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ABSTRACT OF THE THESIS

Using Sparse CCA for Vocabulary Selection

by

David A. Torres

Master of Science in Computer Science

University of California, San Diego, 2009

Professor Gert R. G. Lanckriet, Chair

Professor Serge J. Belongie, Co-Chair

A content-based autotagging system is a computer system that automatically

annotates multimedia data such as music, images, and video with tags (semantically-

meaningful text-based tokens) based solely on the multimedia content. When develop-

ing an autotagging system, three important design decisions are 1) selecting a vocabu-

lary of tags, 2) choosing a feature-based representation of the multimedia content, and 3)

picking a supervised learning framework. If we select a tag that cannot be consistently

used to annotate multimedia data based on the multimedia content alone (e.g., inconsis-

tent human annotation), or if the feature representation does not encode the information

necessary to annotate the multimedia content, then it is unlikely that the supervised

viii



learning framework will be able to successfully annotate novel multimedia content with

that tag.

This paper proposes an approach to select a vocabulary of tags based on sparse

canonical component analysis (sparse CCA). That is, sparse CCA is used to find a set

of “acoustically meaningful” tags that are correlated with a chosen feature-based repre-

sentation of multimedia content. As a result, we find that we are better able to model

the selected tags using our supervised autotagging system. In this paper, we specifically

focus on music since we are interested in building a content-based music annotation

system.
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I.1 Introduction

A content-based music autotagging system is a computer program that can an-

notate songs with semantically meaningful tags (e.g., “happy”, “classic rock”, “distorted

electric guitar”) based on analysis of audio signals [48, 7, 24]. Once songs have been

automatically annotated with tags, relevant songs can be retrieved for a given text query

using a standard information retrieval framework. We have observed that autotagging

performance varies drastically depending on the tag. While there are many reasons for

this, (e.g., human subjectivity or polysemy), we focus on two specific reasons in this

paper. First, a tag may not be well represented by the audio signal. This may occur

if additional contextual information, such as geography or chronology, is needed to ac-

curately use the tag. Second, relevant acoustic information may not be encoded in the

acoustic feature representation. For example, if the tag is related to some rhythmic as-

pect of music (e.g., “waltz”) and we extract features which are associated with notions

of timbre (e.g., Mel-frequency cepstral coefficients), then the salient information needed

to predict the tag may be lost during feature extraction.

In this paper, we explore the problem of vocabulary selection, whereby, given an

acoustic representation, we identify a set of tags that allows accurate modeling in a su-

pervised learning framework (e.g., support vector machines [51, 24], Gaussian mixture

model classifiers [6, 48] and boosted decision stumps [10, 7]). Our primary contribution

1
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is the notion of acoustic correlation as an indicator for selecting tags. The idea is to

find a set of tags in a vocabulary whose use has a high correlation with the audio feature

representation. Such correlation may indicate that an underlying structure exists which

is readily modeled by supervised learning methods. While we focus on musical auto-

tagging in the paper, our approach is general and is applicable to any domain where the

goal is to annotate multimedia (e.g., images, video, sound) using a vocabulary of tags.

To motivate the problem further, let us outline key findings that we encoun-

tered when building our autotagging system that led us to consider vocabulary selection,

acoustic correlation and our proposed method of analysis, sparse canonical correlation

analysis (sparse CCA).

Thus far, we have collected annotations for music using various methods: For

the first iteration of our autotagger, we obtained music tags by text-mining song reviews

[45]. In later iterations, we obtained tags by conducting controlled human surveys [47],

and we explored the use of a human computation game [49, 53]. In each case, we have

been forced to build a vocabulary using ad-hoc methods. For example, the text-mined

song reviews resulted in a list of over 1,000 candidate tags, the majority of which were

not acoustically relevant. The authors manually pruned these tags upon the consensus

that a tag was not “acoustically relevant”. To collect the survey and game data, we built,

a priori, a two-level hierarchical vocabulary, first considering a set of high-level seman-

tic categories, (such as Instrumentation, Emotion, Vocal Characteristics, and Genre),

and then listing low-level tags for each category (such as “gloomy”, “alto saxophone”,

“falsetto”, “hip hop”.) It is unsatisfying to manually create a vocabulary that is subject

to the biases of its creators. Hence, a key advantage of our vocabulary selection method

is that it allows us to select tags based on a quantitative measure.

After assembling a vocabulary and obtaining an annotated corpus of music, i.e.,

a data set of known song-tag associations, the next steps are to build and evaluate our

semantic models. To build the models, we train a statistical model of the acoustic feature

vectors associated with each tag. This is done using a subset of the annotated corpus

called the training set. Then we evaluate the performance of these models in annotation
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and retrieval tasks using songs in the corpus that were not used in training (called the

test set).

During evaluation, we found that model performance varied drastically over tags

in the vocabulary implying that some tags were being modeled well, and others quite

poorly (i.e., not much better than random guessing). One reason for this variation is that

humans themselves inconsistently or inaccurately annotate music with tags. For exam-

ple, two people may disagree whether a song is “sad”. Another person may incorrectly

identify an “alto saxophone” as a “clarinet”. These kinds of inconsistencies will always

be problematic for autotagging systems; however, in this paper, we focus on another

more tractable problem that degrades autotagging performance.

The problem occurs when a tag is not well represented by the acoustic features

extracted from the audio signal. If this is the case, then it is likely that the audio repre-

sentation lacks the expressive power necessary to encode the semantics of this tag. This

translates to poor performance of the statistical models. This issue is the primary mo-

tivation behind our vocabulary selection technique: To create an effective autotagging

system, we must recognize which tags are candidates for successful modeling.

To address this problem, we propose the notion of acoustic correlation. We con-

sider a set of tags to be acoustically correlated with an acoustic representation if there

exists a strong correlation (in the mathematical sense) between the tags’ use and the

extracted audio features. If a strong correlation can be found, then the tag-audio rela-

tionship may be sufficiently salient to allow successful modeling of the tags. Consider

this simple but motivating example for a single tag: It is reasonable to expect that loud-

ness, a property of the audio content, is correlated with the tag “hard rock”, therefore we

should be able to use loudness to help distinguish between “hard rock” and non-“hard

rock” music.

