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ABSTRACT OF THE DISSERTATION

Adaptive Policies for Scheduling High-speed Elastic Networks Subject to Reconfiguration
Overhead

by

Chang-Heng Wang

Doctor of Philosophy in Electrical Engineering
(Communication Theory and Systems)

University of California San Diego, 2019

Professor Tara Javidi, Chair

A scheduling policy plays a critical role in achieving good performance for most net-

worked systems. While the optimal scheduling problems have been studied to a great extent in the

literature, the effect of reconfiguration overhead receives far less attention. With the advancement

of high speed and highly flexible networking technologies, the reconfiguration overhead becomes

more significant in the design of an efficient scheduling policy.

We first consider the scheduling problem in a generalized switch model subject to re-

configuration delay. We propose the Adaptive MaxWeight policy, and prove that the Adaptive

xiii



MaxWeight policy is throughput optimal. We also extend the idea of the Adaptive MaxWeight and

propose a general method to transform scheduling policies that loses the throughput optimality

under nonzero reconfiguration delay into adaptive policies that recover the throughput optimality

guarantee.

We then further analyze the average queue length of the Adaptive MaxWeight policy in

the heavy traffic regime. In particular, we consider a sequence of switch systems with arrival rates

approaching to the boundary of the capacity region, where the limiting arrival rate has saturated

traffic for all input ports and all output ports. In the heavy traffic regime, we derive an upper

bound for the expected sum of queue length, which achieves the optimal scaling with respect to

the traffic load as well as to the reconfiguration delay.

Finally, we consider the scheduling problem in a distributed computing network subject to

reconfiguration delay and reconfiguration cost. We show that while the capacity region remains

unchanged regardless of the reconfiguration delay/cost values, a reconfiguration-agnostic policy

may fail to guarantee throughput-optimality and minimum cost under nonzero reconfiguration

delay/cost. We then present the Adaptive Dynamic Cloud Network Control policy that allows

network nodes to make local flow scheduling and resource allocation decisions while implicitly

controlling the frequency of reconfiguration in order to support any input rate in the capacity

region and achieve arbitrarily close to minimum cost for any finite reconfiguration delay/cost

values.
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Chapter 1

Introduction

Many important problems in telecommunications, computing, or manufacturing systems

involve efficiently managing the contention for resources in a rapidly changing environment.

As technologies evolve to provide larger and larger throughput in communication and

computing capabilities, the issue of reconfiguration overhead becomes more challenging than

ever. For systems introducing novel technology to boost the bandwidth, but cannot reduce

the reconfiguration overhead or even introduce larger overhead, this issue could no longer be

neglected and could potentially have significant impact on the performance of the systems.

The evolution of the information technology also opens up the opportunity for system

to quickly react to the dynamic fluctuation of the workload. The softwarization of resource

management system enables the dynamic allocation of resources to elastically scale up or down

services depending on the instantaneous workload. Similar to the reconfiguration overhead in the

scheduling problems, the dynamic allocation of resources may also incur certain overhead, which

needs to be taken into account in order to efficiently utilizing such flexibility.

While the optimal scheduling problems for several communication networks have been

an active research field [31, 42, 43, 46], the effect of reconfiguration overhead on scheduling

performance received far less attention. Moreover, prior work in the research mostly address the
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reconfiguration overhead in static sense, which does not react to dynamic workload variations,

or some in quasi-static sense, which makes scheduling decisions based on potentially out-dated

information.

In this thesis, we consider the impact of reconfiguration overheads such as reconfiguration

delay and reconfiguration cost on scheduling problems.

1.1 Scheduling with Reconfiguration Overhead

1.1.1 Switch Model with Reconfiguration Delay

In the first part of the thesis, we consider a generalized switch model with the presence

of reconfiguration delay. The application of the considered model includes optical networks,

wireless networks, and satellite communications.

In recent years, the optical switch emerges as a promising candidate supporting the next

generation network as it is transparent to data bandwidth and more power efficient than traditional

electronic switches. However, the main challenge for optical switches is that optical networks

typically exhibit a nonzero reconfiguration delay upon reconfiguring the switch schedule. For

instance, candidate technologies such as microelectromechanical systems (MEMS) [47] involve

mechanically directing laser beams and thus require a certain time to finish circuit reconfiguration

due to physical limits. During the circuit reconfiguration, reliable packet transmission could not

be supported in the network.

For wireless networks, as higher frequency bands are being adopted for larger data band-

width, beamforming techniques are getting wide adoption to mitigate the increased attenuation.

As a result, the reconfiguration delay becomes a significant factor, since the reconfiguration of the

beam direction can take up to several hundred microseconds. Similarly, in satellite communica-

tions, mechanical steerable antennas are used to serve multiple ground stations. When a antenna

steer from one station to another, it may incur a reconfiguration delay around few milliseconds.

2



1.1.2 Reconfiguration Delay and Cost in Distributed Computing Networks

In the second part of the thesis, we consider the scheduling of distributed computing

networks with the flexibility of dynamic resource allocation, subject to reconfiguration overheads

including reconfiguration delay and cost.

The emergence of network function virtualization (NFV) and software defined networking

(SDN) enables network services to be deployed in the form of interconnected software functions

instantiated over commercial off-the-shelf servers at multiple cloud locations and interconnected

via a programmable network fabric. This allows cloud network operators to host a large variety

of services over a common general purpose infrastructure and dynamically allocate resources

according to changing demands, reducing both capital and operational expenses.

The unprecedented flexibility of the cloud networking paradigm provides exciting op-

portunities for future service scenarios and stimulates research in key technical areas such as

optimal function placement, service flow routing, and joint cloud/network resource allocation.

One line of research addressed the virtual network functions placement problem from a static

global optimization point of view, in which the goal is to find the placement of virtual functions

and the routing of network flows that meet service demands with minimum cost [3, 9, 15, 51].

1.2 Notation

In this section, we briefly introduce the common notation that would be used throughout

this thesis.

• IIN = {0, 1, 2, . . . } denotes the set of natural numbers, or non-negative integers.

• IR denotes the set of real numbers, and IR+ denotes the set of non-negative real numbers.

• IE[X] denotes the expected value of a random variable X .

• Var(X) denotes the variance of a random variable X .

3



• |X | denoted the number of elements in a set X .

• |x| denotes the absolute value of a number x ∈ IR.

• ‖X‖p denotes the lp-norm of a vector X. For a r-dimensional vector X ∈ IRr, the lp-norm

is defined as ‖X‖p = (
∑r

i=1 X
p
i )

1
p .

• 1E denotes the indicator function for an event E.

• [x]+ = max{x, 0} is a rectified linear function.

1.2.1 Queueing System

We now introduce a common framework for the problem formulations that are considered

in this thesis. In the following chapters, we would specify how each system model fits in this

common framework.

We consider a system that consists of a set of queues Q, indexed by q ∈ Q. The queueing

system is assumed to be a discrete time system, where time is divided into consecutive fixed

duration time slots, with each time slot indexed by t ∈ IIN. Each queue in the system holds a

specific type of workload awaiting to be serviced in a first-come-first-serve (FCFS) fashion. We

use the term packet as a unit for the workload.

We let Qq(t) denote the number of packets in queue q at the beginning of time slot t.

Within each time slot, there may be some packets arriving at each queue, we let Aq(t) denote the

number of packets arriving at queue q at time slot t.

Within each time slot, the queueing system may be set to provide service to a number of

queues in Q. We let Sq(t) denote the number of packets that the system scheduled to serve for

queue q at time t.

For each queue q ∈ Q, the maximum number of packets that could be scheduled to

be served at time t is the capacity allocated for queue q, which is dependent on the amount

4



of resources allocated for queue q. We let kq(t) ∈ {0, 1, . . . , Kq} denote the number of unit

resources allocated for queue q at time t, where Kq is the maximum number of unit resources

available for queue q and is a fixed value. The capacity allocated for queue q is a function of the

amount of allocated resource, and is denoted as Cq(k) where k ∈ {0, 1, . . . , Kq}. The allocation

of the resource also incurs an operational cost, where the cost of k units of resource assigned for

queue q is wq(k) where k ∈ {0, 1, . . . , Kq}. By the definition, we have

Sq(t) ≤ Cq(kq(t)), ∀q ∈ Q, ∀t ∈ IIN. (1.1)

Note that Sq(t) does not necessarily represents the number of packets departing from

queue q at time t if any one of the following two possible scenarios occurs:

1. The number of packets in queue q is less than Sq(t).

2. Queue q is under reconfiguration, which we elaborate in the following paragraph.

We assume that after each schedule or resource reconfiguration for q ∈ Q, packets in

queue q could not be serviced for a fixed time duration. This time duration is referred as the

reconfiguration delay of queue q, and is denoted as ∆q. Let {t(q)k }∞k=1 ⊂ IIN denote the time

instances when the schedule is reconfigured for queue q, then ∀t ∈ ∪∞k=0[t
(q)
k , t

(q)
k + ∆q], queue

q is considered under reconfiguration and packets in queue q could not depart at time t even if

Sq(t) > 0.

For ease of presentation, we let rq(t) denote the time for queue q remaining in the

reconfiguration delay, with rq(t) = 0 indicating that queue q is not in reconfiguration at time slot

t. Formally speaking, we define rq(t) = [∆q − (t − maxk{t(q)k : t
(q)
k ≤ t})]+. The number of

packets that is actually scheduled to be serviced for queue q at time t is then given as

S̄q(t) = Sq(t)1{rq(t)=0}. (1.2)
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We adopt the convention that the packet departure occurs at the end of each time slot, and

the queue length of a queue q evolves according to the following queue length dynamics:

Qq(t+ 1) =[Qq(t)− S̄q(t) + Aq(t)]
+ (1.3)

=Qq(t)− Sq(t)1{rq(t)=0} + Aq(t) + Uq(t) (1.4)

where Uq(t) denotes the unused service of queue q at time t. By definition, the unused service is

nonzero only when the number of packets in a queue is less than the number of packets that could

depart.

Qq(t+ 1)Uq(t) = 0, ∀q ∈ Q, ∀t ∈ IIN. (1.5)

1.3 Contributions

The main contribution of this thesis is solving the dynamic scheduling problems for

queueing systems subject to reconfiguration overhead and dynamic workload. The scheduling

problems covered include systems operated under the centralized scheduling framework as well

as the distributed scheduling framework.

For the centralized scheduling framework, we consider the generalized switch model and

solve the scheduling problem subject to reconfiguration delay. The contributions include the

following:

• We develop the Adaptive MaxWeight (AMW) policy and prove the throughput optimality

of the AMW policy.

• We generalize the AMW policy to a general scheme that transforms any scheduling policy

to an adaptive policy to accommodate the reconfiguration delay. We show that under mild

assumptions, for policies that are throughput optimal under no reconfiguration delay but
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lose the throughput optimality due to reconfiguration delay, their transformed adaptive

policies recover the throughput optimality even under the presence of reconfiguration delay.

• We characterize the effect of reconfiguration delay on the queue length performance by

deriving a queue length lower bound of any scheduling policy for switches with reconfigu-

ration delay.

• We prove that in the heavy traffic regime, where the arrival rate approaches to a all-port

saturate matrix, the AMW policy approximates the optimal queue length scaling with

respect to the traffic load as well as to the reconfiguration delay.

For the distributed scheduling framework, we consider a model consisting of a network of

computing nodes where each node has communication and computation capabilities, and solve

the joint scheduling and cost minimization problem subject to reconfiguration overheads. The

contributions include the following:

• We prove that the capacity region and the achievable minimum time average cost remains

the same even in the presence of reconfiguration delay and cost, given that reconfiguration

delay and cost values are finite.

• We show that a reconfiguration-agnostic policy that is throughput optimal and achieves

arbitrarily close to the minimum time average cost under zero reconfiguration overhead

does not necessarily retain these properties when reconfiguration delay/cost exists.

• We develop the Adaptive Dynamic Cloud Network Control (ADCNC) policy and prove

the throughput and cost optimality of the ADCNC policy, given the reconfiguration delays

and costs are finite fixed values. The proposed ADCNC policy utilizes only queue length

information and does not require any prior knowledge on arrival statistics.
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1.4 Thesis Outline

We briefly introduce the layout of this thesis as follows. Chapter 1 has introduced the

basic notation used throughout this thesis and the contributions of this work. Chapter 2 introduces

some key assumptions that are common to all the models considered in this thesis, and briefly

introduce the methodology to be used.

Chapter 3 considers the scheduling problem for switches with reconfiguration delay, and

introduces Adaptive MaxWeight and its extension to a framework of adaptive policy construction

that guarantees throughput optimality. Chapter 4 focuses on the delay performance analysis of

Adaptive MaxWeight policy for switches with reconfiguration delay and shows that Adaptive

MaxWeight policy may arbitrarily approximate the optimal queue length scaling in the heavy

traffic regime.

Chapter 5 generalizes the framework to include reconfiguration cost as another type of

reconfiguration overhead, and considers the scheduling problem with reconfiguration overhead in

a distributed network setting.

Finally, chapter 6 concludes the thesis and introduces some potential future research

direction.
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Chapter 2

Model Assumptions and Methodology

In this chapter, we first state some basic assumptions that apply to all of the queueing

systems considered in this thesis. We then briefly introduce the performance metrics considered

for the scheduling policies of interest and the methodology used for the analysis in this thesis.

2.1 Model Assumptions

Throughout this thesis, we assume that the arrival processes satisfy the following assump-

tions. The first one assumes an upper bound on the maximum number of packet arrival within a

time slot, which is a mild assumption for many practical systems.

Assumption 2.1. The arrival process at each queue is bounded from above at any given time. In

other words, there exists a constant Amax <∞ such that

Aq(t) ≤ Amax, ∀q ∈ Q, ∀t (2.1)

The following two assumptions regard the independence of the arrival processes.
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Assumption 2.2. The arrival process at each queue is independent from the arrival process

at another queue. That is, given any q, q′ ∈ Q, q 6= q′, then for any n < ∞ and any se-

quence t1, . . . , tn ∈ IIN, the random vectors (Aq(t1), . . . , Aq(tn)) and (Aq′(t1), . . . , Aq′(tn)) are

independent.

Assumption 2.3. The arrival process at each queue is independent and identically distributed

(i.i.d.) over time. The mean of the arrival process is a finite constant, and is denoted as

λq = IE[Aq(0)] <∞.

For queueing systems where the resource allocation may be dynamically scheduled, we

make the following assumption which is generally true for most systems in practice.

Assumption 2.4. For any queue q ∈ Q, we assume that the capacity Cq(k) and the cost wq(k)

for queue q are strictly increasing with k, where k is the amount of resource assigned for queue

q. In other words, for any k such that 0 ≤ k ≤ Kq − 1, we have Cq(k) < Cq(k + 1) and

wq(k) < wq(k + 1).

The schedule of the network is determined by a scheduling policy. A scheduling policy

determines the schedule at time slot t based on the history of queue lengths, schedule, and

reconfiguration status, i.e. H(t) = {{Q(τ)}tτ=0}, {S(τ)}t−1
τ=0}, {r(τ)}t−1

τ=0}}. In other words, a

policy π maps the history H(t) to the scheduling decision S(t) ∈ S at each time slot t. Note that

this mapping may potentially be probabilistic, where the history H(t) maps to a distribution on S

and the scheduling decision S(t) is a sample drawn from S according to such distribution.

In this thesis, we restrict our discussions only to Markov scheduling policies, where the

schedule decision depends only on the current state.

Assumption 2.5. A Markov scheduling policy determines the schedules at each time t, and each

schedule S(t) ∈ S depends on the history solely through the current state X(t) =
(
Q(t),S(t−

1), r(t− 1)
)

.
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Restricting attention to this class of policies ensures the process {X(t)}∞t=0 to be a Markov

process, where X(t) =
(
Q(t),S(t− 1), r(t− 1)

)
is the system state at time t. In this case we

denote the Markov scheduling policy as π and use the notation Π(t) to denote the choice of

schedule generated by π given the state X(t).

2.2 Performance Metrics

In this thesis, we consider the scheduling problem for queueing systems subject to

reconfiguration overhead. The main performance metrics for the scheduling policies are as

follows:

• Throughput

• Average delay

For systems that allow the reconfiguration of the resource allocation, we also consider the

following performance metric:

• Average operational cost

2.2.1 Throughput Optimality

In the literature, throughput optimality is one of the most fundamental requirement for a

scheduling policy of interest. In short, the throughput optimality guarantees a scheduling policy

to stabilize any arrival traffic that could be stabilized by some scheduling policy. We make this

notion formal with the following definitions.

To evaluate the throughput of a scheduling policy, we first introduce the notion of stability.
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Definition 2.1. A queue q ∈ Q is strongly stable if its queue length process Qq(t) satisfies

lim sup
t→∞

1

t

t−1∑
τ=0

IE [Qq(τ)] <∞ (2.2)

Throughout this thesis, we consider the strong stability as defined in Definition 2.1. For a

queueing system with a set of queues Q, we say that the queueing system is strongly stable if

each queue q ∈ Q is strongly stable.

With the notion of queueing system stability defined as above, we may then characterize

the throughput of a scheduling policy by every arrival traffic that the policy could stabilize. In this

thesis, we focus on scheduling policies that maximizes the throughput, or achieves throughput

optimality, as defined below.

Definition 2.2. An arrival traffic A(t) = (A1(t), . . . , A|Q|(t)) is admissible if there exists a

scheduling policy under which the queueing system is strongly stable. For an admissible arrival

traffic A(t), the corresponding arrival rate vector λ = (λ1, . . . , λ|Q|) is said to be admissible.

Definition 2.3. The capacity region is defined as the set of all admissible arrival rate vector and

is denoted as Λ.

Definition 2.4. A scheduling policy is throughput optimal if for any admissible arrival traffic,

the queueing system is strongly stable under the operation of this scheduling policy.

2.2.2 Average Delay Analysis

While the throughput optimality provides a measure for the robustness of a scheduling

policy, in practice it is also important to evaluate the delay performance of a scheduling policy.

In this thesis, we consider the average delay performance, which by Little’s law [26], is linearly
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proportional to the average queue length. In particular, we are interested in characterizing the

expected sum of queue length under the steady state distribution:

IE

[∑
q∈Q

Q̄q

]
(2.3)

where Q̄q is the steady state distribution of Qq(t).

Unlike single queue systems, it is in general impossible to characterize a closed form for

the expected queue length for queueing systems with scheduling constraints, e.g. generalized

switch model. Therefore prior works usually approach the delay performance analysis by studying

the expected queue length in asymptotic regimes with respect to either the number of queues in

the system or the traffic load.

In chapter 4, we consider the queue length behavior of switches with reconfiguration delay

in the heavy traffic regime, where the arrival rates approaches to the boundary of the capacity

region.
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Chapter 3

Switches with Reconfiguration Delay

3.1 System Model

Consider a N ×N generalized switch model with N input ports and N output ports. Each

input port may have packets destined for each of the output port. We assume a virtual output

queue architecture where each input port maintains separate queues for packets destined for

different output ports. Therefore, each input port i ∈ {1, 2, . . . , N} maintains N separate queues,

which are denoted by (i, j), where j ∈ {1, 2, . . . , N}. The queueing system then contains a total

of N2 queues, and Q = {(i, j) : 1 ≤ i ≤ N, 1 ≤ j ≤ N}.

We consider a time-slotted system, with each time slot indexed as t ∈ IIN. Each slot

duration is the time required for the switch to transmit a single packet, which is assumed to

be a fixed value. Let Aij(t) be the number of packets arrived at queue (i, j) at time t, and let

Qij(t) be the number of packets in queue (i, j) at the beginning of each time slot t. For ease

of notation, we denote them in matrix notations as A(t) = [Aij(t)],Q(t) = [Qij(t)], and thus

A(t),Q(t) ∈ IINN×N ,∀t ∈ IIN.

We assume the arrival processes Aij(t) satisfy Assumptions 2.1-2.3. In other words,

Aij(t) are independent over i, j ∈ {1, 2, . . . , N}, i 6= j. Each process Aij(t) is i.i.d. over time
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slots. Let the mean of Aij(t) be the traffic rate λij = IE[Aij(0)], and define the traffic rate matrix

λ = [λij] ∈ IRN×N
+ .

3.1.1 Schedules and Scheduling Policies

At each time slot, the switch may schedule to serve some queues (i, j) by connecting input

port i to output port j and transmitting a packet from input i to output port j, where 1 ≤ i, j ≤ N .

We let S(t) ∈ {0, 1}N×N denote the schedule of the switch at time t, where Sij(t) = 1 if queue

(i, j) is being scheduled, and Sij(t) = 0 if otherwise.

The set of feasible schedules is denoted as S ⊆ {0, 1}N×N , where each schedule S ∈ S

indicates some queues that could be scheduled at the same time. The set of feasible schedules

S is dependent on the physical constraints of the system. One basic and common constraint is

that each input port can only transmit to one output port, and each output port can only receive

from one input port, i.e.
∑

i Sij(t) ≤ 1,
∑

j Sij(t) ≤ 1. Under such constraint, we have S ⊆ P ,

where P is the set of all permutation matrices. While in a typical crossbar switch, we usually

have S = P , in this chapter we allow a more generalized setting where S can be any subset of

{0, 1}N×N .

Upon reconfiguring a schedule, the network incurs a reconfiguration delay, during which

no packet could be transmitted. In this paper we focus on the effect of the reconfiguration delay

on the performance of scheduling policies. We make this notion formal through the following

two definitions:

Definition 3.1. Let {tSk}∞k=1 denote the time instances when the schedule is reconfigured. The

schedule between two schedule reconfiguration time instances remains the same, i.e.

S(τ) = S(tSk ), ∀τ ∈ [tSk , t
S
k+1 − 1]

Definition 3.2. Let ∆r be the reconfiguration delay associated with reconfiguring the schedule
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of the network. During the period of schedule reconfiguration, no packet transmission could

occur in the network. In other words, ∀t ∈ ∪∞k=0[tSk , t
S
k + ∆r], the switch does not serve any of its

queues. We assume the reconfiguration delay to be an integer multiple of a time slot.

The schedule of the network is determined by a scheduling policy. In this paper, we

restrict our discussions only to Markov scheduling policies defined as below.

Definition 3.3. A Markov scheduling policy determines the schedules at each time t, {S(t)}∞t=0,

and each schedule S(t) ∈ S depends on the history solely through the current state Xt =(
S(t− 1),Q(t)

)
. Restricting attention to this class of policies ensures the process {Xt}∞t=0 to be

a Markov process. In this case we denote the Markov scheduling policy as π and use the notation

Π(t) to denote the choice of schedule generated by π given the state Xt =
(
S(t− 1),Q(t)

)
.

A specific scheduling policy of interest here is the MaxWeight policy [46] defined below.

Definition 3.4. Given a schedule S ∈ S, the weight of the schedule S is a continuous, non-

negative real function on the queue lengths, WS : IINN×N → IR+ with WS(0) = 0. The weight

function is defined as W : S × IINN×N → IR with W (S, ·) = WS(·).

We also abuse the notation to let WS(t) = WS(Q(t)) denote the weight of schedule S at

time t whenever there is no confusion.

Definition 3.5. Given a weight function W , the MaxWeight policy determines the schedule

Π∗(t) as the schedule that has the maximum weight among feasible schedules at time t, i.e.

Π∗(t) = arg max
S∈S

WS(t).

We also define the maximum weight at time t as the weight of the MaxWeight schedule at time

t, i.e. W ∗(t) = max
S∈S

WS(t).

We define the traffic load as follows:
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Definition 3.6. The load of traffic rate matrix λ is defined as

ρ(λ) = inf{r : λ ∈ rΛ̄, 0 < r < 1}

where Λ̄ is the closure of Λ. We shall use ρ instead of ρ(λ) whenever there is no confusion.

When ∆r = 0, several scheduling policies (e.g. [46], [45], [19]) have been shown to

achieve throughput optimality in the literature. However, in the regime of ∆r > 0, these

scheduling policies typically lose the throughput optimality guarantee since they do not address

the fact that each schedule reconfiguration would result in a significant reduction in the duty

cycle and hence decrease the utility of the network. The challenge for scheduling in the ∆r > 0

regime is that both the quality of the schedules and the rate of schedule reconfiguration affects

the performance of a scheduling policy. It is not hard to see that there is a tradeoff between these

two factors: Reducing the rate of reconfiguration means that the network is forced to stick with a

schedule longer and loses the chance to use a better schedule; on the other hand, pursuing a better

schedule most of the time inevitably increases the rate of reconfiguration and thus the incurred

overhead. Therefore, a good scheduling policy in the ∆r > 0 regime must strive to achive the

balance between these two factors.

3.2 Adaptive MaxWeight Policy

It is known that for switches without reconfiguration delay, the MaxWeight policy is

throughput optimal [31] and has optimal delay scaling in the heavy traffic regime [28, 29].

However, with the presence of reconfiguration delay, the MaxWeight policy is not even throughput

optimal since it does not account for the overhead of frequent schedule reconfiguration.

The main idea behind the Adaptive MaxWeight is to avoid excessive schedule reconfigu-

rations, and only reconfigure the schedule when the current schedule is not “good” enough. Using
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the schedule weight as the measure of a schedule, the Adaptive MaxWeight computes the schedule

weight difference between the current schedule and the MaxWeight schedule, W ∗ (which is the

“best” schedule under this measure), and compares this weight difference to a threshold which is

a function of the maximum weight, g(W ∗). When the schedule weight difference exceeds the

threshold, we reconfigure the schedule to the MaxWeight schedule, otherwise keep the current

schedule. A pseudo-code for the Adaptive MaxWeight scheduling policy is given in Algorithm 1.

Algorithm 1 Adaptive MaxWeight Scheduling Policy

Require: Sublinear and increasing function g(·)
for each t = 0, 1, . . . do

S∗(t)← arg max
S∈S

∑
ij

Qij(t)Sij

W ∗(t)← max
S∈S

∑
ij

Qij(t)Sij

W (t)←
∑
ij

Qij(t)Sij(t− 1)

∆W (t)← W ∗(t)−W (t)
if ∆W (t) > g(W ∗(t)) then

S(t+ 1)← S∗(t)
else

S(t+ 1)← S(t)
end if

end for

3.2.1 Throughput Optimality of Adaptive MaxWeight

We first state the following lemma which is essential to the throughput optimality of

Adaptive MaxWeight policy. Lemma 3.1 establishes a lower bound on the schedule duration

that is dependent on the maximum schedule weight. The implication is that when the total

queue length is larger, the frequency of reconfiguration becomes lower, which avoids excessive

reconfiguration overhead.

Lemma 3.1. Consider a crossbar switch operated under Adaptive MaxWeight policy with hys-

teresis function g(·), where g(·) is a sublinear and strictly increasing function. For any T > 0,
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define M = g−1(N(Amax + 1)T ) + NT . Suppose a schedule reconfiguration occurs at time t

and the queue lengths at time t satisfies W ∗(t) > M , then no reconfiguration could occur in

[t+ 1, t+ T ].

Proof. We prove this lemma by contradiction. Assume that the schedule reconfigures at some

time slots within [t + 1, t + T ], and let τ be the first such time slot. It then suffices to show

that at time slot τ , the schedule weight difference ∆W (τ) = W ∗(τ)−W (τ) cannot exceed the

threshold g(W ∗(τ)).

By the assumption, the schedule is reconfigured as S(t) = W ∗(t) at time t, and maintains

the schedule until time slot τ , hence S(τ − 1) = S(t) = W ∗(t).

Since at most one packet could depart at each queue in a time slot, we have a lower bound

for the schedule weight W (τ):

W (τ) =
〈
Q(τ),S(τ − 1)

〉
=
〈
Q(τ),W ∗(t)

〉
≥
〈
Q(t),W ∗(t)

〉
−N(τ − t)

≥ W ∗(t)−NT (3.1)

On the other hand, since the arrival at each queue is bounded by Amax, we have an upper

bound for the maximum weight W ∗(τ):

W ∗(τ) =
〈
Q(τ), S∗(τ)

〉
≤
〈
Q(t), S∗(τ)

〉
+NAmax(τ − t)

≤ W ∗(t) +NAmaxT (3.2)

From (3.1) and (3.2) we have the following bound on the weight difference:

∆W (τ) = W ∗(τ)−W (τ) ≤ N(Amax + 1)T (3.3)
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On the other hand, by the assumption that W ∗(t) > M , and since at most one packet

could depart at each queue in a time slot, the maximum weight at time τ is lower bounded by:

W ∗(τ) =
〈
Q(τ),S∗(τ)

〉
≥
〈
Q(τ),S∗(t)

〉
≥
〈
Q(t),S∗(t)

〉
−N(τ − t)

≥ W ∗(t)−NT

> M −NT (3.4)

From (3.3) and (3.4), and since g(·) is an increasing function, we have:

g
(
W ∗(τ)

)
> g(M −NT ) ≥ N(Amax + 1)T ≥ ∆W (τ) (3.5)

which contradicts the assumption that a schedule reconfiguration occurs at time slot τ . We may

then conclude that no schedule reconfiguration could occur in [t+ 1, t+ T ].

