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ABSTRACT OF THE DISSERTATION

Modernizing Storage Device Interface for Performance and Reliability

by

Yanqin Jin
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Professor Steven Swanson, Co-Chair

Modern solid state drives (SSDs) unnecessarily confine applications to the con-

ventional block I/O interface, which under-utilizes SSD’s internal resources, leading to

suboptimal performance and unsatisfactory lifetime.

This thesis first presents the key-addressable, multi-log SSD (KAML), an SSD

with a key-value interface that uses a novel multi-log architecture and stores data as

variable-sized records rather than fixed-sized sectors. Exposing a key-value interface

allows applications to remove a layer of indirection between application-level keys and

data stored in the SSD. KAML also provides native support for fine-grained atomicity
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and isolation. We have implemented a prototype of KAML on an SSD development

platform, and results show that KAML outperforms conventional systems by up to 4.0×.

Existing SSDs also provide flash-based out-of-band (OOB) data that can only be

updated on a conventional write. Consequently, the metadata stored in their OOB region

lack flexibility due to the idiosyncrasies of flash memory, incurring unnecessary flash

write operations detrimental to device lifetime. This thesis also presents PebbleSSD,

an SSD with byte-addressable metadata, or BAM, as a mechanism exploiting the non-

volatile, byte-addressable random access memory (NVRAM) inside the SSD. With BAM,

PebbleSSD can support a range of useful features to improve its lifetime by reducing

redundant flash writes. We have implemented a prototype of PebbleSSD on an SSD

development platform, and experimental results demonstrate that PebbleSSD can reduce

the amount of data written by log-structured file systems during log cleaning by up to

99%, and reduce file-system-level write amplification by up to 33% for a number of

workloads.

Finally, previous proposals for SSDs with new interfaces suffer from the limitation

caused by one-at-a-time design approach. To overcome this limitation, the thesis presents

Willow, a user-programmable SSD with programmability as a central feature. Willow

allows programmers to augment and extend the semantics of an SSD with application-

specific features without compromising file system protections. We demonstrate the

effectiveness and flexibility of Willow by implementing support for atomicity as an

example. We find that defining SSD semantics in software is easy and beneficial, and

that Willow makes it feasible for database transaction processing workload to benefit

from a customized SSD interface.
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Chapter 1

Introduction

Today the era of big data has arrived, and the ability to efficiently store and

process huge volumes of data is crucial. Financial firms and e-commerce websites accept

and process endless streams of requests from customers. People post articles, tweets,

photos, videos, etc. on social network websites and update their personal pages frequently.

Companies hosting web services not only dump user activities to logs, but also perform

analysis on the stored data to asist decision making, provide customized user experience,

and diagnose causes for system inefficiencies. To keep up with the rapid growth of data,

the world is in need of storage systems with fast speed and large capacity. Few people

would argue for the end of this trend in the near future.

Recent high-performance and efficient storage systems usually target modern

flash-memory-based storage devices, e.g. solid state drives (SSDs) that already have large-

scale deployment. Flash memory is a non-volatile storage medium with drastically lower

latency than previous magnetic storage medium, higher density than existing DRAM

and better cost-efficiency than emerging non-volatile main memories. Flash-based SSDs

offer low latency, huge bandwidth and high concurrency compared with conventional

hard disks. These performance features make SSDs attractive for modern, data-intensive

1
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applications. Therefore they will continue to exist and play a significant role in data

storage systems.

Since flash-based SSDs have significantly different characteristics from hard

disks, existing storage system software calls for a thorough rethinking of its architecture

and design decisions. Some trade-offs were made decades ago with the assumption of

slow storage device that performs extremely poorly in random I/O and much better, yet

still far from perfection in large, sequential I/O. Moreover, previous storage software

does not have the urgent need to optimize the lifetime of hard disks that are considered to

be very stable and reliable. Flash memory used by SSDs suffer from limited lifetime and

thus has to be treated differently with extra care by software.

The design and implementation of storage systems with flash-based devices need

to address two challenges. First, they should allow applications to fully unleash the

potential of modern SSDs made possible by multiple flash chips connected via parallel

channels, general-purpose embedded processors and large RAM. Second, they should

accommodate the physical characteristics of flash memory, e.g. limited lifetime so that

flash memory wears out slowly and evenly.

The I/O interface determines how the host application can access the storage

device, therefore the design of I/O interface is very important in storage systems. An ideal

interface not only presents an elegant abstraction of the underlying storage device, but

also exposes internal resources for the benefit of applications. I/O interface should match

the characteristics of storage devices. Therefore it has profound impact on system-level

perfomance, efficiency and reliability.

Existing block-based, disk-centric I/O interface prevents the applications from

fully utilizing the resources inside modern SSDs. The flash memory that SSDs use

to store data is a poor match for the block-based I/O interface that dominates present

storage devices. In fact, the block I/O interface is a legacy inherited from the design of
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conventional hard disks and present SSDs have chosen to conform to this interface for

the purpose of backward compatibility. Modern SSD vendors usually provision their

SSDs with more resources than required to process simple I/O requests e.g. read and

write, and such resources are unfortunately hidden from applications.

Other than the conventional block I/O interface, the key-value interface is an

attractive alternative, since the latter is naturally in alignment with human perception

of the world. Ultimately, users of storage system software are more concerned about

collections of variable-sized, application-level objects than about fixed-sized blocks and

sectors.

Furthermore, flash-based SSDs already use their internal computation and mem-

ory resources to maintain a layer of indirection between logical and physical storage

address space. With powerful (by the standard of embedded system) general purpose

processors and increased memory density, the indirection can be generalized to a higher

level. Instead of having a fixed semantic of mapping logical to physical address space,

the indirection can become the bridge between arbitrary application-specific domain and

physical storage. This allows for simpler implementation of storage software and makes

it possible to provide additional services like snapshots or multi-part atomic writes.

However, current proposals for key-value interfaces for SSDs fall short in several

aspects. First, they provide a single, shared map for all the key-value pairs in the SSD,

forcing the SSD to use uniform management policies to manage the key-value mapping

across all applications. Second, the proposals stop at the SSD and ignore the rest of the

storage stack. In particular, they do not provide generic caching facilities to improve the

performance of key-value accesses.

Write-ahead logging (WAL) is another existing software-based technique that

requires careful scrutiny of block-based I/O in the age of modern SSDs. Widely-used

algorithms, e.g. ARIES [68] use WAL to provide support for fine-grained locking and
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atomicity that are critical to system performance and data integrity. ARIES optimizes

for hard disks and fails to fully utilize the I/O bandwidth offered by SSDs. To make

the matter worse, software systems using WAL incur extra block writes to persistent

storage. Before updating original data, they have to write the changes to the log first.

Excessive writes consume flash memory rapidly and have negative impact on the lifetime

and reliability of flash-based SSDs.

To fully utilize the I/O bandwidth of SSDs and avoid the extra writes to flash

memory, many researchers have proposed native support for atomicity and durability

inside the SSD. In addition to the original block-based read and write, they suggest that

SSDs expose an atomic-write interface to applications, allowing applications to write

multiple pages atomically and durably using a single command. Most of these proposals

for atomic writes take advantage of the log-structured design of flash translation layer

(FTL) and suffer from limitations caused by the mapping granularity of the FTL. They

support only page-level atomic updates for transactions. While the page-level mapping

that many FTLs employ makes this a convenient choice for the implementors, it is a poor

match for the requirements of many applications. If the application uses the page-level

atomic-write to update data directly, it has to perform page-level locking to protect a

page from being modified by multiple concurrent transactions. For applications that deal

with smaller units of data (e.g. database records), page-level locking has been shown

to deliver much lower performance than finer-grained approaches due to excessive lock

contention.

Being confined to conventional block-based I/O interface, applications performing

even simple tasks may potentially suffer from inefficiencies, leading to sub-optimal

performance and reliability. For example, an application, e.g. file system, database,etc.

has to read data from its original location into host main memory and then write it out to

its (new) destination location. The data movement task has to incur actual data write to
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flash memory even if the application does not update the data at all.

Since existing SSDs already implement a mapping layer between logical and

physical address space, applications can benefit from a new interface named remap that

maps flash memory from source logical address (LBA) to destination LBA by modifying

the mapping table. In reality, this feature requires additional architectural support that is

missing in present SSDs. Current SSDs use the out-of-band (OOB) region on each flash

page to store (some) FTL metadata. Storing the metadata in flash limits its flexibility

since the OOB region is subject to the same idiosyncrasies as the primary, flash-based “in-

band” data. Consequently updating the metadata itself will lead to flash writes, rendering

remap as useless for existing SSDs.

The advent of non-volatile byte-addressable memories promises a solution to

this limitation caused by flash-based metadata. By using non-volatile, byte-addressable

memory to store FTL medata, the FTL can support dynamic, fine-grained update of the

mapping between logical and physical address space. This will enable remap to support

fast and efficient data movement performed by many applications.

Furthermore, host applications, e.g. file systems and databases can use the in-

SSD non-volatile, byte-addressable memory to store their own metadata such as the file

block indices in order to to reduce the amount of metadata that has to be written to flash

when the file system updates the data. This has been proven to be especially useful to

log-structured file systems [84, 7, 53].

There have been a number of proposals adding novel interfaces to modern SSDs.

However, each of these proposals target one or several features. Although these features

are all useful, the current one-at-a-time approach suffers from several limitations. First,

adding features is complex and requires access to SSD internals, so only the SSD

manufacturers can add them. Second, the code must be trusted, since it can access

or destroy any of the data in the SSD. Third, to be cost-effective for manufacturers to
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develop, market, and maintain, the new features must be useful to many users and/or

across many applications. Selecting widely applicable interfaces for complex use cases

is very difficult.

This thesis includes the following chapters in an attempt to explore solutions

to the issues raised here. In Chapter 2 we survey the technological opportunities and

challenges that motivate the research efforts in this thesis, including flash memory, SSD,

FTL, transaction support in SSDs and log-structured file systems.

In Chapter 3 we present the design, implementation and evaluation of key-

addressable, multi-log SSD (KAML), an SSD with a key-value interface that employs a

novel multi-log architecture and stores data as variable-sized records rather than fixed-

sized sctors. Exposing a key-value interface allows applications to remove a layer of

indirection between application-level keys (e.g. database record IDs or file inode num-

bers) and data stored in the SSD. KAML also provides native transaction support used

to support fine-grained locking, achieving improved performance compared to previous

designs that require page-level locking. Finally, KAML includes a host caching layer

analogous to a conventional page cache that leverages host DRAM to improve perfor-

mance and provides additional transactional features. We demonstrate that our KAML

prototype can improve the throughput of online transaction processing (OLTP) workloads

by 1.1× – 4.0×, and NoSQL key-value store applications by 1.1× – 3.0×.

In Chapter 4 we present the design, implementation, application and evaluation of

PebbleSSD, an SSD with byte-addressable metadata, or BAM, as a mechanism exploiting

the non-volatile, byte-addressable random access memory (NVRAM) inside the SSD.

With BAM, PebbleSSD can support a range of useful features to improve its lifetime by

reducing redundant flash writes. Specifically, PebbleSSD supports a write-optimized,

BAM-based file block mapping to prevent excessive updates of file system index blocks.

Furthermore, PebbleSSD allows log-structured file systems to perform fast and efficient
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log cleaning with minimal flash writes. We demonstrate that our PebbleSSD prototype

can reduce the amount of data written by log-structured file systems during log cleaning

by up to 99%, and PebbleSSD’s BAM-based file block mapping can reduce flash writes

by up to 33% for a number of workloads.

In Chapter 5 we present the design, implementation, application and evalua-

tion of Willow, a user-programmable SSD to overcome the limitation of the current

“one-at-a-time” approach in SSD interface design. We explore the potential of making

programmability a central feature of the SSD interface. Our prototype system, called

Willow, allows programmers to augment and extend the semantics of an SSD with

application-specific features without compromising file system protections. The SSD

Apps running on Willow give applications low-latency, high-bandwidth access to the

SSD’s contents while reducing the load that I/O processing places on the host processors.

The programming model for SSD Apps provides great flexibility, supports the concurrent

execution of multiple SSD Apps in Willow, and suupports the execution of trusted code

in Willow. We demonstrate the effectiveness and flexibility of Willow by implementing

support for atomicity as an example and measuring its performance. We find that defining

SSD semantics in software is easy and beneficial, and that Willow makes it feasible for

database transaction processing workload to benefit from a customized SSD interface.
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Chapter 2

Motivation and background

Advances in technology have enabled flash memory with decreased latency and

increased density. Flash memory is electronic storage medium invented by Toshiba [13]

in the 1980s. Due to its physical characteristics, flash memory has become a very

attractive storage medium for modern storage devices. Most mobile devices e.g. smart

phones, tablets, digital camerals, etc. use flash memory as storage due to its low power

consumption, high density and insensitivity to vibration. In many data centers, flash-

based SSDs are starting to replace conventional hard disks, signaling the arrival of

all-flash cloud era.

Flash-based SSDs require additional care to utilize the underlying flash memory.

Flash memory has its own complexities, e.g. lack of in-place page update and limited

lifetime. SSD manufacturers rely on a layer of indirection to address these issues.

With firmware providing functionality e.g. address translation, wear leveling, garbage

collection, etc., flash-based SSDs manage to present a linear logical address space to the

host applications and maintain backward compatibility with conventional hard disks.

Since flash memory is drastically different from magnetic medium, and SSDs have

different architecture and features from spinning hard disks, they call for a scrutiny of

9
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previous disk-centric software design and offer additional opportunities for optimization.

Database support for transaction has long been optimized for spinning hard

disk. To achieve atomicity and durability, many algorithms e.g. ARIES [68] have been

proposed. They usually take the classic write-ahead-logging (WAL) approach in which

updates are logged first before applied to original data. Therefore, WAL consumes

extra space, which can affect the SSD’s lifetime. Furthermore, in systems that use

ARIES, multiple transactions sequentially append their log entries to a log file, but only

one of them can flush the log at a time upon commit. This restriction stems from the

characteristics of hard disks with limited IO parallelism and poor random access due to

the lengthy seek time. SSDs do not suffer from this limitation, and such disk-centric

design decisions will under-utilize SSD’s bandwidth and internal resources, and worse,

lead to suboptimal performance.

SSDs use a layer of indirection for address mapping, and this indirection offers

an opportunity to implement support for atomicity and durability with an alternative

approach called copy-on-write (COW). COW is not new, but is considered to be inefficient

due to its need for an extra layer of indirection. Since SSDs already have a layer of

indirection anyway, thus COW is tempting for SSDs. However, this thesis shows that

naive page-based COW used by SSDs can cause performance degradation due to coarse-

grained isolation.

Log-structured file systems [84, 7] have been proposed to meet the characteristics

of spinning hard disk, and the sequential write access pattern is friendly to flash mem-

ory [53]. However, porting a conventional log-structured file system to flash-based SSD

is not trivial and can lead to suboptimal performance and efficiency. The background

I/O activity, i.e. log cleaning consumes flash memory although no new data is written.

Log-structured file systems suffer from the “wandering tree” problem [19] which also

consumes flash memory.
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The rest of this chapter presents a comprehensive introduction to the background

of this thesis. Section 2.1 describes the physical characteristics of flash memory. Sec-

tion 2.2 describes the architecture and design/implementation of flash translation layer.

Section 2.3 presents the basics of transactional support inside flash-based SSDs. Sec-

tion 2.4 briefly surveys the concepts and characteristics of log-structured storage.

2.1 Flash memory

A Flash memory cell is a CMOS transistor with a control gate (CG) and a floating

gate (FG). The FG is insulated by an oxide layer around it. Flash memory can trap

electrons on the FG to store data. The number of electrons on the FG determines the

threshold voltage of the memory cell. Since the FG is electronically isolated by the oxide

layer, high voltages are necessary to allow the electrons to pass the oxide layer and reach

or leave the FG. Writing (programming) moves electrons to the FG, while erasing moves

electrons away from the FG. To read the content of a cell, an intermediate voltage is

applied and the conductivity of the cell is checked.

