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ABSTRACT OF THE DISSERTATION

Three Essays in Finance

by

Alex John Fabisiak

Doctor of Philosophy in Management

University of California, Los Angeles, 2019

Professor Antonio E. Bernardo, Chair

In the first chapter, I apply machine learning techniques to numerically solve high-

dimensional continuous time models in finance. Traditional methods rely on finite difference

schemes for solutions to partial differential equations. By approximating the solution with a

deep neural network, I am able to leverage the computational efficiency of neural networks

and batch gradient descent to accurately compute solutions involving many state variables.

I demonstrate the accuracy and efficiency of this method for Black-Scholes options pricing

problems and dynamic programming problems in up to 50 spatial dimensions, far beyond

the capability of grid methods. I also develop a solution method to mean field game type

problems, where both a value function and a distribution function must solve a system of

differential equations, utilizing mixture density networks.

In the second chapter (with Ivo Welch), we develop a model where buyers prefer local

over lower-cost vendors even in the absence of direct preferences, taxes, subsidies, contracts,

sanctions, information asymmetries, audits, etc. Instead, they prefer locals because they

internalize the fact that local agents will in turn be more likely to buy from them in the

future. Local sellers understand that buyers’ preferences give them limited local market

power, and therefore raise their prices and earn surplus in equilibrium.Our model can explain

how voluntary reciprocity among subsets of identical agents can sustain itself, and how ex-

ante identical goods from ex-ante identical sellers can acquire and maintain sustainably

differentiated prices.
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In the third chapter (with Antonio Bernardo and Ivo Welch), we develop a model where

firms with lower leverage are not only less likely to experience financial distress but are also

better positioned to acquire assets from other distressed firms. With endogenous asset sales

and values, each firm’s debt choice then depends on the choices of its industry peers. With

indivisible assets, otherwise identical firms may adopt different debt policies—some choosing

highly levered operations (to take advantage of ongoing debt benefits), others choosing more

conservative policies to wait for acquisition opportunities. Our key empirical implication

is that the acquisition channel can induce firms to reduce debt when assets become more

redeployable. This article has been accepted for publication and is forthcoming in the Journal

of Financial and Quantitative Analysis.
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CHAPTER 1

Applications of Machine Learning to PDEs in Finance

1.1 Introduction

Continuous time models have become a critical tool within many fields of modern finance.

They were first applied to asset pricing by Merton (1973) and Black and Scholes (1973). Since

then, they have been adapted to a range of other topics: Cox et al. (1985) for term structure

models, Leland (1994) for corporate finance, and Sannikov (2008) for contracting. By taking

models to the continuous time limit, researchers are able to model complex interactions

without sacrificing tractability or intuition.

The solution at the heart of these continuous time models can ultimately be characterized

by a partial differential equation (PDE). In a number of cases, these have analytic global

solutions that describe the model’s evolution. Unfortunately, analytic solutions are rare, so

numerical approximation methods are required. Simple numerical methods, such as finite

differences, are often highly effective when the PDE is linear or is only a function of time and

a single state variable. For more complex problems, more complex techniques are required.

In this paper, we describe a numerical PDE solution method based on machine learning

techniques. This method is well suited to non-linear or high dimensional problems with a

large number of heterogeneous agents or economic state variables. By modeling the under-

lying approximating function as the output of a deep neural network (DNN), we are able to

employ many of the latest methodologies and highly optimized software packages from the

machine learning field.

Recent advances in machine learning have focused on the problem of efficiently estimating

the high-dimensional, non-linear relationships which underlie observational data. To this
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end, a DNN can be thought of as a flexible, yet computationally efficient, approximating

function. The objective is generally to minimize a least squares loss, where the methods

look to minimize the distance between the approximation and observed data.

Analogously, our method tries to minimize the squared residuals of the PDE, which

measure how well the approximation satisfies the required PDE. We are then able to uti-

lize the backpropagation algorithm for efficient derivative computation, and batch gradient

descent to evaluate the loss on only a randomly sampled meshless subset of the domain.

These techniques make the solution method well suited to non-linear and high-dimensional

problems.

Through examples with known analytic solutions, we demonstrate the effectiveness of

our method. When applied to pricing multi-asset basket options with Black-Scholes, our

method surpasses the performance of finite difference methods beyond three assets. Beyond

six assets, finite difference methods are infeasible due to memory constraints, while the neural

network based approach is able to handle up to 50 assets with error under 0.3%. Similarly

low error is achieved when our method is applied to a non-linear dynamic control problem.

This paper also develops a novel application of mixture density networks to PDEs of

density functions, such as the Kolmogorov-forward equation. This neural network extension

models the probability density function of a mixture of normal random variables, where

mean, variance, and mixing probabilities change over time. The resulting PDF is highly

flexible and capable of approximating many other density functions. We demonstrate their

usefulness by solving a mean field game, which involves a coupled Hamilton-Jacobi-Bellman

equation and a Kolmogorov-forward equation.

1.1.1 Literature

Because dynamic models are ubiquitous in finance and economics, methods for solving

more complex models are an area of active research. In discrete time, Fernandez-Villaverde,

Rubio-Ramirez, and Schorfheide (2016) describes the perturbation and projection tech-

niques. More recent work has been concerned with using sparse representations to increase
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the number of possible dimensions (Winschel and Kratzig (2010), Brumm and Scheidegger

(2017)).

In continuous time, solution methods generally involve the use of finite difference schemes,

which approximate the derivatives as differences on a grid. In some cases, it is possible to

slightly reduce the dimensionality of these problems using the shooting method or the method

of lines (Brunnermeier and Sannikov (2016)). However, they are still subject to the “curse

of dimensionality,” where the memory requirements grow exponentially in the number of

dimensions.

Outside the economics literature, neural networks were first applied to PDEs by Dis-

sanayake and Phan-Thien (1994). Kumar and Yadav (2011) surveys the many variations

that have been developed. However, only very recently have they been applied to high-

dimension problems, as in Han, Jentzen, and E (2017), which produces solutions at a single

point.

This paper’s contribution is to be among the first to bring techniques from machine

learning to continuous time models in finance. One other such proposal is Duarte (2018),

which embeds neural networks in traditional fixed point iteration. A limitation of this

approach is the reliance on the contraction mapping theorem for convergence.

Sirignano and Spiliopoulos (2017) develops a very similar methodology to ours, which

involves batching and minimizing PDE residuals. However, their method uses a LSTM style

neural network, which is more complex and slower to train. We achieve similar accuracy

using a simpler DNN, and explore the importance of sampling methods on performance.

Finally, our paper proposes a novel machine learning based approach to solve mean

field game problems. Mean field games describe the evolution of a continuum of agents

interacting and acting optimally (Lasry and Lions (2007)). These problems are characterized

by a coupled system of PDEs, where one solution is a probability density function. Current

solution methods are highly customized and rely on finite difference methods (Achdou, Han,

et al. (2017)). Our method proposes an alternative solution technique based on mixture

density networks (Bishop (1994)).
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1.2 Methodology

1.2.1 Numerical PDE Methods

Consider a generic differential equation of the form

LF (~x) = g(~x), ~x ∈ D (1.1)

BF (~x) = h(~x), ~x ∈ B (1.2)

where L and B are some differential operators. A strong solution F (·) would exactly satisfy

both the PDE, (1.1), over the entire domain D, as well as the boundary conditions, (1.2), over

the boundary B. Since this is rarely possible analytically, many numerical approximation

methods have been developed.

The method in this paper falls in the class of residual methods, which include finite ele-

ments, collocation, and spectral methods (Judd (1998), Boyd (2001)). First, they construct

an approximating function f(x; θ) that built on some basis function, where θ are the un-

derlying parameters. These functions could be a high order polynomials as in Chebyshev

methods, sine functions in spectral methods, or local piecewise functions in finite-element

methods. Then, select some finite collection of points D̂ ⊂ D and B̂ ⊂ B, generally on a

regularly spaced grid. At these points, the residuals are computed:

R1(~xi, f(~xi; θ)) = Lf(~xi; θ)− g(~xi), ~xi ∈ D̂

R2(~xi, f(~xi; θ)) = Bf(~xi; θ)− h(~xi), ~xi ∈ B̂

In cases where f(x; θ) is sufficiently flexible and θ has enough degrees of freedom, it may

be possible to jointly set all the residuals to zero. Much work has been done to formulate

such problems as matrix inversion problems that can be exactly solved, such as with linear

Chebyshev methods. However, these methods are often restrictive in the particular PDE

forms that can be accommodated.
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Our method differs from these traditional methods in several important ways. First, we

will construct f(~x; θ) as the output of a dense, feedforward neural network. Neural networks

are well suited to this task, as will be discussed shortly. Second, our goal will be to minimize

L(θ; D̂, B̂) =
∑
~xi∈D̂

R1(~xi, f(~xi; θ))
2 + λ

∑
~xi∈B̂

R2(~xi, f(~xi; θ))
2

where λ > 0 controls the relative weighting of the PDE versus the boundary residuals.

Instead of exactly solving to set all residuals to zero, we will instead be minimizing the least

squares loss.

Both of these points are common within the existing literature on neural network PDE

methods. However, some papers will reformulate the problem so that the boundary con-

ditions are always satisfied (Lagaris, Likas, and Fotiadis (1998)). For example, with initial

condition F (0, x) = g(x), they construct f(t, x; θ) = g(x) + t · f̃(t, x; θ) where f̃ is the neural

network output. This way, the initial condition is always trivially satisfied. We do not take

this approach here, as performance was found to be extremely poor in practice when g was

not differentiable, like in Black-Scholes.

Finally, our method will find the minimizing parameter values, θ∗, using Batch Gradient

Descent (BGD) and the Adam Optimizer. Instead of constructing D̂ as a fixed grid, we

will instead draw random samples repeatedly from the space D. This makes our method a

meshless method that scales better to high dimensions. Methods that rely on a fixed grid of

points are bound by the “curse of dimensionality,” as the number of required points grows

exponentially. Only recently has BGD been utilized for solving PDEs, as in Sirignano and

Spiliopoulos (2017) and Duarte (2018). By resampling repeatedly, the goal is to improve

the fit of the neural network over the entire domain D, and not at a sparse few points. The

Adam Optimizer is helpful in this context, as it exhibits momentum which will retain a

memory of previous points we have sampled.
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1.2.2 Machine Learning Principles

1.2.2.1 Artificial Neural Networks

An artificial neural network (ANN) is a function from f : Rd → R that is composed of

many simpler functions, or neurons. We can think of a single one of these neurons much like

a logistic regression. Given some input point ~x ∈ Rd, a single neuron would take the value

h(~x) = g(~w · ~x+ b) where g(z) is the logistic function g(z) = 1
1+e−z .

Clearly, this logistic regression output h(~x) is not sufficiently flexible to solve most PDEs.

The free parameters we would have to choose are ~w and b, but the output is bounded in

(0, 1) and can only model functions that are monotone in ~x. Instead, the ANN uses the value

of many such neurons as intermediate steps. Let

~h(~x) = g(W1 · ~x+~b1)

where ~h,~b ∈ Rm and W1 ∈ Rm×d. We can think of this as the stacked output of m logistic

regressions, and is known as the hidden layer. The output returned by the ANN is then

f(~x) = W2 · ~h(~x) + b2

where W2 ∈ R1×m and b2 is a scalar.

This function can be computed efficiently, as it is mostly linear operations with the

only non-linearity being the logistic function g(·). While we have so far used the logistic

function, there are other potential activation functions g(·). Popular functions include the

hyperbolic tangent function g(z) = ez−e−z

ez+e−z , the rectified linear function g(z) = max(0, z), or

the leaky rectified linear function g(z) = max(αz, z). It is worth noting that the rectified

linear functions are not suited to PDE approximation, as the resulting output is piecewise

linear. Therefore, the second derivatives with respect to ~x are almost always zero.

Despite the computational simplicity of ANNs, they have also proven extremely flexi-

ble. The Universal Approximation Theorem (Cybenko (1989)) shows that such an ANN

is capable of approximating any Borel measurable function arbitrarily well, given enough

hidden neurons, m. And, of particular use for PDE applications, the function is also able to

approximate the derivatives of any such function arbitrarily well (Hornik (1991)).

6



Unfortunately, the number of hidden neurons required for a good approximation may

be intractably large. This can be mitigated by constructing a deep neural network (DNN).

Instead of only having one layer of hidden neurons, we construct multiple hidden layers as

functions of the preceding hidden neurons.

~z1 = W1 · ~x+~b1

~h1 = g(~z1)

~z2 = W2 · ~h1 +~b2

~h2 = g(~z2)
... (1.3)

~zl = Wl · ~hl−1 +~bl

~hl = g(~zl)

f = Wl+1 · ~hl + bl+1

As the number of hidden layers increases, the DNN is capable of approximating more

complex functions with fewer hidden neurons in each layer and fewer total parameters.

1.2.2.2 Gradients

Part of the reason for the ubiquitous use of DNNs, is the ease with which gradients

are computed. As part of the optimization process, algorithms require computation of the

derivatives of the loss function with respect to the parameters. Here however, we are inter-

ested in the derivatives with respect to the input dimension. Consider below that x is scalar,

and there is only one hidden neuron at each layer, so hi is also scalar.

∂f

∂x
=
∂f

∂hl
· ∂hl
∂zl

. . .
∂h1

∂z1

· ∂z1

∂x

= Wl+1 · g′(zl) ·Wl · · · g′(z1) ·W1

= Wl+1 · hl(1− hl) ·Wl · · ·h1(1− h1) ·W1

If we have chosen g(z) to be the logistic function, then conveniently g′(z) = g(z)(1−g(z)).
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The above derivative is just the product of many terms we already computed. On the for-

ward pass, where we compute f , we store all the intermediate values along the way. Then, to

calculate the derivative (the backward pass), we are able to simply multiply values we have

already stored. This algorithm is known as the backpropagation algorithm. For a more de-

tailed explanation of this algorithm, and neural networks in general, see Goodfellow, Bengio,

and Courville (2016). The higher order derivatives become somewhat more complicated, as

each hj depends on x as well, and the product rule applies. However, they remain a linear

combination of previously computed quantities.

Because this process is so essential to machine learning, it is handled entirely within the

implementations of popular machine learning toolboxes (TensorFlow, Keras, Matlab, etc.).

Also, it is entirely linear algebra based so can be computed extremely quickly with Graphical

Processing Units (GPUs). This means that for researchers, solving PDE problems in these

toolboxes is as simple as writing down the differential equation. All of the computation of

the derivatives (and gradients with respect to parameters), it taken care of automatically.

1.2.2.3 Batch Gradient Descent

Another essential component of modern machine learning techniques is Batch Gradient

Descent, a relative of Stochastic Gradient Descent (Robbins and Monro (1951)). Suppose

we have 10,000 fixed points in D that we wish to fit the PDE at, and suppose the boundary

condition is always satisfied. Then compute the loss for a given parameter estimate as:

L(θi;D) =
1

10, 000

10,000∑
j=1

R1(~xj, f(~xj; θi))
2

To improve our fit, we would like to take a step in the direction of decreasing gradient.

θi+1 = θi − γ∇θL(θi;D)

= θi − γ
1

10, 000

10,000∑
j=1

∇θR1(~xj, f(~xj; θi))
2

Here γ is the step size, also known as the learning rate.

The gradient above resembles the population mean. If we assign each point in D equal
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probability and draw a subsample of n points, D̂ ⊂ D, then we can instead update our

parameters using the sample mean:

θi+1 = θi − γ
1

n

∑
xj∈D̂

∇θR1(~xj, f(~xj; θi))
2

This sample mean will be equal to the true gradient in expectation, and the standard de-

viation decreases as 1/
√
n. This subsample D̂ is what is known as a batch. By using a

smaller sample, we are able to update θi in a direction that is correct on average. The case

when n = 1 is known as Stochastic Gradient Descent. While sampling greater n provides a

less noisy estimate, the returns are decreasing. In order to double the precision, we need to

compute the residuals for four times as many points. Ultimately, the tradeoff between speed

and accuracy is problem specific.

Another important point comes up when using machine learning for PDEs. Unlike with

most machine learning contexts, we have access to unlimited training data. We can sample

any point in D as many times as we like. However, almost all prior methods restrict attention

to a fixed grid of points within D.

Figure 1.1 illustrates a potential problem with this method. Because there are a mul-

titude of solutions to any PDE with different boundary conditions, it is possible that our

approximating function jumps between them. We may satisfy the boundary condition ex-

actly, and the residual of the PDE may be zero at the grid points. However, because the

PDE is not satisfied in between, we have moved to a solution with the wrong boundary

condition. To remedy this, we instead draw different points from D for every step of our

gradient descent. This way, the problem region is hopefully sampled and remedied.

1.2.2.4 Adam Optimizer

The Adam Optimizer is an extremely popular and effective extension of SGD (Kingma

and Ba (2014)). Because the gradient estimates are noisy, this method estimates the current

gradient as an AR(1) process. This feature is called momentum and is a popular component

of many optimizers. It allows the optimizer to retain a memory of the past points that have

9



been sampled. Even though we only sample a few points at every iteration, this memory

tries to eliminate the possibility of backtracking and undoing previous updates.

The second moment of the gradient is also estimated as an AR(1). Then, the step size

is inversely proportional to the variance of the gradient. When the gradient estimates are

noisier, the algorithm will take smaller steps.

gi =
1

n

∑
xj∈D̂

∇θR1(~xj, f(~xj; θi))
2

mi = β1mi−1 + (1− β1)gi

vi = β2vi−1 + (1− β2)g2
i (1.4)

γi = γ

√
1− βi2

1− βi1
θi+1 = θi − γi

mi√
vi + ε

Equation (1.4) describes the process in detail. gi is the gradient estimate from the

current batch. mi and vi are the AR(1) estimates of the gradient and its second moment.

The learning rate γi is defined to eliminate the bias of initializing the process at 0. Finally,

the last line describes the parameter update. The authors describe mi/
√
vi as a signal to

noise ratio, where the step size decreasing when the SNR is low.

1.2.2.5 Mixture Density Networks

A useful variation of the DNN described above is the mixture density network (Bishop

(1994)). Often in economic models, researchers are interested in the evolution of distribution

functions over time. Achdou, Buera, et al. (2014) reviews several such continuous time

models, where the evolution of agent distributions is governed by a differential equation,

known as the Kolmogorov Forward Equation.

As before, we wish to learn an approximating function d(t, x; θ) that satisfies some PDE.

(Let us assume x ∈ D ⊂ R for notational simplicity.) However, we also require that this

function is a valid PDF so satisfies the constraint that
∫
D
d(t, x; θ)dx = 1. One way to do
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this would be to use an DNN like above, but to normalize its value:

d(t, x; θ) =
f(t, x; θ)∫

D
f(t, x; θ)dx

.

Computing this integral is extremely costly numerically.

Instead, we will construct the function as the PDF of a mixture of normals, where the

mean, variance, and mixing probabilities vary over time. To begin, we will compute a hidden

layer in the same method as above. However, the only input variable will be the time index

t:

~h1(t) = g(W1 · t+~b1)

~z2 = W2 · ~h1 +~b2

We will then partition ~z2 into three parts. ~z2 = [~µ|~σ|~p], where ~µ, ~σ, ~p ∈ Rk, and k is the

number of normal distributions we mix between. We transform ~σ = e~σ so it is always

positive, and pi = e−pi∑
j e
−pj

with the softmax function so that they are discrete probabilities.

Then define:

d(t, x; θ) =
k∏
i=1

pi
1√

2πσ2
i

exp
(x− µi)2

2σ2
i

(1.5)

Now it is guaranteed that d(t, x; θ) will be a valid PDF for any choice of θ (and thereby ~h).

Another possible route would be to define a CDF that is monotone with range [0, 1]. This

has not been explored in this paper, but some work on monotone neural networks has been

done (You et al. (2017)). This method is also similar to the work on Radial Basis Function

Networks that have been used as universal approximators for solving PDEs (Kumar and

Yadav (2011)), but here we are able to normalize them with known constants.

1.2.3 Procedure

For the generic PDE:

LF (~x) = g(~x), ~x ∈ D

BF (~x) = h(~x), ~x ∈ B

the procedures for this method are as follows:
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0. i = 0. Initialize our approximating dnn f(~x; θ0) with random parameters θ0.

1. Draw sample of interior points ~xj ∈ D. Call this batch D̂i.

2. Compute the PDE residuals at these points.

R1(~xj, f(~xj; θi)) = Lf(~xj; θi)− g(~xj), ~xj ∈ D̂i

3. Draw sample of boundary points ~xj ∈ B. Call this batch B̂i.

4. Compute the boundary residuals at these points.

R2(~xj, f(~xj; θi)) = Bf(~xj; θi)− h(~xj), ~xj ∈ B̂i

5. Compute the total loss.

L(θi; D̂i, B̂i) =
∑
~xj∈D̂i

R1(~xj, f(~xj; θi))
2 + λ

∑
~xj∈B̂i

R2(~xj, f(~xj; θi))
2

6. If the total loss is sufficiently small, end. Otherwise, update the parameters of our

approximating function (assign θi+1) using the Adam optimizer to minimize the total

loss. Update the learning rate, set i = i+ 1, and return to step 1.

Several choices must be made by the researcher when using this method. Many of these

choices are common to all machine learning methods: the complexity of the neural network

(number of layers and hidden neurons), the number of samples per batch, the initial learning

rate and possible learning rate decay, the number of iterations, and optimizer parameters.

The selection of these parameters is known as hyperparameter tuning, and there are many

resources online about rule-of-thumb methods, or more rigorous Bayesian methods (Snoek,

Larochelle, and Adams (2012)).

The question is, how do we know which parameter values produce a better solution to our

PDE? In cases where we do not know the analytic solution, this may be difficult to judge.

One important way to evaluate the fit is to check that the solution matches the known

boundary conditions well. Running through the method with the loss only being equal to
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the squared boundary residuals should produce a good approximation on the boundary. A

bad fit may be indicative of bad optimizer parameters, or that the chosen neural network

structure is insufficiently flexible to model the solution.

The value of the loss function at a fresh sample of evaluation points is also a good measure

of fit. Because we are able to compute the exact PDE residuals at any point in D, there is

no concern of overfitting. That is, with observational data, the function may improve the

loss by catering to every outlier, at the expense of generalizability. Here, there is a strict

correlation between the current loss value and the quality of the approximation in general.

Another critical choice is how to draw the sample points. The main concern is that

the procedure will focus most on fitting the region of the space where the most points are

drawn. The loss function will weight different regions in the proportion with which they are

sampled, so comparing loss measures between sampling methods is invalid. A method which

only ever samples the same point will be able to achieve loss close to zero, but it would

not be considered a good approximation. The subsequent examples illustrate some potential

methods and the tensions they create.

1.3 Examples

1.3.1 Black-Scholes

1.3.1.1 One Dimension

We begin with a simple European call option for illustration. Suppose we have a risk-free

asset that earns rate r, and a stock with dynamics

dS(t)

S(t)
= µdt+ σdW (t)

At time T , the option will have a terminal payoff Φ(S(T )) = max{S(T ) − K, 0}. We

know that the price of this call option satisfies the Black-Scholes PDE:
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∂F (t, S)

∂t
+ rS

∂F (t, S)

∂S
+

1

2
S2σ2∂

2F (t, S)

∂S2
− rF (t, S) = 0 ∀(t, S) ∈ [0, T ]× [0,∞)

s.t. F (T, S) = Φ(S) ∀S ∈ [0,∞)

While the analytic solution will solve the PDE exactly on the whole domain, what we

seek is an approximating function that gets close. In particular, we will will use f(t, S; θ)

that is the output of a deep neural-network with four hidden layers of 50 neurons each, using

the tanh activation function. Also, we cannot sample S ∈ [0,∞), so we will instead sample

S ∈ [0, S].

0. i = 0. Initialize our approximating function as a DNN with four hidden layers of 50

neurons each: f(t, S; θ0) with random parameters θ0.

1. Draw sample of interior points D̂i. Sample (tj, Sj) ∈ [0, T ]× [0, S] uniformly.

2. Compute the PDE residuals at these points.

R1(tj, Sj, f(tj, Sj; θi)) =
∂f(tj, Sj; θi)

∂t
+ rSj

∂f(tj, Sj; θi)

∂S
+

1

2
S2
j σ

2∂
2f(tj, Sj; θi)

∂S2
j

− rf(tj, Sj; θi)

3. Draw sample of boundary points B̂i. Sample (tj, Sj) ∈ [T, T ]× [0, S] uniformly.

4. Compute the boundary residuals at these points.

R2(tj, Sj, f(tj, Sj; θi)) = f(T, Sj; θi)−max{Sj −K, 0}

5. Compute the total loss.

L(θi; D̂i, B̂i) =
∑

(tj ,Sj)∈D̂i

R1(tj, Sj, f(tj, Sj; θi))
2 + λ

∑
(tj ,Sj)∈B̂i

R2(tj, Sj, f(tj, Sj; θi))
2

6. If the total loss is sufficiently small, end. Otherwise, update the parameters of our

approximating function (assign θi+1) using the ADAM optimizer to minimize the total

loss. Update the learning rate, set i = i+ 1, and return to step 1.
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For this example, let r = 5%, σ = 20%, T = 5, and K = 10 and sample share prices on

the range [0, 50]. We make 40,000 iterations, each time sampling 1,000 points on the interior

and on the boundary. We start with a learning rate of 0.01 and decrease it by 10% every

500 iterations. All of our examples were coded in Google’s open source TensorFlow package

for Python.

Figure 1.2 illustrates the quality of our fit. Figure 1.2 (a) shows the error in the fit over

the entire rectangular region. We see that our method does quite poorly in the top left

corner. This is due to the fact that our boundary condition only holds for the right edge (at

maturity), and for a limited region ([0,50]). If we ask for the value of the option at point A,

(t,S)=(1,40), the value at this point depends strongly on what the payoff will be for values of

S > 50, as it is relatively likely that the final share price will fall there at maturity. Because

this is outside of our selected region, the value in this corner is largely undetermined.

In Figure 1.2 (c), we use the same approximation, but restrict our attention to points

where the terminal share price is unlikely to fall outside our sampled region. For points

within the displayed region, it would take greater than a three standard deviation return to

make it outside the modeled boundary region. The magnitude of error is much smaller in

this region, with the biggest error being at the strike price at maturity. This is a result of

trying to match a non-smooth function with a smooth one.

Another possible method is to sample D̂i and B̂i according to the risk-neutral diffusion

process. For the interior points, sample t ∈ [0, T ] uniformly, and sample S = S0e
(r−σ2/2)t+σ

√
tZ

where Z is standard normal. For the boundary points, fix t = T and sample S as before.

Figure 1.2 also illustrates the performance this GBM sampling method, given a starting

price of S0 = 10. We see in Figure 1.2 (b) that the approximation is still poor in the top

left, and now, bottom left corners. However, we have also not sampled many points in

this region. As discussed above, sampling points in this region would be wasteful without

sampling from the boundary condition in the corresponding region. Figure 1.2 (d) shows the

same approximation, but subset to the region of returns less than three standard deviations

from S0. The worst fit is near the edges, which is due to insufficient sampling of their
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corresponding boundary region.

Sampling test points according to the GBM, the uniform sampling method produces an

average pricing error of $0.0036 compared to $0.0015 for GBM sampling. The percent error

at S0 is 0.095% with uniform sampling, compared to 0.002% for GBM sampling. This is due

to the fact that the GBM method does not waste time fitting the approximation in regions

that are not defined.

1.3.1.2 Multiple Assets

Now we will apply our method to the multi-dimensional Black-Scholes PDE. Suppose we

have a risk-free asset the earns rate r, and n stocks with dynamics

dSi(t)

Si(t)
= µidt+ σidWi(t)

where W1(t), . . . ,Wn(t) are standard Brownian motions with correlation dWidWj = ρijdt.

We wish to price a European option, whose terminal payoff is given by Φ(S(T )). Then, we

know that the value of the option, F (t, S(t)), must satisfy the Black-Scholes PDE:

∂F

∂t
+

d∑
i=1

rSi
∂F

∂Si
+

1

2

d∑
i=1

d∑
j=1

SiSjσiσjρij
∂2F

∂Si∂Sj
− rF = 0

s.t. F (T, S(T )) = Φ(S(T ))

While our method is capable of solving such a problem for any payoff or dynamics, we will

choose a simple example so that we can calculate the solution in closed form as a benchmark.

Let us assume that µi = µ, σi = σ, and ρij = 0 for i 6= j. We will then price a geometric

basket option, whose payoff is given by Φ(S(T )) = max
{

(
∏n

i=1 Si(T ))
1
n −K, 0

}
. The value

of this option has an analytic solution as derived in Vorst (1992).

We fit our model on problems of increasing dimension (n). For each n, we let r = 5%,

σ = 20%, T = 5, and K = 10, and our neural-network has four hidden layers of 50 neurons

each and uses the tanh activation function.

16



In this example, we will sample our interior training points from the risk-neural diffusion

process, starting with an initial price of S0 = (10, 10, . . . ). The boundary training points

are drawn from the distribution of the risk-neutral diffusion process at time T . We could

use uniform sampling on a rectangular region, however, as the number of dimensions grows,

the probability of the process leaving any bounded box also grows. This leads to declining

performance of the model. We again sample 1,000 points for 40,000 iterations for each

problem. Because the complexity of the solution is growing in the number of dimensions, it

is likely beneficial to increase the complexity of the approximating function or to increase

the training time. For comparison purposes, we keep these factors constant as we increase

n, and performance is still quite good.

Table 1.1 shows the performance of our method as we increase the number of dimensions.

In the first column, we show the percent error at our initial sampling point S0. The perfor-

mance of our model declines as we increase the number of dimensions, particularly for 25 or

50 dimensions, but the overall error is still quite small. The second and third columns show

the average absolute and percent error for 100,000 points sampled randomly from the same

diffusion process as we used in training. The error is again growing, but not exponentially.

Finally, the fourth column shows the training time required for each problem running on a

single NVIDIA GTX 1070 GPU. The reason that the training time increases is that we must

compute more partial derivatives of our approximating function. In particular, the Hessian

matrix in the PDE grows on the order n2. However, we are using uncorrelated processes in

our example, so the problem only grows on the order n here. See Sirignano and Spiliopoulos

(2017) for a method to approximate the Hessian and speed up training.

We compare our method to the NDSolve function in Mathematica. This function uses a

finite difference Adams scheme on a grid, so the computation required grows exponentially.1

We see that for 1 or 2 dimensions, Mathematica is clearly superior. It runs in just a couple

of seconds and produces lower error overall. However, for n = 4 and greater, the error and

computation quickly deteriorate. At n = 7, 32GB of ram was insufficient for computation,

1We use the default settings. While manual adjustment of method, grid spacing, or approximation order

may affect the trade off of accuracy and performance, the pattern is qualitatively similar.
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as the 7-dimensional grid was too large to store in memory.

1.3.1.3 Parameters as Dimensions

Another way to increase the dimensionality of the problem is to treat the exogenous

parameters r, σ, and K as separate dimensions. Previously, we fixed the values of these

parameters before solving for our approximating function. While this approximating function

could be reused if the current stock price or time to maturity changes, we would have to

fit a new approximation if the other parameters changed. Instead, we will now feed these

parameters in to our approximating function as variables.