To measure acoustic correlation we propose the use of an unsupervised statistical

method based on canonical correlation analysis (CCA). CCA is a method of exploring

cross-correlations between different representations of data. Within the CCA frame-

work it is assumed that these representations “share joint information that is reflected in
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correlations between them [4].” Similar to principal component analysis (PCA), where

we find informative basis vectors that maximize a data’s projected variance, CCA finds

pairs of basis vectors that maximize the data’s projected cross-correlation.1

Given music data represented in both a semantic feature space (audio tags) and

an acoustic feature space, the output of CCA, as it is used in this paper, is a weighted

combination of tags where the magnitude of each weight is an indication of how strongly

the corresponding tag contributes to the acoustic correlation. An immediate vocabulary

selection technique presents itself: Keep those tags with a high absolute weight, and

remove those tags with weight close to zero. While this method works in many cases, it

has been shown that this type of threshold-based variable selection may not always give

the best results [59, 17]. If the goal is to select a subset of tags, then it is best to encode

that information into the algorithm itself. This is done by explicitly seeking solutions

with zero weights for uninformative tags. This type of analysis is known as sparse

analysis and leads to the method presented in this paper, sparse canonical correlation

analysis (sparse CCA).

The rest of this paper is organized as follows. Section I.2 discusses related work

in the realm of vocabulary selection, CCA applications and sparse methods. Section I.3

introduces the CCA method and introduces the concept of sparsity. This section also

derives our sparse CCA algorithm. Section I.4 describes semantic and audio represen-

tations of the data sets used in this paper. Section I.5 explains our experiments and

discusses our results. Finally Section I.6 concludes.

I.2 Related Work

The explosion of digital music on the Internet has led to both commercial (e.g.,

Pandora 2, Last.FM 3, AMG 4, and Apple iTunes 5) and academic interest (e.g., [48, 7,

1CCA is a direct generalization of PCA for multiple feature spaces.
2http://pandora.com
3http://www.last.fm
4http://allmusic.com
5http://www.apple.com/itunes/
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36, 24, 20, 27, 55]) in music search technology. Recently, eleven autotagging systems

were compared head-to-head in the “Audio Tag Classification” task of the 2008 Music

Information Retrieval Evaluation eXchange (MIREX) [5]. Due to multiple evaluation

metrics and lack of statistical significance in the results, there was no overall winning

system, but our system was the top performing system for a number of the evaluation

metrics [48]. Our autotagging algorithm, which we use in our experiments section and

is briefly described in this paper, uses a generative statistical approach that learns a

Gaussian mixture model (GMM) distribution over an audio feature space for each tag in

the vocabulary.

Mandel and Ellis proposed another top-performing approach in which they learn

a binary support vector machine (SVM) for each tag in the vocabulary [24]. They used

Platt scaling [30] to convert SVM decision function scores to probabilities so that tag

relevance could be compared across multiple SVMs. Eck et. al. [7] also used a discrim-

inative approach by learning a boosted decision stump classifier for each tag. Finally,

Sordo et. al. [36] presented a non-parametric approach that used a content-based mea-

sure of music similarity to propagate tags from annotated songs to similar songs that had

not been annotated. It should be noted that autotagging is an extension of content-based

music classification by genre [50, 26], emotion [21], and instrumentation [9].

Other researchers have explored tag selection methods for a music annotation

task [27, 32, 20, 55]. Roy and Pachet analyzed labeled music and, using a SVM, tested

the hypothesis that song popularity can be predicted from human features or acoustic

features [27]. Whitman and Ellis [55] used a technique based on a SVM to analyze al-

bum reviews jointly with audio content. They created a system than can prune subjective

words and sentences from the reviews. Other work has focused on exploring semantic

relationships between tags without considering acoustic information [32, 20].

In all cases, the authors explore the quality of their autotagging systems in a

posteriori fashion. That is, they evaluate their ability to annotate songs after annotation

is performed by their supervised learning system. To our knowledge, our work is the first

proposed a priori technique in which we select a vocabulary of tags before attempting
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to autotag music with a supervised learning method.

Our vocabulary selection approach is based on the use of our novel formulation

of sparse CCA [44, 43]. Others have converged on CCA to perform semantic analysis

of different types of media. Hardoon et al. used kernel CCA to create semantic models

of images and accompanying text [13]. In addition, researchers have made use of kernel

CCA for cross-language document retrieval [52, 22]. These applications use kernel CCA

directly to annotate and retrieve data, which is a markedly different approach than ours,

in which we emphasize using sparse CCA as a pre-processing step before performing

further modeling.

Sparse CCA research (as compared to regular CCA or kernel CCA [4, 12]) is a

Newer line of research that has followed from the sparse PCA literature [17, 59, 3, 38].

We have developed an algorithm that finds sparse solutions to generalized eigenvalue

problems which has direct applications to sparse CCA [38, 39]. The double-barreled

LASSO [11], a close cousin of the LASSO technique [41], solves a sparse CCA problem

by framing it as a convex least squares problem. Finally, Kidron et. al, used sparse CCA

to find pixels in video that were correlated to an accompanying audio track [18]. They

solved a sparse CCA problem by constraining regular CCA solutions with an `1 -norm.

I.3 Acoustic Correlation with Sparse CCA

This section describes the sparse CCA algorithm. First we introduce CCA and

show that it reduces to solving a generalized eigenvalue problem of the form Aw =

λBw, (where A is symmetric, B is symmetric positive definite, and w ∈ Rn). Next,

we introduce the notion of sparsity and show how we impose sparsity constraints on the

generalized eigenvalue problem. A direct solution to a sparsely constrained eigenvalue

problem is intractable, so we detail an approximating algorithm that we have developed

to solve it.
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I.3.A Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) is a method by which we find correla-

tions between different representations of some underlying phenomenon. For example,

consider some phenomenon that gives rise to a pair of observations, which we encode

in the observation vectors x ∈ Rn and y ∈ Rm, where n does not (necessarily) equal m.