There are two types of flash memory. The first is single level cell (SLC), while

the second one is called multiple level cell (MLC). An SLC cell can store only one

bit of information while a MLC cell can store multiple bits of information. Intuitively,

MLC technology can achieve higher density than SLC, but SLC has better performance

than MLC. Flash device manufacturers make difference design decisions and trade-offs

depending on their optimization goals.

Flash memory has several important characteristics that storage device designers

need to accommodate. First, flash read, program, and erase operations work on different

granularities and have very different latencies, as shown in Table 2.1. This table contains

only typical values and actual latencies vary depending on underlying technology. Read
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and program operate on 4–8 KB pages. Once written, the page becomes immutable

unless the block that contains it is erased. Blocks typically contain between 64 and 512

pages, and pages within a block must be written sequentially. Reading a page generally

takes less than 100 µs, while programming a page takes 100 µs to 2000 µs depending on

the underlying flash devices [38]. Erase operations need several milliseconds to complete.

Finally, each block can endure only a limited number of erase operations before becoming

unreliable.

Table 2.1: Flash memory operations Flash memory supports three operations.

Operation Unit of operation Latency
Read Page under 100 µs

Program Page 100-200 µs
Erase Block 2000 µs

Flash pages include an OOB region in addition to the “in-band” 4 or 8 KB region.

The OOB region has 64 to 256 bytes and the control program of flash devices stores

per-page metadata in the OOB region. This can include ECC, erase count and other

metadata.

2.2 Modern SSD architecture

Modern SSDs feature a heterogeneous architecture and require dedicated firmware

to manage their internal resources.

2.2.1 Flash translation layer

Due to the asymmetric operations, using flash memory in SSDs involves non-

trivial extra efforts. Flash-based SSDs have to use firmware to hide the complexities
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of underlying flash. Such firmware is critical to the performance and reliability of

flash-based SSDs.

The core component of the firmware is the flash translation layer (FTL). Since

pages are immutable once written (until an erase), in-place page updates are not possible.

Naive erase-before-program not only incurs intolerably long latency, but also negatively

impacts the storage device’s lifetime. The solution to this issue borrows its idea from

address indirection. A famous quote of David Wheeler states that ”all problems in

computer science can be solved by another layer of indirection.”

The FTL implements a layer of indirection between the logical address space and

the physical address space. The former is visible and accessible to the host programs,

while the latter is kept within the internals of SSDs. Host programs always use logical

block address (LBA) to access the SSD, and the firmware uses the FTL to translate the

LBAs to physical flash addresses.

The firmware uses a mapping table and some other metadata to maintain the

mapping between logical and physical address spaces. A conventional SSD may keep the

logical-to-physical address mapping as an array in the DRAM of the SSD. Some SSDs

also use the per-flash-page OOB region to keep the physical-to-logical address mapping.

Consequently, flash write operations are necessary to change the bi-directional mapping

between two address spaces.

The FTL serves read and write differently. Upon the arrival of a read request, the

firmware uses the LBA in the read request to perform a lookup in the logical-to-physical

mapping table. If the LBA has been associated with a physical flash page, the firmware

initiates flash read operation with the corresponding physical address. If the LBA is not

mapped to any flash address at the moment, a predefined status code is returned to the

host. For write requests, the FTL always writes the data to erased flash memory first,

and then modifies the mapping table so that the LBA specified in the write request now
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points to the flash page that contains the data just written. Changing the mapping table

effectively invalidates the data contained by the flash page that was mapped to the LBA

prior to the latest write request. The data is then referred to as “garbage” and the space it

occupies needs to be reclaimed by the firmware.

2.2.2 SSD hardware architecture

Modern SSDs have heterogeneous hardware architecture, and Figure 2.1 shows

an example. SSDs usually have multiple flash channels providing abundant internal I/O

bandwidth. SSDs contain multiple embedded processors to execute firmware code and

perform tasks including address translation, garbage collection and wear leveling. SSDs’

internal data structures (e.g., the address mapping table, block metadata, and snapshots)

reside in an on-board DRAM. Some enterprise SSDs [89] use battery or supercapacitor

to protect the DRAM from abrupt power failures. SSDs can also emerging non-volatile

main memories such as the 3D Xpoint [14] memory to replace DRAM.

2.2.3 Host interface and protocol

SSDs are attached to the host machine via the host interface. Currently there are

several different interfaces, e.g. SATA [12], SAS [11], PCIe [9] etc.

The NVM Express (NVMe) [71] is a new protocol or logical interface [71] for

host machine to access high-speed SSDs via PCIe. NVMe is block-oriented, but it allows

for vendor-specific extensions that can process data with variable lengths.

2.3 SSDs and transactions

Many applications require some kind of transactional support [37]. The non-

overwriting property of flash-based SSDs offer a possible opportunity to integrate some
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Figure 2.1: Architecture of an example SSD Modern SSDs have multiple channels to
sustain huge internal bandwidth. Multiple embedded processors execute management
firmware. System metadata reside in the internal DRAM that can be protected by battery
or supercapacitor from power failures.

support for transactions in the FTL.

2.3.1 Concepts of transactions

In the terminology of computer science, a transaction is a group of operations on

the data and/or metadata. Any transaction must have four properties, including atomicity,

consistency, isolation, and durability.

• Atomicity, aka. “all or nothing”. If any part of the transaction fails, then the entire

transaction fails. The failed transaction should not have any effect on the logical or

physical view of the system, depending on the context.

• Consistency. A valid transaction must bring the system from one valid state to

another valid state, in compliance with all the defined rules.
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• Isolation. Even with multiple concurrent transactions, the system reaches a new

state as if the transactions were executed sequentially.

• Durability. As long as a transaction successfully commits, its effect will be durable

and able to survive system failures such as crash or power loss.

Databases use copy-on-write (COW) or write-ahead-logging (WAL) to support

atomicity. If a system adopts COW, it never overwrites its data. Instead, the system writes

the new version of the data to another location, and any future access to the data will be

redirected to the new location. If a system uses WAL, all operations have to be recorded

in logs residing in non-volatile storage. Original data cannot be updated until the log

entry becomes persistent. Conventionally people prefer WAL since COW entails an extra

layer of indirection causing performance and space overhead for the system. WAL has

its disadvantages, too. First flushing log is often a bottleneck. Second, WAL consumes

more space due to logs.

Databases implement concurrency control to offer support for isolation. Existing

concurrency control methods broadly fall into two categories, optimistic concurrency

control (OCC) or pesimistic concurrency control (PCC). In PCC, locking is a very popular

technique. Data items, pages, records, etc. are protected by locks. To access a data item,

a transaction must acquire a lock on the data item first. At a later point, the transaction

can choose to release the lock.

Two-phase locking (2PL) is a locking protocol that enforces the order of lock

acquisition and release. Each transaction must first acquire all the necessary locks before

releasing any lock. Therefore, each transaction has a lock acquisition phase as well as a

lock release phase, which gives its name.

Many databases use ARIES [68] to provide atomicity, isolation and durability.

In ARIES, the database sequentially writes the log entries to a log file and applies the
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logged changes to original data in the background. ARIES employs the “steal and no

force” policy. When the host machine’s main memory is sufficiently large, log flushing

becomes the bottleneck [43]. Sequentially flushing log entries to a single log file matches

the characteristics of conventional hard disks, but such a database system on a modern

SSD with huge IO bandwidth may see very low bandwidth utilization.

2.3.2 Native support for transaction in SSDs

The existence of FTL as another layer of indirection inspires the adoption of

COW in SSD’s native support for transaction. Several research groups have proposed

adding transactional support to SSDs [77, 76, 47, 91, 72]. KAML (and these proposals)

provides native support for atomicity and durability, two key aspects of transactional

ACID support, but leaves isolation and consistency to the application.

Leveraging conventional FTL designs to support atomicity is tempting, since the

FTL already relies on atomic copy-on-write (COW). However most conventional FTLs

are page-based, and many existing proposals [47, 91, 77] for atomic writes in the FTLs

enable transactions to update data in the unit of pages. Another proposal [28] supports

finer-grained locking, but relies on a more exotic byte-addressable non-volatile memory

rather than flash.

Page-based atomic write interfaces are problematic when the application allows

concurrent accesses to records on the same page [36]. If one transaction commits a

page successfully, while another transaction with updates on the same page aborts, there

is no copy of the page reflecting the correct state. Consequently transactions that use

page-based atomic write have to acquire coarse-grained page locks to ensure correctness,

which is detrimental to system performance. In contrast, most database storage engines

e.g. InnoDB [42], Oracle Database [74], Shore-MT [93], etc. allow transactions to

lock individual records. Therefore, they cannot benefit from page-based atomic write
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interfaces.

Figure 2.2 illustrates what can go wrong if the system supports fine-grained

record-level lock while allowing application to use page-level atomic-write to update

data directly. T1 and T2 intend to update R1 and R2 respectively. Since the system

enforces locking at record level, T1 and T2 do not block each other because they access

different records on the same page. However, since the atomic-writeperates on the

page granularity, when T1 aborts and rolls the page back to its original state, the update

on R2 performed by T2 will be lost, even if T2 has already committed. Consequently, to

ensure correctness, the system has to enforce page-level locks, leading to sub-optimal

performance.

Time
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R2

R1

R2

R1

R2

R1

R2

R1

R2

lock(T1, R1); update(T1, R1)

T1

T2

lock(T2, R2); update(T2, R2) atomic_write(T2, P)

abort(T1, P)

The update of T2 is lost!

Figure 2.2: Page-level atomic-write with record-level locks When the system
enforces record-level lock and allows transactions to use atomic-write to update data
directly, concurrent transactions can cause one another to lose update.

KAML’s variable-sized values allow for fine-grained, value-based locking, maxi-
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mizing concurrency and making it a better match to real databases. Databases can rely

on KAML’s built-in support for atomicity rather than conventional write-ahead logging

(WAL). ARIES [68], a classic logging algorithm (that adopts fine-grained record-based

locking) poses a major bottleneck [43] in conventional databases due to contention on a

global log, single-threaded log flushing and file system overhead. To make the matter

worse, WAL schemes also induce redundant log write operations, which consume free

space in flash memory rapidly.

2.4 Log-structured storage

The log-structured storage has been a classic idea to transform random writes

to sequential writes. Conventional log-structured file systems [84, 7] aim to optimize

for hard disks with much better sequential write performance than random access. A

recent log-structured file system [53] targets flash memory devices from the beginning of

its design. Sequential writes to multiple logs are flash-friendly and match the internal

parallelism of SSDs. Log-structured merge tree [73] (LSM) organizes key-value pairs

in logs. The FTL of a flash-based SSD also resembles a log-structured storage since it

never overwrites old data but redirects updates to unused flash pages.

Log-structured file systems have to perform host log cleaning to create free

segments in the logical address space for incoming write requests from user space

applications. Log cleaning is similar to, but independent from the SSD’s internal garbage

collection1. Current SSDs confine the log-structured file system to block-based I/O

interface. The semantic gap and lack of coordination between SSD garbage collection

and file system log cleaning can lead to inefficiencies. Due to their independent data

1In some context, log cleaning is also called “garbage collection” of log-structured file systems. In this
paper, for the purpose of simplicity and clarification, we use “log cleaning” in the context of log-structured
file system, and “garbage collection” in the context of SSDs.
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movement, valid data may be written multiple times by each of them, consuming erased

flash pages rapidly.

Log-structured file systems suffer from the “wandering tree problem” [19]. This

occurs because log-structured file systems must perform out-of-place updates. A write

to one data block in a file can cause a cascade of writes as the file systems update the

pointer to that data block, the pointer to the direct node block that contains the pointer, the

pointer to the indirect block that points to the direct node block, and so on. In Figure 2.3,

if the user program requests that the file system write block 6, the file system writes a

new copy block 6′ to a new location. Consequently block 2 that points to block 6 has

to be written as well. This time, a new copy block 2′ is written to a new location. This

occurs repeatedly from the data block (leaf) all the way up to the inode block (root).

In this process, simply writing a single data block causes the writes of multiple blocks,

consuming flash memory more rapidly. This can negatively impact the lifetime and

reliability of flash-based SSDs.
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Chapter 3

KAML: a flexible, high-performance

key-value SSD

Flash memory has risen to prominence and is replacing spinning disks as the

storage medium of choice for many enterprise storage systems. Solid state drives (SSDs)

offer decreased latency, increased bandwidth, and increased concurrency, all of which

make them attractive for modern, data-intensive applications. However, the flash memory

that SSDs use to store data is a poor match for the block-based, disk-centric interface

that dominates storage systems. The key-value interface is an attractive alternative, since

SSDs must already maintain a layer of indirection between logical storage addresses (or

keys) and physical storage locations. This allows for simpler implementations and makes

it possible to exploit the layer of indirection to provide additional services like snapshots

or multi-part atomic operations.

However, current proposals for key-value interfaces for SSDs fall short in several

respects. First, they provide a single, shared map for all the key-value pairs in the SSD,

forcing the SSD to use uniform policies to manage the key-value mapping across all

applications. Second, the proposals stop at the SSD and ignore the rest of the storage stack.

22
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In particular, they do not provide generic caching facilities to improve the performance

of key-value accesses.

Most proposals for multi-part atomic writes in flash-based SSDs also suffer from

limitations. Most notably, they support only page-level atomic updates for transactions.

While the page-level mapping that most SSDs employ makes this a convenient choice

for the implementors, it is a poor match for what many applications require. Providing

page-level atomic writes requires the application to perform page-level locking. For

applications that deal with smaller units of data (e.g., database records), page-level

locking has been shown to provide lower performance than finer-grained approaches.

To address these limitations, this paper presents the key-addressable, multi-log

SSD (KAML). KAML extends existing proposals for key-value-based SSDs and provides

a fine-grained multi-part atomic write interface and a host-side caching layer to accelerate

accesses to data it contains. The caching layer builds on the SSD’s transaction interface

and implements a fine-grained locking protocol that minimizes transaction aborts and

maximizes concurrency.

KAML allows applications to create multiple key-value namespaces that can,

depending on application requirements, represent files, database tables, or arbitrary

collections of objects.

This new interface leads to three benefits. First, KAML shoulders the responsi-

bility of mapping keys directly to values’ physical addresses, allowing applications to

bypass unnecessary indirection. Without KAML, applications have to maintain their own

indices to map keys to file offsets, and rely on the file system to translate file offsets to

logical block addresses (LBAs).

Second, applications can create or update multiple key-value pairs atomically

using KAML interface. Without this interface, applications must use write-ahead logging

(WAL) or other application-level techniques to provide atomic updates, consuming more
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space and incurring expensive file system operations such as fsync. Finally, the fine-

grained key-value interface of KAML improves system concurrency in comparison with

its coarse-grained counterparts, because it allows for fine-grained locking.

KAML’s approach to managing its internal flash memory reflects the requirements

of its interface. Modern SSDs have multiple, parallel, semi-independent flash channels

and can perform flash operations in parallel across those channels. KAML maps those

channels to the logs it uses to record updates to particular namespaces, and allows the

application to tune the mapping between namespaces and flash channels to optimize

performance and improve quality of service.

We implement the SSD functions of KAML by extending the firmware inside a

commercially available flash-based SSD reference design. We have also implemented

KAML caching layer that runs on the host machine. The result shows that the KAML

caching layer can serve as both a database storage manager and a stand-alone key-value

store: on online transaction processing (OLTP) workloads, it outperforms Shore-MT [93],

an open-source storage engine, by 1.1× – 4.0×. For NoSQL key-value store workloads

KAML is 1.1× – 3.0× faster than Shore-MT.

The rest of the chapter is organized as follows. Section 3.1 presents an overview of

the system, and Section 3.2 details the implementation. Section 3.3 reports experimental

results. Section 3.4 places this work in the context of existing literature, while Section 3.5

summarizes this chapter.

3.1 System overview

The heart of KAML is an SSD that uses a novel FTL structure to manage flash

memory. This FTL provides a transactional, key-value interface. The system comprises a

customizable SSD and three different pieces of software. First, the new FTL runs on an
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Figure 3.1: KAML system architecture The shaded part represents the KAML system
with four components: KAML-SSD, a driver, a user library (libkaml) and KAML
caching layer.

industrial SSD reference platform. Its interface allows host software (e.g., a database, file

system, or other user space application) to create, manage, and access multiple key-value

stores using fine-grained transactions. The firmware works in tandem with a kernel

driver and a userspace library that run on the host machine. Finally, a host caching layer

accelerates access using host DRAM and provides additional transactional facilities.