As before, we will sample t ∈ [0, T ] uniformly. We will also sample r ∈ [0, 20%], σ ∈

[0%, 30%], and K ∈ [0, 20]. The share price is then sampled from the risk-neutral diffusion

corresponding to the chosen parameters. Using the same neural network architecture from

the previous section led to poor results, as it seems this function is more complex. Instead,

we will use a neural network with five hidden layers of 100 neurons each, which takes longer

to train, but can fit more complex functions.

Table 1.3 shows the performance of our approximating function when we fix the param-

eters at some arbitrary values. The first row is equivalent to the first row of Table 1.1.

Despite fitting a more complicated function, the performance on the same slice as before

is comparable. Figure 1.3 shows the error on this slice, which is equivalent to Figure 1.2

(d). While this approximate took longer to train, it has much greater reuse value as it can

accommodate a wide range of parameter values without needing to retrain.

1.3.1.4 A Method Hazard

In several other papers that use machine learning methods to approximate PDE solutions,

the authors generally evaluate the success of the algorithm by the error at a single point, S0.

However, this measure alone can lead to misleading results, as shown below.

Suppose that we followed the same procedure as outlined above, but instead we used

the approximating neural network f̂(ti; θi). Critically, this function does not depend on the
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current stock price. It is only a function of time.

Now if we sample the boundary points from the risk neutral diffusion starting at S0, our

goal for the boundary portion of the loss is to minimize

Lbnd(θi, A
bnd
i ) =

∑
(ti,Si)∈Abnd

i

(
f̂(T ; θi)− Φ(ST )

)2

Equivalently, our goal is to select a single value f̂(T ; θi) for all values of ST that minimizes

the Mean Squared Error, which we know to be the conditional mean. The function is blind

to the current value of ST , so the most recent information was the initial value S0. Optimally,

f̂(T ; θi) = E0[Φ(ST )]

Now for the PDE, all partial derivatives with respect to Si will be zero, so the PDE

is simply ∂f̂
∂t
− rf̂ = 0. The solution to this given our boundary condition is f̂(t) =

e−r(T−t) E0[Φ(ST )], where we have sampled ST from the risk-neutral diffusion process. When

t = 0, this corresponds exactly to the result of the Feynman-Kac Theorem.

So, even if our neural network is completely independent of the share price, we will find

that it does an excellent job at approximating the true value at the initial point. In applying

this method, we must be very careful to examine that the approximation is good over the

entire space, not just at a single point.

The results using only f̂ are shown in Table 1.4. In the second column, we see that this

naive network actually outperforms our prior network from Table 1.1 for many dimensions.

However, the average error over the space is quite substantial as shown in columns three and

four. Also, the error is decreasing in n, but this is due to the fact that the product of GBMs

has decreasing variance as more are added. This leads to less variation in the payoff and a

smaller range of prices.

1.3.2 Dynamic Programming and Hamilton-Jacobi-Bellman Equations

In dynamic programming problems, agents are concerned with how to optimally control

some processes to minimize the total cost. In finance, these problems often arise as the

optimal control of agents seeking to manage a portfolio of assets as in Merton (1973) or
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manage a firm as in DeMarzo and Sannikov (2006). Analytic solutions to these problems

are rare, and only for problems with few dimensions. While finite difference schemes work

well in low dimensions, they are limited for problems with a large number of dimensions.

We will consider here a simple Linear-quadratic-Gaussian example for which we can

compute the solution relatively simply with the use of Monte Carlo methods. This example

is used in Han, Jentzen, and E (2017) as a benchmark for numerical performance of another

numerical approximation method.

Suppose we have n state variables, whose dynamics are given by d ~Xt = 2
√
γ ~mt+

√
2d ~Wt

where ~Wt ∈ Rn are independent Brownian motions. Let ~X0 = [0, . . . , 0]>, t ∈ [0, T ] and

~Xt ∈ Rn. γ > 0 denotes the strength of the control, and ~mt ∈ Rn represents the control

process. The associated cost for a given control is given by

J(t, ~Xt) = max
~m

Et

[∫ T

t

||~ms||22ds+ g( ~XT )

]
In differential form,

0 = max
~mt

||~mt||22 +
∂J

∂t
+ 2
√
γ

n∑
i=1

∂J

∂Xi,t

mi,t +
n∑
i=1

∂2J

∂X2
i,t

From the FOC, the optimal control is given by mi,t = −√γ ∂J
∂Xi,t

. Plugging this in yields the

non-linear PDE that the value process must satisfy:

0 =
∂J

∂t
− γ

n∑
i=1

(
∂J

∂Xi,t

)2

+
n∑
i=1

∂2J

∂X2
i,t

s.t. J(T, ~XT ) = g( ~XT )

The solution to this PDE is equal to

J(t, ~Xt) = −1

γ
ln
(

Et
[
exp

(
−γg( ~Xt +

√
2 ~WT )

)])
which can be computed relatively easily using Monte Carlo. While this is true for any

function g(·), in this example g(~x) = 1 + ln((1 + ||~x||22)/2) and γ = 1.
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1.3.2.1 One Dimension

As a numerical example, we let λ = 1 and make 20,000 iterations, sampling 1,000 points

on the interior and boundary each time. The learning rate starts at 0.01 and decays 10%

every 250 iterations. The approximating function is a standard DNN with four hidden layers

of 50 neurons each.

As in the previous example, how to sample from D is an issue. Sampling uniformly from

a rectangle again poses problems for values near the spatial boundary. This is illustrated

in Figure 1.4 (a). The error is largest for large values of X0, where the process is again

likely to leave the sampled region. However, this problem is much less severe than in the

Black-Scholes case, as agents are actively controlling the drift to push the process back to

0. It is only through bad shocks that they are pushed outside. The right figure shows the

subset where it would take a three standard deviation shock to push agents past the sampled

boundary. Note that the noise in the figure is due to the use of Monte-Carlo simulation as

the benchmark. The neural network is very smooth.

Figure 1.4 (b) shows the fit when we instead sample from the uncontrolled Brownian

motion (drift of 0) starting at X0 = 0. The quality of the fit does not improve much over the

subsample region. Despite not wasting points on undetermined regions, it doesn’t appear to

offer much gain. However, the problem of leaving the boundary set grows as the dimensions

increase, so there are gains in higher dimensions.

Finally, Figure 1.4 (c) shows the fit when the samples are drawn from the controlled

Brownian motion, under the current estimate of the optimal control. This understandably

leads to poor fit for extreme values of XT , as the process has learned to avoid those regions.

Hence, few points are sampled there to discipline the approximation. While this method

does appear to yield good solutions at X0 = 0, this may not always be the case. When the

boundary condition g(x) is non-monotonic, it may be that the initial estimate samples may

points from a local minimum, and not the global minimum. It will continue to sample points

along this path and may never discover the global minimum, leading to erroneous values.

When sampling from the controlled Brownian motion, this problem effectively becomes
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a reinforcement learning problem. There are vasts amounts of research in this field, where

agents learn by doing and act according to their current model of the value function (Sutton

and Barto (2018)). This is also the method adopted by Han, Jentzen, and E (2017) for PDE

solutions, but only produces solutions at a single starting point.

1.3.2.2 Multiple Dimensions

We will now extend this example to problems of increasing dimensionality. As before, let

λ = 1 and make 20,000 iterations, sampling 1,000 points from the uncontrolled Brownian

motion in the interior and boundary each time. The learning rate starts at 0.01 and decays

10% every 250 iterations. The approximating function is a standard DNN with four hidden

layers of 50 neurons each.

Table 1.5 shows the performance of this method. The percent error is fairly constant

as the dimensionality increases, while the computation time grows linearly. This is in com-

parison to the performance of Mathematica’s finite difference method, seen in Table 1.6,

where the error grows considerably beyond three dimensions. Again, 32GB of memory was

insufficient for seven dimensions in Mathematica.

1.3.3 Mean Field Games

1.3.3.1 Traffic Problem: 1-Dimension

Here, we consider a simple example model where agents seek to avoid traffic during their

commute. This problem is taken from Alanko (2015), who uses it to test an alternative

numerical method. While the dimensionality of this problem is low, it is difficult to solve

using traditional techniques due to non-linearities in the PDE. Additionally, the boundary

conditions take the form of an initial condition for the density function, but a terminal

condition for the value function.

Suppose pedestrians are distributed along a line, with initial distributionm0(x) = N (−1, 0.252).

That is, at time 0, they are normally distributed around a town at x = −1. By the end of
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the game at time T , they would like to be located at their home town at x = 1. Pedestrians

control their motion as

dXt = α(Xt, t)dt+ dWt

where α is their chosen travel velocity. Their goal is to minimize the expected cost

u(Xt, t) = E

[
g(XT ) +

∫ T

t

α2
s

2
ds+

∫ T

t

m(Xs, s)ds

]
where the terminal cost is given by g(x) = e−2x2 − 2e−2(x−1)2 .

The terminal cost penalizes pedestrians caught between the two towns at the end, and

rewards those who make it home to x = 1. The expected cost also contains the cost of

movement choice, which is α2
s

2
. Finally, the cost also contains a penalty for being at the same

position on the road as many other pedestrians, m(Xs, s).

After substituting in the optimal control, we obtain the system of PDEs:

∂u

∂t
− 1

2

(
∂u

∂x

)2

+m(x, t) +
1

2

∂2u

∂x2
= 0, u(x, T ) = g(x) (1.6)

∂m

∂t
− ∂

∂x

(
m(x, t)

∂u

∂x

)
− 1

2

∂2m

∂x2
= 0, m(x, 0) = m0(x) (1.7)

To solve this system, we will model u as a standard DNN. However, m(x, t) is a distri-

bution function, so we will model it as a mixture density network which we described in

Section 1.2.2.5. The details are described below:

0. i = 0.

• Initialize our approximating cost function û as standard DNN with three hidden

layers of 50 neurons each: û(x, t; θu0 ) with random parameters θu0 .

• Initialize our approximating distribution function m̂ as a mixture density net-

work with one hidden layer of 50 neurons feeding into 5 normal distributions:

m̂(x, t; θm0 ) with random parameters θm0 .

1. Draw sample of interior points D̂i. Sample (tj, Sj) ∈ [0, T ]× [x, x] uniformly.
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2. Compute the PDE residuals at these points for both PDEs.

Ru
1(tj, xj, û(tj, xj; θ

u
i )) =

∂û

∂t
− 1

2

(
∂û

∂x

)2

+ m̂+
1

2

∂2û

∂x2

Rm
1 (tj, xj, m̂(tj, xj; θ

m
i )) =

∂m̂

∂t
− ∂

∂x

(
m̂
∂û

∂x

)
− 1

2

∂2m̂

∂x2

3. • Draw sample of boundary points B̂u
i . Sample (tj, xj) ∈ [T, T ]× [x, x] uniformly.

• Draw sample of boundary points B̂m
i . Sample (tj, xj) ∈ [0, 0]× [x, x] uniformly.

4. Compute the boundary residuals for both boundaries on their respective points.

Ru
2(tj, xj, û(tj, xj; θ

u
i )) = û(tj, xj; θ

u
i )− g(xj)

Rm
2 (tj, xj, m̂(tj, xj; θ

m
i )) = m̂(tj, xj; θ

m
i )−m0(xj)

5. Compute the total loss.

L(θui , θ
m
i ; D̂i, B̂

u
i , B̂

m
i ) =

∑
(tj ,xj)∈D̂i

(
Ru

1(tj, xj, û(tj, xj; θ
u
i ))2 +Rm

1 (tj, xj, m̂(tj, xj; θ
m
i ))2

)
+ λ

∑
(tj ,xj)∈B̂u

i

Ru
2(tj, xj, û(tj, xj; θ

u
i ))2

+ λ
∑

(tj ,xj)∈B̂m
i

Rm
2 (tj, xj, m̂(tj, xj; θ

m
i ))2

6. If the total loss is sufficiently small, end. Otherwise, update the parameters of our

approximating function (assign θui+1, θ
m
i+1) using the ADAM optimizer to minimize the

total loss. Update the learning rate, set i = i+ 1, and return to step 1.

For this example, λ = 1, T = 1, and x is sampled from [x, x] = [−6, 6]. The model was

trained for 10,000 iterations with each sampling 1,000 points per set. The initial learning

rate was 0.005, decaying 10% every 500 iterations.
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The results are shown in Figure 1.5. We see that the boundary conditions are well

satisfied, and that we get the expected behavior of pedestrians moving to the home town. A

finite difference reference scheme is unfinished as of yet, but our results are highly consistent

with the finite difference solution shown in Alanko (2015).

1.3.3.2 Traffic Problem: 2-Dimensions

The above problem can be expanded to two spatial dimensions as follows (again taken

from Alanko (2015)). Let ~x = [x1, x2] and locate the starting town and home town at

(x1, x2) = (−1, 0) and (x1, x2) = (1, 0) respectively. The pedestrians initial distribution is

given by m0(~x) = N ((−1, 0), 0.255I2). Pedestrians movement is governed by

d ~Xt = ~α( ~Xt, t)dt+ d ~Wt

where ~α ∈ R2 is again the chosen velocity, now in two dimensions. The agents seek to

minimize their expected cost

u( ~Xt, t) = E

[
g( ~XT ) +

∫ T

t

||~αs||22
2

ds+

∫ T

t

m( ~Xs, s)ds+

∫ T

t

X2
2,sds

]
where the terminal cost is given by g(~x) = e−2(x21+x22) − 2e−2(x1−1)2+x22 .

The terminal cost is the two dimensional equivalent of the previous cost, which penalizes

pedestrians caught between the two towns at the end, and rewards those who make it home.

The expected cost also contains the cost of movement cost in both directions and a penalty

for being at the same position on the road as many other pedestrians. Additionally, the last

term penalizes pedestrians from straying off the road, which is the x1 axis.

After substituting in the optimal control, we obtain the system of PDEs:

∂u

∂t
− 1

2

[(
∂u

∂x1

)2

+

(
∂u

∂x2

)2
]

+m(~x, t) + x2
2 +

1

2

(
∂2u

∂x2
1

+
∂2u

∂x2
2

)
= 0, u(~x, T ) = g(~x)

∂m

∂t
− ∂

∂x1

(
m(~x, t)

∂u

∂x1

)
− ∂

∂x2

(
m(~x, t)

∂u

∂x2

)
− 1

2

(
∂2m

∂x2
1

+
∂2m

∂x2
2

)
= 0, m(~x, 0) = m0(~x)

The solution method for this problem is analogous to the 1-dimensional case. For this

example, λ = 1, T = 1, and ~x is sampled from [x, x]2 = [−6, 6]2. The model was trained
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for 100,000 iterations with each sampling 1,000 points per set. The initial learning rate was

0.01, decaying 2% every 500 iterations.

The results are shown in Figure 1.6. The finite difference verification in a work in progress,

but the results are highly consistent with the finite difference solution in Alanko (2015).
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1.4 Conclusion

Our paper has outlined a numerical method for solving high dimensional PDEs accurately

and efficiently. By using deep neural networks as approximating functions, it is possible to

take advantage of highly efficient machine learning techniques. The backpropagation algo-

rithm allows for rapid computation of derivatives for use in the PDE itself and of gradients

for updating parameters, even when the problem is non-linear. Batch gradient descent sub-

stitutes costly computation of the PDE over the entire domain with gradient approximations

on a sampled subset, removing the need for memory intensive point grids. Additionally, re-

strictions that functions must satisfy the properties of a probability density function can

be easily accommodated with the use of a mixture density network as the approximating

function.

Our method was highly accurate for the Black-Scholes PDE in up to 50 spatial dimen-

sions. For Black-Scholes pricing of basket options, our method had error below 0.3% on

average over a wide range of possible prices with up to 15 assets. The accuracy deteriorated

somewhat with 25 or 50 dimensions, but was still acceptable and could be improved with a

larger DNN. We were also able to accurately approximate the solution when the exogenous

parameters were free inputs, which provides greater reusability. However, it is important to

consider that even an approximation blind to the stock price can still produce good estimates

at a single point, as this PDE devolves to the Feynman-Kac method.

Similarly, our method was highly accurate for non-linear dynamic programming PDEs

in high dimensions. The average error over the space remained constant, below 1%, as

the number of dimensions grew. The finite difference comparison struggled beyond three

dimensions. However, we illustrated the potential shortcoming of relying on approximations

beyond the region pinned down by the boundary conditions. Unlike simple finite different

schemes that may be undefined on problem regions, the neural network will return inaccurate

estimates.

Our method also successfully modeled the solution to one and two dimensional mean

field game problems which incorporate a complex system of constraints. By using a mixture
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density network as the approximating function, we were able to automatically satisfy the

restriction that one solution was a valid PDF.

Together, this method can allow finance researchers to explore richer models than pre-

vious techniques. This is particularly useful for mean field games, models featuring many

economic state variables, or models with many agents who are heterogeneous or have non-

aggregating preferences.

Finally, because this solution method is built on top of popular machine learning frame-

works, we are able to leverage the easy to use and highly optimized software libraries like

TensorFlow from Google. This library handles all of the derivative computation and op-

timizer updating in the background, allowing researchers to quickly iterate through many

model variations with minimal coding.
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Figure 1.1: Fixed sampling may ignore problem points

We see two possible solutions to the ODE f ′(x) = f(x) with different initial boundary conditions (dashed

lines). The solution we would like is the dashed green line. However, we only sampled two points at the

vertical blue lines, x = 0.5 and x = 2.5. The PDE residuals at the sampled points are very small, and the

boundary condition is satisfied. This problem is only resolved by sampling points around x = 1.5 to correct

the error.

Dimensions (n)
Percent Error

at S0

Average
Absolute Error

Average
Percent Error

Time
(Seconds)

n = 1 0.002% 0.0015 0.183% 107

n = 2 0.008% 0.0011 0.159% 134

n = 3 0.007% 0.0020 0.262% 159

n = 4 0.110% 0.0034 0.465% 170

n = 5 0.018% 0.0012 0.174% 203

n = 10 0.013% 0.0021 0.265% 331

n = 15 0.028% 0.0022 0.250% 456

n = 25 0.233% 0.0106 1.087% 660

n = 50 0.294% 0.0423 3.385% 1251

Table 1.1: Performance of Neural Network on Multi-dimensional Black-Scholes
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Uniform Sampling GBM Sampling

(a) Absolute Error (b) Absolute Error

(c) Absolute Error (3 SD Subset Backwards) (d) Absolute Error (3 SD Subset Forwards)

(e) Percentage Error (where F > 0.05) (f) Percentage Error (where F > 0.05)

Figure 1.2: Error for the European Call Option
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Figure 1.3: Absolute Error of Neural Network on Black-Scholes with Variable Parameters

(r = 10%, σ = 20%, K = 10)

Dimensions (n)
Percent Error

at S0

Average
Absolute Error

Average
Percent Error

Time
(Seconds)

n = 1 0.002% 0.0002 0.010% 1

n = 2 0.003% 0.0000 0.004% 11

n = 3 0.035% 0.0028 0.416% 33

n = 4 1.295% 0.0248 3.343% 51

n = 5 1.622% 0.0244 2.623% 499

n = 6 1.445% 0.0223 2.319% 5,389

n = 7 Failed

Table 1.2: Performance of Mathematica NDSolve on Multi-dimensional Black-Scholes

r σ K
Percent Error

at S0

Average
Absolute Error

Average
Percent Error

10% 20% 10 0.076% 0.0035 0.209%

5% 25% 5 0.122% 0.0071 0.138%

0% 30% 0 0.213% 0.0158 0.154%

15% 15% 10 -0.094% 0.0068 0.347%

Table 1.3: Performance of Neural Network on Black-Scholes with Variable Parameters
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Absolute Error Absolute Error (3 SD Subset Backwards)

(a) Uniform Rectangular Sampling

(b) Uncontrolled BM Sampling

(c) Controlled BM Sampling

Figure 1.4: Error for 1-Dimensional HJB Equation (Noise from Monte-Carlo Reference)
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Expected Cost û(x, t) Distribution m̂(x, t)

t
=

0
t

=
1/

3
t

=
2/

3
t

=
1

Figure 1.5: 1-Dimensional Mean Field Game
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Expected Cost û(~x, t) Distribution m̂(~x, t)

t
=

0
t

=
1/

3
t

=
2/

3
t

=
1

Figure 1.6: 2-Dimensional Mean Field Game
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Dimensions (n)
Percent Error

at S0

Average
Absolute Error

Average
Percent Error

n = 1 0.170% 2.2479 256.887%

n = 2 0.127% 1.5254 197.444%

n = 3 0.017% 1.2544 168.696%

n = 4 0.062% 1.0884 149.895%

n = 5 0.058% 0.9897 138.539%

n = 10 0.001% 0.7329 100.784%

n = 15 0.692% 0.6121 80.106%

n = 25 0.258% 0.4913 58.564%

n = 50 0.005% 0.3517 33.671%

Table 1.4: Performance of Neural Network Using Only t on Multi-dimensional Black-Scholes

Dimensions (n)
Percent Error

at ~X0

Average
Absolute Error

Average
Percent Error

Time
(Seconds)

n = 1 0.071% 0.0155 1.236% 46

n = 2 0.126% 0.0179 0.908% 60

n = 3 0.515% 0.0185 0.738% 73

n = 4 0.274% 0.0180 0.619% 77

n = 5 0.006% 0.0177 0.560% 89

n = 10 0.086% 0.0306 0.758% 145

n = 15 0.069% 0.0391 0.881% 201

n = 25 0.040% 0.0212 0.432% 312

n = 50 0.075% 0.0381 0.679% 593

Table 1.5: Performance of Neural Network on Multi-dimensional HJB
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Dimensions (n)
Percent Error

at ~X0

Average
Absolute Error

Average
Percent Error

Time
(Seconds)

n = 1 0.751% 0.0038 0.411% 1

n = 2 0.129% 0.0046 0.332% 2

n = 3 0.156% 0.0052 0.298% 7

n = 4 5.499% 0.1118 6.001% 37

n = 5 3.572% 0.0853 4.028% 215

n = 6 2.080% 0.0662 2.845% 1605

n = 7 Failed

Table 1.6: Performance of Mathematica NDSolve on Multi-dimensional HJB
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CHAPTER 2

Unenforced Endogenous Reciprocity

with Ivo Welch

2.1 Introduction

Residents of small towns routinely purchase goods from local vendors at prices higher

than those at which they could purchase elsewhere. A contractor may purchase her new car

from the local dealer, even when the dealer in the next town over is offering a somewhat

better deal. In many cases, this can be explained by lower transaction costs, explicit or

implicit contracts, better service, or after-market interactions. Reciprocity can be and often

is facilitated with strong coordination mechanisms, such as contracts or sanctions (such as

tit-for-tat strategies, as in Axelrod (1984).) Yet, it is neither always feasible nor always an

accurate description of reality that neighbors can observe one another and/or use contracting

mechanisms.

Instead, neighborly reciprocity may be sustained by a weaker mechanism. Buyers can

be better off if they voluntarily take into account that their own purchases can enhance

economic activity in their neighborhoods. This is because local surplus is more likely to

come back to them in turn. The contractor may expect the local car dealer to be more likely

to use some of his resulting surplus to build another showroom. Some local feedback could

also be indirect (and thus more difficult to contract)—the contractor could also benefit when

the car dealer sees a local physician, who in turn becomes more inclined to build her new

mansion, which in turn could preferentially favor the local contractor.

In our model, agents internalize that they should make decisions not just based on goods

and prices, but also based on the return externality. “Purchasing local” is a mechanism to
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capture the positive “return” externality.1 We show that such unenforced reciprocity can

sustain itself in a small neighborhood within a network, even in the absence of other stronger

coordination mechanisms. Agents voluntarily choose to strengthen their local economies by

buying local—at least to a point. As in the public goods and as in the group selection

literatures, this is plausible only in situations in which the scale of coordination remains

small, where the return benefits are large, and (implicitly) where the costs of alternative

mechanisms are higher. Voluntary reciprocity can be a very cheap mechanism. When repeat

interactions are likely, we find that the reciprocity equilibrium outcome can be at or near

first-best.

Despite its intuitive appeal, voluntary reciprocity is a difficult modeling problem. It

requires multiple but not a large number of agents. It requires seller surplus, so that sellers

are not indifferent to neighborly preferences. It requires the presence of wealth effects, so

that agents can expect to become better off when their neighbors are wealthier. It requires

a higher probability of capturing surplus from a neighbor than from a non-neighbor, and

without last-period selfish unraveling. And it requires buyers that can handicap sellers

(neighbors vs. non-neighbors), and sellers that decide on participation and pricing strategies,

given these buyers’ handicaps.

Individual surplus and reciprocity are mutually necessary in our model. It is only the

expected reciprocity that allows sellers to earn a surplus, and it is only the surplus that allows

reciprocity to be sustainable. Moreover, the model suggests that unenforced reciprocity can

not only be individually but also socially beneficial. The resulting coordination can help

reduce randomly duplicated production or randomly missing production.

1Externalities are often called “market failures.” Here, pure price competition may be a market failure.

Similar failures have been observed in the group selection literature (e.g., Wilson and Sober (1994)), where

selfish individuals are unable to recapture positive group externalities. However, our mechanism does not

require kinship. There is also a tie-in to the theory of the firm. Neither contracts (and enforcement) nor

merging may be required to induce parties to coordinate effectively. Firms voluntarily ignore market prices,

at least up to a point.
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2.2 The Model

Our paper takes a first step to construct a model in which unenforced reciprocal behavior

can thrive—where buyers may not “selfishly” defect and buy from the lowest-cost vendor.

But when will buyers endogenously act neighborly and local? When would sellers not simply

enjoy the higher sales price now and not return the favor when it is their turn (i.e., by buying

from the cheaper vendors elsewhere)? If there is reciprocal behavior that induces buyers to

favor locals, when would other sellers choose to remain in the market? Are there advantages

to reciprocity? What are the limits to reciprocity?

2.2.1 Setup and Assumptions

We assume that sellers must first produce and then offer their goods for sale at a posted

price. A good that is not sold declines in value. Such markets are among the most common

economic arrangements today: cars are manufactured first and then offered in show rooms.

A car that is not sold early must be more aggressively discounted. A contractor who has

not procured a job can never get his time back. More specifically, our model assumes that

products that are not sold become worthless.

Specifically, we model two potential sellers who can make period-by-period production

and pricing decisions. They bring their goods to market only when they expect not to

lose money in this period. A buyer can then inspect the sellers’ prices and purchase from

the cheapest seller after applying an (endogenous) handicap. All sellers know the buyer’s

handicaps before they produce (or not). The handicaps can be identical, in which case the

buyer treats the sellers the same. Or, the buyer can handicap local sellers differently. It is

this competition among sellers, subject to the public (endogenous) buyer handicaps, that

will pin down (endogenous) market participation and product pricing in our model.

The sellers’ game has no pure strategy equilibria. If the sellers’ participation and prices

were deterministic, then each seller who would underbid the other sellers’ known (handi-

capped) prices by epsilon would always win the business. The losing sellers would always

have paid the participation cost and yet have come out empty. But then no seller would
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enter. Thus, the only viable equilibria will be mixed. The sellers can randomize (entry and)

pricing, with the worst-handicapped sellers just expecting to recoup their participation costs.

2.2.1.1 Model Specifics

The three risk-neutral agents, named A, B, and C, each start out with one unit of wealth.

To obtain (surplus from) trade in equilibrium, we assume the simplest possible mechanism.2

Each period, one agent is randomly chosen with equal probability 1/3 to be the buyer (BY).

The other two agents become potential producers and sellers. There is perfect negative

correlation between production and need: the single buyer wants to consume the good but

cannot produce it. The two sellers can successfully produce the good but cannot consume

it. Each agent knows who is who. The buyer chooses a handicapping bias that may favor a

specific seller, and this information is known to the sellers.

Our model must be rigged in a very specific way in order to allow for wealth effects

and yet not make equilibrium choices a function of the three parties’ wealth. To avoid such

path-dependent effects and preserve tractability, our model assumes that all quantities are

proportional to the buyer’s prevailing wealth. This is not just a convenience assumption,

but it allows a seller to gain more surplus when the buyer is wealthier. It is how agents can

benefit from increased wealth in their neighborhood. This assumption is also economically

reasonable if wealthier buyers like to consume more (expensive) goods. To produce and

bring the good to market requires any seller to pay the scaled cost e·Wt,BY. If BY chooses

to buy from a seller, he pays the seller’s posted price and receives the good. It’s value to

the buyer is proportional to his wealth and is r·Wt,BY. The buyer never pays more than this

2The model could be reframed: Instead of this perfect negative correlation between production and

consumption, we could assume probabilities of agents succeeding in producing, and wanting to consume

with given probabilities. Aside from long and tedious enumerations of different cases (most of which are

uninteresting autarchic periods or periods in which exactly one available seller pairs with one available buyer),

the simpler model considered here focuses only on an interesting case and can convey the same intended

insights.

43



Figure 2.1: Time Line

Time 0: A and B are neighbors. C is an outsider.

Time t1: The buyer (BY) for period t is publicly drawn from {A,B,C}, each with equal

probability 1/3. The other two agents become potential sellers.

Time t2: The buyer announces her handicaps for the two sellers. The buyer’s objective is

to maximize expected terminal wealth, taking the actions of the other two agents as

given.

Time t3: The two sellers make simultaneous production and pricing decisions. (Sellers

cannot observe one another’s entry or pricing decision.)

• Each seller makes a decision whether or not to produce. If he does, he pays the

entry cost e·Wt,BY. The seller may sell a claim to the proceeds of this period’s

auction to raise the necessary funds.

• Each seller who produces the product posts a price.

The sellers’ production and pricing decisions maximize their own expected return over

each period,† taking the actions of others as given.

Time t4: The buyer observes the prices. If there is at least one seller who has produced and

priced below the buyer’s reservation price, after subtracting handicaps, she selects the

seller with the lower price. The buyer then pays the posted price to the winning seller,

and receives the good he values at r·Wt,BY. Unsold goods become worthless.

—: Period t ends. Period wealth is calculated ( ~Wt+1 over {A,B,C}). With probability 1−λ,

the game ends. Otherwise, time t is incremented and the next round commences.

��

� �
?

†: Although period-by-period optimization is not necessarily equivalent to terminal wealth optimization,

they are isomorphic in the non-reciprocal and fully-reciprocal equilibria discussed below.
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reservation price.

The model only makes sense if the buyer values the good more than it costs to bring it

to market:

Assumption 1 r > e > 0 .

Each agent maximizes own expected (cumulative) terminal wealth in a repeated game with

uncertain end date. The game ends with probability 1 − λ after each round. We always

assume that

Assumption 2 λ < 3/[3 + r − e] .

This is necessary to ensure that wealth remains finite in our equilibria.

2.2.1.2 The Zero Constraint

We impose that if a seller cannot afford the participation cost, he cannot offer a product

for sale. This may occur because the entry cost is proportional to the buyer’s wealth, not

the seller’s. However, to avoid the dependence of seller behavior on his current wealth level,

we also assume that sellers have access to competitive outside investors who break even in

expectation. If a seller has decided to enter and is unable to afford the participation cost,

he is able to sell a claim to the proceeds of this period’s auction. In return, he will receive

the expected payoff, which will at least cover the entry cost. The seller then posts a price to

maximize the return in this period, following the same strategy as if he had paid the entry

cost himself. Because agents are risk neutral, sellers are indifferent to using this financing

option in cases where they are able to afford the participation cost.

2.2.2 Endogenous Quantities and Equilibrium Definition

At the beginning of each period, the buyer chooses how much of a premium (s)he is

willing to pay for one seller’s good over that of another seller. We define three endogenous

(strictly positive) handicaps:
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1. ∆t,BC , the preference an A buyer has for goods from seller B over seller C in period t;

2. ∆t,AC , the preference a B buyer has for goods from seller A over seller C in period t;

3. ∆t,AB, the preference a C buyer has for goods from seller A over seller B in period t.