In this paper we assume that the underlying phenomenon is an instance of a song which

leads to two types of observation vectors: The first is an annotation vector of the song,

a collection of tags that is used by humans to describe it. The second observation vector

is a description of the audio content, such as statistics derived from the song’s spectral

data.

Given a collection of annotated songs, i.e., annotation vectors and audio feature

vectors, it is interesting to consider whether there exist elements in the observation vec-

tors that are cross-correlated. This knowledge is useful because correlations between

sets of tags and audio content indicate an underlying linear structure that can be mod-

eled, analyzed and potentially exploited. In this paper we deal specifically with the case

of semantic music analysis, however, the idea applies to any situation where one has

intrinsically heterogeneous types of data describing the same underlying phenomenon.

CCA is a tool to discover these types of cross-correlations. Formally, consider a

collection of pairs of observation vectors where each pair is contained in corresponding

rows of the matrices X ∈ Rp×n and Y ∈ Rp×m respectively, where p is the number of

observations. The CCA problem seeks to find a pair of basis vectors, one in each data-

space, wx ∈ Rn and wy ∈ Rm, such that the correlation of the projected observations

is maximized. Mathematically,

arg max

Corr(Xwx,Ywy) :=
wT

xΣxywy√
wT

xΣxxwx

√
wT

yΣyywy

 ,

where Corr(Xwx,Ywy) represents the correlation between Xwx and Ywy. Σxy rep-

resents the cross-covariance matrix associated with X and Y while Σxx and Σyy rep-

resent the covariance matrices associated with X and Y respectively. This problem is
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equivalent to

arg max
{
wT

xΣxywy : wT
xΣxxwx = 1, wT

yΣyywy = 1
}
, (I.1)

which can be reposed as a generalized eigenvalue problem as follows. Taking the La-

grangian of Eq. (I.1), which is given by

L(wx,wy, λX, λY) = wT
xΣxywy −

λX

2
wT

xΣxxwx −
λY

2
wT

yΣyywy, (I.2)

we differentiate L with respect to wx and wy. Setting these derivatives to zero yields

the following Karush-Kuhn-Tucker conditions which are the necessary conditions to be

satisfied at the optimum. Here λX, λY ∈ R,

Σxywy = λXΣxxwx, (I.3)

Σyxwx = λYΣyywy. (I.4)

Pre-multiplying Eq. (I.3) by wx and Eq. (I.4) by wy, we have,

λXwT
xΣxxwx = wT

xΣxywy = wT
yΣyxwx = λYwT

yΣyywy, (I.5)

and since wT
xΣxxwx = wT

yΣyywy = 1, we have λX = λY =: λ. This implies that

Eqs. (I.3-I.4) can be written as,

Σxywy = λΣxxwx, (I.6)

Σyxwx = λΣyywy, (I.7)

which is equivalent to the generalized maximum eigenvalue problem, Aw = λBw,

where

A =

 0 Σxy

Σyx 0

, B =

 Σxx 0

0 Σyy

 and w =

 wx

wy

.
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I.3.B Sparse Canonical Component Analysis

The solution vector, w, of the generalized eigenvalue problem is generally non-

sparse. That is, most of its elements are non-zero. However, in many applications it is

necessary to limit the number of non-zero elements in w, or, in other words, to impose

sparsity on w. Sparsity can aid the interpretability of experimental results. In many

cases, the elements of w correspond to experimental variables. By imposing sparsity on

w and keeping those variables that correspond to non-zero elements, we obtain a subset

of the variables that are the most informative or the most relevant to an experiment,

thereby performing feature selection.

For example, sparsity is often desired in biological applications [14, 59, 57].

Some of these applications consist of the analysis of gene expression data in which each

observation vector contains thousands of input variables which correspond to the ex-

pression levels of individual genes. These can be thought of, roughly, as real valued

weights that express how well a gene responded in some experiment. Employing sparse

statistical methods such as sparse principal component analysis or sparse least squares

regression allows researchers to find genes (input variables in w) that are the most crit-

ical to explaining an experimental model. The benefit of this is better interpretability

of the experiment. For example, sparsity can be used to discover which genes play a

roll in diseases, or to create a simplified experimental setup, since the experimenter now

knows which genes to target in future experiments.

Sparsity can also be used to compress information. Consider the problem of

efficiently representing a signal v ∈ Rn from a set of basis functions contained in the

columns of the matrix Φ. Mathematically, we seek a weight vector w that satisfies Φw =

v. Due to efficiency requirements the number of basis functions may be prohibitively

large, making the encoding and decoding of the signal processor intensive. In such cases

we would rather seek a sparse w such that Φw ≈ v, hence providing a means of doing

lossy compression [42, 56].

Mathematically, we impose a sparsity constraint on any optimization problem
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in the following way. Assume that the optimization problem is over the vector w. We

seek a solution to the problem with the additional restriction that card(w) ≤ k, where

card(w) represents the number of non-zero elements of w. (In this paper, we use the

notation ‖w‖0 to represent card(w)). This sparsity constraint is problematic in that its

combinatorial nature renders the problem NP hard. Usually an `1 -norm relaxation to

card(w) is used to make the problem convex, which allows polynomial time algorithms

to solve it [1]. However, in our case this relaxation is not helpful since it can be seen in

Eq. (I.9) that adding this constraint to the generalized eigenvalue problem does not result

in a convex program. Therefore, one can use better approximations to card(w) than the

`1 -norm. Different approximations to card(w) have been proposed in literature. One

proposition [54] is to replace card(w) by
∑n

i=1 log(ε + |wi|), where ε > 0, another [2]

uses
∑n

i=1(1 − e−α|wi|) for α > 0. These approximations were used in the context of

feature selection using support vector machines. In this paper, we use an approximation

similar to that of [54],

‖w‖0 ≈
n∑
i=1

log(1 + ε−1|wi|)
log(1 + ε−1)

, (I.8)

for some ε > 0, and solve the resulting problem as a continuous optimization problem.