Figure 3.1 illustrates the relationship between these components. This section

describes KAML’s system components while next section describes its implementation

in more detail.

KAML presents a key-value interface that supports fine-grained transactions. The

interface allows the application to create and destroy key-value namespaces that represent

logically related key-value pairs. Namespaces allow multiple, independent applications
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Table 3.1: KAML commands These commands allow applications to access data on
the SSD with transactional semantics and key-value addressing scheme.

Command Description
CreateNamespace(attributes) Create a namespace with given

attributes, and return a names-
paceID.

DeleteNamespace(namespaceId) Delete a namespace with given
namespaceID

Get(namespaceID, key) Retrieve a value given its key
and returns the value.

Put(namespaceIDs[], keys[], values[], lengths[]) Atomically update or insert a list
of key-value pairs.

to share a KAML SSD. Table 3.1 summarizes the commands included in this interface.

3.1.1 Keys, values, and namespaces

Keys in KAML are 64-bits, but values can vary in size. Natively supporting

variable-sized values lets application store a wide variety of objects in KAML. For

instance, a conventional page-based file system could treat keys as block addresses and

store 4 KB pages as values in a namespace. Alternately, a database could store individual

tuples as values and use the tuple’s key or record ID to map it into the SSD.

Exposing a key-value interface allows applications to eliminate redundant layers

of indirection. In a conventional system, an application might map keys to locations in a

file, the underlying file system would map that file location to a logical block address

(LBA), and the FTL would map the LBA to a physical page number (PPN). KAML

translates this into a single mapping from key to PPN and eliminates the application and

file system overhead associated with the other mappings.

KAML also obviates the need to use log-structured techniques in the file systems,

eliminating the performance problems that “log stacking” [103] can cause. The inter-
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face allows KAML to consolidate garbage collection operations in the SSD, where the

firmware has the most complete information about the flash’s performance characteristics

and the data layout.

3.1.2 Atomicity and durability

KAML’s Put operation can atomically insert/update multiple key-value pairs,

providing atomicity and durability (the “A” and “D” in ACID). The KAML caching layer

can provide isolation. We leave consistency up to the application, because while atomicity

and durability requirements are similar across applications, consistency requirements

(e.g., database cascades, triggers, and constraints) vary widely. Likewise, if an application

needs a custom locking protocol it can provide its own rather than rely on the caching

layer’s facility.

3.1.3 Fine-grained locking

Although the KAML SSD does not implement concurrency control, allowing

for efficient concurrency control is a central goal of the KAML SSD interface, and the

caching layers makes extensive use of it. Since KAML transactions operate on variable-

sized key-value pairs 1 rather than fix-sized pages, applications can use fine-grained,

record-based locking protocols rather than coarse-grained, page-based protocols.

Fine-grained locking is critical to performance. Without it, a transaction that

modifies a record in a page must hold a lock for the entire page until the transaction

commits, blocking any other transactions that need access to another record on the same

page. We quantify the performance impact of coarse-grained locking in Section 3.3.

1In this paper, we use record and key-value pair interchangeably
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3.1.4 KAML caching layer

KAML can improve application performance by caching data in DRAM, just as

conventional systems cache page-based SSD or hard drive data. Systems with conven-

tional SSDs cache data either in the operating system’s page cache or application-specific

caching layers (e.g., database buffer pool). KAML requires a different caching architec-

ture because its interface is based on key-value pairs rather than pages or blocks.

KAML’s caching layer provides both host DRAM-based caching and a richer

transactional interface that provides isolation in addition to durability and atomicity that

the KAML SSD provides.

Caching

The caching layer allows KAML to provide fast access to cached data and interact

with the SSD via Get and Put commands. The caching layer differs from the conventional

page cache in that it caches variable-length key-value pairs instead of fixed-sized pages

(or blocks in file system terminology).

The caching layer uses the namespace ID and the key to form a compound key and

probes a hash table. If the hash table has an entry that matches the key, the key-value pair

is already in the cache, and the caching layer returns the key-value pair to the application.

If the hash table does not have a matching entry, the caching layer issues a Get

request to the SSD, and inserts the resulting key-value pair into the hash table.

When a transaction commits (or when the caching layer runs out of space), the

caching layer writes key-value pairs back to the SSD with a Put. Once the command

completes, KAML can re-use the buffer space that the value occupied or keep the

key-value pair in the cache and mark it as clean.
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Table 3.2: KAML caching layer API The caching layer provides a transactional
interface.

libkaml API Description
TransactionBegin() Start a new transaction and allocate resources.
TransactionRead() Read a key-value pair in buffer pool or issue

Get to bring it from SSD.
TransactionUpdate() Update a key-value pair. The change stays in

main memory until transaction commits.
TransactionInsert() Insert a key-value pair. The record stays in

main memory until transaction commits.
TransactionCommit() Commit current transaction, persisting up-

dates and releasing locks.
TransactionAbort() Abort current transaction, abandoning updates

and releasing locks.
TransactionFree() Release the resources that the current transac-

tion is using.

Transactions

The caching layer’s transaction manager provides support for isolation using

strong strict two-phase locking (SS2PL) [17] implemented on the host, and accesses

key-value pairs stored on KAML via the caching layer.

The transaction manager maintains an array of transaction control blocks (XCB).

When a transaction starts, the transaction manager allocates a XCB for the transaction.

The XCB allows the transaction to be in one of the four states: IDLE (i.e., the transaction

has not yet started), ACTIVE (i.e., the transaction is in progress), ABORTED, and

COMMITTED. Figure 3.2 shows the possible transitions between these states, and

Table 3.2 summarizes the actions that cause state transitions as well as transaction

manager’s API.

Active transactions acquire locks on key-value pairs before accessing them, and

create private copies of the key-value pairs for use during the transaction. When the

transaction commits, the transaction manager replaces the key-value pairs in the buffer
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Figure 3.2: State transition graph of a transaction A transaction is in one of these
states at any time, and transitions to another state by invoking KAML APIs.

pool with its private copies and then issues Put commands to flush the changes to KAML.

On abort, the transaction simply discards its private copies and releases its locks.

3.2 KAML

KAML uses a customized SSD, custom driver, and lightweight userspace library

to implement the KAML interface more efficiently than prior SSDs that provide a key-

value interface. The firmware manages in-storage logs, maintains the mapping tables,

performs wear leveling, and implements garbage collection (GC). Below, we describe

the SSD prototyping hardware we use and key aspects of KAML’s firmware and system

software.
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Figure 3.3: KAML SSD architecture KAML exposes its internal computation power
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3.2.1 Hardware architecture

We have implemented KAML on a commercial NVMe [71] SSD development

board. Like other modern SSDs, it comprises an array of flash chips (totalling 375 GB)

arranged in 16 “channels” connected to a multi-core controller that communicates with

a host system over PCIe. The firmware running on the controller defines the SSD’s

interface and implements management policies that aim to provide high performance and

maximize flash life.

Figure 3.3 depicts the internal organization of the flash controller. The key

features of the controller architecture are the cores themselves, the flash interface, and

the on-board DRAM.

The cores have 64 KB private instruction and data memories. They can commu-
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nicate with each other, the DRAM, and the flash interface using an on-chip network. To

access flash, the cores issue a command to flash controller which reads or writes data

from/to a buffer in DRAM. To access the contents of DRAM, the cores explicitly copy

between the DRAM and their private data memories.

The flash channels each contain 4 flash chips that share control and data lines and

attach to common flash memory controller on the SSD’s controller. The flash chips can

perform read, program, and erase operations in parallel, but only one chip can transfer

data to or from the controller at a time.

For this work, we assume that the DRAM is persistent. In practice, it would either

be battery or capacitor-backed or it could be replaced with a non-volatile technology like

Intel’s 3D-XPoint memory [14].

3.2.2 Namespace management

KAML manages the flash memory in each flash target as a log. When a Put

operation arrives, KAML writes the key-value pair to the tail of the log, and updates an

index structure that stores the location of the key-value pair corresponding to each key.

The architecture of the SSD determines the number of logs that the SSD maintains,

KAML assigns each key-value namespace to multiple logs. This improves locality and

leads to more efficient garbage collection (see below). However, the correspondence

between namespaces and logs is not fixed: as workloads change the SSD can assign more

or fewer logs to a single namespace to match workload the namespace is experiencing. If

a namespace is particularly cold it might share a log with other namespaces. By default,

all of the SSD’s logs are available to all the namespaces. Multiple logs do not incur extra

hardware overhead since modern SSDs already feature multi-channel architecture with

internal parallelism.

Restricting the mapping between namespaces and logs serves as a locality opti-



33

Record A

Record B

Record C

Log
……

header

header

header

000000000000000000000010010 000000000000000000000000010

P0 P1

……

……

Figure 3.4: In-storage log and records Logs consist of flash pages, each of which
stores a bitmap in the OOB region describing variable-sized records in the page. Record
A occupies chunk 0 and 1 of page P0, record B occupies chunk 2, 3, and 4 of P0, record
C occupies chunk 0 and 1 of P1.

mization allows for the SSD to control the allocation of resources – especially bandwidth

– to namespaces. However, since the mapping is flexible, KAML’s GC and flash man-

agement algorithms do not assume that data for a particular namespace resides in its

assigned logs.

To bridge the gap between application requirements and flash memory charac-

teristics, KAML stores variable-sized key-values in fixed-sized flash pages. Physical

flash pages in our SSD are 8 KB + 256 bytes in size. Each page is divided into 64

fixed-sized chunks and each record can occupy variable number of chunks. The firmware

uses 8-bytes of OOB data to store a bitmap that records the start and end chunks of each

record on the page, as shown in Figure 3.4.

If a record’s last chunk is the i-th chunk, the i-th bit of the bitmap is set. The first

record always starts from chunk 0 of the page, and there are no unused chunks between

two records on the same page. Other components of the firmware such as GC can use

this bitmap to parse the content of the page (see Section 3.2.5).

Flash supports only whole-page program operations, but it must commit individ-

ual Put operations even if they do not fill a page. To overcome this problem, KAML uses

a non-volatile, DRAM-like buffer to buffer multiple Put operations until a page’s-worth
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of data is ready to write or an internal timer times out. Existing SSDs use capacitor- or

battery-backed memory for this purpose, but emerging non-volatile, byte-addressable

memories like 3D XPoint would also be suitable.

3.2.3 Mapping tables

KAML uses per-namespace indices to locate the key-value pairs associated with

each key. KAML indices are different from the maps that the FTLs in conventional

SSDs in two ways. First, conventional FTLs map LBAs to PPNs, and the LBAs form a

continuous block address space. This means that the meaning of an LBA is fixed (i.e.,

it corresponds to a particular logical address in the SSD’s logical storage space), so it

cannot contain useful application-level data (e.g., they cannot represent record IDs in a

database table). It also means that LBAs correspond to fixed-sized chunks of data.

Second, in conventional FTLs, there is only a single mapping table, rather than

many. This further limits the flexibility in how applications can use LBAs, since LBAs

reside in a global, shared namespace. It also prevents the SSD from managing indices

differently depending on access patterns or application needs.

For instance, KAML could limit the size of the mapping table for a namespace or

even use different data structures (e.g., a tree instead of the hash tables [41] that KAML

uses) to store the mapping tables.

We store the indices in the SSD’s DRAM when the namespace is in use. Like

other modern, high-end SSDs ours has several GBs of DRAM that we use to store the

KAML indices. Since the KAML indices can be finer-grained they may be larger than

the conventional LBA-to-PPN map. For example, a hash table for 100 million key-value

pairs and a load factor of 75% requires approximately 2 GB in-storage DRAM.

To support larger data sizes, either the amount of DRAM the SSD provides may

need to increase or the firmware may need to “swap” index information between flash and
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DRAM. KAML currently loads the index for a namespace when an application accesses

it, but it does not swap parts of the index. KAML employs a simple policy to swap

unused mapping tables out to flash to make room for those in use before the application

starts.

3.2.4 Transaction support

KAML’s transaction mechanism supports fine-grained data access with high

concurrency. This design decision separates KAML from most previous proposals for

multi-part atomic write support in SSDs [47, 91]. Specifically, KAML-SSD provides

native support for fine-grained, multi-record atomic writes, while the KAML caching

layer provides support for data buffering and locking. KAML’s native atomic write

provides durability and atomicity, and the caching layer implements isolation.

The Put command provides the transactional interface. It accepts arrays of

namespace IDs, keys, values, and value sizes that specify a set of updates/insertions to

apply, and the SSD guarantees that all the updates/insertions occur atomically.

Put executes in three phases. In the first phase, the firmware receives a list

of key-value pairs to update or create. The KAML firmware transfers the data to the

SSD’s non-volatile RAM. Then, the firmware checks if each key already exists in the

namespace’s index. If it does, it locks that entry. If the key does not exist, the firmware

reserves and locks an empty entry in the index. After the firmware has acquired the locks,

the operation has logically committed, and the firmware notifies the host.

In the second phase, the firmware initiates flash write operations to write the

key-value pairs to flash. When a flash write completes, the firmware records its physical

address. If a failure occurs before all flash write operations succeed, the firmware recovers

using the data in the non-volatile buffers.

Once all the flash write operations are complete, the firmware has the information
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of all new flash addresses. The firmware updates the indices with the physical addresses

of the newly-written key-values in flash memory. Once the firmware finishes applying the

changes to the mapping tables, it releases locks, frees the buffers and marks the command

as success. If a failure occurs, the firmware recovers using the flash addresses recorded

in the second phase.

3.2.5 Wear-leveling and GC

KAML’s GC algorithm operates on variable-sized key-value pairs rather than

fixed-sized pages, but the basic operations are similar to other SSD GC schemes. The GC

subsystem maintains a list of erased flash blocks for each log and selects a new one when

the block at the end of the log is full. After writing all pages in a block, KAML firmware

moves the block to a sorted list that orders blocks by their erase count and the amount of

valid data (i.e., bytes that have not been replaced by a newer version of the same record).

KAML’s GC algorithm starts reclaiming space when the free block count falls

below a threshold. It selects blocks to clean that have low erase counts and small amounts

of valid data. This serves to spread erases evenly across the blocks and minimize the

work needed to copy the valid data to a new block.

Once it has selected a flash block to clean, the firmware reads the pages from flash

memory into the storage DRAM, and uses the per-page bitmap described in Section 3.2.2

to extract all the key-value pairs. For each key-value pair, the firmware searches for the

key in the index. If the search result matches the physical address of the current key-value

pair being scanned, the key-value pair is valid and the firmware writes it back to a new

location. If the firmware cannot find an entry for the key-value pair or the search result

points to a different physical location, the key-value pair is invalid and the firmware

discards it. After examining all pages in a block, the firmware erases the block and adds

it to the list of free blocks.
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Figure 3.5: Bandwidth comparison between KAML and block I/O Get outperforms
read by up to 20% in Fetch. Put outperforms write by up to 7.9× for small requests
in Update and 10% in Insert. Put’s overhead is greater than that of write when Put
inserts new elements whose sizes are 4KB.
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Figure 3.6: Latency comparison between KAML and block I/O Get has almost the
same latency as read for Fetch. Put latency is much lower than that of write (20%)
for small requests in Update since writing small records incurs flash read-modify-write.
In Insert the latency of Put is between 63% and 75% of that of write for small
requests due to the same reason.

3.3 Evaluation

We use microbenchmarks to measure basic operation performance of KAML,

discussing factors that affect KAML performance. Then we run more complex OLTP

and NoSQL workloads to quantify how KAML design decisions impact application-level

performance. Below we detail our experimental setup and the results of our testing.
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3.3.1 Experimental setup

We built KAML using an industrial flash-based SSD reference platform that

connects to the host machine via four-lane PCIe Gen 3. The controller of the SSD

consists of multiple embedded processors running at 500 MHz. Data structures such as

address mapping tables reside in the 2 GB on-board DRAM. We assume that the SSD uses

a capacitor or battery to protect it from abrupt power failures. We implemented KAML

by modifying a reference firmware provided by the board manufacturer. The original

reference firmware supports only block-based I/O, while our implementation exposes

the KAML commands as extensions to the standard NVMe command set. We make

corresponding extensions to the Linux NVMe driver. Thus KAML is fully compatible

with block devices. Before running the experiments, we preconditioned the device by

filling the SSD with random data multiple times.