With the upper bound on the frequency of schedule reconfiguration provided by Lemma 3.1,

we are now ready to state and prove the throughput optimality of the Adaptive MaxWeight policy.

Theorem 3.1. Given any reconfiguration delay ∆r > 0, and given any sublinear and increasing

hysteresis function g, the Markov chain X(t) is positive recurrent for any admissible traffic rate

matrix under the Adaptive MaxWeight. Therefore, the Adaptive MaxWeight is throughput optimal.

Proof. Consider stopping times tk = kT , where T > ∆r

1−ρ , and consider the Lyapunov function

V (Q) =
〈
Q,Q

〉
=
∑

i,j Q
2
ij . Denote ∆(t) = A(t) − S(t)1{r(t)=0}, and we may write the
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expected drift of the Lyapunov function as

IE [V (Q(tk+1))− V (Q(tk))|Q(tk)]

=

tk+1−1∑
t=tk

IE [V (Q(t+ 1))− V (Q(t))|Q(tk)]

=

tk+1−1∑
t=tk

IE
[〈

Q(t+ 1),Q(t+ 1)
〉
−
〈
Q(t),Q(t)

〉∣∣∣Q(tk)
]

=

tk+1−1∑
t=tk

IE
[
2
〈
Q(t),∆(t)

〉
+
〈
∆(t),∆(t)

〉∣∣∣L(tk)
]

(3.6)

By the assumption of finite support of the arrival process, we have ∆ij(t) ≤ Amax for any t, and

thus
〈
∆(t),∆(t)

〉
≤ N2A2

max.

It now remains to bound the first term in (3.6).

IE
[〈

Q(t),∆(t)
〉∣∣∣Q(tk)

]
=IE

[〈
Q(t),A(t)− S(t)1{r(t)=0}

〉∣∣∣Q(tk)
]

=
〈
Q(t),λ

〉
− IE

[〈
Q(t),S(t)

〉∣∣∣Q(tk)
]

+ IE
[〈

Q(t),S(t)
〉
1{r(t)>0}

∣∣∣Q(tk)
]

=IE
[〈

Q(t),λ− S∗(t)
〉

+
〈
Q(t),S∗(t)− S(t)

〉∣∣∣Q(tk)
]

+ IE
[〈

Q(t),S(t)
〉
1{r(t)>0}

∣∣∣Q(tk)
]

(3.7)

where S∗(t) is the MaxWeight schedule at time t. By the definition of the traffic load ρ, we may

write λ = ρ
∑I

i=1 Pi, where Pi ∈ S for i = 1, . . . , I . Then by the definition of the MaxWeight

schedule, we have

〈
Q(t),λ− S∗(t)

〉
≤ −(1− ρ)W ∗(t) (3.8)
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Also by the definition of the Adaptive MaxWeight policy, we have

〈
Q(t),S∗(t)− S(t)

〉
= W ∗(t)−W (t) ≤ g(W ∗(t)) (3.9)

Apply (3.8) and (3.9) into (3.7), and use W (t) ≤ W ∗(t), we then obtain

IE
[〈

Q(t),∆(t)
〉∣∣∣L(tk)

]
≤IE

[
−(1− ρ)W ∗(t) + g(W ∗(t))

∣∣∣L(tk)
]

+ IE
[
W ∗(t)1{r(t)>0}

∣∣∣L(tk)
]

(3.10)

For an interval [tk, tk+1] where Q(tk) satisfies W ∗(tk) > M +NT , Lemma 3.1 implies

that the schedule reconfiguration may occur at most once in the interval [tk, tk+1]. This is because

if a schedule reconfiguration occurs at τ ∈ [tk, tk+1], we have that W ∗(τ) ≥ W ∗(tk)−NT > M ,

and hence no reconfiguration may occur in [τ+1, tk+1] by Lemma 3.1. Thus ifW ∗(tk) > M+NT ,

then we have

tk+1−1∑
t=tk

1{r(t)>0} ≤ ∆r (3.11)

We thus have ∀Q(tk) : W ∗(tk) > M ,

IE
[
V (Q(tk+1))− V (Q(tk))

∣∣∣Q(tk)
]

≤
tk+1−1∑
t=tk

IE
[
−2(1− ρ)W ∗(t) + 2g

(
W ∗(t)

)
+ 2W ∗(t)1{r(t)>0}

∣∣∣L(tk)
]

+ TN2A2
max

≤− 2T (1− ρ) (W ∗(tk)−NT ) + 2Tg (W ∗(tk) +NAmaxT )

+ 2∆r (W ∗(tk) +NAmaxT ) + TN2A2
max

=− 2T (1− ρ− ∆r

T
)W ∗(tk) + 2Tg

(
W ∗(tk) +NAmaxT

)
+ 2T

(
(1− ρ)NT +NAmax∆r

)
+ TN2A2

max (3.12)
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Now since g(·) is a sublinear function, we get a negative Lyapunov drift when W ∗(tk) is

large. Specifically, let M ′ satisfies that (1− ρ− ∆r

T
)M ′ = 2g(M ′+NAmaxT ) + 2

(
(1− ρ)NT +

NAmax∆r

)
+N2A2

max and let B = max{M,M ′}, we have ∀Q(tk) : W ∗(tk) > B,

IE
[
V (Q(tk+1))− V (Q(tk))

∣∣∣Q(tk)
]
≤− T (1− ρ− ∆r

T
)W ∗(tk) (3.13)

Since
∑

ij Qij(t) ≥ W ∗(t) ≥ 1
N

∑
ij Qij(t), we have ∀Q(tk) :

∑
ij Qij(tk) > NB,

IE
[
V (Q(tk+1))− V (Q(tk))

∣∣∣Q(tk)
]
≤− T

N
(1− ρ− ∆r

T
)
∑
ij

Qij(tk) (3.14)

and by Fact 1, (3.13) implies that for any ρ < 1, the DTMC describing the queue length evolution

is positive recurrent under the Adaptive MaxWeight policy, and the queue lengths satisfy

lim
k→∞

IE [||L(tk)||] <∞. (3.15)

3.2.2 Queue Dynamics under Adaptive MaxWeight

Fig. 3.1 illustrates the sample paths of the total queue length, the maximum weight, and

the schedule weight of a network under the Adaptive MaxWeight policy. The green vertical

lines mark the times of schedule reconfiguration, tSk , and the schedule weight is considered

as zero during the reconfiguration delay (time period of length ∆r following each schedule

reconfiguration instance tSk ). We first observe that the schedule duration increases as the total

queue length increases. This is an essential component in achieving the network stability: let T

be the mean schedule duration, then in order to ensure stability under ∆r > 0, the rate of schedule

reconfiguration must satisfy 1− ∆r

T
> ρ. The schedule duration increases with the queue length

until this condition is satisfied.
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Figure 3.1: Sample paths of the total queue length, maximum weight, and the schedule weight,
under the Adaptive MaxWeight policy. The number of ports is N = 8, the traffic load is ρ = 0.6,
and the parameters of the AMW policy are δ = 0.01, γ = 0.1. The green lines mark the schedule
reconfiguration time instances tSk .

A somewhat more interesting observation is in the mechanism of this schedule duration

adjustment. Recall that in the construction of Adaptive MaxWeight policy, it requires no explicit

adjustment of the schedule duration. In other words, the duration of a schedule is not explicitly set

at the time it is reconfigured. Instead, through the schedule determination by weight comparison

at each time slot, the schedule duration is implicitly “adapted” to the appropriate value. After each

schedule reconfiguration, the schedule weight begins from the maximum weight and decreases

as the network is serving the queues associate with the schedule. When the total queue length

is larger (and accordingly the maximum weight is larger), the threshold is larger and it takes

longer for the weight difference between the maximum weight and the schedule weight to surpass

the threshold. Recall that this property is characterized by lemma 3.1 shown in the previous

subsection.

Note that this adaptive mechanism differs from other scheduling policies in the literature

that explicitly adjust the schedule duration ( [39], [37], [6]). We give a brief introduction of these

policies and categorize them based on this schedule provisioning behavior in section 3.4. The

performance comparison of these policies is then evaluated through simulations and presented in

the section 3.6.
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3.3 A Generalized Class of Adaptive Policies

3.3.1 g-Adaptive Variants of Scheduling Policies

Given a Markov scheduling policy π and current state Xt, let Π(t) = π(Xt) denote the

schedule generated by π at time t. With the weight function W , let W π(t) = WΠ(t)(t) denote the

weight of the schedule Π(t) at time t.

At any given time t, ∆W (t) = W π(t)−WS(t−1)(t) measures the potential improvement

(in terms of schedule weight) associated with following policy π instead of sticking with the

previous schedule S(t−1). Since each schedule change results in a loss in duty cycle, the proposed

class of adaptive policies show some inertia against frequent schedule reconfiguration. More

precisely, let us define a hysteresis function g where g : IR→ IR is a nonnegative, continuous,

strictly increasing, and sublinear (i.e. lim
x→∞

g(x)
x

= 0) function. Our proposed g-adaptive Markov

policy πg uses the new schedule Π(t) only if ∆W (t) > g(W π(t)). In other words,

Πg(t) = πg
(
S(t− 1),Q(t)

)
=

 S(t− 1) if ∆W (t) ≤ g(W π(t))

Π(t) if ∆W (t) > g(W π(t))
(3.16)

Note that the proposed g-adaptive Markov policy could be constructed from any Markov schedul-

ing policy. Given the Markov policy π, we call πg the g-adaptive variant of π.

The intuition behind this construction is that the g-adaptive policy holds on to the previous

schedule as long as it is “good enough” relative to the current schedule generated by π, Π(t).

The sublinearity of the function g(·) is a technical assumption in order to achieve the throughput

optimality, which would become clear in the analysis given in the next subsection.

We now give some examples for possible combinations of hysteresis function g(·) and

scheduling policy π.
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Example 3.1. (g-adaptive variant of the Pipelined MaxWeight policy)

Under the pipelined MaxWeight policy [41], the scheduler determines the schedule at

time t to be the schedule maximizing the weight at time t−K, for some fixed scalar K < ∞.

Intuitively, one can think of the pipelined MaxWeight as a scheduler that initiates MaxWeight

computation at each time slot but obtains and enforces it only K time slots later. Therefore, the

schedule at time t is the MaxWeight schedule based on Q(t−K). The selection of the function

g(·) could be any continuous, strictly increasing, and sublinear function, e.g. g(x) = log(1 + x).

In the following three examples, we introduce scheduling policies that are MaxWeight

policies with respect to different definitions of the weight function W . For ease of presentation,

we consider the hysteresis function to be g(x) = (1− γ)x1−δ.

Example 3.2. (g-adaptive variant of the Projective Cone Scheduling policy)

In [40], the weight function W takes the form WS(Q) =
〈
vec(S),Pvec(Q)

〉
where P ∈

IRN2×N2

and vec(·) is the vectorization of a matrix. The MaxWeight policy corresponding to this

weight function W is called the Projective Cone Scheduling (PCS) policy. It was shown that if P

is positive definite, symmetric, and has non-positive off-diagonal elements, then the PCS policy

is throughput optimal.

Example 3.3. (g-adaptive variant of the MaxWeight-α policy)

For any fixed α > 0, let the weight function be WS(Q) =
∑N

i,j=1 Q
α
ij(t)Sij(t), then the

corresponding MaxWeight policy is referred as the MaxWeight-α policy in the literature. Under

the MaxWeight-α policy, the schedule at time t is given by

ΠMWα(t) = arg max
S∈S

N∑
i,j=1

Qα
ij(t)Sij(t) (3.17)

Since the MaxWeight scheduling policy is well known for its high computation complexity,
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in the literature several lower complexity policies have also been proposed with good stability

conditions when ∆r = 0. We consider the adaptive variant of these policies as well.

Example 3.4. (g-adaptive variant of Tassiulas random policy)

The Tassiulas Random policy [45] utilizes random schedule selection and memory to

determine the schedule. It compares the weight between the last schedule and a randomly

selected schedule (according to an arbitrary distribution on the feasible schedule S , say uniformly

random). Let Z(t) be the randomly selected schedule at time t, then the schedule determined by

the Tassiulas random policy is given by

ΠZ(t) =

 ΠZ(t− 1) if WΠZ(t−1)(t) ≥ WZ(t)(t)

Z(t) otherwise
(3.18)

Example 3.5. (g-adaptive variant of the Hamiltonian policy)

The Hamiltonian policy (ALGO 3 in [19]) utilizes the Hamiltonian walk on the set of

permutation matrices and memory to determine the schedule. It compares the schedule weight

between the last schedule and the schedule on the Hamiltonian path and select the schedule with

higher weight. Specifically, let H(t) be the schedule on the Hamiltonian path at time t, then the

schedule determined by the Hamiltonian policy is given by

ΠH(t) =

 ΠH(t− 1) if WΠH(t−1)(t) ≥ WH(t)(t)

H(t) otherwise
(3.19)
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3.3.2 Conditions for Throughput Optimal g-Adaptive Variants

Before we begin the analysis of the proposed adaptive policies, we state the following

assumptions. For the weight function, we first focus only on Lipshitz continuous weight functions,

and consider more general cases in later discussions:

Assumption 3.1. Assume the weight functionW : S×IRN2 → IR satisfies that, for each schedule

S ∈ S, the weight of the schedule, WS : IRN2 → IR, is Lipschitz continuous 1.

We utilize the Foster-Lyapunov Theorem (cf. Fact 1 in Appendix) to show the throughput

optimality of the adaptive policies. Let V : IRN×N → IR be a non-negative, real-valued Lyapunov

function, and define the drift of V at time t as ∆V (t) = V (Q(t+ 1))− V (Q(t)). The general

procedure of establishing the throughput optimality is to show that the conditional Lyapunov

drift IE [∆V (t)|Q(t)] to be negative in all but a finite subset of the states Q(t). The following

assumption characterizes the Lyapunov functions (with respect to a weight function) used for

throughput analysis of most of the scheduling policies under zero reconfiguration delay.

Assumption 3.2. Given the weight function W , the non-negative, real-valued Lyapunov function

V : IRN×N → IR satisfies that, under the schedule S, the expected Lyapunov drift satisfies:

IE
[
∆V (t)

∣∣∣Q(t),S(t) = S
]
≤ Λ(Q(t))−WS(Q(t)) (3.20)

where Λ(·) is a term that is not dependent on S.

Furthermore, suppose the schedule S is the MaxWeight schedule Π∗(t), then

Λ(Q(t))−W ∗(t) ≤ −εW ∗(t) +K (3.21)

for some fixed constant ε,K > 0.

1Given X,Y metric spaces with corresponding metric dX , dY , a function F : X → Y is Lipschitz continuous if
there exists a real constant B ≥ 0 such that dY (F (x1), F (x2)) ≤ BdX(x1, x2).
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Note that (3.20) determines an upper bound on the conditional Lyapunov drift which

depends on the schedule S only through the weight function WS, and (3.21) is needed to establish

the negative drift. We use the MaxWeight policy as an example to illustrate Assumption 3.2. Take

the weight function as WS(Q) = 〈S,Q〉 and the Lyapunov function as V (Q) = 〈Q,Q〉. We

have the conditional Lyapunov drift given by

IE
[
∆V (t)

∣∣∣Q(t)
]
≤ 〈λ,Q(t)〉 −WS(t) +N2A2

max, (3.22)

hence we have Λ(Q(t)) = 〈λ,Q(t)〉 + N2A2
max. Also, with S = Π∗(t), we have 〈λ,Q〉 −

W ∗(t) ≤ −(1− ρ)W ∗(t). Hence

Λ(Q(t))−W ∗(t) ≤ −(1− ρ)W ∗(t) +N2A2
max (3.23)

Remark. Note that the conditional Lyapunov drift expression in Assumption 3.2 is evaluated

under zero reconfiguration delay. In the case of nonzero reconfiguration delay and the network

is in reconfiguration at time t, we may simply evaluate the conditional drift in (3.20) with

WS(Q(t)) = 0, indicating the schedule is not serving the network.

With the previous assumptions, we now introduce a class of scheduling policies that

guarantee bounded expected weight differences to the MaxWeight schedule at all times, and show

the throughput optimality of their g-adaptive variant.

Condition 3.1. Given the weight function W , the scheduling policy π satisfies the following

property:

There exists a constant G <∞ such that the schedule weight of the scheduling policy π,

W π(t) = WΠ(t)(t), satisfies

IEπ [W π(t)|Q(t)] ≥ W ∗(t)−G, ∀t (3.24)
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Theorem 3.2. Given any reconfiguration delay ∆r > 0. Assume the arrival traffic is admissible

and satisfies Assumptions 2.1- 2.3. Assume the weight function W satisfies Assumption 3.1

and there exists a non-negative, real-valued Lyapunov function V : IRN×N → IR that satisfies

Assumption 3.2 with weight function W .

Suppose the Markov policy π satisfies Condition 3.1 with weight function W , then the

g-adaptive variant of π is throughput optimal.

The proof of Theorem 3.2 is given in section 3.8. The proof utilizes the Foster-Lyapunov

Theorem and consists of two main components. The first one shows that the schedule of the

adaptive policy πg has weight difference to the MaxWeight schedule bounded by a sublinear

function of the maximum weight. This potentially gives the negative Lyapunov drift. The second

part is that the rate of schedule reconfiguration becomes smaller as the queue lengths become

larger. With this property, we show that the overhead incurred by the schedule reconfiguration

delay becomes arbitrarily small when the total queue lengths
∑

ij Qij(t) increases. This suffices

to give the guarantee of negative expected drift when
∑

ij Qij(t) is large and thus guarantee

the stability. With Theorem 3.2, we are now ready to show the throughput optimality of some

example adaptive policies given in the previous subsection.

Corollary 3.1. The adaptive policies in examples 3.1 and 3.2 are throughput optimal.

Proof. With the example weight function given for Assumption 3.1 and 3.2, we have these

assumptions satisfied.

For example 3.1, Condition 3.1 is satisfied with G = N(Amax + 1)K. To see this, recall

that W π(t) = WΠ(t)(L(t)) =
〈
L(t),Π(t)

〉
, and note that at most one packet could depart from
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each queue at each time slot, and hence

〈
L(t),Π(t)

〉
≥
〈
L(t−K),Π(t)

〉
−NK

=
〈
L(t−K),Π∗(t−K)

〉
−NK. (3.25)

Since the arrivals are bounded by Amax, we also have

〈
L(t),Π∗(t)

〉
≤
〈
L(t−K),Π∗(t−K)

〉
+NAmaxK. (3.26)

From (3.25) and (3.26), W π(t) ≥ W ∗(t) − N(Amax + 1)K and thus Condition 1 is

satisfied.

Corollary 3.2. The g-adaptive variant of the Hamiltonian policy given in example 3.5 and the

g-adaptive variant of the Tassiulas random policy given in example 3.4 are throughput optimal.

Proof. In [19] the Hamiltonian policy is shown to satisfy Condition 3.1 with G = 2N(N !), hence

by Theorem 3.2 it achieves throughput optimality.

For the Adaptive Tassiulas policy, let Pr{Z(t) = Π∗(t)} ≥ ε > 0 for all t and for some ε.

In [22], the Tassiulas random policy is shown to satisfy Condition 3.1 with G = 2N 1−ε
ε

, hence by

Theorem 3.2 it achieves throughput optimality.

The throughput optimality guarantees could also be extended to some policies with non-

Lipshitz continuous weight functions. In particular, we consider weight functions in the following

form:

Assumption 3.3. Assume the weight function W is defined as

WS(Q) =
N∑

i,j=1

f(Qij)Sij (3.27)

for some continuous, non-decreasing function f with f(0) = 0.
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For the ease of exposition, we restrict the policies of interest to those that have strictly

bounded weight difference to the MaxWeight schedule (rather than just expected weight difference

being bounded).

Condition 3.2. Given the weight function W , the scheduling policy π satisfies the following

property:

There exists a constant G <∞ such that the schedule weight of the scheduling policy π,

W π(t) = WΠ(t)(t), satisfies

W π(t) ≥ W ∗(t)−G, ∀t (3.28)

Theorem 3.3. Given any reconfiguration delay ∆r > 0. Assume the arrival traffic is admissible

and satisfies Assumptions 2.1- 2.3. Assume the weight function W satisfies Assumption 3.3 with

function f . Suppose the scheduling policy π satisfies Condition 3.2 under the weight function W .

If the sublinear function g(·) satisfies lim
x→∞

f ′(x)
g(f(x))

= 0, then the g-adaptive variant of π achieves

throughput optimality.

Corollary 3.3. Given α > 0, and suppose that the sublinear function g satisfies lim
x→∞

xα−1

g(xα)
= 0,

then the g-adaptive variant of MaxWeight-α is throughput optimal.

3.4 Benchmark Policies

For scheduling policies accounting for nonzero reconfiguration delay, we classify them

into two categories: “quasi-static scheduling” and “dynamic scheduling.” Quasi-static scheduling

policies, also refered to as “batch scheduling,” [39] select a series of schedules based on a single

schedule computation process, as shown in Figure 3.2 (a). We argue that under these policies,

the generated schedules may depend on very out-dated information, especially for schedules
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employed later in a batch. This is the source of significant performance degradation. In contrast,

under dynamic scheduling policies, each schedule is generated based on the most up-to-date

queue information, as shown in Figure 3.2 (b). We now describe several example policies for

each class and discuss their performance.

3.4.1 Quasi-static Scheduling Policies

In [39], batch scheduling policies are further classified as fixed batch scheduling (FBS)

policies or adaptive batch scheduling (ABS) policies depending on how to determine the time

instances for schedule computation. If the time between two schedule computation is a fixed

duration then it is a FBS policy, otherwise it is a ABS policy. In general, a FBS policy does

not guarantee stability unless the number of schedules employed within a batch is restricted to

avoid too frequent schedule reconfiguration. The traffic matrix scheduling (TMS) policy [37]

is a special case of FBS policy which could guarantee stability if the traffic load is known in

advance. Under the TMS policy, the schedule computation occurs at tk = kW for some integer

parameter W <∞ and k = 0, 1, . . . The TMS policy utilizes the Birkhoff von-Neumann (BvN)

decomposition [8] to determine the schedules in the following W time slots. More specifically,

the scheduler takes the queue length information Q(tk) and scales it to a doubly stochastic matrix

B(tk) which indicates the relative service requirement in the following W slots and performs

the BvN decomposition on B(tk) as B(tk) =
∑D

i=1 αiPi. Note the number of terms D in the

decomposition may vary (while D ≤ N2− 2N + 2). In practice, the parameter D is set as a fixed

number to avoid excessive schedule changes and D largest weighted schedules are chosen. If

the arrival traffic load is known a priori, an appropriate choice of parameters ensures the stability

of TMS. Besides the TMS policy, other scheduling policies that determines schedules based on

decomposition of the workload (e.g. [10, 24, 48]) could also be considered as variants of the FBS

policy.

The ABS policy proposed in [39] determines each schedule computation time as the
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Figure 3.2: Timing diagram for different scheduling strategies. (a) Quasi-static policies: Series
of schedules determined in a single schedule computation, and some schedules could depend
on out-dated queue information when being deployed. (b) Dynamic policies: Each schedule is
computed based on the most up-to-date edge queue information.

time the packets from last batch are cleared. The ABS guarantees rate stability [39] which is a

weaker notion of stability compared to the strong stability considered in this paper. In fact, the

expected queue length may be unbounded under the ABS policy, hence it is not considered in

the performance comparison in this work. On the other hand, the Variable Frame MaxWeight

(VFMW) policy proposed in [6] can be viewed as a variant to the ABS policy. The VFMW policy

selects only one schedule for each batch, and the batch duration is a function of the batch size

(instead of being the time that the batch is cleared). While the VFMW policy is shown in [6] to be

throughput optimal, it has poor delay performance since it selects and fixes the schedule duration

disregarding the arrivals in the schedule duration, which is a similar problem to other quasi-static

policies.

3.4.2 Dynamic Scheduling Policies

In contrast to the quasi-static policies, under the dynamic scheduling policies, the schedule

being employed at each schedule reconfiguration instance is based on the most up-to-date

queue length information. Frame-based policies, such as the Fixed Frame MaxWeight (FFMW)

policy [25], are examples for dynamic policies. The FFMW policy selects a fixed period T and

sets the schedule reconfiguration times at tn = nT, n = 0, 1, 2, . . . At each tn, the schedule is

selected as the MaxWeight schedule at time tn, therefore each schedule is based on the most
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up-to-date queue information and result in an improved delay performance. Unfortunately, like

the TMS policy, however, the FFMW requires prior knowledge of the traffic load to guarantee

the network stability which is similar to the TMS policy. Note that by the definition given, our

proposed g-adaptive policies are other examples of dynamic policies. In contrast to the FFMW,

however, our proposed g-adaptive policies achieve throughput optimality without prior knowledge

of the traffic load. Moreover, the g-adaptive policies also have good delay performance, as would

be shown through simulations in the next section.

3.5 Application: All-Optical Data Center Network

In this section, we introduce a practical example of the switch scheduling with reconfigu-

ration delay, which proposes the adoption of optical switches in data center networks.

Massive data centers serve as the basis of a huge variety of online services and applica-

tions nowadays. The underlying network interconnects face increasingly stringent performance

requirements such as high data bandwidth and low latency. All-optical networks emerge as a

promising candidate for the next generation data center networks and benefit from two technical

breakthroughs: (1) the advancement of dense wavelength division multiplexing (DWDM) in

optical fibers and (2) the optical switches substituting traditional electronic switches, which

typically incur high cost and high power demand when supporting high data bandwidth. However,

due to the inherently bufferless nature of optical switches, the data transmission in an all-optical

network will need to be conducted in an end-to-end fashion. In other words, all of the buffering

occurs at the end hosts or the top of the rack (ToR) switches, and the data transmission would take

place only when the connection between hosts is established. An example of this architecture is

proposed in [27], in form of a prototype design with extremely promising properties. From an

end-to-end perspective, this architecture with zero in-network buffering can be viewed as a single

crossbar switch interconnecting the end hosts (or ToR switches), with the exception that the full
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Figure 3.3: An illustration of the system model

bisection bandwidth is not always guaranteed. Under this architecture, an efficient utilization

of the all-optical network depends on a centralized controller that can efficiently schedule the

end-to-end transmissions.

The main challenge of the scheduling for optical networks, as opposed to the traditional

electronic crossbar switch scheduling, comes from the fact that optical networks typically exhibit

a nonzero reconfiguration delay upon changing the circuit configuration. For instance, candidate

technologies such as MEMS [47], WSS [13] involve mechanically directing laser beams and thus

require a certain time to finish circuit reconfiguration due to physical limits. During the circuit

reconfiguration, reliable packet transmission could not be supported in the network. Notice that

for the architecture considered in this paper, the reconfiguration delay may further include the

time for the control plane to control/communicate with the optical switches, and the time for end

hosts to initiate/pause packet transmissions. For example, a state of the art system implemented

in [27] reports a measured reconfiguration delay up to 20 µs (including delay caused by the

control plane and end-host), which is significantly larger than the inter-frame gap of 0.96 ns (for

100 Gigabit Ethernet). This nonzero reconfiguration delay motivates the need for scheduling

policies that explicitly account for the reconfiguration delay.

Fig. 3.3 gives an illustration of the proposed optical network scheduling framework. Each

ToR switch can serve both as a source and a destination simultaneously. We assume no buffering

in the optical network, hence all the buffering occurs in the edge of the network, i.e. within the
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ToR switches. Each ToR switch maintains N − 1 edge queues (either physically or virtually),

which are denoted by Qij , where j ∈ {1, 2, . . . , N}\{i}. Packets going from ToR switch i to j

are enqueued in the edge queue Qij before transmission.

In the next section, we present simulation results in the context of all-optical data center

networks.

3.6 Simulations

We now present simulation results for the AMW policy, and compare them to the bench-

mark scheduling policies such as TMS, FFMW and VFMW. We also present comparison of the

AMW policy against adaptive variants of low complexity policies approximating the MaxWeight

policy, as given in the examples in section 3.3.

The experiments are conducted with the simulator built for the REACToR switch in [27].

The reconfiguration delay is ∆r = 20 µs. In order to compare scheduling policies in optical

switches, we cease the electronic switches in the hybrid switch in [27] and only utilize the optical

switches. We consider N = 100 ToR switches, and the network topology is assumed to be

non-blocking. Therefore, the set of feasible schedules S is in fact the set of N ×N permutation

matrices. Each link has data bandwidth B = 100 Gbps, and the packets are of the same size

p = 1500 bytes (each takes 0.12µs for transmission). Each edge queue can store up to 1× 105

packets, and incoming packets are discarded when the queue is full.

