
UC San Diego
Technical Reports

Title
A Randomized Algorithm for Label Assignment in Dynamic Networks

Permalink
https://escholarship.org/uc/item/46d93544

Authors
Walraed-Sullivan, Meg
Niranjan Mysore, Radhika
Marzullo, Keith
et al.

Publication Date
2013-02-14

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/46d93544
https://escholarship.org/uc/item/46d93544#author
https://escholarship.org
http://www.cdlib.org/

A Randomized Algorithm for Label Assignment in Dynamic Networks

Meg Walraed-Sullivan · Radhika Niranjan Mysore · Keith Marzullo · Amin Vahdat

Department of Computer Science and Engineering

University of California, San Diego

La Jolla, California 92093-0404, USA

E-mail: megwalraedsullivan@gmail.com, radhika@cs.ucsd.edu, marzullo@cs.ucsd.edu, vahdat@cs.ucsd.edu

Abstract A basic problem in distributed computing has to

do with assigning unique labels — that is, names or ad-

dresses — to network elements. Some approaches to solv-

ing this problem include using static assignment (e.g., MAC

addresses), or using a centralized authority (e.g., DHCP). In

this paper, we present an approach that is suitable for dy-

namic environments: where the rules constraining the label

choices depend on the network topology, which in turn can

change. This problem arose in the context of automatic ad-

dress assignment in large-scale data center networks, and so

we consider issues such as the scalability of message load

and convergence time. We give a new algorithm, called the

Decider/Chooser Protocol, and show its use in the assign-

ment of labels in data center networks. We evaluate the cor-

rectness of the Decider/Chooser Protocol through proofs and

model checking, and explore its performance via mathemati-

cal analysis and simulation. Through this evaluation, we find

that the Decider/Chooser Protocol is well-suited for label as-

signment in the data center environment.

Keywords Distributed Algorithms · Randomized Algo-

rithms · Practical Protocols · Fault Tolerance · Data Center

Networking

1 Introduction

The assignment of labels to network elements is a well-

understood problem. Often, labels can be assigned stati-

cally, as with MAC addresses in traditional Layer 2 net-

works, or by a central authority as in DHCP in Layer

3 networks. When a dynamic, decentralized solution is

required, one can employ a Consensus-based state ma-

chine approach [15]. However, dynamic assignment be-

comes more complex when the rules for labels depend on

connectivity and when connectivity (and, hence, the labels)

can change over time. As we will show in Appendix A, us-

ing a state machine approach becomes difficult in this case.

We came to this problem while designing ALIAS [19], a

protocol that considers the problem of automatic label as-

signment in large-scale hierarchical data center networks.

Practical constraints were important. We wished a decen-

tralized solution because a centralized approach has its own

challenges, such as exhibiting a single point of failure. Addi-

tionally, at the scale of the data center, establishing commu-

nication between a centralized component and all network

elements necessitates either flooding or a separate out-of-

band control network, an undesirable requirement. As well

as being decentralized, our solution needed to scale to hun-

dreds of thousands of nodes, and to be robust in the face of

miswirings. It needed to have a low message overhead and

convergence time, to be robust under transient startup con-

ditions, and to retain high availability and quick stabiliza-

tion after failures. Finally, a simple solution was ideal, since

it was important that it be designed and implemented cor-

rectly. This paper describes a simple randomized approach

that meets our practical goals.

We formally specify the problem of label assignment in

Section 3 and provide a new algorithm, the Decider/Chooser

Protocol (DCP), as a solution to this problem in Section 4.

In Sections 5 and 6 we discuss the correctness and perfor-

2 Meg Walraed-Sullivan et al.

mance of DCP and provide a probabilistic analysis of its

convergence time. In Section 7, we extend DCP to solve the

issue of automatic labeling in data center networks, and in

Section 8 we offer another application of DCP, handoff in

wireless networks. Finally, we discuss context and related

topics in Section 9.

2 ALIAS Details

In this section, we present a brief overview of ALIAS in

order to help the reader to understand the concepts to follow.

In ALIAS, switches are organized into a multi-rooted

tree, with end hosts connected to leaf switches, as shown in

Figure 1. The ALIAS protocol includes three components:

Level Assignment, Label Assignment and Communica-

tion. First, switches run a distributed protocol to determine

their levels, L1 through Ln, within the tree. They then select

labels that will form the basis for communication. To select

labels, switches first choose coordinates, which are values

from a given domain. These coordinates are then concate-

nated along paths from the roots of the tree to switches in or-

der to form switch labels. There may be multiple paths from

the top level of the tree to any given switch, so switches in

ALIAS can have multiple labels.1 A host label is formed by

concatenating a host h’s neighboring L1 switch l1’s labels to

the number of the port on which h connects to l1. Finally,

once labels have been established, switches communicate

with other switches and hosts using these labels as a basis

for the ALIAS routing and forwarding protocols.

!
"#

!
$
!

%#

!
&
!

'
#

!
(
#

!
)
#

!
*#

!
+
#

!
*,#

-./.0#*#

-./.0#"#

-./.0#$#

1
*#

1
%#

1
$#

1
"#

Fig. 1: ALIAS Topology

In this paper, we consider the problem of assigning coor-

dinates to switches in ALIAS. In Section 3, we describe the

requirements of coordinates and labels in order for ALIAS

communication to function properly. We specify the Label

1 In Section 7, we show how ALIAS reduces the number of labels

per host.

Selection Problem and show how coordinate selection in

ALIAS maps to this problem.

3 The Label Selection Problem

In the Label Selection Problem (LSP), we consider topolo-

gies made up of chooser processes connected to decider

processes, as shown in Figure 2. These chooser and decider

processes correspond to nodes at adjacent levels of a multi-

rooted tree in ALIAS. All processes have globally unique

identifiers, such as MAC addresses, chosen from a large ad-

dress space. Desired is an assignment of labels from a small

label space to choosers such that any two choosers that are

connected to the same decider have distinct labels; this is

the key requirement that allows ALIAS communication to

operate over assigned labels.

!
"
!

$
!

%
#

&
'#

&
"#

&
$#

&
%#

!
(
#!

'#
!
)
#

!*++,-.,#

&-!/&-.,#

Fig. 2: Sample Label Selection Problem Topology

More formally, each chooser c has a set c.deciders of

deciders associated with it. We denote c’s current choice of

label with c.me, and c.me=⊥ indicates that c has not chosen

a label.

A chooser c is connected to each decider in c.deciders

with a fair lossy link. Such links can drop messages, but if

two processes p and q are connected by a fair lossy link

and p sends m infinitely often to q, then q will receive m

infinitely often.

Both decider and chooser processes can crash in a fail-

stop manner (thus going from up to down) and can recover

(thus going from down to up) at any time. We assume that a

process writes its state to stable storage before sending a set

of messages. When a process recovers, it is restored to the

state that it was in before sending the last set of messages:

duplicate messages may be sent upon recovery. So, we treat

recovered processes as perhaps slow processes, and assume

that duplicate messages can occur.

Figure 3 illustrates sets of choosers and the deciders they

share, based on the topology shown in Figure 2. For in-

stance, chooser c3 shares deciders d1 and d2 with choosers

c1 and c2 and shares decider d3 with choosers c4 and c5.

Because of this, c3 may not select the same label as any of

choosers c1, c2, c4 and c5. However, c3 and c6 are free to

select the same label. In fact, the highlighted sub-graphs in

Figure 3 correspond to the maximal bipartite graphs embed-

ded in the topology.

A Randomized Algorithm for Label Assignment in Dynamic Networks 3

!
"
!

$
!

%
#

&
'#

&
"#

&
$#

&
%#

!
(
#!

'#
!
)
#

&
$#

&
"#

&
%#

Fig. 3: Choosers and Shared Deciders

We more formally specify LSP with the following two

properties:

Progress: For each chooser c, once c remains up, eventually

c.me 6=⊥.

Distinctness: For each distinct pair of choosers c1 and c2,

once c1 and c2 remain up and there is some decider that

remains up and remains in c1.deciders∩ c2.deciders,

eventually always c1.me 6= c2.me.

As specified, a chooser does not know when its choice

satisfies Distinctness. Indeed, it is impossible for a chooser

to know this without further constraining the problem. Con-

sider the example in Figure 4, where nodes c1 through c3

are choosers and d1 through d4 are deciders. A valid set of

choices is c1.me = c3.me = 0 and c2.me = 1. If a link be-

tween c3 and d1 appears—perhaps it is newly added—then,

this set of choices is no longer valid: c1 and c3 now share de-

cider d1 and so c1.me should differ from c3.me. This could

also occur were a new decider d5 to appear that connects to

both c1 and c3.