Our host system has two quad-core Intel Xeon E5520 CPUs on a dual-socket

motherboard. This machine contains 64 GB of DRAM as the host main memory. The

machine runs a Linux 3.16.3 kernel. We obtained all the results without using hyper-

threading.

For microbenchmarks that measure bandwidth, we use eight threads running on

the host machine to continuously issue I/O requests to the SSD. To eliminate the overhead

of Linux virtual file system (VFS), the driver and the user-space library allow the baseline

program to issue read and write commands directly to the SSD. The KAML version

of microbenchmarks use Get and Put commands to manipulate a single record in each

command. To measure KAML’s latency, we issue commands using a single thread.

For OLTP and NoSQL key-value store applications, we compare KAML with

Shore-MT [93], an open-source storage engine that offers ACID guarantees using a com-

bination of ARIES-style [68] logging and two-phase locking (2PL). In our experiments,

Shore-MT provides the same functionality as KAML with techniques used in many
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popular databases, thus serves as an optimized baseline with low overhead. Shore-MT

relies on a file system to store user data and logs. Unless otherwise noted, we configure

Shore-MT to use record-level locks, since our measurements show that they provide

better performance than page-level locks.

3.3.2 Microbenchmarks

We use Fetch, Update and Insert microbenchmarks to understand the per-

formance characteristics of KAML. The baseline version of Fetch uses NVMe read

commands to retrieve sectors from the SSD. The baseline version of Insert uses NVMe

write commands to write sectors of data to previously unmapped LBAs, and Update

uses NVMe write commands to write new versions of data to mapped LBAs. The

KAML version of Fetch uses Get commands to retrieve records by their keys directly.

For Update and Insert, we use Put commands to modify existing records and create

new ones, respectively.

Figure 3.5 compares the throughput of read/write with that of Get/Put com-

mands while varying the value size. The test uses one 1024 MB mapping table that can

hold up to 64 million entries. Since the number of elements in the mapping table can

affect KAML performance, Figure 3.5 reports the throughput of KAML requests when

the mapping table has different number of elements, i.e. load factors.

The experimental results demonstrate that when the load factor of the mapping

table is 0.1, the bandwidth of Get can be up to 1.2× of read. When the load factor is 0.4,

Get and read achieve the same bandwidth. read starts to outperform Get after the load

factor surpasses 0.7. Get achieves greater throughput than read because Get avoids the

cost of LBA indirection. The SSD firmware has to obtain locks on LBA ranges to protect

the data within the LBA range from changing or migrating during the read command.

The performance gain of Get diminishes when the mapping table has more elements,
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since the firmware has to scan more mapping table entries to search for an element.

In Update, Put outperforms write by 6.7× – 7.9× when the request size is

smaller than 4 KB. write achieves marginal improvement over Put when the record

size reaches 4 KB. The performance of write sees a huge leap when the record size

reaches 4 KB because in the baseline, write requests smaller than 4 KB are treated as

read-modify-write, indicating the command cannot return before the firmware reads 4 KB

from flash into the RAM and modifies a portion of it. When the request size is 4 KB, the

command can return after writing the new data into persistent DRAM in the SSD. KAML

does not suffer from this limitation for small records since it adopts a log-structured

approach and never overwrites previous data.

In Insert, the throughput of Put is close to that of write for requests smaller

than 4 KB. write outperforms Put for 4 KB requests. On the one hand, 4 KB write

does not have to perform long-latency read-modify-write operation. On the other hand,

Put needs to insert new address mapping entries into the hash-based mapping table while

write updates an element in an array.

Figure 3.6 compares the latency of read/write with that of Get/Put commands

with different value size when the hash table load factor is 0.4.

Get and read have the same latency. For Update, Put latency is only 20% of

that of write for small requests. The latency of write for small requests is high due

to the read-modify-write described before. In contrast, Put does not suffer from the

latency increase when the record size is smaller than 4 KB. For Insert, the latency of

Put is between 63% and 75% of write when request size is smaller than 4 KB. For 4 KB

requests, Put latency is 2.9 × of write. Our experiments also show that for Get, 98%

of the latency comes from hardware including the PCIe link and SSD internal latency,

while the remaining 2% comes from software including user space and OS kernel. In

Update, hardware contributes 92% of the latency. In Insert, hardware latency is 97%
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Figure 3.7: Effect of batch size on KAML bandwidth Increasing the number of key-
value pairs to update or insert by a Put command improves throughput of Update by
1.2× - 1.3×, and reduces the amount of time by 40% to populate an empty namespace
to 70% full (mapping table load factor reaches 0.7).

of the total.

In addition to updating/inserting a single record with each command, the Put

command supports updating/inserting a batch of records atomically. The number of

records in a batch is the batch size. Figure 3.7 measures the effect of batch sizes on

performance and shows that increasing batch size leads to larger bandwidth. Specifically,

increasing the batch size from 1 to 4 leads to 1.2× – 1.3× increase in throughput for

Update. It also reduces the amount of time required to add data to the namespace by

40%.

3.3.3 Effect of number of logs

KAML-SSD allows for the configurable allocation of internal write bandwidth

to user applications in terms of the number of logs associated with each namespace to

append. Figure 3.8 shows the effect of the number of logs on bandwidth of Put in the

Update benchmark. When the number of logs increases from 16 to 64, the maximum

bandwidth that the namespace can achieve increases by 5.8× since more logs can support
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Figure 3.8: Effect of multiple KAML logs Increasing the number of logs from 16 to
64 leads to 5.8× increase in throughput.

more concurrent commands.

3.3.4 OLTP

To quantify the benefits of KAML for OLTP workloads, we implemented both

TPC-B [96] and a subset of TPC-C [97] using the API that the KAML caching layer

provides. The caching layer effectively serves as a database storage engine in these

implementations. Shore-kits [92], an open-source benchmark suite using Shore-MT, pro-

vides a reference implementation for TPC-B and TPC-C. For the sake of fair comparison,

our implementation of TPC-B and TPC-C uses the same lock manager as Shore-MT,

and leverages Shore-kits’ code to serialize/deserialize database records. Due to current

hardware limitation and to comply with the TPC specifications, all values are 512 bytes

except TPCC CUSTOMER table, whose values are 1024 bytes. Shore-MT’s default page

size is 8 KB. The scaling factor for both benchmarks is 100, yielding 10 million values

for TPCB and 60 million values for TPCC so that the mapping tables of each benchmark
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Figure 3.9: Throughput of OLTP workloads on KAML KAML outperforms Shore-
MT with record-level lock by 4.0× for TPC-B, 1.1× for TPC-C NewOrder and 2.0×
for Payment. Coarse-grained locks negatively impact throughput.

can fit in the in-SSD DRAM. We configure the amount of memory allocated to KAML

caching layer to compare the performance when hit ratios are 0.8 and 1.0 respectively.

Shore-MT allocates sufficient memory to the buffer pool so that the entire working set

can fit in host main memory. This is ideal for conventional SQL databases and storage

engines. To guarantee atomicity and durability, both KAML and Shore-MT must flush

data to the SSD when transactions commit. For KAML, we vary the number of records

protected by a lock to be 1 and 16. For Shore-MT, we run the benchmarks with both

record-level and page-level locks.

Figure 3.9 shows the throughput of running TPC-B’s AccountUpdate transaction,

TPC-C’s NewOrder transaction and Payment transaction. These three transactions are

the most important (i.e., frequently executed) queries in the benchmarks. The results

show two things: First, KAML outperforms Shore-MT with record-level lock by up to
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4.0× for TPC-B’s AccountUpdate, 1.1× for TPC-C’s NewOrder, and 2.0× for TPC-C’s

Payment. Second, coarse-grained locks negatively impact transaction throughput. For

example, KAML’s throughput drops by up to 47% when the number of records protected

by a lock increases from 1 to 16. Likewise, Shore-MT’s performance drops by up to 80%

when it switches from record-level locks to page-level locks.

Performance advantage over Shore-MT

Several factors account for KAML performance advantage over Shore-MT with

record-level locks. First, centralized, synchronous logging is the major bottleneck in

most conventional storage engines [43] with ARIES-style logging, and only a single

transaction can acquire the global lock and flush the log at the same time. This transaction

will block other transactions even if there is no data conflict among these transactions,

and this transaction cannot commit before data becomes persistent in the SSDs via an

fsync. Consequently, the system under-utilizes the bandwidth of modern SSDs. In

contrast, the KAML’s Put command allows multiple transactions to commit in parallel if

they do not contend for the same records, making full use of SSD’s I/O bandwidth.

Second, conventional storage engines have to perform checkpointing and copy

dirty data out of the log to limit log size. Although this happens in the background,

it can interfere with foreground activity. The resulting degradation in performance is

in addition to the performance impact of SSD garbage collection. In KAML, the log

cleaning happens in the SSD, so the application only suffers the effect of one layer of

garbage collection rather than two.

Finally, KAML avoids the extra layers of indirection that the file system adds and

that Shore-MT (and other conventional storage engines) must pay the price for. In this

regard, KAML’s transactions are lighter-weight and allow for faster commit.
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Impact of locking granularity

Support for fine-grained locking is one of the key advantages of KAML over

existing key-value SSDs. Intuitively, the cost of coarse-grained locking results from the

contention between multiple transactions for exclusive access to data – especially “hot”

data. We analyze the performance impact of locking granularity.

Assume there are K keys divided into pages that hold l keys each. A lock protects

each page. If N updates that each target key i with probability pi arrive at about the same

time, we can reduce the problem to the classic “balls into bins” problem [80].

We denote the N updates as req1, req2, ..., reqN that arrive at t1, t2, ..., tN . The

update requests arrive in chronological order, i.e. the arrival times satisfy the following

condition,

0 < t1 < t2 < ... < tN (3.1)

Consider the ith update request. When the ith request arrives, requests req1,req2,

..., reqi−1 have already arrived. The probability of reqi not having to contend with these

previous requests is the following,

Pi = p1(1− p1)
i−1 + p2(1− p2)

i−1 + ...+ p K
l
(1− p K

l
)i−1 (3.2)

=

K
l

∑
j=1

p j(1− p j)
i−1 (3.3)

Therefore, the expected number of conflicts for all the requests is
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K
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∑
j=1

p j(1− p j)
i−1) (3.4)
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K
l

∑
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p j(1− p j)
i−1 (3.5)

= N−
K
l

∑
j=1
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∑
i=1

p j(1− p j)
i−1 (3.6)
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K
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∑
j=1

p j

N

∑
i=1

(1− p j)
i−1 (3.7)

= N−
K
l

∑
j=1

p j
1− (1− p j)

N

1− (1− p j)
(3.8)

= N−
K
l

∑
j=1

(1− (1− p j)
N) (3.9)

= N− K
l
+

K
l

∑
j=1

(1− p j)
N (3.10)

which gives the expected number of conflicts (i.e., the number of requests that

will contend for a page lock) as:

E[con f licting requests] = N− K
l
+

K
l

∑
i=1

(1− pi)
N (3.11)

If the choice of keys satisfy uniform distribution, i.e. pi =
1
K for 0≤ i≤ K−1,

the formula becomes

E[con f licting requests] = N− K
l
[1− (1− 1

K
)N ] (3.12)
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Table 3.3: YCSB workloads summary The ratio of different operations in each work-
load.

workload read update insert read-modify-write
a 0.5 0.5 0 0
b 0.95 0.05 0 0
c 1 0 0 0
d 0.95 0 0.05 0
f 0.5 0 0 0.5

So, as l increases, the number conflicts increases as well. As a result, KAML and

many databases adopt fine-grained record-level locking.

3.3.5 NoSQL key-value store

The KAML caching layer can serve as a NoSQL key-value store. This section

compares the performance of YCSB benchmark [104] on KAML and Shore-MT. In both

cases, we populate the key-value store with 20 million 1024-bytes records and allocate

8 GB main memory to the buffer pool. We choose not to cache the entire data set in

memory since we want to test the performance of Get.

Table 3.3 summarizes YCSB workloads, and Figure 3.10 shows the throughput

of those workloads running on KAML and Shore-MT. KAML outperforms Shore-MT

by between 1.1× and 3.0×. KAML achieves more performance improvement over

Shore-MT for write-intensive workloads than for read-intensive ones.

3.4 Related work

Many systems have explored SSD architecture and key-value store optimization.

Below we describe these efforts and place KAML in context with them.
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Figure 3.10: YCSB throughput on KAML KAML achieves up to 3.0× throughput
gain relative to Shore-MT, while the average improvement is 2.3×.

3.4.1 Innovations in SSD architecture

The architecture of SSDs is an active field of study, and researchers have addressed

several opportunities and challenges that SSDs present [45, 106, 99, 33, 67, 91, 22, 61].

These include devising new interfaces to take advantage of flash memory’s characteristics

and refining the design of the FTL. Below we discuss key developments in each of these

areas and how KAML differs from previous work.

Novel interfaces

The flash memory that SSDs use to store data suggests a wide range of alternatives

to the conventional block-based interface for storage.

The multi-streamed SSD [45] allows host applications to categorize accesses into

“streams” that the SSD can manage differently depending on their characteristics. KAML

can manage different namespaces according to different policies, providing a wider range

of policy options than multi-stream SSDs, and it makes those parameters explicit in the
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SSD’s interface. Nameless Writes [106] remove the indirection from LBA to PPN by

allowing the file system to access flash memory via physical address and exposing the

data movement that occurs during GC to the host. KAML goes a step further, mapping

user-specified keys (not just LBAs) to PPNs, so that applications can more easily exploit

the mapping inside the SSD.

SDF [75] targets datacenter workloads. SDF’s minimum write size is a flash

block, and it exposes individual channels to applications which must explicitly manage

erasure and GC. LOCS [99] is an LSM-tree-based key-value store [73] exploiting the

internal bandwidth of SDF. Data analytics can also benefit from new SSD interfaces

that provide in-storage data filtering [33]. Besides exposing new interfaces, people have

proposed adding programmability to SSDs, making it more convenient to change the

interaction between the host and the SSD [90].

Seagate Kinetic Open Storage Platform [88] supports access to remote storage

via key-value interface over Ethernet. Seagate currently offers only hard drives with the

interface but SSDs are an obvious extension. While Kinetic targets data transfer to/from

remote disks, current KAML prototype focuses on local SSDs with lower latency and

higher throughput. Moreover, KAML provides a key-value interface with transactional

semantics supporting fine-grained isolation.

Transactions on SSDs

Several projects add transaction support to SSDs by leveraging the copy-on-write

facilities that FTLs already employ. TxFlash [77] enables applications to write multiple

pages atomically using a novel commit protocol. Atomic-write [76] extends a log-based

FTL and uses one bit per block to track if the block is part of an atomic-write. Atomic-

write can eliminate double-write that induces considerable overhead in InnoDB [42].

X-FTL [47] and Möbius [91] atomically update multiple pages. However, they perform
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operations on entire pages, and, therefore require page-level lock. MARS [28] supports

fine-grained atomic-write, but assumes the SSD uses byte-addressable non-volatile

memory which is not commercially available yet. In contrast, KAML uses flash which

will remain the dominant solid state storage technology in the foreseeable future.

FTL Design

There have been a number of efforts focusing on the design of efficient FTL [35,

26, 56, 39, 64, 100, 22, 49]. DFTL [39] selectively caches page-level address mappings

to improve the performance for random writes. CAFTL [22] uses the hash value of the

data to detect duplicates to improve the lifetime and performance of SSD. CA-SSD [40]

exploits the value locality of data access pattern to reduce SSD response time with small

additional hardware support. Compared with these efforts, KAML generalizes its FTL

to a set of mapping tables from user-specified keys to physical addresses. Instead of a

single array, KAML supports variable number of mapping tables.

