to compute orbit size of assignments x, we will
compute (1) the order of the Stab(x) under A(G); and
(2) the order of A(G). Now we can again use graph iso-
morphism tools. The stabilizer of x corresponds with the
automorphism group of the colored graph encoding of
x. To see this, observe that a permutation that relabels
pigeons but leaves holes fixed is a stabilizer of the as-
signment in Figure 2; this permutation is also a member
of the color-automorphism group of the graph. Formally:

Theorem 4.4. Let F = (X, F) be a factor graph with
colored graph encoding G. Then for any x ∈ BX,
StabA(G)(x) = A(G(F ,x)).

Figure 3: Example breadth-first search tree, read top-
down. White nodes encode false assignments, and black
nodes encode true assignments.

The proof can be found in Appendix B.2. Thus we have
reduced computing orbit sizes to computing group or-
ders, which can be computed efficiently using compu-
tational group theory tools such as GAP [GAP, Seress,
2003]. Thus if we can exhaustively generate canonical
representatives, then we can perform lifted exact infer-
ence. The next section shows how to do this.

4.2.2 Generating All Canonical Representatives

Our algorithm for generating canonical representatives
is a simple breadth-first search that relies on assignment
canonization. This procedure is a kind of isomorph-free
exhaustive generation, and there exist more sophisticated
procedures than the one we present here [McKay, 1998].

Let x be some variable assignment. Then, an augmen-
tation of x is a copy of x with one variable that was
previously false assigned to true. We denote the set of
all augmentations as A(x). Our breadth-first search tree
will be defined by a series of augmentations as follows:

1. Nodes of the search tree are assignments x.
2. The root of the tree is the all false assignment.
3. Each level L of the search tree has exactly L true as-

signments to variables.
4. Nodes are expanded until level |X|.
5. Before expanding a node, check if it is not isomorphic

to one that has already been expanded by computing
its canonical form.

6. Then, expand a node x by addingA(x) to the frontier.

An example of this breadth-first search procedure is vi-
sualized in Figure 3. The search is performed on a 4-
variable factor graph that has one factor on each edge,
and all factors are symmetric. The factors are elided in
the figure for visual clarity. Each arrow represents an
augmentation. Crossed out graphs are pruned due to be-
ing isomorphic with a previously expanded node.

Now we bound the number of required graph isomor-
phism calls for this search procedure:

Theorem 4.5. For a factor graph F = (X, F)
with |BX/A(G)| canonical representatives, the above
breadth-first search requires at most |X| × |BX/A(G)|
calls to a graph isomorphism tool.

Proof. There are at most |BX/A(G)| expansions, and
each expansion adds at most |X| nodes to the frontier.
A canonical form must be computed for each node that
is added to the frontier.

Pruning expansions This expansion process can be
further optimized by preemptively reducing the number
of nodes that are added to the frontier in Step 6, using the
following lemma:

Lemma 4.1 (Expansion Pruning). Let F be a factor
graph, x be a variable assignment, and x1,x2 be aug-
mentations of x that update variables x and y respec-
tively. Then, x1 ∼ x2 under A(G) if x and y are in the
same variable orbit under A(G(F ,x)).

The proof is in Appendix B.3. Using this lemma we can
update Step 6 to only include a single element of each
variable orbit of X under A(G(F ,x)).

4.3 EXACT LIFTED INFERENCE ALGORITHM

Now we combine the theory of the previous two sections
to perform exact lifted inference on factor graphs. Al-
gorithm 1 performs exact lifted inference via a breadth-
first search over canonical assignments. Variable r holds
a set of canonical representatives, q holds the frontier,
p accumulates the unnormalized probability of the evi-
dence, and Z accumulates the normalizing constant. A
graph isomorphism tool is used to compute σ on Line 5.
Each time the algorithm finds a new representative, it
computes the size of the orbit using the orbit stabilizer
theorem on Line 9; GAP is used to compute the order of
these permutation groups. Lemma 4.1 is used on Line
13 to avoid adding augmentations to the frontier that are
known a-priori to be isomorphic to prior ones. This al-
gorithm can be easily modified to produce the MPE by
simply returning the canonical representative from r with
the highest probability.