!
"#

!
$#

%
"#

%
$#

!
&#

%
&#

!
'#

Fig. 4: Stability Example

Thus, if an application based on LSP requires a chooser

to know that its label will not change, then one would need to

ensure, for example, that new connections between deciders

and choosers cannot be created.

4 The Decider/Chooser Protocol

One might be tempted to implement LSP with Consen-

sus, because Consensus can be used to solve the arbitra-

tion problem in Distinctness. In Appendix A, we show that

using Consensus presents considerable difficulties in the

face of dynamic network environments and changing sets

of deciders and choosers. Instead, we develop here the De-

cider/Chooser Protocol (DCP), which is a randomized pro-

tocol that solves LSP with dynamic sets of deciders and

choosers. The input to DCP is a bipartite graph between a

set of choosers and a set of deciders, and the output is an

assignment of labels to choosers such that all choosers have

non-⊥ labels and no two choosers sharing a decider have the

same label.

DCP proceeds as follows: A chooser c repeatedly

chooses a label me from some range of labels and sends it to

c.deciders, its set of neighboring deciders. If a decider d has

not currently assigned me to another chooser, then it assigns

me to c. To accomplish this, d maintains a table d.chosen

of labels that it has accepted from choosers. If me is not in

d.chosen for some other chooser c′, then d sets d.chosen[c]

to me and sends a reply to c indicating that me was accepted.

Otherwise, d sets d.chosen[c] to ⊥ (indicating that d has not

assigned a value for c) and sends a reply to c indicating that

its choice was rejected. d includes the set of labels assigned

to other choosers in this reply as hints so c can avoid them

when choosing another label.

To guard against difficulties caused by message duplica-

tion and reordering, each chooser attaches a monotonically

increasing sequence number with each choice that it sends

to a decider. A deciders d keeps records in d.last seq[c] of

the largest sequence number seen from each chooser c and

ignores messages from c with sequence numbers less than

d.last seq[c]. This allows us to consider channels between

choosers and deciders as fair lossy FIFO channels: if p sends

m1 to q and then sends m2 to q, q may receive m1, m2, both,

or neither of these messages, but once it receives m2 it will

never receive m1.

Listing 1 gives the decider’s state and its two Actions F

and G. Action G was described in the previous paragraph;

Action F executes when decider d first learns that it is con-

nected to a new chooser c. When this happens, d updates its

set d.choosers of known choosers and initializes d.chosen[c]

Listing 1: Decider Algorithm

set〈Chooser〉 choosers = ...

Choice[choosers] chosen = all[⊥]

int[choosers] last seq = all[0]

// when connected to new chooser c

F: when new chooser c

choosers← choosers ∪ {c}
chosen[c]←⊥
last seq[c]← 0

// respond to a message from chooser c

G: when receive 〈s, x〉 from c

if s≥last seq[c]

last seq[c]← s

if ∃ c’ ∈ (choosers \ {c}): chosen[c’] == x
chosen[c]←⊥

else
chosen[c]← x

hints← {chosen[c’]∀ c’ ∈ (choosers \ {c})} \ {⊥}

send 〈s, chosen[c], hints〉 to c

4 Meg Walraed-Sullivan et al.

and d.last seq[c]. Note that d never removes a chooser from

these tables.

Listings 2 and 3 together give the chooser’s implemen-

tation, which includes its state, communication predicates

and routines, and its four Actions A through D. We sepa-

rate the chooser’s description into two listings for readabil-

ity; Listing 2 shows the routines, predicates and state used

to implement FIFO channels whereas Listing 3 includes the

chooser’s actions and related state.

A chooser c stores the set of deciders that it knows ex-

ists (c.deciders), the sequence number of its current choice

(c.seq), the value of its current choice (c.me), hints of

choices to avoid according to each decider d (c.hints[d]),

and the most recent sequence number acknowledged by each

decider d (c.last ack[d]).

The code makes use of a watchdog timer. The timer pro-

vides a variable timeout that is true iff the timer is unarmed.

The operation TO arm ensures that the timer is armed (so

timeout is false). If TO arm is not subsequently executed,

then timeout eventually becomes true.

A chooser c has the following routines for communica-

tion with deciders:

SendTo(s,x,D): Send choice x with sequence number s to

all deciders in D.

ResendTo(D): Resend the last message sent to all deciders

in D.

ReceiveAck(s,d): Receive an acknowledgment from d on

sequence number s.

A chooser c also has three macros to represent some of

the re-used code related to channel activities:

HasReceivedAck(d): true iff c has received an acknowl-

edgment from d for its latest choice.

CurrentChoice(s): true iff sequence number s acknowl-

edges c’s most recent choice.

OldChoice(s): true iff sequence number s acknowledges an

obsolete choice.

These predicates and routines appear along with the as-

sociated state in Listing 2. The chooser’s actions and related

state are shown in Listing 3.

When a chooser needs to select a new value (Action A),

it selects one at random, avoiding potentially unavailable

values, and sends this to neighboring deciders. It then arms

the watchdog timer. When the timer fires (Action B), if the

chooser’s value has not yet been denied, it resends this selec-

tion on any channels necessary. When a chooser receives an

acknowledgment from a decider (Action C), it stores the de-

cider’s hints if they are up-to-date, and records the sequence

number for the acknowledgment. If the message is a rejec-

tion, the chooser sets c.me back to undecided so that, via

Action A, it will try again. Finally, when a new decider con-

nects to a chooser and the chooser has already sent a pro-

posal to other deciders, it sends its choice to the new decider

Listing 2: Chooser Channel Predicates and Routines

(Unbounded Channels)

int[deciders] last ack = all[0]

// ⇐⇒ c has an ack from d for its latest choice

boolean HasReceivedAck (d):

last ack[d] == seq

// ⇐⇒ s acknowledges c’s most recent choice

boolean CurrentChoice (s):

s == seq

// ⇐⇒ s acknowledges an obsolete choice

boolean OldChoice (s):

s < seq

SendTo (s,x,D):

foreach d ∈ D do

send 〈s,x〉 to d

ResendTo (D):

foreach d ∈ D do

send 〈me,seq〉 to d

ReceiveAck (s,d):

last ack[d]← s

Listing 3: Chooser Algorithm: Actions and State

(Channel Predicates and Routines Separated)

set〈Decider〉 deciders = ...

int seq = 0

Choice me = ⊥
(set〈Choice〉)[deciders] hints = all[/0]

// when needs to make a choice

A: when me == ⊥
choices← domain(Choice) \ {⊥} \ {hints[d]∀ d ∈ deciders}
me← choose from choices

seq ++

SendTo(seq,me,deciders)

TO arm

// retransmit last msg sent to deciders yet to acknowledge

B: when timeout ∧ (me 6= ⊥)

ResendTo({d ∈ deciders: ¬HasReceivedAck(d)})

TO arm

// receive response from d

C: when receive 〈s, chosen, hint〉 from d

ReceiveAck(s,d)

if ¬OldChoice(s)
hints[d]← hint

if CurrentChoice(s) ∧ (chosen == ⊥)
me←⊥

// learn of decider d and round is active

D: when detect new decider d ∧ (me 6= ⊥)

SendTo(seq,me,{d})

(Action D). Note that a chooser crashing or recovering has

no specific effect in the protocol: a decider only releases the

label it has assigned to a chooser c when c asks for a new

label. A decider d recovering can cause c to send d its latest

choice via Action D.

A Randomized Algorithm for Label Assignment in Dynamic Networks 5

This algorithm is not guaranteed to terminate because

any pair of choosers can conflict with one another. For ex-

ample, let choosers c1 and c2 both choose the yet-unassigned

label x and send it to deciders d1 and d2. Decider d1 may re-

ceive c1’s message first and d2 may receive c2’s message

first. Thus, d1 will reject c2 and d2 will reject c1. This kind

of conflict can continue for an unbounded time. However, as

long as the domain from which a chooser c selects is large

enough, there is a significant probability with each choice

that c chooses a label x that is different than any label cur-

rently accepted by any decider, and that is different than

any label that any other chooser has currently chosen or will

choose before c’s message with x is received by all deciders.

Once this occurs, c’s value will be accepted by all deciders.

This, in turn, increases the chances that another chooser will

have its value chosen. Thus, as the running time tends to in-

finity, the probability of Distinctness holding tends to 1, as

we show in Section 5.1.

4.1 Bounding the Channels

This protocol can be modified so that each chooser c lim-

its the number of messages in flight to any given decider.

Doing so limits the number of conflicting assignments that

might occur in the future from some state: this is useful in

computing the expected number of choosers that terminate

in a given round (see Section 5.1).