After subtracting the handicap from the posted price, buyers choose the cheapest seller. The

handicaps are publicly observable.

Equilibrium are the entry decisions as sellers, pricing decisions as sellers, and handicap-

ping decisions as buyers. (We are particularly interested in the equilibrium handicapping

choices.) The model has been rigged to keep the optimizing decisions stationary period to

period. Buyers choose optimal handicapping decisions to maximize total lifetime wealth.

Sellers choose optimal participation and pricing decisions to maximize their return in each

period.3

Definition 1 (Equilibrium) An equilibrium is a set

{
(∆∗t,BC ,∆

∗
t,AC ,∆

∗
t,AB), (ẽ∗t,A, ẽ

∗
t,B, ẽ

∗
t,C), (p̃∗t,A, p̃

∗
t,B, p̃

∗
t,C)

}
such that, taking the strategies of the other agents as given,

• ∆∗t,BC maximizes the expected total wealth of an A buyer;

• ∆∗t,AC maximizes the expected total wealth of a B buyer;

• ∆∗t,AB maximizes the expected total wealth of a C buyer.

• When A is a seller, ẽ∗t,A is a participation and entry decision {Y,N} that maximizes

his expected return in period t (net of entry fee e·Wt,BY).

• When A has entered, he posts a price p̃∗t,A that maximizes his expected return in period t.

• When B is a seller, ẽ∗t,B is a participation and entry decision {Y,N} that maximizes

his expected return in period t (net of entry fee e·Wt,BY).

• When B has entered, he posts a price p̃∗t,B that maximizes his expected return in period t.

3There could be other market structures and equilibria, in which sellers maximize total lifetime wealth.

The period-by-period optimization assumption serves to pin down one reasonable entry and price setting

mechanism, not the only one. However, the two objectives are isomorphic in the non-reciprocal and fully-

reciprocal equilibria discussed below.
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• When C is a seller, ẽ∗t,C is a participation and entry decision {Y,N} that maximizes

his expected return in period t (net of entry fee e·Wt,BY).

• When C has entered, he posts a price p̃∗t,C that maximizes his expected return in period t.

The seller’s entry ẽ and pricing p̃ are also functions of the (exogenous) parameters, including

the identity of the buyer and this buyer’s wealth.

The tildes indicate that the optimal entry and pricing choices are (usually) mixed strate-

gies.

Wlog, we will allow only A and B to consider one another as neighbors. From the

perspective of C, A and B are interchangeable outsiders. Thus, although C is free to choose

a premium for A over B or vice-versa, C will choose not to, because C will never get anything

in exchange. This fixes the equilibrium ∆∗t,AB = 0, leaving only two endogenous quantities

of interest. Our model’s solution is the price premium that an A buyer would be willing

to pay for B’s good (∆t,BC) and vice-versa (∆t,AC), above and beyond what they would be

willing to pay for the same good when cheaper from the outside seller C. By symmetry, in

equilibrium (but not off-equilibrium), it should be the case that ∆∗t ≡ ∆∗t,BC = ∆∗t,AC , with

∆∗t > 0.

Also, we will only be considering pure strategies where ∆∗t,BY is constant over time for

each buyer. That is not to say that the handicap is fixed permanently throughout the model.

They could choose to deviate in any given period if they so desired, but it will not be rational

to do so. There are likely to exist mixed strategies and strategies of cyclic share/don’t share

behavior, but they do not offer any additional insight.

Note that our equilibrium handicapping strategies are independent of the (earlier) actions

by agents. We thus do not consider reciprocity that arises because of sanctions or tit-for-tat

strategies. The reciprocity is not achieved or enforced through (off-equilibrium) threats to

punish non-compliance (based on earlier behavior). Instead, our model focuses on when

voluntary reciprocity is sufficient, in which buyers see it in their interests not to defect to the

cheapest seller even in the absence of off-equilibrium punishing threats by their neighbors.

In equilibrium, A can expect B to continue to buy from A in the future again, even if A were
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to defect and purchase from C this period instead. Of course, A just chooses not to defect in

equilibrium. Moreover, this means that our model can be interpreted either as one in which

buyers announce their handicaps once at the outset or they announce their handicaps each

period. This is because, in equilibrium, A or B optimally and voluntarily choose a positive

handicap ∆t, anticipating that their neighbor will similarly optimally and voluntarily choose

the same positive handicap in the future themselves.

However, it is important that C cannot attempt to bribe A or B to peer with C instead.

2.2.3 Illustration

Suppose r = 50%, e = 20%, ∆BC = 10%, and Wt,A = $1. Then the value to A of buying

the good in this period is 50% of his current wealth of $1, i.e., r·Wt,BY = $0.50. The cost

that either seller would have to pay to bring their good to market is equal to 20% of A’s

current wealth, i.e., e·Wt,BY = $0.20. Finally, A is willing to pay a premium up to 10% of

his current wealth for the good of seller B over that of seller C, or ∆BCWt,A = $0.10. If both

sellers have brought their goods to market, and C has posted a price of $0.30, then A prefers

to buy from his neighbor B if B’s price is no more than $0.40. Otherwise, A prefers to buy

from C.

Suppose Wt,C = $0.10, so C is currently unable to afford the production cost of $0.20.

Because C makes zero profit on average, his expected repayment if he could enter must be

equal to $0.20. However, the actual repayment is uncertain, because the price that C posts

is drawn from a mixed strategy. Also, there is some probability that he loses the auction

and receives $0. C therefore sells his claim to this risky payoff, and receives the expected

value of $0.20 in return. He uses this to pay the production cost, bids as normal, and passes

the payoff on to the investor. At the end of the day, he will remain exactly where he started,

with Wt+1,C = $0.10.

Alternatively, suppose Wt,B = $0.10, so B is currently unable to afford the production

cost of $0.20. In equilibrium, it will be that B always wishes to enter if he is favored, and

if he does enter, he expects to make a profit of ∆BCWt,A = $0.10. Therefore, the payment
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he expects to receive from the buyer is equal to $0.20 + $0.10 = $0.30. However, there is

uncertainty in his actual payoff, in both the price he will post, and whether or not he wins

the auction. In this case, B will sell a claim to this risky payoff and receive the expected

value, $0.30, in return. He will pay $0.20 of the proceeds towards the entry cost, and keep

the other $0.10. He will bid as normal and pass the payoff on to his investor. B will then

end the round with Wt+1,B = $0.20.

2.3 Benchmark: Non-Reciprocity

There is always a symmetric equilibrium, in which A and B do not consider one another

special.

Theorem 1 There exists an equilibrium in which no buyer favors any seller:

∆∗t,BC = ∆∗t,AC = ∆∗t,AC = 0 .

Each seller follows the same participation and pricing strategy: With probability e/r, this

seller does not enter the market. With probability 1−e/r, this seller pays the participation cost

e·Wt,BY (financing if needed) and posts price p·Wt,BY according to the cumulative distribution

F ( p ) =


0 if p < e ,

r·(p−e)
p·(r−e) if e ≤ p ≤ r ,

1 otherwise .

For the proof, see Appendix 2.9.

Recall that our equilibrium concept assumes that sellers compete perfectly. The partici-

pation and price setting mechanisms in this equilibrium serve to leave both sellers with an

expectation of zero profit in each and every period. Therefore, conditional on entering, each

seller expects to earn back her entry fee e·Wt,BY. And therefore, the unconditional expected

earnings to each seller from the buyer must be (1−e/r) ·e·Wt,BY. Any and all surplus accrues

to the buyer.
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Note that with probability (e/r)2, neither seller offers the good for sale. In such cases,

the buyer, and therefore the system, loses the surplus from trade. In two cases, each with

equal probability e/r · (1− e/r), exactly one of the two sellers offers the good and the buyer

pays an expected price of

E(pt | 1 seller ) =

[(
r · e
r − e

)
· log

(r
e

)]
·Wt,A .

Finally, with probability (1− e/r)2, both sellers enter, and the buyer purchases the good for

the (lower) expected price of

E(pt | 2 sellers ) =

{
2 · e · r · [r − e− e · log(r/e)]

(r − e)2

}
·Wt,A ,

but there is loss of surplus because two agents have incurred entry costs, when only one was

socially productive.

The three identical agents expect to earn over the entire (random) number of periods

expected surpluses only when they are the buyers, amounting to

E [WA]∗ = E [WB]∗ = E [WC ]∗ =
(1− λ) · [3r + (r − e)2]

3r − λ · [3r + (r − e)2]
.

There are two kinds of efficiency losses in this equilibrium. First, it may be the case that

both sellers randomly choose not to produce. In this case, the buyer loses surplus. Second,

it may be the case that both sellers randomly choose to produce. In this case, the sellers

have incurred two participation fees.

2.4 Full Voluntary Reciprocity

It is a more interesting equilibrium when A and B endogenously prefer one another to the

outsider C. This equilibrium is viable only if they expect the game to continue long enough.

Theorem 2 When λ ≥ 3/(3 + r), there exists an equilibrium in which A and B always buy

only from one another,

∆∗ ≡ ∆∗t,BC = ∆∗t,AC = r − e .
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When A or B is the buyer, e∗A = e∗B = 1 and e∗C = 0. An A or B buyer pays the posted

r·Wt,BY for the good to the other (the neighbor). When C is the buyer, her ∆∗t,AB = 0 and

all three agents behave as they do in Theorem 1.

For the proof, see Appendix 2.9.

Although A and B cannot contract, they can rely on their mutual future self-interest.

When either is the buyer, the other always enters as the seller and C does not. The buyer

pays his entire surplus to the seller, r·Wt,BY, knowing that when it will be the seller’s turn

to buy, the seller will return to him.

Note that wealth effects enter our model through scaling of transactions by the buyer’s

wealth. Each agent must have a reasonable expectation of future benefits from selling trans-

actions, in which the now-buyer will be better off if the local now-seller soon-buyer were to

have more wealth. While uncooperatively setting their own ∆, each buyer recognizes that

the higher price has an immediate wealth cost to herself now (paying more), but a (multi-

period probabilistic) benefit in the future (when selling, the future buyers will be paying

more). The equilibrium is maintained, because the latter effect is strong enough in the

full-reciprocity equilibrium to outweigh the former, despite the latter’s probabilistic nature.

This intuition also suggests that the model is plausible only for small neighborhoods. With

larger neighborhoods, the return probability (before the world ends) declines too much to

make paying the higher price upfront worthwhile.

The comparative statics are simple. By definition, a higher reservation price r and longer-

lasting world (λ) means more surplus. Participation e is costly and means less surplus.

The expected terminal wealth of the three agents in this equilibrium is

E [WA]∗ = E [WB]∗ =
(1− λ) · (r − e+ 3)

3− λ · (r − e+ 3)
,

E [WC ]∗ =
(1− λ) · [3r + (r − e)2]

3r − λ · [3r + (r − e)2]
.
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2.4.1 Comparing Equilibria

Inspection shows that

Theorem 3 The surplus of the reciprocal over the non-reciprocal equilibrium is

2 · (E[WA]− E[WC ]) =
6 e · (1− λ) · (r − e)

[3− λ · (3 + r − e)] · {3r − λ [(r − e)2 + 3r]}
.

In this full-reciprocity equilibrium, monopoly is socially better than the competition in

the no-reciprocity equilibrium.4 The high price produces no social loss and competition

from C would produce no social gain (through the resulting lower price or higher quantities).

Exactly one seller, A or B, now chooses to be in the market. This removes the cases in which

(1) an A or B buyer find themselves without any potential seller (if both potential sellers

had randomly chosen not to appear); and (2) a C never chooses to be in the market (which

removes the case in which both sellers incur the entry fee).

The fact that there is a social gain to reciprocity is critically important to this equilibrium.

If the total surplus were fixed, and the buyer, A, were simply deciding whether to keep it or

pass it to B, she would always keep it. Even under the strongest reasonable wealth effects,

the best outcome is that B passes the entire surplus she was given back in the subsequent

period. However, due to time discounting, this will be strictly inferior to A keeping the

surplus to begin with. It is only because A’s options are to keep a small surplus, or pass a

larger surplus to B, that she is willing to share.

This raises questions whether the social benefits of monopoly are likely to generalize. In

smaller markets, monopoly is relatively better than competition, because of reduced dupli-

cation and fewer temporary shortages. In larger markets, monopoly is relatively worse than

competition, because the law-of-large-numbers is better at balancing demand and supply.

4The social advantage of reciprocity—the reduction of duplicate production and the reduction of pro-

duction failures, brought about by self-sustaining cooperative reciprocity—was not deliberately engineered

into the model by us. On reflection, it is of course quite natural. Nevertheless, although the counterveiling

economic forces seem intuitively robust, one specific outcome that the outsider C does not suffer seems

model-specific.
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In a more general model, this would have to be weighed against any inefficient reduction in

demand caused by higher neighborly prices.

This equilibrium is near first-best. It is as good as A and B could have contracted for.

That is, there is minimal waste even though neither A nor B had to concern themselves with

enforcement. The only waste occurs when C is the buyer and A and B may or may not

produce.

Theorem 4 Although C is worse off than A or B in the full-reciprocity equilibrium, the

neighbors A and B are better off and the outsider C is no worse off than they are in the

no-reciprocity equilibrium in which A and B do not favor one another.

In our specific model, C does not suffer from discrimination against her compared to

the no-reciprocity equilibrium. This is because the economy gains social surplus from coor-

dination at the same rate as C is closed out. This result is unlikely to exactly hold more

generically, although the two forces will remain at play.

Because C is no worse off, the comparative statics for when the full-reciprocal equilibrium

is better than the no-reciprocal equilibrium are also the same. The reciprocal equilibrium is

better when r and λ are higher, and e is lower.

2.5 Partial Voluntary Reciprocity

There are also equilibria in which A and B favor one another, but not so much as to

exclude the outsider C from entering the market as a seller at least occasionally:

Theorem 5 When λ > 3/(3 + r), there exists an equilibrium, in which the two neighbors A

and B reciprocally favor one another modestly but not to the full exclusion of C as a seller,

∆∗ ≡ ∆∗t,BC = ∆∗t,AC =
(r − e) · [λ · (r − e)2 + 3r · (λ− 1)]

e · λ · (e− 2r)
.

When A or B are buying, their neighbor always produces and randomizes posted prices
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p·Wt,BY according to the CDF

FA( p ) = FB( p ) =


0 if p ≤ e+ ∆∗ ,

p−e−∆∗

p−∆∗ if e+ ∆∗ < p < r ,

1 otherwise .

(Note that there is a e/(r −∆∗) probability mass point at f( r ).)

C produces with probability 1 − (e + ∆)/r; and, if producing, posts a randomized price

p·Wt,BY according to the CDF

FC( p ) =


0 if p ≤ e ,

(p−e)·r
(p−e−∆∗)·(p+∆∗) if e < p ≤ r −∆∗ ,

1 otherwise .

When C is the buyer, he pays no premium ∆∗t,AB = 0. Thus, A and B make entry and offer

price decisions the same as they would in Theorem 1.

For the proof, see Appendix 2.9.

The expected terminal wealth of the three agents is

E [WA]∗ = E [WB]∗ =
(1− λ) · {3 · (r − e) + λ · [(r − e)2 + 3r]}

λ · {3r − λ [(r − e)2 + 3r]}
,

E [WC ]∗ =
(1− λ) · [3r + (r − e)2]

3r − λ · [3r + (r − e)2]
.

In this equilibrium, it is never the case that an A or B buyer does not find a seller (as in

the non-reciprocal equilibrium), but there is possible duplication: C occasionally incurs an

entry cost—even though either A or B have also incurred one. Thus, A and B’s surplus and

thus the system surplus in this partial-reciprocal equilibrium is always less than the system

surplus in the fully-reciprocal equilibrium. Simply put, A and B display the best possible

coordination possible in Theorem 2, and partial reciprocity can only do worse.
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2.6 Equilibrium Comparisons

Suppose r = 50%, e = 20%, and λ = 0.87.

In the non-reciprocal equilibrium of Theorem 1, sellers enter with probability 1 − e/r =

60%, and randomize over posting prices in the range [e, r]Wt,BY = [0.2, 0.5]Wt,BY. With

probability (e/r)2 = 16% no seller enters, and the buyer enjoys no surplus. With probability

(1− e/r)2 = 36%, both sellers participate and thus waste one entry cost e·Wt,BY = 0.2Wt,BY.

Having started with wealth 1, the expected terminal wealth of all three agents is 1.8.

In the fully reciprocal equilibrium of Theorem 2, when A or B are buying, only their

neighbor always enters and sells the good for r·Wt,BY = 0.5Wt,BY. When the outsider C is

buying, A and B behave as they did above. The expected terminal wealth of A and B is 3.3.

The expected terminal wealth of C remains at 1.8.

In the partially reciprocal equilibrium from Theorem 5, A or B are willing to pay a pre-

mium of ∆∗Wt,BY = 0.25Wt,BY to one another. Their neighbor will still always enter, but

the outsider C now may also enter with probability 1 − (e + ∆∗)/r = 10%. The neigh-

bor randomizes over posted prices in the range [e + ∆∗, r]Wt,BY = [0.45, 0.5]Wt,BY with an

e/(r −∆∗) = 80% probability mass point at the maximum posted price of 0.5Wt,BY. When

participating, the outsider C randomizes over post prices in the range [e, r − ∆∗]Wt,BY =

[0.2, 0.25]Wt,BY. The probability that B wins is 91%, and the average price when he does is

0.49Wt,BY. Conversely, C wins with probability 9% at an average price of 0.22Wt,BY. The

expected terminal wealth for A and B is now 2.9. C again remains at 1.8.

The figures illustrate the tradeoffs and equilbria.

Figure 2.2 shows the best response functions of A and B. When λ > 3/(3 + r), there

is always one equilibrium in which A and B ignore one another, one equilibrium in which

they fully discriminate in favor of one another (to the exclusion of the outsider C), and one

equilibrium in which they favor one another, but not extremely so.

Figure 2.3 shows the expected wealth of A, given various choices of A’s handicaps for

three interesting B handicaps. The plots are of the compounded effect of playing the given
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strategy forever. The plot of the resulting wealth from the choice of a single periods ∆t given

∆∗ in the future would look similar, but linear and flatter.

Figure 2.4 shows that if A increases his favoritism towards B, and all agents follow optimal

participation and pricing strategies, then C is less likely to win. When C wins, he only does

so at a lower and lower expected prices.

Figure 2.5 shows that A loses surplus in any given one period when A handicaps in favor

of B. However, at the same time, B gains more than A loses (due to elimination of wasteful

duplication). Thus, the total system surplus increases when agents rely on reciprocity. It

is this effect that ultimately makes it optimal for A and B to reciprocate voluntarily in

equilibrium.

The remaining four figures show the equilibrium comparative statics, given our three

parameters e, p, and λ.

2.7 Discussion

2.7.1 Period-by-Period Seller Optimization

In our model, the buyer maximizes expected terminal wealth, while the sellers maxi-

mize current period wealth. Ideally, sellers would also maximize expected terminal wealth.

A seller who is interested in maximizing his expected terminal wealth must also take into

consideration how his actions affect the wealth of the buyer and the other seller in sub-

sequent periods. Unfortunately, this problem is generally intractable. Instead, we assume

sellers have the simpler objective of myopically maximizing the gain over the given period.

Interestingly, the problem becomes time-separable/additive in the no-reciprocity and full-

reciprocity cases, i.e., our short-term period-by-period objective for the seller also satisfies

the long-term objective.

While we have not solved such a case, we can still theorize how it might look. Suppose the

agents are playing our current partial reciprocity game, which maximized per-period gains.

A is buying and willing to pay a premium to B. In the short-term sense, B is indifferent to

56



bidding any price, as the expected profit is equal to ∆t,BC ·Wt,A regardless. If B bids higher,

B wins less often, but gets more if she wins and vice versa. However, if B were to always

bid the minimum, (e + ∆t,BC) ·Wt,A, B would always win. B’s profit is still ∆t,BC ·Wt,A,

but now A’s profit is (r − e − ∆t,BC) ·Wt,A > (r − e)(r − e − ∆t,BC) ·Wt,A/r, and C loses

money. B doesn’t care about C’s wealth since she doesn’t share with B, but B does benefit

from future increases to A’s wealth since she does share with B. As B increases her bid, more

money goes to C, and less goes to A. This isn’t a problem with full-reciprocity, as B only

ever posts one price. It also isn’t a problem with non-reciprocity, since B doesn’t care about

the others’ wealths.

If our goal is to find the bidding strategies that maintain indifference with long-term

objectives, we must decrease the attractiveness for B’s low bid or increase the attractiveness

of B’s higher bid. We can’t penalize B for her minimum bid since there is no room for

C to underbid. We instead need to increase the value today of higher bids to offset the

declining long-term value. To do this, C would have to bid less aggressively (i.e. higher

prices on average or lower entry probability). Solving for this bidding distribution function

is hard, as we need to equalize the long-term payoff values, which compound the effect of this

distribution function infinitely. However, this is a promising point for future investigation.

2.7.2 Alternative Pricing Mechanisms

Our model had only three agents who posted prices, and only one single buyer in each

period. We determined market participation and pricing through a period-by-period zero-

profit condition: Sellers would enter only if they did not expect to lose money. In equilibrium,

a non-handicapped seller would always earn exactly this minimal zero profit. Ultimately, we

view this as a specificity and/or tractability assumption. We could have constructed a model

with similar insights using other (optimizing) participation and pricing mechanisms. For

example, we viewed one obvious alternative mechanism, a search market, as less desirable,

because our model is about repeated interactions. Presumably, agents would learn over

time, e.g., know who their peers are and not have to incur search costs repeatedly. Search

57



economies would further strengthen our model’s prediction—that voluntary reciprocity can

be sustainable in networks.

The chosen mechanism does have an issue if we wish to add more agents to the model.

In the posted price with entry cost model, total welfare decreases as the number of sellers

increases (Lang and Rosenthal (1991)). Because all the sellers break even in expectation,

average prices increase and total welfare declines as more sellers must recoup their wasted

production costs. While each seller enters less often, this does not outweigh the increase in

duplicated effort. This effect can be reversed with heterogeneous or uncertain entry costs

(Thomas (2002) and Kaplan and Sela (2003)). However, these mechanisms would introduce a

great deal of complexity to the model, which is unnecessary to illustrate the simple reciprocity

mechanism.

2.7.3 Alternative Arrangements and Larger Networks

We assumed that A and B considered each other neighbors and may not have a pref-

erence for C over their neighbor. However, we could also construct an equilibrium where

the three agents have a circular relationship: A prefers B, B prefers C, and C prefers A.

This arrangement would exhibit the same basic forces, where agents are willing to pass the

surplus to another, with the understanding that it will make its way back to them in the

long term. The set of parameters for which a full-reciprocity equilibrium exists in the circle

is necessarily smaller than for the pair. The extra link adds a time delay, and it will take at

least one extra round for the wealth to return. Simply due to discounting, greater gains to

coordination through reciprocity are necessary for this equilibrium to obtain.

A possible extension would allow for more than three agents in the model. The question

of the reasonableness of the price setting mechanism then becomes an issue. In the model

as given, where sellers face homogeneous entry costs and the buyer may favor a single seller,

additional agents make the gains to reciprocity stronger. Favoritism that dissuades sellers

from entering prevents greater wasteful production. Therefore, reciprocal groupings become

more likely in larger networks. While this general result may seem plausible, the result that
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it comes from preventing welfare destroying competition seems overly stylized. It’s possible

that other mechanisms, such as payment for increased matching probabilities or decreased

search times in a search model may provide similar scaling incentives.

A larger model would also support a wide number of potential reciprocal configurations.

If agents are only allowed to favor one other agent, then any configuration of pairs or smaller

loops would exhibit the same reciprocity incentives of expecting gifted surplus to return.

However, as the size of the group grows, the incentives decline as the expected wait time to

reap the benefits increases.

Endogenous reciprocity is thus more plausible among smaller groups, such as families,

tribes, villages, cities, or (coordinated) nations, that are embedded and trading in larger

networks.

2.7.4 Assumptions—Tractable vs Economic and Extensions

Our model was highly stylized and had to be rigged to prevent the individual wealth

holdings to become full state variables. Thus, it is useful to discuss where its assumptions

are particularly objectionable and where they are primarily for tractability’s sake.

The presence of potential individual surplus to reciprocity is vital. When all agents are

indifferent between buying and not buying, and selling and not selling, they have nothing

to gain nothing from reciprocity that harms them at least temporarily. The social surplus

makes it easier to obtain the individual surplus.

Our model assumes that A and B view each other as neighbors at the outset. This

assumption only serves to simplify the possible space of configurations that need to be con-

sidered. Agents can naturally and voluntarily (and without enforcement) choose to become

closer, even if there are no natural ex-ante advantages to such team-ups. Of course, exoge-

nous aspects, such as geographic proximity, would likely also play important and reinforcing

roles in network self-organization.

Allowing for agents to reconfigure who they choose to pair with at any time would
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both make the model intractable and weaken our results. Since agents’ wealth depends

on the wealth of their partners in reciprocal equilibria, they would wish to abandon their

current trade partner for whoever is currently wealthiest. This would introduce extreme

non-linearities, but would also likely weaken the benefits to reciprocity. If there is some

chance that the favored seller will abandon the buyer, they buyer will be hesitant to entrust

her with the surplus. The fact that A and B’s wealth grows faster than C’s in the reciprocal

equilibrium makes this event probabilistically unlikely.

The restriction to three parties is also an assumption for tractability. A larger network

could be constructed to illustrate the same forces of the reciprocal benefits of favoritism.

However, a larger network would be better suited to use an alternative participation and

pricing mechanism. The “posted price” mechanism was attractive both in portraying a

common economic way to transact and in allowing for interesting model pricing with its

possible gain of surplus.

The model insights would be the same if we assumed random successful production and

needs. Our model can be viewed as ignoring periods in which agents already have what they

need (which they could just consume); in which only one other agent ever happens to have

produced (in which there is no choice); in which no agent has produced (nothing to trade);

and in which no agent needs the product (nothing to trade).

Relatedly, our model is also not realistic in the consequent effect that there are no intrinsic

costs to market power (the monopoly). In this sense, our model is akin to one of perfectly

discriminating monopoly. If buyers and the system could gain surplus (e.g., downstream)

when prices are lower, the incentive to reciprocity would decline. Our model does not build

on monopolistic competition, in which sellers offer differentiated but overlapping goods (in

free-entry markets), price their goods competitively, and buyers choose the product best

suited to their needs. These kinds of models (such as Helpman (1981) and Krugman (1979))

are not built to investigate the kind of tribal reciprocity that our model is built to explain.
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2.8 Conclusion

Our model has shown that agents in a small network can be better off if they voluntarily

decide to be neighborly. This reciprocity need not always be enforced. The expectation that

the surplus given to a neighbor is more likely to come back than the surplus of an outsider,

and thereby improve one’s own surplus later, can be enough to sustain reciprocity. In our

model, the gains ultimately were higher than those achieved with pure marginal cost pricing,

because of surplus gains attributable to improved coordination.

Future research can consider larger networks, ex-ante heterogeneity in costs, and alter-

native participation and price setting mechanisms.
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2.9 Appendix: Equilibrium Derivation

The equilibria from Theorems 1, 2, and 5 are each proved as subcases of the following

theorem:

Theorem 6 The following are Subgame Perfect Nash Equilibria of the infinitely repeated

game.

The selection of handicapping preferences are naive constant quantities that do not depend

on the actual past actions of the other agents.

1. (non-reciprocity) ∆∗t,BC = ∆∗t,AC = ∆∗t,AB = 0, ∀t ≥ 0 when λ < 3r
3r+(r−e)2

2. (full-reciprocity) ∆∗t,BC = ∆∗t,AC = r − e and ∆∗t,AB = 0, ∀t ≥ 0 when 3
3+r
≤ λ < 3

3+r−e

3. (partial-reciprocity) ∆∗t,BC = ∆∗t,AC =
(r−e)(λ(r−e)2+3r(λ−1))

eλ(e−2r)
and ∆∗t,AB = 0, ∀t ≥ 0 when

3
3+r
≤ λ < 3r

3r+(r−e)2

Where the following strategies are played by the sellers:

Without a Premium: If the buyer is not willing to pay a premium for either sellers’ good,

both sellers follow the same bidding strategy independently. With probability e
r

they do not

enter the market. With probability 1− e
r

they pay the entry cost e·Wt,BY (financing if needed)

and post a price as a fraction of the buyers wealth (p·Wt,BY) according to the distribution:

F (p) =


0 if p ≤ e

(p−e)r
p(r−e) if e < p ≤ r

1 otherwise

With a Premium: If the buyer, A for example, is willing to pay a premium for the good of

agent B over the good of agent C (∆BC > 0), then the sellers bid as follows. Agent B

always enters and pays the cost e ·WA
t (financing if needed). Agent C enters the market with

probability 1− e+∆BC

r
and pays the entry cost e ·WA

t (financing if needed). They place bids

as a fraction of of A’s wealth according to the distributions
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FB(p) =


0 if x ≤ e+ ∆BC

p−e−∆BC

p−∆BC
if e+ ∆BC < p < r

1 otherwise

FC(p) =


0 if x ≤ e

(p−e)r
(r−e−∆BC)(p+∆BC)

if e < p ≤ r −∆BC

1 otherwise

Note that there is a mass point in the distribution of agent B at his maximum posted

price r ·WA
t .

Proof

2.9.1 Sellers’ Problem

First, we consider the strategy of the sellers who take the handicap of the chosen buyer

as given. We assume that their objective is to maximize their per period expected return,

not their expected terminal wealth.

The specific entry and bidding strategies for the sellers are derived in Appendices 2.10

and 2.11. The details that are necessary for determining the handicap strategies are the

evolution of expected wealth given handicaps ∆.

In what follows, suppose A is chosen as the buyer in period t. The cases with B and C

buying are analogous.

Without a Premium (∆t,BC = 0): The sellers make 0 profit in expectation, so conditional on

entering, which happens with probability 1 − e
r
, they expect to make back the entry cost

e ·Wt,A. This revenue comes from the buyer, but the entry cost was paid out of the system.

The unconditional expected payment each seller gets from the buyer is then e(1− e
r
)Wt,A.

The buyer receives the good that he values at r ·Wt,A as long as at least one seller offers it

for sale. That is, the expected gain is (1− e2

r2
)rWt,A, and the expected cost is 2e(1− e

r
)Wt,A.
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We can write the expected profit for the buyer as (r−e)2
r

Wt,A.

With a Premium (∆t,BC > 0): Seller B always enters, and his expected profit is ∆t,BC ·Wt,A.

Thus, the expected payment he receives from the buyer is (e+ ∆t,BC) ·Wt,A. Agent C makes

zero profit in expectation, so conditional on entering, he expects to make back the entry

cost. The expected payment C receives from the buyer is (1− e+∆t,BC

r
)eWt,A.