The traffic is assumed to be admissible, i.e. ρ(λ) < 1, while the load matrices λ are

classified as the following types:

1. Uniform: λij = ρ/N, ∀1 ≤ i, j ≤ N .

2. Nonuniform: λij = ρ
M

∑M
m=1 Pm

ij where Pm ∈ P are randomly selected permutation

matrices, and M = 100.
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Figure 3.4: Mean queue length versus traffic load ρ under uniform traffic. The TMS policy
reconfigures the schedule D = 10 times within DT slots. The scheduling rate under either the
TMS or PMW is equal to 1/T , while under AMW is adapted to the traffic load intensity.
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Figure 3.5: Mean queue length versus traffic load ρ under nonuniform traffic. The TMS policy
reconfigures the schedule D = 10 times within DT slots.
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Figure 3.6: Mean queue length versus the reconfiguration delay ∆r under nonuniform traffic.
The traffic load is fixed as ρ = 0.3.

The performance measure used is the mean edge queue length (averaged over queues and

over time). Notice that the expected average delay of the entire network is linearly related to this

quantity according to the Little’s law.

In Figs. 3.4 and 3.5, we compare the scheduling policies described in section 3.4 under the

uniform and the nonuniform traffic, respectively. For TMS, we set the number of schedules used

between two schedule computation time instances to be Q = 10. In Figs. 3.4 and 3.5 we can see

that the TMS and FFMW perform comparably, while the FFMW slightly outperforms the TMS

under the same schedule reconfiguration rate 1/T = 10/W . We note that under both the TMS

and FFMW policies, the traffic loads they could stabilize are determined by the reconfiguration

rate 1/T = 10/W . In general, a smaller T (W ) value gives better delay performance at a fixed

stable load, but choosing a smaller T (W ) value also decreases the maximum load that the TMS or

FFMW policy could stabilize, which makes the design choice highly dependent on the accuracy

of the traffic load. We also note that the VFMW policy, while is known to achieve the throughput

optimality, underperforms both the FFMW and TMS policies in practice. In contrast, the AMW

policy shows an improved performance over the FFMW and TMS policies, and at the same time
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guarantees throughput optimality. Another important implication from the two figures is that

even if we know exactly the traffic load ρ and fine tune the optimal schedule reconfiguration

period T for the FFMW and TMS policies, they are at most comparable to the AMW policy. The

AMW policy has the merit that achieves better performance (over other policies) at any traffic

load without the need to adjust the parameters.

The end-to-end per packet delay of the FFMW and AMW policies under various recon-

figuration delay ∆r are shown in Fig. 3.6. The traffic load is fixed as ρ = 0.3. We can see that

the AMW outperforms the FFMW under each ∆r value, regardless of the parameter selection

of the FFMW policy. Even more notable, the performance of the AMW actually traces the

optimal performance of the FFMW. This observation, along with the observation in the previous

paragraph, suggests that the adaptive strategy of the AMW allows it to capture the optimal

schedule reconfiguration rate based solely on the queue lengths and no prior knowledge of the

arrival statistics is required.

The previous simulation results may also be used to evaluate the practicality of the

proposed all-optical network architecture, in terms of the memory required at the ToR switches.

For example, consider a network with N = 100 ToRs with reconfiguration delay ∆r = 20 µs as

shown in Fig. 3.5. Even at a very high traffic load ρ = 0.9, the mean total queue length in a ToR

(aggregating queues destined for all ToRs) is approximately 103 ∗ 1500 bytes ∗ N = 150MBytes,

which is still feasible in commercially available ToR switches [2].

We now consider the effect of the parameter selection for the AMW policy. In particular,

we consider the performance as a function of parameters of the hysteresis function g(x) =

(1− γ)x1−δ, evaluated under various traffic loads (ρ ∈ {0.3, 0.5, 0.8, 0.9, 0.98}). In Fig. 3.7, we

fix the threshold ratio as γ = 0.01 and evaluate the performance under various sublinear exponent

δ. Note that the mean queue length becomes shorter (better performance) when δ approaches 0

(which means g is closer to a linear function), and that the mean queue length increases quickly

as δ becomes larger. This implies that we should avoid selecting g(x) that grows too slow with x

40



0 0.02 0.04 0.06 0.08 0.1

Sublinear Exponent, δ

101

102

103

104

M
e
a
n
 Q

u
e
u
e
 L

e
n
g
th

Load ρ = 0.98

Load ρ = 0.9

Load ρ = 0.8

Load ρ = 0.5

Load ρ = 0.3

Figure 3.7: Mean queue length versus sublinear exponent δ for the AMW policy. The threshold
ratio is fixed as γ = 0.01.
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Figure 3.8: Mean queue length versus threshold ratio γ for the AMW policy. The sublinear
exponent is fixed as δ = 0.
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(such as large δ, or even logarithmic functions like g(x) = log(1 + x)) for better performance,

despite the fact that throughput optimality guarantee from Section 3.3 actually applies for a large

class of sublinear functions g(x). Another observation we could make from Fig. 3.7 regards the

performance at δ = 0. Note that the throughput optimality guarantee does not include this case

since g becomes a linear function. However, numerically and anecdotally the performance at

δ = 0 is generally good, and is even the optimal at most traffic loads (except at very high traffic

load). The above observations simplify the parameter selection process: Since we rarely operate

the network at traffic load close to the capacity, it is reasonable just to fix δ at a value close to 0.

In Fig. 3.8, we show the performance under variousvalues of ratio threshold γ, while the

sublinear exponent is fixed as δ = 0. Comparing with Fig. 3.7, we first note that the effect of γ on

the performance is even less significant than the effect of δ. Moreover, from the curves we could

find a region of γ values (around [0.05, 0.1]) where the performances are close to the optimal

performance at each traffic load.

Combining the above results, the non-asymptotic delay performance of the AMW policy

is quite robust to the parameter selection in the sense that we could easily select a combination

of (δ, γ) that has comparable performance to the optimal, even if we have no knowledge of the

traffic load. This result further strengthens our analytical result that the AMW policy achieves

throughput optimality without any knowledge of the traffic load. Besides the traffic load, we also

consider the robustness of parameter selection under different system parameters such as number

of ToR switchesN , and reconfiguration delay ∆r. In Tables 3.1 and 3.2 shown below, we compare

the mean queue length under a set of fixed parameters (δ, γ) = (0.01, 0.05) to the minimum mean

queue length (over all parameter combinations) under different system parameters, and compute

the percentage of excess queue length. The traffic load is fixed as ρ = 0.5. We could see from the

tables that the performance of the fixed parameter is close to the optimal in all these cases, and

conclude that the robustness of the AMW also holds under different system parameters.

One of the shortcomings of the AMW policy is the complexity for computing the
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Figure 3.9: Mean queue length versus traffic load for different adaptive policies. Number of
ToRs is N = 8 and g(x) = (1− γ)x1−δ with γ = 0.1, δ = 0.01.
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Figure 3.10: Duty cycle versus traffic load for different adaptive policies. Number of ToRs is
N = 8 and g(x) = (1− γ)x1−δ with γ = 0.1, δ = 0.01.
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Table 3.1: Excess over minimum under various N , with ∆r = 20µs.

N 4 8 16 32 64 100
Excess (%) 2.8 1.2 0.4 1.8 1.0 2.4

Table 3.2: Excess over minimum under various ∆r, with N = 100.

∆r (µs) 20 50 100 200 500
Excess (%) 2.4 3.1 2.4 2.1 1.6

MaxWeight schedules. Next, we consider the adaptive variants of lower complexity scheduling

policies introduced in examples 3.4 and 3.5. Fig. 3.9 shows the mean queue length versus traffic

load for the Adaptive Hamiltonian (AHam), the Adaptive Tassiulas random policy (ATass), and

the AMW policies, under uniform traffic. Since the delay performance of the lower complexity

policies degrade drastically at large number of ToRs (G ≈ N ! in Condition 3.1 for AHam and

ATass), hence we set N = 8 for the simulations here. We also show the duty cycles of these

policies in Fig. 3.10, where the duty cycle is defined as DC ∆
= 1− ∆r

IE[T ]
, and IE[T ] is the mean

schedule duration. Note that a necessary condition for a scheduling policy to be throughput

optimal under traffic load ρ is to satisfy DC > ρ, which is satisfied by all the scheduling policies

shown here.

From Fig. 3.9, we could see that the delay performance for the lower complexity policies

are worse than the AMW policy. We may also observe that as the traffic load gets larger, the

performance difference increases. This is because the schedule weight decreases in a slower

rate (due to higher arrival rate), and it takes more time for the lower complexity policies to find

a schedule with high enough weight. This could be validated by Fig. 3.10 that the schedule

durations become significantly long (DC → 1) at high traffic loads. Note that the AHam policy

has the worst delay performance for all traffic loads, this is probably because the Hamiltonian

walk only changes few served queues in a time slot, and generally takes longer to find the next

good schedule.
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3.7 Concluding Remarks

In this chapter we consider the scheduling problem for switch model subject to reconfig-

uration delay. Due to the schedule reconfiguration delay, many throughput optimal scheduling

policies (under zero reconfiguration delay) in the literature could not be directly applied in this

problem. We propose the Adaptive MaxWeight policy that addresses the schedule reconfiguration

delay and generalizes the Adaptive MaxWeight policy to a general method to develop a class of

scheduling policies for scheduling with nonzero reconfiguration delay, namely the g-adaptive

variant policies. Given any Markov policy π, a weight function W , and a sublinear hysteresis

function g(·), we construct a g-adaptive variant of π which involves a weight comparison between

the current schedule and the schedule generated by π, and reconfigure to the schedule generated by

π when it is “significantly better.” We prove the throughput optimality of the Adaptive MaxWeight

and the g-adaptive variants of π given the weight of schedule generated by π is guaranteed to

have bounded weight difference to the maximum weight policy (either in the deterministic or the

expected sense).

Chapter 3, in part, is a reprint of the material as it appears in the paper: C.-H. Wang, T.

Javidi, G. Porter, ”End-to-end Scheduling for All-Optical Data Centers”, IEEE Conference on

Computer Communications (INFOCOM), pp 406-414, 2015. The dissertation author was the

primary investigator and author of this paper.

Chapter 3, in part, is a reprint of the material as it appears in the paper: C.-H. Wang, T.

Javidi, ”Adaptive Policies for Scheduling with Reconfiguration Delay: An End-to-end Solution for

All-Optical Data Centers”, IEEE/ACM Transactions on Networking (TON), vol 25, pp 1555-1568,

2017. The dissertation author was the primary investigator and author of this paper.
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3.8 Supplementary Proofs

The following Foster Lyapunov Theorem is used to show the stability in the proofs in this

section.

Fact 1 (Foster-Lyapunov [20]). Given a system of edge queues Qij, 1 ≤ i, j ≤ N , with queue

lengths Q(t) = [Qij(t)], which could be described by an irreducible discrete-time Markov chain

(DTMC) on a countable state space IINN×N . Let f , g be two nonnegative functions on IINN×N

such that ∀Q(tk) ∈ IINN×N ,

IE [V (Q(tk+1))− V (Q(tk))|Q(tk)] ≤ −f
(
Q(tk)

)
+ g
(
Q(tk)

)
and suppose for some ε > 0, the set C = {Q ∈ IINN×N : f(Q) < g(Q) + ε} is finite, then the

DTMC describing the queue length evolution is positive recurrent and we have

lim
k→∞

IE
[
f
(
Q(tk)

)]
≤ lim

k→∞
IE
[
g
(
Q(tk)

)]

3.8.1 Proof of Theorem 3.2

Notice that in the ∆r > 0 regime, the queue dynamics depends on whether the system is in

reconfiguration. We use r(t) to denote the remaining time for the system to be in reconfiguration

at time t, while r(t) = 0 indicates that the system is not in reconfiguration.

Now define X(t) =
(
Q(t),S(t− 1), r(t)

)
, then {X(t)}∞t=0 forms an irreducible DTMC.

In the following, we consider the T -step conditional Lyapunov drift (where the value of T <∞

is to be determined later) to show the stability. In other words, we determine the conditional
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Lyapunov drift for the sampled process {X(tk)}∞k=0 (which is also a DTMC) at times tk = kT :

IEπg
[
V (Q(t

k+1
))− V (Q(tk))

∣∣X(tk)
]

=

tk+1−1∑
t=tk

IEπg
[
∆V (t)

∣∣X(tk)
]

=

tk+1−1∑
t=tk

IEπg
[
Eπg [∆V (t)|X(t)]

∣∣∣X(tk)
]

(3.29)

By the assumption of the Theorem and that the system could not serve the queues during

reconfiguration, we may write

IEπg
[
∆V (t)

∣∣X(t)
]
≤Λ(Q(t))− IEπg

[
W πg(t)1{r(t)=0}

∣∣X(t)
]

≤− εW ∗(t) +K +
(
W ∗(t)− IEπg

[
W πg(t)1{r(t)=0}

∣∣X(t)
])

≤− εW ∗(t) +K +
(
W ∗(t)− IEπg

[
W πg(t)

∣∣X(t)
])

+ IEπg
[
W ∗(t)1{r(t)>0}

∣∣X(t)
]
, (3.30)

where the last inequality follows from W πg(t) ≤ W ∗(t) and 1{r(t)=0} + 1{r(t)>0} = 1.

By the construction of the g-adaptive variant and that π satisfies Condition 3.1, we have

W ∗(t)− IEπg
[
W πg(t)

∣∣∣X(t)
]

=W ∗(t)− IEπ
[
W π(t)

∣∣∣X(t)
]

+ IEπg
[
W π(t)−W πg(t)

∣∣∣X(t)
]

≤G+ IEπg
[
g(W π(t))

∣∣∣X(t)
]

≤G+ g(W ∗(t)) (3.31)

Since at most one packet could depart and at most Amax packets could arrive at each

queue in a time slot, then for any t ∈ [tk, tk+1], we have |Qij(t) − Qij(tk)| ≤ Amax(t − tk) ≤

AmaxT , and thus |
∑

ij Qij(t)−
∑

ij Qij(tk)| ≤ N2AmaxT . Hence for any schedule S, we have

|WS(Q(t))−WS(Q(tk))| ≤ BAmaxN
2T , where B is the Lipshitz constant. With this relation
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we derive the following bounds for the maximum weight at time t:

W ∗(t) = WΠ∗(t)(Q(t)) ≤ WΠ∗(t)(Q(tQij(t)k)) +BAmaxN
2T

≤ W ∗(tk) +BAmaxN
2T (3.32)

W ∗(t) ≥ WΠ∗(tk)(Q(t)) ≥ WΠ∗(tk)(Q(tk))−BAmaxN
2T

= W ∗(tk)−BAmaxN
2T (3.33)

Apply (3.30)-(3.33) into (3.29), we obtain

Eπg
[
V (Q(tk+1))− V (Q(tk))

∣∣∣Q(tk)
]

≤− εT (W ∗(tk)−BAmaxN
2T ) + Tg(W ∗(tk) +BAmaxN

2T )

+ T (G+K) +

tk+1−1∑
t=tk

Eπg
[
W ∗(t)1{r(t)>0}

∣∣∣Q(tk)
]

(3.34)

In order to achieve the stability, it is necessary to ensure that the reconfiguration does not

happen too often. We make this statement formal with the following lemma:

Lemma 3.2. Given any fixed T > 0 and a weight function W satisfying Assumption 3.1 with

Lipschitz constant B. Let g(x) be a sublinear and strictly increasing function, and let h(x) =

g(x−BAmaxN
2T )− 2BAmaxN

2T . Suppose the Markov policy π satisfies Condition 3.1 under

the weight function W , then under the g-adaptive variant of π:

IEπg

[
tk+1−1∑
t=tk

1{r(t)>0}

∣∣∣X(tk)

]
≤ ∆r +

TG

h(W ∗(tk))
(3.35)

The proof of Lemma 3.2 is given in section 3.8.2. Note that lemma 3.2 gives an upper

bound on the frequency of schedule reconfiguration when the queue length is large. Now select T
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such that T > ∆r

ε
, and apply Lemma 3.2 to (3.34), we obtain

Eπg
[
V (Q(tk+1))− V (Q(tk))

∣∣X(tk)
]
≤− T

(
ε− ∆r

T
− G

h(W ∗(tk))

)
W ∗(tk)

+ Tg
(
W ∗(tk) +BAmaxN

2T
)

+ T (G+K)

+ T
(
ε+

∆r

T
+

G

h(W ∗(tk))

)
BAmaxN

2T (3.36)

Since T > ∆r

ε
, we may select an arbitrary constant ε′ ∈ (0, ε − ∆r

T
). Then from the

sublinearity of g, we obtain

IEπg
[
V (Q(tk+1))− V (Q(tk))

∣∣∣X(tk)
]
< −Tε′W ∗(tk) +K ′ (3.37)

for some constant K ′ < ∞. It then follows Fact 1 that lim
k→∞

W ∗(tk) < ∞, and hence we have

lim
k→∞

∑
ij Qij(tk) <∞, which then implies the strong stability. Since the derived strong stability

holds for any admissible traffic load, we conclude that the g-adaptive variant of π achieves

throughput optimality.

3.8.2 Proof of Lemma 3.2

Proof. Let Z[s,t] be the number of schedule reconfigurations within the time period [s, t]. In the

following, we first derive an upper bound on Pr{Z[tk,tk+1] ≤ 1}, then use this bound to get an

upper bound on the expected length of reconfiguration during [tk, tk+1].

Let t′k = min
k:tSk≥t

tSk denote the first reconfiguration instance after time tk. Since either there

is no reconfiguration within [tk, tk+1] or t′k = τ for some τ ∈ [tk, tk+1], we have

Pr
{
Z[tk,tk+1] = 0

}
+

tk+1−1∑
τ=tk

Pr {τ = t′k} = 1 (3.38)

We may also write the probability that exactly one schedule reconfiguration occurs in the
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interval [tk, tk+1] as:

Pr{Z[tk,tk+1] = 1} =

tk+1−1∑
τ=tk

Pr
{
Z[τ,tk+1] = 0, τ = t′k

}
=

tk+1−1∑
τ=tk

Pr
{
Z[τ,tk+1] = 0

∣∣∣τ = t′k

}
Pr {τ = t′k} (3.39)

We now show that if at the schedule reconfiguration instance τ , the weight difference is

small, then no reconfiguration could occur in the interval [τ, tk+1]. In other words, we need to

show that W π(τ ′)−WΠ(τ)(τ
′) ≤ g(W π(τ ′)) for any τ ′ ∈ [τ, tk+1].

Let h(x) = g(x − BAmaxN
2T − G) − 2BAmaxN

2T , then if W ∗(τ) − WΠg(τ)(τ) <

h(W ∗(tk)), we have:

W ∗(τ ′)−WΠ(τ)(τ
′) ≤W ∗(τ ′)−WΠ(τ)(τ

′)

≤W ∗(τ)−WΠ(τ)(τ) + 2BAmaxN
2(τ ′ − τ)

<g(W ∗(tk)−BAmaxN
2T −G)

(a)

≤g(W π(τ ′)) (3.40)

where (a) follows from W π(τ ′) ≥ W ∗(τ ′) − G ≥ W ∗(tk) − G − BAmaxN
2T and g strictly

increasing. We thus have:

Pr
{
Z[τ,tk+1] = 0

∣∣∣τ = t′k

}
≥Pr

{
W ∗(τ)−WΠ(τ)(τ) < h(W ∗(t))

∣∣∣τ = t′k

}
(b)

≥1−
IEπ
[
W ∗(τ)−WΠ(τ)(τ)

]
h(W ∗(tk))

(c)

≥ 1− G

h(W ∗(tk))
(3.41)

where (b) follows from the Markov’s inequality, and (c) follows from Condition 3.1.
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Hence by (3.39) and (3.41) we have that

Pr
{
Z[tk,tk+1] ≤ 1

}
≥Pr

{
Z[tk,tk+1] = 0

}
+

tk+1−1∑
τ=tk

(
1− G

h(W ∗(tk))

)
Pr {τ = t′k}

≥1− G

h(W ∗(tk))
(3.42)

With the following bound which is obvious by definition:

tk+1−1∑
t=tk

1{r(t)>0} ≤

 ∆r, if Z[tk,tk+1] ≤ 1

T, if Z[tk,tk+1] > 1
, (3.43)

along with (3.42), we then have the bound on the expected schedule reconfiguration delay within

the interval [tk, tk+1]:

IEπg

[
tk+1−1∑
t=tk

1{r(t)>0}

∣∣∣X(tk)

]
≤ ∆r +

TG

h(W ∗(tk))
(3.44)

3.8.3 Proof of Theorem 3.3

Proof. We evaluate the conditional Lyapunov drift for the sampled process {X(tk)}∞k=0 following

(3.29). Now consider the Lyapunov function V (Q) =
∑N

i,j=1 F (Qij), where F (x) =
∫ x

0
f(y)dy

and let ∆(t) = A(t)−D(t), then following the derivation similar to [22], we have the one-step

51



expected Lyapunov drift given by

IEπg
[
∆V (t)

∣∣∣X(t)
]

=IEπg
[∑

i,j

(
F (Qij(t) + ∆ij(t))− F (Qij(t))

)∣∣∣X(t)
]

≤IEπg
[〈
f(Q(t)),∆(t)

〉∣∣X(t)
]

+
∑
i,j

∆ij(t)
2

2
max

u∈[−1,Amax]

∣∣f ′ (Qij(t) + u)
∣∣ (3.45)

Now note that

IEπg
[〈
f(Q(t)),∆(t)

〉∣∣∣X(t)
]

=IE
[〈
f(Q(t)),A(t)−Πg(t)1{r(t)=0}

〉∣∣∣X(t)
]

=
〈
f(Q(t)),λ−Πg(t)

〉
+W πg(t)1{r(t)>0}

≤
〈
f(Q(t)),λ−Π∗(t)

〉
+
(
W ∗(t)−W πg(t)

)
+W ∗(t)1{r(t)>0} (3.46)

By the definition of the traffic load ρ, we may write λ = ρ
∑I

i=1 Pi, where Pi ∈ S for i =

1, . . . , I . Then by the definition of the MaxWeight schedule, we have

〈
f(Q(t)),λ−Π∗(t)

〉
≤ −(1− ρ)W ∗(t) (3.47)

Also by the construction of the g-adaptive policy and the fact that the scheduling policy

satisfies Condition 3.2, we have

W ∗(t) = W πg(t) =[W ∗(t)−W π(t)] + [W π(t)−W πg(t)]

≤G+ g(W π(t)) ≤ G+ g(W ∗(t)) (3.48)

By Assumption 2.1, we have ∆2
ij(t) ≤ A2

max. Also, by the assumption that lim
x→∞

f ′(x)
g(f(x))

=

52



0, we have that ∀ε > 0, there exists a constant Kε <∞ such that

max
u∈[−T,AmaxT ]

∣∣∣f ′ (x+ u)
∣∣∣ ≤ εg(f(x)) +Kε. (3.49)

We then obtain the following:

∑
ij

∆2
ij(t)

2
max

u∈[−1,Amax]

∣∣∣f ′ (Qij(t) + u)
∣∣∣ ≤N2A2

max

2

(
εg

(
f

(
max
i,j

Qij(t)

))
+Kε

)
≤N

2A2
max

2

(
εg(W ∗(t)) +Kε

)
(3.50)

We thus have

IEπg
[
V (Q(tk+1))− V (Q(tk))

∣∣∣X(tk)
]

≤
tk+1−1∑
t=tk

IEπg
[
− (1− ρ)W ∗(t) +W ∗(t)1{r(t)>0} + g(W ∗(t))

+
N2A2

max

2
(εg(W ∗(t)) +Kε) +G

∣∣∣X(tk)

]
(3.51)

We now justify that the reconfiguration overhead is upper bounded when the queue lengths

are large. This is characterized by the following lemma:

Lemma 3.3. Given any fixed T > 0 and a scheduling policy π satisfying Condition 3.2 under the

weight function f(·). Let g(·) be a sublinear, strictly increasing function satisfying lim
x→∞

f ′(x)
g(f(x))

=

0. Then there exists a constant M < ∞ such that, if a reconfiguration occurs at time t and

W ∗(tk) > M , then no reconfiguration could occur in [t+ 1, t+ T ].

We postpone the proof of Lemma 3.3 to Appendix 3.8.4. Now by Lemma 3.3, ifW ∗(tk) >
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M , then since at most one schedule reconfiguration could occur within [tk, tk+1], we have

tk+1−1∑
t=tk

1{r(t)>0} ≤ ∆r (3.52)

Similar to (3.33), we derive the following lower and upper bounds on the change of the

maximum weight:

W ∗(t) = WΠ∗(t)(Q(t)) ≤
∑
i,j

Π∗ij(t)f(Qij(tk) + AmaxT )

≤
∑
i,j

Π∗ij(t)
(
f(Qij(tk)) + AmaxT max

u∈[0,AmaxT ]
|f ′(Qij(tk) + u)|

)
≤W ∗(tk) +NAmaxT (εg(W ∗(tk)) +Kε) (3.53)

W ∗(t) ≥ WΠ∗(tk)(Q(t)) ≥
∑
i,j

Π∗ij(tk)f(Qij(tk)− T )

≥
∑
i,j

Π∗ij(tk)
(
f(Qij(tk))− T max

u∈[−T,0]
|f ′(Qij(tk) + u)|

)
≥W ∗(tk)−NT (εg(W ∗(tk)) +Kε) (3.54)

Apply (3.52) - (3.54) into (3.51), then ∀X(tk) : W ∗(tk) > M ,

IEπg
[
V (Q(tk+1))− V (Q(tk))

∣∣∣X(tk)
]

≤− T
(
1− ρ− ∆r

T

)
W ∗(tk)

+ (T (1− ρ) + ∆rAmax)NT (εg(W ∗(tk)) +Kε)

+ Tg(W ∗(tk) +NAmaxT (εg(W ∗(tk)) +Kε)) + TG

+
T

2
N2A2

max

(
εg(W ∗(tk) +NAmaxT (εg(W ∗(tk)) +Kε)) +Kε

)
(3.55)
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Since T > 0 may be selected arbitrarily, we select T > ∆r

1−ρ so that 1 − ρ − ∆r

T
> 0. Then by

Fact 1, we have that {X(tk)}∞k=0 is positive recurrent under the g-adaptive variant of π, and the

queue lengths satisfy lim
k→∞

IE
[
f(
∑

ij Qij(tk))
]
<∞.

3.8.4 Proof of Lemma 3.3

Proof. By the assumption, the schedule is reconfigured to Π(t) at time t, and according to

Condition 3.2 we have W π(t) = WΠ(t)(Q(t)) ≥ W ∗(t)−G. It now suffices to show that at any

time τ ∈ [t+ 1, t+ T ], the weight of Π(t) is large enough so that no schedule reconfiguration

occurs.

First recall that at most one packet could depart from each queue in a time slot, and each

schedule has at most N parallel connections. Along with (3.49), we obtain

WΠ(t)(τ) =
〈
f(Q(τ)),Π(t)

〉
≥WΠ(t)(t)−NT max

i,j

(
max

u∈[−T,0]
|f ′ (Qij(t) + u) |

)
≥W ∗(t)−G−NT max

i,j
(εg(f(Qij(t))) +Kε) (3.56)

On the other hand, since the arrival at each queue is upper bounded by Amax according to

Assumption 2.1, we have an upper bound for the maximum weight given by

W ∗(τ) = WΠ∗(τ)(τ) ≤WΠ∗(τ)(t) +NAmaxT max
i,j

(
max

u∈[0,AmaxT ]
|f ′ (Qij(t) + u) |

)
≤W ∗(t) +NAmaxT max

i,j

(
εg(f(Qij(t))) +Kε

)
(3.57)

Combining (3.56) and (3.57) we get an upper bound for the weight difference between
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Π(t) and W π(τ):

W π(τ)−WΠ(t)(τ) ≤W ∗(τ)−WΠ(t)(τ)

≤N(Amax + 1)T
(
εg
(
f
(

max
i,j

Qij(t)
))

+Kε

)
+G

≤N(Amax + 1)T (εg (W ∗(t)) +Kε) +G (3.58)

Similar to (3.56), since at most one packet could depart from each queue in a time slot,

and since g(·) is a strictly increasing function, we obtain a lower bound for the threshold:

g (W π(τ)) ≥ g (W ∗(τ)−G)

≥g
(
W ∗(t)−NT max

i,j

(
max

u∈[−T,0]

∣∣∣f ′ (Qij(t) + u)
∣∣∣)−G)

≥g
(
W ∗(t)−NT (εg(W ∗(t)) +Kε)−G

)
(3.59)

Select ε to be sufficiently small, then since g(·) is a sublinear function, there exists a

constant M < ∞ such that the right hand side of (3.59) is larger than the right hand side of

(3.58) whenever W ∗(t) > M . Therefore, if W ∗(t) > M , then no reconfiguration occurs for any

τ ∈ [t+ 1, t+ T ].