Experimental Evaluation To validate our method we
implemented Algorithm 1 using the Sage math library,
which wraps GAP and a graph isomorphism tool [The
Sage Developers, 2018].3 We compared our lifted infer-
ence procedure against Ace, an exact inference tool for

3The source code for our exact and approximate infer-
ence algorithms can be found at https://github.com/
SHoltzen/orbitgen.

https://github.com/SHoltzen/orbitgen
https://github.com/SHoltzen/orbitgen

Algorithm 1: ExactLiftedInference(F , e)

Data: A factor graph F = (X, F) with color
encoding G; A(G)-invariant evidence e

Result: The probability of evidence Pr(e)
1 r ← empty set, p← 0, Z ← 0;
2 q ← queue containing the all-false assignment;
3 while q is not empty do
4 x← q.pop();
5 Canon← σ(G(F ,x)) ; // Invoke graph iso. tool
6 if Canon ∈ r then
7 continue;
8 Insert Canon into r;
9 |Orb(x)| ← |A(G)|/|A(G(F ,x))| ; // Invoke GAP

10 if e(x) = T then
11 p← p+ |Orb(x)| × F (x);
12 Z ← Z + |Orb(x)| × F (x);
13 for o from each variable orbit of A(G(F ,x)) do
14 if o is a false variable then
15 x′ ← x with o true;
16 Append x′ to q;
17 return p/Z

discrete Bayesian networks that is unaware of the sym-
metry of the model [Chavira and Darwiche, 2005]. Fig-
ure 4 shows experimental results for performing exact
lifted inference on two families of factor graphs. The first
is a class of pairwise factor graphs that have an identical
symmetric potential between all nodes, with one factor
(in red) designated as an evidence factor:

We also evaluated our method on the pigeonhole prob-
lem from Section 2 with two holes and increasing num-
ber of pigeons. In both experiments, the number of
orbits grows linearly, even though there is little inde-
pendence. Thus, Ace scales exponentially, since the
treewidth grows quickly, while our method scales sub-
exponentially. To our knowledge, this is the first example
of performing exact inference on this family of models.

5 ORBIT-JUMP MCMC

In this section we introduce orbit-jump MCMC, an
MCMC algorithm that mixes quickly when the distribu-
tion has few orbits, at the cost of requiring multiple graph
isomorphism calls for each transition. The algorithm is
summarized in Algorithm 2. Orbit-jump MCMC is an
alternative to Lifted MCMC [Niepert, 2012, 2013] that
generates provably high-quality samples at the expense

20 40
0

50
100
150
200

Variables

Ti
m

e
(s

)

(a) Inference for pairwise factor
graph.

0 20 40
0

200
400
600

Pigeons

Orbit Gen. Ace

(b) Inference for 2-hole pigeon-
hole problem.

Figure 4: Evaluation of Algorithm 1. A red circle indi-
cates that Ace ran out of memory at that time.

of more costly transitions. Lifted MCMC exploits sym-
metric structure to quickly transition within orbits. Lifted
MCMC is efficient to implement: it requires only a sin-
gle call to a graph isomorphism tool. However, lifted
MCMC relies on Gibbs sampling to jump between orbits,
and therefore has no guarantees about its mixing time
for distributions with few orbits. Orbit-jump MCMC is a
Metropolis-Hastings MCMC algorithm that uses the fol-
lowing distribution as its proposal:

Definition 5.1. Let G act on Ω. Then for x ∈ Ω, the
uniform orbit distribution is:

PrΩ/G(x) ,
1

|Ω/G| × |Orb(x)|
(5)

This is the probability of uniformly choosing an orbit o ∈
Ω/G, and then sampling uniformly from σ−1(o).