Because B always enters, A is guaranteed to buy a good that he values at r ·Wt,A. His

expected cost is (e + ∆t,BC + (1 − e+∆t,BC

r
)e)Wt,A. We can write A’s expected profit as

(r−e)(r−e−∆t,BC)

r
Wt,A

2.9.2 Wealth Dynamics

We can then write the evolution of expected wealth, given that A is the buyer as:

Et[Wt+1,A|buyert = A] = Wt,A +Wt,A(r − e)(r − e−∆t,BC)/r

Et[Wt+1,B|buyert = A] = Wt,B +Wt,A∆t,BC

Et[Wt+1,C |buyert = A] = Wt,C

Letting ~Wt = [Wt,A,Wt,B,Wt,C ]>,

Et[ ~Wt+1|buyert = A] =

I3 +


(r−e)(r−e−∆t,BC)

r
0 0

∆t,BC 0 0

0 0 0


 ~Wt

= MA(∆t,BC) ~Wt

Where MA(∆t,BC) is equal to the matrix in parentheses.

We see that all agents’ wealth levels are weakly increasing in expectation as long as the

buyer’s wealth is positive. However, because there is uncertainty in who wins the auction,

sellers who pay the entry cost and lose will end up losing wealth. To prevent unlucky agents

from ending up with negative wealth, we impose that sellers cannot pay the entry cost if it

is greater than their current wealth.
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Alone, this would cause bidding strategies to be influenced by the wealth of the sellers,

not just the wealth of the buyer. If a seller cannot afford the entry cost, his competitor

will post the maximum possible bid. This affects strategies in a non-linear manner that

makes expected terminal wealth difficult to compute. To address this, we also assume that

the sellers have access to risk-neutral outside investors. If a seller is unable to afford the

entry cost, they may sell a claim to the proceeds of this periods auction. Investors are risk

neutral, so sellers receive the expected value in return. Sellers then bid according to the

same strategy that maximizes this period’s proceeds. Now, the seller’s wealth will evolve

deterministically in same way as it would have in expectation.

Each agent is the seller with equal probability 1/3. If we take the expectation over

production/demand outcomes, we can write the evolution of expected wealth as

Et[ ~Wt+1] =

I3 +
1

3


(r−e)(r−e−∆t,BC)

r
∆t,AC ∆t,AB

∆t,BC
(r−e)(r−e−∆t,AC)

r
0

0 0
(r−e)(r−e−∆t,AB)

r


 ~Wt (2.1)

= M(∆t) ~Wt

where ∆t = (∆t,BC ,∆t,AC ,∆t,AB) and M(∆t) equal the matrix in parentheses.

2.9.3 Buyer’s Problem

Suppose at date t, Agent A has been selected as the buyer. He is looking to maximize

his expected terminal wealth when the game ends, which occurs at the uncertain date T .

Suppose that everyone will be playing their equilibrium strategies (∆∗s,BC ,∆
∗
s,AC ,∆

∗
s,AB) in

subsequent rounds. If these strategies are constant, and not functions of past actions, we

can denote these equilibrium strategies at ∆∗ = (∆∗BC ,∆
∗
AC ,∆

∗
AB).

We must consider if, for Agent A, it is profitable to deviate this round and select a ∆t,BC

other than ∆∗BC .

With probability 1− λ, this will be the last round. Since we already know that A is the
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current buyer, the expected wealth is given by Et[ ~Wt+1|buyert = A] = MA(∆t,BC) ~Wt.

With probability λ(1 − λ), the game will continue one more round past this one. How-

ever, in this subsequent round, we do not yet know who the buyer will be. In the follow-

ing round, agents will resume their equilibrium behavior. Then, conditional on survival,

Et[ ~Wt+2|buyert = A] = M(∆∗) Et[ ~Wt+1|buyert = A] = M(∆∗)MA(∆t,BC) ~Wt. Continuing on,

Et[ ~Wt+s|buyert = A] = M(∆∗)s−1MA(∆t,BC) ~Wt.

If we take an expectation over the uncertain end date T , we can write the expected

terminal wealth of all agents as

Et[ ~WT |buyert = A] =
∞∑
s=1

(1− λ)λs−1 E[ ~Wt+s|buyert = A]

=
∞∑
s=1

(1− λ)λs−1M(∆∗)s−1MA(∆t,BC) ~Wt

= (1− λ)

(
∞∑
r=0

(λM(∆∗))r
)
MA(∆t,BC) ~Wt

= (1− λ) (I3 − λM(∆∗))−1MA(∆t,BC) ~Wt

The summation term above is a Neumann series. We know that a sufficient condition for

convergence is

||λM(∆∗)||∞ < 1 (2.2)

That is, maxi
∑

j λ|mij| < 1. This depends on the values of ∆∗, so we must assure

convergence in each equilibrium we find. If it converges,
∑∞

r=0 (λM(∆∗))r = (I3−λM(∆∗))−1.

This gives us the expected terminal wealth of all agents, however, A is looking only to

maximize his own wealth. Lets define his quantity of interest, along those of the other agents,

as
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ut,A(∆t,BC |∆∗) = [1, 0, 0](1− λ) (I3 − λM(∆∗))−1MA(∆t,BC) ~Wt

ut,B(∆t,AC |∆∗) = [0, 1, 0](1− λ) (I3 − λM(∆∗))−1MB(∆t,AC) ~Wt

ut,C(∆t,AB|∆∗) = [0, 0, 1](1− λ) (I3 − λM(∆∗))−1MC(∆t,AB) ~Wt

where we similarly define

MB(∆t,AC) =


0 ∆t,AC 0

0
(r−e)(r−e−∆t,AC)

r
0

0 0 0

 and MC(∆t,AB) =


0 0 ∆t,AB

0 0 0

0 0
(r−e)(r−e−∆t,AB)

r


So, the agents’ objectives when they are chosen as the buyer and asked to select a

handicap are:

A : max
∆t,BC∈[0,r−e]

ut,A(∆t,BC |∆∗)

B : max
∆t,AC∈[0,r−e]

ut,B(∆t,AC |∆∗)

C : max
∆t,AB∈[0,r−e]

ut,C(∆t,AB|∆∗)

Agent C: It is straightforward to show that ∆t,AB = 0 is optimal. Looking at Equation 2.1

above, we see that increasing ∆t,AB will cause C to give some of his gains to A, increasing

A’s wealth next period at the expense of C’s. However, none of this surplus ever makes it

back to C. C’s wealth does not depend on the wealth of A or B at all, as A and B never

share any of the surplus back to C. Algebraically,

ut,C(∆t,AB|∆∗) =
3(1− λ)(r − e)(r − e−∆t,AB)

3r − λ(3r + (r − e)(r − e−∆∗AB))
Wt,C
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From our parameter assumptions, we have that λ < 1 and that r > e > 0. We require

from our convergence restriction on line 2.2 that λ(1 + (r − e)(r − e−∆∗AB)/(3r)) < 1. By

inspection, u′t,C(∆t,AB|∆∗) < 0 regardless of the choices of agents A and B. It must be true

of any equilibrium that ∆∗BC = 0.

Agents A and B: ut,A(∆t,BC |∆∗) is linear in ∆t,BC , as M is linear in ∆t,BC and ut,A is linear

in M . The slope depends on the choice of agent B, (∆∗AC). Depending on whether the slope

is positive, negative, or zero, agent A will prefer either the maximum (∆t,BC = r − e), the

minimum (∆t,BC = 0), or be indifferent to all options.

Because we conjecture that the equilibrium strategy is constant, it must turn out that

the optimal ∆∗t,BC = ∆∗BC . So if we conjecture that ∆∗ = (∆∗BC ,∆
∗
AC , 0), we must have that

∆∗BC ∈ argmax
∆t,BC∈[0,r−e]

ut,A(∆t,BC |∆∗)

∆∗AC ∈ argmax
∆t,AC∈[0,r−e]

ut,B(∆t,AC |∆∗)

Non-reciprocity: ∆∗ = (0, 0, 0) If B is not sharing any of his surplus with A in the future,

then A gains nothing from sharing his surplus with B today. A is not willing to forgo wealth

today if he receives nothing in return.

ut,A(∆t,BC |(0, 0, 0)) =
3(1− λ)(r − e)(r − e−∆t,BC)

3r − λ(3r + (r − e)2)
Wt,A

Here, our convergence restriction from line 2.2 implies that λ < 3r/(3r + (r − e)2).

Therefore, the denominator is positive, and u′t,A(∆t,BC |(0, 0, 0)) < 0. The optimal ∆∗t,BC = 0,

and similarly for agent B.

Full-reciprocity: ∆∗ = (r − e, r − e, 0) Now that B is giving all of his surplus with A, it may

be worth it for A to give his surplus to B. The question is whether the increased surplus

from B in the future as a perpetuity outweighs the foregone surplus today.
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ut,A(∆t,BC |(r − e, r − e, 0)) =
3(1− λ)(r − e) [∆t,BC(λr − 3(1− λ)) + 3(1− λ)(r − e)]

(3− λ(3 + r − e))(3(1− λ) + λ(r − e))r
Wt,A

Again, our convergence restriction from line 2.2 implies that λ < 3/(3+r−e). Therefore,

the denominator is positive. We see then that u′t,A(∆t,BC |(r−e, r−e, 0)) > 0 if λr−3(1−λ) >

0, or equivalently λ > 3/(r + 3). If this is the case, then the optimal ∆∗t,BC = r − e, and

similarly for agent B.

Partial-reciprocity: ∆∗ = (∆̃, ∆̃, 0) where ∆̃ =
(r−e)(λ(r−e)2+3r(λ−1))

eλ(e−2r)
. Here we have an inter-

mediate case where agents are indifferent to any choice of handicap.

ut,A(∆t,BC |(∆̃, ∆̃, 0)) =
3(1− λ)(r − e)2

3r(1− λ)− λ(r − e)2
Wt,A

We see that A’s choice has no effect on his utility. Therefore, we will let ∆∗t,BC = ∆̃ so

as to make B indifferent and vice-versa. However, it must be that 0 < ∆̃ and ∆̃ < r − e.

Therefore, we require that λ < 3r/(3r+ (r− e)2) and λ > 3/(r+ 3) to satisfy the respective

requirements. λ < 3r/(3r + (r− e)2) also happens to be our requirement for convergence in

this case.

The convergence requirement that λ < 3r
3r+(r−e)2 is less strict than the requirement that

λ < 3
3+r−e . We therefore assume that λ < 3

3+r−e so any choice of ∆∗ will converge.

So far, we considered the expected utility of an agent who already knows he is the buyer

at time t. However, we are also interested in his ex-ante expected terminal wealth before a

buyer has been chosen. This is given by

wt,A(∆∗) = [1, 0, 0](1− λ) (I3 − λM(∆∗))−1M(∆∗) ~Wt

wt,B(∆∗) = [0, 1, 0](1− λ) (I3 − λM(∆∗))−1M(∆∗) ~Wt

wt,C(∆∗) = [0, 0, 1](1− λ) (I3 − λM(∆∗))−1M(∆∗) ~Wt

69



2.10 Appendix: Stage Game Without Premiums

A buyer is purchasing one product from one of two sellers with 0 production costs. Sellers

submit bids, and the buyer purchases from whoever made the lower bid. The buyer has a

reservation price of r. To place a bid, the sellers must pay an entry cost e.

The solution to a more general form of this game with many sellers (but without buyer

premiums), was originally derived in Lang and Rosenthal (1991). This is extended by

Thomas (2002) to allow for asymmetric entry costs, which reverses price implications of

additional sellers, allowing prices to decrease. Kaplan and Sela (2003) achieve similar results

with uncertain entry costs.

Symmetric Nash Equilibrium:

• The Entry Game: Each seller randomly decides to enter the market with probability

1− e
r
, and pays entry cost e if they enter.

• The Pricing Game: Conditional on entering, sellers randomly select a bid according to

the distribution below:

F (x) =


0 if x ≤ e

(x−e)r
x(r−e) if e < x ≤ r

1 otherwise

Proceeds conditional on entering are e for both sellers. Thus their expected profit is 0.

Proof:

Consider Seller One:

Seller One’s expected revenue from bidding x1 is given by Π(x1) = x1W1(x1)− e, where

W1(x1) is Seller One’s probability of winning given he bids x1.
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By the FOC, we know that x1W
′
1(x1) +W1(x1) = 0 where:

W1(x1) = p2 + (1− p2)(1− F2(x1))

and W ′
1(x1) = −(1− p2)f2(x1)

Here, p2 is the probability that Seller Two doesn’t enter, and F2 and f2 are the CDF and

PDF of his bid conditional on entry. Note that the probability of winning is the probability

Seller Two doesn’t enter, plus the probability that she does enter, but bids higher than x1

and thus loses. Combining the above formulas:

x1 = −W1(x1)

w1(x1)
=
p2 + (1− p2)(1− F2(x1))

(1− p2)f2(x1)

=⇒ f2(x1) =
p2 + (1− p2)(1− F2(x1))

(1− p2)x1

=⇒ f2(z) =
p2 + (1− p2)(1− F2(z))

(1− p2)z
where z = x1

The solution to this differential equation is given by

F2(z) =
c

z
+

z

(1− p2)z

If p1 > 0, we know that Seller One must be indifferent between not entering and entering.

If he enters, it must be the case that he expects to earn revenue e for any bid, so that his

profit after paying the entry cost is 0.

It must be then that the lowest bid is e, as bidding below this would never recoup the

entry cost, even if winning were guaranteed. Then F2(e) = 0, so we can solve for the constant

c:

F2(z) =
z − e

(1− p2)z

We also know that if Seller One bids the maximum bid, the buyers reserve price r, that

he will only win if Seller Two does not enter. Then, the expected profit of bidding r is

Π(r) = rp2 − e = 0, so p2 = e
r
.

F2(z) =
(z − e)r
(r − e)z

, z ∈ [e, r]
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The derivation of Seller One’s strategy is identical. He must act so that Seller Two

expects to profit zero for any entry decision or bid.
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2.11 Appendix: Stage Game With Premiums

A buyer is purchasing one product from one of two sellers with 0 production costs. The

buyer is willing to pay a premium ∆ for Seller One’s product. Sellers submit bids, and if

x1 < x2 +∆, the buyer selects Seller One. Conversely, if x2 < x1−∆, the buyer selects Seller

Two. The buyer has a reservation price of r. To place a bid, the sellers must pay a cost e.

Nash Equilibrium: High Type Profits

• The Entry Game:

– Seller One: Always enters and pays entry cost e.

– Seller Two: Randomizes to enter the market with probability 1− e+∆
r

, and pays

entry cost e.

• The Pricing Game: Conditional on entering, sellers randomly select a bid according to

the distributions below:

F1(x1) =


0 if x ≤ e+ ∆

z−e−∆
z−∆

if e+ ∆ < x1 ≤ r

1 otherwise

F2(x2) =


0 if x ≤ e

(z−e)r
(r−e−∆)(z+∆)

if e < x2 ≤ r −∆

1 otherwise

Proceeds conditional on entering are e + ∆ for Seller One, and e for Seller Two. Un-

conditionally, Seller One makes profit ∆ while Seller Two makes no profits. Note that

F1(r) < 1 so there is a mass point at r.

Proof:

Consider Seller One:
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• Seller One’s expected revenue from bidding x1 is given by Π(x1) = x1W1(x1)− e where

W1(x1) is Seller One’s probability of winning given he bids x1

• By the FOC, we know that x1w1(x1) +W1(x1) = 0 where:

W1(x1) = p2 + (1− p2)(1− F2(x1 −∆))

W ′
1(x1) = w1(x1) = −(1− p2)f2(x1 −∆)

Here, p2 is the probability that Seller Two doesn’t enter, and F2 and f2 are the CDF

and PDF of his bid conditional on entry. Note that the probability of winning is the

probability Seller Two doesn’t enter, plus the probability that she does enter, but bids

higher than x1 −∆ and thus loses.

• Combining the above formulas:

x1 = −W1(x1)

w1(x1)
=
p2 + (1− p2)(1− F2(x1 −∆))

(1− p2)f2(x1 −∆)

=⇒ f2(x1 −∆) =
p2 + (1− p2)(1− F2(x1 −∆))

(1− p2)x1

=⇒ f2(z) =
p2 + (1− p2)(1− F2(z))

(1− p2)(z + ∆)
where z = x1 −∆

• The solution to this differential equation is given by

F2(z) =
c

z + ∆
+

z

(1− p2)(z + ∆)

• We impose that F2(e) = 0 as bidding any lower would be below the entry cost and

profits would be negative. Therefore, we can solve for the constant c:

F2(z) =
z − e

(1− p2)(z + ∆)

• We also want the maximum bid to be r−∆. Bidding any higher than this means that

Seller One only wins when Seller Two doesn’t enter, so he may as well move any mass

in this region up to r. Alternatively, if Seller Two’s maximum bid was less than r−∆,

Seller One would similarly be incentivized to move any non-competitive mass to r. It

must therefore be that F2(r −∆) = 1 and we can solve for p2 = e+∆
r

.

F2(z) =
(z − e)r

(r − e−∆)(z + ∆)
, z ∈ [e, r −∆]
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Consider Seller Two:

• The derivation is similar, but now

W2(x2) = p1 + (1− p1)(1− F1(x2 + ∆))

W ′
2(x2) = w2(x2) = −(1− p1)f1(x2 + ∆)

as Seller Two only wins if Seller One doesn’t show up, or if Seller One bids more than

the maximum premium the buyer is willing to pay.

• Now the solution to the ODE is given by:

F1(z) =
c

z −∆
+

z

(1− p1)(z −∆)

• Our boundary condition is that F1(e + ∆) = 0 as bidding below e + ∆ no longer

increases Player One’s win probability. Therefore:

F1(z) =
z − e−∆

(1− p1)(z −∆)

• For Seller One, we know that if he bids e + ∆, he will win for sure. The profit of

this bid after paying the entry cost e is ∆. Because he must be indifferent between all

actions, it cannot be the case that he ever stays out of the market as that would profit

0. It must be the case then that p1 = 0

F1(x1) =


0 if x ≤ e+ ∆

z−e−∆
z−∆

if e+ ∆ < x1 ≤ r

1 otherwise

If Seller Two bids his maximum bid, it must be the case that (r−∆)W2(r−∆) = e. That

is, his expected profit must be zero at his highest bid. But because Seller One always enters,

this means that (r − ∆)(1 − F1(r)) = e. This means that the probability Seller One bids

higher than Seller Two here must be e
r−∆

, but he cannot bid higher than the reserve price

r. To fix this, it must be the case that there is a point mass in Seller One’s distribution at
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r. We impose that Seller Two win all ties here, so that if Seller Two bids his maximum bid

r−∆, he will win with probability e
r−∆

. From Seller One’s perspective, the probability that

x2 = r −∆ and there is a tie is zero. From Seller Two’s perspective, if he bids x2 = r −∆,

it is the same if Seller One bids in the range [r,∞) and two wins, or Seller Two bids exactly

r and two wins the tie.
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Figure 2.2: Mutual Best Response

This is a plot of A’s best ∆BC response to a given neighbor B’s ∆AC , and vice-versa. All agents are assumed
to play best participation and pricing strategies, given their ∆’s.

The circle is the non-reciprocity equilibrium from Theorem 1. The square is the full-reciprocity equilibrium
from Theorem 2. The triangle is the partial-reciprocity equilibrium from Theorem 5.

The parameters in this graph are r = 0.5, e = 0.2, and λ = 0.87.
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Figure 2.3: A’s Payoff as Function of His Imposed Handicap, Given B’s Handicap

This figure plots A’s expected terminal wealth with respect to his choice of ∆BC , if played forever, for
various equilibrium levels of ∆AC (B’s chosen handicap). The bottom red and top blue lines show that in
the extreme 0 or 0.3 cases of B’s handicap, A in turn also prefers an extreme response. However, for a
particular ∆AC (middle green line), he is indifferent to all choices of ∆BC . A is not unwilling to share some
of his surplus with B if he believes that B is willing to share enough of it (0.25) back in future periods.

All agents are assumed to play best participation and pricing strategies, given their ∆’s.

The parameters in this graph are r = 0.5, e = 0.2, and λ = 0.87.
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Figure 2.5: Non-Equilibrium Profits in A Single Period

This figure plots the agents’ expected profits per-period if A were buying, given sellers B and C optimally
select their entry and pricing decisions. Thus, we can look at ∆BC as a choice variable, and plot the returns
to both sellers in this one period.

The outsider C always earns zero expected profit. As the handicap that A is willing to pay (to B) increases,
A foregoes some of his expected surplus. However, increases in B’s surplus are greater than this loss, because
the total expected entry costs paid decline.

The parameters in this graph are r = 0.5, e = 0.2, and λ = 0.87.
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CHAPTER 3

Asset Redeployability, Liquidation Value, and

Endogenous Capital Structure Heterogeneity

with Antonio Bernardo and Ivo Welch

3.1 Introduction

Firms with more leverage are more likely to experience future financial distress. Im-

portantly, their expected costs of bankruptcy are likely to be higher not only when they

themselves, but also when their industry peers have taken on more debt. More firms will

then want to sell the same types of assets at the same time, and their peer firms—who

would otherwise have been the natural asset buyers—become themselves more limited in

their capacity to absorb these assets (Shleifer and Vishny (1992)).1 As a result, the fire-sale

discounts relative to fundamental asset values will become steeper. And, therefore, the debt

choices of individual firms today, aggregated into industry debt, can themselves influence

the asset liquidation values and have anticipative feedback into firms’ debt choices in the

first place.

Like most earlier literature, in our model, firms choose their capital structures before

they learn their profitabilities. Leverage confers direct value benefits, such as signaling

benefits, incentive enhancements, or tax shields. However, leverage can lead to distress costs

for firms that later experience negative shocks. In the event of default, the creditors must

decide whether to liquidate on the one hand, or to reorganize and continue operations on the

1Bolton, Santos, and Scheinkman (2011) motivate preferred [industry] purchasers able and willing to pay

more than outsiders with adverse selection.
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other. If they liquidate, firms receive the prevailing market price for their assets. The assets

will then be in the hands of buyers who can presumably put them to better use. If they

reorganize, firms keep the assets but may still suffer some impairments, such as direct costs

and strained relationships with key stakeholders. A distressed firm is not worth as much as

it would have been in the absence of default.

Unlike in most earlier literature, in our model,2 debt-laden capital-constrained firms are

not only more likely to sell but also less likely to buy assets. We assume that all firms are

competitive and can anticipate but not internalize the effects of their peers. The mechanism

in our model that coordinates their debt choices is the endogenous asset price. For example,

suppose that some firms adopt more aggressive debt policies. In the future, this will increase

the supply and reduce the demand for liquidated assets, resulting in a lower equilibrium

price. In turn, the anticipated lower price creates two motivations for the remaining firms

today: (1) they will fear running into financial distress more; and (2), if they reduce their

own debt, they will be more likely to enjoy future vulture buying opportunities. Thus, their

best response to higher debt by their peers is lower debt for themselves.

The “opportunistic-acquisition” channel can reverse an important implication of models

with only the “financial distress” channel. In Williamson (1988) and Harris and Raviv (1990),

when assets are more redeployable, firms take on more debt because their distress costs will

be lower (Benmelech, Garmaise, and Moskowitz (2005)). By contrast, in our model, greater

redeployability creates more favorable future buying opportunities and firms may take on

less debt to take advantage of them. The need of peers to liquidate can create a real growth

option in the sense of Myers (1977) or McDonald and Siegel (1986) that can then itself feed

back into debt choices and asset prices. No previous model has shown a negative comparative

static with respect to redeployability.

Interestingly, when assets are indivisible, a-priori homogeneous firms sometimes split

endogenously into two coexisting types who specialize in leverage and role. Some firms

2We will discuss the literature in great detail in Section 3.4.3.4.1. Moreover, Table 3.3 shows succinctly

how our model’s key implications relate to and differ from this earlier literature.
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lever up to take advantage of the direct ongoing value benefits of debt—even anticipating

distress and having to fire-sell—while other firms maintain conservative capital structures

(“dry powder”) to take advantage of these anticipated future fire sales (as in the acquisition

model of Morellec and Zhdanov (2008)).

Some publicly-traded corporations and industries seem to fit the assumptions of our

model. For example, in the shipping industry, where assets are costly and indivisible, Diana

Shipping (ticker: DSX) strategically chooses a low-debt conservative capital structure (unlike

most other shipping firms) to expand its fleet when ships are liquidated at fire-sale prices.3

Another natural domain of our model are private companies operating in more local markets.

Anecdotal evidence suggests that some local real-estate developers are aggressive, while

others wait more patiently for the future fire-sale opportunities in the next downturn. In

the context of our model, such heterogeneity can arise more naturally or be amplified for

projects such as large local developments (like shopping malls) that are difficult to parcel

up.

Our model can also offer further insights. For example, there may be too many or too

few asset transfers relative to first-best in our model. And, relevant to the literature on

M&A activity, we show that transfer efficiency can be either procyclical or countercyclical,

depending on parameters. Thus, for example, any tax policy designed to improve allocational

efficiency must be context sensitive. Moreover, our model can also offer predictions on other

observables, such as asset transfer quantities and prices, recovery rates and credit spreads,

default and liquidation probabilities, and so on.

Our paper also makes a more general point. Most theories of capital structure are about

how parameters influence the optimal debt choice. Most empirical tests use normalized

leverage, typically dividing it by firm value. When the market value is used, the problem

is that not only debt but also firm-value should change with parameters. This matters less

3For example, in its 2011 annual report, Diana Shipping stated that its strategy of maintaining a con-

servative balance sheet allowed it to ”seize upon opportunities to deploy our strong cash position to acquire

vessels at attractive valuations (p.4).” That year, it used its excess cash to purchase two Panamax dry bulk

carriers from distressed sellers at deep fire-sale prices.
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when debt and value respond in opposite directions, although what is interpreted as a test

on debt could merely be a test on value. It matters more when debt and value respond

in the same direction. The empirical metric, debt-to-market-value, then measures merely

whether debt or value changes faster. In our specific model, we illustrate this general point

by showing how an increase in the direct benefits of debt always increases debt but not

always debt-to-value ratios.

Our paper now proceeds as follows: Section 3.2 lays out a basic no-distress model, in

which firms with low leverage can later purchase assets from other firms that will turn out to

have low productivity. Redeployability favors less leverage, as buyers want the opportunity

to purchase poorly performing assets down the line. Debt has an effect only through its

influence on this “opportunistic-acquisition” channel. Section 3.3 adds the more recognized

“financial-distress” channel. Without the acquisition channel, redeployability always favors

more leverage, because sellers can rely on the lesser downside. With both the purchase

channel and the distress channel, more asset redeployability at first favors higher leverage

(lesser distress costs dominate) and then decreases in leverage (greater acquisition oppor-

tunities dominate). Section 3.4 puts the model in perspective and describes its relation to

prior research. In particular, it explains why our paper offers the very first model for many

of the conjectures in Shleifer and Vishny (1992), and the relation of our model to Gale and

Gottardi (2011) and Acharya and Viswanathan (2011). Section 3.5 concludes.

3.2 The Opportunistic-Acquisition Channel

In this section, we introduce a model in which lower leverage allows firms to undertake

more acquisitions in the future. In the next section, lower leverage will also reduce expected

financial-distress reorganization costs. Table 3.1 summarizes the key variables in our model.

3.2.1 Model Setup and Assumptions

We consider an industry with risk-neutral competitive firms. Each firm has a manager

who maximizes the value of the firm. This is not to discount the real-world importance of
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intra-firm agency conflicts, but to show that our results can obtain even when they are not

present.4 All information is public upon realization, again to show that asymmetric informa-

tion concerns are not required for our results, not to discount their real-world importance.

Assets and Types: At time 0, each firm owns one indivisible unit of a productive asset.5

The productivity of this asset is a random variable, denoted ṽi, whose realization will be

publicly observed at time 1. All firms are ex-ante identical and it is common knowledge that

their firm type is distributed uniformly on the interval ṽi ∈ [0, 1]. After firm productivity

is realized at time 1, firms with enough capital (low leverage and high productivity) can

acquire assets offered by other firms in the industry at the prevailing endogenous price P .

We always assume free disposal, so P ≥ 0. All assets generate a payoff at time 2, which

depends on the holder’s realized productivity vi.

Financing: At time 0, each firm can finance its asset purchase (but not slack excess cash)

with equity or debt. The face value of debt is constrained to be Fi ∈ [0, 1].6

All agents are risk-neutral and there is no time discounting, so the expected rate of

return on debt is zero. We assume that debt Fi offers immediate net benefits that confer a

proportional value τ ·Fi. This τ can include the tax benefit of debt (which may or may not

be socially valuable), but we have a much broader concept in mind.7 The parameter τ can

4We provide an online appendix in which we model managers that maximize equity and not debt values.

Maximizing firm value is the same as maximizing equity value out of default and debt value in default.

5At time 0, all firms are identical and we can define their preferred investment amount to be one unit.

As we describe below, some firms may wish to purchase liquidated assets at time 1, but these buying firms

are then aware of their higher productivity.

6An upper limit on Fi ensures that the promised debt payment is never greater than the firm’s highest

possible cash flow (sans direct benefits). A higher value of Fi would not result in higher proceeds from the

debt issuance, because the increment would not be paid. A better assumption would be to impose the upper

limit and assess the (tax and other debt) benefits not on the promised but on the expected debt payoff.

Unfortunately, this specification forces the model into numerical rather than algebraic solutions.

7The model in the text interprets τ broadly as the direct benefits of debt. However, we have solved

the model in which τ can represent the tax shield (where taxes also negatively affect firm value), or any

combination of tax and non-tax benefits. This requires multiplying our objective functions (except the

90



reflect the ability of debt to allow financially-constrained firms to take on more productive

projects, any positive incentive effects from debt, lower fund-raising costs, and so on; all net

of debts’ unmodelled costs. This benefit is not dissipated by subsequent events and accrues

to the original owners. We show in Appendix 3.8 that all our main results hold when the

debt benefit is available to pay creditors and fund acquisitions.

Liquidation: At time 1, after each firm has learned its productivity realization vi, it can

decide whether to sell its asset at the prevailing price P or to continue operations. Because

managers’ objectives are aligned with their firms’, their decision to liquidate or continue is

efficient, given their earlier time 0 debt choice. The value from continuing operations is vi.

The liquidation price of the asset is determined by perfectly competitive buyers and sellers.

Thus, firm i sells iff vi < P . Although the firm’s own debt choice has no influence on the

asset’s price, each firm knows that the asset price is determined by the collective choices of

all firms in the industry.

Acquisition: Although firms can acquire liquidated assets, we assume there is some cost

associated with redeployment. This could be because assets need to be customized. Re-

purposing can require, e.g., moving costs, reprogramming, retraining of workers, and co-

ordination with other complementary assets. In our model, we assume that an asset with

productivity vi to its current owner (firm i) has productivity of η · vj to a potential acquirer

(firm j), where η < 1. Higher values of η imply that assets can be redeployed more easily

(at lower cost). In this specification, an asset that transfers from a low-productivity seller i

to a high-productivity buyer j enjoys upgraded productivity (vj > vi), but not to the same

extent that it would have had if buyer j had owned it all along. Thus, holding productivity

fixed across firms, the asset is also worth more to the current owner than to a potential

buyer if both have equal productivity. Taking both firm-specificity and own productivity

into account, firms find it worthwhile to buy liquidated assets only if they are sufficiently

more productive—acquiring liquidated assets at price P is positive NPV for all firms with

additive τ · Fi term) by 1 − τ . The solutions are appropriately proportional, except that the τ parameter

becomes its monotonic transformation τ/(1 − τ). And with the exception of ∂V ∗/∂τ , which is specifically

marked in Table 3.2, all comparative statics remain the same. This is covered in Appendix 3.10.
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vj > P/η.