56



Chapter 4

Heavy Traffic Delay Analysis of Adaptive

MaxWeight

4.1 Heavy Traffic Analysis

Studying queue length or delay performance for a queueing system such as a switch

in general is challenging. Therefore, analyses of such systems are mostly considered within

certain asymptotic regimes. In this chapter, we focus on the heavy traffic regime, and make use

of the drift technique developed in [12]. The outline of the heavy traffic analysis for Adaptive

MaxWeight is sketched as follows. We first establish the multi-dimensional state space collapse

for the Adaptive MaxWeight. With the state space collapse result, we apply the drift technique

to a Lyapunov function proposed in [29], and obtain an steady state queue length upper bound

that is dependent on the expected schedule duration. We then characterize the relation between

the expected schedule duration and the queue length, and use this relation to derive bounds on

asymptotically tight steady state queue length bounds.

In this chapter, we are interested in the queue length behavior of switches with reconfigu-

ration delay in the heavy traffic regime. Unlike some works that focus on arrival rate matrices
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with a single saturated port, we are interested in arrival rate matrices with all input ports and

output ports being saturated. These arrival rate matrices lie on a face of the capacity region C

described as the following:

F =
{
λ ∈ IRn×n

+ :
∑
i

λij = 1,
∑
j

λij = 1,∀i, j ∈ {1, 2, . . . , n}
}

For the heavy traffic analysis in this chapter, we consider a sequence of switch systems

indexed by ε, where each switch system has an i.i.d. arrival traffic A(ε)(t) with mean and variance

given by

IE[A(ε)(t)] =λ(ε) = ν(1− ε), Var[A(ε)(t)] =
(
σ(ε)

)2 (4.1)

where ν ∈ F and
(
σ(ε)

)2 → σ2 as ε→ 0. The traffic load of each switch is ρ = 1− ε. Recall

that F is the set of critically loaded rate matrix with all ports saturated. The sequence of switches

considered here have arrival rate matrices that approach ν as we take ε→ 0.

4.1.1 Weak State Space Collapse

It was shown in [29] that for a switch with no reconfiguration delay, the MaxWeight

scheduling exhibits a multi-dimensional state space collapse. To be specific, let e(i) denote the

matrix with ith row being all ones and zeros everywhere else, and ẽ(j denote the matrix with

jth row being all ones and zeros everywhere else. As ε→ 0, the steady state queue length Q̄(ε)

“concentrates” in the cone spanned by the matrices {e(i)}ni=1 ∪ {ẽ(j}nj=1, i.e.

K =
{

x ∈ IRn×n : x =
∑
i

wie
(i) +

∑
j

w̃j ẽ
(j), where wi, w̃j ∈ IR+ for all i, j

}
,
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in the sense that the projection of Q̄(ε) onto K is the domniant component in Q̄(ε). More

specifically, for any x ∈ IRn×n, define the projection of x on to K as

x‖ = arg min
y∈K
‖x− y‖

and define x⊥ = x− x‖. In the heavy traffic limit (ε→ 0), all moments of Q̄
(ε)
⊥ are bounded by

a constant, and hence is a negligible component in Q̄ since it can be shown that ‖Q̄‖ is Ω(1/ε).

This is referred as state space collapse (SSC) in [29].

In this paper, we consider a weaker notion of the state space collapse for switches with

reconfiguration delay operated under the Adaptive MaxWeight policy.

Definition 4.1 (Weak State Space Collapse). Given a sequence of switch systems X(ε)(t),

parametrized by 0 < ε < 1. Suppose each switch system is positive recurrent and converges in

distribution to a steady state random vector X̄(ε) = (Q̄(ε), s̄(ε), r̄(ε)) We say that the sequence of

switch systems exhbit a weak state space collapse if

lim
ε→0

IE
[
‖Q̄(ε)
⊥ ‖
]

IE
[
‖Q̄(ε)‖

] = 0.

In the rest of this section, we would use Lemma 4.1 below to derive the weak state space

collapse (WSSC) for switches with reconfiguration delay operated under the Adaptive MaxWeight

policy. Lemma 4.1 is a T -step version of [4, Theorem 1] where T could be any fixed integer.

The proof of this lemma could be done by simply replacing the transition probability to T -step

transition probability in [4, Theorem 1], hence we omit the proof here.

Lemma 4.1. Consider an irrdeucible and aperiodic Markov Chain {X(t)}t≥0 over a countable

state space X , suppose Z : X → IR+ is a nonnegative Lyapunov function. For any fixed integer
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T > 0, we define the T -step drift ∆TZ(X) of Z at state X as

∆TZ(X) = [Z(X(t+ T ))− Z(X(t))]1{X(t)=X}.

Suppose for some T > 0, the T -step drift satisfies the following conditions C.1 and C.2:

C.1 There exists an η > 0, and a κ <∞ such that for any t = 1, 2, . . . and for all X ∈ X with

Z(X) ≥ κ,

IE[∆TZ(X)|X(t) = X] ≤ −η

C.2 There exists a D <∞ such that for all X ∈ X ,

Pr
{
|∆TZ(X)| ≤ D

}
= 1

If the Markov chain {X(t)}t≥0 converges in distribution to a random variable X̄ , then

IE[Z(X̄)] ≤ κ+
2D2

η
.

With Lemma 4.1, we are now able to show the following proposition, which is essential

to establish the WSSC result for the Adaptive MaxWeight policy.

Proposition 4.1. Consider a set of switch systems with a fixed reconfiguration delay ∆r > 0,

parametrized by 0 < ε < 1, all operated under Adaptive MaxWeight policy with hysteresis

function g(·), where g(·) is sublinear and concave. Each system has arrival process A(ε)(t) as

described in (4.1) and satisfying Assumptions 2.1- 2.3. The mean arrival rate vector λ(ε) =

(1 − ε)ν for some fixed ν ∈ F such that νmin
∆
= min

ij
νij > 0. Let the variance

(
σ(ε)

)2 of the

arrival process satisfy that ‖σ(ε)‖2 ≤ σ̃2 for some σ̃2 not dependent on ε.
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Let X(ε)(t) ∈ X denote the process that determines each system, which is positive

recurrent and hence converges to a steady state random vector in distribution, denoted as

X̄(ε) = (Q̄(ε), S̄(ε), r̄(ε)). Then for any fixed θ with 0 < θ < 1/2, and for each system with

0 < ε ≤ νmin/4‖ν‖, the steady state queue length satisfies

IE
[
‖Q̄(ε)
⊥ ‖ − θ‖Q̄

(ε)
‖ ‖
]
≤Mθ, (4.2)

where Mθ is a function of θ, σ̃, amax, νmin and n, but is independent of ε.

The proof of Proposition 4.1 is given in appendix. Comparing Proposition 4.1 with [29,

Proposition 2], we may see that we no longer have the guarantee that all moments of ‖Q̄(ε)
⊥ ‖

are bounded here. However, we could still show that IE[‖Q̄(ε)
⊥ ‖] is negligible comparing to

IE[‖Q̄(ε)‖] as ε → 0, hence we consider this as a weak version of SSC. In particular, notice

that the constant Mθ is independent of ε, and that IE[‖Q̄(ε)‖] → ∞ as ε → 0. Then since

IE[‖Q̄(ε)
⊥ ‖] ≤ θIE[‖Q̄(ε)

‖ ‖] + Mθ ≤ θIE[‖Q̄(ε)‖] + Mθ for any ε > 0, we have lim
ε→0

IE
[
‖Q̄(ε)
⊥ ‖
]

IE
[
‖Q̄(ε)‖

] ≤ θ

for any θ > 0. Therefore, we may conclude that

lim
ε→0

IE
[
‖Q̄(ε)
⊥ ‖
]

IE
[
‖Q̄(ε)‖

] = 0. (4.3)

4.2 Queue Length Bound of Adaptive MaxWeight in Heavy

Traffic Regime

With the WSSC result from the previous subsection, we now utilize Lyapunov drift

analysis similar to [29] to derive an upper bound on the steady state queue length IE[
∑

ij Q̄ij].

Theorem 4.1. Consider a set of switch systems with a fixed reconfiguration delay ∆r > 0,

parametrized by 0 < ε < 1, all operated under Adaptive MaxWeight policy with hysteresis

function g(·), where g(·) is sublinear and concave. Each system has arrival process a(ε)(t) as
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described in (4.1). The mean arrival rate vector λ(ε) = (1− ε)ν for some fixed ν ∈ F such that

νmin
∆
= min

ij
νij > 0. Let the variance

(
σ(ε)

)2 of the arrival process satisfy that ‖σ(ε)‖2 ≤ σ̃2 for

some σ̃2 not dependent on ε. For each system with 0 < ε ≤ νmin/4‖ν‖, the steady state of the

Markov chain X̄(ε) = (Q̄(ε), S̄(ε), r̄(ε)) satisfies

(
ε− Pr X̄{r(t) > 0}

)(
IE
[∑

ij

Q̄
(ε)
ij (t)

]
− 2n3IE

[
‖Q̄(ε)
⊥ (t)‖

])
≤ (1− 1

2n
)‖σ̃‖2 +B(ε, n)

(4.4)

where limε→0B(ε, n) = 0.

Proof. For simplicity of the notation, we drop the superscript (ε) in the following proof. We also

use IEX̄[ · ] as a short hand notation for IE[ · |X = X̄]. Now consider the following Lyapunov

function from [29]:

V (X) =
∑
i

(∑
j

Qij

)2

+
∑
i

(∑
i

Qij

)2

− 1

n

(∑
ij

Qij

)2

It may be shown using Lemma 4.1 that for steady state X̄, the expectation IE[V (X̄)] is

finite. We thus have zero drift for V (X̄) at steady state:

IEX̄

[
∆V (X(t))

]
= IEX̄

[
V (X(t+ 1))− V (X(t))

]
= 0

We now evaluate the above drift terms with the queue length dynamics (5.1) and rewrite

the expression as

T1 = T2 + T3 + T4
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where

T1 =IEX̄

[
2
∑
i

(∑
j

Qij(t)
)(∑

j

sij(t)1{r(t)=0} − aij(t)
)

+ 2
∑
j

(∑
i

Qij(t)
)(∑

i

sij(t)1{r(t)=0} − aij(t)
)

− 2

n

(∑
ij

Qij(t)
)(∑

ij

sij(t)1{r(t)=0} − aij(t)
)]

T2 =IEX̄

[∑
i

(∑
j

aij(t)− sij(t)1{r(t)=0}

)2

+
∑
j

(∑
i

aij(t)− sij(t)1{r(t)=0}

)2

− 1

n

(∑
ij

aij(t)− sij(t)1{r(t)=0}

)2
]

T3 =IEX̄

[
−
∑
i

(∑
j

uij(t)
)2

−
∑
j

(∑
i

uij(t)
)2

+
1

n

(∑
ij

uij(t)
)2
]

T4 =IEX̄

[
2
∑
i

(∑
j

Qij(t+ 1)
)(∑

j

uij(t)
)

+ 2
∑
j

(∑
i

Qij(t+ 1)
)(∑

i

uij(t)
)

− 2

n

(∑
ij

Qij(t+ 1)
)(∑

ij

uij(t)
)]

We now simplify each term:

T1 =IEX̄

[
2
(∑

ij

Qij(t)
)(
1{r(t)=0} − (1− ε)

)]
= IEX̄

[
2
(∑

ij

Qij(t)
)(
ε− 1{r(t)>0}

)]
=2εIEX̄

[∑
ij

Qij(t)
]
− 2IEX̄

[∑
ij

Qij(t)1{r(t)>0}

]
=2εIEX̄

[∑
ij

Qij(t)
]
− 2
(

IEX̄

[∑
ij

Qij(t)
]
− IEX̄

[∑
ij

Qij(t)
∣∣∣r(t) = 0

]
Pr X̄{r(t) = 0}

)
=2
(
ε− Pr X̄{r(t) > 0}

)
IEX̄

[∑
ij

Qij(t)
]

− 2
(

IEX̄

[∑
ij

Qij(t)
]
− IEX̄

[∑
ij

Qij(t)
∣∣∣r(t) = 0

])(
1− Pr X̄{r(t) > 0}

)
(4.5)
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Note that with the ergodicity of the Markov chain X(t), we have that IEX̄[
∑

ij Qij(t)] and

IEX̄[
∑

ij Qij(t)|r(t) = 0] equal to the time average of sum queue length and that under r(t) = 0,

respectively. Also note that the probability of r(t) = 0 approaches 1 as ε→ 0, which means that

the time average under r(t) = 0 only excludes a diminishing number of time instances. Then

since the change in sum queue length |
∑

ij Qij(t+ 1)−
∑

ij Qij(t)| < n2amax is bounded, we

have the difference IEX̄[
∑

ij Qij(t)]− IEX̄[
∑

ij Qij(t)|r(t) = 0]→ 0 as ε→ 0.

For term T2, since IE
[∑

i(
∑

j aij(t)− 1)2
]

= ‖σ‖2 + nε2 and IE
[
(
∑

ij aij(t)− n)2
]

=

‖σ‖2 + n2ε2, we have

T2 =IEX̄

[(∑
i

(
∑
j

aij(t)− 1)2 +
∑
j

(
∑
i

aij(t)− 1)2 − 1

n
(
∑
ij

aij(t)− n)2
)

+
(∑

i

(2
∑
j

aij(t)− 1) +
∑
j

(2
∑
i

aij(t)− 1)− 1

n
(2n

∑
ij

aij(t)− n2)
)
1{r(t)>0}

]

=IEX̄

[(
2(‖σ‖2 + nε2)− 1

n
(‖σ‖2 + n2ε2)

)
+
(

2n(1− ε)− n
)
1{r(t)>0}

]
=
(

(2− 1

n
)‖σ‖2 + nε2

)
+ n(1− 2ε) Pr X̄{r(t) > 0} (4.6)

For term T3, since uij(t) ≤ sij(t), we have
∑

i uij ≤ 1,
∑

j uij ≤ 1 and
∑

ij uij ≤ n.

Therefore,

T3 ≤ IEX̄

[
1

n

(∑
ij

uij(t)
)2
]
≤ IEX̄

[∑
ij

uij(t)

]
(4.7)

The above expression is the expected sum of unused services between schedule reconfigu-

ration time instance. One way to determine this value is to set the drift of
∑

ij Q̄ij to zero. We

may then obtain

IEX̄

[∑
ij

uij(t)
]

= n
(
ε− Pr X̄{r(t) > 0}

)
(4.8)

64



Hence we have

T3 ≤ n
(
ε− Pr X̄{r(t) > 0}

)
(4.9)

We now utilize the relation uij(t)Qij(t + 1) = 0 for any i, j to bound the term T4. The

expression below follows along the same lines in [29]:

T4 =2IEX̄

[∑
ij

uij(t)
(∑

j′

Qij′(t+ 1) +
∑
i′

Qi′j(t+ 1)− 1

n

∑
i′j′

Qi′j′(t+ 1)
)]

=2IEX̄

[〈
u(t),−nQ⊥(t+ 1) +

∑
i

〈Q⊥(t+ 1), e(i)〉e(i) +
∑
j

〈Q⊥(t+ 1), ẽ(j)〉ẽ(j)

− 1

n
〈Q⊥(t+ 1),1〉1

〉]
≤2IEX̄

[〈
u(t),−nQ⊥(t+ 1)− 1

n
〈Q⊥(t+ 1),1〉1

〉]
≤2IEX̄

[∥∥u(t)
∥∥∥∥− nQ⊥(t+ 1)− 1

n
〈Q⊥(t+ 1),1〉1

∥∥]

where the last inequality follows from Cauchy-Schwartz inequality.

Note that

∥∥− nQ⊥(t+ 1)− 1

n
〈Q⊥(t+ 1),1〉1

∥∥ (a)

≤n‖Q⊥(t+ 1)‖+
1

n
|〈Q⊥(t+ 1),1〉|‖1‖

(b)

≤n‖Q⊥(t+ 1)‖+
‖1‖‖1‖
n
‖Q⊥(t+ 1)‖

=2n‖Q⊥(t+ 1)‖

where (a) follows from triangle inequality, and (b) follows from Cauchy-Schwartz inequality.

65



We then obtain

T4 ≤4nIEX̄

[
‖u(t)‖‖Q⊥(t+ 1)‖

]
≤4nIEX̄

[(∑
ij

uij(t)
)(
‖Q⊥(t)‖+ namax

)]
=4nIEX̄

[(∑
ij

uij(t)
)
‖Q⊥(t)‖

]
+ 4nIEX̄

[∑
ij

uij(t)
]
namax

Since
∑

ij uij(t) ≤ n, we may write
∑

ij uij(t) ≤ n1{∑ij uij(t)>0} and thus

IEX̄

[(∑
ij

uij(t)
)
‖Q⊥(t)‖

]
≤nIEX̄

[
1{

∑
ij uij(t)>0}‖Q⊥(t)‖

]
=n
(

IEX̄

[
‖Q⊥(t)‖

]
− IEX̄

[
‖Q⊥(t)‖1{∑ij uij(t)=0}

])
=n
(

IEX̄

[
‖Q⊥(t)‖

]
IEX̄

[
1{

∑
ij uij(t)>0}

]
+ IEX̄

[
‖Q⊥(t)‖

]
IEX̄

[
1{

∑
ij uij(t)=0}

]
− IEX̄

[
‖Q⊥(t)‖1{∑ij uij(t)=0}

])
≤nIEX̄

[
‖Q⊥(t)‖

]
IEX̄

[∑
ij

uij(t)
]

+ n
(

IEX̄

[
‖Q⊥(t)‖

]
− IEX̄

[
‖Q⊥(t)‖

∣∣∣∑
ij

uij(t) = 0
])

Pr X̄

{∑
ij

uij(t) = 0
}

We then have

T4 ≤4n3
(
ε− Pr X̄{r(t) > 0}

)(
IEX̄

[
‖Q⊥(t)‖

]
+ amax

)
+ 4n2

(
IEX̄

[
‖Q⊥(t)‖

]
− IEX̄

[
‖Q⊥(t)‖

∣∣∣∑
ij

uij(t) = 0
])

(4.10)

Similar to the second term in T1, by the ergodicity of the Markov chain X(t), and

that the probability of
∑

ij uij(t) = 0 approaches 1 as ε → 0. Then since the change in

‖Q⊥(t)‖ is bounded, i.e.
∣∣‖Q⊥(t + 1)‖ − ‖Q⊥(t)‖

∣∣ < namax, we have that IEX̄[‖Q⊥(t)‖] −
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IEX̄[‖Q⊥(t)‖|
∑

ij uij(t) = 0]→ 0 as ε→ 0.

Combining (4.5)-(4.10), we obtain

(
ε− Pr X̄{r(t) > 0}

)(
IEX̄

[∑
ij

Qij(t)
]
− 2n3IEX̄

[
‖Q⊥(t)‖

])
≤ (1− 1

2n
)‖σ‖2 +B(ε, n)

(4.11)

where B =
(

IEX̄

[∑
ij Qij(t)

]
− IEX̄

[∑
ij Qij(t)

∣∣∣r(t) = 0
])

+ nε(1+ε)
2

+

2n2
(

IEX̄

[
‖Q⊥(t)‖

]
− IEX̄

[
‖Q⊥(t)‖

∣∣∣∑ij uij(t) = 0
])

and that lim
ε→0

B(ε, n) = 0.

4.2.1 Expected Schedule Duration

In the previous subsection, we derived a bound on steady state queue lengths. Note that

this bound depends on the probability of the switch in reconfiguration Pr X̄{r(t) > 0}. In this

subsection, we derive the mean schedule duration in order to evaluate this probability.

Recall that in the previous subsection, we set the drift of
∑

ij q̄ij to zero to obtain (4.8),

which is an expression of the total unused service. Here we consider the drift of another Lyapunov

function to obtain a different expression for the total unused service, and combined the two

expressions to derive the expected schedule duration.

In this subsection, we consider the original Markov chain X(ε)(t) sampled at the reconfigu-

ration times {tSk} and denote it as X
(ε)
k = X(ε)(tSk ). Note that {tSk} is a stopping time with respect

to X(ε)(t), hence by the strong Markov property, X
(ε)
k is also a Markov chain. Furthermore, the

positive recurrence of X(ε)(t) implies the positive recurrence of X
(ε)
k . We then denote the steady

state distribution of X
(ε)
k as X̂(ε) = (Q̂(ε), Ŝ(ε), r̂(ε)).

Theorem 4.2. Consider a switch system with a fixed reconfiguration delay ∆r > 0, and the arrival

process a(t) is as described in (4.1) with the mean arrival rate vector given by λ = (1 − ε)ν

for some ν ∈ F . Suppose the switch system is operated under Adaptive MaxWeight policy with
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hysteresis function g(·), where g(·) is sublinear and concave. Define the MaxWeight function

W ∗(X) = maxS∈S〈Q,S〉 for each state X = (Q, s, r) ∈ X , and let Ŵ∗ = W ∗(X̂), then the

following relation holds:

IE
[
tk+1 − tk

∣∣∣X(tk) = X̂
]

=
IE
[
g(Ŵ∗) + δW

]
(n− α)(1− ε)

(4.12)

where δW satisfies 0 ≤ δW < namax, and α =
〈
ν, IE[s(tk)|X(tk) = X̂]

〉
.

Proof. Define the Lyapunov function W on state X = (Q, s, r):

W (X) =
〈
Q, s

〉
=
∑
ij

Qijsij

which is simply the schedule weight function. Note that W (X) ≤
∑

ij Qij , hence the steady state

mean ofW (X) is finite. We may then set the drift ofW (X) between two schedule reconfiguration

time instance to be zero:

IE

[
W (X(tk+1))−W (X(tk))

∣∣∣∣∣X(tk) = X̂

]

=IE

[
tk+1−1∑
t=tk

∆W (X(t))

∣∣∣∣∣X(tk) = X̂

]

=IE

[
tk+1−1∑
t=tk

(∑
ij

Qij(t+ 1)sij(t+ 1)−
∑
ij

Qij(t)sij(t)
)∣∣∣∣∣X(tk) = X̂

]

(a)
=IE

[∑
ij

Qij(tk+1)
(
sij(tk+1)− sij(tk)

)
+

tk+1−1∑
t=tk

∑
ij

(
Qij(t+ 1)−Qij(t)

)
sij(tk)

∣∣∣∣∣X(tk) = X̂

]

(b)
=IE

[
g(W ∗(tk+1)) + δW +

tk+1−1∑
t=tk

(∑
ij

λijsij(tk)− n1{r(t)=0}
)

+

tk+1−1∑
t=tk

∑
ij

uij(t)

∣∣∣∣∣X(tk) = X̂

]

=0 (4.13)

Since the schedule remains s(tk) between tk and tk+1, and changes to s(tk+1) at time tk+1, we have
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(a). Then by the definition of the Adaptive MaxWeight, the weight difference exceeds g(W ∗(tk+1))

at time tk+1 and thus we may write
∑

ij Qij(tk+1)
(
sij(tk+1) − sij(tk)

)
= g(W ∗(tk+1)) + δW ,

where 0 ≤ δW < namax, we have (b).

Since the arrival processes are independent from the scheduling decisions, we have

IE
[∑

ij λijsij(tk)
∣∣X(tk) = X̂

]
= (1− ε)

〈
ν, IE[s(tk)|X(tk) = X̂]

〉
. Now define

α =
〈
ν, IE[s(tk)|X(tk) = X̂]

〉
, (4.14)

and we may then write (4.13) as

IE

[
tk+1−1∑
t=tk

∑
ij

uij(t)

∣∣∣∣∣X(tk) = X̂

]
=
(
n− α(1− ε)

)
IE
[
tk+1 − tk

∣∣∣X(tk) = X̂
]

− n∆r − IE
[
g(Ŵ∗) + δW

]
(4.15)

On the other hand, we may set the drift of
∑
ij

Qij to zero and obtain

IE

[ tk+1−1∑
t=tk

∑
ij

uij(t)

∣∣∣∣X(tk) = X̂

]
= n

(
εIE
[
tk+1 − tk

∣∣∣X(tk) = X̂
]
−∆r

)
(4.16)

Combining (4.15) and (4.16), we then have

IE
[
tk+1 − tk

∣∣∣X(tk) = X̂
]

=
IE
[
g(Ŵ∗) + δW

]
(n− α)(1− ε)

(4.17)

In the rest of this section, we utilize Theorems 4.1 and 4.2 to derive bounds on the expected

sum of queue lengths for switches with reconfiguration operating under the Adaptive MaxWeight

policy.

We first start with a lower bound on the sum of queue lengths. By the non-negativity of
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the unused service uij(t), we derive the following from (4.16):

εIE
[
tk+1 − tk

∣∣∣X(tk) = X̂
]
−∆r =

1

n
IEX̂

[
tk+1−1∑
t=tk

∑
ij

uij(t)

∣∣∣∣∣X(tk) = X̂

]
≥ 0

Using Theorem 4.2, we thus have a lower bound on the expected schedule duration.

IE
[
g(Ŵ∗) + δW

]
= (n− α)(1− ε)IEX̂

[
tk+1 − tk

∣∣∣X(tk) = X̂
]
≥ (n− α)(1− ε)∆r

ε
(4.18)

The lower bound on the expected schedule duration then implies a lower bound on the

expected maximum weight through Jensen’s inequality since g(·) is a concave function:

IE
[∑

ij

Q̂ij

]
≥ IE

[
Ŵ∗
]
≥ g−1

(
IE
[
g(Ŵ∗)

])
≥ g−1

(
(n− α)(1− ε)∆r

ε
− IE

[
δW

])
(4.19)

Since IE
[
δW
]
< namax by definition, hence in the heavy traffic regime (ε ↓ 0), we have

IE
[∑

ij Q̂ij

]
∼ Ω(g−1(1/ε)).

By the ergodicity of the Markov chain, we may use the expected schedule duration to

derive the probability that the switch is in reconfiguration delay as

Pr X̄{r(t) > 0} = IEX̄

[
1{r(t)>0}

]
=

∆r

IE[tk+1 − tk|X(tk) = X̂]
=

(n− α)(1− ε)∆r

IE[g(Ŵ∗) + δW ]
(4.20)

We may then apply (4.20) into (4.4). For the simplicity of notation, we denote ĝ =

IE
[
g(Ŵ ∗) + δW

]
, Q̄s = IEX̄

[∑
ij q̄ij

]
− 4n3IEX̄

[
‖q̄⊥‖

]
, β = (1− 1

2n
)σ̃2 +B(ε, n) and obtain

(
εĝ − (n− α)(1− ε)∆r

)
Q̄s ≤ βĝ

⇒
(
ε− β

Q̄s

)
ĝ ≤ (n− α)(1− ε)∆r
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We thus have

ĝ ≤ (n− α)(1− ε)∆r
Q̄s

εQ̄s − β
=

(n− α)(1− ε)∆r

ε

(
1 +

β

εQ̄s − β

)

Note that from the lower bound (4.19) and the WSSC result (4.3), we have Q̄s ∼

Ω
(
g−1(1/ε)

)
. Therefore β

εQ̄s−β → 0 as ε ↓ 0, and thus

lim sup
ε↓0

εĝ = (n− α)∆r (4.21)

Along with the lower bound from (4.19), and that IE[δW ] < namax, we have

lim
ε↓0

εIE
[
g(Ŵ∗)

]
= (n− α)∆r (4.22)

With the relation between the total queue length and the maximum weight
∑

ij Qij(t) ≤

nW ∗(t), we then have the following upper bound:

lim sup
ε↓0

εIE
[
g
(∑

ij

Q̂ij

)]
≤ lim

ε↓0
εIE
[
g(nŴ∗)

]
≤ lim

ε↓0
nεIE

[
g(Ŵ∗)

]
= n(n− α)∆r (4.23)

While the upper bound does not give an exact bound on the expected sum of queue length

IE[
∑

ij Q̂ij], we may still consider g−1(n(n− α)∆r/ε)) as an approximate upper bound, which

becomes more accurate as the hysteresis function g is close to a linear function.

In fact, this is also the regime of interest when pursuing an optimal queue length bound,

since g−1(n(n− α)∆r/ε)) becomes lower as g gets closer to a linear function. In other words, if

we consider g(x) = (1− γ)x1−δ as in [50] and take δ → 0, we not only get a tighter asymptotic

bounds but also a better scaling. The only caveat here is that selecting g as exactly a linear

function does not fit the analysis in this paper. In fact, it is even unclear whether throughput

optimal could be guaranteed if g is linear.
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4.3 Benchmark Queue Length Behavior under Reconfigura-

tion Delay

In this section, we derive some benchmark queue length behavior of switches with

reconfiguration delay for the Adaptive MaxWeight policy to compare with. We start with a queue

length lower bound for switch systems with reconfiguration delay, which determines a limit on

the performance for any scheduling policy. In a latter subsection, we then derive a queue length

upper bound for a benchmark policy known as the Fixed Frame MaxWeight (FFMW) [25] policy.

Although it is shown that the FFMW policy may achieve the optimal queue length scaling in the

heavy traffic regime, the optimality would require the perfect knowledge of the traffic load, which

restricts its feasibility in practice.