Virtual Storage Layer (VSL) [98] is a software FTL between the SSD and appli-

cations tailored specifically to FusionIO’s SSDs. It supports sparse addressing, dynamic

mapping and transactional persistence. VSL keeps FTL data structures in the host mem-

ory. KAML adopts an alternative approach that offloads the FTL to the SSD. Therefore

KAML consumes less host resources but requires careful budgeting of SSD’s internal

resources. Manufacturers have put more powerful processors and larger RAMs into SSDs

and this trend will likely continue in the foreseeable future.

3.4.2 Key-Value stores in SSDs

Researchers have built key-value stores optimized for SSDs. FlashStore [31] and

SkimpyStash [32] store key-value pairs on an SSD and apply various optimizations to

improve performance and memory consumption, but they rely on conventional SSDs
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resulting in stacked logs and the inefficiencies that those entail. Similarly, using Bw-

Tree [58] as a key-value database leads to similar issues. In contrast, KAML implements

a key-value interface in the SSD, eliminating stacked logs and reducing complexity while

providing fast access via its caching layer.

SILT [62] is a high-performance, memory-efficient storage system on a sin-

gle node. It has three key-value stores with different optimization goals for memory-

efficiency and write performance. KAML combines application index with original

FTL by mapping keys to physical addresses directly. The new mapping tables reside in

battery-backed DRAM inside the SSD, thus reducing the amount of host memory usage.

NVMKV [67] builds upon VSL [98] to implement key-value stores. Its mapping

table resides in host memory and keys in different stores are evenly distributed across

the entire LBA space. Furthermore, NVMKV relies on LevelDB’s [59] read cache.

In contrast, KAML provides separate namespaces for different key-value stores and a

generic caching layer.

3.5 Summary

Existing proposals to modernize the SSD interface by providing key-value seman-

tics present a single inflexible key space, while proposals for transactional SSDs require

inefficient coarse-grained locking. KAML solves these problems by supporting multiple,

independent namespaces for key-value pairs and allow applications to tune the perfor-

mance of each namespace to meet application requirements. It also enables fine-grained

locking by treating key-value pairs as the basic unit of transactional operations. Finally,

KAML provides a caching layer analogous to a conventional page cache to improve

performance. These changes allow KAML to outperform conventional designs in a wide

range of workloads.
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Chapter 4

Improving SSD lifetime with

byte-addressable metadata

Due to the idiosyncrasies of flash, solid state drives (SSDs) implement complex

flash translation layers (FTLs) to hide the details of flash, including its limited lifetime.

To support this, NAND flash devices provide out-of-band (OOB) regions on each flash

page that the FTLs use to store metadata. Storing the metadata in flash limits its utility

since the OOB region is subject to the same idiosyncrasies as the primary “in-band” data.

Emerging non-volatile byte-addressable memories avoid the idiosyncrasies of

flash memory and will eventually enable very fast SSDs. However, in the near future,

these memories will be too expensive to replace flash-based SSDs completely. A more

economical alternative is to use non-volatile, byte-addressable memories to store FTL

metadata (i.e. the OOB data). Such a change would come at a modest price but could

dramatically increase the flexibility of FTLs and enable a wide range of useful features.

Based on these observations, we have developed a prototype SSD named Pebb-

leSSD that allows us to explore the implications and applications of byte-addressable

metadata (BAM). We describe the architecture of PebbleSSD and the new FTL features

53
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it enables, and use those features to improve the efficiency of two log-structured file

systems.

The first new feature of PebbleSSD is the use of BAM to store the logical address

to which each physical page has been mapped by the FTL. This BAM-based mapping is

the inverse of the normal logical-to-physical address mapping that most FTLs already

store in the conventional DRAM. The PebbleSSD supports a new command remap that

allows the FTL to dynamically change the bi-directional mapping between logical and

physical addresses, achieving flexible and fast relocation of data in the logical address

space without having to write data to flash.

remap makes log cleaning more efficient. Original log-structured file systems

have to read valid data from their previous locations and write them to new destinations.

In contrast, our custom log-structured file systems running on PebbleSSD can “move”

data without writing to flash, thus effectively reducing the amount of data written during

log cleaning.

The second new feature of PebbleSSD is using BAM to temporarily store file

system metadata. PebbleSSD provides a new command fs write that persists not only

file data blocks1 in flash memory, but also their offset in the file and file inode number in

BAM.

fs write allows for more efficient flushing of file data blocks. This allows

log-structured file systems to avoid the so-called “wandering tree problem” in which the

file systems write data and index blocks to newly allocated space, thus writing a data

block can cause recursive flushing of its ancestor index blocks in the tree-based block

mapping [19]. With fs write, log-structured file systems write only file data blocks

during fsync. The file systems do not have to write the index blocks during fsync

1 Throughout this chapter, we refer to the granularity of flash erase operation as “flash erase block”,
“flash block” or “erase block”, while “block”, “data block”, “node block”, “file block” etc. refer to the
basic data unit in file systems.
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since the information in BAM written by fs write is already sufficient to guarantee the

recoverability of file. Therefore BAM allows log-structured file system to write less data

to flash, thus improving the efficiency and lifetime of PebbleSSD.

We implement PebbleSSD on a commercial, flash-based SSD reference design.

We modify NILFS2 [7] and F2FS [53] to demonstrate the benefits of PebbleSSD. The

experimental results show that PebbleSSD can reduce the amount of data written by

log-structured file systems during log cleaning by up to 99% with the remap command.

PebbleSSD’s write-optimized file block mapping and fs write reduce the flash write by

up to 33% for a wide range of workloads.

The rest of the paper is organized as follows. Section 4.1 presents an overview of

the system. Section 4.2 and Section 4.3 describes the components of the system in detail.

Section 4.4 presents our experimental results. Section 4.5 places this work in the context

of existing research, while Section 4.6 summarizes this chapter.

4.1 System overview

PebbleSSD has a heterogeneous architecture using flash memory as primary data

storage and NVRAM to store BAM in addition to metadata in the flash’s OOB.

Figure 4.1 illustrates the relationship between PebbleSSD and other compo-

nents of the system. This section describes system components while Section 4.2 and

Section 4.3 present their implementation in more detail.

4.1.1 PebbleSSD interface

PebbleSSD uses the BAM to enable a new interface that allows applications to

manage their data more efficiently. Table 4.1 summarizes the commands included in this

interface.
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Figure 4.1: Pebble system architecture The system consists of the following compo-
nents: PebbleSSD, log-structured file system, and block layer and device driver.

First, PebbleSSD stores the physical-to-logical address mapping in BAM. This is

different from conventional designs that store such mapping in flash-based OOB region.

The remap command can dynamically change both the normal LBA-to-PPN mapping

and the BAM-based PPN-to-LBA mapping.

Second, the fs write command not only writes data to flash memory, but also

updates their corresponding metadata in BAM. This can be useful to file systems because

they can avoid having to issue multiple write commands to flash memory. For example,

file systems can issue a single fs write command to write file data blocks as well as

update the pointers pointing to them.

Third, PebbleSSD supports conventional write, read and trim commands to

maintain compatibility.
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Table 4.1: PebbleSSD commands The new fs write and remap commands allow
applications e.g. file systems to reduce the amount of data written to flash.

Command Description
read(startLBA, num) Read num sectors from

startLBA
write(startLBA, num) Write num sectors from

startLBA
trim(startLBA, num) Mark num sectors starting from

startLBA as invalid
fs write(startLBA, num, file, offstInFile) Write num sectors starting from

startLBA for a file.
remap(srcLBA, dstLBA, num) Move num sectors starting from

srcLBA to dstLBA.

4.1.2 PebbleSSD applications

System can use PebbleSSD’s new commands in a variety of ways. We focus on

two optimizations especially suited to log-structured file systems: using remap to reduce

the cost of log cleaning and using fs write to improve the efficiency of writing data

blocks.

Log-structured file systems have to move clean, valid data from their original

logical segments to newly allocated ones during log cleaning. To reduce data movement

overhead, log-structured file systems prefer to select old segments for cleaning. Therefore,

there is a high chance that the pages in this segment are already clean and persistent in

flash memory.

Log structured file systems can use PebbleSSD’s remap command to reduce the

cost of moving clean data to new log segments. Rather than copying the data using read

and write commands, the file system can remap the clean data into the new segment.

Figure 4.2 shows this operation in action.

Log structured file system can use fs write to avoid the wandering tree problem

described in Section 2.4. The file system can use fs write to store file inode numbers
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and data blocks’ offsets within their files in the BAM, allowing the file system to defer

the flushing of node blocks in the conventional tree-based block mapping index untile

next checkpoint.

4.2 PebbleSSD

We have built PebbleSSD on a commercial SSD development board. Our imple-

mentation includes a customized firmware, a custom driver and modified Linux block

layer to support BAM. The PebbleSSD firmware manages the flash memory and BAM

area. The modified PebbleSSD block driver supports an extended interface that includes

remap and fs write. The block layer invokes the device driver to issue low-level com-

mands to PebbleSSD. In this section we describe in detail the core features of PebbleSSD

focusing on remap and fs write commands.

4.2.1 Hardware architecture

Our commercial NVMe [71] SSD development platform connects to the host

machine via four-lane PCIe 3.0. It comprises an array of SLC flash chips (375 GB in

total) organized in 16 channels. The channels are connected to a multi-core controller.

PebbleSSD firmware runs on the controller to manage flash memory and provide support

for its commands.

Figure 4.3 shows the hardware architecture of PebbleSSD. The most important

components are the embedded cores, the flash interface and the in-SSD DRAM.

The SSD controller comprises multiple embedded processors running firmware

at 500 MHz. Each of the cores in the controller has 64 KB private instruction and data

memories. An on-chip network connects the cores, the flash interface and the DRAM so

that they can communicate with each other. The embedded cores issue commands to the
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Figure 4.3: PebbleSSD architecture PebbleSSD exposes its internal DRAM and
processing power to host programs via PCIe/NVMe interface.

flash interface which reads or writes data from/to a buffer in the PebbleSSD’s internal

DRAM. The cores have to initiate explicit data movements between the DRAM and their

private data memories to operate on the data stored in the DRAM.

The in-device DRAM (totalling 2 GB) holds PebbleSSD’s BAM as well as FTL’s

metadata. The DRAM also stores statistics and state information for each flash erase

block so that the firmware can perform garbage collection and wear leveling efficiently.

In this paper, we assume that the DRAM is persistent. In practice, it would

either be battery or capacitor-backed. New memory technologies e.g. Intel 3D-XPoint

memory [14] could also replace the original DRAM.
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4.2.2 BAM

The BAM is the heart of PebbleSSD’s new features, and the firmware stores

mapping information in the BAM to support remap and fs write. Below we describe

the implementation of remap and fs write in more detail.

Physical-to-logical mapping and remap

PebbleSSD uses the BAM to track the bidirectional mapping between logical and

physical address spaces, and the remap command exposes the mapping to software. The

PPN-to-LBA table is an inverse of the normal LBA-to-PPN table that conventional FTLs

use to emulate a block I/O interface.

PebbleSSD stores the PPN-to-LBA mapping table in the BAM. PebbleSSD uses

a 64-bit integer to represent this information. The total size of the PPN-to-LBA table is

no larger than that of the LBA-to-PPN table since the physical address space of flash

memory available in an SSD is usually smaller than the 64-bit logical address space.

The current PebbleSSD firmware implements this PPN-to-LBA mapping as an

array. To keep the bidirectional mapping between logical and physical address space

consistent and up-to-date, the write and remap commands always update the LBA-to-

PPN and PPN-to-LBA tables together.

The remap command operates on both LBA-to-PPN and PPN-to-LBA mapping

table. The remap command takes three parameters, srcLBA, dstLBA and num. The

firmware copies the content of the num consecutive mapping table entries starting from

srcLBA to the entries starting from dstLBA. Therefore the actual data stored on those

physical pages can be accessed from a new logical address dstLBA by future read

operations. In this way, remap achieves the movement of data from srcLBA to dstLBA at

low cost without incurring any flash write.
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Figure 4.4: PebbleSSD write-optimized file block mapping PebbleSSD stores in the
BAM an auxiliary file block mapping for files. This file block mapping comprises an
inode table and a file offset table whose entries form per-file linked lists. The linked lists
keep track of data blocks that have been written for each file since the latest checkpoint.

Efficient file block mapping and fs write

PebbleSSD can also store the mapping from data blocks to corresponding file-

system-specific information in BAM. Figure 4.4 illustrates the mapping tables used for

this purpose. Each entry in the table has two components. The first component stores the

data block’s offset within the file it belongs to, and the second component is a pointer

that forms a linked list with other data blocks in the file.

The space required for each entry depends on file system data block size, the

maximum size of an individual file and the capacity of the BAM. For example, if the file

system’s data block size is 4 KB, a file can reach 16 TB at most, and the BAM has a total

capacity of 4 GB, then the firmware can use two 32-bit integers to store each entry.

For each opened file that supports write operation, PebbleSSD firmware main-

tains a linked list of the aforementioned mapping table entries. By traversing the per-file
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linked list, the firmware retrieves the metadata of all the data blocks that belong to the

file and that have been written back by the file system since the most recent file system

checkpoint.

The linked lists are append-only. PebbleSSD is able to traverse the linked list

and retrieve entries, but can only add new entries to its tail. The fs write command

causes the firmware to add mapping table entries to the linked list in addition to flushing

a number of data blocks to flash memory. Once the firmware finishes the insertion into

the linked list, the data blocks logically become part of the file so that the firmware can

later locate them by traversing the linked list in BAM. Thus the file system no longer has

to flush the index blocks of the file to flash memory frequently, effectively breaking the

recursive updates in the wandering tree problem.

A separate hash table residing in BAM maps a file’s inode number to the head of

its linked list. PebbleSSD uses this hash table to locate the linked list that belongs to a

particular file.

4.2.3 Block layer and device driver

The PebbleSSD requires a custom Linux block layer and device driver so that

software can use the fs write and remap commands. The block layer accepts extended

bio requests from the log-structured file system and passes the bio structure to the

SSD driver. In the extended bio struct, the field bi rw encodes the type of the oper-

ation, and two new fields contain additional arguments to supply to the device driver,

e.g. offsetInfile, inodeNum or srcLBA. Then the device driver translates the bio to

appropriate NVMe commands and issues them to PebbleSSD.
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4.3 File systems customization

Log-structured file systems provide two opportunities to apply PebbleSSD’s new

capabilities. Leveraging the new commands allows these file systems to reduce the

amount of data written to flash improving the SSD’s lifetime. The remap command of

PebbleSSD allows log-structured file systems to perform fast and efficient log cleaning

and reduce the amount of data written to the SSD. The fs write command avoids the

recursive updates on other interior node blocks in the tree-based block mapping index.

4.3.1 Log cleaning

Log-structured file systems perform log cleaning to create free, contiguous seg-

ments in the logical address space to service future write requests. During the cleaning

process, log-structured file systems scan the logs, copy valid data to new locations,

discard invalid data and reclaim the space originally occupied.

The remap command supports efficient movement of data inside the SSD without

incurring flash writes and host-device data transfers. Log structured file systems can use

remap to avoid copying data to a new segment as long as the data in the segment is clean

(i.e., there is not a more recent update waiting in the operating system page cache).

Determining whether a block is clean is not always simple. The obvious approach

is to use the Linux page descriptor’s dirty bit, but this not always sufficient. For instance,

F2FS [53] employs a “lazy migration” policy that marks valid data blocks in the page

cache as dirty so the writeback thread will write them back later. To leverage remap in

our version of F2FS, we used a new status bit to indicate whether this block is truly dirty

or just marked dirty by the log cleaning thread.

The file system also has to track the old LBAs of all blocks before issuing the

remap command. The original NILFS2 [7] fails to do so. After reading a file block into
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page cache, NILFS2 overwrites the original LBA. Consequently when the log cleaning

thread later migrates this file block, it has no information about its source location. To

address this issue, for each clean and up-to-date file block that the log cleaning thread

plans to migrate, the buffer head struct has an extra 64-bit field to store the old LBA.

4.3.2 Data block writing

Log-structured file systems can use PebbleSSD’s new interface to improve the

efficiency of writing file data blocks. The file system can issue one fs write command

to persist data blocks in flash memory and their metadata in the BAM area. The metadata

include the blocks’ offset within their file and the file inode number. This allows the file

system to avoid the recursive updates of index blocks containing pointers pointing to the

data blocks.