We extend both the basic chooser code as well as its

channel code to accommodate channel bounding. In fact,

this extension requires only moderate changes to the proto-

col, as we are able to leverage the variable seq that is used to

ensure that out-of-date messages are ignored. We add some

simple book-keeping to the chooser’s channel and some ex-

tra logic to the chooser’s Action C. We consider the changes

to the channel code first.

A chooser c stores the most recent sequence number ac-

knowledged by each decider d (c.last ack[d]). c also now

stores, for each decider d, a set of unacknowledged sequence

numbers (c.sent[d]), a tuple of the most recent choice and

corresponding sequence number sent to d (c.last sent[d]),
and the sequence number of the most recent choice it would

have sent to d if it were not limited by available chan-

nel space (c.last choice[d]). The three predicates used for

unbounded channels, HasReceivedAck, CurrentChoice, and

OldChoice, are modified to make comparisons based on val-

ues stored for a particular decider d. That is, they compare

a sequence number s to the sequence number of the most

recent choice with respect to a decider d (c.last choice[d])

rather than to a global sequence number seq. Choosers also

have three new channel predicates:

CanSendTo(d): true iff there is space in the channel from c

to d.

SentLatest(d): true iff c has sent its latest choice to d.

RecentAck(s,d): true iff the sequence number s acknowl-

edges c’s most recent message to d.

Finally, the SendTo, ResendTo and ReceiveAck routines

are updated to include book-keeping and verification, and to

send new messages only when there is room in the channel:

SendTo(s,x,D): Send choice x with sequence number s to

all deciders in D, keeping a copy for retransmission and

bounding the channel.

ResendTo(D): Resend the last message sent (if applicable)

to all deciders in D.

ReceiveAck(s,d): Receive an acknowledgment from d on

sequence number s, update channel book-keeping vari-

ables.

Listing 4: Chooser Channel Predicates and Routines

(Bounded Channels)

int[deciders] last ack = all[0]

(set〈int〉)[deciders] sent = all[/0]

〈int,Choice〉[deciders] last sent = all[〈0,⊥〉]
int[deciders] last choice = all[0]

int max in chan = a non-zero constant

// ⇐⇒ c has an ack from d for its latest choice

boolean HasReceivedAck (d):

last ack[d] == last choice[d]

// ⇐⇒ s acknowledges c’s most recent choice for d

boolean CurrentChoice (s,d):

s == last choice[d]

// ⇐⇒ s acknowledges an obsolete choice for d

boolean OldChoice (s,d):

s < last choice[d]

// ⇐⇒ there is room in the channel to send to d

boolean CanSendTo (d):
| sent[d] | < max in channel

// ⇐⇒ c has sent its most recent choice to d

boolean SentLatest (d):

last sent[d][0] == last choice[d]

// ⇐⇒ s acknowledges c’s most recent message to d

boolean RecentAck (s,d):

s == last sent[d][0]

SendTo (s,x,D):

foreach d ∈ D do

if CanSendTo(d)

send 〈s,x〉 to d

sent[d]← sent[d] ∪ {s}
last sent[d]← (s,x)

last choice[d]← s

ResendTo (D):

foreach d ∈ D do

if | sent[d] |>0

send 〈last sent[d]〉 to d

ReceiveAck (s,d):

sent[d]← sent[d] \ {i: i≤s}
last ack[d]← s

6 Meg Walraed-Sullivan et al.

Note that with channel bounding, a chooser maintains

the sequence number of the most recent message sent to

a decider d (c.last sent[d]) as well as that of the most re-

cent choice of c.me with respect to d (c.last choice[d]). A

chooser may be temporarily unable to send its current choice

to d if the channel between the two is full. This accounts

for the subtle difference between the RecentAck and Cur-

rentChoice predicates. Listing 4 shows the code for the

channel-related predicates and routines when channels are

bounded.

The chooser’s actions change only slightly to accommo-

date channel-bounding. Actions A and B rely on the now

channel-bounding routines SendTo and ResendTo for send-

ing messages to deciders. This change is encapsulated in

the channel code (described above). The chooser’s Action

C does change; a chooser stores a decider’s hints only if the

decider is responding to the most recent message sent to that

decider. Additionally, if an acknowledgment is out-of-date

and may have opened space in the channel, the chooser re-

sends its current selection. Listing 5 shows the updated Ac-

tion C. Modified code is shown in black, while unchanged

code is grey.

Listing 5: Chooser Algorithm: Actions and State

(Bounded Channels)

set〈Decider〉 deciders = ...

int seq = 0

Choice me = ⊥
(set〈Choice〉)[deciders] hints = all[/0]

// when needs to make a choice

A: when me == ⊥
choices← domain(Choice) \ {⊥} \ {hints[d]∀ d ∈ deciders}
me← choose from choices

seq ++

SendTo(seq,me,deciders)

TO arm

// retransmit last msg sent to deciders yet to acknowledge

B: when timeout ∧ (me 6= ⊥)

ResendTo({d ∈ deciders: ¬HasReceivedAck(d)})

TO arm

// receive response from d

C: when receive 〈s, chosen, hint〉 from d

ReceiveAck(s,d)

if RecentAck(s,d)
hints[d]← hint

if CurrentChoice(s,d) ∧ (chosen == ⊥)
me←⊥

if OldChoice(s,d) ∧ (me 6= ⊥)

SendTo(last choice[d],me,{d})

// learn of decider d and round is active

D: when detect new decider d ∧ (me 6= ⊥)

SendTo(seq,me,{d})

5 Analysis of the Decider/Chooser Protocol

In this section, we consider the correctness of DCP, first via

proof and then by using model checking software.

5.1 Proof of Correctness of DCP

We prove here that DCP implements LSP. We assume that

each channel contains no more than max in channel mes-

sages (Listing 4).

Our proof of correctness uses the following Eventual

Delivery lemma:

Lemma 1 (Eventual Delivery) If chooser c sends a mes-

sage [seq,me] to d, and both c and d remain uncrashed and

connected to each other, then eventually d receives a mes-

sage [seq′,me′] from c with seq′ ≥ seq, and eventually c re-

ceives an acknowledgment from d for a message with a se-

quence number seq′′ ≥ seq.

Proof (Lemma 1) When c sends [seq,me] to d, it will keep

sending messages with some sequence number seq′ ≥ seq

to d via Actions A or B until it receives an acknowledgment

(via Actions G, C) for seq′′ ≥ seq. ⊓⊔

Proof (Progress) Initially c.me is⊥. This variable is set to a

non-⊥ value only by Action A, and Action A is continuously

enabled starting with the initial state. Hence, if c does not

remain crashed, c.me will be set to some non-⊥ value. ⊓⊔

Proof (Distinctness) A chooser that remains up will execute

Action A one or more times. If it executes Action A a final

time, we say that the chooser c’s choice c.me stands: from

that point on, c.me does not change. If c’s value stands and

c remains up, then c.me 6= ⊥ since, otherwise, Action A is

enabled.

We first show that two choosers that share a decider can-

not both choose the same label and have their choices stand.

That is, if two choosers’ values c1.me and c2.me stand, then

c1.me 6= c2.me. We then show that with high probability, the

choosers will choose distinct values that stand.

(a) It is impossible for two choosers c1 and c2, both

connected to decider d, to both set c1.me = c2.me = x with

x 6= ⊥ and have these values stand. This is because c1 will

send [s1,x] to d and c2 will send [s2,x] to d for some s1 and

s2. Since both leave me at x, neither sends a message with

larger sequence numbers. From Lemma 1, d will eventually

deliver both messages, and will reply⊥ to at least one of the

choosers. Again from Lemma 1 the chooser will receive this

acknowledgment and set me to ⊥.

(b) Consider some point in the execution of the protocol.

Let D be the set of deciders and C be the set of choosers.

Let C+ be the subset of choosers that will choose again by

A Randomized Algorithm for Label Assignment in Dynamic Networks 7

executing Action A — that is, C\C+ are the choosers whose

choices stand.

If a chooser in C+ chooses a value that some decider d

has already given to another process, then it may receive ⊥

from d. There are up to |D|×|C| distinct values that have al-

ready been given by some decider to some chooser. If multi-

ple choosers in C+ choose the same value, then some decider

d they share may send one of them ⊥.

If a chooser c in C+ chooses a value that is in a mes-

sage m that was sent by another chooser to a decider d but

not yet delivered by d, then d may deliver m before receiv-

ing c’s choice, and thus d will send ⊥ to c. There are up to

|D|×|C|×max in channel distinct values in channels.