4.3.1 Queue Length Lower Bound with Reconfiguration Delay

The first proposition extends the analysis from [29, Proposition 1], which gives a universal

lower bound on the expected queue length for switch systems without reconfiguration delay. The

proof of the proposition couples the queue length process Q(t) to that of a queueing system with

less restricted schedule constraint, and is given in appendix 4.6.2.

Proposition 4.2. Consider a switch system with the arrival process a(t), which has the mean

λ = (1− ε)ν for some ν ∈ F and variance σ2. Let Q(t) denote the queue lengths process of the

switch system. Suppose the switch system is stable under its scheduling policy, where the queue

lengths process Q(t) converges in distribution to a steady state random vector Q̄. The expected

sum of queue lengths is lower bounded by

IE

[∑
ij

q̄ij

]
≥ ‖σ‖2

2(ε− p)
− n(1− ε)(ε− 2p)

2(ε− p)
(4.24)

where p = IE[1{r(t)>0}] is the probability that the switch system is in reconfiguration under the
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given scheduling policy.

Note that the lower bound in Proposition 4.2 coincides with the lower bound in [29]

when p = 0, and monotonically increases as p increases. This result is not surprising since the

probability of reconfiguration p represents the portion of overhead caused by reconfiguration

delay, and should degrade the performance when p increases. However, the minimal of the lower

bound occurring at p = 0 contradicts the intuition that not switching the schedule also hurts the

performance. In fact, for p = 0, the switch is always stuck at one schedule and any queues that

are not served by the schedule would increase without a bound. In other words, the lower bound

in Proposition 4.2 does not capture the effect of infrequent schedule reconfiguration.

To capture the effect of infrequent schedule reconfiguration, the following proposition

lower bounds the expected queue lengths by examining the unserved queues when the switch is

fixed at one schedule between two reconfiguration times. The proof of Proposition 4.3 is given in

appendix 4.6.3.

Proposition 4.3. Given a switch system with the arrival process a(t), which has the mean

λ = (1 − ε)ν for some ν ∈ F and variance σ2. For any scheduling policy under which the

switch system is stable, and the queue lengths process Q(t) converges in distribution to a steady

state random vector Q̄, the average sum of queue lengths is lower bounded by

IE

[∑
ij

q̄ij

]
≥ ∆r

2p
(1− ε)(n− ᾱ) (4.25)

where ᾱ = maxS∈S
〈
ν,S

〉
, and p = IE[1{r(t)>0}] is the probability that the switch system is in

reconfiguration under the given scheduling policy.

With the two propositions above, we may then derive an optimal lower bound for a given

switch system. In particular, for each reconfiguration probability p, the lower bound is given by
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the maximum of eqs. (4.24) and (4.25). Due to the monotonicity with p of eqs. (4.24) and (4.25),

the reconfiguration probability p that minimizes the joint lower bound could be easily solved by

equating eqs. (4.24) and (4.25).

In this paper, we are particularly interested in the queue length scaling in the heavy traffic

regime, where ε approaches 0. The following corollary provides a queue length lower bound in

the heavy traffic regime.

Corollary 4.1. Given a sequence of switch systems with a fixed reconfiguration delay ∆r > 0,

parametrized by 0 < ε < 1. For each switch system, let p(ε) be the reconfiguration probability

that minimizes the joint lower bounds of eqs. (4.24) and (4.25), then in the heavy traffic regime,

the reconfiguration probability satisfies:

lim
ε↓0

p(ε)

ε
=

∆r(n− ᾱ)

‖σ‖2 + ∆r(n− ᾱ)
(4.26)

where ᾱ = maxS∈S
〈
ν,S

〉
.

Therefore, we have the following queue length lower bound in the heavy traffic limit:

lim inf
ε↓0

εIE

[∑
ij

q̄ij

]
≥ ‖σ‖

2 + ∆r(n− ᾱ)

2
(4.27)

Proof. Since eq. (4.24) is monotonically increasing in p and eq. (4.25) is monotonically decreasing

in p, the minimizer p(ε) could be solved by equating (4.24) and (4.25):

p(ε)2
+

(
‖σ‖2

2n(1− ε)
− ε

2
+

∆r(n− ᾱ)

2n

)
p(ε) − ε∆r(n− ᾱ)

2n
= 0
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Since p(ε) ≥ 0, the only feasible solution for p(ε) is given by

p(ε) =

√
C2 + x− C

2
=
C

2

(√
1 +

x

C2
− 1

)

where C = ‖σ‖2
2n(1−ε) −

ε
2

+ ∆r(n−ᾱ)
2n

and x = 2ε∆r
n−ᾱ
n

. Note that when x
C2 << 1, we have

p(ε) ≈ x
4C

. Also, since x
C2 → 0 as ε ↓ 0, we thus obtain

lim
ε↓0

p(ε)

ε
= lim

ε↓0

x

4C
=

∆r(n− ᾱ)

‖σ‖2 + ∆r(n− ᾱ)

Corollary 4.1 generalizes the lower bound from [29, Proposition 1] and characterizes the

effect of the reconfiguration delay ∆r on the delay performance. Note that ᾱ in corollary 4.1 is

different from α defined in eq. (4.14), and by definition α ≤ ᾱ ≤ n. Compare the queue length

bound of the Adaptive MaxWeight in eq. (4.23) with corollary 4.1, and we may see that when the

hysteresis function g(·) approaches a linear function, the queue length behavior of the Adaptive

MaxWeight approximates the optimal scaling with respect to ε as well as to the reconfiguration

delay ∆r in the heavy traffic limit ε→ 0.

4.3.2 Queue Length Behavior of Fixed Frame MaxWeight

In this subsection, we analyze the queue length behavior of the Fixed Frame MaxWeight

(FFMW) as a benchmark policy and compare it with that of the Adaptive MaxWeight policy.

The FFMW policy is a simple extension of the MaxWeight policy, which sets a fixed

parameter T , and periodically reconfigures to the MaxWeight schedule every T time slots. It is

shown in [25] that given the traffic load ρ = 1 − ε, then the switch system is stabilized by the

FFMW policy with any period T > ∆r

ε
. Note that the FFMW policy requires the knowledge of

the traffic load, which limits the applicability of the policy in practice.
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The following proposition extends the heavy traffic queue length analysis of the MaxWeight

policy in [29] and gives an upper bound on the expected sum of queue lengths for switches with

reconfiguration delay.

Proposition 4.4. Given a switch system with a fixed reconfiguration delay ∆r > 0, and the

arrival process a(t) as described in Section 4.1. Suppose the mean arrival rate vector is given by

λ = (1− ε)ν where ν ∈ F such that νmin
∆
= min

ij
νij > 0, and for some ε > 0. The variance of

a(t) is σ2. For any ε that satisfies ε < νmin

4n
, suppose that the switch system is operated under the

Fixed Frame MaxWeight policy with schedule duration T > ∆r

ε
, then the expected queue length

sum satisfies:

IE

[∑
ij

q̄ij

]
≤ (1− 1

2n
)

T

εT −∆r

‖σ‖2 + T
(n(1 + ε)

2
+ n2(amax + 2M)

)
(4.28)

where M = 4n(amax+1)+4(‖λ‖2+‖σ‖2+n)+16
√

2n2a2max

νmin
+ 2n(2

√
2amax + 1).

We may then further minimize the upper bound over T , and derive the minimizing schedule

duration as T ∗ = ∆r

ε
(1 +

√
(1− 1

2n
)‖σ‖2

∆rM ′
) and the corresponding heavy traffic queue length upper

bound is given by:

lim sup
ε↓0

εIE

[∑
ij

q̄ij

]
≤
(√

(1− 1

2n
)‖σ‖2 +

√
∆rM ′

)2

(4.29)

where M ′ = n
2

+ n2(amax + 2M).

From proposition 4.4, we could see that given the traffic load information, the FFMW

policy may achieve the optimal scaling with respect to ε and ∆r in the heavy traffic limit ε→ 0.

Note that since eq. (4.28) is not necessarily a tight bound, hence the derived minimizing schedule

duration T ∗ may not be the true minimizer of the expected queue length. However, it does

guarantee the optimal scaling, and may be a good estimate for the true minimizer. From the

expression of T ∗ we could see that the minimizer is close to the boundary of stability T = ∆r

ε
, this
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also implies that the optimal delay scaling of the FFMW policy is rather intolerant to estimation

error of the traffic load. Moreover, this issue becomes more prominent for large ∆r, since it

decreases the distance between T ∗ and the boundary of stability.

In the next section, we compare the average queue length performance between the

Adaptive MaxWeight policy and the FFMW policy. We show that with the hysteresis function g(·)

that is close to a linear function, the Adaptive MaxWeight policy has a comparable performance

to the FFMW policy, and does not require any knowledge of traffic load.

4.4 Simulations

In this section, we show simulation results for switches with reconfiguration delay operated

under the Adaptive MaxWeight policy, with hysteresis function g(x) = (1 − γ)x1−δ. We first

compare the simulation result with the Fixed Frame MaxWeight policy, and then determine the

scaling of the average queue length with respect to different system parameters and compare with

the queue length scaling derived in section 4.2.

We now briefly describe the simulation setup. The arrival processes are assumed to be

Poisson processes, all with the same arrival rate, which is also known as the uniform traffic. More

specifically, the matrix ν ∈ F satisfies νij = 1
n

, ∀i, j ∈ {1, . . . , n}. Under the uniform traffic, we

have ‖ν‖2 = 1, and thus α = n− 1 in eq. (4.21). For the parameter of the hysteresis function g,

since we are only interested in the scaling, we fix γ = 0.1, and consider δ ∈ {0.01, 0.05, 0.1, 0.2}

for average queue length comparison.

Fig. 4.1 shows the average queue length under various traffic loads ρ ∈ [0.1, 1]. From

Fig. 4.1 we could see that the average queue length is with smaller δ, in other words, the delay

performance improves when the hysteresis function g(x) approaches a linear function. The result

implies that while the analysis in this work focuses on the heavy traffic regime, the conclusion

that δ close to zero gives better delay performance also applies for lower traffic loads.
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Figure 4.1: Mean total queue length versus traffic load ρ under uniform traffic. Number of ports
is n = 16, and reconfiguration delay ∆r = 20.
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Figure 4.2: Mean total queue length versus traffic load ρ under uniform traffic. Number of ports
is n = 16, and reconfiguration delay ∆r = 20.

78



−5.5 −5.0 −4.5 −4.0 −3.5

log ǫ

11

12

13

14

15

16

17

log Σijqij

AMW, δ=0.2

log Σijqij = -1.233 * log ǫ + 10.035

AMW, δ=0.1

log Σijqij = -1.143 * log ǫ + 8.908

AMW, δ=0.05

log Σijqij = -1.081 * log ǫ + 8.443

AMW, δ=0.01

log Σijqij = -1.039 * log ǫ + 8.027

FFMW (Optimal)

log Σijqij = -1.065 * log ǫ + 7.900

Figure 4.3: Mean total queue length versus traffic load near the capacity region. Number of ports
is n = 16, and reconfiguration delay ∆r = 20.

In Fig. 4.2, we keep the Adaptive MaxWeight with δ = 0.01, which has the optimal

performance, and compare the average queue length to the FFMW policy with various schedule

durations T ∈ {50, 100, 200, 500, 1000}. We first note that for each schedule duration T , the

average queue length grows quickly when ρ is approaching 1− ∆r

T
.

We now focus on simulations in the heavy traffic regime. In Fig. 4.3, we plot the average

total queue length of the Adaptive MaxWeight for various ε ∈ [0.005, 0.03] (corresponding to

ρ ∈ [0.97, 0.995]), and take log scale for both axes. For the FFMW policy, we consider the optimal

queue length performance over schedule durations. In other words, for each ε, we consider the

FFMW policy with different schedule durations and take the one that minimizes the average queue

length for comparison. We may see that the Adaptive MaxWeight with δ = 0.01 closely follows

the optimal performance of the FFMW policy. We then use linear regression to determine the

scaling (i.e. the exponent) of the average queue length with respect to ε in the heavy traffic regime.

With the scaling result from (4.21), the scaling with respect to ε is close to g−1(1/ε), hence the

theoretical exponent should be −1/(1− δ), which would be {−1.010,−1.053,−1.111,−1.250}

for δ = {0.01, 0.05, 0.1, 0.2}, respectively.
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Figure 4.4: Mean total queue length versus reconfiguration delay ∆r. Number of ports is n = 16,
and traffic load is ρ = 0.96.

Figs. 4.4 and 4.5 show the queue length scaling behavior under varying reconfiguration

delay ∆r and varying number of ports n, while the traffic load is fixed as ρ = 0.96 (or ε =

0.04). For the reconfiguration delay, the scaling is g−1(∆r), hence the theoretical exponents

are {1.010, 1.053, 1.111, 1.250} for δ ∈ {0.01, 0.05, 0.1, 0.2}, respectively. We may see from

Fig. 4.4 that the exponents obtained from the simulation result are close to our derived scaling. On

the other hand, the scaling with respect to n is ng−1(n), hence the theoretical exponents should

be {2.010, 2.053, 2.111, 2.250}. We could see that the exponents derived from the simulation

result are slightly larger than the our derived scaling.

4.5 Concluding Remarks

We consider the heavy traffic queue length behavior in an input-queued switch with

reconfiguration delay, operating under the Adaptive MaxWeight policy. It is shown that the

Adaptive MaxWeight exhibits weak state space collapse behavior, which could be considered as

an inheritance from the MaxWeight policy in the regime of zero reconfiguration delay. Utilizing
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Figure 4.5: Mean total queue length versus number of ports n. Reconfiguration delay is ∆r = 20,
and traffic load is ρ = 0.96.
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Figure 4.6: Mean schedule duration versus Mean total queue length. Number of ports is n = 16,
and reconfiguration delay ∆r = 20.
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the Lyapunov drift technique introduced in [29], we obtain a queue length upper bound in heavy

traffic, which depends on the expected schedule duration. We then discover a relation between

the expected schedule duration and the expected queue length, which then implies asymptotically

tight bounds for the expected schedule duration in heavy traffic limit, thus determining its scaling.

The scaling of the expected schedule duration then implies the dependence of the queue length

scaling with the selection of the hysteresis function g, and that this scaling improves as g becomes

closer to linear. Simulation results are also presented to illustrate the queue length scaling with

respect to several system parameters (e.g. traffic load, number of ports, reconfiguration delay)

and for comparison to the derived queue length scaling in heavy traffic.

The results obtained in this paper apply to traffic patterns that all input and output ports are

saturated. It would be interested to consider the queue length behavior of the Adaptive MaxWeight

under incompletely saturated traffic, for example, traffic conditions considered in [28]. The state

space collapse result might be similar due to the inheritance from MaxWeight policy, but the

characterization for the expected schedule duration remains unclear at this point.

Chapter 4, in part, is a reprint of the material as it appears in the paper: C.-H. Wang, S. T.

Maguluri, T. Javidi, “Heavy Traffic Queue Length Behavior in Switches with Reconfiguration

Delay”, IEEE Conference on Computer Communications (INFOCOM), pp 1-9, 2017. The

dissertation author was the primary investigator and author of this paper.

Chapter 4, in full, is currently being prepared for submission for publication as: C.-H.

Wang, S. T. Maguluri, T. Javidi, ”Toward Optimal Heavy Traffic Queue Length Behavior for

Switches with Reconfiguration Delay.” The dissertation author was the primary investigator and

author of this material.
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4.6 Supplementary Proofs

4.6.1 Proof of Proposition 4.1

Proof. For ease of notation, we drop the superscript (ε) in the following derivation. For each

state X = (Q, s, r), we define the Lyapunov function Z(X) = max{‖Q⊥‖ − θ‖Q‖‖, 0}. We

then apply Lemma 4.1 with the Lyapunov function Z to obtain the result. Note that the selection

of the Lyapunov function is such that Z is a nonnegative function. Since ‖Q⊥‖− θ‖Q‖‖ ≤ Z(X)

for any state X = (Q, s, r), the result follows a bound on IE[Z(X̄)].

We first verify Condition C.2 for Z(X):

|∆TZ(X)| =
∣∣∣(‖Q⊥(t+ T )‖ − θ‖Q‖(t+ T )‖

)
−
(
‖Q⊥(t)‖ − θ‖Q‖(t)‖

)∣∣∣
≤
∣∣∣‖Q⊥(t+ T )‖ − ‖Q⊥(t)‖

∣∣∣+ θ
∣∣∣‖Q‖(t+ T )‖ − ‖Q‖(t)‖

∣∣∣
≤‖Q⊥(t+ T )−Q⊥(t)‖+ θ‖Q‖(t+ T )−Q‖(t)‖

≤(1 + θ) ‖Q(t+ T )−Q(t)‖

≤(1 + θ)namaxT , D (4.30)

Here we use the fact that Q⊥ is a projection onto K◦ = {x ∈ IRn2

: 〈x,y〉 ≤ 0,∀y ∈ K}, the

polar cone ofK. Since the projection onto a cone is non-expansive, we have ‖x⊥−y⊥‖ ≤ ‖x−y‖

and ‖x‖ − y‖‖ ≤ ‖x− y‖, ∀x,y.

To verify condition C.1, we need to bound the T -step drift for Z(X). For ease of notation,

we denote IE[ · |X(t) = X] as IEX[ · ]. From (4.30), it is not hard to see that ∀X : Z(X) > D,

IEX

[
∆TZ(X)

]
= IEX

[(
‖Q⊥(t+ T )‖ − ‖Q⊥(t)‖

)
− θ
(
‖Q‖(t+ T )‖ − ‖Q‖(t)‖

)]
. (4.31)

Therefore, we need only to consider the T -step expected drift of ‖Q⊥‖ and ‖Q‖‖.

We first consider the drift of ‖Q⊥‖. The derivation follows the line in [29] where the
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relation in [29, Lemma 4] is used: Let V (X) = ||Q||2, V‖(X) = ||Q‖||2, and ∆V , ∆V‖ denote

the one-step drift of V , V‖ (respectively), then ‖Q⊥(t+ 1)‖−‖Q⊥(t)‖ ≤ 1
2‖Q⊥(t)‖

(
∆V (X(t))−

∆V‖(X(t))
)
. With the relation, we have

IEX

[
‖Q⊥(t+ T )‖ − ‖Q⊥(t)‖

]
=IEX

[ t+T−1∑
τ=t

(
‖Q⊥(τ + 1)‖ − ‖Q⊥(τ)‖

)]

≤IEX

[ t+T−1∑
τ=t

∆V (X(τ))−∆V‖(X(τ))

2‖Q⊥(τ)‖

]

=IEX

[ t+T−1∑
τ=t

IE
[∆V (X(τ))−∆V‖(X(τ))

2‖Q⊥(τ)‖

∣∣∣X(τ)
]]

(4.32)

We now derive bounds for ∆V and ∆V‖:

IE
[
∆V (X(τ))

∣∣∣X(τ)
]

=IE
[
‖Q(τ + 1)‖2 − ‖Q(τ)‖2

∣∣∣X(τ)
]

=IE
[
‖Q(τ) + a(τ)− s(τ)1{r(τ)=0}‖2 + ‖u(τ)‖2

+ 2
〈
Q(τ + 1)− u(τ),u(τ)

〉
− ‖Q(τ)‖2

∣∣∣X(τ)
]

≤IE
[
‖Q(τ) + a(τ)− s(τ)1{r(τ)=0}‖2 − ‖Q(τ)‖2

∣∣∣X(τ)
]

=
∑
i,j

IE
[
a2
ij(τ) + sij(τ)1{r(τ)=0} − 2aij(τ)sij(τ)1{r(τ)=0}

∣∣∣X(τ)
]

+ IE
[
2
〈
Q(τ),λ− s(τ)1{r(τ)=0}

〉∣∣∣X(τ)
]

(a)

≤
∑
ij

(λ2
ij + σ2

ij) + n+ 2
〈
Q(τ), (1− ε)ν − s(τ)

〉
+ 2
〈
Q(τ), s(τ)

〉
1{r(τ)>0}

=‖λ‖2 + ‖σ‖2 + n− 2ε
〈
Q(τ),ν

〉
+ 2
〈
Q(τ),ν − s(τ)

〉
+ 2
〈
Q(τ), s(τ)

〉
1{r(τ)>0} (4.33)

where (a) follows from IE[a2
ij] = λ2

ij + σ2
ij , aij(t)sij(t) ≥ 0 for all i, j, and

∑
ij sij(t) = 1 for all

t.

Suppose g is the sublinear hysteresis function for the Adaptive MaxWeight, then by
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the sublinearity, there exists a constant Kθ such that g(x) < θ
α
x for any x > Kθ, where

α = 8‖ν‖
νmin

. Hence by the definition of the Adaptive MaxWeight, we have for any X(τ) such that

〈Q(τ), s∗(τ)〉 > Kθ:

〈
Q(τ),ν − s(τ)

〉
=
〈
Q(τ),ν − s∗(τ)

〉
+
〈
Q(τ), s∗(τ)− s(τ)

〉
≤
〈
Q(τ),ν − s∗(τ)

〉
+ g

(〈
Q(τ), s∗(τ)

〉)
≤
〈
Q(τ),ν − s∗(τ)

〉
+
θ

α

〈
Q(τ), s∗(τ)

〉
=
(

1− θ

α

)〈
Q(τ),ν − s∗(τ)

〉
+
θ

α

〈
Q(τ),ν

〉

From [29, Claim 2], we have
〈
Q(τ),ν − s∗(τ)

〉
≤ −νmin‖Q⊥(τ)‖. Therefore,

IE
[
∆V (X(τ))

∣∣∣X(τ)
]
≤‖λ‖2 + ‖σ‖2 + n− 2ε

〈
Q(τ),ν

〉
− 2
(

1− θ

α

)
νmin‖Q⊥(τ)‖

+ 2
θ

α

〈
Q(τ),ν

〉
+ 2
〈
Q(τ), s(τ)

〉
1{r(τ)>0} (4.34)
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For ∆V‖, we have

IE
[
∆V‖(X(τ))

∣∣∣X(τ)
]

= IE
[
‖Q‖(τ + 1)‖2 − ‖Q‖(τ)‖2

∣∣∣X(τ)
]

=IE
[〈

Q‖(τ + 1) + Q‖(τ),Q‖(τ + 1)−Q‖(τ)
〉∣∣∣X(τ)

]
=IE

[
‖Q‖(τ + 1)−Q‖(τ)‖2 + 2

〈
Q‖(τ),Q‖(τ + 1)−Q‖(τ)

〉∣∣∣X(τ)
]

≥2IE
[〈

Q‖(τ),Q‖(τ + 1)−Q‖(τ)
〉∣∣∣X(τ)

]
=2IE

[〈
Q‖(τ),Q(τ + 1)−Q(τ)

〉
−
〈
Q‖(τ),Q⊥(τ + 1)−Q⊥(τ)

〉∣∣∣X(τ)
]

(b)

≥2IE
[〈

Q‖(τ), a(τ)− s(τ)1{r(τ)=0} + u(τ)
〉∣∣∣X(τ)

]
≥2
〈
Q‖(τ),λ

〉
− 2
〈
Q‖(τ), s(τ)1{r(τ)=0}

〉
=− 2ε

〈
Q‖(τ),ν

〉
+ 2
〈
Q‖(τ),ν − s(τ)

〉
+ 2
〈
Q‖(τ), s(τ)

〉
1{r(τ)>0}

=− 2ε
〈
Q‖(τ),ν

〉
+ 2
〈
Q‖(τ), s(τ)

〉
1{r(τ)>0} (4.35)

For (b), we use the following properties of the projection onto coneK. For Q ∈ IRn2

, 〈Q‖,Q⊥〉 =

0, and Q⊥ ∈ K◦. Therefore, 〈Q‖(t),Q⊥(t)〉 = 0, and 〈Q‖(t),Q⊥(t+ 1)〉 ≤ 0.

Apply (4.34) and (4.35) into (4.32), we obtain

IEX

[
‖Q⊥(t+ T )‖ − ‖Q⊥(t)‖

]
≤ IEX

[ t+T−1∑
τ=t

(‖λ‖2 + ‖σ‖2 + n

2‖Q⊥(τ)‖
− ε
〈 Q⊥(τ)

‖Q⊥(τ)‖
,ν
〉
−
(
1− θ

α

)
νmin

+
θ
〈
Q(τ),ν

〉
α‖Q⊥(τ)‖

+
〈 Q⊥(τ)

‖Q⊥(τ)‖
, s(τ)

〉
1{r(τ)>0}

)]
≤ IEX

[
T

(
‖λ‖2 + ‖σ‖2 + n

min
τ∈[t,t+T ]

2‖Q⊥(τ)‖
+ ε‖ν‖ −

(
1− θ

)
νmin +

1 + θ

α
‖ν‖

)

+
√
n
t+T−1∑
τ=t

1{r(τ)>0}

]
(4.36)

where we have used the fact that ‖Q⊥‖ ≥ θ‖Q‖‖ implies θ‖Q‖ ≤ θ(‖Q‖‖ + ‖Q⊥‖) ≤
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(1 + θ)‖Q⊥‖, and ‖s(τ)‖ ≤
√
n for any schedule s(τ) ∈ S.

On the other hand, the drift of ‖Q‖‖ could be obtained following (4.35):

IEX

[
‖Q‖(t+ T )‖ − ‖Q‖(t)‖

]
=IEX

[ t+T−1∑
τ=t

IE
[
‖Q‖(τ + 1)‖ − ‖Q‖(τ)‖

∣∣∣X(τ)
]]

≥IEX

[ t+T−1∑
τ=t

IE
[‖Q‖(τ + 1)‖2 − ‖Q‖(τ)‖2

‖Q‖(τ + 1)‖+ ‖Q‖(τ)‖

∣∣∣X(τ)
]]

≥IEX

[ t+T−1∑
τ=t

IE
[ −2ε

〈
Q‖(τ),ν

〉
‖Q‖(τ + 1)‖+ ‖Q‖(τ)‖

∣∣∣X(τ)
]]

≥IEX

[ t+T−1∑
τ=t

−2ε
〈
Q‖(τ),ν

〉
‖Q‖(τ)‖

]
≥ −2Tε‖ν‖ (4.37)

where the last inequality follows the Cauchy-Schwartz inequality.

Now apply (4.36) and (4.37) into (4.31), we obtain

IEX

[
∆TZ(X)

]
≤ IEX

[
T

(
‖λ‖2 + ‖σ‖2 + n

min
τ∈[t,t+T ]

2‖Q⊥(τ)‖
+ (1 + 2θ)ε‖ν‖ −

(
1− θ

)
νmin +

1 + θ

α
‖ν‖

)

+
√
n
t+T−1∑
τ=t

1{r(τ)>0}

]
(4.38)

From [49, Lemma 1], we know that for any fixed T > 0, ifW ∗(t) > g−1
(
nT (amax+1)

)
+

nT , then at most one reconfiguration could occur within [t, t+T ], which gives
∑t+T−1

τ=t 1r(τ)>0 ≤

∆r.

Select T = 8
√
n∆r

νmin
, then set D = 3

2
namaxT = 12n3/2amax∆r

νmin
. Then ∀X : Z(X) > κ ={

D,namaxT + 4(‖λ‖2+‖σ‖2+n)
νmin

, nKθ, ng
−1
(
nT (amax + 1)

)
+ n2T

}
, and ∀ε : 0 < ε ≤ νmin

16‖ν‖ , we

have IEX

[
∆TZ(X)

]
≤ − (1−θ)νmin

4
≤ −νmin

8
.

Hence by Lemma 4.1, we have ∀ε : 0 < ε ≤ νmin

16‖ν‖ :

IE
[
‖Q̄⊥‖ − θ‖Q̄‖‖

]
≤ IE

[
Z(X̄)

]
≤ κ+

16D2

νmin

.
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Let Mθ = κ+ 16D2

νmin
, we then have the result.

4.6.2 Proof of Proposition 4.2

Proof. We will derive the lower bound by bounding the expected queue length sum at each input

port, in particular, IE
[∑

j q̄ij(t)
]

for each input port i.

The queue length dynamics of the coupled queue φi(t) is given by:

φi(t+ 1) =
[
φi(t) + bi(t)− 1{r(t)=0}

]+
= φi(t) + bi(t)− 1{r(t)=0} + vi(t)

where vi(t) is the unused service and satisfies φi(t+ 1)vi(t) = 0.