This approximation is related to sparse priors, which are studied in Bayesian inference.

Specifically, this approximation can be interpreted as defining a limiting Student’s t-

distribution prior over w, an improper prior given by p(w) ∝
∏n

i=1
1

|wi|+ε and computing

its negative log-likelihood [54]. Others have shown that this choice of prior leads to a

sparse representation and have demonstrated its validity for sparse kernel expansions in

a Bayesian framework [42]. Finally, it can be shown that the approximation improves

monotonically and approaches card(w) as ε approaches zero [39] [54].

In what follows, we show how to incorporate this approximation into the gen-

eralized eigenvalue problem of the form Aw = λBw, which leads to the sparse CCA

algorithm. First, let us consider the variational formulation of the generalized eigenvalue

problem given by

max{wTAw : wTBw = 1}, (I.9)
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where A is a symmetric matrix and B is a positive definite matrix. The associated

cardinality constrained version of the problem is given by

max
w

wTAw (I.10)

s.t. wTBw ≤ 1

||w||0 ≤ k,

for some 1 ≤ k ≤ n. By absorbing the cardinality constraint into the objective, the

problem is equivalent to

max
w

wTAw − ρ‖w‖0 (I.11)

s.t. wTBw ≤ 1,

where ρ ≥ 0. Now, we solve the following approximate problem wherein ‖w‖0 is

replaced by its approximation,

max
w

wTAw − ρ

log(1 + ε−1)

n∑
i=1

log(1 + ε−1|wi|)

s.t. wTBw ≤ 1. (I.12)

Let Q(w) = wTAw − ρ‖w‖0, Qε(w) = wTAw − ρ
log(1+ε−1)

∑n
i=1 log(1 +

ε−1|wi|) and Ω = {w : wTBw ≤ 1}. Let ŵ and wε be the maximizers of Eq. (I.11) and

Eq. (I.12) respectively for fixed ρ and ε. Then, we can show that |Qε(wε) − Q(ŵ)| →

0 as ε → 0, which means that, asymptotically, the optimal values of Eq. (I.11) and

Eq. (I.12) are the same [39]. Choosing a small value for ε gives a solution wε such that

|Q(ŵ)−Qε(wε)| is small. Therefore, one can think of wε as an approximate solution to

the problem in Eq. (I.11). Note that ρ has to be fixed before solving Eq. (I.12) to achieve

the desired sparsity. For a fixed ε, we let ρ̃ = ρ
log(1+ε−1)

and fix ρ̃.

The approximate sparse eigenvalue problem is now given by
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−min
w

−wTAw + ρ̃
n∑
i=1

log (|wi|+ ε) (I.13)

s.t. wTBw ≤ 1,

which is equivalent to

−min
w,y

−wTAw + ρ̃

n∑
i=1

log (yi + ε) (I.14)

s.t. wTBw ≤ 1

−yi ≤ wi ≤ yi.

Since A may be indefinite, the problem can be equivalently written as

−min
w,y

τ‖w‖22

−

(
wT (A + τI)w − ρ̃

n∑
i=1

log (yi + ε)

)
(I.15)

s.t. wTBw ≤ 1

−yi ≤ wi ≤ yi, (I.16)

where τ ≥ max(0,−λmin(A)) so that A + τI is positive semidefinite. λmin(A) repre-

sents the minimum eigenvalue associated with A. The reason for rewriting Eq. (I.14)

as Eq. (I.15) is that the objective function in Eq. (I.15) becomes a difference of con-

vex functions (d.c.) and therefore the problem in Eq. (I.15) is a d.c. program.6 D.c.

programs can be solved using DCA [40, 15] or CCCP [58] (which are iterative meth-

ods), where the idea is to linearize the concave part of the objective function, i.e.,

−wT (A + τI)w + ρ̃
∑n

i=1 log (yi + ε), around some point that lies in the constraint

6Let C be a convex set of Rn. A real valued function f : C → R is called a d.c. on C , if there exist two
convex functions g, h : C → R such that f can be expressed in the form f(x) = g(x) − h(x), x ∈ C .
Optimization problems of the form minx {f0(x) : x ∈ C , fi(x) ≤ 0, i = 1, . . . ,m}, where fi =
gi − hi, i = 0, . . . ,m, are d.c. functions are called d.c. programs.
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set so that the resulting program is convex. Formally, for an iteration l + 1, we have

(w(l+1),y(l+1)) ∈ arg min
w,y

τ‖w‖22

−2wT (A + τI)w(l)

+ρ̃
n∑
i=1

yi

y
(l)
i + ε

s.t. wTBw ≤ 1

−yi ≤ wi ≤ yi, (I.17)

which is equivalent to

w(l+1) ∈ arg min
w

τ‖w‖22 − 2wT (A + τI)w(l)

+ρ̃
n∑
i=1

|wi|
|w(l)

i |+ ε

s.t. wTBw ≤ 1, (I.18)

which is a sequence of convex programs, and specifically, quadratically constrained

quadratic programs (QCQPs) [1]. The proposed algorithm starts at some w(0) ∈ Ω,

computes w(l+1) by Eq. (I.18) and iterates until w(l+1) = w(l), which is the point of

convergence. See our previous publication [37] for details related to the convergence of

the algorithm.

In the case of sparse CCA we have that A =

 0 Σxy

Σyx 0

,

B =

 Σxx 0

0 Σyy

, and w =

 wx

wy

. Rewriting Eq. (I.18) in terms of these

variables we have
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(wx
(l+1),wy

(l+1)) ∈ arg min
wx,wy

τ‖wx‖22 + τ‖wy‖22

−2wx
T (Σxywy

(l) + τwx
(l))

−2wy
T (Σyxwx

(l) + τwy
(l))

+ρ̃x

∑
i

|wx|i
|wx

(l)|i + ε

+ρ̃y

∑
i

|wy|i
|wy

(l)|i + ε

s.t. wx
TΣxxwx ≤ 1

wy
TΣyywy ≤ 1, (I.19)

where we can impose different sparsity constraints on wx and wy by tuning the pa-

rameters ρ̃x and ρ̃y independently. In our experiments, for example, we set ρ̃x and ρ̃y

independently since we are concerned with imposing sparsity on the semantic space but

not the audio space.