Let P(q,m,L) be the probability that if we take m sam-

ples with replacement from a domain of size L, then exactly

q of them are distinct. In our case, L corresponds to the la-

bel domain, m to the number of choosers still attempting to

select values, and q to the number of choosers that choose

values that will stand as labels because they are distinct. Let

Choice be the domain from which choosers choose. Even if

all choosers pick distinct values, there are up to

|D|×|C|+ |D|×|C|×max in channel

values that, if chosen, will result in a chooser receiving ⊥.

Thus, the probability that the choosers in C+ all choose val-

ues that stand is at least

P(|C+|, |C+|, |Choice|− |C|×|D|(1+max in channel))

In fact, the probability that some choosers choose values

that stand is positive. Thus, with enough choices, C+ will

continue to decrease with high probability, until it becomes

empty. ⊓⊔

5.2 Model Checking DCP

We implemented DCP in Mace [7,12], which is a language

for distributed system development. (Our full implementa-

tion of DCP can be found at http://dl.dropbox.com/

u/4570403/dcp.tgz.) The Mace toolkit includes both a

model checker [11] that allows one to verify the correctness

of the system and a simulator [13] for testing timed behav-

ior. A major benefit of Mace is that Mace code compiles

into standard C++ code, which allows one to deploy code

that has been model checked.

A few differences between the implementation and the

listings of Section 4 bear special mention. A Mace service

contains variables and messages, as well as code segments

called transitions that are executed in reaction to four types

of events: timer expiration, message receipt, error indica-

tion, and downcalls from applications using the service. As

such, Mace cannot constantly test the guards for the actions

shown in our listings; instead, we must determine when each

guard may become true and evaluate each guard at all nec-

essary points (executing the corresponding action if neces-

sary). A decider’s Action G executes upon receipt of any

message from a chooser, whereas Action F executes only

upon receipt of a message from a chooser that has not yet

been encountered. The case for the chooser is a bit more

complicated. Action A needs to execute whenever c.me=⊥.

This can occur initially upon startup of the chooser, upon

recovery from a crash (if the value was not set prior to the

crash), and as the result of a rejection message in Action

C. So, the guard for Action A is evaluated at these three

times. The guard for Action B is evaluated when the watch-

dog timer fires and also upon reset. Action C executes di-

rectly as a result of a message receipt from a decider. The

guard for Action D is evaluated whenever a chooser receives

a message from a decider not currently in c.deciders.

Both the Mace model checker and the Mace simulator

construct a set of behaviors of the program. Mace knows

the sources of nondeterminism (in our case, node failures,

UDP packet reordering and loss, and random number gen-

eration) and so constructs all behaviors over which it checks

for violations of any safety or liveness property. The model

checker differs from the simulator in how the sets of be-

haviors are constructed: the model checker does a breadth

first construction while the simulator chooses, at random, a

value for each nondeterministic event to construct a behav-

ior. Since the tests cannot be run for an infinite time, each

behavior is extended to a maximum depth (set with a run-

time parameter).

We used the Mace model checker to check the liveness

properties Progress and Distinctness. We considered three

types of topologies, all modifications of a 3-level fat tree.2

We constructed all three topologies by first creating a 3-

level fat tree using k-port switches, with k = 4, 6, 8, 10, and

12, and extracting the bottom two levels of nodes. The first

topology (fat tree-based) consists of this bipartite graph em-

bedded in the lowest two levels of a fat tree. For our random

bipartite topology, we began with the fat tree-based topol-

ogy and removed all edges in the graph. We then generated

edges between each lower-level node and a randomly cho-

sen set of k
2

upper-level nodes. Finally, we also created a

complete bipartite graph between the nodes within the fat

tree-based topology. The complete bipartite graph topology

imposes the most restrictions on DCP because all choosers

share all deciders: no two choosers can have the same label.

For each topology type, we show that the Progress and

Distinctness properties eventually hold. We also verify the

channel bounding aspects of the protocol (see Section 4.1)

using safety properties.

2 This topology with arises in the context of ALIAS [19].

8 Meg Walraed-Sullivan et al.

6 Performance of the Decider/Chooser Protocol

In this section, we consider the performance of DCP, that

is, we explore the time required for an instance of DCP to

satisfy Progress and Distinctness. We begin in Section 6.1

by mathematically analyzing DCP and then we simulate its

behavior in Section 6.2.

6.1 Analyzing DCP Performance

Recall that P(q,m,L) expresses the probability that if we

take m samples with replacement from a domain of size

L, then exactly q of them are distinct. In other words, this

value expresses the probability that any given set of choosers

will succeed (and therefore exit the competition) during any

given round. Therefore, sequences of P(q,m,L) values can

form probability distributions for the completion of DCP in-

stances.

P(q,m,L) can be computed as follows. Let S(m) be the

set of different sets of positive numbers that sum to m. For

example,

S(6) ={{1,1,1,1,1,1},{1,1,1,1,2},{1,1,1,3},{1,1,4},

{1,5},{1,1,2,2},{1,2,3},{2,4}

{2,2,2},{3,3},{6}}

We use each element of S(m) to denote a configuration

of the m choosers. So, {1,5} represents a configuration of

six choosers in which five choose the same label, and the

sixth chooses another label.

Let C(s) be the number of ways the m choosers can be

grouped into a configuration s and let T (s,L) be the number

of unique ways elements of L can be assigned to configura-

tion s. That is,

T (s,L) = |s|!×

(

L

|s|

)

=
L!

(L−|s|)!

The probability that m choosers result in configuration s

is C(s)×T (s,L)/Lm. For example, let s = {1,1,2,2}.

C(s) =

(

6

1

)

×

(

5

1

)

×

(

4
2

)

2!
×

(

2
2

)

2!
= 45

T (s,10) for s = {1,1,2,2} is 5,040 and the probability

that the choosers are in configuration {1,1,2,2} for L = 10

is

45×5040

106
= 0.2268

Finally, let Sq(m) be the subset of S(m) that contain ex-

actly q values of 1. For example,

S2(6) = {{1,1,4},{1,1,2,2}}

Then we have

P(q,m,L) =
∑s∈Sq(m)C(s)∗T (s,L)

Lm

So, P(2,6,10) is

P(2,6,10) =
C({1,1,2,2})×T ({1,1,2,2},10)

106

+
C({1,1,4})×T ({1,1,4},10)

106

= 0.2268+0.0108 = 0.2376

That is, just under a quarter of the time, if six choosers

choose labels from 0 to 9, exactly two will end up with la-

bels distinct from all the other chosen labels. Over 95% of

the time that this happens, two other choosers will choose a

third label and the remaining two will choose a fourth label,

and under 5% of the time the four remaining choosers will

choose the same label.

To give an idea of the probability of choosing distinct

values, Figure 5 shows a plot for P(q,32,L) for L = 32, 64

and 128 (that is, 32 choosers and labels with 5, 6 and 7 bits).

With L = 128, the most likely value for q is 26, which would

leave 6 choosers choosing again. When L = 32 (the small-

est possible value for L) , the most likely value for q is 12,

which leaves 20 choosers choosing again. This shows how

decreasing L increases the expected convergence time.

!"

!#!$"

!#%"

!#%$"

!#&"

!#&$"

!" &" '" (")"
%!"
%&"
%'"

%("
%)"

&!"
&&"

&'"
&("

&)"
*!"

*&"

!"#$%&$'()

#)

+,*&"

+,('"

+,%&)"

Fig. 5: P(q,32,L) with L = 32,64,128

It would be useful to compute an upper bound on the

convergence time of DCP, but it has proven difficult to do

so: as more choosers choose values that stand, fewer val-

ues remain for other choosers, but the number of choosers

A Randomized Algorithm for Label Assignment in Dynamic Networks 9

Topo |C| |L| 1 2 3 4 5 6 7 35 55 89

8 94.13 99.88 100

12 96.38 100

16 95.50 100

18 94.33 99.94 100

27 96.50 99.94 100

36 97.44 100

32 95.38 99.91 100

48 96.56 100

64 97.09 99.94 100

50 97.36 100

75 97.74 100

100 95.54 99.98 100

72 96.01 99.89 100

108 97.43 100

144 98.01 100

8 88.13 98.75 100

12 92.88 100

16 93.88 99.88 100

18 87.89 98.11 99.83 100

27 92.33 99.17 100

36 93.94 99.39 99.94 100

32 84.69 98.16 99.88 100

48 90.16 99.19 99.97 100

64 92.78 99.53 100

50 83.80 97.02 99.62 99.94 100

75 89.58 98.92 99.98 100

100 91.78 99.38 99.98 99.98 100

72 84.19 97.57 99.71 99.96 100

108 89.40 98.81 99.89 100

144 92.40 99.29 99.99 100

8 50.00 70.50 81.00 84.88 86.00 87.88 88.88 99.63 100

12 68.50 91.38 97.75 99.50 99.88 100

16 75.50 96.25 99.25 100

18 32.17 43.44 50.44 53.56 55.11 56.22 57.61 90.56 98.72 100

27 59.94 84.44 95.17 98.83 99.56 99.83 99.89 100

36 68.78 91.33 98.28 99.72 100

32

50

72

Configuration

c
o

m
p

le
te

b
ip

a
r
ti

te
fa

t
tr

e
e
-b

a
s
e
d 18

32

50

72

18

r
a
n

d
o

m

18

8

% Choosers converged vs. Number of Choices

8

8

Fig. 6: Convergence Time of DCP

competing for values decreases. For the purposes of ALIAS,

simulation has been sufficient to show that the expected con-

vergence time is short.