When writing back data blocks to a file with fs write, the log-structured file

systems send the following information to PebbleSSD via the block layer and device

driver: startLBA, length, inodeNum and offsetInFile. The fs write stores data

blocks in flash memory and their associated metadata in the BAM area. Since PebbleSSD

already allocates sufficient space for both inode table and file offset table, fs write does

not dynamically increase the space consumption of BAM.

The file system periodically flushes the original tree-based block mapping index

to flash memory during checkpoint to limit the number of dirty blocks in the index. This

helps reduce file system metadata loss and recovery overhead in the event of failures.

The file system maintains the conventional block mapping in page cache and

continue to use it for normal file system operations unless there is a failure. The file system

performs periodic checkpointing and write back the node blocks of the conventional

block mapping index. After the checkpointing task finishes, the file systems request that

PebbleSSD reset the BAM-based block mapping via a vendor-specific NVMe command
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supported by our prototype. The function of this command is to clear a region in the

NVRAM inside PebbleSSD.

The file systems use the BAM-based block mapping only for the purpose of

recovery. Should an error occur, a kernel thread performs recovery on the data blocks

of this file. The thread retrieves the <inodeNum, offsetInFile> metadata from the

BAM by reading its content into host main memory and reconstruct the normal tree-based

block mapping.

4.4 Evaluation

We run microbenchmarks to measure the performance of PebbleSSD with a focus

on the new commands it provides. Then we measure the performance and efficiency

of log cleaning of both F2FS and NILFS2 with remap and compare with their baseline

implementations. We refer to the customized versions as F2FS-opt and NILFS2-opt,

while we refer to the baseline as F2FS-baseline and NILFS2-baseline. Finally we

run workloads to quantify the benefit of fs write on F2FS and NILFS2. Again, the

customized versions are F2FS-opt and NILFS2-opt, while the baseline versions are

F2FS-baseline and NILFS2-baseline. In this section, we describe our experimental

setup and results in detail.

4.4.1 Experimental setup

We implemented PebbleSSD by modifying its original reference firmware pro-

vided by the SSD manufacturer. The original firmware supports only conventional

block-based I/O, while PebbleSSD extends the NVMe command set to provide additional

interfaces, e.g. fs write and remap. To allow host programs to use PebbleSSD, we

also modified Linux NVMe driver and block layer. Thus PebbleSSD supports not only
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Figure 4.5: Performance comparison of fs write and write (a) shows that
fs write achieves the same throughput as that of write since the overhead of linked
list operations is minimal. (b) shows that fs write and write have similar latency.

block-based I/O, but also fs write and remap. Before running the experiments, we

preconditioned the SSD by filling it with random data multiple times.

The host machine that we use has a quad-core Intel Xeon E3-1230 CPUs on a

single-socket motherboard. This machine contains 32 GB of DRAM as main memory

and runs a customized Linux 3.16.3 kernel. We collected all results without enabling

hyper-threading.

Microbenchmarks measure the bandwidth and latency of the new commands

fs write and remap provided by PebbleSSD. To measure PebbleSSD’s bandwidth, four

threads running on the host machine issue commands to PebbleSSD continuously. To

measure latency, only a single thread issues commands to the SSD.

To measure the performance and efficiency of remap on log-structured file sys-

tems, we first run a subset of Filebench [3] workloads. We run the workloads for equal

amount of time on each baseline file system and its customized version. Then we man-

ually trigger file-system-specific log cleaning subroutines which keeps executing until

there is no data to clean.

We run a subset of Filebench, an open-source implementation [10] of TPC-C [97]
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Figure 4.6: Performance of MOVE with conventional SSD and PebbleSSD (a) shows
that the remap-based implementation of MOVE achieves 3.7× improvement in throughput
and (b) shows that it achieves 87% reduction in latency, compared with conventional
implementation using read and write.

and LinkBench [4] to quantify the effect of fs write on F2FS and NILFS2, comparing

with their baseline implementations.

4.4.2 Microbenchmarks

In comparison with original write command, the fs write command not only

writes the block to SSD, but also updates its BAM. Since we are concerned about the

single command performance here, we eliminated the overhead of Linux virtual file

system (VFS) by allowing applications to send fs write commands to PebbleSSD

directly via ioctl. Figure 4.5 presents the throughput and latency of fs write and

compares it with the original write command. The extra overhead caused by fs write’s

linked list operations is minimal and fs write achieves almost the same performance as

write. Although as a single command, fs write does not provide better performance

than write, but as we will demonstrate in Section 4.4.4, log-structured file systems can

utilize fs write to improve the performance and lifetime of SSDs.

Another microbenchmark named MOVE measures the performance of remap com-

mand. MOVE requires host program to move data from source LBAs to destination LBAs.
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Figure 4.7: Improvement on log cleaning efficiency due to remap In (a) and
(b), F2FS-opt with remap requires 29% less time to clean the segments than
F2FS-baseline, and writes 96% less data in average (99% in the best case) during log
cleaning. In (c) and (d), NILFS2-opt also requires less time to clean the old segments
than NILFS2-baseline, and saves write traffic by 97% in average (99% in the best
case) during log cleaning.

The baseline version of MOVE implementation first reads data from PebbleSSD into host

main memory and then writes them to their destination locations in the SSD. In contrast,

remap-based implementation uses the remap command to remap data from source LBAs

to destinations. Apparently the baseline incurs multiple data transfer between the host

and PebbleSSD while remap-based version does not suffer from this overhead. As a

result, remap-based version can achieve 3.7× improvement in throughput and reduces

the latency by 87% on average, as shown in Figure 4.6. Both implementation sends

commands from the host to PebbleSSD via ioctl directly.
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Figure 4.8: Improvement on writing to files with fs write (a) shows that with
fs write, F2FS-opt achieves 1.28× improvement in throughput while (b) shows that
F2FS-opt reduces file system write amplification by 28%. (c) and (d) show similary
results. With fs write, NILFS2-opt improves throughput by 1.13× and reduces file
write amplification by 24%, compared with NILFS2-baseline.

4.4.3 Efficient log cleaning

Figure 4.7 depicts the effect of using remap in the log cleaning of F2FS and

NILFS2. In most cases, a kernel thread executes the log cleaning subroutine for F2FS

and the kernel thread wakes up periodically, typically between every 30 and 60 seconds.

In order to measure how much time it takes to clean all used segments in F2FS, we

add an ioctl to F2FS to trigger F2FS log cleaning mannually and let the log cleaning

subroutine run continuously until there is nothing left to clean. For NILFS2, we use its

own nilfs-clean utility program [6] that performs log cleaning and space reclamation

after a certain period of time specified by the user. In our experiments, we set the period
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to 600 seconds.

Before starting log cleaning subroutines, we first run the corresponding workload

to emulate a used SSD. Figure 4.7 (a) shows the time required to finish log cleaning

of F2FS, and Figure 4.7 (b) shows the amount of data written by F2FS log cleaning.

F2FS-opt spends 33% less time than F2FS-baseline to finish cleaning the segments in

average. Figure 4.7 (b) can account for the reason of this improvement. F2FS-baseline

always causes flash write operations during log cleaning, while F2FS-opt can use remap

to clean the majority of data. In the case of F2FS-opt, the log cleaning subroutine writes

up to 99% less data than F2FS-baseline in average. The rest of data are cleaned using

the remap command which does not incurr flash write at all.

Figure 4.7 (c) and (d) depict the result for NILFS2 log cleaning. Similarly,

nilfs-clean writes up to 97% less data in NILFS2-opt than NILFS2-baseline be-

cause the former can use remap to move data. Since NILFS2 is not optimized for parallel

storage devices e.g. SSDs, nilfs-clean does not fully utilize the I/O bandwidth. Con-

sequently, the saving in log cleaning time is not as big as in F2FS. NILFS2-opt improves

the SSD lifetime because it incurs less flash write than NILFS2-baseline.

4.4.4 Write-optimized file block index

We measure the impact of fs write on F2FS and NILFS2. F2FS-baseline

already writes only direct node blocks to the SSD during fsync [53] to improve the

performance of fsync. F2FS-opt uses fs write to further avoid writing direct node

blocks. To compare the effectiveness in reducing the amount of data written to the SSD,

we use a metric called file write amplification similar to the concept in [64] which is

defined as the quotient of the total amount data written (data and index blocks) over the

amount of file data blocks.

Figure 4.8 illustrates the advantage of F2FS-opt over F2FS-baseline and
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NILFS2-opt over NILFS2-baseline in a simple benchmark. The benchmark executes

four threads each of which writes data to its dedicated file synchronously. We assign each

thread to its own file to avoid the contention for the lock on the file’s inode. Figure 4.8

(a) shows that with F2FS-opt, the aggregate throughput of the threads achieves 1.28×

improvement comparing with F2FS-baseline. Figure 4.8 (b) shows that the file write

amplification of F2FS-opt is 28% lower than that of F2FS-baseline. Figure 4.8 (c)

similarly shows that the benchmark throughput on NILFS2-opt is 1.13× the throughput

on NILFS2-baseline. Figure 4.8 (d) shows that file write amplification of NILFS2-opt

is 24% less than that of NILFS2-baseline. The performance improvement and reduc-

tion in file write amplification result from fs write that writes only data blocks for both

F2FS-opt and NILFS2-opt.
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Figure 4.9: Performance comparison between F2FS-opt, NILFS2-opt and
their baseline implementations In (a), Filebench OLTP running on F2FS-opt and
NILFS2-opt achieve 1.02× and 1.09× improvement in throughput. In (b), TPCC
running on F2FS-opt and NILFS2-opt can achieve slightly better performance than
on F2FS-baseline and NILFS2-baseline respectively. In (c) LinkBench can also
achieve slightly larger throughput on F2FS-opt NILFS2-opt than on F2FS-baseline
and NILFS2-baseline.

Figure 4.9 and Figure 4.10 further compare the effect of running more com-

plex benchmarks on F2FS-baseline, F2FS-opt, NILFS2-baseline and NILFS2-opt.

Figure 4.9 (a) presents the throughput of Filebench OLTP benchmark, and F2FS-opt

outperforms F2FS-baseline by 3% while NILFS2-opt achieves 9% improvement. Fig-

ure 4.9 (b) shows the throughput of TPC-C varying the size of data set. The total
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data set size of TPCC-10 and TPCC-100 are approximately 800 MB and 8 GB re-

spectively. Both benchmarks run on top of MySQL [5] 5.5 with InnoDB [42] whose

buffer pool size is 16 GB. In both cases, F2FS-opt outperforms F2FS-baseline by a

small margin and the same holds for NILFS2-opt and NILFS2-baseline. Figure 4.9

(c) shows the result for LinkBench with different sized data sets. Similarly, F2FS-opt

and NILFS2-opt lead to larger throughput than F2FS-baseline and NILFS2-baseline

respectively. The throughput improvement is not high because even F2FS-baseline and

NILFS2-baseline cannot fully saturate the IO bandwidth of PebbleSSD, thus making

them write less data does not lead to larger throughput.

Figure 4.10 shows that for Filebench OLTP, TPCC-10 and LinkBench-10GB,

F2FS-opt can use fs write to reduce the file write amplification from close to 1.5 to

nearly 1.0. Similarly, NILFS2-opt reduces file write amplification from 2.7 to 2.0. When

the data set size increases, especially in the case of LinkBench-100GB, the reduction in

file write amplification diminishes since MySQL will have to move data between main

memory buffer pool and the SSD, leading to lower write throughput. Consequently the

workloads issue fewer fsync to the underlying log-structured file systems.

4.4.5 BAM space utilization

With remap and fs write, PebbleSSD can make more efficient use of its internal

NVRAM than conventional SSDs.

As described in Section 4.2.1, PebbleSSD exposes 375 GB flash to the host and

has 2 GB NVRAM to store BAM. Assume the total amount of user-visible flash is

512 GB for simpler calculation.

According to the implementation of original firmware, a conventional SSD based

on this platform uses 4 bytes for each address mapping table entry, and each entry maps

4 KB in logical address space to the physical address space. This configuration leads to
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Figure 4.10: Improvement on file write amplification for F2FS and NILFS2
F2FS-opt can reduce file write amplification from 1.5 to nearly 1.0 for synchronous
write-intensive workloads e.g. database applications. NILFS2-opt can reduce file write
amplification from 2.7 to 2.0 for the same workloads.

227 entries, consuming 512 MB of the BAM. Since the original SSD keeps the PPN-to-

LBA mapping in flash memory, the space utilization of BAM is about 35% due to the

logical-to-physical mapping and some other system data structures.

To support remap, PebbleSSD maintains both logical-to-physical and physical-to-

logical mappings in BAM. The entries in both tables are 4 bytes in size and describes the

mapping for 4 KB regions. Therefore, the total space consumption will be 1 GB, leading

to a 60% utilization of BAM.

For fs write, the original address mapping table also occupies 512 MB of BAM.

Both the file offset table and inode table use 8-byte entries. The file offset table has

227 entries, consuming 1 GB BAM. The inode table keeps an entry for each file that is

currently open with read-write access. In our current system, we support 1 million files

that can be open for write at the same time. Considering the load factor of the hash-based

inode table, this requires approximately 16 MB space in BAM. The space utilization of
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BAM can reach 80%.

4.5 Related work

Many prior research efforts have explored various techniques aiming to reduce

write amplification in flash memory and SSDs. In this section, we present a review of

these efforts and place PebbleSSD in the context with them.

4.5.1 Backward pointer

The inverse mapping is similar to the backward pointers in some previous work.

Many file systems and FTLs have adopted the backward pointer mechanism to reduce the

overhead of persistent data migration and synchronization. File systems, e.g. Pilot [81]

file system, Pangaea [85], NoFS [23] use backward pointers to ensure system consistency.

BtrFS [1] and Backlog [66] maintain back references to support dynamic relocation

of data blocks without flushing index updates to persistent storage. An object-based

FTL, i.e. OFTL [64] stores for each page the information of the object to which the

page belongs. Such backward reference resides in the flash-based OOB region of each

page, thus does not support in-place update. In contrast, PebbleSSD stores the inverse

mapping in dedicated NVRAM-based OOB region to support efficient modification. In

addition, PebbleSSD allows for easy and efficient retrieval of each file’s inverse mapping

by maintaining per-file linked list of mapping table entries.

4.5.2 Address map manipulation

Most flash-based SSDs introduce a layer of indirection due to the FTL’s address

map [27]. One of the most important design goals of FTL is to improve the lifetime of

the device. Researchers have proposed a number of FTLs [35, 56, 39, 22, 100, 49, 98].



76

CAFTL [22] exploits the hashed signature of data chunks to detect duplicates and

reduce flash writes, leading to improvement in SSD’s lifetime. FTL2 [100] implements

atomicty at the level of FTL so as to reduce the overhead of writing database logs to flash.

DFTL [39] selectively caches page-level mapping. These approaches still focus on the

normal logical-to-physical address mapping table, while PebbleSSD goes a step further

to use BAM to enhance the flexibility of FTLs.

Several systems have also researched the possibility of achieving efficient flash-

write-free data movement by manipulating this map directly. JFTL [24] remaps addresses

of journal pages to their original locations in the logical address space without writing the

same data to flash memory. ANViL [101] allows host system to access the address map

and supports snapshot, deduplication and single-write journaling. Researchers evaluated

JFTL on a simulation platform, while ANVil’s address map resides in the main memory

of host machine. Furthermore, neither of them discussed how to extend the idea of

address map manipulation to an SSD with flash-based OOB. If the FTL stores the LBA

in the spare space of each flash page, merely modifying the LBA-to-PPN address map

does not fulfil the goal of moving data in the logical address space. Instead flash write is

inevitable to modify the metadata in the OOB region. In contrast, PebbleSSD goes a step

further to address this issue and presents an evaluation of the effectiveness of its solution.