The orbit-jump MCMC chain for a G-invariant distribu-
tion Pr is defined as follows, initialized to x ∈ Ω:

1. Sample x′ ∼ PrΩ/G ;

2. Accept x′ with probability min
(

1, Pr(x′)×|Orb(x′)|
Pr(x)×|Orb(x)|

)
This Markov chain has Pr as its stationary distribution.
Orbit-jump MCMC has a high probability of proposing
transitions between orbits, which is an alternative to the
within-orbit exploration of lifted MCMC.4

Next we will describe how to sample from PrΩ/G us-
ing an MCMC method known as the Burnside process.
Then, we will discuss the mixing time of this proposal,
and prove that it mixes in the number of orbits of the
distribution.

4 This proposal is independent of the previous state, a
scheme that is sometimes called Metropolized independent
sampling (MIS) [Liu, 1996]. Importance sampling is an alter-
native to MIS. We use MIS rather than importance sampling in
order to make the connection with lifted MCMC more explicit.

G

Ω

(A)(B) (A B)

A B

Figure 5: Illustration of the Burnside process on a col-
ored graph with two nodes and two colors.

5.1 SAMPLING FROM PrΩ/G

Jerrum [1993] gave an MCMC technique known as
the Burnside process for drawing samples from PrΩ/G .
The Burnside process is a Markov Chain Monte Carlo
method defined as follows, beginning from some x ∈ Ω:

1. Sample g ∼ Stab(x) uniformly;
2. Sample x ∼ Fix(g) uniformly, where Fix(g) = {x ∈

Ω | g · x = x}. We call elements of Fix(g) fixers.

Theorem 5.1 (Jerrum [1993]). The stationary distribu-
tion of the Burnside process is equal to PrΩ/G .

This process can be visualized as a random walk on a
bipartite graph. One set of nodes are elements of Ω, and
the other set are elements of G. There is an edge between
x ∈ Ω and g ∈ G iff g · x = x.

An example of this bipartite graph is shown in Figure 5.
The set Ω is the set of 2-node colored graphs, and the
group G = S2 permutes the vertices of the graph. The
identity element (A)(B) stabilizes all elements of Ω, and
so has an edge to every element in x; (A B) only stabi-
lizes graphs whose vertices have the same color.

Jerrum [1993] proved that the Burnside process mixes
rapidly for several important groups, but it does not al-
ways mix quickly [Goldberg and Jerrum, 2002]. In such
cases, it is important to draw sufficient samples from
the Burnside process in order to guarantee that the orbit-
jump proposal is unbiased. Next we will describe how to
implement the Burnside process on factor graphs using
the machinery from Section 4.2.1.

5.1.1 Burnside Process on Factor Graphs

For G acting on a set of variables X, the Burnside process
requires the ability to (1) draw samples uniformly from
the stabilizer subgroup of an assignment to variables, and
(2) sample a random fixer for any group element in G.
Here we describe how to perform these two computa-
tions for a colored factor graph F = (X, F).5 This pro-
cedure is summarized in lines 3–7 in Algorithm 2.

5This process is conceptually similar to the procedure for
randomly sampling orbits in the Pólya-theory setting described
by Goldberg [2001], but this is the first time that this procedure
is applied directly to factor graphs

Algorithm 2: A step of Orbit-jump MCMC

Data: A factor graph F = (X, F), a point x ∈ BX,
number of Burnside process steps k

1 x′ ← x;
2 for i ∈ {1, 2, · · · , k} do
3 GStab ← A(G(F ,x′)) ; // Invoke graph iso. tool
4 Sample s ∼ GStab using product replacement;
5 for Each variable cycle c of s do
6 v ∼ Bernoulli(1/2);
7 Assign all variables c in x′ to v;

8 Accept x′ with probability min
(

1, F (x′)×|Orb(x′)|
F (x)×|Orb(x)|

)

Stabilizer Sampling Section 4.2.1 showed how to
compute the stabilizer group of x ∈ BX using graph
isomorphism tools. To sample uniformly from this sta-
bilizer group, we rely on the product replacement algo-
rithm, which is an efficient procedure for uniformly sam-
pling group elements [Pak, 2000].