6.2 Simulating DCP Performance

After verifying Progress and Distinctness with the Mace

model checker, we used the Mace simulator to determine

how quickly DCP converges over the same three types of

topologies (fat tree-based, random bipartite and complete

bipartite). In addition to the topology type, we varied the

number of choosers and deciders3 (|C|) as well as the size of

the domain (|L|) from which the choices are made. We simu-

lated |L|= |C|, which is the smallest domain that allows for a

solution with a bipartite graph, |L| = 1.5|C| and |L| = 2|C|.
For a given number of choosers and deciders, there are 9

possible configurations, corresponding to the three topology

types and the three label domain sizes. For each configu-

ration, we simulated 100 different executions (thus giving

different values for the nondeterministic events). Figure 6

shows the results of these simulations. Each column gives

the percentage of choosers (averaged over 100 executions)

that have converged after a given number of choices.

3 The number of deciders is equal to the number of choosers.

For the first two types of topologies, most choosers con-

verge within 2 choices, and only a few require 3-5 choices

before settling on a value. For the complete bipartite graphs,

especially when |L|= |C|, it takes longer for all choosers to

converge because each chooser must choose a distinct value.

Even so, in most cases over 90% of the choosers converge

with 2 choices and over 99% converge with 4 choices. But,

the time for all to decide under such constraints can some-

times be long. For example, in one particular execution for

the complete bipartite topology with |L|= |C|= 18, the hint

messages to a single chooser were repeatedly dropped, and

the chooser chose already-taken labels for 89 cycles before

converging.

7 DCP in Data Center Labeling

This work arose in the context of automatic label assign-

ment in large-scale data center networks. ALIAS [19] op-

erates over indirect hierarchical topologies [18], in which

servers (end hosts) connect to the lowest level of a multi-

rooted tree of switches. Such topologies currently underly

many data center networks [1,2,5,9,14]. Switches at each

level of the hierarchy but the topmost select coordinates and

these coordinates combine to form hierarchically meaning-

ful labels; a label corresponds to a path from the root of the

10 Meg Walraed-Sullivan et al.

tree to an end host. In data center networks, a key concern is

automatic configuration in the face of a dynamically chang-

ing topology, so DCP is well-suited to this environment.

7.1 Distributing the Chooser

Recall that the input to DCP is a bipartite graph of choosers

connected to deciders; each chooser and decider resides in

a single process. Before we discuss DCP as a solution for

coordinate assignment in ALIAS, we first present an exten-

sion to the basic protocol, in which a logical chooser can be

distributed across multiple nodes. These nodes cooperate to

select a single shared label. We will use this extension when

we apply DCP within ALIAS’s multi-rooted trees in Sec-

tion 7.2. A full protocol derivation appears in Appendix B.

We begin with the set of nodes that wish to cooperate

in order to select a shared label, and introduce a new type of

process for these nodes: the chooser relay. Each node within

the cooperating set functions as a relay, providing a connec-

tion from the distributed chooser to one or more deciders. A

distributed chooser’s set of neighboring deciders consists of

the union of all deciders with a direct link to one or more of

the chooser’s relays. We then introduce another type of pro-

cess, the chooser representative. Each distributed chooser

has exactly one representative, which performs all of the

functionality of the chooser (Actions A through D of List-

ing 5), and communicates with deciders via the chooser’s

relays. This representative can be co-located with one of the

relays or it can be a separate node; the only requirement is

that it is able to communicate with all of the chooser’s re-

lays.

The structure of a distributed chooser with a separately

located representative is shown in Figure 7. In the figure,

the nodes marked d1 through d4 are deciders, and the dotted

lines denote the boundaries of the two distributed choosers.

Within Chooser1 and Chooser2, rel1 through rel5 are relays,

and rep1 and rep2 are representatives.

!"#$% !"#&% !"#'%

()% ($% (&% ('%

!"#*%!"#)%

!"+)% !"+$%

!"#$% !"#&%!"#)%

!"+)%

!"#'% !"#*%

!"+$%

,-../"!)% ,-../"!$%

Fig. 7: Distributed Chooser

For a distributed chooser C , we denote with Relays(C)
the set of relays in C and with Repr(C) the process that rep-

resents C . Together, the processes in Relays(C)∪Repr(C)

make up the distributed chooser C . Similarly, for an indi-

vidual node r, we use Relays(r) and Repr(r) to denote the

relays and representative of the chooser in which r partici-

pates. In our example of Figure 7, the relays and representa-

tives for the two distributed choosers are as follows:

Relays(Chooser1) = {rel1,rel2,rel3}

Repr(Chooser1) = rep1

Relays(rel4) = {rel4,rel5}

Repr(rel4) = rep2

There are some issues to address in implementing a dis-

tributed chooser. The first is that of communication between

the chooser’s representative and its relays. We support this

communication with two queues, Send and Receive:

Send: is a queue of messages stored at each relay r, that

implements a virtual channel from Repr(r) to the de-

ciders. Repr(r) appends a message m to this queue by

sending a message to Relays(r). When a relay receives

this message, it adds m to the end of its own copy of

Send. Repr(r) never takes an action based on the value

of Send, and so a relay r need not notify Repr(r) when

it removes m from Send.

Receive: is a queue of messages stored at Repr(C) that ac-

cumulates messages sent to a chooser C from its de-

ciders. A relay r for chooser C appends messages to this

queue by sending them to Repr(r).

These changes only affect the chooser’s actions and

channel code slightly; the SendTo and ResendTo channel

functions (Listing 4) append to the Send queue rather than

sending messages directly to deciders, and a chooser’s Ac-

tion C (Listing 5) is triggered by a non-empty Receive queue

rather than by direct receipt of a message from a decider.

A second issue has to do with the connections between

a distributed chooser and a decider: a chooser may be con-

nected to each of its deciders via various subsets of its relays.

Rather than having the representative keep track of which

relays are connected to each decider, it can simply send all

messages to all of its relays. Each relay then filters out mes-

sages destined to deciders that it does not neighbor. While

this increases message load, it does not require that a rep-

resentative keep track of the possibly changing connections

between the relays and deciders. Similarly, since a chooser

may connect to a decider d via multiple relays, it has the op-

tion of selecting only a single such relay for each message

sent to d, or it may use any subset of the relays connected

to d. This again represents a tradeoff between message load

and complexity.

A Randomized Algorithm for Label Assignment in Dynamic Networks 11

A third issue has to do with data representation at both

the chooser and the decider. Since a representative may have

multiple paths to a given decider via different relays, it in-

dexes any channel-related variables over both relays and de-

ciders. This is intuitive, as the relays act as virtual channels

between a chooser’s representative and its deciders. There-

fore, channel-related variables should be indexed over the

entire channel, relays and deciders. Also, recall that a de-

cider indexes its chosen and last seq maps over choosers. To

support distributed choosers, a decider indexes these maps

over the entire chooser, both the relays and the representa-

tive.

Finally, changing network conditions may affect con-

nectivity between a chooser’s representative and its relays,

which can cause the representative to change. Any node that

could ever be the representative for a chooser watches the

Receive queue and maintains any channel-related state for

that chooser. Such a node also executes a modified version

of Action C (Listing 5) that properly updates state upon re-

ceipt of an acknowledgment so that if it subsequently be-

comes the chooser’s representative, it will have correct ac-

knowledgment and channel capacity information.

7.2 The Decider/Chooser Protocol in ALIAS

Figure 8 shows an example multi-rooted tree of switches.

In the figure, hosts have been omitted for space and clarity.

Switches are categorized as being at levels L1 through L3,

from the bottom of the tree upwards, and the S1 through S10

notations indicate switches’ unique identifiers.

!
"#

!
$
!