We may show by induction that IE
[∑

j q̄ij(t)
]
≥ IE

[
φ̄i(t)

]
. It then remains to lower

bound IE
[
φ̄i(t)

]
. We consider the expected drift of

(
φ̄i(t)

)2 as follows:

IE
[(
φ̄i(t+ 1)

)2 −
(
φ̄i(t)

)2]
=IE

[(
φ̄i(t) + bi(t)− 1{r(t)=0}

)2 −
(
vi(t)

)2 −
(
φ̄i(t)

)2]
=IE

[
2φ̄i(t)

(
bi(t)− 1{r(t)=0}

)
+
(
bi(t)− 1{r(t)=0}

)2 −
(
vi(t)

)2]
=IE

[
2φ̄i(t)

(
(1− ε)− (1− 1{r(t)>0})

)
+
(
bi(t)− (1− ε) + (1{r(t)>0} − ε)

)2 − vi(t)
]

=− 2εIE
[
φ̄i(t)

]
+ 2IE

[
φ̄i(t)

]
IE
[
1{r(t)>0}

]
+ Var(bi(t)) + IE

[
(1{r(t)>0} − ε)2

]
− IE

[
vi(t)

]

where the last equality follows from the independence between the queue length process φi(t)

and the schedule reconfiguration decision.
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2(ε− p)IE
[
φ̄i(t)

]
=
∑
j

σ2
ij + p− 2pε+ ε2 − IE

[
vi(t)

]

Considering the drift of φ̄i(t), we could derive IE
[
vi(t)

]
as follows:

IE
[
φ̄t(t+ 1)− φ̄i(t)

]
= (1− ε)− (1− IE

[
1{r(t)>0}

]
) + IE

[
vi(t)

]
= 0

⇒IE
[
vi(t)

]
= ε− IE

[
1{r(t)>0}

]
= ε− p

We thus have

IE
[
φ̄i(t)

]
=

∑
j

σ2
ij

2(ε− p)
− (1− ε)(ε− 2p)

2(ε− p)

Using IE
[∑

j q̄ij(t)
]
≥ IE

[
φ̄i(t)

]
, and summing over each input port, we obtain

IE

[∑
ij

q̄ij(t)

]
≥ IE

[∑
i

φ̄i(t)

]
≥

∑
ij

σ2
ij

2(ε− p)
− (1− ε)(ε− 2p)

2(ε− p)

4.6.3 Proof of Proposition 4.3

Proof. From the renewal reward theory, we have

IE

[∑
ij

Qij(t)

]
= lim

T→∞

1

T
IE

[ T∑
t=0

Qij(t)

]
=

IE

[ tk+1−1∑
t=tk

∑
ij

Qij(t)

]
IE[tk+1 − tk]

For any (i, j) such that Sij(tk) = 0, we have Qij(t) = Qij(tk) +
∑t−1

τ=tk
aij(τ) ≥
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∑t−1
τ=tk

aij(τ), while for any (i, j) such that Sij(tk) = 1, we have Qij(t) ≥ 0.

IE

[ tk+1−1∑
t=tk

∑
ij

Qij(t)

]
=IE

[ tk+1−1∑
t=tk

IE
[∑

ij

Qij(t)
∣∣∣Q(tk)

]]

≥IE

[ tk+1−1∑
t=tk

∑
(i,j):Sij(tk)=0

λij(t− tk)
]

≥IE

[ tk+1−1∑
t=tk

(
t− tk

)(
n(1− ε)−max

S
〈S,Λ〉

)]
=IE

[
(tk+1 − tk)2

2

]
(n− ᾱ)(1− ε)

We then have a lower bound of the expected queue length sum as follows:

IE

[∑
ij

Qij(t)

]
=

IE[(tk+1 − tk)2]

2IE[tk+1 − tk]
(n− ᾱ)(1− ε)

≥IE[tk+1 − tk]
2

(n− ᾱ)(1− ε)

=
∆r

2p
(n− ᾱ)(1− ε)

4.6.4 Proof of Proposition 4.4

Proof. Given the period T , we consider the Markov chain X(t) being sampled at times tk =

kT, k = 0, 1, . . . . Since the Fixed Frame MaxWeight policy stabilizes the system if T > ∆r

ε
, we

know that X(t) converges to a steady state distribution, and so does X(tk). Let X̄ = (Q̄, s̄, r̄)

and X̂ = (Q̂, ŝ, r̂) denote the steady state distribution of X(t) and X(tk), respectively. By

the assumption on the maximum arrival, we immediately have that IE[
∑

ij q̄ij] ≤ IE[
∑

ij q̂ij] +

n2amaxT . It then remains to bound IE[
∑

ij q̂ij] following the similar procedures in [29]:

(1) Derive an upper bound on IE[‖Q⊥(tk)‖2]
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(2) Derive the queue length upper bound which depends on IE[‖Q⊥(tk)‖2]

Consider the Lyapunov function Z(X) = ‖Q⊥‖. By the assumption on the maximum

arrival, we have

|∆Z(X)| =
∣∣∣‖Q⊥(tk+1)‖ − ‖Q(tk)‖

∣∣∣
≤‖Q⊥(tk+1)−Q(tk)‖

=

√∑
ij

|Qij(tk+1 −Qij(tk)|2

≤namaxT (4.39)

For the expected drift at steady state, we have

IE
[
‖Q⊥(tk+1)‖ − ‖Q(tk)‖

]
≤ IE

[ tk+1−1∑
τ=tk

IE
[∆V (X(τ))−∆V‖(X(τ))

2‖Q⊥‖

∣∣∣X(τ)
]]

(4.40)

where ∆V (X) and ∆V‖(X) are the drift of Lyapunov functions V (X) = ‖Q‖2 and V‖(X) =

‖Q‖‖2, respectively. Now for each τ ∈ [tk, tk+1 − 1] we have

IE
[
∆V (X(τ))

∣∣∣X(τ)
]
≤‖λ‖2 + ‖σ‖2 + n− 2ε〈Q(τ),ν〉+ 2〈Q(τ),ν − S∗(τ)〉

+ 2〈Q(τ),S∗(τ)− S(τ)〉+ 2〈Q(τ), s(τ)〉1{r(τ)>0}

≤‖λ‖2 + ‖σ‖2 + n− 2ε〈Q(τ),ν〉 − 2νmin‖Q⊥(τ)‖

+ 2n(amax + 1)τ + 2〈Q(τ), s(τ)〉1{r(τ)>0} (4.41)

and

IE
[
∆V‖(X(τ))

∣∣∣X(τ)
]
≥ −2ε〈Q‖(τ),ν〉+ 2〈Q‖(τ), s(τ)〉. (4.42)
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We then have the expected drift of Z(X) at steady state given by

IE
[
‖Q⊥(tk+1)‖ − ‖Q(tk)‖

]
≤IE

[ tk+1−1∑
τ=tk

(‖λ‖2 + ‖σ‖2 + n

2‖Q(τ)‖
− ε〈 Q⊥(τ)

‖Q⊥(τ)‖
,ν〉 − νmin +

n(amax + 1)τ

‖Q(τ)‖

)
+ 2〈 Q⊥(τ)

‖Q⊥(τ)‖
, s(τ)〉1{r(τ)>0}

)]
≤T
(‖λ‖2 + ‖σ‖2 + n+ n(amax + 1)T

2(‖Q(tk)‖ − nT )
+ ε‖ν‖ − νmin

)
+
√
n∆r

≤T
(‖λ‖2 + ‖σ‖2 + n+ n(amax + 1)T

2(‖Q(tk)‖ − nT )
− νmin

4

)
(4.43)

where the last inequality follows from that ε ≤ νmin

4‖ν‖ and T > ∆r

ε
≥ 4‖ν‖∆r

νmin
≥ 4

√
n∆r

νmin
.

Let κ = 2(‖λ‖2+‖σ‖2+n)
νmin

+ nT (2(amax+1)
νmin

+ 1) and we have that ‖Q(tk)‖ > κ implies

IE
[
‖Q⊥(tk+1)‖ − ‖Q(tk)‖

]
≤ −νmin

4
T (4.44)

then using [29, lemma 3] with D = namaxT and η = νminT
4

, we have

IE
[
‖Q⊥(tk)‖2

]
≤4κ2 + 32D2

(
1 +

D

η

)2

≤
(

2κ+ 4
√

2D(1 +
D

η
)
)2

≤T 2
(4namax + 4(‖λ‖2 + ‖σ‖2 + 2n) + 16

√
2n2a2

max

νmin

)2

+ T 2
(

2n+ 4
√

2namax

)2

(4.45)

Let M = 4namax+4(‖λ‖2+‖σ‖2+2n)+16
√

2n2a2max

νmin
+ 2n + 4

√
2namax, we have IE

[
‖Q⊥(tk)‖2

]
≤

T 2M2.

Consider the Lyapunov functionW (X) =
∑

i

(∑
j Qij

)2
+
∑

i

(∑
iQij

)2− 1
n

(∑
ij Qij

)2,

and set the corresponding Lyapunov drift at steady state to zero, IE
[
W (X(tk+1))−W (X(tk))

]
=
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0. We then have T1 = T2 + T3 + T4 where

T1 =2IE
[∑

i

(∑
j

Qij(tk)
)(∑

j

tk+1−1∑
τ=tk

(sij(τ)1r(τ)=0 − aij(τ))
)

+
∑
j

(∑
i

Qij(tk)
)(∑

i

tk+1−1∑
τ=tk

(sij(τ)1r(τ)=0 − aij(τ))
)

− 1

n

(∑
ij

Qij(tk)
)(∑

ij

tk+1−1∑
τ=tk

(sij(τ)1r(τ)=0 − aij(τ))
)]

=2(εT −∆r)IE
[∑

ij

Qij(tk)
]

(4.46)

T2 =IE
[∑

i

(∑
j

tk+1−1∑
τ=tk

(aij(τ)− sij(τ)1{r(τ)=0})
)2

+
∑
j

(∑
i

tk+1−1∑
τ=tk

(aij(τ)− sij(τ)1{r(τ)=0})
)2

− 1

n

(∑
ij

tk+1−1∑
τ=tk

(aij(τ)− sij(τ)1{r(τ)=0})
)2]

=
(

2− 1

n

)
T
∑
ij

σ2
ij + n(εT −∆r)

2 (4.47)

T3 =IE
[
−
∑
i

(∑
j

tk+1−1∑
τ=tk

uij(τ)
)2

−
∑
j

(∑
i

tk+1−1∑
τ=tk

uij(τ)
)2

+
1

n

(∑
ij

tk+1−1∑
τ=tk

uij(τ)
)2]

≤nT (εT −∆r) (4.48)
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T4 =2IE
[∑

i

(∑
j

Qij(tk+1)
)(∑

j

tk+1−1∑
τ=tk

uij(τ)
)

+
∑
j

(∑
i

Qij(tk+1)
)(∑

i

tk+1−1∑
τ=tk

uij(τ)
)

− 1

n

(∑
ij

Qij(tk+1)
)(∑

ij

tk+1−1∑
τ=tk

uij(τ)
)]

≤2namaxT IE
[∑

ij

tk+1−1∑
τ=tk

uij(τ)
]

+ 4n

tk+1−1∑
τ=tk

IE
[∑

ij

uij(τ)
]√

IE[‖Q⊥(tk + τ)‖2]

≤2n2(εT −∆r)T (amax + 2M) (4.49)

Hence we have the upper bound

IE
[∑

ij

q̄ij

]
≤
(

1− 1

2n

) T

εT −∆r

‖σ‖2 +
n((1 + ε)T −∆r)

2
+ n2T (amax + 2M)

≤(1− 1

2n
)

T

εT −∆r

‖σ̃‖2 + T
(n(1 + ε)

2
+ n2(amax + 2M)

)
(4.50)
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Chapter 5

Distributed Computing Networks with

Reconfiguration Delay and Cost

In this chapter, we address the scheduling problem of distributed computing networks

subject to reconfiguration overhead.

The emergence of network function virtualization (NFV) and software defined networking

(SDN) enables network services to be deployed in the form of interconnected software functions

instantiated over commercial off-the-shelf servers at multiple cloud locations and interconnected

via a programmable network fabric. This allows cloud network operators to host a large variety

of services over a common general purpose infrastructure and dynamically allocate resources

according to changing demands, reducing both capital and operational expenses.

The unprecedented flexibility of the cloud networking paradigm provides exciting op-

portunities for future service scenarios and stimulates research in key technical areas such as

optimal function placement, service flow routing, and joint cloud/network resource allocation.

One line of research addressed the virtual network functions placement problem from a static

global optimization point of view, in which the goal is to find the placement of virtual functions

and the routing of network flows that meet service demands with minimum cost [3, 9, 15, 51].
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However, requirements for prior knowledge of global system information and service demands

restrict the use of such centralized policies to relatively small-scale scenarios with relatively static

demands. In contrast, recent works have leveraged ideas from dynamic network control to design

distributed control policies for computation networks, in which nodes make local decisions on

processing and transmission flow scheduling [11], as well as associated compute and network

resource allocation [14, 16, 18], with global system guarantees. The work in [11] proposes a

backpressure-based algorithm for maximizing the rate of queries for a computation operation

on remote data, while [14, 16, 18] present cloud network control policies for service function

chains that guarantee throughput-optimality and minimun average cloud network cost. While the

dynamic cloud network control (DCNC) algorithm presented in [18] shows promise in serving

varying workloads with minimum cost by dynamically adjusting resource allocation and schedul-

ing decisions, it overlooks the fact that the reconfiguration of compute and network resources

takes a non-negligible amount of time and may incur additional cost. As an example, starting up

a virtual machine (VM) can take up to 2 minutes [38]. A control policy that is unaware of the

reconfiguration delay and cost associated with the cloud and network resources, may perform

excessive reconfigurations that can lead to increased congestion and overall operational cost.

The reconfiguration delay associated with flow scheduling has been studied in the context

of the switch model [5, 7, 49], multi-hop networks [21, 44], and signal control in transportation

systems [21]. In these works, throughput optimal scheduling policies under any finite reconfigu-

ration delay have been proposed. However, resource allocation, and thus cost minimization, is

not considered in the settings of these works. Regarding reconfiguration cost, [36] addressed

the cost of flow reconfigurations in SDN by designing a control policy that minimizes total flow

allocation cost subject to a given reconfiguration cost budget. In [23], the reconfiguration cost

associated with switching base stations on and off in a dynamic wireless network setting was

considered. The proposed approach requires arrival and channel statistics for activation decisions,

and leverages an explore-exploit policy in the case that this information is not available.
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5.1 System Model

A cloud network is modeled as a directed graph G = (V , E), with |V| = V vertices and

|E| = E edges representing cloud nodes and network links, respectively. Cloud and network

resources can be allocated in terms of elemental resource units (e.g. VMs, wavelengths) and are

characterized by their processing and transmission capacities and costs, respectively. We describe

these parameters in the following, and provide an example illustrating how these parameters may

correspond to physical parameters associated with the deployment of NFV service chains in cloud

networks.

• Ki = {0, 1, . . . , Ki}: the set of possible processing resource units at node i ∈ V

• Kij = {0, 1, . . . , Kij}: the set of possible transmission resource units at link (i, j) ∈ E

• Ci(k): the processing capacity resulting from the allocation of k processing resource units

at node i ∈ V

• Cij(k): the transmission capacity resulting from the allocation of k transmission resource

units at link (i, j) ∈ E

• wi(k): the cost of maintaining k active processing resource units at node i ∈ V

• wij(k): the cost of maintaining k active transmission resource units at link (i, j) ∈ E

• ei: the cost per processing flow unit at node i ∈ V

• eij: the cost per transmission flow unit at link (i, j) ∈ E

Fig. 5.1(a) depicts an example cloud network that hosts a service chain. Each service

function in the chain may be instantiated as a VM within a cloud node. For each cloud node, Ki

would then represent the total number of VMs available, and Ci(k) the number of vCPUs associ-

ated with the instantiation of k VMs. The activation and load-proportional processing resource
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fc+ = (φ,3)

fc− = (φ,1)

(a) (b)

Figure 5.1: (a) A service function chain composed of Denial of Service, Firewall, and Deep
Packet Inspections functions, and (b) its instantiation in a 4-node cloud network.

cost, wi(k) and ei, may either represent power consumption or price paid to the cloud provider

for the activation and usage of the allocated VMs. Regarding the allocation of transmission

resources, Kij may represent the total number of available bandwidth resource blocks and Cij(k)

the transmission rate associated with the allocation of k resource blocks. The corresponding

transmission costs, wij(k) and eij , may again represent power consumption or prices paid to a

cloud and/or network provider for the activation and usage of bandwidth resources. Depending

on the application, an operator may also include propagation delay as an additional penalty term

in the transmission resource cost to favor shorter propagation delay.

Throughout the rest of the discussion, we make the following assumption on the capacities

and costs of cloud and network resources:

Assumption 5.1. For any node i ∈ V and any link (i, j) ∈ E , we assume that both the capacity

and the cost are strictly increasing with the amount of resource assigned. In other words, given

any node i, for any k such that 0 ≤ k ≤ Ki−1, we haveCi(k) < Ci(k+1) andwi(k) < wi(k+1);

similarly, given any link (i, j), for any k such that 0 ≤ k ≤ Kij − 1, we have Cij(k) < Cij(k+ 1)

and wij(k) < wij(k + 1).
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5.1.1 Service model

Cloud network G offers a set of services Φ. Each service φ ∈ Φ is described by a chain of

service functions. We letMφ = {1, 2, . . . ,Mφ} denote the ordered set of functions of service φ,

hence the tuple (φ,m) represents the m-th function of service φ. Fig. 5.1(b) illustrates an example

of a network security service [32] consisting of denial-of-service (DoS) protection, firewall (FW),

and intrusion detection/protection (IDP). Denote the security service as φ, and the DoS service

function is then denoted as (φ, 1), etc.

In order to describe the flow of packets through a service chain, we adopt a multi-

commodity-chain flow model as in [3, 16, 17], in which a commodity represents the flow of

packets at a given stage of a service chain. In particular, a commodity-c flow is specified by

source node sc, destination node dc, and function fc = (φ,m), indicating the flow of packets

with origin at sc and destination at dc that have been processed by the first m functions of service

φ. For ease of exposition, we let c+ and c− denote the commodities that succeed and precede

commodity c in its service chain, respectively.

Each service function has potentially distinct processing requirement, which may also vary

between cloud locations. We let ρ(c)
i denote the processing-transmission flow ratio of function fc

at node i. That is, when one transmission flow unit of commodity c goes through function fc at

node i, it occupies ρ(c)
i processing flow units. In addition, our service model also captures the

possibility of flow scaling. We denote by ξ(c) > 0 the scaling factor of function fc, indicating

that function fc generates an average of ξ(c) output packets of commodity c per input packet of

commodity c−.

5.1.2 Reconfiguration Delay and Cost

We consider cloud network control policies that adjust the schedule of commodity flows,

as well as the allocation of cloud and network resources, according to changing demands. We
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assume that such reconfiguration may incur the following two types of overhead:

• Reconfiguration delay (time): This is the time duration for the reconfiguration process

to complete. We assume that during the reconfiguration process, the associated function

(transmission or processing of commodity flows) is not available. We denote by δi the

reconfiguration delay for node i ∈ V , and by δij the reconfiguration delay for link (i, j) ∈ E .

• Reconfiguration cost: This is the cost/penalty associated with each reconfiguration opera-

tion. Let ηi denote the reconfiguration cost for node i ∈ V , and ηij denote the reconfigura-

tion cost for link (i, j) ∈ E .

It is important to note that reconfiguration delay indicates the time during which traffic is

not being served, and hence has a direct impact on throughput performance. For example, the

more time it takes to start a VM or to redirect a traffic flow in a software-defined switch, the more

traffic is blocked during the reconfiguration process. On the other hand, reconfiguration cost

accounts for any other cost penalty associated with the reconfiguration process that is not causing

a blockage of traffic flow, e.g., power consumption and/or hardware degradation when switching

on/off physical resources. While reconfiguration cost does not affect throughput performance, it

impacts overall resource cost (e.g., total power consumption).

In the rest of the paper, we use ∆ to denote the reconfiguration delay and cost structure of

a cloud network, where ∆ =
{
{δi}i∈V , {δij}(i,j)∈E , {ηi}i∈V , {ηij}(i,j)∈E

}
.

We consider a time slotted system with slots normalized to integral units t ∈ {0, 1, 2, . . . }.

Suppose that node i reconfigures the processing resource allocation or the commodity being

processed at time t. Then, flow processing at node i becomes unavailable during time period

[t, t + δi], and a reconfiguration cost ηi is incurred at time t. Similarly, suppose that link (i, j)

reconfigures the transmission resource allocation or the commodity being transmitted at time t.

Then, flow tranmission is unavailable during [t, t+ δij], and a reconfiguration cost ηij is incurred

at time t.

101



Note that we consider a worst-case reconfiguration delay model in that we assume com-

plete unavailability of packet processing or transmission functionality at a node or link undergoing

reconfiguration. Importantly, a throughput-optimal policy for this worst-case reconfiguration

delay model will guarantee throughput-optimality for any other less restrictive model.

For ease of discussion in the following, we also define ri(t) and rij(t) to denote the

reconfiguration status:

• ri(t): the time remaining in the reconfiguration process at node i ∈ V

• rij(t): the time remaining in the reconfiguration process at link (i, j) ∈ E , where i, j ∈ V

By definition, these processes evolve as follows: At any time t, if node i (or link (i, j)) reconfig-

ures, then set ri(t) = δi (or rij(t) = δij , respectively); otherwise, set ri(t) = [ri(t− 1)− 1]+ (or

rij(t) = [rij(t− 1)− 1]+, respectively).

5.1.3 Queueing Model

Let Q(c)
i (t) denote the queue backlog of commodity-c packets at node i at the beginning

of time slot t. We denote by a(c)
i (t) the exogenous arrivals of commodity-c packets at node i

during time slot t. Throughout this paper, we make the following assumptions for the exogenous

arrival processes.

Assumption 5.2. Each exogenous arrival process is independent and identically distributed

(i.i.d.) over time, with IE[a
(c)
i (t)] = λ

(c)
i . Furthermore, each exogenous arrival process has

bounded support. In other words, there exist amax <∞ such that a(c)
i (t) ≤ amax, ∀i ∈ V , c ∈ C,

∀t.

At each time slot t, each node makes the following transmission and processing scheduling

and resource allocation decisions:

• µ(c)
i (t): the flow rate of commodity c being processed at node i at time t
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• µ(c)
ij (t): the flow rate of commodity c on link (i, j) at time t

• ki(t): the number of processing resource units allocated to node i at time t

• kij(t): the number of transmission resource units allocated to link (i, j) at time t

With the aforementioned setup, we may write the queue dynamics for each commodity

c ∈ C at each node i:

Q
(c)
i (t+ 1) =

[
Q

(c)
i (t)−

∑
j∈V+(i)

µ
(c)
ij (t)1{rij(t)=0} − µ(c)

i (t)1{ri(t)=0}

]+

+
∑

j∈V−(i)

µ
(c)
ji (t)1{rji(t)=0} + ξ(c)µ

(c−)
i (t)1{ri(t)=0} + a

(c)
i (t), (5.1)

where V+(i) and V−(i) denote the set of outgoing and incoming neighbors of node i, respectively.

Observe from (5.1) that the serving rate of the queue of commodity c at node i is composed

of the transmission rate of commodity c of all outgoing links and the local processing rate of

commodity c. On the other hand, the arrival rate is composed of the transmission rate of

commodity c of all incoming links and the local processing rate of the preceeding commodity

in the service chain c−. It is important to note that there is no contribution to both serving and

arrival rates from those transmission and processing resources that are undergoing reconfiguration

(i.e., rij(t) > 0 or ri(t) > 0), indicating the inability to transmit or process packets during the

reconfiguration process.

5.1.4 Problem Formulation

Given a set of service demands with average input rate matrix λ = {λ(c)
i }i∈V,c∈C , the goal

is to support the demand while minimizing the average cloud network cost.

We assume that when a processing/transmission resource is undergoing reconfiguration,

processing/transmission allocation cost is not incurred since the resource is not operative until the
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reconfiguration process completes. Hence, we can write the total cloud network cost at time t as

h(t) =
∑
i∈V

(
(eiµi(t) + wi(ki(t)))1{ri(t)=0} + ηi1{(µi(t),ki(t)) 6=(µi(t−1),ki(t−1))}

)
+
∑

(i,j)∈E

(
(eijµij(t) + wij(kij(t)))1{rij(t)=0} + ηij1{(µij(t),kij(t)) 6=(µij(t−1),kij(t−1))}

)
(5.2)

We can then formulate the dynamic cloud network control problem under reconfiguration

delay/cost as follows. Given an input rate matrix λ in the capacity region:

min lim sup
t→∞

1

t

t−1∑
τ=0

IE[h(τ)] (5.3a)

s.t. The cloud network is rate stable with input rate λ

and under queue length dynamics (5.1) (5.3b)∑
c∈C

µ
(c)
i (τ) ≤ µi(τ) ≤ Ci(ki(τ)), ∀i, τ (5.3c)

∑
c∈C

µ
(c)
ij (τ) ≤ µij(τ) ≤ Cij(kij(τ)), ∀(i, j), τ (5.3d)

µ
(c)
i (τ) ≥ 0, µ

(c)
ij (τ) ≥ 0, ∀i, (i, j), c, τ (5.3e)

0 ≤ ki(τ) ≤ Ki, 0 ≤ kij(τ) ≤ Kij, ∀i, (i, j), τ (5.3f)

5.2 Impact of Reconfiguration Delay/Cost

In this section, we discuss the impact of reconfiguration delay and cost on the performance

of a cloud network control policy that is unaware of such reconfiguration delay/cost.

We start with the characterization of the cloud network capacity region and the minimum

average cloud network cost required for network stability. The cloud network capacity region Λ∆

is defined as the closure of all input rate matrices that can be stabilized by some cloud network

control policy, given the cloud network structure (G,Φ,∆). For each rate matrix λ ∈ Λ∆, we
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denote by h∗∆(λ) the minimum average cost required for network stability.

The following theorem establishes that the capacity region and the minimum average cost

for each arrival rate in the capacity region remains the same for any finite reconfiguration delay

and cost. The proof of Theorem 5.1 is given in Appendix D.

Theorem 5.1. Given any finite reconfiguration delay/cost structure ∆, the capacity region Λ∆

remains the same. In particular, Λ∆ = Λ, where Λ is the capacity region of the cloud network

without reconfiguration delay, as characterized in [16, Theorem 1]. Furthermore, given any

exogenous arrival rate matrix λ ∈ Λ∆, we have h∗∆(λ) = h∗(λ).

While it was shown in [17] that under the setup of no reconfiguration delay and cost,

DCNC policy is throughput optimal and achieves a [O(1/V ), O(V )] cost-delay tradeoff, the

result does not hold for the case in which reconfiguration delay or cost exists. In fact, as it will be

shown in section 5.5 (Figs. 5.3 and 5.8), DCNC policy loses throughput optimality and the ability

to achieve minimum average cost under the presence of reconfiguration delay or cost.

In the next section, we propose Adaptive DCNC (ADCNC) policy, which is an online

distributed policy for cloud network control under reconfiguration delay and cost. We then

establish theoretical performance guarantees of ADCNC policy, specifically throughput optimality

and the [O(1/V ), O(V )] cost-delay tradeoff. In other words, ADCNC policy recovers the

performance guarantees that DCNC policy loses when reconfiguration overhead exists.

5.3 Adaptive Dynamic Cloud Network Control Policy

At each time slot t, each cloud network node makes local processing and transmission

decisions on its corresponding outgoing interfaces.

The ADCNC policy requires the selection of a function g satisfying the following condition

and a parameter V ∈ IR+.

Condition 5.1. Function g : IR+ → IR+ satisfies:
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(1) g(0) = 0,

(2) g is strictly increasing, and

(3) g is a sublinear function, i.e. lim
x→∞

g(x)
x

= 0.

With the given function g and parameter V , node i ∈ V makes the following transmission

and processing decisions at each time slot t:

• Transmission decisions: For each neighbor j ∈ V+(i)

1. Compute the transmission max-utility-weight as

W ∗
ij(t) = max

k∈Kij
c∈C

{
Cij(k)

[
Q

(c)
i (t)−Q(c)

j (t)− V eij
]+

− V wij(k)

}
(5.4)

with k∗, c∗ being its maximizers.

2. Let (k̄, c̄) denote the schedule at time t− 1. Compute the transmission weight as

Wij(t) =Cij(k̄)
[
Q

(c̄)
i (t)−Q(c̄)

j (t)− V eij
]+

− V wij(k̄) (5.5)

and the transmission weight differential as

∆Wij(t) =W ∗
ij(t)−Wij(t) (5.6)

3. Define the transmission weight differential threshold at time t as

θij(t) = g
(
Cij(k̄)(Q

(c∗)
i (t)−Q(c∗)

j (t))
)

(5.7)
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and set the transmission resource-commodity schedule at time t as

(k(t), c(t)) =

 (k∗, c∗) if ∆Wij(t) > θij(t)

(k̄, c̄) otherwise
(5.8)

4. Allocate k(t) transmission resource units and set the transmission flow rates as:

µ
(c)
ij (t) = Cij(k(t))1{c=c(t)},∀c ∈ C

• Processing decisions:

1. Compute the processing max-utility weight as

W ∗
i (t) = max

k∈Ki
c∈C

{
Ci(k)

ρ
(c)
i

[
Q

(c)
i (t)− ξ(c+)Q

(c+)
i (t)− V ei

]+

− V wi(k)

}
(5.9)

with k∗, c∗ being its maximizers.