Fixer Sampling Let g ∈ G be a permutation that acts
on the vertices of a colored factor graph. Then we
uniformly sample an assignment-encoded colored factor
graph that is fixed by g in the following way. First, de-
compose g into a product of disjoint cycles. Then, for
each cycle that contains variable nodes, choose a truth
assignment uniformly randomly, and then color the ver-
tices in that cycle with that color. This colored graph is
fixed by g and is uniformly random by the independence
of coloring each cycle and the fact that all colorings fixed
by g can be obtained in this manner.

5.2 MIXING TIME OF ORBIT-JUMP MCMC

The total variation distance between two discrete proba-
bility measures µ and ν on Ω, denoted dTV (µ, ν), is:

dTV (µ, ν) =
1

2

∑
x∈Ω

|µ(x)− ν(x)|. (6)

The mixing time of a Markov chain is the minimum num-
ber of iterations that the chain must be run starting in any
state until the total variation distance between the chain
and its stationary distribution is less than some parame-
ter ε > 0. The mixing time of orbit-jump MCMC can
be bounded in terms of the number of orbits, which is a
property not enjoyed by lifted MCMC:

Theorem 5.2. Let Pr be a G-invariant distribution on Ω
and let P be the transition matrix of orbit-jump MCMC.

Then, for any x ∈ Ω, dTV (P tx,Pr) ≤
(
|Ω/G|−1
|Ω/G|

)t
. It

follows that for any ε > 0, dTV (P tx,Pr) ≤ ε if t ≥
log(ε−1)× |Ω/G|.

0 50 100
0

0.5

1

Iterations

d
T
V

(a) Hard pigeonhole.

0 50 100

Iterations

UB
Lifted

Orbit-Jump

(b) Quantum pigeonhole.

Figure 6: Total variation distance between Markov
chains and their stationary distributions for a pigeonhole
problem with 5 pigeons and 2 holes. “Lifted” is lifted
MCMC [Niepert, 2012] and “UB” is the upper bound
predicted by Theorem 5.2.

For a detailed proof see Appendix B.4. Note that the
bound on this mixing time does not take into account
the cost of drawing samples from PrΩ/G , which involves
multiple graph isomorphism calls.

Pigeonhole case study We implemented the orbit-
jump MCMC procedure on factor graphs using Sage. In
order to evaluate the performance of orbit-jump MCMC,
we will compare the total variation distance of various
MCMC procedures. We experimentally compare the
mixing time of lifted MCMC [Niepert, 2012, 2013] and
our orbit-jump MCMC in Figure 6, which computes the
total variation distance of these two MCMC methods
from their stationary distribution as a function of the
number of iterations on two versions of the pigeonhole
problem.6 The first version in Figure 6a is the motivating
example with hard constraints from Section 2. The sec-
ond version in Figure 6b shows a “quantum” pigeonhole
problem, where the constraint in Equation 1 is relaxed so
that pigeons are allowed to be placed into multiple holes.

Lifted MCMC fails to converge in Figure 6a because it
cannot transition due to the hard constraint from Equa-
tion 1; this illustrates that lifted MCMC can fail even for
distributions with few orbits. In addition to comparing
against lifted MCMC, we also compare the theoretical
upper bound from Theorem 5.2 against the two mixing
times. This upper bound only depends on the number of
orbits, and does not depend on the parameterization of
the distribution.7 Orbit-jump MCMC converges to the
true distribution in both cases faster than lifted MCMC,
and the upper bound ensures that orbit-jump MCMC can-
not get stuck in low-probability orbits. Note however
that lifted MCMC transitions are less expensive to com-

6In these experiments, for each step of orbit-jump MCMC,
we use 7 steps of the Burnside process.

7For this example, there are 78 orbits.

pute than orbit-jump MCMC transitions. We hope to ex-
plore this practical tradeoff between sample quality and
the cost of drawing a sample in future work.