%#

!
&
!

'
#

!
(
#

!
)
#

!
*#

!
+
#

!
*,#

-./.0#*#

-./.0#"#

-./.0#$#

!
%#

!
(

!
+
!
+

!
$
!
$

Fig. 8: Sample Multi-Rooted Tree Topology

In ALIAS, an end host h’s label is a pair of coordinates

c2c1, where c1 is the coordinate of the level L1 switch l1 to

which h is connected and c2 is the coordinate of a switch

at level L2 that neighbors l1.4 Since there are multiple paths

from the root of the tree to an end host h, end hosts in ALIAS

have multiple labels. ALIAS forwarding sends data packets

to the root of the tree, at which point a packet’s destination

4 Top-level switches are not assigned coordinates.

label specifies a path to the destination. This is based on

up*/down* style forwarding, as introduced in Autonet [17].

Since switches forward packets downward based on co-

ordinates within the destination label, it follows that any two

children of a given switch should have distinct coordinates;

in this way a parent switch can select which child should

be the next hop for any given destination label. This maps

nicely to a simple application of simultaneous instances of

DCP, one per tree level, as we show in Figure 9. Each in-

stance of DCP is used to select coordinates for the instance’s

choosers. Since there are two levels of switches (L1 and L2)

that need coordinates, we apply an instance of DCP for each.

In the first instance, all L1 switches act as choosers for their

L1 coordinates and all L2 switches act as deciders. In the the

second instance, all L2 switches act as choosers for their L2

coordinates and all L3 switches are deciders.

!
"#

!
$
!

%#

!
&
!

'
#

!
(
#

!
)
#

!
*#

!
+
#

!
*,#

!
$

!
%#

!
(

!
+

!
"#

! ! !

!
*#

!

-.//0120#

31-43120#

-.//0120#

31-43120#

Fig. 9: Simple DCP in ALIAS

The application of DCP to ALIAS L2 coordinate assign-

ment shown in Figure 9 is simple but not efficient in terms of

the number of labels it assigns to each end host. To address

this, ALIAS leverages the hierarchical structure of the the

topology in order to allow certain sets of switches located

near to one another in the hierarchy to share label prefixes.

This in turn leads to more compact forwarding state, a desir-

able property in the data center.

To enable these shared label prefixes, ALIAS introduces

the concept of a hypernode. In an n-level tree, all switches

(other than those at Ln) are partitioned into hypernodes.

A hypernode at level Li is defined as a maximal set of Li

switches that connect to an identical set of Li−1 hypernodes

below. The base case for this recursive definition has each

hypernode at L1 contain a single switch. For a 3-level tree,

the only interesting hypernodes are made up of L2 switches.

Figure 8 shows the sample topology’s hypernodes with dot-

ted lines.

Consider a packet with destination label c2c1. The co-

ordinate c1 corresponds to an L1 switch l1 that is connected

to the packet’s destination. Since all L2 switches in a hyper-

node connect to the same set of L1 switches below, an L3

switch can send the packet to any switch in an L2 hypernode

12 Meg Walraed-Sullivan et al.

that neighbors l1. Therefore, the switches in a hypernode can

share a single coordinate, as all are equivalent with respect

to forwarding reachability. Coordinate sharing among hy-

pernode members reduces the number of labels assigned to

an end host and increases the efficiency of ALIAS.

To accommodate shared L2 coordinates, we apply the

distributed chooser version of DCP. Each hypernode corre-

sponds to a single chooser, in which the L2 member switches

are relays. By definition, an L2 hypernode consists of L2

switches that connect to the same set of L1 switches, and

so we are guaranteed to have an L1 switch that can reach

all L2 relays and therefore can act as the chooser’s repre-

sentative. We select between a set of possible representa-

tives via any deterministic function, e.g. the L1 switch with

the smallest MAC address.5 Figure 10 shows the three dis-

tributed choosers for our example topology’s L2 coordinate

assignment. These choosers consist of relays {s3} {s4,s5},

and {s6}, represented by {s7}, {s8}, and {s9}, respectively.

!
"#

!
$
!

%#

!
&
!

'
#

!
(
#

!
)
#

!
*#

!
+
#

!
*,#

(

!
)

Fig. 10: Assigning Level 2 Coordinates using Distributed

Choosers

We have completed a full protocol derivation from List-

ings 1 and 5 to a complete solution for ALIAS coordinate

selection, which we present in Appendix B. A full corre-

sponding Mace implementation is available at http://dl.

dropbox.com/u/4570403/alias.tgz. We have also built

and model checked a second, slightly different implementa-

tion of ALIAS6 with respect to the Progress and Distinct-

ness properties, and have found through simulation that dis-

tributed choosers converge within only a few choices for the

networks tested. The full simulation results for our second

implementation are reported in a separate article [19].

5 In general, it is acceptable to use any deterministic function such

that the result is identical at all decision points of the function.
6 Our second implementation does not operate in rounds. Choosers

and deciders continuously send messages, ignoring incoming messages

that are redundant with respect to already processed information.

7.3 Eliminating M-Graphs in ALIAS

The up*/down* forwarding used by ALIAS separates L1-to-

Ln forwarding from Ln-to-L1 forwarding in an n-level hier-

archy. Because of this, a topology that we call an M-graph

can lead to a forwarding ambiguity. When data forwarding

follows an up-down path, two L1 switches must be no more

than 2(n− 1) hops apart to directly communicate with one

another. An M-graph occurs when two L2 hypernodes hn1

and hn2 do not have an L3 decider in common, and thus may

select the same coordinate, but an end host h can communi-

cate with descendants of both hn1 and hn2.

An example M-graph is shown in Figure 11. Each switch

is marked with a unique identifier (S1 through S9) as well

as its coordinate if at levels L1 or L2. Each host is marked

with its unique identifier (h1 through h3) and its label (cre-

ated by concatenating ancestor switches’ coordinates). The

L2 hypernodes in the figure are {s3}, {s4,s5}, and {s6} and

they form distributed choosers represented by {s7}, {s8},

and {s9}, respectively.

!
"#

"$%#

!
&#

&$&#

!
%#

"$%#

'
&#

'
"#

"#

'
(#

&#

'
)#

%#

'
*#

&#

'
+#

&#

'
%#

'
,#

"#

'
-#

%#

'
(

&#

'
+

&#

'
,

"#

,
'
"

"#

"

Fig. 11: Example M-Graph

Because data forwarding follows an up-down path, s7

and s9 cannot communicate directly with one another. They

can, though, both communicate with a third L1 switch s8

(and its neighboring host h2). Since the L2 hypernodes con-

nected to s7 and s9 ({s3} and {s6}) do not share a parent

they can have the same L2 coordinate, in this case 3. And,

since s7 and s9 have no parent in common, they can have the

same L1 coordinate, in this case 1. This is the ambiguity: s8

can communicate with two different switches, s7 and s9, that

may legally be assigned the same label.

In practice, this is not a problem because of the random-

ness of DCP: ambiguous labels are rarely generated. When

ALIAS finds such labels, it follows a simple detection-and-

recovery approach. If desired, though, we can prevent this

ambiguity in two different ways, each involving an applica-

tion of DCP. First, we can simply add the set of L1 switches

that are 3 hops away from each L2 hypernode to the set of

A Randomized Algorithm for Label Assignment in Dynamic Networks 13

deciders for that hypernode’s chooser.7 For example, in Fig-

ure 11, s8 would be a decider for hypernodes {s3} and {s6}.

This removes the possibility of ambiguity by ensuring that

any two hypernodes both reachable from a third L1 switch

have distinct labels. This solution increases implementation

complexity slightly, because L2 relays are not directly con-

nected to all L1 deciders and so send messages to deciders

via tunneling or other similar mechanisms.

Alternatively, one can prevent this ambiguity by assign-

ing coordinates to L3 switches. In our example, the labels of

s7 and s9 (and therefore h1 and h3) would differ in this new

coordinate. To do this, L3 switches are grouped into hypern-

odes based on connectivity to L2 hypernodes. L3 hypernodes

then form distributed choosers, using, for example, common

L1 descendants as representatives. L1 switches reachable in

2 hops from the L3 hypernodes are the deciders for this in-

stance of DCP. This approach increases the distance between

a chooser’s representative and relays. Like the previous so-

lution, this approach leads to indirect connections between

relays and deciders. However, unlike the first solution, this

method introduces the additional complexity and costs of

grouping L3 switches into hypernodes and assigning L3 co-

ordinates. For this reason, we would favor the former solu-

tion, in which L1 switches are added to L2 hypernodes’ sets

of deciders.