As in Shleifer and Vishny (1992), the natural buyers of liquidated assets are other firms

in the industry with appropriate expertise. These firms have limited capital, and they are

constrained in their ability to acquire the asset at time 1 if they took on too much debt at

time 0. Similar limits are also central in other papers, most prominently Duffie (2010). It can

be justified, e.g., by cash-in-the-market financing (Gale and Gottardi (2015)), where firms

are assumed to be unable to raise outside funding on short notice. Our model can go a step

further, because it includes one parameter that can help capture at least some cross-sectional

or time-series variation in the cash-in-the-market immediacy constraint. Long-term demand

curves are more elastic than short-term demand curves. Our parameter η would be lower

when assets are shorter-lived, when they require more informed buyers or due diligence (the

crisis time relative to the life time of the cash flows), and when they are more difficult to put

to use by outsiders. Of course, η also has to encapsulate further real-life aspects, such as how

quickly transfer activity would have to take place when aggregate economic and financial

conditions are worse. In the extreme allowed in our model, η can approach 1 if industry

firms can simply wait out any crisis and search until they can find the nearly perfect buyer.

In our specific model, the only financing available to a firm at time 1 is its internal equity,

which is the maximum of zero and (vi−F ). We assume that each firm can only acquire one

unit of the liquidated asset at time 1.8 This reflects limited organizational capacity to take

on too many new assets at one time.

Timing: Figure 3.1 illustrates the timing of decisions more precisely.

Objective: At time 0, each firm chooses a debt level Fi to maximize its ex-ante value,

V (P, Fi ) =

∫ P

0

P dv +

∫ 1

P

v dv +

∫ 1

min{P + Fi, 1}

max {0, η · v − P} dv + τ · Fi . (3.1)

8The indivisibility assumption is important for the existence of a mixed equilibrium. However, our other

qualitative results hold if the asset is divisible and firms can acquire as much of the asset as they can afford

with their residual equity (vi − Fi). See Section 3.2.3.2.4 for more detail.
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The first term represents the payoff P if the asset is eventually liquidated (vi ≤ P ). The

second term represents the payoff if the firm chooses to continue operations (P < vi ≤ 1).

The third term represents the expected surplus if the firm chooses to acquire liquidated

assets. The limits of integration recognize that the firm only has sufficient capital to acquire

the asset if vi ≥ P + Fi and the integrand (max{0, η·vi − P}) recognizes that the firm only

acquires the asset if it is positive NPV (vi > P/η). The final term represents the immediate

benefit of debt.

If the firm’s financing constraint is binding (i.e., 1 ≥ P +Fi ≥ P/η), the expected surplus

associated with acquiring assets at time 1 is∫ 1

P+Fi

(η · v − P ) dv =
η · [1− (P + Fi)

2]

2
− P · (1− P − Fi) ,

which is decreasing in the own debt choice Fi. Thus, debt is costly because it reduces

future profitable buying opportunities. Furthermore, the surplus is (negative) quadratic in

Fi. As the debt level increases, the marginal cost of debt also increases as firms are forced

to forgo more and more profitable acquisition opportunities. This is in contrast to the

marginal benefits of debt which we have assumed to be linear, leading to the possibility of

internal optimal debt levels. Moreover, this cost of debt is increasing when future buying

opportunities are of higher quality (i.e., assets are more easily redeployed or the price is

lower). When the price of the asset is determined endogenously, as in our model, it will

depend partly on how easily the asset can be redeployed. Therefore, the net effect of asset

redeployability on equilibrium debt choice is not yet clear.

Because there is no aggregate uncertainty in our model, and we have infinitely many

industry participants,9 firms can anticipate the equilibrium price P at time 0. Therefore,

each firm can consider its debt choice in one of three regions, outlined by a marginal cost

defined by the right-most integral in (3.1):

1. For low debt, Fi ≤ P/η − P , the marginal cost of debt is zero: increasing debt is

not costly because the firm’s financing constraint is not binding. Thus, because the

9Appendix 3.9 considers an extension with aggregate uncertainty.
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marginal benefit of debt is positive (τ), it is always optimal for the firm to increase

debt beyond this region.

2. For medium debt, P/η − P < Fi < 1 − P , the marginal cost is η · (P + Fi) − P :

increasing debt is costly because the firm’s financing constraint is now binding, i.e., it

may have to forego acquiring positive NPV assets that will be liquidated.

3. For high debt, Fi ≥ 1 − P , the marginal cost is again zero: the debt is so high that

the firm would not be able to finance the acquisition of the asset even if it were to

turn out to be the highest productivity, vi=1. The discontinuous drop in the marginal

cost is the result of our indivisibility assumption. At this point the firms cannot afford

to purchase an entire asset. If they were allowed to purchase fractional assets, then

further debt would still lead to foregone purchases. Increasing debt has no additional

costs but additional benefits. Therefore, if the optimal debt is at least 1 − P , given

the τ benefit of debt, it is optimal for such a firm to push its debt to the permitted

maximum, here Fi=1.10

Together, this means that there are two potential optimal debt levels. One is in the

interior region where the marginal benefit is equal to the marginal cost, and one is at the

upper boundary where the marginal benefit exceeds the marginal cost but firms have hit the

debt constraint. In equilibrium, we will find that firms are sometimes indifferent between

these two choices. This means that firms may make different debt choices even if they are

identical ex-ante. In particular, firms adopting high-debt strategies (to take advantage of

the ongoing debt benefits) will be able to coexist with firms adopting low-debt strategies (to

take advantage of future asset buying opportunities at fire-sale prices).

Market Clearing: The equilibrium price for liquidated assets is determined by supply and

demand. Because firms may choose different debt strategies, the market clearing price has

to be a function of the frequency distribution of firm debt choices. Let F(F ) represent the

cumulative distribution function of firms over admissible debt choices F ∈ [0, 1], i.e., the

10All our results hold in a modified model in which the benefits of debt also become available for collateral.
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proportion of firms choosing Fi ≤ F is given by F(F ).

Supply: All firms with values vi ≤ P will liquidate their asset regardless of their debt choice.

Therefore, the aggregate supply of the liquidated assets is∫ 1

0

∫ P

0

1 dv dF(F ) (= P ) . (3.2)

Demand: Acquiring one unit of the liquidated asset is positive NPV iff vi > P/η. Firms will

have sufficient funding to do so iff vi≥P + Fi, and they will have no demand if they

have more debt than 1− P . Therefore, the aggregate demand for liquidated assets is∫ 1−P

0

∫ 1

max{P+F,P/η}
1 dv dF(F ) . (3.3)

3.2.2 Equilibrium

Definition 2 An equilibrium is a distribution F(F ) over admissible debt choices F ∈ [0, 1]

at time 0 and a price P ∈ [0, 1] for the liquidated asset at time 1, such that

• firms act optimally at time 1; and

• given a market clearing price P (and their optimal decisions at time 1), firms choose

debt Fi to maximize firm value at time 0, according to the distribution F(F ); and

• given the distribution of firm debt choices F(F ), the price P clears the market for

liquidated assets at time 1.

3.2.3 Solution

Firms are competitive so they take the price of liquidated assets, P , as given. Maximizing

ex-ante firm value in equation (1) yields the optimal (interior) debt face value, F ∗

F ∗(P ) =
τ + (1− η) · P

η
,

and the maximized firm value of

V (P, F ∗(P ) ) =
1 + P 2

2
+
η2 + (P + τ)2 − 2 · η · (1 + τ) · P

2 · η
.
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The optimal debt choice is higher when the benefits of debt (τ) are greater and when future

acquisition opportunities are worse—when assets are more expensive (P ) and more difficult

to redeploy (η). However, as we explained above, the equilibrium asset price P ∗ also depends

on the exogenous parameters, so the parameter net effects are yet to be determined.

Together, the equilibrium asset price equates supply, as in (3.2), with demand, as in (3.3);

and each firm, given the asset price and its optimal decisions at time 1, chooses debt at time 0

to maximize its value, as in (3.1).

We must also consider the debt choice at the upper boundary, Fi=1, and compare the

firm values between the two debt choices. For a given price, the high debt strategy may

appear more attractive. However, if all firms choose the maximum leverage, there is no one

left to purchase the liquidated assets and the price falls to zero. This makes the interior debt

choice more attractive. Mixed strategies may be the only way to balance these forces.

Theorem 7 In the absence of financial-distress reorganization costs, there exists a unique

equilibrium for all parameter values:

• If τ ≤ η2/(3 · η + 2), there is a pure-strategy equilibrium with price P ∗ = (η − τ)/(1 + η),

in which all firms choose F ∗L = (2 · τ + 1− η)/(1 + η).

• If η2/(3 · η + 2) < τ ≤ η, there is a mixed-strategy equilibrium with price

P ∗ = η − τ + η · τ −
√
η2 · τ 2 + 2 · η · τ · (η − τ) ,

in which proportion h∗ of firms choose F ∗H=1, and proportion 1 − h∗ of firms choose

F ∗L, where

F ∗L =
τ + (1− η) · P ∗

η
,

h∗ =
1− 2 · P ∗ − F ∗L(P ∗ )

1− P ∗ − F ∗L(P ∗ )
.

• If η < τ ≤ 1, there is a pure-strategy equilibrium with price P ∗=0, in which all firms

choose F ∗L=1.
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(All proofs are in the appendix.)

If the benefits of debt (τ) are low, all firms choose a low-debt strategy, so that they

can maintain financial flexibility to acquire the asset at time 1. For intermediate values of

τ , some firms choose a high-debt strategy to take advantage of the immediate benefits of

debt, while other firms choose a low-debt strategy to take advantage of future investment

opportunities.11 For high values of τ , the immediate debt benefits outweigh any potential

benefit from asset acquisitions, so all firms choose the high-debt strategy. In this case,

with no buyers, all assets will end up being discarded rather than being transferred from

low-productivity to high-productivity firms.

3.2.4 Implications

A visual perspective can help the intuition. Figure 3.2 plots the comparative statics for

heterogeneity h∗.

Type Heterogeneity: This plot shows how heterogeneity in ex-ante debt strategies (h∗)

arises endogenously. For high redeployability (η) and low debt benefits (τ), all firms choose to

operate with very little debt (eager for the opportunity to buy assets from lower productivity

firms in the future). For low redeployability and high debt benefits, all firms choose to operate

with very high debt (in order to obtain the debt benefits). For intermediate redeployability

and debt benefits, ex-ante homogeneous firms naturally divide into two kinds of firms—

some pursuing the high-debt operating strategy, others pursuing the lower-debt opportunistic

waiting strategy.

This heterogeneity is caused by the indivisibility of the asset.12 Once a firm has taken

on so much debt that it will not be able to purchase the asset, it faces no further marginal

11The mixing need not be the same for every firm. The same results obtain in a non-symmetric equilibrium

in which h∗ firms follow the FH=1 with certainty, and 1 − h∗ firms never follow it; or, similarly, any

combination of probabilities that lead to an aggregate h∗ fraction of firms pursuing FH=1.

12Allen and Gale (1994) discuss divisibility, but their heterogeneity arises from heterogeneity in funding

needs.
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cost to taking on more debt. If assets were divisible, our comparative statics below would

continue to hold, but all firms would act alike. We can thus speculate that heterogeneity

in ex-ante strategies increases in asset indivisibility—for example, in real-world situations

in which purchases require assuming large pieces (like entire divisions or factories), and not

just diversifiable and spreadable small bits and pieces (like retail product inventories).

Implication 1 When assets are indivisible, ex-ante identical firms may specialize: Low-debt

firms coexist with high-debt firms. The region with endogenous heterogeneity is characterized

by intermediate levels of redeployability and debt benefits.

Some of this intuition for leverage and role specialization has also appeared in Morellec

and Zhdanov (2008). In their model, there are two potential and strategic acquirers and one

target. One potential acquirer decides to specialize in obtaining the tax benefits (with high

leverage), while the other specializes in becoming the real acquirer (with low leverage). This

is because the equity of a low-debt acquirer does not need to share as much surplus with

its own creditors (due to the fact that the debt becomes safer after the acquisition, because

the firm becomes larger). The target itself is a third firm, whose value is determined by the

competition of the two acquirers. In contrast, in our model, all firms can be acquirers and

targets. The leverage of the non-acquiring firms becomes a price-setting component. Despite

the obvious similarity, the models also have their differences with respect to heterogeneity.

For many parameters, no heterogeneity can emerge in our model. And with many atomistic

firms rather than just two, and with firms themselves becoming potential targets, our model

can analyze the link between indivisibility and heterogeneity: If there are many firm types

and distressed assets are divisible, then all firms would act alike and there would never be

heterogeneity (see Section 3.2.4). Moreover, our model’s main concern is endogenous distress,

itself caused by the very same leverage. We are not aware of any models in the financial

distress literature (described further in Table 3.3) that have featured similar endogenous

heterogeneity.

Figure 3.3 plots leverage-related comparative statics in this acquisition-channel-only

model.
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Leverage: The left and middle plots shows that the face value of debt and the value of

debt today decrease in asset redeployability.13 This is because, in equilibrium, future buying

opportunities are more attractive when assets are more easily redeployed. Hence, firms

choose lower debt upfront to enable more opportunistic purchasing in the future. It is this

opportunistic-acquisition channel that pushes against the more common intuition that firms

take on more debt when their assets are more redeployable because distress costs are lower.

Naturally, this implication is robust only to the extent that it characterizes an acquisition

constraint. If firms in the industry—broadly defined as firms that are suitable buyers—can

purchase liquidating assets regardless of their own leverage (e.g., perhaps because they can

raise infinite financing instantly), then this implication is unlikely to hold.

Leverage Ratios: Although debt is unambiguously increasing in τ , the right plots in

Figure 3.3 show that this is not true for debt-to-value ratios. The implication of this simple

point—that value is also endogenous—is more wide-reaching than just our model. Almost

every capital-structure theory has been formulated in terms of debt, while almost every

reduced-form empirical capital-structure test has been operationalized in terms of debt-

to-value ratios. But with endogenous values, debt-to-value ratios measure primarily the

relative speed of the change of debt vis-a-vis the speed of change of value. Thus, empirical

test coefficients in naive leverage-ratio regressions may not be translatable into support or

rejection of underlying theories.

Implication 2 Because firm value is also endogenous, comparative statics on debt levels

need not be the same as comparative statics on debt-value ratios.

Peer Effects on Debt Choice: An important aspect of our model is that each firm’s debt

choice is influenced by its peers via the endogenously determined price of liquidated assets.

13With one tiny region exception, which can be seen at the bottom left figure, the discussion applies to

both the debt of the low firm (F ∗L) and the debt of the industry (h∗ · 1 + (1 − h∗) · F ∗L). Our focus is on

industry debt, so the discussion omits some trivial tiny-region caveats.
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Recall that the optimal (interior) debt choice is

F ∗L(P ) =
τ + (1− η)·η·P

η
,

which is increasing in the price P . The intuition is that future vulture buying opportunities

are more attractive when the anticipated asset price is low, so firms have more incentives

to reduce debt in order to be more likely to have the financing available to make asset

acquisitions. When they conjecture that their peer firms take on more debt, the aggregate

demand for the asset declines. The resulting lower equilibrium asset price gives other firms

the incentives to reduce debt. This is illustrated in Figure 3.4, which plots the equilibrium

price and debt choices as a function of the benefits of debt, τ . (In this example, η=1/2.)

For high values of τ , a fraction of firms choose a high-debt strategy (FH=1), resulting in

higher industry debt and a lower asset price than would have obtained if all firms had chosen

the low-debt strategy (represented by the dashed-lines). Consequently, firms choosing the

low-debt strategy—recognizing that more valuable future buying opportunities will become

available—shade their leverage below what would have been optimal if industry debt had

been lower.

Implication 3 Holding parameters constant, with endogenous liquidation values, firms’ equi-

librium debt choices are negatively influenced by those they conjecture for their peers.

In real life, peers are likely to have similar parameters for φ, η, τ , which would lead

them to choose similar capital structures. However, conditional on parameters, higher peer

debt gives firms a (marginal) incentive to take less debt, because equilibrium liquidation

prices turn lower. However, Leary and Roberts (2014) find evidence even of conditional peer

effects, suggesting forces beyond those in our model (such as learning of unknown parameters

in industries in which correlated distress is of lesser concern).

3.3 The Distress-Reorganization Channel

The main cost of debt in standard trade-off models like Williamson (1988) and Harris

and Raviv (1990) is not debt’s constraint on future asset purchases, but its financial-distress
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cost. Firms that have taken on too much debt will suffer not because they can no longer buy

when there are fire sales, but because they will have to sell when they are in trouble. We

now extend our model to show how the two channels work in tandem: the opportunistic-

acquisition channel means that debt reduces the demand for liquidated assets, while the

financial-distress channel means that debt increases the supply of liquidated assets. Each

channel plays the dominant role in some parameter region. Moreover, adding the financial-

distress channel makes the model more realistic and adds a wealth of implications.

3.3.1 Setup and Assumptions

The model is similar to the one from the previous section with the following changes:

Impairment: We now assume that there is a dissipative cost when reorganizing-and-con-

tinuing in the event of default (vi < Fi). Reorganization here is not necessarily Chapter 11,

with its large fixed-cost component, but can also be informal. It seems realistic that the

reorganization costs are smaller when the firm is closer to being able to meet its debt obli-

gations.

We specify the distressed reorganization cost to be linear in the shortfall, i.e., φ·(Fi−vi).

The parameter φ represents the losses to a firm’s value that are due to being unable to meet

pre-agreed debt.14 The costs could be due to, e.g., direct distractions; damaged relationships

with key stakeholders (suppliers, employees, and customers) when the firm is reorganized

(Titman (1984));15 or the residual effects of creditor-manager conflicts (after mitigation by

negotiations and side-payments). We model this cost as a proportion of the shortfall rather

than a proportion of the total firm value because renegotiation costs are likely to be smaller

when the firm is closer to solvency; e.g., is cheap to “buy” bridge funds or leniency from

14We focus on the natural case in which φ ∈ [0, 1]. If φ → ∞, then firms never reorganize. In this

region, there is no heterogeneity, but changes in D and D/V are still ambiguous in redeployability η and

debt benefits τ . It is still the case that the comparative statics for debt levels can differ from those of debt

ratios. The only new comparative static is that Q∗ may decrease in η.

15For example, Opler and Titman (1994) shows that distressed firms lose market share relative to their

conservatively financed peers in industry downturns.
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creditors when it concerns one dollar rather than one million dollars.

We always assume limited liability, so firm value under continuation is max{ 0 , vi − φ ·

(Fi − vi) }.

Liquidation: At time 1, the manager must decide not only whether to purchase liquidated

assets at price P , as in the previous section, but also whether to reorganize in the event of

financial distress or liquidate. Financial distress arises when the firm value is below the face

value of debt. The firm value is P if it liquidates, and max{ 0 , vi−φ·(Fi−vi) } if it continues.

For lower firm values vi, liquidation is better; for higher values, impaired operations is better.

Since we assume managers maximize firm value it is straightforward to show that the firm

optimally liquidates for all values vi below a critical value Λ,

Λ(Fi ) ≡
P + φ · Fi

1 + φ
. (3.4)

A priori, firms expect to liquidate assets more often when the expected liquidation price

(P ) is higher and when the relative value from reorganization and continuing operations in

distress is lower (i.e., when debt, Fi, is higher or when the reorganization impairment, φ, is

worse). However, φ also has an influence on the equilibrium price, so its net effect is yet to

be determined.

Acquisition: As in Section 3.2, the decision whether or not to buy the liquidated asset

depends on the transferability of the asset η, the price P , and the firm’s capital availability.

The asset value to firm i is η · vi, so it is positive NPV to acquire the asset iff vi > P/η.

However, firm i only has sufficient capital to acquire the asset iff vi − Fi ≥ P .

Timing: Figure 3.5 illustrates the revised model.

Objective: At time 0, the firm chooses its debt, again taking the expected (and fully

anticipated) time 1 price P of liquidating assets as given; and anticipating its own optimal

time 1 decisions (a) whether to liquidate or continue operating, and (b) whether to purchase

or not purchase other firms’ liquidating assets. Therefore, the ex-ante (time 0) value of each
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firm is

V (P, Fi ) = (3.5)

τ · Fi +



∫ P

0

P dv +

∫ 1

P

v dv +

∫ 1

min{P + Fi, 1}

max{0, η · v − P} dv if Fi < P

∫ Λ(Fi )

0

P dv +

∫ Fi

Λ(Fi )

[v − φ · (Fi − v)] dv +

∫ 1

Fi

v dv +

∫ 1

min{P + Fi, 1}

max{0, η · v − P} dv if Fi ≥ P

(3.6)

If the firm takes on less debt than what the asset will be worth, the first row applies and we

are back to the case of the previous model. Each firm would know it would operate without

possible impairment by distress. If the firm takes on more debt, the second row applies

and there are now five terms in the (always-continuous) value objective. The first term is

the τ benefit of debt, which accrues immediately.16 The second term reflects the payoff, P ,

if the firm is eventually liquidated (vi ≤ Λ(Fi )), where Λ(Fi ) is given by equation (3.4).

The third term represents the payoff to the firm if it is distressed but chooses to reorganize

and continue (vi ∈ [Λ(Fi ), Fi]), in which case it receives vi less the dissipative costs of

reorganization φ · (Fi − vi). The fourth term is the value of the firm if it is not distressed

(vi ∈ [Fi, 1]) and continues unimpaired. The fifth term represents the expected surplus if the

firm acquires liquidated assets. The limits of integration recognize that the firm only has

sufficient capital to acquire the asset if vi ≥ P + Fi, and the integrand (max{0, η · vi − P})

recognizes that the firm only acquires the assets if its NPV is positive given its own type

(vi > P/η).

Market Clearing: The equilibrium price for liquidated assets is determined by supply and

demand:

Supply: As explained above, firms choosing Fi ≤ P will liquidate when their realized produc-

tivity vi ≤ P . Firms choosing Fi > P will liquidate when their realized productivity

16In this formulation, the debt benefits cannot be used to stave off liquidation or impairment or to finance

the purchase of the asset. However, as already noted above, Appendix 3.8 shows that a model in which firms

can do so is isomorphic to the current one. All our principal conclusions continue to hold.
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vi ≤ Λ(Fi), as described in equation (3.4). Therefore, the aggregate supply of liqui-

dated assets is ∫ P

0

∫ P

0

1 dv dF(F ) +

∫ 1

P

∫ Λ(F )

0

1 dv dF(F ) . (3.7)

Demand: Acquiring one unit of the liquidated asset is positive NPV iff vi > P/η. Moreover,

firms will have sufficient funding to do so iff vi ≥ P + Fi. Therefore, the aggregate

demand is ∫ 1−P

0

∫ 1

max{P+F,P/η}
1 dv dF(F ) . (3.8)

3.3.2 Access to Infinite Financing / Eliminating The Acquisition Channel

Before solving the model, it is useful to consider a benchmark in which firms in the

industry have infinite access to capital. In this case, the acquisition channel is no longer a

constraint. Competition among firms results in an equilibrium with P ∗=η, in which (only)

the highest-productivity firms (vi=1) can purchase all assets available for sale. At this high

a price, purchasing assets is zero NPV even for the highest-productivity firms and negative

NPV for all other firms. Therefore, the acquisition profit terms in both rows in (3.5) drop

out. In the first row (Fi < P ), there is also no disadvantage to raising debt, so firms would

always be better off increasing debt and leaving this region. This leaves only the second row

for consideration.

Substituting Λ(Fi ) = (P + φ · Fi)/(1 + φ) into the objective and taking the derivative

with respect to Fi yields the first-order condition for the (interior) optimal debt choice. The

symmetric pure-strategy equilibrium debt choice is

F ∗ = P ∗ + (1 + 1/φ) · τ = η + (1 + 1/φ) · τ .

The optimal debt choice is increasing in the benefits of debt (τ) and asset redeployability

(η), and decreasing in the costs of reorganization (φ). This is the standard result in earlier

literature. In particular, debt increases in asset redeployability, because more redeployable

assets have higher liquidation values (P ∗=η), thereby reducing distress costs. There is no
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countervailing cost of debt with unlimited capital—increasing debt never precludes firms

from acquiring valuable (high η) assets.17

3.3.3 Equilibrium With Acquisitions and Financial Distress Channels

The trade-offs associated with the firm’s debt choice in our general model with both the

opportunistic-acquisition channel and the distress-reorganization channel depend again on

the level of debt Fi vis-a-vis the predictable asset price P . For example, consider the case

where η ≥ 1/2. (All cases are derived in the Appendix.) Each firm takes P as given and

considers its possible debt choice in one of four distinct regions:

1. In the first region, Fi ≤ P/η − P , the marginal cost of debt is zero. Firm value is

described by the first row of equation (3.5): increasing debt does not increase reorga-

nization costs (because the firm will always liquidate in distress) and the firm does not

forego asset-acquisition opportunities (because the financing constraint is not binding).

2. In the second region, P/η−P < Fi ≤ P , the marginal cost of debt is η ·Fi−P · (1−η).

Firm value is still described by the first row of equation (3.5): increasing debt still

does not increase reorganization costs, but the firm now may forego some positive

NPV asset-acquisition opportunities.

3. In the third region, P < Fi < 1 − P , the marginal cost of debt is η · Fi − P · (1 −

η) + (Fi − P ) · φ/(1 + φ). Firm value is now described by the second row of equation

(3.5): increasing debt raises the expected reorganization costs and results in the firm

foregoing some positive NPV buying opportunities.

4. In the fourth region, 1− P ≤ Fi ≤ 1, the marginal cost of debt is (Fi− P ) · φ/(1 + φ).

Firm value is again described by the second row of equation (3.5): the firm’s debt is

17 Substituting F ∗ into Λ yields the equilibrium liquidation threshold Λ(F ∗ ) = P + τ = η + τ . The

optimized firm value is

V ∗ ≡ V (F ∗ ) =
1 + (η + τ)2 + τ2/φ

2
.
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now so high that it would never be able to buy assets even if it turned out to be the

highest productivity type, vi=1. Therefore, the only remaining marginal cost of debt

is the increase in expected reorganization costs.

Importantly, the marginal cost of debt is weakly increasing in Fi over the first three regions,

but then jumps down at Fi=1 − P (because the firm can now never afford to purchase the

asset), after which it increases again. Consequently, as in our model without reorganization

costs, there is again a region with a mixed equilibrium, in which some firms choose low debt

and others choose high debt.

Equilibrium requires again that firms make optimal decisions at time 1 (both continuation

and asset acquisition); their debt choices at time 0 maximize firm value (3.5), given the

anticipated asset price and optimal decisions at time 1; and the market for liquidated assets

clears, i.e., supply in equation (3.7) is equal to demand in equation (3.8).

The description of the equilibrium solution for all parameters is very detailed and depends

on different parameter regions for the reasons just described. Therefore, for the sake of

the exposition, in the following theorem we describe equilibria for a particularly relevant

parameter region—when φ is modest and η is large, for all values of τ—and leave the full

description and proof of the theorem for all parameters for Online Appendix A.

Theorem 8 Assume (i) η ≥ 2/3 and (ii) φ < (3η − 2)/(6− 3η) and let

τ1 =
2(φ+ 1)η2 − φ+ η · (φ+ 1)−

√
(η + 1)2 · (φ+ 1) · (η2φ+ η2 − 2φ− ηφ)

3η(φ+ 1) + 3φ+ 2
,

τ2 =
(2η − 1) · (2η + φ+ 2ηφ) −

√
(2η − 1)2 · (1 + φ) · [4η2(1 + φ) + ηφ− 2(η + φ)]

2 + 3φ
,

τ3 =
2η2(1− φ2) + η(1 + 9φ+ φ2 − 5φ3) + 2φ+ 12φ2 + 7φ3

2 + 14φ+ 20φ2 + 9φ3 + 3η · (1− φ) · (1 + φ)2

+

√
(1 + φ) · (1 + η + 5φ− ηφ)2 · [η2(1 + φ)(1 + 3φ2)− 3ηφ2(2 + φ)− 2φ3]

2 + 14φ+ 20φ2 + 9φ3 + 3η · (1− φ) · (1 + φ)2
,

τ4 =
η + φ+ ηφ

1 + 2φ
.
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For any set of parameter values that satisfy the above restrictions, there exists a unique

equilibrium. The following is a complete characterization of the equilibrium:

• If 0 ≤ τ ≤ τ1, there is a pure-strategy equilibrium with price

P ∗ =
η − τ
1 + η

,

in which all firms choose

F ∗L =
1− η + 2τ

1 + η
.

• If τ1 < τ ≤ τ2, there is a mixed-strategy equilibrium with price

P ∗ =
φη − (1 + φ) · [τ − η(1 + τ)]

1 + φ(1 + η)

−
√
η(φ+ 1) · {2τ · [ηφ+ (η − τ) · (1 + φ)] + ητ 2(φ+ 1)− φ · (1 + τ − η)2}

1 + φ(1 + η)
,

in which fraction h∗ of firms choose F ∗H=1, and fraction 1− h∗ choose F ∗L, where

F ∗L =
τ

η
+

(1− η)

η
· P ∗ ,

h∗ =
(1 + φ) · [η − τ − (1 + η) · P ∗]

ηφ+ (1 + φ) · (η − τ)− [1 + φ(1 + η)] · P ∗
.

• If τ2 < τ ≤ τ3, there is a mixed-strategy equilibrium with price

P ∗ =
φ · [1 + 2φ(1− τ)− 3τ ] + η(1 + φ) · [1 + τ + (2 + τ)φ]− τ

1 + (6− 3η) · (1 + φ) · φ

−

√
(1 + φ) · (η + φ+ ηφ) ·

{
3η2φ(1 + φ)− 2[φ(τ − 1) + τ ]2

+ η[φ(τ − 1) + τ ] · [2 + (τ − 1)φ+ τ ]

}
1 + (6− 3η) · (1 + φ)φ

,

in which h∗ firms choose F ∗H=1, and 1− h∗ choose F ∗L, where

F ∗L =
(1 + φ) · τ
η + φ+ ηφ

+
(1− η) · (1 + φ) + φ

η + φ+ ηφ
· P ∗

h∗ =
(1 + φ) · [η + φ+ ηφ− (1 + 2φ)τ − (1 + η + 5φ− ηφ) · P ∗]

(1 + 2φ) · [η + φ+ ηφ− (1 + φ)τ ]− (1 + 5φ− ηφ+ 5φ2 − ηφ2) · P ∗
.
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• If τ3 < τ ≤ τ4, there is a pure-strategy equilibrium with price

P ∗ =
η + φ+ ηφ− τ · (1 + 2φ)

1 + η + 5φ− ηφ
,

in which all firms choose

F ∗L =
1 + 2φ+ τ + (τ − η) · (1 + φ)

1 + η + 5φ− ηφ
.

• If τ4 < τ ≤ 1, there is a pure-strategy equilibrium with price P ∗=0, in which all firms

choose

F ∗L = min

{
1 ,

τ(1 + φ)

η(1 + φ) + φ

}
.

3.3.4 Implications

Unlike our model from the previous section, debt is now costly for two reasons: first,

it reduces future purchasing opportunities; and second, it increases the expected costs of

financial distress. The model still has only three parameters—the redeployability of assets

(η), which is central to our acquisition channel; the reorganization impairment parameter

(φ), which is central to our financial distress channel; and a compensating direct benefit of

debt (τ). Yet, the model can offer many implications. Of course, it remains too stylized to

consider its implications to be either quantitative or universal. Instead, our model should

be viewed as suggestive of economic forces in contexts in which both the financial-distress

and the opportunistic-acquisition channels are important for firms that can become either

sellers or buyers of distressed assets in the future.