6 RELATED WORK

Lifted inference Existing exact lifted inference algo-
rithms apply to relational models [Getoor and Taskar,
2007]. The tractability of exact lifted inference was stud-
ied by Niepert and Van den Broeck [2014], but their
approach cannot be directly applied to factor graphs.
Approximate lifted inference can be applied to factor
graphs, but existing approaches do not provably mix
quickly in the number of orbits [Niepert, 2012, 2013, Bui
et al., 2013, Van den Broeck and Niepert, 2015, Madan
et al., 2018, Kersting et al., 2009, Gogate et al., 2012].

Symmetry in constraint satisfaction and logic Some
techniques for satisfiability and constraint satisfaction
also exploit symmetry. The goal in that context is to
quickly select one of many symmetric candidate solu-
tions, so a key difference is that in our setting we must
exhaustively explore the search space. Sabharwal [2005]
augments a SAT-solver with symmetry-aware branch-
ing capabilities. Symmetry has also been exploited in
integer-linear programming [Margot, 2010, Ostrowski
et al., 2007, Margot, 2003].

7 CONCLUSION & FUTURE WORK

In this paper we provided the first exact and approximate
lifted inference algorithms for factor graphs that prov-
ably scale in the number of orbits. However, our methods
are limited: there are tractable highly symmetric distri-
butions that still have too many orbits for our methods to
be effective. Existing lifted inference algorithms utilize
independence to extract highly symmetric sub-problems,
which is an avenue that we can see for integrating inde-
pendence into this current approach. A further limitation
of our approach is that we exploit only symmetries on
variables; additional forms of symmetries, such as block
symmetries, are beyond the scope of our current algo-
rithms [Madan et al., 2018].

ACKNOWLEDGMENTS

This work is partially supported by NSF grants #IIS-
1657613, #IIS-1633857, #CCF-1837129, DARPA XAI
grant #N66001-17-2-4032, NEC Research, a gift from
Intel, and a gift from Facebook Research. The authors
would like to thank Tal Friedman, Pasha Khosravi, Jon
Aytac, Philip Johnson-Freyd, Mathias Niepert, and An-
ton Lykov for helpful discussions and feedback on drafts.

References
M. Artin. Algebra. Birkhäuser, 1998.

B. Benhamou and L. Sais. Tractability through symme-
tries in propositional calculus. Journal of Automated
Reasoning, 12(1):89–102, Feb 1994.

H. H. Bui, T. N. Huynh, and S. Riedel. Automorphism
groups of graphical models and lifted variational in-
ference. In UAI, pages 132–141, 2013.

M. Chavira and A. Darwiche. Compiling bayesian net-
works with local structure. In IJCAI, pages 1306–
1312, 2005.

A. Darwiche. Modeling and Reasoning with Bayesian
Networks. Cambridge University Press, 2009.

R. De Salvo Braz, E. Amir, and D. Roth. Lifted first-
order probabilistic inference. In IJCAI, pages 1319–
1325, 2005.

P. Diaconis and D. Freedman. De Finetti’s generaliza-
tions of exchangeability. In R. C. Jeffrey, editor, Stud-
ies in Inductive Logic and Probability, pages 2–233.
Berkeley: University of California Press, 1980.

GAP. GAP – Groups, Algorithms, and Programming,
Version 4.10.0. The GAP Group, 2018.

L. Getoor and B. Taskar. Introduction to Statistical Re-
lational Learning. The MIT Press, 2007.

V. Gogate and P. Domingos. Probabilistic theorem prov-
ing. In UAI, pages 256–265, 2011.

V. Gogate, A. K. Jha, and D. Venugopal. Advances in
lifted importance sampling. In AAAI, 2012.

L. Goldberg. Computation in permutation groups:
Counting and randomly sampling orbits. Surveys in
Combinatorics, pages 109–143, 2001.

L. A. Goldberg and M. Jerrum. The Burnside process
converges slowly. Combinatorics, Probability and
Computing, 11(1):21–34, 2002.