I.4 Representing Semantic and Audio Data

This section describes the audio and semantic representations used in our experi-

ments. In one of our experiments, we demonstrate how our vocabulary selection method

is used to select high quality music tags over low quality ones. Therefore, we make use

of two sources of annotated music. The first, high quality source, is the CAL500 [47]

data set, which was obtained through a large human survey. The second, lower quality

source, is the Web2131 [45] data set, a collection of song annotations obtained by text

mining professionally-edited song reviews. We also describe the audio representation

used to characterize songs. Finally we describe how this data is used in the sparse CCA

algorithm.
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I.4.A Semantic Representation

Each song is associated with a set of tags describing the song’s semantic content.

The tags are selected from a vocabulary V of fixed size |V|. Internally, we represent these

tag associations as annotation vectors. Each annotation vector y contains |V| elements.

Element yi is positive if and only if tag i has been associated with the song. The value of

yi is a positive real number between 0 and 1 which represents the strength of association

of a tag. In our experiments we obtained tags by two methods. We generated one

vocabulary by text-mining on-line song reviews, and another by conducting a controlled

survey of undergraduate students. We will describe these two data sets in detail in the

next two subsections.

Web2131

An effective way to collect semantic information about music is to analyze text

documents that are downloaded from the Internet. By analyzing these documents one

can collect information related to songs, albums and artists. In this paper we use the

Web2131 data set, which is a collection of song annotations that were obtained for 2131

songs. The annotations were extracted from professionally-edited song reviews that

were downloaded from All Music Guide (AMG)7, a popular music-oriented website.

We removed common stop words from each review and obtained a large set of the most

commonly used tags (unigrams and bigrams). From this set, we hand selected a vo-

cabulary of 317 musically informative tags, meaning that the tags can be used (by the

authors’ best judgments) to describe something about the audio content of a song. For

example, we retain tags such as “blues”, “Jew’s harp” and “intense” while we remove

tags like “across”, “catastrophic”, and “difference”.

7http://www.allmusic.com
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CAL500

The CAL500 data set is a carefully annotated music corpus of 500 western pop-

ular songs by 500 unique artists. We paid 66 undergraduate music students to annotate

our music corpus with semantic tags. These tags were created specifically for a mu-

sic annotation task. The tags consisted of 135 acoustically-relevant concepts spanning

six semantic categories: instrumentation, vocal characteristics, genre, emotional words,

usage terms, and acoustically descriptive words. Specifically, 29 instruments were an-

notated as present in the song or not; 22 vocal characteristics were annotated as relevant

to the singer or not; 36 genres, a subset of the Codaich genre list [25], were annotated

as relevant to the song or not; 18 emotions, found by Skowronek et al. [34] to be both

important and easy to identify, were rated on a scale from one to three (e.g. ”not happy”,

”neutral”, ”happy”); 15 song concepts describing the acoustic qualities of the song, artist

and recording (e.g., tempo, energy, sound quality) were rated on a scale from one to five;

and 15 usage terms from [16], (e.g., “I would listen to this song while driving, sleep-

ing, etc.”) were rated as relevant or not. Each song was annotated by a minimum of 3

individuals.

The 135 concepts are converted to a 174-tag vocabulary by mapping bi-polar

concepts to multiple tags. For example ‘Energy Level’ maps to ‘low energy’ and ‘high

energy’. Then we prune all tags that are represented in five or fewer songs to re-

move under-represented tags. Lastly, for each song, we construct a real-valued 174-

dimensional annotation vector by averaging the label frequencies over individual anno-

tators. Further details concerning the CAL500 data set can be found in our previous

publication [47]. In short, each element in an annotation vector is a real-valued scalar

which can be thought of as indicating the strength of association a song has to a given

tag.
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I.4.B Audio Representation

The audio content of a song is represented as a bag-of-feature-vectors, an un-

ordered set of vectors {x1,x2 . . .xt}. Each vector consists of dynamic Mel-frequency

cepstral coefficients (dMFCC) taken from half-overlapping, medium-time segments of

audio (every ∼743 ms), as explained below [26].

Mel-frequency cepstral coefficients (MFCC) describe the spectral shape of a

short-time audio frame and are popular in speech recognition and music classification

applications (e.g., [31, 23, 35]). We calculate 13 MFCC coefficients for each short-time

(∼23 msec) frame of audio. For each of the 13 MFCCs, we take a discrete Fourier trans-

form (DFT) over a time series of 64 frames, normalize by the DC value (to remove the

effect of volume) and summarize the resulting spectrum by integrating across 4 modu-

lation frequency bands: (un-normalized) DC, 1-2Hz, 3-15Hz and 20-43Hz. Thus, we

create a 52-dimensional feature vector (4 features for each of the 13 MFCCs) for ev-

ery 3/4 second segment of audio. For a five minute song, this results in about 400

52-dimensional feature vectors.

I.4.C CCA Matrices

To perform sparse CCA, we must pack the audio feature vectors and corre-

sponding annotation vectors, for all songs, into two respective matrices, X and Y.