This subsection discusses the model’s comparative statics. They are summarized in

Table 3.2 and illustrated in the graphs that follow. The graphical approach is more intuitive,

although the model’s implications are also algebraically demonstrable using the closed-form

solutions in Theorem 8.

Figure 3.6 shows the proportion of firms choosing maximum debt, firm values, and lever-

age in the case in which φ=0.25. This parameter means that reorganization would consume

one quarter of each dollar’s shortfall. This seems high for large firms, although it is not

unreasonable for midsize and smaller firms (Bris, Welch, and Zhu (2006)).
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3.3.4.1 Heterogeneity (h∗)

As in the model of the previous section, heterogeneity in ex-ante leverage strategies can

arise endogenously because our assets are indivisible. Figure 3.6 shows the now parabolic

convex region that separate the set of homogeneous (pure) from the set of heterogeneous

(mixed) equilibria. These mixed equilibria occur again when otherwise identical firms infer

that the corner solution, with maximum permitted debt of FH=1, is as good for them as the

best interior debt choice (F ∗L). Not surprisingly, mixed equilibria can only occur in regions

in which firms want to choose fairly high debt to begin with.

Comparing the heterogeneity when φ=0 in Figure 3.2 with its equivalent when φ=0.25 in

Figure 3.6 shows that reorganization costs φ shrink the heterogeneous region. For sufficiently

low values of either debt benefits τ or redeployability η, there are now only homogeneous

equilibria. Nevertheless, the set of mixed equilibria remains non-trivially large. In detail:

• When the debt benefits τ are low, all firms choose low debt because the benefits of a

high-debt strategy are too small to compensate for the foregone investment opportuni-

ties. Similarly, when the redeployability η is low, liquidation values are low and again

all firms choose low debt because a high-debt strategy results in excessive distress costs

• At some point, with high enough redeployability and debt benefits, some firms can

begin to specialize in waiting for acquisition opportunities. Heterogeneous equilibria

appear only for intermediate values of τ and high values of η. Thus, the heterogeneous

region becomes smaller than it was in Figure 3.2.

• Finally, when the debt benefits become overwhelming, all firms end up choosing high

debt and no firm finds it worth waiting for opportunities, even though such firms expect

large distress costs.

3.3.4.2 Firm Value

Firm value always decreases monotonically in reorganization costs φ.
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Firm value also usually increases in redeployability η. However, it can occur in a tiny

parameter region (with high redeployability, low reorganization costs, and high benefits)—

too small to be even visible in this graph—that firm value can decrease.

The effect of direct debt benefits (τ) on firm value is our only comparative-static impli-

cation that depends on the source of the direct benefits of debt:

• If the debt advantages are not from taxes but from incentive or information causes

(and purely additive), as in the model presented here in our main text, then firm value

always increases in τ .

• If the debt gains are from taxes, firm value can still increase or decrease in τ . This

is somewhat surprising. As expected, for small tax-rates, taxes reduce the firm value

directly (through their multiplicative 1−τ factor on the value part of the objective

function). The levered firm merely is less negatively effected by the required tax

payments. However, for higher tax rates (about halfway up in the feasible region),

equilibrium firm value also increase again in the tax rate. This is partly due to the

ability of firms with very low expected values to resell the still-valuable tax credits on

the market, and partly due to an equilibrium effect that is determined by the interplay

of leverage and redeployment. Higher tax rates can therefore raise firm value!18

Appendix 3.10 derives and illustrates value and leverage ratios in the two extreme cases.

(The leverage ratios comparative statics do not change with the source of the debt benefits

τ .)

3.3.4.3 Leverage

We are now ready to proceed to the focus of our paper, corporate leverage, when there

are both the traditional financial-distress channel and the novel opportunistic acquisition

channel. For what follows, we continue to assume that the benefits of debt (τ) accrue to

18Note that firms with high debt can pass on the tax shield even when expected earnings are low and they

are likely to go bankrupt. However, tax revenue can also improve when reallocational efficiency improves.
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shareholders. The debt Fi in our model corresponds to the face value at time 1. Because

the expected return on debt is zero in our model, the market value of debt at time 0 is

D(Fi) ≡

 Fi if Fi < P ∗

Fi − (1 + φ) · (F 2
i − Λ(Fi)

2)/2 otherwise .

For a low face value of debt, there is no possibility of default. For a high face value of

debt, the expected payout to creditors is equal to the promised payoff, Fi, less the expected

loss to creditors.

Below, we will be considering the market value of the low type debt at time 0 in

equilibrium, which is denoted D∗L ≡ D(F ∗L). We will also be considering the industry

average market value of the debt at time 0 in equilibrium, which we will call D∗Ind ≡

h∗ ·D(F ∗H) + (1− h∗) ·D(F ∗L).

Absolute Leverage: The left plot in Figure 3.7 shows that industry debt can first increase

and then decrease in redeployability η (for low debt benefits τ). For these very low debt

benefit values, the financial-distress channel dominates when redeployability is low. At first,

when redeployability increases, firms take on more debt. It makes little sense for such firms

to speculate on purchasing assets—the assets are simply not valuable enough. Eventually,

when redeployability increases further, the potential to buy assets becomes more lucrative,

the asset-acquisition channel begins to dominate, and firms again take on less debt. Finally,

for higher debt benefits τ , only the asset-acquisition channel matters again. It dominates

for all redeployability parameters η. Firms always find it more important to keep leverage

low because of the opportunity to pounce on future opportunities.19

Implication 4 For low debt benefits τ and low asset redeployability η, the financial-distress

channel dominates. Firms take on more debt when assets become more redeployable. For

higher debt benefits τ and higher asset redeployability η, the opportunistic-acquisition channel

dominates. Firms take on less debt when assets become more redeployable.

19The plots for the low-debt firm are identical when there is no mixing, and very similar when there is

mixing. There is a tiny obscure region in which the low-debt firm may reduce its debt face value when the

benefits increase.
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Leverage-Value Ratios: There are now two reasons why empirical debt-ratios (the plot on

the right in Figure 3.7) may not increase in redeployability. The first effect is the aforemen-

tioned endogenous-value effect. Both debt and firm value increase with the direct ongoing

debt benefit, and thus the leverage ratio can even decrease in τ . The second effect is the

acquisition channel.

Together, a simple linear regression explaining leverage ratios with redeployability proxies

is not a powerful test. Instead, a better test would posit a U-shape—first an increasing and

then a decreasing effect. When redeployability is low, a small increase in redeployability

induces firms to fear distress less and they increase leverage. This is the case regardless of

the source of debt gains. When redeployability is high, a small increase in redeployability

induces firms to hold out for better acquisition opportunities and they decrease leverage.

A glance at the left and the right plot makes it obvious that the face value of debt and

the resulting leverage ratio show completely different behavior. There are wide regions in

which the face value of debt increases and the the leverage ratio decreases, and vice-versa.

Implication 5 Debt face values and leverage ratios can have different comparative statics.

One may go up when the other goes down, and vice-versa. This is because parameters effect

not only the debt but also the firm value.

3.3.4.4 Ancillary Implications

Our model can also offer implications on other measures that were not its primary focus.

This section provides a sampling.20

Credit Spreads: Creditors are indifferent between providing funding and not providing

funding to the low type if the credit spread is

r(F ∗L) ≡ F ∗L
D∗L
− 1 . (3.9)

20We could also offer further implications on other outcomes (such as on the average values and discounts

of assets in production and transfer) that would be more difficult to measure empirically.
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The top left plot in Figure 3.8 shows that credit spreads increase when debt benefits are

higher. Higher τ encourages firms to take on more debt, which increases the expected loss

to creditors. Higher η (redeployability) leads to higher recovery rates and (all else equal)

lower credit spreads, but firms may optimally choose higher debt levels which increases the

likelihood of default. Although the former effect almost always dominates, resulting in lower

spreads when redeployability is greater, there is a very small parameter region in which

the credit spread increases when redeployability is greater. Finally (not plotted), just as in

Leland (1994), credit spreads may increase or decrease in reorganization costs. Higher φ lead

to lower recovery rates in the event of default, but also cause firms to choose lower levels of

debt, which reduces the likelihood of default.21

Asset Liquidation Price (P ): All three price-related comparative statics are unambiguous

(though they can be quite flat): asset prices increase in redeployability and reorganization

costs, and decrease in debt benefits. We already discussed earlier in the context of our model

without reorganization costs why the asset price increases with redeployability and decreases

with debt benefits. Higher reorganization costs have two competing effects on price: on one

hand, they result in greater supply of the asset, because liquidation becomes relatively more

desirable than continuing operations in financial distress. On the other hand, they result in

greater demand for the asset, because firms take on less debt and therefore have more access

to financing. Though not necessarily universal, in our specific model, the latter effect always

dominates.

Asset Sales (Q): Asset sales always increase in redeployability and decrease in reorganiza-

tion costs, but are ambiguous in debt benefits. The dominant effect of greater redeployability

is to make the asset more valuable to a potential buyer, resulting in greater demand and

higher asset sales. Higher reorganization costs make asset sales more appealing relative to

21Our qualitative comparative statics results for credit spreads hold even when we allow creditors to have

access to the immediate debt benefits (see Appendix 3.8). Of course, quantitative predictions about credit

spreads will depend on whether creditors have access to the immediate debt benefits—which they may in

the real world. It is possible to change the model to entertain different assumptions on the disposition of

these benefits.
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the direct alternative of reorganization. Higher debt benefits increase firm debt. This results

both in less demand for the asset (because of tighter financing constraints), and in greater

asset supply (because of more firms in trouble). The net effect is ambiguous. Appendix

Section 3.9 discusses the cyclicality of asset sales when there is uncertainty in the industry

or economy.

Distressed Reorganization Observables: The model also offers secondary predictions for

two quantities related to distressed reorganization:

• The liquidation frequency for the low type conditional on being in financial distress is

Λ(F ∗L)/F ∗L if F ∗L ≥ P . If F ∗L < P , firms will always liquidate and never continue. The

plot shows that firms liquidate more often in distress when assets are more redeployable.

The dominant effect here is that more redeployable assets have higher liquidation values

which makes liquidation more desirable. Higher distress costs reduce continuation

values holding debt fixed, but higher distress costs also result in lower optimal debt

which increases continuation values. The first effect dominates and the conditional

liquidation frequency increases in reorganization cost φ. Increasing the benefits of debt

τ leads to higher debt levels and declining liquidation values. This makes liquidation

less attractive and therefore less frequent.

• The expected losses associated with reorganizing the firm, Ev[φ · (F ∗L−v) ·1Λ(F ∗L)≤v≤F ∗L ]

—possibly at least a partial transfer to and thus a partial proxy of the size for the

legal reorganization industry—increase in τ , decrease in η, and are ambiguous in φ.

The dominant effect of increasing τ is to increase debt which increases the likelihood

of distress and the dissipative cost of reorganizing and continuing in distress. The

dominant effect of increasing η is to increase liquidation values which makes impaired

continuation less likely and reduces expected reorganization costs. The effect of φ

is ambiguous because it increases reorganization costs holding debt fixed but reduces

optimal debt.
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3.4 Discussion and Literature Context

3.4.1 Welfare

Our paper has largely deemphasized welfare implications and government policy prescrip-

tions, because we view the model as too stylized to offer policy prescriptions. Our model

assumes production, reallocation, incentive and tax22 effects as parameters; and we are sim-

ply not confident enough to take a stance to what extent these aspects are dissipative or

redistributive to some parties elsewhere in the economy.

We are however comfortable to discuss briefly one part of the overall social welfare within

the context of our model. This can help to clarify one conceptual aspect of the trade-offs

that government should be aware of. How do corporate income taxes—one component of

τ—influence re-allocational efficiency?

Figure 3.9 shows that the answer is ambiguous:

Implication 6 Increases in the benefits of debt—as can be effectuated by tax code changes—

can result in socially less or more efficient redeployment activity.

This is because there is typically an intermediate level of debt, in which asset transfer

22To the extent that some of the firm’s debt benefits come through the tax shelter (though there are

others!), there is a related conceptual puzzle. If, as is widely acknowledged, debt has a potentially negative

effect on the stability of firms individually and system-wide, why would the government want to impose them

differentially on equity and not on debt? A government could impose taxes on projects instead—for example,

in Germany, home ownership is subsidized not through interest deductibility, but through non-recaptured

depreciation. We can speculate that default forces more reallocation of resources from less productive to

more productive uses; and by increasing the value of debt, the government can calibrate both the equilibrium

reallocation frequency and reallocation state dependence. However, debt is a fairly blunt instrument, used by

governments that are themselves not great experts about when reallocation is better or worse. The mutual

industry-peer externalities discussed in our paper further suggest that it could be a dangerous instrument—if

it forces only a few firms to sell, prices are reasonably appropriate, but at some point, feedback effects can

reallocate assets less towards the highest-value user of assets and more towards the least-levered users of

assets.
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activity is socially ideal.23 Tax policy can then push firms toward or away from this ideal.

This is easiest to understand in the context of the total direct debt benefits:

• For low τ , firms choose low leverage, resulting in high demand for liquidated as-

sets. If reorganization costs are high—which makes liquidation more likely in financial

distress—this can also result in high supply of assets, and the economy can have too

many asset transfers relative to the efficient level. Increasing the tax advantage of debt

then pushes firms towards more debt, which helps because it will reduce the expected

transfer activity.

• For high τ , firms choose high leverage, resulting in low demand for liquidated assets.

The economy has too few asset transfers relative to the efficient level. Increasing the

tax advantage of debt further would only push firms towards even more debt and

thereby worsen the reallocation.24

A reasonable interpretation is that government tax policy towards debt should moderate

other debt benefits.

For comparison, in Gale and Gottardi (2015), in which asset sale prices are also endoge-

nous, the thought experiment about the social cost of debt as a tax shelter is different. In

their model, in the absence of a corporate debt response (to undo taxes), such taxes would

always reduce socially beneficial productive operations. Debt, by undoing taxes, tends to

increase productive activity and can thereby improve social welfare. Taking the leverage

responses of firms into account, the net effect of an increase in taxes on production and thus

welfare could be positive or negative. Interestingly, Gale-Gottardi consider a novel policy

23Assets are identical and it is always the lowest-use owners who transfer assets to the highest-use owners.

Thus, the total quantity transferred is the only metric of relevance.

24Similar to this point, when redeployability is low and reorganization costs are high, firms would choose

high leverage. This is because maintaining financial flexibility is less valuable when it is unlikely that there

will be good buying opportunities later. Again, transfer activity would be too low from a social perspective,

and increasing the tax advantage of debt would only hurt more. (The opposite is the case when redeployability

is high and reorganization costs are low.)

116



mechanism—forcing firms to take on more debt. This can in turn induce firms to increase

investment voluntarily.

3.4.2 Generalizations of the Model

The most important takeaways of our model are that

1. firms’ leverage choices are affected by their peers through the equilibrium price of

liquidated assets;

2. indivisibility of assets may result in heterogeneity in leverage strategies;

3. leverage level effects are not isomorphic to leverage-ratio effects;

4. the acquisition channel means that increased asset redeployability can also have a

negative effect on leverage, especially when debt benefits and redeployability are high

to begin with;

5. and tax policy and non-tax related debt benefits can have ambiguous effects on re-

allocational efficiency, firm value, and tax receipts. For example, for some large tax

rates, a further increase in tax rates can increase both firm value and tax revenues.

To illustrate them, our model had to employ a set of assumptions for tractability, such as

the uniform distribution on values; linearity in η, φ, and τ ; stark integration limits; limited

liability and free disposal; limited capital; uncorrelated shocks; no further countervailing

important omitted effects (e.g., due to agency or inside information), and so on. None of our

takeaways lean especially heavy on specificity in these assumptions, and we would expect

the key insights to survive in models in which they are reasonably relaxed. In particular:

• Outside Buyers: Our model is sensitive to the assumption that buying is limited to

firms inside the industry. Our qualitative results would continue to hold if there is

limited demand from outside the industry—this would increase liquidation values and

mitigate, but not eliminate, the incentive to choose lower debt to take advantage of

buying opportunities. It would also have a similar effect as an increase in redeploya-

bility, η. But if assets are just as valuable outside the industry and potential buyers
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have practically unlimited capital, then our acquisition channel vanishes, as discussed

in Section 3.3.3.3.2. More commonly, neither zero nor infinite capital availability in-

side the industry, and neither perfect nor useless redeployability outside the industry

is likely to be a realistic description; and these unmodeled forces can help push eta

towards lower or higher levels.

• Correlated shocks: It could be that all assets in an industry are simultaneously affected

by a recession, or that (e.g., consumer taste) shocks help some firms at the same time

they hurt others. For example, if shocks are positively correlated, fire sales will be

deeper in bad times (more sellers and fewer buyers) and shallower in good times (fewer

sellers and more buyers). This may create an incentive to take on less debt initially

to take advantage of the great investment opportunities available in bad times, above

and beyond the incentive to avoid financial distress oneself. Appendix Section 3.9

sketches an extension of our model to industry uncertainty. It shows that there are

parameter regions where reallocation of assets is procyclical and regions where it is

counter-cyclical.

• Agency Conflicts: When managers (and equity) have stronger incentives not to declare

bankruptcy and even weaker incentives to liquidate (and if creditors cannot renegotiate

managers out of collectively inefficient choices, as in Benmelech and Bergman (2008)),

then firms would likely be less inclined to liquidate at the same time, given the same

amount of debt. However, this would not necessarily be the outcome. In turn, this

could have equilibrium repercussions for the optimal level of debt and/or various re-

strictions written into debt that can enhance the incentives of firms to liquidate. The

outcome would likely depend on how extra debt calibrates the relative incentives.

Our paper has endogenous heterogeneity. More realistically, there would be both ex-

ogenous heterogeneity and endogenous heterogeneity. We have not modelled differences in

behavior across types, however. Firms with higher ex-ante quality could have both more

debt capacity and expect to be buyers. It is not clear whether this would lead them to

behave differently from lower quality types.
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3.4.3 Related Literature

Our model was built around the fundamental tradeoff between taxes and financial-distress

costs, first raised in Robichek and Myers (1966). As this encompasses most of the modern

theory of corporate capital structure, we can only highlight some work especially close to

the assumptions and results of our own paper. Harris and Raviv (1990), Leland (1994),

Leland and Toft (1996), Gryglewicz (2011), and many others, have provided the theoretical

formalizations to help understand firm tradeoffs and behavior. Industry debt choices have

been proposed by Maksimovic and Zechner (1991), Fries, Miller, and Perraudin (1997), and

others.25

The costs of financial distress were further dissected into components, such as debt over-

hang (Myers (1977)), the damaged relationships with key stakeholders (Titman (1984)), or

reduced market share (Opler and Titman (1994)).

Allen and Gale (1994) and Acharya and Viswanathan (2011) develop models of asset sales

in which potential buyers face entry costs or are financially constrained so that equilibrium

prices depend on funding availability of industry peers. Unlike our model, these models

have specific fixed funding needs, with an endogenous determination of whether they can

raise them. (In this sense, they do not choose an optimal capital structure.) Furthermore,

assets are divisible in these models; however, we show that when assets are indivisible there

may be mixed equilibria in which some firms adopt high-debt strategies to take advantage

of tax benefits and others adopt low-debt strategies to take advantage of asset fire sale

opportunities.

Gale and Gottardi (2015) offer a theory in which debt is an optimal choice and fire-

sale prices are also endogenous.26 In their model, frictions and especially taxes lead firms

25Bolton, Santos, and Scheinkman (2011) motivate preferred purchasers through adverse selection. Asset

specificity plays a role in Marquez and Yavuz (2013), though assets have exogenous prices. More specific

assets can increase productivity (reducing debt) and increase continuation values (increasing debt).

26In Gale and Gottardi (2011), leverage is not a choice that firms consider. (Projects are 100% leverage

by assumption.)
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to take on too few projects from a social point of view. Debt can reduce the tax burden

and thereby enhance the desire of firms to take projects. An endogenous reduction in price

upon resale27 comes into play, because when many firms have taken on too much debt, the

induced price reduction then works against this social advantage of debt. As remedy, they

propose forcing firms to take on more debt. This induces them to undertake more projects,

which in their model is socially valuable. As noted, our model has a different structure,

parameters, and focus. It considers social welfare only in passing, because our own model

assumes production, reallocation, and tax costs as parameters, and we are less confident

about the dissipative/redistributive cost-benefit issues for them.

A number of empirical papers have provided evidence about the existence and nature of

these fire sales. Asquith, Gertner, and Scharfstein (1994) showed that financially-distressed

firms often liquidate assets at discounts to fundamental value. Pulvino (1998) showed that

there are periods in which many airlines were hit by negative shocks at the same time, how

this depressed airplane prices, and how financially unconstrained airlines then increased their

buying activity, while constrained airlines did not. Acharya, Bharath, and Srinivasan (2007)

investigated this effect more generally. Taking this yet a step further, Benmelech, Garmaise,

and Moskowitz (2005) showed that firms take on more debt when assets are easier to redeploy.

Rajan and Ramcharan (2016) show how financial intermediation failures have reduced land

sale values through fire sales.

They interpreted their findings as support for an optimal capital structure theory, in

which assets that were more redeployable allowed industries to take on more debt.

3.4.4 Relation to Shleifer-Vishny 1992

Like Jensen and Meckling (1976) did for agency issues, the seminal Shleifer and Vishny

(1992) paper laid out a research agenda for corporate behavior when asset prices could

be depressed by the need of many firms to sell simultaneously and the resulting fire-sale

27Assets are as productive to buyers as they were to sellers. Sales are costly to the firm, but not to the

economy.
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liquidations.28 However, Shleifer-Vishny do not present an economic model in the traditional

sense. Their paper model lays out a set of inequalities that an equilibrium should satisfy

in which two firms’ debt choices could influence one another. It offers neither a specific

solution to these conditions nor any comparative statics. This model sketch is then followed

by an insightful discussion of economic possibilities. However, much of this discussion does

not follow from their model. It is therefore not clear from their paper whether it is possible

to construct a model of firms that exhibit the kinds of behavior they conjecture. Our own

paper has provided such a model.

Their Section II describes a three-period model with two industry firms plus one out-

sider. Both firms choose the minimum debt levels that eliminate overinvesting in prosperous

times. The model describes a set of constraints29 under which each firm is either a potential

purchaser for the other firm or a bystander, suffering from its cash constrained inability to

buy the selling firm’s assets. Other model parameters can push this within-industry value

above or below the external asset value. The price of the liquidating asset is the lower of

the two. Both firms can calculate the other-firm price in advance, which they can take into

consideration when they choose whether to have debt (and avoid the agency costs) or not

to have debt (and avoid costly liquidation).

With only one outsider and one insider competing, the opportunistic buying decision is

limited to whether each firm wants to have low enough debt to beat the external price (be

the acquiror) if the other firm runs into difficulties, or not. Any buying firm always pays the

28Duffie (2010) went even further, attributing temporarily depressed prices not just to firms and industry

assets, but even to financial claims in wide distribution.

29The model has 12 exogenous firm parameters (4 cash flow parameters and 2 investment flow parameters,

per firm); 1 internal and 1 external asset value parameter; 1 probability that governs the state of the economy;

4 endogenous debt parameters (short-term and long-term, per firm), resulting in the key resulting maximum

value that a buyer can pay, given own debt overhang; and 14 equality and inequality constraints (guaranteeing

such conditions as debt overhang being optimal, firms needing to raise capital, control of agency in good

times being more important than liquidation in bad times, etc.). 5 conditions are redundant. There are

also 7 other explicit assumptions and some implicit assumptions (like d ≥ 0). It is not difficult to find 15

parameters that satisfy their 14 conditions.
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outside value. The other firm’s high or low debt choice thus has a (binary) influence on the

value of the firm in distress. If there is any competition in the external market, the price

of the liquidating firm would become completely independent of industry debt choices (i.e.,

the other firm). Instead, the price would always be determined by the external market value

alone. To resurrect feedback from the industry price to debt choices back into the model

would require the introduction of multiple insiders, who would compete against one another

when setting the price. The dynamics of such a model would be more complex and are not

at all obvious.

The S-V model does not derive comparative statics from model solutions. In contrast,

our model derives specific optimal debt levels, equilibrium prices, and values for firms in

industries that are subject to distress and tax costs. It thus offers comparative statics

with respect to taxes and distress costs, and especially with respect to redeployability. This

yielded our key result about where debt can go up or down with redeployability, in contrast to

Williamson (1988) and Harris and Raviv (1990). The “important general principle: optimal

leverage or debt capacity falls as liquidation value falls” (p.1354) in Shleifer-Vishny holds

only for the seller’s leverage when a threshold is crossed and he chooses discontinuously to

take on no debt. Our model characterized how leverage choices may change continuously in

reaction to liquidation prices due to both buying and selling concerns.

In the region of the S-V model where two equilibria exist, either the buyer chooses a low

(zero) debt level and the seller a high one, or vice versa. The heterogeneity is exogenous—the

model cannot accommodate identical firms. In this region “it would not be an equilibrium

either for both firms to have a lot of debt or for neither to have debt. This case of two

equilibria suggests the notion of an industry debt capacity...” (p.1354), similar to Miller

(1977). Of course, firms are not exactly homogeneous ex-ante, as characterized by our

model. However, our model can explain (a) how the notion of an industry debt level matters

even when all firms choose the same debt and (b) when otherwise similar firms may or may

not end up choosing different debt strategies. The latter choice depends crucially on the

indivisibility of the asset. With divisible assets, all identical firms would choose the same

debt.
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3.4.5 Summary

Table 3.3 highlights the key difference between our model and the most closely related

papers in the literature. Primarily,

1. Our model has offered a negative comparative static with respect to redeployability.

2. Our model has generated endogenous heterogeneity among firms that are ex-ante ho-

mogeneous, with an important link to asset indivisibility.

Secondarily,

3. Our model has offered comparative statics on leverage (D/V), not just on debt levels.

4. It is among very few models in which prices are endogenous.

3.5 Conclusion

Our paper has sketched a model in which firms could anticipate and participate in in-

dustry asset sales, with more levered firms as sellers and less levered firms as buyers. This

turns prices into mediators of industry leverage interactions, and ambiguates the role of asset

redeployability. When redeployability is low, an increase therein induces firms to take on

more debt in order to take advantage of higher fire sales prices as potential sellers—as in the

earlier literature. However, when redeployability is high, an increase therein induces firms

to take on less debt in order to take advantage of fire sales as potential buyers.
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3.6 Appendix: Proof of Theorem 1

Each firm is competitive and takes the price, P , as given. The marginal benefit of debt

is τ for all values of debt, F. The marginal cost of debt falls into three regions:

1. For F ∈ [0, P (1/η − 1)] the marginal cost is zero

2. For F ∈ [P (1/η − 1), 1− P ] the marginal cost is η(F + P )− P

3. For F ∈ [1− P, 1] the marginal cost is zero

In Region 1, increasing debt is not costly to the firm because the marginal project is negative

NPV. In Region 2, increasing debt is costly because the firm must forego positive NPV

projects. In Region 3, the debt level is so high that the firm cannot finance the acquisition

of the asset even if it is the highest productivity type, Vi = 1. Therefore, increasing debt

further results in no additional costs to the firm.

Since the marginal benefit of debt is positive (equal to τ) it follows that it is never optimal

for the firm to choose a debt level in Region 1, i.e., F ≤ P/η − P . Furthermore, since the

marginal cost of debt jumps down to zero at F = 1 − P there may be a mixed equilibrium

in which some firms choose debt in Region 2 while others choose debt in Region 3. Clearly,

in such an equilibrium, firms in Region 3 will choose FH = 1 since the marginal benefit of

debt exceeds the marginal cost for all debt choices in Region 3.

The first-order condition for an optimal (interior) debt choice is:

FL(P ) = P/η − P + τ/η.

The second-order condition is clearly satisfied.

3.6.1 Pure-strategy interior equilibrium

Without reorganization costs the firm liquidates at time 1 if and only if Vi ≤ P , therefore,

the supply of the asset is P . In a pure-strategy equilibrium, the demand is 1− P − FL(P ),
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therefore, we have the unique market clearing price

P ∗ =
η − τ
1 + η

and the unique interior debt choice

F ∗L =
2τ + 1− η

1 + η
.

3.6.2 Mixed-strategy equilibrium

We now consider the possibility of a mixed equilibrium. The value of a firm choosing

FL(P ) is

VL(P ) = 0.5 · (1 + P 2) +

∫ 1

P+FL

(ηV − P )dV + τFL

= 0.5 · (1 + P 2) +
(η2 + P 2 − 2Pη − τ 2)

2η
+ τFL,

and the value of a firm choosing FH = 1 is

V1(P ) = 0.5 · (1 + P 2) + τ.

Setting VL(P ) = V1(P ) and solving for P yields the unique market clearing price in a mixed-

strategy equilibrium:

P = η − τ + ητ −
√
η2τ 2 + 2ητ(η − τ).

There is another candidate P , but it is greater than the pure-strategy equilibrium price. We

know that this price could never be supported in equilibrium, as introducing high-debt firms

both reduces the demand and increases the supply of the liquidated asset.

We now find the boundaries of the mixed-strategy equilibrium. Since prices are continu-

ous we know P ∗(τ c) = P (τ c) (i.e., prices in the pure-strategy and mixed-strategy equilibria

are equal at the boundaries). Solving for τ c gives:

τ c =
2η2 + η ± η(1 + η)

3η + 2
⇒ {τc1 , τc2} =

{
η2

3η + 2
, η

}
.

Therefore, for τ ∈
(

η2

3η+2
, η
]

there is a mixed-strategy equilibrium with proportion h∗ of firms

choosing FH = 1, proportion 1 − h∗ of firms choosing FL(P ∗) = P ∗/η − P ∗ + τ/η, and the
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price

P ∗ = η − τ + ητ −
√
η2τ 2 + 2ητ(η − τ).

The supply of the asset is P ∗ and in a mixed-strategy equilibrium the demand is (1− h∗) ·

(1− P ∗ − FL), therefore, we can solve for the unique proportion:

h∗ =
1− 2P ∗ − FL(P ∗)

1− P ∗ − FL(P ∗)
.

3.6.3 Pure-strategy extreme equilibrium

For τ > η there is a pure-strategy equilibrium in which all firms choose F ∗ = 1 and the

equilibrium price is P ∗ = 0. In this region, the marginal benefit always exceed the marginal

cost. In this region, the demand for the asset is zero, as the financing constraint always

binds. The supply is also zero, since the manager always prefers to keep the asset worth

0 ≤ Vi instead of selling it for nothing.

3.6.4 Uniqueness

All together, we can characterize which type of symmetric equilibrium will obtain by

looking at the exogenous parameters. For τ ∈
[
0, η2

3η+2

]
, we have a unique, pure-strategy

interior equilibrium. For τ ∈
(

η2

3η+2
, η
]
, we have a unique, mixed-strategy equilibrium. For

τ ∈ (η, 1], we have a unique, pure-strategy extreme equilibrium. It cannot be that there is a

mixed-strategy equilibrium in either of the pure-strategy regions, as it would require h∗ < 0

or h∗ > 1 to support the equilibrium price, which is not possible. Also, there cannot be

either of the pure-strategy equilibria in the mixed-strategy region. Here, the fraction h∗ is

chosen to make firms indifferent between high and low debt. If all the firms chose high debt,

it would cause prices to fall and make FL more attractive. Conversely, if all of the agents

selected low debt, prices would rise and FH would be preferable.