SHARE [72] is able to remap addresses inside the SSD and achieve write atomic-

ity. SHARE caches a subset of the PPN-to-LBA mapping entries in the SDRAM inside

the OpenSSD [8], therefore, the firmware determines which entries to keep and which to

evict to flash. This approach is able to handle large amount of flash with relatively small

SDRAM, but requires extra logic at the firmware level to implement cache eviction poli-

cies. Furthermore, system performance can also be affected by the size of the cache. In

contrast, PebbleSSD keeps the entire PPN-to-LBA mapping in BAM for the functionality

of remap. PebbleSSD needs larger BAM size than SHARE, but does not require a cache
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management policy. SHARE and PebbleSSD represents different points in the design

space with different trade-offs and considerations. Depending on the optimization goal,

either can be more preferable than the other.

4.5.3 Coordinated garbage collection

A storage system with a log-structured file system running on a flash-based SSD

has multiple layers of logs, and the gaps between them lead to inefficiencies such as

unnecessary data migration [103].

Researchers have proposed coordinating file system log cleaning with SSD’s

garbage collection to improve flash device lifetime. Application-Managed Flash (AMF)

[55] and ParaFS [105] both employ a coordinated garbage collection approach with

supports from both the FTL and file system. During garbage collection, the host file

system migrates data to its proper new locations by consulting domain-specific knowledge

about data placement, while the FTL shoulders the responsibility of erasing flash blocks

for future use. Both file systems need to accommodate the physical characteristics of

flash memory. For example, they need to ensure that a flash block is erased first before

writing to its flash pages. This potentially requires a non-trivial re-engineering of the I/O

path because general file systems do not have this limitation. Furthermore, host CPUs

are involved in the GC of flash memory. In comparison, PebbleSSD does not require

the file system to be aware of the physical layout and characteristics of underlying flash.

Thus modification of legacy file system is moderate, and host CPUs can also be freed

from GC.

Coordinated GC has also been discussed in other conventional file systems

running on SSDs. EXT3 [2] with nameless write [106] allows the FTL to move valid

flash pages and inform the host file system of the new physical addresses of data pages

via migration callbacks. PebbleSSD, in contrast, lets the file system determine the new
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logical addresses for its data.

4.5.4 Metadata caching

Some efforts use NVRAM-based storage as a durable cache for database or file

system metadata to reduce synchronous writes to flash memory. NVMFS [78] stores

file system metadata in NVM dimms attached to the memory bus. DuraSSD [46] uses

non-volatile in-device cache to support atomicity and durability. Cooperative Data

Management [54] considers NVM as a cache and allows the NVM-resident copy to

invalidate flash-resident copy. In contrast, PebbleSSD does not cache identical copies

of data in the NVRAM. Instead, PebbleSSD stores metadata i.e. inverse mapping in the

NVRAM, saving host interface bandwidth and NVRAM space.

4.6 Summary

By providing BAM in the byte-addressable OOB region, PebbleSSD can support

a range of useful features to improve device lifetime, including write-optimized file

block mapping and fast, efficient log-cleaning. PebbleSSD exposes two new commands,

fs write and remap allowing file systems to access BAM. Log-structured file systems

can use fs write command to avoid recursive updates on file index blocks, and use

remap command to perform fast and efficient movement of valid data during log cleaning.

In both cases, log-structured file systems achieve better performance while reducing flash

writes. Therefore BAM is effective in improving SSDs’ lifetime.
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Chapter 5

Willow: a user-programmable SSD

The scope of possible new interfaces is enormously broad and includes both

general-purpose and application-specific approaches. Recent work has illustrated some

of the possibilities and their potential benefits. For instance, an SSD can support com-

plex atomic operations [28, 76, 77], native caching operations [18, 86], a large, sparse

storage address space [44], delegating storage allocation decisions to the SSD [106], and

offloading file system permission checks to hardware [21]. These new interfaces allow

applications to leverage SSDs’ low latency, ample internal bandwidth, and on-board

computational resources, and they can lead to huge improvements in performance.

Although these features are useful, the current one-at-a-time approach to imple-

menting them suffers from several limitations. First, adding features is complex and

requires access to SSD internals, so only the SSD manufacturer can add them. Second,

the code must be trusted, since it can access or destroy any of the data in the SSD.

Third, to be cost-effective for manufacturers to develop, market, and maintain, the new

features must be useful to many users and/or across many applications. Selecting widely

applicable interfaces for complex use cases is very difficult. For example, editable

atomic writes [28] were designed to support ARIES-style write-ahead logging, but not

80
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all databases take that approach.

To overcome these limitations, we propose to make programmability a central

feature of the SSD interface, so ordinary programmers can safely extend their SSDs’

functionality. The resulting system, called Willow, will allow application, file system,

and operating system programmers to install customized (and potentially untrusted) SSD

Apps that can modify and extend the SSD’s behavior.

Applications will be able to exploit this kind of programmability in (at least) four

different ways.

• Data-dependent logic: Many storage applications perform data-dependent read

and write operations to manipulate on-disk data structures. Each data-dependent

operation requires a round-trip between a conventional SSD and the host across the

system bus (i.e., PCIe, SATA, or SAS) and through the operating system, adding

latency and increasing host-side software costs.

• Semantic extensions: Storage features like caching and logging require changes

to the semantics of storage accesses. For instance, a write to a caching device could

include setting a dirty bit for the affected blocks.

• Privileged execution: Executing privileged code in the SSD will allow it to take

over operating and file system functions. Recent work [21] shows that issuing

a request to an SSD via an OS-bypass interface is faster than a system call, so

running some trusted code in the SSD would improve performance.

• Data intensive computations: Moving data-intensive computations to the storage

system has many applications, and previous work has explored this direction in

disks [82, 83, 51] and SSDs [48, 20, 95] with promising results.

Willow focuses on the first three of these use cases and demonstrates that adding

generic programmability to the SSD interface can significantly reduce the cost and
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Figure 5.1: A conventional SSD vs. Willow Although both a conventional SSD (a)
and Willow (b) contain programmable components, Willow’s computation resources (c)
are visible to the programmer and provide a flexible programming model.

complexity of adding new features. We describe a prototype implementation of Willow

based on emulated PCM memory that supports a wide range of applications. Then, we

describe the motivation behind the design decisions we made in building the prototype.

We report on our experience implementing a suite of example SSD Apps. The results

show that Willow allows programmers to quickly add new features to an SSD and that

applications can realize significant gains by offloading functionality to Willow.

This chapter provides an overview of Willow, its programming model, and our

prototype in Sections 5.1 and 5.2. Section 5.3 presents and evaluates an example SSD

App, Section 5.4 places our work in the context of other approaches to integrating

programmability into storage devices, and Section 5.5 summarizes this chapter.

5.1 System design

Willow revisits the interface that the storage device exposes to the rest of the

system, and provides the hardware necessary to support that interface efficiently. This

section describes the system from the programmer’s perspective, paying particular atten-

tion to the programming model and hardware/software interface. Section 5.2 describes

the prototype hardware in more detail.
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Figure 5.2: The anatomy of an SSD App The boldface elements depict three compo-
nents of an SSD App: a userspace library, the SPU code, and an optional kernel driver.
In the typical use case, a conventional file system manages the contents of Willow, and
the Willow driver grants access to file extents based on file system permissions.

5.1.1 Willow system components

Figure 5.1(a) depicts a conventional storage system with a high-end, PCIe-

attached SSD. A host system connects to the SSD via NVM Express (NVMe) [71]

over PCIe, and the operating system sends commands and receives responses over that

communication channel. The commands are all storage-specific (e.g., read or write a

block) and there is a point-to-point connection between the host operating system and

the storage device. Modern, high-end SSDs contain several (often many) embedded,

programmable processors, but that programmability is not visible to the host system or to

applications.

Figure 5.1(b) shows the corresponding picture of the Willow SSD. Willow’s

components resemble those in a conventional SSD: it contains several storage processor

units (SPUs), each of which includes a microprocessor, an interface to the inter-SPU

interconnect, and access to an array of non-volatile memory. Each SPU runs a very small

operating system called SPU-OS that manages and enforces security (see Section 5.1.6

below).

The interface that Willow provides is very different from the interface of a
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conventional SSD. On the host side, the Willow driver creates and manages a set of objects

called Host RPC Endpoints (HREs) that allow the OS and applications to communicate

with SPUs. The HRE is a data structure that the kernel creates and allocates to a process.

It provides a unique identifier called the HRE ID for sending and receiving RPC requests

and lets the process send and receive those requests via DMA transfers between userspace

memory and the Willow SSD. The SPUs and HREs communicate over a flexible network

using a simple, flexible RPC-based mechanism. The RPC mechanism is generic and does

not provide any storage-specific functionality. SPUs can send RPCs to HREs and vice

versa.

The final component of Willow is programmable functionality in the form of

SSD Apps. Each SSD App consists of three elements: a set of RPC handlers that the

Willow kernel driver installs at each SPU on behalf of the application, a library that an

application uses to access the SSD App, and a kernel module, if the SSD App requires

kernel support. Multiple SSD Apps can be active at the same time.

Below, we describe the high-level system model, the programming model, and

the security model for both SPUs and HREs.

5.1.2 The Willow usage model

Willow’s design can support many different usage models (e.g., a system could

use it as a tightly-coupled network of “wimpy” compute nodes with associated storage).

Here, however, we focus on using Willow as a conventional storage device that also

provides programmability features. This model is particularly useful because it allows

for incremental adoption of Willow’s features and ensures that legacy applications can

use Willow without modification.

In this model, Willow runs an SSD App called Base-IO that provides basic

block device functionality (i.e., reading and writing data from and to storage locations).
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Base-IO stripes data across the SPUs (and their associated banks of non-volatile memory)

in 8 kB segments. Base-IO (and all the other SSD Apps we present in this paper) runs

identical code at each SPU. We have found it useful to organize data and computation in

this way, but Willow does not require it.

A conventional file system manages the space on Willow and sets permissions

that govern access to the data it holds. The file system uses the Base-IO block device

interface to maintain metadata and provide data access to applications that do not use

Willow’s programmability.

To exploit Willow’s programmability, an application needs to install and use an

additional SSD App. Figure 5.2 illustrates this process for an SSD App called Direct-IO

that provides an OS-bypass interface that avoids system call and file system overheads

for common-case reads and writes (similar to [21]). The figure shows the software

components that comprise Direct-IO in bold. To use Direct-IO, the application uses

the Direct-IO’s userspace library, libDirectIO. The library asks the operating system

to install Direct-IO in Willow and requests an HRE from the Willow driver to allow it

to communicate with the Willow SSD.

Direct-IO also includes a kernel module that libDirectIO invokes when it

needs to open a file on behalf of the application. The Direct-IO kernel module asks the

Willow driver to grant the application permission to access the file. The driver requests

the necessary permission information from the file system and issues trusted RPCs to

SPU-OS to install the permission for the file extents the application needs to access in

the SPU-OS permission table. Modern file systems already include the ability to query

permissions from inside the kernel, so no changes to the file system are necessary.

Base-IO and Direct-IO are “standard equipment” on Willow, since they provide

functions that are useful for many other SSD Apps. In particular, other SSD Apps can

leverage Direct-IO’s functionality to implement arbitrary, untrusted operations on file
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data.

5.1.3 Building an SSD App

SSD Apps comprise interacting components running in multiple locations: in

the client application (e.g., libDirectIO), in the host-side kernel (e.g., the Direct-IO

kernel module), and in the Willow SSD. To minimize complexity, code in all three

locations uses a common set of interfaces to implement SSD App functionality. In the

host application and the kernel, the HRE library implements these interfaces, while in

Willow, SPU-OS implements them. The interfaces provide the following capabilities:

1. Send an RPC request: SPUs and HREs can issue RPC requests to SPUs, and SPUs

can issue RPCs to HREs. RPC delivery is non-reliable (due to limited buffering at

the receiver), and all-or-nothing (i.e., the recipient will not receive a partial message).

The sender is notified upon successful (or failed) delivery of the message. Willow

supports both synchronous and asynchronous RPCs.

2. Receive an RPC request: RPC requests carry an RPC ID that specifies which SSD

App they target and which handler they should invoke. When an RPC request arrives

at an SPU or HRE, the runtime (i.e., the HRE library or SPU-OS) invokes the correct

handler for the request.

3. Send an RPC response: RPC responses are short, fixed-length messages that include

a result code and information about the request it responds to. RPC response delivery

is reliable.

4. Initiate a data transfer: An RPC handler can asynchronously transfer data between

the network interface, local memory, and the local non-volatile memory (for SPUs

only).

5. Allocate local memory: SSD Apps can declare static variables to allocate space in

the SPU’s local data memory, but they cannot allocate SPU memory dynamically.
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Code on the host can allocate data statically or on the heap.

6. General purpose computation: SSD Apps are written in C, although the standard

libraries are not available on the SPUs.

In addition to these interfaces, the host-side HRE library also provides facilities

to request HREs from the Willow driver and install SSD Apps.

This set of interfaces has proved sufficient to implement a wide range of different

applications (see Section 5.3), and we have found them flexible and easy to use. How-

ever, as we gain more experience building SSD Apps, we expect that opportunities for

optimization, new capabilities, and bug-preventing restrictions on SSD Apps will become

apparent.

5.1.4 The SPU architecture

In modern SSDs (and in our prototype), the embedded processor that runs the

SSD’s firmware offers only modest performance and limited local memory capacity

compared to the bandwidth that non-volatile memory and the SSD’s internal interconnect

can deliver.

In addition, concerns about power consumption (which argue for lower clock

speeds) and cost (which argue for simple processors) suggest this situation will persist,

especially as memory bandwidths continue to grow. These constraints shape both the

Willow hardware we propose and the details of the RPC mechanism we provide.

The SPU has four hardware components we use to implement the SSD App

toolkit (Figure 5.1(c)):

1. SPU processor: The processor provides modest performance (perhaps 100s of MIPS)

and kilobytes of per-SPU instruction and data memory.

2. Local non-volatile memory: The array of non-volatile memory can read or write

data at over 1 GB/s.
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void Read_Handler (RPCHdr_t *request_hdr) { // RPCHdr_t part of the
RPC interface
// Parse the incoming RPC
BaseIOCmd_t cmd;
RPCReceiveBytes(&cmd, sizeof(BaseIOCmd_t)); // DMA the IO

command header
RPCResp_t response_hdr; // Allocate response
RPCCreateResponse(request_hdr , // populate the

response
&response_hdr ,
RPC_SUCCESS);

RPCSendResponse(response_hdr); // Send the response

// Send the read data back via a second RPC
CPUID_t dst = request_hdr ->src;
RPCStartRequest(dst, // Destination PU

sizeof(IOCmd_t) + cmd.length , // Request body length
READ_COMPLETE_HANDLER); // Read completion RPC ID

RPCAppendRequest(LOCAL_MEMORY_PORT , // Source DMA port
sizeof(BaseIOCmd_t), // IO command header size
&cmd); // IO command header address

RPCAppendRequest(NV_MEMORY_PORT , // Source DMA Port
cmd.length , // Bytes to read
cmd.addr); // Read address

RPCFinishRequest(); // Complete the request
}

Figure 5.3: READ() implementation for Base-IO Handling a READ() requires pars-
ing the header on the RPC request and then sending requested data from non-volatile
memory back to host via another RPC.

3. Network interface: The network provides gigabytes-per-second of bandwidth to

match the bandwidth of the local non-volatile memory array and the link bandwidth

to the host system.

4. Programmable DMA controller: The DMA controller routes data between non-

volatile memory, the network port, and the processor’s local data memory. It can

handle the full bandwidth of the network and local non-volatile memory.

The DMA controller is central to the design of both the SPU and the RPC

mechanism, since it allows the modestly powerful processor to handle high-bandwidth

streams of data. We describe the RPC interface in the following section.
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The SPU runs a simple operating system (SPU-OS) that provides simple multi-

threading, works with the Willow host-side driver to manage SPU memory resources,

implements protection mechanisms that allow multiple SSD Apps to be active at once,

and enforces the file system’s protection policy for non-volatile storage. Section 5.1.6

describes the protection facilities in more detail.

5.1.5 The RPC interface

The RPC mechanism’s design reflects the constraints of the hardware described

above. Given the modest performance of the SPU processor and its limited local memory,

buffering entire RPC messages at the SPU processor is not practical. Instead, the RPC

library parses and assembles RPC requests in stages. The code in Figure 5.3 illustrates

how this works for a simplified version of the READ() RPC from Base-IO.