8 The Decider/Chooser Protocol in Wireless Networks

In this section, we describe another example of label assign-

ment based on shared connectivity. This case arises in the

context of assigning IP addresses to wireless devices. We

offer this example to illustrate a plausible use of DCP out-

side of the context of data center networking.

A local wireless network, e.g., within a building or a cor-

poration, consists of a set of fixed wireless access points and

mobile devices that move around within the network. At any

time, a mobile device may be within range of (and may use

the same channel as) several access points (APs), but it asso-

ciates with a single access point at a time. A handoff occurs

when the device changes its association from one AP to an-

other. If, as a result of handoff, the device needs to acquire a

new IP address, then ongoing communication sessions can

be disrupted.

There are different ways to avoid this need for a new IP

address. For example, the set of access points in a network

may utilize a wired distribution system to synchronize with

each other, ensuring that an IP address given to a device by

AP1 is permittable for use with AP2 as well. Or, the APs in

a network may communicate with a central server respon-

sible for ensuring IP address uniqueness among all network

7 More generally, for an Li hypernode, we add to the deciders all L1

switches that are 2n− i−1 hops from L1.

devices. Managing centralized state or requiring a separate

distribution system between APs places a significant addi-

tional management burden on the network operator.

A key difficulty of address assignment in this type of

network is the dynamism of the network; the set of mobile

devices varies over time, as does the set of access points vis-

ible to each mobile device. In fact, we learned from speak-

ing with network operators that the issues of changing sets

of devices and difficulty with handoff are significant pain

points for some types of wireless networks.

This dynamism suggests a solution using the Decider/-

Chooser abstraction. In wireless networks, we run an in-

stance of DCP with mobile devices as choosers and access

points as deciders, wherein a link between device md and

AP ap indicates that md is within range of ap, as shown in

Figure 12. A mobile device selects an IP address that is ac-

ceptable with respect to all APs within range, i.e. all of its

deciders. As a device moves throughout the network, its set

of deciders change, and if at any time it finds its IP address

to be in conflict (as reported by one of its deciders) it rese-

lects. This application of DCP has the benefit of removing

the requirement of a central authority or separate wired dis-

tribution system between APs, but without the need for IP

address reassignment on every handoff.

!"#$!"%$!"&$#$#$#$ %$!"

'(#$ '(%$ '(&$ '()$ '(*$

(+,-(+./$

,011/+./$

Fig. 12: Multiple AP Example

9 Context and Related Work

The problem we consider here arose in the context of au-

tomatic address assignment in large-scale data center net-

works, specifically, in the design of ALIAS [19], a proto-

col for automatically assigning hierarchically meaningful la-

bels, or addresses, in such networks.

Our solution uses a Las Vegas type randomized algo-

rithm: the labels that are computed always satisfy the prob-

lem specification, but the algorithm is only probabilistically

fast. It is also a fully dynamic algorithm [10], in that it makes

use of previous solutions to solve the problem more quickly

than by recomputing from scratch.

Assigning labels to nodes is not a new problem. For ex-

ample, in [8] the authors consider the issues of assigning

labels to nodes in an anonymous network of unknown size.

The quality of an assignment algorithm depends on the size

14 Meg Walraed-Sullivan et al.

of the label domain and the algorithm’s efficiency is based

on the convergence time and message load. The authors’ ap-

proach uses a special source node (the sole source of asym-

metry) to root a spanning tree of the anonymous network,

and explores the cost of propagating enough information to

label all nodes. We consider networks with significant sym-

metry: each network can be partitioned into bipartite graphs

of processes, even if a process may be made up of multiple

nodes. This symmetry and the use of randomization allows

us to devise an algorithm in which nodes only communicate

with immediate neighbors. This reduces the overall message

load relative to that of a network with only a single desig-

nated node.

Our solution can also be considered an instance of the

renaming problem [3,4,6] in which a set of processes, each

with a unique name chosen from some large name space, to-

gether assign themselves unique names from a smaller name

space. The protocol in [6]–which is for a shared memory

model–has a similar structure to DCP with a single decider

process: our decider has a role similar to a shared atomic

snapshot object in their protocol. Their protocol differs in

that they sought a deterministic solution; DCP can rename

into a smaller name space because it is randomized. Also,

LSP differs from the renaming problem: in LSP, two pro-

cesses can assign themselves the same (shorter) name if they

don’t share a decider.

Finally, the Label Selection Problem also relates to the

graph coloring problem (GCP). In fact, GCP is reducible to

LSP. The mapping from GCP to LSP is quite simple; ver-

tices in an instance of GCP, G = (V,E), correspond in a

one-to-one mapping to choosers in LSP, and for any pair of

vertices in G that are connected by an edge in E we create

a decider d and connect each of the corresponding choosers

to d. In this way, pairs of vertices that require different col-

ors in GCP correspond to pairs of choosers that require dis-

tinct coordinates in LSP. The mapping from LSP to GCP is

equally simple. Even though LSP can be mapped to GCP, the

LSP structure arises naturally in many protocol problems–

like those given in this paper–and the separation of processes

into choosers and deciders has helped us to refine DCP for

more practical application. However, some techniques for

graph coloring could be applied to LSP; for instance one

could apply the multi-trials technique introduced by Schnei-

der and Wattenhofer [16] to LSP.

10 Conclusion

This paper considers a version of the network node label-

ing problem where (1) labels are restricted based on connec-

tivity and (2) the connectivity can change. We call this the

Label Selection Problem. We give a Las Vegas style proto-

col, which we call the Decider/Chooser Protocol, that solves

this problem in an efficient manner, and apply this protocol

to the problem of automatic label assignment in data cen-

ter networks. We verify the correctness of DCP via proof

and model checking, and explore its performance through

analysis and simulation. We find that DCP is quite quick to

converge, even with a small label domain, due to the random

nature of the protocol. Thus, DCP is particularly well-suited

to the practical needs of the data center environment.

References

1. Cisco Data Center Infrastructure 2.5 Design Guide. http://www.

cisco.com/univercd/cc/td/doc/solution/.

2. M. Al-Fares, A. Loukissas, and A. Vahdat. A Scalable, Com-

modity Data Center Network Architecture. In Proceedings of the

ACM SIGCOMM 2008 conference on Data communication, SIG-

COMM ’08, pages 63–74, New York, NY, USA, 2008. ACM.

3. H. Attiya, A. Bar-Noy, D. Dolev, D. Peleg, and R. Reischuk. Re-

naming in an Asynchronous Environment. Journal of the ACM,

37:524–548, July 1990.

4. H. Attiya and J. Welch. Distributed Computing: Fundamentals,

Simulations and Advanced Topics. John Wiley & Sons, 2004.

5. T. Benson, A. Akella, and D. A. Maltz. Network Traffic Charac-

teristics of Data Centers in the Wild. In Proceedings of the 10th

annual conference on Internet measurement, IMC ’10, pages 267–

280, New York, NY, USA, 2010. ACM.

6. S. Chaudhuri, M. Herlihy, and M. R. Tuttle. Wait-Free Imple-

mentations in Message-Passing Systems. Theoretical Computer

Science, 220(1):211–245, June 1999.

7. D. Dao, J. Albrecht, C. Killian, and A. Vahdat. Live Debug-

ging of Distributed Systems. In Proceedings of the 18th Inter-

national Conference on Compiler Construction: Held as Part of

the Joint European Conferences on Theory and Practice of Soft-

ware, ETAPS 2009, CC ’09, pages 94–108, Berlin, Heidelberg,

2009. Springer-Verlag.

8. P. Fraigniaud, A. Pelc, D. Peleg, and S. Pérennes. Assigning La-

bels in Unknown Anonymous Networks (Extended Abstract). In

Proceedings of the nineteenth annual ACM symposium on Prin-

ciples of distributed computing, PODC ’00, pages 101–111, New

York, NY, USA, 2000. ACM.

9. A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,

P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. VL2: A Scal-

able and Flexible Data Center Network. In Proceedings of the

ACM SIGCOMM 2009 conference on Data communication, SIG-

COMM ’09, pages 51–62, New York, NY, USA, 2009. ACM.

10. M. R. Henzinger and V. King. Randomized Fully Dynamic Graph

Algorithms with Polylogarithmic Time per Operation. Journal of

the ACM, 46(4):502–516, July 1999.

11. C. Killian, J. W. Anderson, R. Jhala, and A. Vahdat. Life, Death,

and the Critical Transition: Finding Liveness Bugs in Systems

Code. In Proceedings of the 4th USENIX conference on Net-

worked systems design & implementation, NSDI ’07, pages 18–

18, Berkeley, CA, USA, 2007. USENIX Association.