We also established that the equilibrium debt levels and prices are unique functions of

the exogenous parameters. Therefore, for any given set of exogenous parameters, we can

identify the unique symmetric equilibrium.
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3.7 Appendix: Extension of Theorem 2 to the Full Parameter Space

3.7.1 Statement

In the text, we covered a limited parameter space for illustration. This appendix states

the theorem and proof for the model’s complete parameter space.

Let τ0 =
φ(1− 2η)

(1 + η)(1 + φ) + φ(1− 2η)
,

τ1 =
2η2(φ+ 1)− φ+ η(φ+ 1)−

√
(η + 1)2(φ+ 1) (η2φ+ η2 − 2φ− ηφ)

3η(φ+ 1) + 3φ+ 2
,

τ2 =
(2η − 1)(2η + φ+ 2ηφ)

2 + 3φ

−
√

(2η − 1)2(1 + φ)(4η2(1 + φ) + ηφ− 2(η + φ))

2 + 3φ
,

τ3 =
2η2(1− φ2) + η(1 + 9φ+ φ2 − 5φ3) + 2φ+ 12φ2 + 7φ3

2 + 14φ+ 20φ2 + 9φ3 + 3η(1− φ)(1 + φ)2

−
√

(1 + φ)(1 + η + 5φ− ηφ)2(η2(1 + φ)(1 + 3φ2)− 3ηφ2(2 + φ)− 2φ3)

2 + 14φ+ 20φ2 + 9φ3 + 3η(1− φ)(1 + φ)2
,

τ4 =
2η2(1− φ2) + η(1 + 9φ+ φ2 − 5φ3) + 2φ+ 12φ2 + 7φ3

2 + 14φ+ 20φ2 + 9φ3 + 3η(1− φ)(1 + φ)2

+

√
(1 + φ)(1 + η + 5φ− ηφ)2(η2(1 + φ)(1 + 3φ2)− 3ηφ2(2 + φ)− 2φ3)

2 + 14φ+ 20φ2 + 9φ3 + 3η(1− φ)(1 + φ)2
.

Region 1: η ≥ 1/2 and φ < 3η−2
6−3η

• If 0 ≤ τ ≤ τ1 there exists a unique, pure-strategy equilibrium with price P ∗ = η−τ
1+η

in

which all firms choose F ∗L = 1−η+2τ
1+η

.

• If τ1 < τ ≤ τ2 there exists a unique, mixed-strategy equilibrium with price

P ∗ =
φη − (1 + φ)[τ − η(1 + τ)]

1 + φ(1 + η)

−
√
η(φ+ 1)(2τ(ηφ+ (η − τ)(1 + φ)) + ητ 2(φ+ 1)− φ(1 + τ − η)2)

1 + φ(1 + η)
.
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in which the proportion 1 − h∗ of firms choose F ∗L = τ
η

+ (1−η)
η
P ∗ and the proportion

h∗ of firms choose F ∗H = 1, where

h∗ =
(1 + φ) · (η − τ − (1 + η) · P )

ηφ+ (1 + φ)(η − τ)− (1 + φ(1 + η)) · P
.

• If τ2 < τ ≤ τ4 there exists a unique, mixed-strategy equilibrium with price

P ∗ =
φ(1 + 2φ(1− τ)− 3τ) + η(1 + φ)(1 + τ + φ(2 + τ))− τ

1 + (6− 3η)φ(1 + φ)

−

√
(1 + φ)(η + φ+ ηφ)

(
3η2φ(1 + φ)− 2(φ(τ − 1) + τ)2

+ η(φ(τ − 1) + τ)(2 + φ(τ − 1) + τ)

)
1 + (6− 3η)φ(1 + φ)

. (3.10)

in which the proportion 1− h∗ of firms choose F ∗L = τ(1+φ)
(η+φ+ηφ)

+ (1−η)(1+φ)+φ
(η+φ+ηφ)

P ∗ and the

proportion h∗ of firms choose F ∗H = 1, where

h∗ =
(1 + φ) · (η + φ+ ηφ− τ(1 + 2φ)− P · (1 + η + 5φ− ηφ))

(1 + 2φ) · (η + φ+ ηφ− τ(1 + φ))− P · (1 + 5φ− ηφ+ 5φ2 − ηφ2)
. (3.11)

• If τ4 < τ ≤ η+φ+ηφ
1+2φ

there exists a unique, pure-strategy equilibrium with price P ∗ =

η+φ+ηφ−τ(1+2φ)
1+η+5φ−ηφ in which all firms choose F ∗L = 1+2φ+τ+(τ−η)(1+φ)

1+η+5φ−ηφ .

Region 2: η ≥ 1/2, φ ≥ 3η−2
6−3η

, and η2(1 + φ)(1 + 3φ2)− 3ηφ2(2 + φ)− 2φ3 ≥ 0

• If 0 ≤ τ ≤ 2η−1
3

there exists a unique, pure-strategy equilibrium with price P ∗ = η−τ
1+η

in which all firms choose F ∗L = 1−η+2τ
1+η

.

• If 2η−1
3

< τ ≤ τ3 or if τ4 < τ ≤ η+φ+ηφ
1+2φ

there exists a unique, pure-strategy equilibrium

with price P ∗ = η+φ+ηφ−τ(1+2φ)
1+η+5φ−ηφ in which all firms choose F ∗L = 1+2φ+τ+(τ−η)(1+φ)

1+η+5φ−ηφ .

• If τ3 < τ ≤ τ4 there exists a unique, mixed-strategy equilibrium with price (3.10) in

which the proportion 1 − h∗ of firms choose F ∗L = τ(1+φ)
(η+φ+ηφ)

+ (1−η)(1+φ)+φ
(η+φ+ηφ)

P ∗ and the

proportion h∗ of firms choose F ∗H = 1, where h∗ is (3.11).

Region 3: η ≥ 1/2, φ ≥ 3η−2
6−3η

and η2(1 + φ)(1 + 3φ2)− 3ηφ2(2 + φ)− 2φ3 < 0
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• If 0 ≤ τ ≤ 2η−1
3

there exists a unique, pure-strategy equilibrium with price P ∗ = η−τ
1+η

in which all firms choose F ∗L = 1−η+2τ
1+η

.

• If 2η−1
3

< τ ≤ η+φ+ηφ
1+2φ

there exists a unique, pure-strategy equilibrium with price

P ∗ = η+φ+ηφ−τ(1+2φ)
1+η+5φ−ηφ in which all firms choose F ∗L = 1+2φ+τ+(τ−η)(1+φ)

1+η+5φ−ηφ .

Region 4: η < 1/2 and η2(1 + φ)(1 + 3φ2)− 3ηφ2(2 + φ)− 2φ3 ≥ 0

• If 0 < τ ≤ τ0 there exists a unique, pure-strategy equilibrium with price P ∗ = η(1−τ)
1+η

in which all firms choose F ∗L = τ(1+η+φ)+φη
φ(1+η)

.

• If τ0 < τ ≤ τ3 or if τ4 ≤ τ ≤ φ+η(1+φ)
1+2φ

there exists a unique, pure-strategy equilibrium

with price P ∗ = η+φ+ηφ−τ(1+2φ)
1+η+5φ−ηφ in which all firms choose F ∗L = 1+2φ+τ+(τ−η)(1+φ)

1+η+5φ−ηφ .

• If τ3 < τ ≤ τ4 there exists a unique, mixed-strategy equilibrium with price (3.10) in

which the proportion 1 − h∗ of firms choose F ∗L = τ(1+φ)
(η+φ+ηφ)

+ (1−η)(1+φ)+φ
(η+φ+ηφ)

P ∗ and the

proportion h∗ of firms choose F ∗H = 1, where h∗ is (3.11).

Region 5: η < 1/2 and η2(1 + φ)(1 + 3φ2)− 3ηφ2(2 + φ)− 2φ3 < 0

• If 0 < τ ≤ τ0 there exists a unique, pure-strategy equilibrium with price P ∗ = η(1−τ)
1+η

in which all firms choose F ∗L = τ(1+η+φ)+φη
φ(1+η)

.

• If τ0 < τ ≤ η+φ+ηφ
1+2φ

there exists a unique, pure-strategy equilibrium with price P ∗ =

η+φ+ηφ−τ(1+2φ)
1+η+5φ−ηφ in which all firms choose F ∗L = 1+2φ+τ+(τ−η)(1+φ)

1+η+5φ−ηφ .

Region 6:

• If η+φ+ηφ
1+2φ

< τ ≤ 1 there exists a unique, pure-strategy equilibrium with price P ∗ = 0

in which all firms choose F ∗L = min
{

1, τ(1+φ)
η(1+φ)+φ

}
.
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3.7.2 Proof

Proof when η ≥ 1/2

We first consider the case η ≥ 1/2. Each firm is competitive and takes the price, P , as

given. For now, we assume P > 0. We will consider the possibility that P = 0 later in the

proof. The marginal benefit of debt is τ for all values of debt, F. If P > 0 the marginal cost

of debt falls into four regions:

1. For F ∈ [0, P · (1/η − 1)] the marginal cost of debt is 0

2. For F ∈ (P · (1/η − 1), P ] the marginal cost of debt is ηF − P · (1− η)

3. For F ∈ (P, 1− P ) the marginal cost of debt is ηF − P · (1− η) + (F − P ) · φ/(1 + φ)

4. For F ∈ [1− P, 1] the marginal cost of debt is (F − P ) · φ/(1 + φ)

Importantly, the marginal cost of debt is weakly increasing and continuous in F over the first

three regions but then jumps down at F = 1−P (since the financing constraint is no longer

binding) after which it increases again. Therefore, for any given marginal benefit τ , there are

at most two possible optimal debt choices, one where F < 1−P , and one where 1−P < F ≤ 1.

Consequently, there is the possibility of both pure-strategy equilibria and mixed-strategy

equilibria in which some firms choose low debt and others choose high debt. We must

consider three cases: (i) 0 ≤ τ < (2η−1) ·P , (ii) (2η−1) ·P ≤ τ ≤ η−P +(1−2P )φ/(1+φ),

and (iii) η − P + (1− 2P )φ/(1 + φ) < τ ≤ 1.

Case 1: 0 ≤ τ < (2η − 1) · P

If τ < (2η − 1) · P then firms choose either FL ∈ [P · (1/η − 1), P ) or FH ∈ [1 − P, 1]

where FL = τ/η + P · (1/η − 1) and FH = min{1, P + τ · (1 + φ)/φ}.

Pure-strategy equilibria
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There cannot exist a symmetric equilibrium with P > 0 in which all firms choose FH

because the aggregate demand for the risky asset would be zero but the supply is positive

[(P + φF)/(1 + φ)]. Therefore, if there exists a symmetric equilibrium in the case τ <

(2η − 1) · P , then all firms choose FL = τ/η + P · (1/η − 1). The demand for the liquidated

asset is then 1− P − FL and the supply of the liquidated asset is P since for FL < P which

implies τ < (2η − 1) · P it is optimal to liquidate the asset for all V ≤ P . Equating supply

and demand gives the unique market clearing price P ∗ = (η − τ)/(1 + η).

Importantly, note that if P ∗ = (η − τ)/(1 + η) then we must have τ < (2η − 1)/3 to be

in a symmetric equilibrium in the case τ < (2η − 1) · P .

Mixed-strategy equilibria

There is also the possibility of a mixed-strategy equilibrium (a fraction of firms choosing

FL and the remaining fraction of firms choosing FH). Firms choosing FL have ex ante value

VL =

∫ P

0

PdV +

∫ 1

P

V dV +

∫ 1

P+FL

(ηV − P )dV + τ · FL

and by substituting FL = τ/η + P · (1/η − 1) yields

VL = 0.5(η + (P − 1)2 + (P + τ)2/η − 2Pτ).

Firms choosing FH have ex ante value

VH =

∫ Λ

0

PdV +

∫ FH

Λ

[V − φ · (FH − V )]dV +

∫ 1

FH

V dV + τ · FH .

where Λ = (P + φF)/(1 + φ).

If FH = P + τ · (1 + φ)/φ then ex ante value is

VH = 0.5 · (P + τ)2 + 0.5 · τ 2/φ+ 0.5,

but if FH = 1 then ex ante value is

V1 = 0.5 · (P + φ)2/(1 + φ) + 0.5 · (1− φ) + τ.

The following result shows that in a mixed-strategy equilibrium the high-type always chooses

FH = 1.
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Lemma 1: If τ < (2η − 1)/3 then in a mixed-strategy equilibrium the high type chooses

FH = 1.

Proof: Proof by contradiction. Suppose FH = P + τ · (1 + φ)/φ < 1. Then we have:

G(P ) ≡ VL(P )− VH(P ) = 0.5 · (η + (P − 1)2 + (P + τ)2 · (1− η)/η − 2Pτ − τ 2/φ− 1).

Note, G′(P ) = P/η− 1 + τ · (1/η− 2) ≤ P/η− 1 ≤ 0 where the first inequality follows from

our assumption that 1/η−1 ≤ 1 and the second from the fact that P ≤ η as the price for the

asset will never exceed its maximum value. Therefore, G(P) is decreasing in P . Furthermore,

in a mixed-strategy equilibrium the price is bounded above by the pure-strategy equilibrium

price (i.e. P ≤ (η − τ)/(1 + η)) because the introduction of some high-debt firms both

reduces the demand and increases the supply of the liquidated asset. Therefore,

G(P ) ≥ G((η − τ)/(1 + η))

= 0.5 ·

[(
1 + τ

1 + η

)2

(1 + η − η2) + η − 2τ

(
η − τ
η + 1

)
− τ 2

φ
− 1

]

> 0.5 ·

[(
1 + τ

1 + η

)2

(1 + η − η2) + η − 2τ

(
η − τ
η + 1

)
− τ(1− τ)− 1

]
≥ 0 ∀τ

where the second inequality follows from the fact that if F ∗H < 1 and P > 0 then τ < φ/(1+φ)

which implies φ > τ/(1− τ); and the third inequality is easily verified numerically. But this

contradicts the optimality of F ∗H .

By Lemma 1, we must only compare VL to V1 to find a mixed-strategy equilibrium.

Conjecture the existence of a pure-strategy equilibrium in which FL = τ/η+P · (1/η−1)

and P ∗ = (η − τ)/(1 + η). Substituting P ∗ into our expressions for VL and V1 implies:

H( τ ) ≡ VL(τ)− V1(τ) =
η(η − τ)2(φ+ 1) + φ(τ + 1)2 − 2(η + 1)(φ+ 1)τ(η − τ)

2(η + 1)2(φ+ 1)

Therefore,

H ′(τ) =
φ− η(1 + φ)− 2η2(1 + φ) + (2 + 3φ+ 3η(1 + φ))τ

(1 + η)2(1 + φ)
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and

H ′′(τ) =
2 + 3φ+ 3η(1 + φ)

(1 + η)2(1 + φ)

Note that H ′
(

2η−1
3

)
= − 2

3(1+η)(1+φ)
< 0 and H ′′( τ ) > 0 for all τ . Therefore, H ′( τ ) < 0 for

all τ ≤ 2η−1
3

.

Also, H
(

2η−1
3

)
= 2−3η+φ·(6−3η)

18(1+φ)
≥ 0 if and only if φ ≥ 3η−2

6−3η
. Note that if η < 2

3
, then 3η−2

6−3η
< 0

and H
(

2η−1
3

)
≥ 0 for any φ.

Therefore, if φ ≥ 3η−2
6−3η

and τ ≤ 2η−1
3

then H( τ ) ≥ 0 and all firms optimally choose

FL = τ/η + P · (1/η − 1) and the conjectured equilibrium price of P = (η − τ)/(1 + η) is

confirmed by the firms’ debt decisions.

However, if φ < 3η−2
6−3η

, then the conjectured pure-strategy equilibrium is confirmed only

for τ ≤ τ1 where H(τ1) ≡ 0. For τ > τ1 there is a mixed-strategy equilibrium in which some

firms choose FL = τ/η + P · (1/η − 1) and others choose FH = 1 (by Lemma 1). Solving

F (τ1) = 0 yields

τ1 =
2η2(φ+ 1)− φ+ η(φ+ 1)−

√
(η + 1)2(φ+ 1) (η2φ+ η2 − 2φ− ηφ)

3η(φ+ 1) + 3φ+ 2

(Note: There is another solution to H(τ1) = 0 where H( τ ) again becomes positive beyond

that point. However, H ′( τ ) < 0 for all τ ≤ 2η−1
3

so we know H( τ ) < 0 for all τ1 < τ < 2η−1
3

.)

For τ > τ1 there is a unique, mixed-strategy equilibrium which is constructed by finding P

that equates VL = V1, which is quadratic in P . There are two solutions, but only one where

P is less than the pure-strategy price (which must be true in equilibrium as argued above)

and it is

P ∗ =
φη − (1 + φ)[τ − η(1 + τ)]

1 + φ(1 + η)

−
√
η(φ+ 1)(2τ(ηφ+ (η − τ)(1 + φ)) + ητ 2(φ+ 1)− φ(1 + τ − η)2)

1 + φ(1 + η)
,

Let h be the fraction of firms choosing F = 1. The demand for the risky asset is then

(1− h) · (1−P −FL) and the supply of the risky asset is (1− h) ·P + h · (P + φ · 1)/(1 + φ),

133



therefore, market clearing requires a unique proportion of high debt firms:

h∗ =
(1 + φ) · (η − τ − (1 + η) · P )

ηφ+ (1 + φ)(η − τ)− (1 + φ(1 + η)) · P
,

Finally, if there is a mixed-strategy equilibrium at the upper boundary we know that P <

(η− τ)/(1+η) and therefore τ < (2η−1)/3 at the boundary. Equating τ2 = (2η−1) ·P ∗(τ2)

yields the upper boundary in this case:

τ2 =
(2η − 1)(2η + φ+ 2ηφ)

2 + 3φ

−
√

(2η − 1)2(1 + φ)(4η2(1 + φ) + ηφ− 2(η + φ))

2 + 3φ

(Note: There is another root but it is greater than (2η−1)/3 when η ≥ 1/2 so we can ignore

it.)

Case 2: (2η − 1) · P ≤ τ ≤ η − P + (1− 2P )φ/(1 + φ)

If (2η− 1) · P ≤ τ ≤ η− P + (1− 2P )φ/(1 + φ) then firms choose either FL ∈ [P, 1− P )

or FH ∈ [1− P, 1] where FL = τ(1+φ)
η+φ+ηφ

+ (1−η)(1+φ)+φ
(η+φ+ηφ)

P and FH = min{1, P + τ · (1 + φ)/φ}.

Pure-strategy equilibria

Again, there cannot exist a pure-strategy equilibrium with P > 0 in which all firms

choose FH because the aggregate demand for the risky asset would be zero but the supply

is positive [(P + φF)/(1 + φ)]. Therefore, in a pure-strategy equilibrium firms choose

F =
τ(1 + φ)

η + φ+ ηφ
+

(1− η)(1 + φ) + φ

(η + φ+ ηφ)
P.

The demand for the liquidated asset is 1− P − F and the supply of the liquidated asset is

Λ =
P + φF

1 + φ
=
P · ((1− φ)η + 2φ) + φτ

η + φ+ ηφ
.

Equating supply and demand gives the unique market clearing price

P ∗ =
η + φ+ ηφ− τ(1 + 2φ)

1 + η + 5φ− ηφ
.
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Substituting into the expression for F yields

F ∗ =
1− η − ηφ+ 2φ+ τ(2 + φ)

1 + η + 5φ− ηφ
.

Mixed-strategy equilibria

As in Case 1, there is the possibility of a mixed-strategy equilibrium. Firms choosing FL

have ex ante value

VL =

∫ Λ

0

PdV +

∫ FL

Λ

[V − φ(FL − V )]dV +

∫ 1

FL

V dV +

∫ 1

P+FL

(ηV − P )dV + τ · FL

and by substituting FL = τ(1+φ)
η+φ+ηφ

+ (1−η)(1+φ)+φ
(η+φ+ηφ)

P yields

VL =

(
1 + η + 6φ− 3ηφ

2(η + φ+ ηφ)

)
P 2 −

(
1− τ(1− η + 2φ− ηφ)

η + φ+ ηφ

)
P

+

(
1 +

η(η − 1) + φ(η2 − 1) + τ 2(1 + φ)

2(η + φ+ ηφ)

)
. (3.12)

Firms choosing FH have ex ante value

VH =

∫ Λ

0

PdV +

∫ FH

Λ

[V − φ · (FH − V )]dV +

∫ 1

FH

V dV + τ · FH .

If FH = P + τ · (1 + φ)/φ then ex ante value is

VH = 0.5 · (P + τ)2 + 0.5 · τ 2/φ+ 0.5 (3.13)

but if FH = 1 then ex ante value is

V1 = 0.5 · (P + φ)2/(1 + φ) + 0.5 · (1− φ) + τ. (3.14)

The next result shows that in a mixed-strategy equilibrium the high type always chooses

FH = 1.

Lemma 2: In a mixed-strategy equilibrium the high type chooses FH = 1.

Proof: Proof by contradiction. Suppose F ∗H = P + τ · (1 + φ)/φ < 1. Since we assume

P > 0, this implies τ < φ/(1 + φ). We have:

G(P ) ≡ VL(P )− VH(P )

=

(
1 + (5− 4η)φ

2(η + φ+ ηφ)

)
P 2 −

(
1− τ(1 + φ)(1− 2η)

η + φ+ ηφ

)
P +

(
η

2
− ητ 2(1 + φ)2

2φ(η + φ+ ηφ)

)
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Therefore,

G′(P ) =

(
1 + (5− 4η)φ

η + φ+ ηφ

)
P −

(
1− τ(1 + φ)(1− 2η)

η + φ+ ηφ

)
≤

(
1 + (5− 4η)φ

η + φ+ ηφ

)(
η(1 + φ) + φ− τ(1 + 2φ)

(5− η)φ+ 1 + η

)
−
(

1− τ(1 + φ)(1− 2η)

η + φ+ ηφ

)
≤ 0

where the first inequality follows from the fact that in a mixed-strategy equilibrium the

equilibrium price is less than the pure-strategy equilibrium price (i.e., P ≤ η+φ+ηφ−τ(1+2φ)
1+η+5φ−ηφ )

and the second inequality holds for all η ≥ 1/2. Therefore,

G(P ) ≥ G

(
η + φ+ ηφ− τ(1 + 2φ)

1 + η + 5φ− ηφ

)
> 0 ∀τ < φ/(1 + φ).

where the last inequality is easily verified numerically. But this contradicts the optimality

of F ∗H .

By Lemma 2, we must only compare VL to V1 to find a mixed-strategy equilibrium. We have

VL − V1 =
(φ(φ+ 1)(2− 3η) + (2φ+ 1)2)

2(φ+ 1)(ηφ+ η + φ)
P 2

− ((2φ+ 1)(η + φ+ ηφ− τ(1 + φ)) + η(φ+ 1)2τ)

(φ+ 1)(ηφ+ η + φ)
P

+
((η − τ)(1 + φ) + φ)2

2(φ+ 1)(ηφ+ η + φ)
(3.15)

Conjecture the existence of a pure-strategy equilibrium in which case P ∗ = η+φ+ηφ−τ(1+2φ)
1+η+5φ−ηφ .

Substituting P ∗ into our expressions for VL and V1 implies:

H( τ ) =
2 + 14φ+ 20φ2 + 9φ3 + 3η(1− φ)(1 + φ)2

2(1 + φ)(1 + η + 5φ− ηφ)2
τ 2

− 2η2(1− φ2) + φ(2 + 12φ+ 7φ2) + η(1 + 9φ+ φ2 − 5φ3)

(1 + φ)(1 + η + 5φ− ηφ)2
τ

+
η3(φ− 1)2(1 + φ) + φ2(2 + 11φ) + 2ηφ(1 + 8φ+ φ2)− 4η2φ(−1 + 2φ+ 2φ2)

2(1 + φ)(1 + η + 5φ− ηφ)2

(3.16)
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We have two possibilities to consider. First, suppose there is a pure-strategy equilibrium

at the upper boundary of Case 1, τ = (2η − 1) · P . In this case, we know that P =

(η − τ)/(η + 1) which implies τ = (2η − 1)/3. We also know that φ ≥ 3η−2
6−3η

. Therefore, at

the transition to this case we have H
(

2η−1
3

)
= 2−3η+φ·(6−3η)

18(1+φ)
≥ 0 for φ ≥ 3η−2

6−3η
. Furthermore,

H ′
(

2η − 1

3

)
= −2 + (10− 6η)φ+ 6(1− η)φ2

3(1 + η(1− φ) + 5φ)(1 + φ)
< 0,

and

H ′′(τ) =
2 + 14φ+ 20φ2 + 9φ3 + 3η(1− φ)(1 + φ)2

(1 + φ)(1 + η + 5φ− ηφ)2
> 0.

We see then that H( τ ) is an upward facing parabola in τ . At the lower boundary of Case

2, where τ = 2η−1
3

, H( τ ) is positive but decreasing.

Solving H( τ ) = 0 yields two solutions:

τ3, τ4 =
2η2(1− φ2) + η(1 + 9φ+ φ2 − 5φ3) + 2φ+ 12φ2 + 7φ3

2 + 14φ+ 20φ2 + 9φ3 + 3η(1− φ)(1 + φ)2

±
√

(1 + φ)(1 + η + 5φ− ηφ)2(η2(1 + φ)(1 + 3φ2)− 3ηφ2(2 + φ)− 2φ3)

2 + 14φ+ 20φ2 + 9φ3 + 3η(1− φ)(1 + φ)2

If η2(1 + φ)(1 + 3φ2) − 3ηφ2(2 + φ) − 2φ3 < 0, the roots of the solution of H( τ ) = 0

are complex so H( τ ) > 0 for all τ . Therefore, for 2η−1
3

< τ ≤ 1, there is a pure-strategy

equilibrium where all firms choose F ∗ = 1+2φ+τ+(τ−η)(1+φ)
1+η+5φ−ηφ and P ∗ = η+φ+ηφ−τ(1+2φ)

1+η+5φ−ηφ . However,

our free disposal assumption implies P ∗ ≥ 0 which requires τ ≤ η+φ+ηφ
1+2φ

. We thus consider

pure-strategy equilibrium in the range 2η−1
3

< τ ≤ η+φ+ηφ
1+2φ

.

If η2(1 + φ)(1 + 3φ2) − 3ηφ2(2 + φ) − 2φ3 ≥ 0, then τ3 and τ4 are real. Therefore, for

τ3 < τ ≤ τ4, we have H( τ ) < 0 and a mixed-strategy equilibrium where P ∗ equates VL = V1.

There are two solutions, but only one where P is less than the pure-strategy price (which

must be true in equilibrium as argued above) and it is

P ∗ =
φ(1 + 2φ(1− τ)− 3τ) + η(1 + φ)(1 + τ + φ(2 + τ))− τ

1 + φ(6− 3η)(1 + φ)

−

√
(1 + φ)(η + φ+ ηφ)

(
3η2φ(1 + φ)− 2(φ(τ − 1) + τ)2

+ η(φ(τ − 1) + τ)(2 + φ(τ − 1) + τ))

)
1 + φ(6− 3η)(1 + φ)

.
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The fraction h of firms choosing F = 1 supporting the price P is found by equating

demand for the risky asset (1− h) · (1− P − FL) with supply (1− h) · (P + φFL)/(1 + φ) +

h · (P + φ · 1)/(1 + φ) where FL = τ(1+φ)
η+φ+ηφ

+ (1−η)(1+φ)+φ
(η+φ+ηφ)

P . Therefore, we have the unique

proportion to clear the market:

h∗ =
(1 + φ) · (η + φ+ ηφ− τ(1 + 2φ)− P (1 + 5φ+ η − ηφ))

(1 + 2φ)(η + φ+ ηφ− τ − φτ)− P (1 + 5φ(1 + φ)− ηφ(1 + φ))
.

It has been verified numerically that τ4 ≤ 1 and P ∗(τ4) > 0. This means that for τ > τ4, there

will be a range of pure-strategy equilibria with positive prices. Therefore, for 2η−1
3

< τ ≤ τ3

and τ4 < τ ≤ η+φ+ηφ
1+2φ

we have a pure-strategy equilibrium where F ∗ = 1+2φ+τ+(τ−η)(1+φ)
1+η+5φ−ηφ and

P ∗ = η+φ+ηφ−τ(1+2φ)
1+η+5φ−ηφ

Second, suppose there is a mixed-strategy equilibrium at the upper boundary of Case 1,

i.e. τ2 = (2η − 1) · P ∗(τ2). Then we know that φ < 3η−2
6−3η

. It can be verified that H(τ2) < 0,

and, following the arguments above, {τ3, τ4} are the same as described above. However, it

can be verified that τ3 < τ2 if φ < 3η−2
6−3η

, thus there is a mixed-strategy equilibrium for all

τ2 < τ ≤ τ4. In the mixed-strategy equilibrium, FL = τ(1+φ)
η+φ+ηφ

+ (1−η)(1+φ)+φ
(η+φ+ηφ)

P ∗ and {P ∗, h∗}

are characterized above. It is still the case that τ4 ≤ 1 and P ∗(τ4) > 0. Therefore, for

τ4 < τ ≤ η+φ+ηφ
1+2φ

we have a pure-strategy equilibrium where F ∗ = 1+2φ+τ+(τ−η)(1+φ)
1+η+5φ−ηφ and

P ∗ = η+φ+ηφ−τ(1+2φ)
1+η+5φ−ηφ

We must also check that all these equilibria fall under Case 2, which requires τ ≤ η −

P + (1 − 2P )φ/(1 + φ). We know that P ∗ ≤ η+φ+ηφ−τ(1+2φ)
1+η+5φ−ηφ , the pure-strategy equilibrium

price, for all equilibria. Therefore, it is sufficient to show that:

τ ≤ η − η + φ+ ηφ− τ(1 + 2φ)

1 + η + 5φ− ηφ
+

(
1− 2(η + φ+ ηφ− τ(1 + 2φ))

1 + η + 5φ− ηφ

)
φ

1 + φ

which is true if and only if

τ ≤ η + 2φ− ηφ
1− φ

.

However, this is satisfied for all τ ≤ η+φ+ηφ
1+2φ

. Therefore, the equilibria described above all

fall within Case 2.
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Case 3: η − P + (1− 2P )φ/(1 + φ) < τ ≤ 1

If η−P + (1− 2P )φ/(1 +φ) < τ ≤ 1 then all firms choose F > 1−P which implies that

the aggregate demand for the liquidated asset is zero. But, since supply is positive when the

price is positive, this case is incompatible with an equilibrium P ∗ > 0.

Equilibrium with P ∗ = 0

We assume free disposal therefore we know P ∗ ≥ 0. We now consider the possibility

that P ∗ = 0 which can occur in our model because we assume limited liability (i.e., the

continuation value of a firm in distress is bounded below by zero). If P = 0 the four regions

for the marginal cost of debt collapse into one:

• For F ∈ [0, 1] the marginal cost of debt is η · F + F · φ/(1 + φ)

Consequently, if P = 0 there can only exist a pure-strategy equilibrium in which all firms

choose F ∗ = min
{

1, τ(1+φ)
η(1+φ)+φ

}
. Therefore, the aggregate demand for the asset is 1 − P ∗ −

F ∗ = 1 − F ∗ ≥ 0. The aggregate supply of the asset, however, is indeterminate. In

particular, because of limited liability the firm will be indifferent between liquidation at

P ∗ = 0 and continuation for all Vi ∈
[
0, φF

∗

1+φ

]
. Therefore, the price P ∗ = 0 can be supported

in equilibrium if 1− F ∗ ≤ φF ∗

1+φ
or τ ≥ η(1+φ)+φ

1+2φ
.