M. Jerrum. Uniform sampling modulo a group of sym-
metries using markov chain simulation. DIMACS Se-
ries in Discrete Mathematics and Theoretical Com-
puter Science, pages 37–47, 1993.

K. Kersting. Lifted probabilistic inference. In ECAI,
pages 33–38, 2012.

K. Kersting, B. Ahmadi, and S. Natarajan. Counting be-
lief propagation. In UAI, pages 277–284, 2009.

D. Koller and N. Friedman. Probabilistic Graphical
Models: Principles and Techniques. The MIT Press,
2009.

D. A. Levin and Y. Peres. Markov chains and mixing
times. American Mathematical Society, 2017.

J. S. Liu. Metropolized independent sampling with com-
parisons to rejection sampling and importance sam-
pling. Statistics and Computing, 6(2):113–119, 1996.

G. Madan, A. Anand, Mausam, and P. Singla. Block-
value symmetries in probabilistic graphical models. In
UAI, pages 886–895, 2018.

F. Margot. Exploiting orbits in symmetric ILP. Mathe-
matical Programming, 98:3–21, 2003.

F. Margot. Symmetry in integer linear programming. In
50 Years of Integer Programming, 2010.

B. D. McKay. Isomorph-free exhaustive generation.
Journal of Algorithms, 26(2):306 – 324, 1998.

B. D. Mckay and A. Piperno. Practical graph isomor-
phism, II. Journal of Symbolic Computation, 60:94–
112, 2014.

M. Niepert. Markov chains on orbits of permutation
groups. In UAI, pages 624–633, 2012.

M. Niepert. Symmetry-aware marginal density estima-
tion. AAAI, 2013.

M. Niepert and G. Van den Broeck. Tractability through
exchangeability: A new perspective on efficient prob-
abilistic inference. In AAAI, 2014.

J. Ostrowski, J. T. Linderoth, F. Rossi, and S. Smriglio.
Orbital branching. In IPCO, 2007.

I. Pak. What do we know about the product replacement
algorithm? In Groups and Computation III, pages
301–347, 2000.

D. Poole. First-order probabilistic inference. In IJCAI,
pages 985–991, 2003.

R. Raz. Resolution lower bounds for the weak pigeon-
hole principle. J. ACM, 51(2):115–138, 2004.

M. Richardson and P. Domingos. Markov logic net-
works. Machine Learning, 62:107–136, 2006.

D. Roth. On the hardness of approximate reasoning. Ar-
tificial Intelligence, 82(1):273 – 302, 1996.

A. Sabharwal. Symchaff: A structure-aware satisfiability
solver. In AAAI, volume 5, pages 467–474, 2005.

A. Seress. Permutation Group Algorithms. Cambridge
Tracts in Mathematics. Cambridge University Press,
2003.

The Sage Developers. SageMath, the Sage Math-
ematics Software System (Version 8.5.0), 2018.
https://www.sagemath.org.

G. Van den Broeck. Lifted inference and learning in sta-
tistical relational models. PhD thesis, 2013.

G. Van den Broeck and M. Niepert. Lifted probabilistic
inference for asymmetric graphical models. In AAAI,
2015.

	INTRODUCTION
	MOTIVATION
	BACKGROUND
	GROUP THEORY
	LIFTED PROBABILISTIC INFERENCE & GRAPH AUTOMORPHISMS

	EXACT LIFTED INFERENCE
	G-INVARIANCE AND TRACTABILITY
	ORBIT GENERATION
	Encoding Assignments
	Generating All Canonical Representatives

	EXACT LIFTED INFERENCE ALGORITHM

	ORBIT-JUMP MCMC
	SAMPLING FROM Pr/G
	Burnside Process on Factor Graphs

	MIXING TIME OF ORBIT-JUMP MCMC

	RELATED WORK
	CONCLUSION & FUTURE WORK
	Notation
	Proofs
	Proof of Theorem 4.2
	Proof of Theorem 4.4
	Proof of Lemma 4.1
	Proof of Theorem 5.2