Since we have multiple audio vectors per song, and only one annotation vector per

song, we replicate the annotation vector for each audio vector. In mathematical nota-

tion, if a song’s audio content is represented as the bag-of-feature-vectors above and the

song annotation is y, then the pairs of audio and annotation vectors can be written as

{(x1,y), (x2,y), . . . , (xt,y)}. To create the matrices used in sparse CCA, we simply

stack the corresponding audio and annotation vectors for all songs into the matrices X

and Y. So, for example, if our music data set consisted of 100 5-minute songs, then X

would be 40, 000× 52 and Y would be 40, 000× |V|. (Remember, each 5 minute song

u 400 vectors).
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Table I.1: Shown in bold: The fraction of “higher-quality” tags (CAL500) which com-

prise a vocabulary as vocabulary size is reduced.

vocab. size 488 249 203 149 103 50
# CAL500 tags 173 118 101 85 65 39
# Web2131 tags 315 131 102 64 38 11

%Cal500 .36 .48 .50 .58 .64 .78

The size of these matrices seems prohibitively large, however, keep in mind that

sparse CCA deals with the inner product matrices, XTX, YTY and XTY, which are

of sizes (52× 52), (|V| × |V|) and (52× |V|) respectively. In practice one can compute

these matrices without exhausting system memory.

I.5 Experiments and Results

In this section, we describe two quantitative experiments that illustrate how

sparse CCA can be used to perform vocabulary selection. We also provide a short qual-

itative discussion of some of the results. While we focus on music, this technique can

be used in any context (movies, sound effects, images) where we have one (or more)

content-based representations and one (or more) semantic representations of each mul-

timedia object.

I.5.A Selection of Musically Descriptive Tags

In our first experiment, we show how sparse CCA can be used to select a set of

acoustically relevant tags that are well suited to a music annotation task. Humans can

consistently annotate previously unknown songs with certain tags, therefore, it is likely

that the underlying information relating the tags and songs must be encoded in the audio

content. We propose to look for such information in the form of acoustic correlation

between the semantic and acoustic representations of songs. We propose that a set of

tags which can explain a significant amount of this acoustic correlation is “acoustically
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meaningful.” Sparse CCA is the tool that we use to find such a set of tags.8

As a proof of concept, we constructed an experiment using both the Web2131

tags and the CAL500 tags. In an informal study, we found the Web2131 tags to be of

lower quality than the CAL500 tags, in that there seem to be far fewer tags in Web2131

data that are descriptive of their related songs. To conduct this informal study, we ran

a test in which we showed subjects a song annotation of ten tags taken from either the

ground truth, Web2131 annotations or ten random tags selected from the vocabulary.

Then we asked the subjects to select which group of tags was the most relevant for a

given song. We found that Web2131 annotations were not much better than selecting

tags randomly from the vocabulary. A similar test with CAL500 tags showed that those

annotations were significantly better. Probing further, we used our autotagging system

(which we will describe in the next section) to model the music-tag relationships within

both Web2131 and CAL500 data sets. We found that tags from the Web2131 vocabu-

lary resulted in poorer performance when evaluating the system. The lower quality of

the Web2131 tags makes sense on an intuitive level: The Web2131 tags were culled

from music reviews. When these reviews were written, their authors were not choosing

individual words based on independent notions of semantic appropriateness. Compare

this to the CAL500 tags in which human subjects were explicitly asked to select tags in

a music annotation task.

Based on this evidence we assume that the CAL500 data set contains more

acoustically descriptive tags than Web2131. Assuming that some proportion of these

tags are well encoded in the acoustic feature representation, we expect that the CAL500

vocabulary should contain more acoustically correlated tags than the Web2131 vocabu-

lary. Therefore, if we perform sparse CCA vocabulary selection on a set of songs with

both CAL500 and Web2131 tags, our vocabulary selection method should select tags

with preference toward the CAL500 tags.

8Note that the lack of correlation between the semantic and acoustic representation of songs does
not imply that there are no “acoustically meaningful” tags. An alternative audio representation or non-
linear correlation model may be used to discover a relationship with the audio signal. These variations or
extensions are beyond the scope of this paper.
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In the experiment, we analyzed the intersection of songs from the Web2131 and

CAL500 data sets. This resulted in 363 songs with annotations from both tag data-

sources. Then we performed a series of sparse CCA vocabulary selection trials to gen-

erate a sequence of vocabularies of monotonically decreasing size. Mathematically, this

is done by sweeping the sparsity parameter corresponding to the semantic space, ρ̃y,

from 0 (no sparsity applied) to α for some α > 0. (Since we are not imposing sparsity

on the audio feature space, we set ρ̃x to zero.) We arbitrarily stopped at a vocabulary

size of 50. For each vocabulary that is generated we record how many CAL500 tags

comprise it compared to Web2131 tags.

Table I.1 shows our results and confirms our expectations. The first column in

Table I.1 shows the starting vocabulary with no vocabulary selection applied. The num-

ber of tags from each vocabulary source is initially different, with the CAL500 tags

comprising only 36% of the 488 tags in the combined vocabulary. Subsequent columns

in the table show the state of the vocabulary as a smaller number of tags is selected. If

tags from both vocabularies had an even distribution of acoustically correlated tags then

we would expect the percentage of CAL500 tags to stay near a constant 36% across all

columns of the table. However, the clear trend is that more tags from the CAL500 vocab-

ulary are selected as the vocabulary size shrinks, to the point that when the vocabulary

size is restricted to just 50 tags, CAL500 tags comprise 78% of the vocabulary.

If we assume that the CAL500 tags contain more acoustically descriptive tags,

which we believe we have argued is likely, then our results show that the vocabulary

selection method consistently chooses higher quality tags. In practice one will not know

a priori which tags are acoustically descriptive, hence, this vocabulary selection tech-

nique can be used to discover descriptive tags in an automatic fashion.

I.5.B Vocabulary Selection for Music Retrieval

In this experiment we show how sparse CCA can be used to select acoustically

meaningful tags that, as a consequence, improve the performance of a music autotagging
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Figure I.1: Comparison of vocabulary selection techniques: We compare vocabulary

selection using human agreement, acoustic correlation, and a random baseline, as it

effects retrieval performance. Acoustic correlation is able to significantly increase the

performance of the autotagging system.

system. Previously, we implemented a content-based music autotagging system that can

annotate songs with tags from a fixed vocabulary, and retrieve songs based on a keyword

query. A full description of the system can be found in a previous publication [48],

although we briefly describe it here.