Proof when η < 1/2

We now consider the case η < 1/2. For now, assume P > 0. We will consider the

possibility that P = 0 at the end of the proof. If P > 0 the marginal cost of debt now falls

into four regions:

1. For F ∈ [0, P ] the marginal cost of debt is 0

2. For F ∈ [P, P · (1/η − 1)] the marginal cost of debt is (F − P )φ/(1 + φ)

3. For F ∈ [P ·(1/η−1), 1−P ] the marginal cost of debt is ηF−P (1−η)+(F−P )φ/(1+φ)
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4. For F ∈ [1− P, 1] the marginal cost of debt is (F − P )φ/(1 + φ)

We must consider three cases: (i) 0 ≤ τ < (P/η− 2P )φ/(1 +φ), (ii) (P/η− 2P )φ/(1 +φ) ≤

τ ≤ η − P + (1− 2P )φ/(1 + φ), and (iii) η − P + (1− 2P )φ/(1 + φ < τ ≤ 1.

Case 1: 0 ≤ τ < (P/η − 2P )φ/(1 + φ)

If 0 ≤ τ < (P/η−2P )φ/(1+φ) then F ∈ [P, P (1/η−1)] and all firms equate the marginal

cost of debt in this region to the marginal benefit which implies

F(P ) = P +
τ(1 + φ)

φ
.

In this region, all firms for whom the asset is positive NPV (ηV ≥ P ) will be able to obtain

financing to purchase the asset. The demand for the liquidated asset is then 1−P/η and the

supply of the liquidated asset is (P + φF)/(1 + φ) = P + τ . Equating supply and demand

gives the equilibrium price

P ∗ =
η(1− τ)

1 + η

and, therefore,

F ∗ =
τ(1 + η + φ) + φη

φ(1 + η)
.

To determine the values of τ included in this case, substitute P ∗ into the expression

τ < (P/η − 2P )φ/(1 + φ) ⇒ τ ≤ φ(1− 2η)

(1 + η)(1 + φ) + φ(1− 2η)
≡ τ0.

Case 2: (P/η − 2P )φ/(1 + φ) ≤ τ ≤ η − P + (1− 2P )φ/(1 + φ)

If (P/η − 2P )φ/(1 + φ) ≤ τ ≤ η − P + (1 − 2P )φ/(1 + φ) then firms choose either

FL ∈ [P (1/η − 1), 1 − P ) or FH ∈ [1 − P, 1] where FL = τ(1+φ)
η+φ+ηφ

+ (1−η)(1+φ)+φ
(η+φ+ηφ)

P and

FH = min{1, P + τ · (1 + φ)/φ}.

Pure-strategy equilibria

There cannot exist a pure-strategy equilibrium with P > 0 in which all firms choose FH

because the aggregate demand for the risky asset would be zero but the supply is positive
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[(P + φF)/(1 + φ)]. Therefore, in a pure-strategy equilibrium, firms choose

F =
τ(1 + φ)

η(1 + φ) + φ
+

(1− η)(1 + φ) + φ

η(1 + φ) + φ
P.

The demand for the liquidated asset is 1− P − F and the supply of the liquidated asset is

Λ =
P + φF

1 + φ
=
P · [(1− φ)η + 2φ] + φτ

η(1 + φ) + φ
.

Equating supply and demand gives the equilibrium price

P ∗ =
η + φ+ ηφ− τ(1 + 2φ)

1 + η + 5φ− ηφ
.

Substituting into the expression for F yields

F ∗ =
1 + 2φ+ τ + (τ − η)(1 + φ)

1 + η + 5φ− ηφ
.

Mixed-strategy equilibria

Again, there is the possibility of a mixed-strategy equilibrium. The proof here follows

closely the proof in Case 2 when η ≥ 1/2. Firms choosing FL = τ(1+φ)
η+φ+ηφ

+ (1−η)(1+φ)+φ
(η+φ+ηφ)

P have

ex ante value VL as described in equation (3.12), firms choosing FH = P + τ · (1 +φ)/φ have

ex ante value VH as described in equation (3.13), and firms choosing FH = 1 have ex ante

value V1 as described in equation (3.14).

It is straightforward to show that Lemma 2 applies in the case η < 1/2 when τ0 ≤ τ <

φ/(1 + φ). Therefore, in a mixed-strategy equilibrium the high type always chooses FH = 1.

Therefore, we must only compare VL to V1 to find a mixed-strategy equilibrium. We also

have VL − V1 as described in equation (3.15) and H( τ ) as described in equation (3.16).

We know there is a pure-strategy equilibrium at the upper boundary of case 1, τ = τ0.

Therefore, at the transition to this region we have H( τ0 ) ≥ 0. Furthermore, it can be shown

numerically that for all φ ∈ [0, 1] and all η ∈ [0, 1/2] that

H ′(τ0) < 0,

and

H ′′(τ) =
2 + 14φ+ 20φ2 + 9φ3 + 3η(1− φ)(1 + φ)2

(1 + φ)(1 + η + 5φ− ηφ)2
> 0.
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We see then that H( τ ) is an upward facing parabola in τ . At the lower boundary of Case

2, where τ = τ0, H( τ0 ) is positive but decreasing.

Solving H( τ ) = 0 yields τ3, τ4 as before and the remainder of the proof is identical to

Case 2 when η ≥ 1/2.

Case 3: η − P + (1− 2P )φ/(1 + φ) < τ ≤ 1

If η−P + (1− 2P )φ/(1 +φ) < τ ≤ 1 then all firms choose F > 1−P which implies that

the aggregate demand for the liquidated asset is zero. But, since supply is positive when the

price is positive, this case is incompatible with an equilibrium P ∗ > 0.

Equilibrium with P ∗ = 0

Finally, as before, if P = 0 the four regions for the marginal cost of debt collapse into

one:

• For F ∈ [0, 1] the marginal cost of debt is η · F + F · φ/(1 + φ)

Consequently, if P = 0 there can only exist a pure-strategy equilibrium in which all firms

choose F ∗ = min
{

1, τ(1+φ)
η(1+φ)+φ

}
. Following the argument in the proof when η ≥ 1/2, the

price P ∗ = 0 can be supported in equilibrium if τ ≥ η(1+φ)+φ
1+2φ

.

Uniqueness

We’ve established above that the equilibrium debt choices, prices, and high-type propor-

tion are unique functions of the exogenous parameters in each of the equilibrium types (pure

strategy interior/extreme and mixed-strategy). Also, the necessary conditions for each of

the equlibria form non-overlapping regions. It cannot be that a given exogenous parameter

value supports multiple types of symmetric equilibria. Therefore, the equilibium is unique

for any given parameter values.
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3.8 Appendix: Extension to Immediate Use of Debt Benefits

We now show that the solution to our model is isomorphic to one in which the firm can

use the immediate benefit τF to pay off debt and purchase liquidated assets.

If F(1− τ) < P the value of the firm is now∫ P

0

PdV +

∫ 1

P

V dV +

∫ 1

P+F(1−τ)

max{0, ηV − P}dV + τF.

The supply of the risky asset is P and the demand is now 1− P − (1− τ)F.

Therefore, if we let F ′ = (1− τ)F the value of the firm is∫ P

0

PdV +

∫ 1

P

V dV +

∫ 1

P+F ′
max{0, ηV − P}dV +

τ

1− τ
· F ′.

The supply of the risky asset is P and the demand is now 1− P − F ′.

If F(1− τ) ≥ P the value of the firm is∫ Λ′

0

PdV +

∫ F(1−τ)

Λ′
[V −φ(F−(V +τF)]dV +

∫ 1

(1−τ)F

V dV +

∫ 1

P+F(1−τ)

max{0, ηV −P}dV +τF.

The supply of the risky asset is Λ′ = P+φ(1−τ)F
1+φ

and the demand is now 1− P − (1− τ)F.

Again, if we let F ′ = (1− τ)F the value of the firm is∫ Λ′

0

PdV +

∫ F ′

Λ′
[V − φ(F ′ − V )]dV +

∫ 1

F ′
V dV +

∫ 1

P+F ′
max{0, ηV − P}dV +

τ

1− τ
· F ′.

The supply of the risky asset is Λ′ = P+φF ′

1+φ
and the demand is now 1− P − F ′.

In sum, the solution to our original model yields {P (τ ′), F ′(τ ′)} where τ ′ = τ/(1 − τ).

To convert to the equilibrium {P (τ), F(τ)} note that τ = τ ′/(1 + τ ′) and F = F ′/(1 − τ).

The latter expression for the face value of debt implies that the comparative statics for debt

choices with respect to model parameters are not necessarily the same as in the base model.

Although we don’t report the results here, our main qualitative results continue to hold in

this extension; in particular, debt levels and ratios may increase or decrease in η and the

comparative statics for debt levels can be different than for debt-to-value ratios.
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3.9 Appendix: Extension to Industry Booms and Busts

In this section we extend our model to consider uncertainty in the economy. For certain

parameter regions of this model, it is possible that we find either pro-cyclical or counter-

cyclical reallocations of assets.

Suppose we extend the model to include uncertainty about the distribution of asset

qualities, vi ∈ [0, γ]. With probability a, γ = 1−∆ and with probability 1−a, γ = 1+∆. In

this model, the firms will choose their debt level F and mixture probability h before realizing

the state of the economy, but P (γ) will be determined after the state of the economy has

been realized.

3.9.1 Reallocation

We know that the amount of reallocation will equal the mass of firms who are acquiring

assets. This is equal to:

Q(γ) = (1− h) ·min

{
γ − P (γ)− F

γ
,
γ − P (γ)/η

γ

}
In our base model, the marginal cost of debt may fall in several regions depending on the

debt level. However, the boundaries of these regions depend on the realization of γ. Thus,

optimal debt levels will be determined by equating the marginal benefit of debt, τ , with the

expected marginal cost. We will assume for simplicity that ∆ is sufficiently small such that

the optimal debt level falls in the same marginal cost region in either case (i.e. there are not

distress costs in the bust or the boom.)

3.9.2 Pro-Cyclical

Paralleling Case 1 where η ≥ 1/2 of Internet Appendix A, in this region we have no

distress costs, and our only concern is foregone acquisition costs. Conditional on γ, we know

that the supply is P (γ)
γ

and the demand is γ−P (γ)−F
γ

. Therefore, P (γ) = γ−F
2

. Plugging this

back in to our supply we find that reallocation here is Q(γ) = 1
2
− F

2γ
and it is the case
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that Q(1 + ∆) > Q(1 − ∆). We have in this region, the case where booms lead to more

reallocation.

For this equilibrium to exist, there must exist parameters such that F < P (γ) for both

values of γ, which has been verified to exist numerically.

3.9.3 Counter-Cyclical

Paralleling Case 1 where η < 1/2 of Internet Appendix A, in this region we have only

distress costs and no foregone acquisition costs (still acquisitions, just NPV constraint binds).

Conditional on γ, we know that the supply is P (γ)+φF
γ(1+φ)

and the demand is γ−P (γ)/η
γ

. Therefore,

P (γ) = η(γ(1+φ)−φF)
1+η+φ

. Plugging this back in to our demand we find that reallocation here is

Q(γ) = 1− 1+φ
1+η+φ

+ φF
γ(1+η+φ)

and it is the case that Q(1 + ∆) < Q(1−∆). We have in this

region the case where booms lead to less reallocation.

Again, for this equilibrium to exist, there must exist parameters such that F < P (γ)(1/η−

1) for both values of γ, which has been verified to exist numerically.

3.10 Appendix: Tax Shields as Sources of Debt Benefits

In this section, we allow the debt benefits to be partly or fully tax-related. t is now the

total benefit of debt, inclusive of the direct benefits (e.g. signaling or agency related) and

the tax shield benefits. g ∈ [0, 1] is the share of the debt benefits that are from tax shields.

The value of the firm for a given level of debt is

V (P, Fi ) = t · Fi + (1− g · t) (3.17)

·



∫ P

0

P dv +

∫ 1

P

v dv +

∫ 1

min{P + Fi, 1}

max{0, η · v − P} dv if Fi < P

∫ Λ(Fi )

0

P dv +

∫ Fi

Λ(Fi )

[v − φ · (Fi − v)] dv +

∫ 1

Fi

v dv +

∫ 1

min{P + Fi, 1}

max{0, η · v − P} dv if Fi ≥ P

(3.18)

The tax rate on the total earnings of the firm is g ·t, and the total benefits of debt are t·Fi.
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This means that the tax shield is g · t ·Fi, and other direct debt benefits are (1− g) · t ·Fi. If

g = 0, it is the model in the main text. If g = 1, all of the benefits of debt come from the tax

shield. Our specification allows full deductibility of the debt expense, in all states–possibly

by selling the tax-loss credits. It also assumes that the proceeds in liquidation, P , are fully

taxable. This is equivalent to the asset being fully depreciated with a tax basis of zero.

Dividing equation (3.17) by (1− g · t) returns to our original model with τ = t/(1− g · t).

However, the “firm value” in our original model is now Ṽ = V/(1− g · t). The optimal F ∗i is

the same for either problem (with the remapped τ), because dividing by a constant does not

change the optimum. Also, the rescaling of firm value does not affect any other equilibrium

quantities such as P ∗ or h∗. However, we only solved the original model for τ ≤ 1. To

preserve this, we also require that t/(1− g · t) ≤ 1 or t ≤ 1/(1 + g).

The sign of most of our comparative statics are preserved, but the quantitative plots

(numbers) have to be remapped. For comparative statics with respect to η and φ, the

comparative statics are the same as the old model with the remapping τ = t/(1− g · t). The

comparative statics with respect to the new argument t can be found with the chain rule

where τ(t) = t/(1− g · t):
∂F (τ(t))

∂t
=
∂F (τ(t))

∂τ
· ∂τ(t)

∂t
=
∂F (τ(t))

∂τ
· 1

(1− g · t)2

We have ∂F (τ(t))
∂τ

from our original model, so the sign is preserved. It is still the case that

the debt face value is increasing in t. The same chain rule argument works for our other

equilibrium quantities, except where we use V ∗ explicitly. This is V ∗ and D∗/V ∗.

The ∂V ∗/∂t, where V ∗ ≡ Ṽ ∗ · (1− g · t), is

∂V ∗

∂t
= (1− g · t) · ∂τ(t))

∂t
· ∂Ṽ

∗(τ(t))

∂τ
− g · Ṽ ∗(τ(t))

=
1

1− g · t
· ∂Ṽ

∗(τ(t))

∂τ
− g · Ṽ ∗(τ(t))

Although ∂Ṽ ∗/∂τ in our original model is always positive, ∂V ∗/∂t is not generally posi-

tive, especially when g ≈ 1. Instead, and somewhat surprisingly, ∂V ∗/∂t becomes ambigu-

ous: It is now negative for low tax rates, but ∂V ∗/∂t is still positive for high tax rates
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in equilibrium. The top left of Figure 3.10 shows that this is not an obscure region, but

a widespread phenomenon for high tax rates. This is mostly due to the fact that, in this

region, the face value of debt exceeds the expected EBIT of the firm. The firm expects to

receive more in tax-loss credits than it expects to have to pay out in taxes.

With even V ∗ being ambiguous in t, it is a lesser surprise that D∗/V ∗ also retains the

ambiguity in both t and τ . This can be seen as follows: Let what we have be a(τ) =

D∗( τ )/Ṽ ∗( τ ) and what we want be b(t) = D∗(τ(t))/V ∗(t) = D∗(τ(t))/(Ṽ ∗(τ(t))(1−g ·t)) =

a(τ(t)) · 1/(1− g · t). Then

∂D∗(τ(t))/V ∗(τ(t))

∂t
=
∂b

∂t
= a′(τ(t)) · ∂τ(t)

∂t
· 1

1− g · t
+ a(τ(t)) · g

(1− g · t)2

= a′(τ(t)) · 1

(1− g · t)3
+ a(τ(t)) · g

(1− g · t)2

Thus, D∗/V ∗ is not necessarily decreasing in actual tax rates, either.

In sum, our model retains all the same comparative statics, regardless of the source of the

debt benefits, except where we discuss it in our paper—specifically, in the aforementioned

∂V ∗/∂τ case. (Although the quantitative regions can also change, none change so dramatic

as to undo or now deserve a “rare” designation.)
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Figure 3.2: Comparative Statics for Heterogeneity in the Acquisition-Only Model (φ = 0)
Figure 3.2 shows a contourplot with the fraction of heterogeneous firms as the dependent variable. The
yellow area contains the two-type equilibria (as defined in Theorem 7 on Page 96). The area above the
diagonal is uninteresting, as all firms choose Fi = 1 and the price is 0. The area on the bottom right has all
firms act alike. Heterogeneity arises unless redeployability is high and debt benefits are low. It is common
for intermediate values of redeployabilities and direct debt benefits.

Frequency of Max-Debt Types, h∗

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Redeployability η

D
ir
e

c
t 

B
e

n
e

fi
t 

o
f 

D
e

b
t 

τ P = 0

 0.05  0.1  0.15 
 0.2 

 0.25 
 0.3 

 0.35 
 0.4 

 0.45 

 0.5 

 0.55 
 0.6 

 0.65 

 0.7 

 0.75 

 0
.8

 

 0
.8

5 

 0
.9

 

 0
.9

5 

149



F
ig

u
re

3
.3

:
C

om
p
ar

at
iv

e
S
ta

ti
cs

fo
r

th
e

A
cq

u
is

it
io

n
-O

n
ly

M
o
d
el

L
ev

er
ag

e
(φ

=
0)

F
ig

u
re

3.
3

sh
ow

s
co

n
to

u
rp

lo
ts

fo
r

th
e

ac
q
u

is
it

io
n

-o
n

ly
m

o
d

el
.

T
h

e
ye

ll
ow

a
re

a
co

n
ta

in
s

th
e

tw
o
-t

y
p

e
eq

u
il

ib
ri

a
(a

s
d

efi
n

ed
in

T
h

eo
re

m
7

o
n

P
a
g
e

9
6
).

P
at

te
rn

s
th

at
h

av
e

“∩
”

or
“
∪”

sh
ap

es
in

d
ic

at
e

a
m

b
ig

u
o
u

s
co

m
p

a
ra

ti
ve

st
a
ti

cs
in

re
d

ep
lo

ya
b

il
it

y.
“⊂

”
o
r

“
⊃

”
sh

a
p

es
in

d
ic

a
te

a
m

b
ig

u
o
u

s
co

m
p

a
ra

ti
ve

st
at

ic
s

in
d

ir
ec

t
d

eb
t

b
en

efi
ts

.
L

ef
t

an
d

M
id

d
le

:
T

h
e

fa
ce

va
lu

e
F
∗

a
n

d
cu

rr
en

t
m

a
rk

et
va

lu
e

o
f

d
eb

t
(D
∗ )

in
cr

ea
se

[e
ve

ry
w

h
er

e
fo

r
th

e
in

d
u

st
ry

,
al

m
os

t
ev

er
y
w

h
er

e
fo

r
th

e
lo

w
-d

eb
t

fi
rm

]
m

on
ot

o
n

ic
a
ll

y
in

d
eb

t
b

en
efi

ts
τ

a
n

d
d

ec
re

a
se

m
o
n

o
to

n
ic

a
ll

y
in

re
d
ep

lo
ya

b
il

it
y
η
.

R
ig

h
t:

T
h

e
d

eb
t-

to
-v

a
lu

e
ra

ti
o

is
am

b
ig

u
ou

s
in

d
eb

t
b

en
efi

ts
τ
,

an
d

d
ec

re
a
si

n
g

m
o
n

o
to

n
ic

a
ll

y
in

re
d

ep
lo

ya
b

il
it

y
η
.

D
eb

t
F

ac
e

V
al

u
e
F
∗

D
eb

t
T

im
e

0
M

a
rk

et
V

a
lu

e
D
∗

D
eb

t-
V

a
lu

e
R

a
ti

o
D
∗ /
V
∗

IndustryAverage

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

R
e

d
e

p
lo

y
a

b
ili

ty
 η

Direct Benefit of Debt τ

P
=

0

 0
.0

5
 

 0
.1

 

 0
.1

5
 

 0
.2

 

 0
.2

5
 

 0
.3

 
 0

.3
5
 

 0
.4

  0
.4

5
 

 0
.5

 
 0

.5
5
 

 0
.6

 

 0
.6

5
 

 0
.7

 

 0
.7

5
 

 0
.8

 

 0
.8

5
 

 0
.9

  0
.9

5 

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

R
e

d
e

p
lo

y
a

b
ili

ty
 η

Direct Benefit of Debt τ

P
=

0

 0
.0

6
 

 0
.1

 
 0

.1
2
 

 0
.1

4
 

 0
.1

8
 

 0
.2

 

 0
.2

2
 

 0
.2

4
 

 0
.2

6 

 0
.2

8
 

 0
.3

 

 0
.3

2
 

 0
.3

4
 

 0
.3

6
 

 0
.3

8
 

 0
.4

 

 0
.4

2
  0

.4
4
 

 0
.4

6
 

 0
.4

8 

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

R
e

d
e

p
lo

y
a

b
ili

ty
 η

Direct Benefit of Debt τ

P
=

0

 0
.1

  0
.1

5 

 0
.2

 

 0
.2

5 

 0
.3

 

 0
.3

5
 

 0
.4

 

 0
.4

 

 0
.4

5 

 0
.4

5
 

 0
.5

 

 0
.5

5
 

 0
.6

 

 0
.6

5
 

 0
.7

 

 0
.7

5
 

 0
.8

 

 0
.8

5 
 0

.9
 

Low-Type

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

R
e
d
e
p
lo

y
a
b
ili

ty
 η

Direct Benefit of Debt τ

P
=

0

 0
.0

5
 

 0
.1

 

 0
.1

5
 

 0
.2

 

 0
.2

5
 

 0
.3

 

 0
.3

5
 

 0
.4

 

 0
.4

5 

 0
.5

 

 0
.5

5 

 0.6 

 0
.6

5 

 0.7 

 0
.7

5 

 0
.8

 

 0
.8

5 

 0
.9

  0
.9

5 

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

R
e
d
e
p
lo

y
a
b
ili

ty
 η

Direct Benefit of Debt τ

P
=

0

 0
.0

6
 

 0
.1

 
 0

.1
2
 

 0
.1

4
 

 0
.1

8
 

 0
.2

  0
.2

2
 

 0
.2

4
 

 0
.2

6 
 0

.2
8 

 0
.3

 

 0
.3

2 

 0
.3

4 

 0
.3

6 

 0
.3

8 

 0.4 

 0
.4

2 

 0.44 

 0
.4

6 

 0.48 

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

R
e

d
e

p
lo

y
a
b
ili

ty
 η

Direct Benefit of Debt τ

P
=

0

 0
.1

  0
.1

5 

 0
.2

 

 0
.2

5 

 0
.3

  0
.3

5  0
.4

 

 0
.4

5
 

 0
.5

  0.55 

 0.6 

 0
.6

5 

 0
.7

 
 0

.7
5
 

 0
.8

 
 0

.9
 

150



Figure 3.4: Peer Effects on Debt Choice
Figure 3.4 shows equilibrium prices and debt choices when η=1/2. For high τ , some firms choose a high-debt
strategy (FH=1). Therefore, industry debt (FInd) is higher and the equilibrium price (P ) is lower than what
would have occurred if all firms had chosen a low-debt strategy (represented by the dashed lines). Other firms
recognize that more valuable buying opportunities will become available and have an incentive to choose
debt (FL) below what is optimal if industry debt was lower.
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Figure 3.6: Comparative Statics for Heterogeneity when φ=0.25
Figure 3.6 shows a contourplot with the fraction of heterogeneous firms as the dependent variable in the
full model with distress costs. The yellow area contains the two-type equilibria (as defined in Theorem 8
and Internet Appendix A). Patterns that have “∩” or “∪” shapes indicate ambiguous comparative statics in
redeployability. “⊂” or “⊃” shapes indicate ambiguous comparative statics in direct debt benefits. Hetero-
geneity still arises for intermediate values of debt benefits and large values of redeployability. However, the
heterogeneity region is now smaller than it was when φ=0 in Figure 3.2.
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Figure 3.8: Ancillary Comparative Statics for φ=0.25
Figure 3.8 shows contourplots for the full model with distress costs. The yellow area contains the two-type
equilibria (as defined in Theorem 8 and Internet Appendix A). Patterns that have “∩” or “∪” shapes indicate
ambiguous comparative statics in redeployability. “⊂” or “⊃” shapes indicate ambiguous comparative statics
in direct debt benefits.
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Figure 3.9: Allocational Efficiency
Figure 3.9 shows contourplots for varying levels of distress costs. The yellow area contains the two-type
equilibria (as defined in Theorem 8 and Internet Appendix A). The fat line shows the parameters for τ and
η where equilibrium results in first-best redeployment. The area to the left of the fat line has too much
transfer activity (Q∗). The area to the right of the fat line has too little transfer activity. If there are no
reorganization costs (φ=0), there is always too little redeployment.
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Figure 3.10: Value and Debt-Ratio When Benefits are Tax Shields
Figure 3.10 shows contourplots where the benefits of debt come from tax shields vs. when they come from
other direct benefits. When there are taxes and debt benefits derive from the tax shield, value becomes
ambiguous in the tax rate.
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Table 3.1: Variables
Table 3.1 defines the variables used throughout the model.

vi vi ∼ U [0, 1] Unlevered firm/asset type

Exogenous Parameters

φ 0 ≤ φ ≤ 1 Reorganization impairment φ · (Fi − vi) for firms continuing in default.

η 0 ≤ η ≤ 1 Asset redeployability

τ 0 ≤ τ ≤ 1 Other (net) benefits of debt

Endogenous Quantities

Fi 0 ≤ Fi ≤ 1 Face Value of Debt for firm i, promised for time 1.

Di 0 ≤ Di ≤ Fi Value of Debt at time 0, as in (3.9)

h 0 ≤ h ≤ 1 Proportion of F ∗H=1 types

Λ(Fi, P ) 0 ≤ Λ ≤ 1 Liquidation/continuation threshold, (P + φ · Fi)/(1 + φ)

V (Fi, P ) V ≥ 0 Firm value at time 0

P P ≥ 0 Price of liquidated assets at time 1

Q Q ≥ 0 Assets transferred at time 1

r r ≥ 0 Credit Spread, F ∗i /D
∗
i − 1, as in (3.9)
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Table 3.2: Summary of Comparative Statics
Table 3.2 describes the comparative statics of endogenous variables with respect to the exogenous parameters
for the full model with distress costs. Ambiguous comparative statics are illustrated with two examples (order
η, φ, τ), in which one derivative is negative (red) and another is positive (blue). ∂V ∗/∂τ is indicated by a “*”,
because it depends on the source of the debt benefits. It is positive if the source of debt benefits is direct. It
is ambiguous if the source is the tax shield. Though negative in a wide parameter region, it can be positive,
too. † Small region. Less than 2% of the parameter space. †† Minuscule region. Less than 0.001% of the
parameter space. Considered effectively unambiguous in the text.

Panel A: Key Comparative Statics on Value and Leverage

Redeploy- Reorganization Direct Debt

ability η Cost φ Benefits τ

Optimized Firm Value V ∗ 0.9,0.2,0.9†

0.9,0.0,0.1
↓ *

Debt Face Value, Industry F ∗Ind
0.6,0.0,0.1
0.1,0.2,0.1

↓ ↑

Low-Debt Firm F ∗L
0.1,0.2,0.1
0.6,0.0,0.1†

0.02,0.02,0.02††

0.1,0.2,0.1

Debt , Industry D∗Ind
0.8,0.0,0.1
0.1,0.9,0.1

↓
0.9,0.9,0.9
0.1,0.3,0.1Low-Debt Firm D∗L

0.1,0.2,0.1
0.6,0.0,0.1

Debt / Value, Industry D∗Ind/V
∗

0.8,0.0,0.1
0.1,0.9,0.1

0.1,0.2,0.1
0.9,0.5,0.5

0.1,0.1,0.1
0.1,0.4,0.1Low-Debt Firm D∗L/V

∗

Panel B: Ancillary Comparative Statics

Low Type Credit Spread r(F ∗L) 0.4,0.1,0.4
0.1,0.2,0.1

0.1,0.2,0.1

0.08,0.0,0.02†
0.02,0.02,0.02††

0.1,0.2,0.1

Asset Price P ∗ ↑ ↑ ↓

Asset Price/Max Value (NPV 0) P ∗/η 0.1,0.2,0.1
0.4,0.3,0.5 ↑ ↓

Asset Sales # Q∗ ↑ ↑ 0.6,0.0,0.1
0.1,0.2,0.1

Low Type Liquidation Freq. Λ(F ∗L)/F ∗L ↑ ↑ ↓

Low Type Reorganization Cost Ev[φ · (F ∗L − v) · 1Λ(F∗
L)≤v≤F∗

L
] ↓ 0.1,0.2,0.1

0.9,0.0,0.8
0.02,0.02,0.02††

0.1,0.2,0.1
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Table 3.3: Model Implication and Features Comparison
Table 3.3 compares the features and implications of our model with those of the related literature.

Comparative Statics of Industry Indebtedness Measure Model Features

∂Leverage D/V
∂Debt Benefits

∂Level D
∂Debt Benefits

∂Indebtedness
∂Redeployability

Endogenous
Asset Price

Hetero-
geneity

Williamson
1988

D/V not derived Positive
(a)

Positive
(b) No No

Harris-
Raviv 1990

D/V derived, but
(c)

benefits unexplored
Benefits unexplored Positive

(d) No No

Shleifer-
Vishny 1992

D/V not derived
Negative within parameter

region. Positive across.

(e)
Positive

(f)
Mostly

(g)
Exogenous

(h)

Acharya-Vish-
wanathan 2011

D/V not derived Negative for existing firms.
(i)

Positive for new firms.

Redeployability online only.
No comparative statics.

Yes Exogenous

Our Model
Positive when debt

(j)

benefits τ are small.
Negative when large.

Deemphasized due to

empirical near-un-

identifiability. Ambiguous.

Negative when acquisition chan-
nel dominates. Positive when

liquidation channel dominates.
Yes

Endogenous
when assets

are indivisible

(a) When debt is simpler to implement, more firms choose debt over equity (cf. pg. 579-581).

(b) Equity complexity is necessary for specific hard-to-transfer assets. Firms prefer debt when assets are
easy to liquidate (cf. pg. 579-581).

(c) The benefits of debt are that payment/non-payment and audits in default provide signals of asset quality
(cf. pg. 329).

(d) Only one firm. Redeployability is a discount in liquidation relative to fundamental value (cf. pg. 340).

(e) Debt helps avoid negative NPV investment and is firm specific. (Own) debt decreases within and
increases between equilibrium regions (cf. pg. 1354).

(f) Discussed only informally relative to Williamson 1988 (cf. pg. 1359).

(g) Endogenous decision to sell to insider/outsider. Only when sold to the outsider is the price dependent
on debt levels. Otherwise exogenous. (maybe cf. pg. 1353).

(h) The model cannot accommodate identical firms.

(i) They investigate responses to increases in the good asset’s expected quality (not relative to bad in-
vestment) and show that it decreases debt levels on the intensive margin but increases on the extensive
margin.(cf. pg. 120, para. 4).

(j) Measured as net (parameter τ). The value continues to increase even though firms begin to max out
leverage.
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