2. Let (k̄, c̄) denote the schedule at time t− 1. Compute the processing weight as

Wi(t) =
Ci(k̄)

ρ
(c̄)
i

[
Q

(c̄)
i (t)− ξ(c̄+)Q

(c̄+)
i (t)− V ei

]+

− V wi(k̄) (5.10)

and the processing weight differential as

∆Wi(t) =W ∗
i (t)−Wi(t) (5.11)

3. Define the processing weight differential threshold at time t as

θi(t) = g
(
Ci(k̄)(Q

(c∗)
i (t)−Q(c∗

+
)

i (t))
)

(5.12)
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and set the processing resource-commodity schedule at time t as

(k(t), c(t)) =

 (k∗, c∗) if ∆Wi(t) > θi(t)

(k̄, c̄) otherwise
(5.13)

4. Allocate k(t) processing resource units and set the processing flow rates as:

µ
(c)
i (t) = Ci(k(t))1{c=c(t)},∀c ∈ C (5.14)

5.4 Throughput Optimality and Cost Minimization

In this section, we extend the drift-plus-penalty analysis of [34] to show that Adaptive

DCNC is throughput-optimal and achieves [O(1/V ), O(V )] average cost-delay tradeoff with

probability 1 (w.p. 1) under any finite reconfiguration delay/cost.

The stability of Adaptive DCNC relies on the fact that it allows each node and link

to implicitly adjust the frequency of reconfiguration according to its maximal queue length

differential. In particular, under Adaptive DCNC, the frequency of reconfiguration will decrease

if the maximal queue length differential increases. This behavior may be characterized by the

following lemma.

Lemma 5.1. Suppose Assumption 5.1 and 5.2 hold, and the cloud network is operated under

Adaptive DCNC with parameter V and sublinear function g. Given any fixed integer T , if the

maximal queue length differential at a link (i, j) ∈ E at time t, i.e. max
c

{
Q

(c)
i (t)−Q(c)

j (t)
}

, is

greater than a constant Mij as defined below in (5.15) , then link (i, j) reconfigures at most once

during [t, t+ T ].

Similarly, if the maximal queue length differential at a node i ∈ V at time t, i.e.

max
c

{
Q

(c)
i (t)− ξ(c+)Q

(c+)
i (t)

}
, is greater than a constant Mi as defined below in (5.16) , then
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node i reconfigures at most once during [t, t+ T ].

Mij = max
{
V
(

min
k>0

wij(k)

Cij(k)
+ eij

)
+ Tγmax,

1

Cij(1)
g−1 (2Cij,maxTγmax) + Tγmax

}
(5.15)

Mi = max
{
V
(

min
k>0

wij(k)

Cij(k)
+ eij

)
+ Tγmax,

1

Ci(1)
g−1 (2Ci,maxTγmax) + Tγmax

}
(5.16)

where Cij,max = max
k
Cij(k), Ci,max = max

k
Ci(k), γmax = 2amax + 2Cmax(vmax + 1), vmax =

max
i
{max{|V+(i)|, |V−(i)|}}, and Cmax = max{max

(i,j)∈E
Cij,max,max

i∈V
Ci,max}.

With Lemma 5.1 limiting the frequency of reconfiguration, and the weight differentials

{∆Wi(t)}i∈V , {∆Wij(t)}(i,j)∈E being bounded by local thresholds that are growing sublinearly

with the local maximal queue length differential, we then extend the drift-plus-penalty analysis

of [34] to prove the following performance guarantee.

Theorem 5.2. Suppose the arrival rate matrix λ = (λ
(c)
i ) is strictly interior to the capacity region

Λ, i.e. there exists a positive constant ε satisfying (λ + ε1) ∈ Λ, where 1 is a matrix of all ones.

If all reconfiguration delays and costs in ∆ are finite, and function g satisfies Condition 5.1,

then Adaptive DCNC stabilizes the cloud network, while achieving arbitrarily close to minimum

average cost h∗(λ) w.p. 1, i.e.

lim sup
t→∞

1

t

t∑
τ=0

h(τ) ≤ h∗(λ) +
B

V
(5.17)

lim sup
t→∞

1

t

t∑
τ=0

∑
i∈V,
c∈C

Q
(c)
i (τ) ≤ B + V [h∗(λ + ε1)− h∗(λ)]

ε
(5.18)

where B is a constant that is dependent on the system parameters (G,Φ,∆), Ci(k), Cij(k), wi(k),

wij(k), amax.
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Figure 5.2: Abilene US network topology. The numbers for each cloud node corresponds to that
in Tables 5.1 and 5.2.

5.5 Simulations

In this section, we present simulation results for the proposed Adaptive DCNC policy and

compare with benchmark policies. The sublinear function g for Adaptive DCNC is selected as

g(x) = (1− γ)x1−δ for all simulations, and unless otherwise stated, δ = 0.01 and γ = 0.01. For

this time slotted cloud network, we assume each time slot to be of 10 ms.

We consider a cloud network with network topology based on the Abilene US Network,

as shown in Fig. 5.2. We assume that all nodes are cloud nodes that can host all service functions.

For the processing resource parameters, we assume that each cloud node i can instantiate

a maximum of Ki = 5 VMs, with one vCPU per VM, i.e. Ci(k) = k vCPUs, k ∈ {1, . . . , 5}.

The associated processing resource costs are estimated from power consumption and local energy

cost data from [33] and [30], and the resulting per-timeslot processing resource costs are listed in

Table 5.1. We assume a linear cost structure such that wi(k) = k · wi(1).

On the other hand, for the transmission resource parameters, we assume that each link

(i, j) can allocate a maximum of Kij = 5 bandwidth channels of 1 Gbps each, i.e. Cij(k) = k

Gbps, k ∈ {1, . . . , Kij}. The transmission resource costs are estimated based on AWS Direct

Connect pricing [1], and modified to take link distance into account. The resulting per-timeslot
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transmission resource costs are listed in Table 5.2. We assume a linear cost structure such that

wij(k) = k · wij(1).

Table 5.1: Processing resource cost per time slot

Node 1 2 3 4 5 6
wi(1) (×10−8 $) 3.59 6.50 4.21 6.50 3.43 4.19
Node 7 8 9 10 11
wi(1) (×10−8 $) 4.01 4.25 3.69 4.84 5.72

Table 5.2: Transmission resource cost per time slot

Link (1,2) (1,3) (2,3) (2,4) (3,6) (4,5) (5,6)
wij(1) (×10−8 $) 9.4 12.4 12.3 6.3 6.5 14.0 8.8
Link (5,7) (6,8) (7,8) (7,10) (8,9) (9,11) (10,11)
wij(1) (×10−8 $) 9.4 8.56 7.5 8.1 5.2 9.2 5.4

We consider 2 network service chains, each composed of 2 distinct functions. The scaling

factors of all functions are assumed to be ξ(c) = 1, and the processing-transmission flow ratios are

ρ
(c)
i = 1 vCPU / Gbps for all nodes and service functions. We assume each service is requested

by one source-destination pair. For Service 1, the source is in Seattle and the destination is

in New York; while for Service 2, the source is in Sunnyvale and the destination is in Atlanta.

The arrival processes for both flows are i.i.d. Poisson with arrival rates denoted by λ1 and λ2,

respectively. Throughout the simulation, we set both arrival rates to the same value, denoted by λ,

i.e. λ1 = λ2 = λ.

For ease of discussion, we separate cases to illustrate different effects of reconfiguration

delay and reconfiguration cost. In the following subsections, we vary the reconfiguration delay

while fixing the reconfiguration cost, and vice versa.

5.5.1 Reconfiguration Delay

We first consider the case of cloud networks with reconfiguration delay only, in other

words, the reconfiguration costs are set to zero. In this subsection, the reconfiguration delay of all
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the processing and transmission resources are set to the same value, denoted by δr.

Figure 5.3: Mean total queue length for BMP, DCNC, and ADCNC under various flow arrival
rates. Parameter V = 0.

Fig. 5.3 compares the mean (time average) total queue length between ADCNC and

benchmark policies, DCNC [17] and BMP [21], under various flow arrival rates λ. Note that

the BMP policy is proposed in the context where the cost minimization is not addressed, hence

we make the parameter V fixed as V = 0.0 for all policies to ignore the cost minimization

aspect, and focus only on the throughput performance. Given the topology and the processing and

transmission capacity setting, the rate pair (λ1, λ2) = (5.0, 5.0) Gbps is at the boundary of the

capacity region, hence we consider the interval λ ∈ [0, 5.0). It is clear from Fig. 5.3 that when the

reconfiguration delay δr is nonzero, DCNC loses throughput-optimality, and the maximum arrival

rate it can stabilize reduces as the reconfiguration delay δr increases. In contrast, ADCNC and

BMP guarantee the throughput-optimality irrespective of the finite reconfiguration delay value.

We also see that while ADCNC and BMP have comparable delay performance, ADCNC has

slightly shorter queue lengths especially for small reconfiguration delays. In the following, we

further look into the cost-delay tradeoff performance for DCNC and ADCNC.

In Fig. 5.4, we plot the mean (time average) network cost versus the mean total queue
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Figure 5.4: Mean cost versus mean queue length for DCNC and ADCNC under various reconfig-
uration delays. Arrival rate λ = 1.0 Gbps.

length for DCNC and ADCNC under various reconfiguration delays. The arrival rate is fixed

to λ = 1.0 Gbps. Note that for each curve, the control parameter V tunes the tradeoff between

network cost and total queue length. The closer a curve is to the lower-left corner, the better the

performance (cost-delay tradeoff). Note that without reconfiguration delay, δr = 0, DCNC and

ADCNC have similar performance. As δr increases, the performance of the two policies starts

to degrade. Nevertheless, ADCNC always guarantees throughput-optimality, and it is able to

push the mean network cost arbitrarily close to minimum at the expense of increased mean queue

length. In contrast, DCNC has significantly larger performance degradation as δr increases, and

does not guarantee throughput-optimality. In fact, for δr = 5, DCNC cannot even stabilize the

arrival rate of λ = 1.0 Gbps, hence the absence of the associated cost-delay curve.

In Fig. 5.5, we further look into the reconfiguration behavior of both DCNC and ADCNC

under various values of the control parameter V , with reconfiguration delay fixed to δr = 2,

and arrival rate λ = 1.0 Gbps. The vertical axis represents the fraction of time that a given

transmission/processing resource is under reconfiguration, averaged over all resources, i.e., the

time overhead caused by the reconfiguration delay. We first notice that ADCNC spends much less
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Figure 5.5: Mean fraction of time under reconfiguration for various parameter V.

time under reconfiguration, which is one of the key reasons for ADCNC to preserve throughput-

optimality under finite reconfiguration delay. We then notice that while increasing the parameter

V helps reducing reconfiguration overhead for both policies, DCNC spends a significantly higher

fraction of time under reconfiguration even for large V .

We now consider the selection of the function g(x) used in ADCNC. As specified in the

simulation settings, we fix the form of g(x) = (1− γ)x1−δ and look at the effect of varying the

parameters δ and γ. In Fig. 5.6, we fix γ = 0.01, i.e., g(x) = 0.99x1−δ, and vary δ in the exponent.

We can see that the performance improves as δ approaches 0, suggesting that the performance is

better when g(x) approaches a linear function. Notice a caveat here is that the linear function

does not satisfy Condition 5.1 for g(x), and hence does not guarantee the throughput optimality

and average cost upper bounds from Theorem 5.2. On the other hand, in Fig. 5.7, we fix δ = 0.01,

i.e., g(x) = (1− γ)x0.99, and vary γ in the exponent.
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Figure 5.6: Mean cost versus mean queue length for ADCNC with different hysteresis function
g(x) = 0.99x1−δ. Arrival rate λ = 1.0.

Figure 5.7: Mean cost versus mean queue length for ADCNC with different hysteresis function
g(x) = (1− γ)x0.99. Arrival rate λ = 1.0.
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Figure 5.8: Mean cost versus mean queue length for DCNC and ADCNC under various reconfig-
uration costs. Reconfiguration delay δr = 2.

5.5.2 Reconfiguration Cost

In this subsection, we set the reconfiguration delay to a fixed value (δr = 2), and set the

reconfiguration cost of all the processing and transmission resources to be the same value, denoted

by ηr. Given the reconfiguration delay, we select the arrival rate low enough such that DCNC is

rate stable, and compare the cost-delay tradeoff performance between DCNC and ADCNC.

Fig. 5.8 shows the cost-delay tradeoff achieved by DCNC and ADCNC under various

reconfiguration costs ηr. We first notice that as the reconfiguration cost increases, DCNC can no

longer achieve arbitrarily close to the minimum average cost, even when the parameter V is tuned

to endure large mean total queue length. On the other hand, Adaptive DCNC is able to achieve

arbitrarily close to the minimum cost under any reconfiguration cost ηr.
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5.6 Heuristic Variants of ADCNC Policy

5.6.1 ADCNC in Generalized Settings

In this subsection, we briefly discuss interesting extensions to the current model that can

be captured with a slight modification of the analysis.

(1) Different reconfiguration delay/cost for resource allocation and commodity allocation:

In this paper, we have assumed that the same reconfiguration delay and cost are incurred upon

any change in either the allocation of resources or the commodity being processed/transmitted. In

practice, different delays and costs can be associated with different reconfiguration operations. It

is rather straightforward to show that ADCNC would preserve throughput and cost optimality

for any finite values of such heterogeneous delays and costs by treating any change as incurring

the maximum of such delays/costs. However, improved policies (in terms of cost-delay tradeoff)

could be designed in such settings. In the next subsection, we provide an example heuristic

variant of the ADCNC policy to improve the cost-delay performance under this setting.

(2) Partial reconfiguration: In this paper, we consider a worst-case reconfiguration delay

model in the sense that we assume complete unavailability of packet processing or transmission

functionality at a node or link undergoing reconfiguration. In practice, there may be cases in

which adding or removing resources without changing the allocated commodity only reduces the

available processing or transmission rate to the minimum between the available rates before and

after reconfiguration. Importantly, a throughput-optimal policy for this worst-case reconfiguration

delay model will guarantee throughput optimality for any other less restrictive model. Improved

policies (in terms of cost-delay tradeoff) for this setting are of interest for future work.

5.6.2 A Heuristic Variant of ADCNC

In the previous subsection, we discussed a more generic setting of the cloud network

control problem, where different reconfiguration overheads are associated with different recon-
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figuration operations, i.e., resource reconfiguration and commodity reconfiguration. While, as

mentioned earlier, the throughput optimality guarantee for Adaptive DCNC extends to this case,

it is possible to improve the performance, i.e., the cost-delay tradeoff, by exploiting the unequal

reconfiguration overhead associated with the different operations. We now introduce a heuristic

variant of Adaptive DCNC as an example for improving the cost-delay performance.

Recall that Adaptive DCNC reconfigures both resource allocation and scheduled com-

modity at the same time. This approach is reasonable when the reconfiguration overhead is

the same for both operations, since when one reconfiguration operation is performed, the other

could be performed at the same time without incurring additional overhead. However, when the

reconfiguration overhead is different for different operations, intuitively one may benefit from

performing the reconfiguration operation with smaller overhead more frequently. For this reason,

we modify the reconfiguration criterion in Adaptive DCNC to a two-stage criterion. The first

stage is the same as the reconfiguration criterion in Adaptive DCNC, while the additional stage is

used to decide whether to perform the reconfiguration operation with smaller overhead. With the

additional stage of reconfiguration criterion, we would expect the reconfiguration operation with

smaller overhead to be performed more frequently.

To be more specific, consider an example where the resource reconfiguration overhead

is larger than the commodity reconfiguration overhead. The local processing decisions at node

i ∈ V at time t first follow steps 1) and 2) as described in section IV.A to compute W ∗
i (t) and

∆Wi(t). Then, at step 3), node i first checks if the criterion ∆Wi(t) > θi(t) is met. If so,

then it reconfigures both resource and commodity allocation; otherwise, it further checks the

following. Node i computes ∆Qi(t) = [Q
(c∗)
i (t) − Q(c∗+)

i (t)]+ − [Q
(c̄)
i (t) − Q(c̄+)

i (t)]+, and a

threshold defined as φi(t) = g([Q
(c∗)
i (t)−Q(c∗+)

i (t)]+). If ∆Qi(t) > φi(t), then it reconfigures

the commodity (while the resource allocation remains the same), otherwise no reconfiguration

is performed. We refer to this policy as ADCNC-2stage, as it is a variant of ADCNC where the

reconfiguration criterion becomes a 2-stage decision.
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In Fig. 5.9, we show the simulation result for ADCNC and ADCNC-2stage under different

commodity reconfiguration delay, while the resource reconfiguration delay is fixed as δr,resource =

20. Again, for simplicity, we set all the reconfiguration costs to zero. We note that while the

performance of ADCNC (solid lines) improves slightly as the commodity reconfiguration delay

decreases, ADCNC-2stage (dashed lines) further exploits the smaller commodity reconfiguration

delay and improves the cost-delay performance for each commodity reconfiguration delay.

Figure 5.9: Mean cost versus mean queue length for ADCNC and ADCNC-2stage under various
commodity reconfiguration delay. Resource reconfiguration delay is fixed as δr,resource = 20.
Arrival rate λ = 2.5 Gbps.

5.7 Concluding Remarks

This chapter addresses the dynamic control of network service chains in distributed com-

puting networks (e.g., cloud networks) with non-negligible resource reconfiguration delay and

cost. We show that while the capacity region and the minimum achievable time average cost re-

mains unchanged regardless of the value of reconfiguration delay or cost, the throughput and cost

optimality of existing policies (in the regime without reconfiguration delay/cost) is compromised
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when reconfiguration delay/cost exists. We then propose Adaptive DCNC, a distributed flow

scheduling and resource allocation policy that addresses the reconfiguration overhead. In par-

ticular, we show that ADCNC is throughput optimal and achieves a [O(1/V ), O(V )] cost-delay

tradeoff through an extension of the drift-plus-penalty analysis, and further validate the results

via numerical simulations.

ADCNC exhibits important practical features, among which we highlight its distributed

nature and the fact that it does not require neither prior knowledge of the traffic demands nor the

exact values of reconfiguration overhead. These properties benefit the applicability of ADCNC to

the control of large scale cloud networks and relieves the burden of demand estimation/prediction

or the measurement of reconfiguration overhead. In addition, we show that ADNC can be easily

extended to account for the heterogeneity of reconfiguration delay and cost to further improve the

cost-delay performance in such practical settings.

With the recent rapid advances in network virtualization technologies, we expect the

cloud network architecture considered in this work to be widely adopted for emerging large scale

applications. The model and the control policy described in this chapter address two important

practical aspects regarding the deployment and efficient operation of distributed cloud networks,

namely the dynamic traffic demand and the reconfiguration overhead. We claim that awareness of

reconfiguration overhead is essential toward accurately evaluating the performance of dynamic

cloud network control policies, which should further facilitate the adoption of cloud network

architectures in practice.

Chapter 5, in full, is a reprint of the material as it appears in the paper: C.-H. Wang, J.

Llorca, A. M. Tulino, T. Javidi, “Dynamic Cloud Network Control under Reconfiguration Delay

and Cost”, IEEE/ACM Transactions on Networking (TON), vol 27, pp 491-504, 2019. The

dissertation author was the primary investigator and author of this paper.

120



5.8 Supplementary Proofs

In the following, given a time t′, we denote by (kij(t
′), cij(t

′)) the transmission resource-

commodity pair scheduled at time t′ on link (i, j), and by (ki(t
′), ci(t

′)) the processing resource-

commodity pair scheduled at time t′ at node i. In addition, we denote by k∗ij(t
′), c∗ij(t

′)) the

transmission resource-commodity pair that maximizes the weight, W ∗
ij(t
′) at time t′ on link (i, j),

and by (k∗i (t
′), c∗i (t

′)) the processing resource-commodity pair that maximizes the weight, W ∗
i (t′),

at time t′ at node i.

5.8.1 Proof of Lemma 5.1

Proof. We prove the result by contradiction. Suppose that under the assumption of Lemma 5.1,

there are two or more reconfigurations within the time period [t, t+ T ]. Therefore we may select

two consecutive reconfiguration instances t1, t2 with t ≤ t1 < t2 < t+ T .

Before we proceed with the proof, we state the following lemmas that will be handy in

the following. The proofs of these lemmas are given in Appendix C.

Lemma 5.2. Given Assumption 5.2, for any commodities c1, c2 ∈ C, any nodes i, j ∈ V , and any

ξ < ξmax, ρ > ρmin, the (weighted) queue length differential between Q(c1)
i and Q(c2)

j can change

only by a finite amount over one time slot, given as

∣∣∣1
ρ

(
Q

(c1)
i (τ + 1)− ξQ(c2)

j (τ + 1)
)
− 1

ρ

(
Q

(c1)
i (τ)− ξQ(c2)

j (τ)
)∣∣∣

≤ 1

ρmin

(1 + ξmax)
(
amax + Cmax(vmax + 1)

) ∆
= γmax (5.19)

where Cmax = max{max
(i,j)∈E

Cij(Kij),max
i∈V

Ci(Ki)} is the maximum transmission or processing

rate, and vmax = max
i
{max{|V+(i)|, |V−(i)|}} is the maximum number of incoming or outgoing

links over all nodes. We also take ρmin = min{1,min
i,c

ρ
(c)
i } and ξmax = max{1,max

c
ξ(c)}.

Similarly, the change in the maximal queue length differential for transmission on link
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(i, j) over one time slot is bounded as

∣∣∣max
c∈C

{
Q

(c)
i (τ + 1)−Q(c)

j (τ + 1)
}
−max

c∈C

{
Q

(c)
i (τ)−Q(c)

j (τ)
}∣∣∣ ≤ γmax (5.20)

and the change in the maximal queue length differential for processing in node i over one time

slot is bounded as

∣∣∣∣max
c∈C

{ 1

ρ
(c)
i

[
Q

(c)
i (τ + 1)− ξ(c+)Q

(c+)
i (τ + 1)− V ei

]+}
−max

c∈C

{ 1

ρ
(c)
i

[
Q

(c)
i (τ)− ξ(c+)Q

(c+)
i (τ)− V ei

]+}∣∣∣∣ ≤ γmax (5.21)

Lemma 5.3. Given Assumption 5.1, and any fixed V < ∞, define F (x)
∆
= max

k≤Kij

{
Cij(k)[x −

V eij]
+ − V wij(k)

}
. Then,

(a) F (x) is Lipschitz continuous with Lipschitz constant Cij,max = max
k≤Kij

Cij(k).

(b) If x > V
(

min
k>0

wij(k)

Cij(k)
+ eij

)
, then F (x) > 0 and the k∗ maximizing F (x) satisfies k∗ > 0;

otherwise, F (x) = 0 and the maximizer is k∗ = 0.

In the following, we are going to show that under the assumption of Lemma 5.1,

max
c

{
Q

(c)
i (t)−Q(c)

j (t)
}
> Mij , the weight difference at time t2 can not exceed the thresh-

old g
(
Cij(kij(t2−1)) max

c∈C

{
Q

(c)
i (t2)−Q(c)

j (t2)
})

. This, hence, contradicts the assumption that

Adptive DCNC reconfigures at time t2.

To do this, starting from (5.6) we rewrite the transmission weight differential as:

∆Wij(t2) =W ∗
ij(t2)−Wij(t2)

=(W ∗
ij(t2)−W ∗

ij(t1)) + (W ∗
ij(t1)−Wij(t2)) (5.22)
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with

W ∗
ij(t2) =F

(
max
c∈C

{
Q

(c)
i (t2)−Q(c)

j (t2)
})

=Cij(k
∗
ij(t2))

[
Q

(c∗ij(t2))

i (t2)−Q(c∗ij(t2))

j (t2)− V eij
]+

− V wij(k∗ij(t2)) (5.23)

W ∗
ij(t1) =F

(
max
c∈C

{
Q

(c)
i (t1)−Q(c)

j (t1)
})

=Cij(k
∗
ij(t1))

[
Q

(c∗ij(t1))

i (t1)−Q(c∗ij(t1))

j (t1)− V eij
]+

− V wij(k∗ij(t1)) (5.24)

and

Wij(t2) =Cij(k̄ij)
[
Q

(c̄ij)
i (t2)−Q(c̄ij)

j (t2)− V eij
]+

− V wij(k̄ij)

=Cij(k
∗
ij(t1))

[
Q

(c∗ij(t1))

i (t2)−Q(c∗ij(t1))

j (t2)− V eij
]+

− V wij(k∗ij(t1)) (5.25)

where in (5.25) we have used the fact that, given the assumption that Adaptive DCNC reconfigures

at time slots t1, t2 , during [t1, t2 − 1] the resource allocation and the transmitted commodity

remains k∗ij(t1) and c∗ij(t1), respectively.

Now, using Lemma 5.3 (a), we have

W ∗
ij(t2)−W ∗

ij(t1) =F
(

max
c∈C

{
Q

(c)
i (t2)−Q(c)

j (t2)
})
− F

(
max
c∈C

{
Q

(c)
i (t1)−Q(c)

j (t1)
})

≤Cij,max

∣∣∣max
c∈C

{
Q

(c)
i (t2)−Q(c)

j (t2)
}
−max

c∈C

{
Q

(c)
i (t1)−Q(c)

j (t1)
} ∣∣∣

≤Cij,max(t2 − t1)γmax

≤Cij,maxTγmax (5.26)
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On the other hand we have that:

W ∗
ij(t1)−Wij(t2) =Cij(k

∗
ij(t1))[Q

(c∗ij(t1))

i (t1)−Q(c∗ij(t1))

j (t1)− V eij]+

− Cij(k∗ij(t1))[Q
(c∗ij(t1))

i (t2)−Q(c∗ij(t1))

j (t2)− V eij]+

≤Cij(k∗ij(t1))
∣∣∣ (Q(c∗ij(t1))

i (t2)−Q(c∗ij(t1))

j (t2)
)

−
(
Q

(c∗ij(t1))

i (t1)−Q(c∗ij(t1))

j (t1)
) ∣∣∣

≤Cij,max(t2 − t1)γmax

≤Cij,maxTγmax (5.27)

where the last inequality follows from Lemma 5.2.

Combining (5.26) and (5.27), we have

W ∗
ij(t2)−Wij(t2) ≤ 2Cij,maxTγmax (5.28)

From the assumption of Lemma 5.1, and using Lemma 5.2, we have max
c∈C

{
Q

(c)
i (t1) −

Q
(c)
j (t1)

}
> V

(
min
k>0

wij(k)

Cij(k)
+eij

)
, and hence k∗ij(t1) > 0 following Lemma 5.3 (b). Similarly, with

the assumption of Lemma 5.1, and using Lemma 5.2, we also have max
c∈C

{
Q

(c)
i (t2)−Q(c)

j (t2)
}
>

1
Cij(1)

g−1
(
2Cij,maxTγmax

)
, from which it follows that

g
(
Cij(k

∗
ij(t1)) max

c∈C

{
Q

(c)
i (t2)−Q(c)

j (t2)
})

>2Cij,maxTγmax

≥W ∗
ij(t2)−Wij(t2) (5.29)

which contradics the assumption that Adaptive DCNC reconfigures at time t2.

We now consider the condition for the processing decision at node i. From the assumption

of Lemma 5.1, max
c

{
Q

(c)
i (t)− ξ(c+)Q

(c+)
i (t)

}
> Mi, the weight difference at time t2 can not

exceed the threshold g
(
Cij(kij(t2 − 1)) max

c∈C

{
Q

(c)
i (t2)−Q(c)

j (t2)
})

.
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To do this, we rewrite the processing weight differential as:

∆Wi(t2) =W ∗
i (t2)−Wi(t2)

=(W ∗
i (t2)−W ∗

i (t1)) + (W ∗
i (t1)−Wi(t2)) (5.30)

with

W ∗
i (t2) =

Ci(k
∗
i (t2))

ρ
(c∗i (t2))
i

[
Q

(c∗i (t2))
i (t2)− ξ(c∗

+

i (t2))Q
(c∗

+

i (t2))
i (t2)− V ei

]+

− V wi(k∗i (t2)) (5.31)

W ∗
i (t1) =

Ci(k
∗
i (t1))

ρ
(c∗i (t1))
i

[
Q

(c∗i (t1))
i (t1)− ξ(c∗

+

i (t1))Q
(c∗

+

i (t1))
i (t1)− V ei

]+

− V wi(k∗i (t1)) (5.32)

and

Wi(t2) =
Ci(k

∗
i (t1))

ρ
(c∗

+
i (t1))

i

[
Q

(c∗i (t1))
i (t2)− ξ(c∗

+

i (t1))Q
(c∗

+

i (t1))
i (t2)− V ei

]+

− V wi(k∗i (t1)) (5.33)

where in (5.33) we have used the fact that, given the assumption that Adaptive DCNC reconfigures

at time slots t1, t2, during [t1, t2 − 1] the resource allocation and the commodity being processed

remains k∗i (t1), c∗i (t1), respectively.
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Now, using Lemma 5.3 (a), we have

W ∗
i (t2)−W ∗

i (t1) =F
(

max
c∈C

{ 1

ρ
(c)
i

[Q
(c)
i (t2)−Q(c)

j (t2)− V ei]+
})

− F
(

max
c∈C

{ 1

ρ
(c)
i

[Q
(c)
i (t1)−Q(c)

j (t1)− V ei]+
})

≤Cij,max

∣∣∣max
c∈C

{ 1

ρ
(c)
i

[Q
(c)
i (t2)−Q(c)

j (t2)− V ei]+
}

−max
c∈C

{ 1

ρ
(c)
i

[Q
(c)
i (t1)−Q(c)

j (t1)− V ei]+
}∣∣∣

≤Cij,max(t2 − t1)γmax

≤Cij,maxTγmax (5.34)

5.8.2 Proof of Theorem 5.2

Proof. Consider the quadratic Lyapunov function L : IRN×N → IR where L(Q) = 1
2

∑
i,c(Q

(c)
i )2.