The system relies on learning the conditional probability distributions of audio

features given tags, P (audio|tagi). This is done by extracting audio feature vectors and

annotation vectors (similar to the ones used in this paper) from a training set of song-tag

associations. The conditionals are learned by fitting Gaussian mixture models to the

data. 9 This results in knowledge of what audio feature values are likely for a given

tag. From Bayes’ rule, we also have access to the conditional P (tagi|audio), in other

words, knowledge of which tags are likely for given audio features. Knowing these two

types of probabilities for each tag allows us to annotate a novel song with its most likely

tag, and retrieve the likeliest song (from a set of novel songs) for a given keyword query

(i.e., a tag). This is done by maximizing the conditionals over tags or songs depending

9This will be referred to as the training step or the modeling step.
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on the task.

Sparse CCA can be used to select a subset of tags that is well correlated with

audio content. Because of this underlying correlation pattern, we expect that focusing

on these types of tags will improve the modeling power of a supervised music auto-

tagging system. Therefore, we propose to use sparse CCA vocabulary selection as a

pre-processing step to select high quality tags and boost the overall performance of the

system.

Before we discuss the results, we must understand how to characterize the per-

formance of the system. We test the retrieval capabilities of the system as follows: Given

a test set of songs (not used to train the model) and a query tag, we rank order the songs

according to their likelihood under the conditional probability P (audio|tagi). Then we

evaluate the retrieval performance for this tag by calculating the area under the receiver

operating characteristic curve (AUC). A receiver operating characteristic (ROC) curve

is a plot of the true positive rate as a function of the false positive rate as we move down

the ranked list of songs. That is, at any position in the ranking, we count the fraction

of test set songs associated with the tag that are ranked at that position or higher (true

positive rate) and the fraction of test set songs not associated with the tag that are ranked

at that position or higher (false positive rate). The AUC ranges between 0.5 for a ran-

dom ranking and 1.0 for a perfect ranking (i.e., all test set songs associated with the tag

ranked before all that are not). The AUC gives us the retrieval performance for a single

tag. In order to characterize the performance of the entire system, that is, over all tags,

we take the average of the AUC over each tag, or average AUC. Note that the average

AUC of the system is brought down by tags that are modeled poorly by a probabilistic

acoustic model, i.e., those tags with an AUC of near 0.5. We use sparse CCA vocabulary

selection to select smaller vocabularies of better acoustically-represented tags, which we

expect to result in a better (larger) average AUC.

In this experiment, we use sparse CCA to generate a sequence of vocabularies

that monotonically decrease in size.10 As explained in Section I.5.A, this is done by

10For this experiment we use the CAL500 data set. 450 songs are used in the vocabulary selection and
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sweeping the CCA sparsity parameter, ρ̃y, over a range of values. (Since we are not

imposing sparsity on the audio feature space, we set ρ̃x to zero.) For each vocabulary

generated, we learn the conditional probability densities associated with each tag and

then evaluate the performance of the system by calculating the average AUC over all

tags in the specific vocabulary.

Figure I.1 is a graph depicting the average AUC scores of the autotagging system

over a range of vocabulary sizes. The x-axis specifies the size of the vocabulary used by

autotagging system. Shown in the graph are three methods for performing vocabulary

selection: Vocabulary selection by acoustic correlation, by random uniform selection,

and by a human agreement heuristic which we will explain below.

Looking at the acoustic correlation curve, Figure I.1 shows that the average AUC

score quickly increases as the vocabulary size is reduced, confirming our expectations.

This performance increase is likely due to two related factors. First, for each new vo-

cabulary generated, a subset of tags exhibiting acoustic correlation is retained. As men-

tioned above, such correlation patterns are likely to allow better fit acoustic models for

that set of tags. Second, tags that contribute little to the acoustic correlation are removed

from subsequent vocabularies. These could be tags for which the underlying model is

genuinely noisy. For example, the tag could be an error, or it could describe elements of

the music that are not captured by the audio features. These noisy tags are the kinds of

tags that deteriorate the average AUC system performance.

Also shown in Figure I.1 are the system’s average AUC scores which have been

generated using alternate vocabulary selection techniques. The flat dashed line shows

the expected average AUC score if we select a vocabulary at random. The other vo-

cabulary selection technique is an intuitive heuristic based on human agreement [44].

Because the CAL500 data set contains multiple human annotations per song, we are

able to gauge how consistently our population labels music. Our intuition is that if

many people use the same tag in the same manner to describe any given song, i.e., there

is a high level of agreement for that tag, then this indicates some underlying audio struc-

model building steps, and 50 test songs are used to evaluate the final models.
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ture that exists among songs annotated with that tag. Our acoustic models may be able

to capture this structure.

To capture this idea mathematically we devised a simple statistic that we refer

to as human agreement. First, for each tag-song pair (t, s), we calculate an individual

tag-agreement score as

At,s =
#(positive associations)t,s

#(annotations)s
, (I.20)

where the numerator indicates how often song s was positively associated with tag t,

and the denominator indicates how often song s was presented to a human for anno-

tation purposes. For example, if 3 out of 4 students label Elvis Presley’s ‘Heartbreak

Hotel’ as being a ‘blues’ song then A‘blues’, ‘heartbreak hotel’ = 0.75. We calculate the hu-

man agreement score for a tag by averaging individual tag-agreement scores over all the

songs in which at least one subject has used the tag to annotate the song. Intuitively,

we expect the human agreement score to be close to 1 for more objective tags such as

tags associated with instrumentation (like ‘cow bell’) and closer to 0 for tags that are

subjective such as those relating to song usage (like ‘driving music’).

We believe that the human agreement statistic is a good baseline with which to

compare because it is a way of selecting objective tags directly from the pool of human

provided annotations. Our results show that vocabulary selection using sparse CCA is

preferred over human agreement given the task of increasing the system performance.