When an RPC arrives, SPU-OS copies the RPC header into a local buffer using

DMA and passes the buffer to the appropriate handler (Read Handler). That handler

uses the DMA controller to transfer the RPC parameters into the SPU processor’s

local memory (RPCReceiveBytes). The header contains generic information (e.g., the

source of the RPC request and its size), while the parameters include command-specific

values (e.g., the read or write address). The handler uses one or more DMA requests

to process the remainder of the request. This can include moving part of the request

to the processor’s local memory for examination or performing bulk transfers between

the network port and the non-volatile memory bank (e.g., to implement a write). In the

example, no additional DMA transfers are needed.

The handler sends a fixed-sized response to the RPC request (RPCCreateResponse

and RPCSendResponse). Willow guarantees the reliable delivery of fixed-size responses

(acks or nacks) by guaranteeing space to receive them when the RPC is sent. If the SSD

App needs to send a response that is longer than 32 bits (e.g., to return the data for a read),
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it must issue an RPC to the sender. If there is insufficient buffer space at the receiver,

the inter-SPU communication network can drop packets. In practice, however, dropped

packets are exceedingly rare.

The process of issuing an RPC to return the data follows a similar sequence

of steps. The SPU gives the network port the destination and length of the message

(RPCStartRequest). Then it prepares any headers in local memory and uses the DMA

controller to transfer them to the network interface (RPCAppendRequest). Further DMA

requests can transfer data from non-volatile memory or processor memory to the network

interface to complete the request. In this case, the SSD App transfers the read data

from the non-volatile memory. Finally, it makes a call to signal the end of the message

(RPCFinishRequest).

5.1.6 Protection and sharing in Willow

Willow has several features that make it easy for users to build and deploy useful

SSD Apps: Willow supports untrusted SSD Apps, protects against malicious SSD Apps

(assuming the host-side kernel is not compromised), allows multiple SSD Apps to be

active simultaneously, and allows one SSD App to leverage functionality that another

provides. Together these four features allow a user to build and use an SSD App without

the permission of a system administrator and to focus on the functionality specific to his

or her particular application.

Providing these features requires a suite of four protection mechanisms. First,

it must be clear which host-side process is responsible for the execution of code at the

SPU, so SPU-OS can enforce the correct set of protection policies. Second, the SPU

must allow an SSD App to access data stored in Willow only if the process that initiated

the current RPC has access rights to that data. Third, the SPU must restrict an SSD App

to accessing only its own memory and executing only its own code. Finally, it must
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allow some control transfers between SSD Apps so the user can compose SSD Apps. We

address each of these below.

Tracking responsibility: The host system is responsible for setting protection policy

for Willow, and it does so by associating permissions with operating system processes.

To correctly enforce the operating system’s policies, SPU-OS must be able to determine

which process is responsible for the RPC handler that is currently running.

To facilitate this, Willow tracks the originating HRE for each RPC. An HRE is the

originating HRE for any RPCs it makes and for any RPCs that an SPU makes as a result

of that RPC and any subsequent RPCs. The PCIe interface hardware in the Willow SSD

sets the originating HRE for the initial RPC, and SPU hardware and SPU-OS propagate

it within the SSD. As a result, the originating HRE ID is unforgeable and serves as a

capability [60].

To reduce cache coherence traffic, it is useful to give each thread in a process its

own HRE. The Willow driver allocates HREs so that the high-order bits of the HRE ID

are the same for every HRE belonging to a single process.

Non-volatile storage protection: To limit access to data in the non-volatile memory

banks, SPU-OS maintains a set of permissions for each process at each SPU. Every time

the SSD App uses the DMA controller to move data to or from non-volatile memory, SPU-

OS checks that the permissions for the originating HRE (and therefore the originating

process) allow it. The worst-case permission check latency is 2 µs.

The host-side kernel driver installs extent-based permission entries on behalf of a

process by issuing privileged RPCs to SPU-OS. The SPU stores the permissions for each

process as a splay tree to minimize permission check time. Since the SPU-OS permission

table is fixed size, it may evict permissions if space runs short. If a request needs an

evicted permission entry, a “permission miss” occurs, and the DMA transfer will fail.

In response, SPU-OS issues an RPC to the kernel. The kernel forwards the request to
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the SSD App’s kernel module (if it has one), and that kernel module is responsible for

resolving the miss. Most of our SSD Apps use the Direct-IO kernel module to manage

permissions, and it will re-install the permission entry as needed.

Code and Data Protection: To limit access to the code and data in the SPU processor’s

local memory, the SPU processor provides segment registers and disallows access outside

the current segment. Each SSD App has its own data and instruction segments that define

the base address and length of the instruction and data memory regions it may access.

Accesses outside the SSD App’s segment raise an exception and cause SPU-OS to notify

the kernel via an RPC, and the kernel, in turn, notifies the applications that the SSD App

is no longer available. SPU-OS provides a trusted RPC dispatch mechanism for incoming

messages. This mechanism sets the segment registers according to the SSD App that the

RPC targets.

The host-side kernel is in charge of managing and statically allocating SPU

instruction and data memory to the active SSD Apps. Overlays could extend the effective

instruction and data memory size (and are common in commercial SSD controller

firmware), but we have not implemented them in our prototype.

Limiting access to RPCs: A combination of hardware and software restricts access to

some RPCs. This allows safe composition of SSD Apps and allows SSD Apps to create

RPCs that can be issued only from the host-side kernel.

To support composition, SPU-OS provides a mechanism for changing segments

as part of a function call from one SSD App to another. An SSD App-intercall table

in each SPU controls which SSD Apps are allowed to invoke one another and which

function calls are allowed. A similar mechanism restricts which RPCs one SSD App can

issue to another.

To implement kernel-only RPCs, we use the convention that a zero in the high-

order bit of the HRE ID means the HRE belongs to the kernel. RPC implementations can
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check the ID and return failure when a non-kernel HRE invokes a protected RPC.

SSD Apps can use this mechanism to bootstrap more complex protection schemes

as needed. For example, they could require the SSD App’s kernel module to grant access

to userspace HREs via a kernel-only RPC.

5.2 The Willow prototype

We have constructed a prototype Willow SSD that implements all of the function-

ality described in the previous section. This section provides details about the design.

The prototype has eight SPUs and a total storage capacity of 64 GB. It is imple-

mented using a BEE3 FPGA-based prototyping system [16]. The BEE3 connects to a

host system over a PCIe 1.1x8. The link provides 2 GB/s of full-duplex bandwidth.

Each of the four FPGAs that make up a BEE3 hosts two SPUs, each attached

to an 8 GB bank of DDR2 DRAM. We use the DRAM combined with a customized

memory controller to emulate phase change memory with a read latency of 48 ns and a

write latency of 150 ns. The memory controller implements start-gap wear-leveling [79].

The SPU processor is a 125 MHz RISC processor with a MIPS-like instruction

set. It executes nearly one instruction per cycle, on average. We use the MIPS version

of gcc to generate executable code for it. For debugging, it provides a virtual serial port

and a rich set of performance counters and status registers to the host. The processor has

32 kB of local data memory and 32 kB of local instruction memory.

The kernel driver statically allocates space in the SPU memory to SSD Apps,

which constrains the number and size of SSD Apps that can run at once. SPU-OS

maintains a permission table in the local data memory that can hold 768 entries and

occupies 20 kB of data memory.

The ring in Willow uses round-robin, token-based arbitration, so only one SPU
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may be sending a message at any time. To send a message, the SPU’s network interface

waits for the token to arrive, takes possession of it, and transmits its data. To receive a

message, the interface watches the header of messages on the ring to identify messages it

should remove from the ring. The ring is 128 bits wide and runs at 250 MHz for a total

of 3.7 GB/s of bisection bandwidth.

For communication with the HREs on the host, a bridge connects the ring to the

PCIe link. The bridge serves as a hardware proxy for the HREs. For each of the HREs,

the bridge maintains an upstream (host-bound) and downstream (Willow-bound) queue.

This queue-based interface is similar to the scheme that NVMExpress [71] uses to issue

and complete IO requests. The bridge in our prototype Willow supports up to 1024 queue

pairs, so it can support 1024 HREs on the host.

The bridge also helps enforce security in Willow. Messages from HREs to SPUs

travel over the bridge, and the bridge sets the originating HRE fields on those messages

depending on which HRE queue they came in on. Since processes can send messages only

via the queues for the HREs they control, processes cannot send forged RPC requests.

5.3 Case study: AtomicWrites

Willow makes it easy for storage system engineers to improve performance by

incorporating new capabilities into a storage device. In this thesis, we use Willow to

implement support for transactions and and compare its performance to implementation

that uses a conventional storage interface.

Many storage applications (e.g., file systems and databases) use write-ahead

logging (WAL) to enforce strict consistency guarantees on persistent data structures. WAL

schemes range from relatively simple journaling mechanisms for file system metadata to

the complex ARIES scheme for implementing scalable transactions in databases [68].
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Figure 5.4: TPC-B throughput MARS using Atomic-Writes yields up to 1.5×
throughput gain compared to ARIES using Base-IO and Direct-IO

Recently, researchers and industry have developed several SSDs with built-in support

for multi-part atomic writes [76, 77], including a scheme called MARS [28] that aims to

replace ARIES in databases.

MARS relies on a WAL primitive called editable atomic writes (EAW). EAW

provides the application with detailed control over where logging information resides

inside the SSD and allows it to edit log records prior to committing the atomic operations.

We have implemented EAWs as an SSD App called Atomic-Writes that imple-

ments four RPCs—LOGWRITE(), COMMIT(), LOGWRITECOMMIT(), and ABORT(), as

summarized in Table 5.1. Atomic-Writes makes use of the Direct-IO functionality as

well.

The implementations of LOGWRITE() and COMMIT() illustrate the flexible pro-

grammability of Willow’s RPC interface. Each SPU maintains the redo-log as a complex

persistent data structure for each active transaction. An array of log metadata entries

resides in a reserved area of non-volatile memory with each entry pointing to a log record,

the data to be written, and the location where it should be written. LOGWRITE() appends
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Table 5.1: RPCs for Atomic-Writes The Atomic-Write SSD App allows appli-
cations to combine multiple writes into a single atomic operation and commit or abort
them.

RPC Description
LOGWRITE() Start a new atomic operation and/or add

a write to an existing atomic operation.
COMMIT() Commit an atomic operation.
LOGWRITECOMMIT() Create and commit an atomic operation

comprised of single write.
ABORT() Abort an atomic operation.

an entry to this array and initializes it to add the new entry to the log.

COMMIT() uses a two-phase commit protocol among the SPUs to achieve atomic-

ity. The host library tracks which SPUs are participating in the transaction and selects one

of them as the coordinator. In Phase 1, the coordinator broadcasts a “prepare” request to

all the SPUs participating in this transaction (including itself). Each participant decides

whether to commit or abort and reports back to the coordinator. In Phase 2, if any

participant decides to abort, the coordinator instructs all participants to abort. Otherwise

the coordinator broadcasts a “commit” request so that each participant plays its local

portion of the log and notifies the coordinator when it finishes.

We have modified the Shore-MT [93] storage manager to use MARS and EAW

to implement transaction processing. We also fine-tuned EAWs to match how Shore-MT

manages transactions, something that would not be possible in the “black box,” one-size-

fits-all implementation of EAWs that a non-programmable SSD might include. Figure 5.4

shows the performance difference between MARS and ARIES for TPC-B [96]. MARS

scales better than ARIES when increasing thread count and outperforms ARIES by up to

1.5×. These gains are ultimately due to the rich semantics that Atomic-Writes provides.



97

5.4 Related work

Many projects (and some commercial products) have integrated compute capabil-

ities into storage devices, but most of them focus on offloading bulk computation to an

active hard drive or (more recently) an SSD.

In the 1970s and 1980s, many advocates of specialized database machines pressed

for custom hardware, including processor-per-track or processor-per-head hard disks

to achieve processing at storage device. None of these approaches turned out to be

successful due to high design complexity and manufacturing cost.

Several systems, including CASSM [94], RAP [87], and RARES [63] provided

a processor for each disk track. However, the extra logic required to enable processing

ability on each track limited storage density, drove up costs and prevented processor-per-

track from finding wide use.

Processor-per-head techniques followed, with the goal of reducing costs by

associating processing logic with each read/write head of a moving head hard disk. The

Ohio State Data Base Computer (DBC)[50] and SURE [57] each took this approach.

These systems demonstrated good performance for simple search tasks, but could not

handle more complex computation such as joins or aggregation.

Two different projects, each named Active Disks, continued the trend toward

fewer processors, providing just one CPU per disk. The first [82] focused on multimedia,

database, and other scan-based operations, and their analysis mainly addressed perfor-

mance considerations. The second [15] provided a more complete system architecture

but supported only stream-based computations called disklets.

Several systems [87, 29] targeted (or have been applied to) databases with

programmable in-storage processing resources and some integrated FPGAs [69, 70].

IDisk [51] focused on decision support databases and considered several different soft-
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ware organizations, ranging from running a full-fledged database on each disk to just

executing data-intensive kernels (e.g., scans and joins). Willow resembles the more

general-purpose programming models for IDisks.

Recently researchers have extended these ideas to SSDs [33, 52], and several

groups have proposed offloading bulk computation to SSDs. The work in [48] implements

Map-Reduce [30]-style computations in an SSD, and two groups [20, 95] have proposed

offloading data analysis for HPC applications to the SSD’s processor. Samsung is

shipping an SSD with a key-value interface.

Projects that place general computation power into other hardware components,

such as programmable NICs, have also been proposed [34, 102, 65]. These devices allow

for application-specific code to be placed within the NIC in order to offload network-

related computation. This in turn reduces the load of the host OS and CPU in a similar

manner to Willow.

Most of these projects focus on bulk computation, and we see that as a reasonable

use case for Willow as well, although it would require a faster processor. However,

Willow goes beyond bulk processing to include modifying the semantics of the device

and allowing programmers to implement complex, control-intensive operations in the

SSD itself. Some programmable NICs have taken this approach. Many projects [28,

76, 77, 18, 86, 44, 106, 21, 25] have shown that moving these operations to the SSD is

valuable, and making the SSD programmable will open up many new opportunities for

performance improvement for both application and operating system code.

5.5 Summary

Solid state storage technologies offer dramatic increases in flexibility compared

to conventional disk-based storage, and the interface that we use to communicate with
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storage needs to be equally flexible. Willow offers programmers the ability to implement

customized SSD features to support particular applications. The programming interface

is simple and general enough to enable a wide range of SSD Apps that can improve

performance on a wide range of applications.
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Chapter 6

Conclusion

Flash-based SSDs have risen to prominence over the past decade, but their adher-

ence to conventional block-based I/O interface poses several challenges in performance,

lifetime and reliability. Existing proposals to modernize the SSD interface by providing

key-value semantics present a single inflexible key space, while proposals for transac-

tional SSDs require inefficient coarse-grained locking. KAML solves these problems by

supporting multiple, independent namespaces for key-value pairs and allow applications

to tune the performance of each namespace to meet application requirements. It also

enables fine-grained locking by treating key-value pairs as the basic unit of transactional

operations. Finally, KAML provides a caching layer analogous to a conventional page

cache to improve performance. These changes allow KAML to outperform conventional

designs in a wide range of workloads.

By providing BAM in the internal NVRAM, PebbleSSD can support a range of

useful features to improve device lifetime, including write-optimized file block mapping

and fast, efficient data movement. PebbleSSD exposes two new commands, fs write

and remap allowing file systems to access BAM. Log-structured file systems can use

fs write command to avoid recursive updates on file index blocks, and use remap

100
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command to perform fast and efficient movement of valid data during log cleaning. In

both cases, log-structured file systems achieve better performance while reducing flash

writes. Therefore BAM is effective in improving SSDs’ lifetime.

Besides the one-at-a-time approach adopted by KAML and PebbleSSD, Willow

takes advantage of in-storage resources to offer dramatic increases in flexibility thanks to

its programmability as a central feature. Willow provides programmers with the ability to

implement customized SSD features to support particular applications. The programming

interface is simple and general enough to enable a wide range of SSD Apps that can

improve performance on a wide range of applications.
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