Let X(t) =
(
Q(t),k(t),µ(t), r(t)

)
denote the queue length, resource allocation decision, flow

rate decision, and the reconfiguration status of the cloud network at time t.

We first consider zero reconfiguration costs ηi = 0, ηij = 0.

We now leverage Lemma 5.1 to bound the T -step Lyapunov drift-plus-penalty.

IE

[
L(Q(t+ T ))− L(Q(t)) + V

t+T∑
τ=t

h(τ)

∣∣∣∣X(t)

]

=IE

[ t+T−1∑
τ=t

IE [L(Q(τ + 1))− L(Q(τ)) + V h(τ)|X(τ)]

∣∣∣∣X(t)

]
(5.35)
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For each time slot τ ∈ [t, t+ T ] we have:

IE

[
L(Q(τ + 1))− L(Q(τ)) + V h(τ)

∣∣∣∣X(τ)

]
≤Φ +

∑
i,c

Q
(c)
i (τ)λ

(c)
i − IE

[
Z(τ)

∣∣∣X(τ)
]

+ V IE
[
h(τ)

∣∣∣X(τ)
]

(5.36)

where

Φ =
1

2
N
[
((vmax + 1)Cmax)2 + ((vmax + 1)Cmax + amax)2

]
Z(τ) =

∑
i,c

Q
(c)
i (τ)

[ ∑
j∈δ(i)

µ
(c)
ij (τ)1{rij(τ)=0} + µ

(c)
i (τ)1{ri(τ)=0}

−
∑

j:i∈δ(j)

µ
(c)
ji (τ)1{rji(τ)=0} − µ(c−)

i (τ)1{ri(τ)=0}

]
(5.37)

and vmax = max
i∈V
{max{|V+(i)|, |V−(i)|}}.

Let W ∗(τ) be the sum of transmission max-utility-weights and the processing max-utility-

weights:

W ∗(τ) =
∑

(i,j)∈E

W ∗
ij(τ) +

∑
i∈V

W ∗
i (τ), (5.38)

where the transmission max-utility-weights and the processing max-utility-weights are given by

W ∗
ij(τ) =µ

∗(c
∗
ij(τ))

ij (τ)
(
Q

(c∗ij(τ)

i (τ)−Q(c∗ij(τ))

j (τ)− V eij
)
− V wij(k∗ij(τ))

W ∗
i (τ) =µ∗

(c∗i (τ))

i (τ)
(
Q

(c∗i (τ))
i (τ)−Q(c∗

+

i (τ))
i (τ)− V ei

)
− V wi(k∗i (τ)) (5.39)

In (5.36), adding and subtracting IE
[
W ∗(τ)

∣∣∣X(τ)
]

given in (5.38), and recalling that for
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any ε > 0 such that λ + ε1 ∈ Λ, (see [16, 17] for derivation):

∑
i,c

Q
(c)
i (τ)λ

(c)
i − IE

[
W ∗(τ)

∣∣∣X(τ)
]
≤− ε

∑
i,c

Q
(c)
i (τ) + V h∗(λ + ε1), (5.40)

we can further bound the drift-plus-penalty in (5.36) as:

IE

[
L(Q(τ + 1))− L(Q(τ)) + V h(τ)

∣∣∣∣X(τ)

]
≤Φ− ε

∑
i,c

Q
(c)
i (τ) + V h∗(λ + ε1)

+ IE
[
W ∗(τ)

∣∣∣X(τ)
]
− IE

[
Z(τ)

∣∣∣X(τ)
]

+ V IE
[
h(τ)

∣∣∣X(τ)
]

(5.41)

From above we have a negative term in the drift-plus-penalty which decreases as the total

queue length increases. It then remains to ensure that W ∗(τ)− Z(τ) + V h(τ) could be bounded

so that the we can still bound the drift-plus-penalty with a term that decrease when the total queue

length increases. To this end notice that:

W ∗(τ)− Z(τ) + V h(τ) =
∑

(i,j)∈E

[
W ∗
ij(τ)−Wij(τ)1{rij(τ)=0}

]
+
∑
i∈V

[
W ∗
i (τ)−Wi(τ)1{ri(τ)=0}

]
(5.42)

where

Wij(τ) =µ
(c(τ))
ij (τ)

(
Q

(c(τ))
i (τ)−Q(c(τ))

j (τ)− V eij
)
− V wij(kij(τ))

Wi(τ) =µ
(c(τ))
i (τ)

(
Q

(c(τ))
i (τ)−Q(c+(τ))

i (τ)− V ei
)
− V wi(ki(τ))

For the above expression, we now bound the term for each node i and each link (i, j)

separately. We do this with the help of Lemma 5.1.
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We start with the term for link (i, j). Note that for any given time τ ∈ [t, t + T ] such

that Adaptive DCNC does not reconfigure (i.e rij(τ) = 0), by construction we have that the

transmission weight differential is bounded by:

W ∗
ij(τ)−Wij(τ) ≤g

(
Cij,max max

c

{
Q

(c)
i (τ)−Q(c)

j (τ)
})

≤g
(
Cmax max

i,c

{
Q

(c)
i (τ)

})
. (5.43)

Alternative for any given time τ ∈ [t, t+ T ] such that rij(τ) > 0 i.e. Adaptive DCNC is under

reconfiguration, since the transmission weight differential is always bounded by the transmission

max-utility-weight, than it suffices to bound W ∗
ij(τ). In particular, if link (i, j) at time t satisfies

max
c
{Q(c)

i (t)−Q(c)
j (t)} > Mij , then at time τ the transmission weight differential can be bound

as follow:

W ∗
ij(τ)−Wij(τ) ≤ W ∗

ij(τ)

≤ Cij,max max
c

{
Q

(c)
i (τ)−Q(c)

j (τ)
}

≤ Cmax max
i,c

{
Q

(c)
i (τ)

}
(5.44)

while for the case that at time t, max
c
{Q(c)

i (t)−Q(c)
j (t)} ≤Mij , starting from the expression of

the transmission max-utility-weight W ∗
ij(τ), we observe that since Mij is the max of two terms

one of the following could hold:

1. max
c
{Q(c)

i (t)−Q(c)
j (t)} ≤ V

(
min
k

wij(k)

Cij(k)
+ eij

)
+ Tγmax.

In this case using Lemma 5.2, we have that at time τ

max
c
{Q(c)

i (τ)−Q(c)
j (τ)} ≤ V

(
min
k

wij(k)

Cij(k)
+ eij

)
+ 2Tγmax (5.45)
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from which it follows that

W ∗
ij(τ) ≤max

k

{
Cij(k)

[
V min

k

wij(k)

Cij(k)
+ 2Tγmax

]
− V wij(k)

}
≤max

k

{
Cij(k)V min

k

wij(k)

Cij(k)
− V wij(k)

}
+ 2Cij,maxTγmax

≤2Cij,maxTγmax (5.46)

where the last inequality follows from Lemma 5.3 (b).

2. max
c
{Q(c)

i (t)−Q(c)
j (t)} ≤ 1

Cij(1)
g−1
(

2Cij,maxTγmax

)
+ Tγmax:

In this case using Lemma 5.2, we have that at time τ

max
c
{Q(c)

i (τ)−Q(c)
j (τ)} ≤ 1

Cij(1)
g−1
(

2Cij,maxTγmax

)
+ 2Tγmax (5.47)

and thus

W ∗
ij(τ) ≤Cij,max max

c

{
Q

(c)
i (τ)−Q(c)

j (τ)
}

≤Cij,max

Cij(1)
g−1
(

2Cij,maxTγmax

)
+ 2Cij,maxTγmax

Combining the two cases, we have for max
c
{Q(c)

i (t)−Q(c)
j (t)} ≤Mij that

W ∗
ij(τ) ≤ Cij,max

Cij(1)
g−1
(

2Cij,maxTγmax

)
+ 2Cij,maxTγmax

∆
= Φij (5.48)

We then use the same approach to give a bound on the term for each node i. Applying
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(5.36), (5.40), (5.42), and (5.43)-(5.48) into (5.35), we have

IE

[
L(Q(t+ T ))− L(Q(t)) + V

t+T∑
τ=t

h(τ)|X(t)

]

≤IE

[
TΦ− ε

t+T−1∑
τ=t

∑
i,c

Q
(c)
i (τ) + TV h∗(λ + ε1)

+
t+T∑
τ=t

( ∑
(i,j)∈E

g
(
Cmax max

i,c

{
Q

(c)
i (τ)

})
1{rij(τ)=0}

+
∑

(i,j)∈E:

max
c
{Q(c)

i (t)−Q(c)
j (t)}>Mij

Cmax max
i,c

{
Q

(c)
i (τ)

}
1{rij(τ)>0}

+
∑

(i,j)∈E:

max
c
{Q(c)

i (t)−Q(c)
j (t)}≤Mij

Φij1{rij(τ)>0}

)

+
t+T∑
τ=t

(∑
i∈V

g
(
Cmax max

i,c

{
Q

(c)
i (τ)

})
1{ri(τ)=0}

+
∑
i∈V:

max
c
{Q(c)

i (t)−Q(c+)
i (t)}>Mi

Cmax max
i,c

{
Q

(c)
i (τ)

}
1{ri(τ)>0}

+
∑
i∈V:

max
c
{Q(c)

i (t)−Q(c+)
i (t)}≤Mi

Φi1{ri(τ)>0}

)∣∣∣∣X(t)

]

≤IE

[
TΦ− ε

t+T−1∑
τ=t

∑
i,c

Q
(c)
i (τ) + TV h∗(λ + ε1)

+
∑

(i,j)∈E

[ t+T∑
τ=t

g
(
Cmax max

i,c

{
Q

(c)
i (τ)

})
+ δijCmax

(
max
i,c

{
Q

(c)
i (t)

}
+ Tγmax

)
+ TΦij

]

+
∑
i∈V

[ t+T∑
τ=t

g
(
Cmax max

i,c

{
Q

(c)
i (τ)

})
+ δiCmax

(
max
i,c

{
Q

(c)
i (t)

}
+ Tγmax

)
+ TΦi

]∣∣∣∣X(t)

]
(5.49)
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Let Φ′ = Φ +
∑

(i,j)∈E
(Φij + δijCmaxTγmax) +

∑
i∈V

(Φi + δiCmaxTγmax), we then have

IE

[
L(Q(t+ T ))− L(Q(t)) + V

t+T∑
τ=t

h(τ)|X(t)

]

≤IE

[
TΦ′ − ε

t+T−1∑
τ=t

∑
i,c

Q
(c)
i (τ) + TV h∗(λ + ε1)

+
∑

(i,j)∈E

[ t+T∑
τ=t

g
(
Cmax max

i,c

{
Q

(c)
i (τ)

})
+ δijCmax max

i,c

{
Q

(c)
i (t)

}]

+
∑
i∈V

[ t+T∑
τ=t

g
(
Cmax max

i,c

{
Q

(c)
i (τ)

})
+ δiCmax max

i,c

{
Q

(c)
i (t)

}]∣∣∣∣X(t)

]
(5.50)

Now select T > max{8|E|δijCij,max

ε
,

8|V|δiCi,max

ε
}, and since g is a sublinear function, there

exists a constant KT <∞ such that x > KT implies |E|g(Cmaxx) < ε
8
x for any (i, j) ∈ E and

|V|g(Cmaxx) < ε
8
x for any node i ∈ V .

We thus have

IE

[
L(Q(t+ T ))− L(Q(t)) + V

t+T∑
τ=t

h(τ)

∣∣∣∣X(t)

]

≤IE

[
TΦ′′ − ε

2

t+T−1∑
τ=t

∑
i,c

IE[Q
(c)
i (τ)] + TV h∗(λ + ε1)

∣∣∣∣X(t)

]
(5.51)

Taking expectation on both sides and summing over time slots t = 0, T , 2T, . . . , (K−1)T ,

we have

IE[L(Q(KT ))]− IE[L(Q(0))] + V
KT∑
τ=0

IE[h(τ)]

≤KTΦ′′ − ε

2

KT∑
τ=0

∑
i,c

Q
(c)
i (τ) +KTV h∗(λ + ε1) (5.52)
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Further divide both sides by KT , and rearranging the terms, we have

ε

2KT

KT∑
τ=0

∑
i,c

IE[Q
(c)
i (τ)] +

V

KT

KT∑
τ=0

IE[h(τ)]

≤Φ′′ + V h∗(λ + ε1) +
1

2KT
IE[‖Q(0)‖2] (5.53)

From (5.53), using [35, Prop. 6.1], Eqs. (5.17) and (5.18) in Theorem 5.2 follow.

5.8.3 Proofs of Lemmas 5.2-5.3

Proof. (of lemma 5.2) First note that with assumption 5.2, for any queue Q(c)
i , the queue length

change over one time slot may be bounded as follows:

Q
(c)
i (τ + 1)−Q(c)

i (τ) ≤ amax + Cmax(|V−(i)|+ 1) (5.54)

and

Q
(c)
i (τ + 1)−Q(c)

i (τ) ≥ −Cmax(|V+(i)|+ 1) (5.55)

Hence we have

∣∣∣Q(c)
i (τ + 1)−Q(c)

i (τ)
∣∣∣ ≤ amax + Cmax(vmax + 1) (5.56)

where vmax = max
i
{max{|V+(i)|, |V−(i)|}}.

133



By rearranging the terms and using the triangle inequality, we have

∣∣∣1
ρ

(
Q

(c1)
i (τ + 1)− ξQ(c2)

j (τ + 1)
)
− 1

ρ

(
Q

(c1)
i (τ)− ξQ(c2)

j (τ)
)∣∣∣

=
∣∣∣1
ρ

(
Q

(c1)
i (τ + 1)−Q(c2)

j (τ + 1)
)
− ξ

ρ

(
Q

(c1)
i (τ)−Q(c2)

j (τ)
)∣∣∣

≤1

ρ

∣∣∣Q(c1)
i (τ + 1)−Q(c1)

i (τ)
∣∣∣+

ξ

ρ

∣∣∣Q(c2)
j (τ + 1)−Q(c2)

j (τ)
∣∣∣

≤1

ρ
(1 + ξ)

(
amax + Cmax(vmax + 1)

)
≤ 1

ρmin

(1 + ξmax)
(
amax + Cmax(vmax + 1)

) ∆
= γmax (5.57)

which establishes the first part.

Using (5.57), we further prove the second part of the lemma. Let c∗ij(t) denote the com-

modity that maximizes the queue length differential at any time t, i.e. c∗ij(t) = arg max
c∈C

{
Q

(c)
i (τ +

1)−Q(c)
j (τ + 1)

}
, we then have

max
c∈C

{
Q

(c)
i (τ + 1)−Q(c)

j (τ + 1)
}

=Q
(c∗ij(τ+1))

i (τ + 1)−Q(c∗ij(τ+1))

j (τ + 1)

≤
(
Q

(c∗ij(τ+1))

i (τ)−Q(c∗ij(τ+1))

j (τ)
)

+ γmax

≤max
c∈C

{
Q

(c)
i (τ)−Q(c)

j (τ)
}

+ γmax (5.58)

On the other hand,

max
c∈C

{
Q

(c)
i (τ + 1)−Q(c)

j (τ + 1)
}
≥Q(c∗ij(τ))

i (τ + 1)−Q(c∗ij(τ))

j (τ + 1)

≥
(
Q

(c∗ij(τ))

i (τ)−Q(c∗ij(τ))

j (τ)
)
− γmax

= max
c∈C

{
Q

(c)
i (τ)−Q(c)

j (τ)
}
− γmax (5.59)

Combining the two bounds above, we have (5.20). Similarly, let c∗i (t) =
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arg max
c∈C

{
1

ρ
(c)
i

[
Q

(c)
i (t)− ξ(c+)Q

(c+)
i (t)− V ei

]+}, we have

max
c∈C

{ 1

ρ
(c)
i

[
Q

(c)
i (τ + 1)− ξ(c+)Q

(c+)
i (τ + 1)− V ei

]+}
=

1

ρ
(c∗i (τ+1))
i

[
Q

(c∗i (τ+1))
i (τ + 1)−Q(c∗i (τ+1))

j (τ + 1)− V ei
]+

≤ 1

ρ
(c∗i (τ+1))
i

[
Q

(c∗i (τ+1))
i (τ)−Q(c∗i (τ+1))

j (τ)− V ei
]+

+ γmax

≤max
c∈C

{ 1

ρ
(c)
i

[
Q

(c)
i (τ)− ξ(c+)Q

(c+)
i (τ)− V ei

]+}
+ γmax (5.60)

and

max
c∈C

{ 1

ρ
(c)
i

[
Q

(c)
i (τ + 1)− ξ(c+)Q

(c+)
i (τ + 1)− V ei

]+}
≥ 1

ρ
(c∗i (τ))
i

[
Q

(c∗i (τ))
i (τ + 1)−Q(c∗i (τ))

j (τ + 1)− V ei
]+

≥ 1

ρ
(c∗i (τ))
i

[
Q

(c∗i (τ))
i (τ)−Q(c∗i (τ))

j (τ)− V ei
]+ − γmax

= max
c∈C

{ 1

ρ
(c)
i

[
Q

(c)
i (τ)− ξ(c+)Q

(c+)
i (τ)− V ei

]+}− γmax (5.61)

We then have (5.21) from the two bounds above.

Proof. (of lemma 5.3)

(a) Without loss of generality, assume that y ≥ x. Let ky be the maximizer in the definition for

F (y), i.e. F (y) = Cij(ky)[y − V eij]+ − V wij(ky).
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Since F (x) ≥ Cij(ky)[x− V eij]+ − V wij(ky) by definition, we then have

F (y)− F (x) ≤F (y)− Cij(ky)[x− V eij]+ − V wij(ky)

≤Cij(ky)(y − x)

≤Cij,max(y − x) (5.62)

The result then follows by the fact that F (x) is strictly increasing.

(b) If max
c∈C

{
Q

(c)
i (τ) − Q

(c)
j (τ)} > V

(
min
k>0

wij(k)

Cij(k)
+ eij

)
, let k′ > 0 be the minimizer of

min
k>0

wij(k)

Cij(k)
. We then have

Cij(k
′)
[

max
c∈C

{
Q

(c)
i (τ)−Q(c)

j (τ)} − V eij
]+ − V wij(k′)

>Cij(k
′)
(
V min

k>0

wij(k)

Cij(k)
− V Wij(k

′)

Cij(k′)

)
= 0 (5.63)

hence the weight maximizing resource allocation is nonzero.

On the other hand, if max
c∈C

{
Q

(c)
i (τ)−Q(c)

j (τ)} ≤ V
(

min
k

wij(k)

Cij(k)
+ eij

)
, then for any k′ > 0,

we have

Cij(k
′)
[

max
c∈C

{
Q

(c)
i (τ)−Q(c)

j (τ)} − V eij
]+ − V wij(k′)

≤Cij(k′)
(
V min

k>0

wij(k)

Cij(k)
− V Wij(k

′)

Cij(k′)

)
≤ 0 (5.64)

Hence the resource allocation that maximizes the weight, max
k

{
Cij(k)[

max
c∈C

{
Q

(c)
i (τ)−Q(c)

j (τ)} − V eij
]+ − V wij(k)

}
, is k = 0.
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5.8.4 Proof of Theorem 5.1

Proof. The necessity of the Theorem follows the proof for [16, Theorem 1].

According to [16, Theorem 1], the capacity region with zero reconfiguration delay and

cost, Λ, consists of arrival rates λ(c)
i for which there exist multi-commodity flow variables f (c)

ij ,

f
(c)
i and probability values αi,k, αij,k, β

(c)
i,k , β

(c)
ij,k that satisfy:

∑
j∈V−(i)

f
(c)
ji + ξ(c)f

(c−)
i + λ

(c)
i ≤

∑
j∈V+(i)

f
(c)
ij + f

(c)
i , ∀i, c (5.65)

f
(c)
i ≤

1

ρ
(c)
i

∑
k∈Ki

αi,kβ
(c)
i,kCi(k), ∀i, c (5.66)

f
(c)
ij ≤

1

ρ
(c)
ij

∑
k∈Kij

αij,kβ
(c)
ij,kCij(k), ∀(i, j), c (5.67)

f
(c)
i ≥ 0, ∀i, c, f (c)

ij ≥ 0, ∀(i, j), c (5.68)∑
k∈Ki

αi,k ≤ 1, ∀i,
∑
k∈Kij

αij,k ≤ 1, ∀(i, j) (5.69)

∑
c∈C

β
(c)
i ≤ 1, ∀i,

∑
c∈C

β
(c)
ij ≤ 1, ∀(i, j) (5.70)

Furthermore, the minimum average cloud network cost required for network stability

under zero reconfiguration delay and cost is given by

h∗(λ) = min
∑
i

∑
k∈Ki

αi,k

(
wi(k) + eiCi(k)

∑
c

β
(c)
i,k

ρ
(c)
i

)
+
∑
(i,j)

∑
k∈Kij

(
wij(k) + eijCij(k)

∑
c

β
(c)
ij,k

)
(5.71)

where the minimum is over all f (c)
ij , f (c)

i , αi,k, αij,k, β
(c)
i,k , β(c)

ij,k that satisfy (5.65)-(5.70).

The necessity of the Theorem (i.e. any rate λ /∈ Λ could not be stabilized by any policy)

follows the same approach in the proof of [16, Theorem 1]. Therefore, we have Λ∆ ⊂ Λ and

h∗∆(λ) ≥ h∗(λ) for any reconfiguration delay/cost structure ∆. In the following, for each λ ∈ Λ
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under any reconfiguration delay/cost structure ∆, we construct policies that stabilize λ with

average cloud network cost arbitrarily close to h∗(λ).

We first establish that for each λ = {λ(c)
i } that is in the interior of Λ, i.e. λ ∈ Λo, there

exists a policy that stabilizes the cloud network under the exogenous arrival rate λ and under any

finite reconfiguration delay and cost, ∆ =
{
{δi}i∈V , {δij}(i,j)∈E , {ηi}i∈V , {ηij}(i,j)∈E

}
. Notice

that since reconfiguration cost does not affect the queue dynamics as in (5.1), hence we may

ignore the reconfiguration cost when considering cloud network stability. We also denote the

maximum reconfiguration delay as δmax = max{max
i∈V

δi, max
(i,j)∈E

δij}.

Since λ ∈ Λo, there exists ε, ε′ > 0 such that (1 + ε′)λ + ε1 ∈ Λo. Then substituting

λ as (1 + ε′)λ + ε1 in (5.65), there exist variables f (c)
ij , f (c)

i , αi,k, αij,k, β
(c)
i,k , β(c)

ij,k that satisfy

(5.65)-(5.70).

At each time instance, we consider the flow allocation variables {µ(c)
i (t)}i,c, {µ(c)

ij (t)}(i,j),c

as a L = (|V|+ |E|)|C|-dimensional vector denoted by µ(t) = [µ
(c)
i (t);µ

(c)
ij (t)] ∈ IRL. LetM be

the set of all feasible L-dimensional flow allocations, i.e. µ(t) ∈M ⊂ IRL.

Now concatenating flow variables {f (c)
i }i,c and {f (c)

ij }(i,j),c as f = [f
(c)
i ; f

(c)
ij ] ∈ IRL, it

is straightforward from (5.66) and (5.67) that f is in the convex hull ofM. Hence according

to Caratheodory’s Theorem, f could be decomposed as a convex combination of L+ 1 vectors

{µl}L+1
l=1 inM.

f =
L+1∑
l=1

γlµl (5.72)

With the decomposition given in (5.72), we may construct a periodic flow allocation

schedule of period T such that each vector µl in theL+1 vectors {µl}L+1
l=1 is actively scheduled for

γl(T−(L+1)δmax) time slots within one period. In particular, each µl is scheduled for consecutive

γl(T − (L+ 1)δmax) + δmax time slots, with the first δmax being reserved for reconfiguration. We
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then have
∑(k+1)T−1

t=kT µ
(c)
ij (t)1{rij(t)=0} = (T−(L+1)δmax)f

(c)
ij and

∑(k+1)T−1
t=kT µ

(c)
i (t)1{ri(t)=0} =

(T − (L + 1)δmax)f
(c)
i . Now consider the Lyapunov function L(Q) =

∑
i,cQ

(c)
i , and we have

that for each node i and each commodity c that:

IE

[
Q

(c)
i (t+ T )−Q(c)

i (t)

∣∣∣∣X(t)

]
≤Tλ(c)

i +
t+T−1∑
τ=t

IE

[
−
∑

j∈V+(i)

µ
(c)
ij (τ)1{rij(t)=0} − µ(c)

i (τ)1{ri(τ)=0}

+
∑

j∈V−(i)

µ
(c)
ji 1{rji(τ)=0} + ξ

(c)
i µ

(c−)
i (τ)1{ri(τ)=0}

∣∣∣∣X(t)

]
=Tλ

(c)
i +

(
T − (L+ 1)δmax

)[
−
∑

j∈V+(i)

f
(c)
ij − f

(c)
i (τ) +

∑
j∈V−(i)

f
(c)
ji + ξ

(c)
i f

(c−)
i (τ)

]
≤Tλ(c)

i −
(
T − (L+ 1)δmax

)[
(1 + ε′)λ

(c)
i − ε

]
(5.73)

Then for any T that satisfies (1− (L+1)δmax

T
)(1 + ε′) > 1, or in other words, any T > (1 + 1

ε′
)(L+

1)δmax, we have

IE

[
Q

(c)
i (t+ T )−Q(c)

i (t)

∣∣∣∣X(t)

]
≤ −

(
T − (L+ 1)δmax

)
ε (5.74)

The strong stability then follows from Foster-Lyapunov Theorem.

For the average cloud network cost, with the solution f (c)
ij , f (c)

i , αi,k, αij,k, β
(c)
i,k , β(c)

ij,k

of (5.65)-(5.70), we may similarly construct a periodic flow allocation schedule that achieves

arbitrarily close to the minimal average cloud network cost h∗(λ). In particular, following

the same construction, a periodic flow schedule of period T achieves average cost of h∗(λ) +

L+1
T

(
∑

i∈V ηi +
∑

(i,j)∈E ηij). Since T could be arbitrarily large without affecting the stability (as

long as T > (1 + 1
ε′

)(L+ 1)δmax), as shown previously in (5.74), we have h∗∆(λ) = h∗(λ).
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Chapter 6

Conclusions

The concept of throughput optimality has been an essential first order performance

metric as it pertains to the robustness of the scheduling of queueing systems. In this thesis,

we have shown that the presence of the reconfiguration delay not only incurs overhead on the

delay performance, but also degrades the fundamental throughput optimality guarantee for many

scheduling policies not addressing the reconfiguration delay. Nonetheless, the capacity region

remains the same for any fixed reconfiguration overhead. For both the centralized and distributed

setup considered in this thesis, we propose scheduling policies that achieve throughput optimality

for any reconfiguration delay and do not require any prior knowledge on the arrival traffic.

For the delay performance of the Adaptive MaxWeight policy, the analysis in this thesis

is restricted in the heavy traffic regime and that the arrival rate matrix approaches to an all-port

saturated arrival rate. Some open questions arise from this analysis may be to address more

general arrival rates. For example, switches with heavy traffic limit to an arrival rate that only a

portion of the ports are saturated have been considered in the literature, in the context without

reconfiguration delay. It would be interesting to consider a similar setup for switches with

reconfiguration delay to complete the characterization of the heavy traffic queue length behavior

of the AMW policy. An even more relevant but challenging direction would be to consider the
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delay analysis in non-asymptotic regime, where a tight queue length bound for switch scheduling

remains an open question.

In Chapter 5, we considered the dynamic scheduling of a distributed computing network

where each computing function could be instantiated or terminated at any time and at any node in

the network. This inherently assumes that the computing functions are stateless, or do not evolve

over time. With the wider adoption of machine learning modules and data-driven processing

discipline, a possible future direction is to also consider functions that require data transfers when

instantiated at a different node. For this type of functions, not only the reconfiguration delay

needs to further incorporate data transfer delay, we also need to consider the data transfer which

occupies the network resources.
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