We must emphasize that the goal of this experiment is not to improve the perfor-

mance of some arbitrary system. Rather, the performance gains that we see imply that

sets of tags are being selected which have a strong representation in the audio feature

space. Such tags are especially suitable for machine analysis.

Our results show that vocabulary selection using sparse CCA can be used as a

pre-processing step in music analysis systems whereby one can discover useful tags to

model. This is especially helpful in situations where analyzing data for all available tags

is a costly operation. Take, for example, our own music autotagging system. As dis-

cussed earlier, this system relies on computing conditional probability density functions
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Table I.2: Top and bottom 3 tags within semantic categories according to sparse CCA

vocabulary selection.

Top 3 tags by semantic category
overall rapping, at a party, hip-hop/rap

emotion arousing/awakening, exciting/thrilling,
sad

genre hip-hop/rap, electronica, funk
instrument drum machine, samples, synthesizer

general heavy beat, very danceable, synthesized
texture

usage at a party, exercising, getting ready to go
out

vocals rapping, strong, altered with effects
Bottom 3 tags by semantic category

overall not weird, not arousing, not an-
gry/aggressive

emotion not weird, not arousing, not an-
gry/aggressive

genre classic rock, bebop, alternative folk
instrument female lead vocals, drum set, acoustic

guitar
general constant energy level, changing energy

level, not catchy
usage going to sleep, cleaning the house, at

work
vocals high pitches, falsetto, emotional

for each tag in the vocabulary. Calculating these functions is generally time intensive,

therefore, methods that help us avoid modeling poorly performing tags can be used to

significantly speed up system efficiency.

I.5.C Qualitative Discussion

In this section, we provide some qualitative discussion related to the previous

experiment. Our goal is to show that vocabulary selection using sparse CCA makes in-

tuitive sense and passes some baseline credibility tests. Table I.2 shows the top three
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tags for each semantic category where the tags have been ranked by the reverse order

in which they left the vocabulary in our previous experiment. In other words, to gen-

erate these rankings we pruned the initial vocabulary of tags in a series of vocabulary

selection trials. This was done by sweeping the sparsity parameter ρ̃y from zero to some

large value that yielded a null vocabulary. As mentioned above, each step generates a

vocabulary of monotonically decreasing size. We took note of the order in which tags

left the vocabulary and ranked them in reverse order.

Many terms that are characteristic of rap, hip-hop and electronic music are found

to be at the top of the rankings. This is encouraging since both our autotagging sys-

tem, as well as Mandel and Ellis’ autotagging system [24], perform well on these tags.

Specifically, Mandel and Ellis report that “rap”,“hip hop”, and “techno” are 3 of the

top 7 performing tags (in term of classification accuracy) in their vocabulary of 43 tags.

From a more qualitative perspective, rap and electronic songs tend to have easily rec-

ognizable timbres due to their unique instrumentation (e.g., turntables, drum machines,

computers) and distinct vocal characteristics (or lack thereof).

The bottom three tags per category are also shown at the bottom of Table I.2.

One might suggest that these tags are ambiguous compared to many of the other tags.

Consider tags such as “not weird”, or “not aggressive”; we argue that these tags can be

used to describe a large portion of highly varied and acoustically unrelated music, which

makes these tags unlikely to contribute much to the acoustic correlation associated with

a vocabulary.

I.6 Discussion

In this paper, we proposed using a novel formulation of sparse CCA to select

a set of tags which is correlated with an audio feature representation. We have shown

that this technique selects “acoustically meaningful” tags (Section I.5.A) and that we

are better able to model these tags with our content-based autotagging system (Section

I.5.B).
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More generally, it should be noted that our goal is not to increase the perfor-

mance of a specific autotagging system (since one could trivially increase system per-

formance by selecting tags a posteriori that perform well under the performance mea-

sure). Rather, we are interested in finding a set of tags that are well represented by a

given audio representation.

There are many reasons for doing this: First, selecting a subset of well-represented

tags from an initial vocabulary allows us to focus computational resources on high qual-

ity tags, rather than waste time generating poorly performing tag-models. This is espe-

cially important when we consider the fact that, e.g., Last.fm has collected a database of

over 1.2 million unique tags for music [19].

Second, considering that there are many audio feature representations (e.g., Fluc-

tuation Patterns [29], Auditory Filterbank Temporal Envelopes [26], Beat Histograms

[50], Beat-Synchornous Chroma vectors [8]), we may be interested in finding at least

one representation for which our vocabulary selection method chooses some tag for it.

If this tag is never selected, we may need to focus on context-based approaches (e.g.,

surveys, video games, social tagging) to model that tag [46].

Third, we are often interested in designing user interfaces for music search and

discovery (e.g., Last.fm, MusicSun [28]) that make use of tags for visualization and

navigation purposes. By finding a small set of acoustically meaningful tags, we can

produce a concise representation of music that enriches the user experience.

While our sparse CCA algorithm can be used to find some high quality tags,

it is unlikely that it finds them all. For example, relevant non-linear acoustic patterns

may exist which the current sparse CCA algorithm would not capture. A “kernelized”

version of the CCA algorithm [33] is a promising method for exploring non-linear cross-

correlations. However, imposing sparsity in kernelized algorithms often implies that we

must sacrifice the interpretability of variable selection. Fortunately, since our main in-

terest is to perform variable selection in the semantic space (i.e., select a subset of tags),

losing interpretability in the audio feature space can be tolerated. This would allow us

to kernelize the audio feature space in an attempt to discover non-linear correlations be-
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tween feature spaces. This avenue for future work is non-trivial because, due to the large

number of audio feature vectors generated by our music data, the corresponding kernel

matrices become extremely large; hence, highly efficient, large-scale kernel-based ap-

proaches should be investigated.

This chapter, in full, has been submitted for publication of the material as it may

appear in IEEE Transactions on Audio, Speech and Language Processing 2009. Torres,

David; Sriperumbudur, Bharath; Turnbull, Douglas; Lanckriet, Gert R. G., 2009. The

thesis author was the primary investigator and author of this paper.
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