12. C. Killian, J. W. Anderson, R. B. R. Jhala, and A. Vahdat. Mace:

Language Support for Building Distributed Systems. In Proceed-

ings of the 2007 ACM SIGPLAN conference on Programming lan-

guage design and implementation, PLDI ’07, pages 179–188, New

York, NY, USA, 2007. ACM.

13. C. Killian, K. Nagarak, S. Pervez, R. Braud, J. W. Anderson, and

R. Jhala. Finding Latent Performance Bugs in Systems Implemen-

tations. In Proceedings of the eighteenth ACM SIGSOFT interna-

tional symposium on Foundations of software engineering, FSE

’10, pages 17–26, New York, NY, USA, 2010. ACM.

A Randomized Algorithm for Label Assignment in Dynamic Networks 15

14. R. N. Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri,

S. Radhakrishnan, V. Subramanya, and A. Vahdat. PortLand: A

Scalable Fault-Tolerant Layer 2 Data Center Network Fabric. In

Proceedings of the ACM SIGCOMM 2009 conference on Data

communication, SIGCOMM ’09, pages 39–50, New York, NY,

USA, 2009. ACM.

15. F. B. Schneider. Implementing Fault-Tolerant Services Using the

State Machine Approach: A Tutorial. ACM Computer Surveys

(CSUR), 22(4):299–319, Dec. 1990.

16. J. Schneider and R. Wattenhofer. A New Technique for Dis-

tributed Symmetry Breaking. In Proceedings of the 29th ACM

SIGACT-SIGOPS symposium on Principles of distributed com-

puting, PODC ’10, pages 257–266, New York, NY, USA, 2010.

ACM.

17. M. D. Schroeder, A. D. Birrell, M. Burrows, H. Murray, R. M.

Needham, T. L. Rodeheffer, E. H. Satterthwaite, and C. P. Thacker.

Autonet: A High-speed, Self-configuring Local Area Network Us-

ing Point-to-point Links. IEEE Journal on Selected Areas in Com-

munications, 9(8):1318 –1335, October 1991.

18. H. J. Siegel and C. B. Stunkel. Inside Parallel Computers: Trends

in Interconnection Networks. IEEE Computer Science & Engi-

neering, 3:69–71, September 1996.

19. M. Walraed-Sullivan, R. N. Mysore, M. Tewari, Y. Zhang,

K. Marzullo, and A. Vahdat. ALIAS: Scalable, Decentralized

Label Assignment for Data Centers. In Proceedings of the 2nd

ACM Symposium on Cloud Computing, SOCC ’11, pages 6:1–

6:14, New York, NY, USA, 2011. ACM.

A The Label Selection Problem with Consensus

In this appendix, we discuss the difficulty of solving LSP with Con-

sensus, beginning with a simple example. Assume the choosers and

deciders are connected with a complete bipartite graph. One can im-

plement a Paxos-based state machine in which the choosers implement

both the clients of the state machine and the learners of Paxos, and the

deciders implement the proposer and acceptors of Paxos, as illustrated

in Figure 13. A proposer and an acceptor (e.g. nodes d2 and d3 in the

figure) can communicate by relaying via a chooser, selected randomly

for each message to ensure liveness in the face of crashed choosers.

One can implement the state machine so that the client (chooser) that

submits the first command is given label 0, the second client is given

label 1, etc. Or, one can have each client c choose a random c.me and

send it to the state machine; if c.me has been previously requested, then

c chooses a label that it has not yet learned has been assigned and tries

again. As long as no more than a minority of the deciders remain down

(any number of choosers can remain down), this protocol implements

the Progress and Distinctness properties of LSP.

!"# !$#

%"#

!&#

%$#

'()*+#',*-*+.,+#

'()*+#/%%.-0*,+#

'()*+#1.(,2.,+#

30(0.#4(%562.#786.20+#

Fig. 13: Simple Consensus Example

If not all choosers have the same set of deciders, then using Con-

sensus becomes messy. The Paxos state machine approach given above

can be used by flooding all communication, thereby virtually connect-

ing all processes. This has the drawback of possibly sending excessive

messages; the path between any two processes can be as long as the

total number of processes. It also unnecessarily restricts the choices of

choosers not sharing a decider: all choosers’ values will be unique even

if they don’t share deciders.

Another approach, and one that would not add such unnecessary

restrictions to the choices, is to use multiple state machines. Any two

choosers that share a decider use a common state machine to agree on

unique labels. For example, consider the scenario shown in Figure 14.

A valid set of choices is c1.me = c3.me = 0, and c2.me = 1. One could

have two Paxos state machines, one with c1,c2,d1,d2 and one with

c2,c3,d3,d4. In this approach, client c2 chooses c2.me at random and

sends it to both state machines. If c2.me has been previously assigned

by either state machine, then it chooses another label and tries again.

!
"#

!
$#

%
"#

%
$#

!
&#

%
&#

!
'#

!
"#

!
$#

%
"#

!
&#

%
&#

!
'#

%
$#

Fig. 14: Complex Consensus Example

This approach has its own set of problems. In this example, if any

decider crashes then the solution is not live, because each instance of

Paxos can tolerate only a minority of failures; with only two deciders,

no permanent crashes can be tolerated. In addition, determining the set

of state machines to run is not simple. The set can change as links and

switches fail and recover, which adds further complexity.

B From DCP to ALIAS Coordinate Selection

In this appendix we present the full derivation of the ALIAS [19] proto-

col from the basic version of DCP. We first review the ALIAS environ-

ment and details, as well as the basic chooser and decider algorithms.

Next, we discuss hypernode calculation, and we refine the chooser to

select multiple coordinates simultaneously. Finally, we apply the dis-

tributed chooser refinement described in Section 7.1. We present our

derivation in the context of a 3-level tree. Though our solution extends

to trees of arbitrary depth, we use this limitation for readability.

B.1 ALIAS and DCP Review

Recall that ALIAS switches form an indirect hierarchical topology [18]

of n levels, with end hosts connected to switches at the lowest level, L1.

Switches select coordinates that are combined to form topologically

meaningful labels; coordinates concatenate along a path from the root

of the tree to an end host in order to form a label for that end host. Since

there are multiple paths from the root of the tree to any given end host,

end hosts have multiple labels.

ALIAS switches are grouped into hypernodes: Li switches that

connect to identical sets of Li−1 hypernodes form Li-hypernodes that

share a single coordinate. Each switch at L1 is in its own hypernode,

and switches at the root of the tree are not grouped into hypernodes

as they do not require coordinates. Each Li switch is a member of

exactly one hypernode,8 and Li switches may be connected to Li+1

8 The set of Li hypernodes forms a set of equivalence classes over

the Li switches in a topology.

16 Meg Walraed-Sullivan et al.

Listing 6: Decider Algorithm

(Repeated from Listing 1)

set〈Chooser〉 choosers = ...

Choice[choosers] chosen = all[-1]

int[choosers] last seq = all[0]

// when connected to new chooser c

F: when new chooser c

choosers← choosers ∪ {c}
chosen[c]← -1

last seq[c]← 0

// respond to a message from chooser c

G: when receive 〈s, x〉 from c

if s≥last seq[c]

last seq[c]← s

if ∃ c’ ∈ (choosers \ {c}): chosen[c’] == x
chosen[c]← -1

else
chosen[c]← x

hints← {chosen[c’]∀ c’ ∈ (choosers \ {c})} \ {-1}

send 〈s, chosen[c], hints〉 to c

switches in multiple Li+1-hypernodes. Coordinate sharing within hy-

pernodes serves to ultimately reduce the number of labels per end host

in ALIAS. In a 3-level topology, only L2 switches are grouped into

hypernodes; L1 hypernodes are trivial, with one L1 switch per hypern-

ode, and L3 switches are at the root of the hierarchy and do not require

coordinate assignments or hypernodes.

Listing 7: Chooser Algorithm: Actions and State

(Bounded Channels, Repeated from Listing 5)

set〈Decider〉 deciders = ...

int seq = 0

Choice me = -1

(set〈Choice〉)[deciders] hints = all[/0]

// when needs to make a choice

A: when me == -1

choices← domain(Choice) \ {-1} \ {hints[d]∀ d ∈ deciders}
me← choose from choices

seq ++

SendTo(seq,me,deciders)

TO arm

// retransmit last msg sent to deciders yet to acknowledge

B: when timeout ∧ (me 6= -1)

ResendTo({d ∈ deciders: ¬HasReceivedAck(d)})

TO arm

// receive response from d

C: when receive 〈s, chosen, hint〉 from d

ReceiveAck(s,d)

if RecentAck(s,d)
hints[d]← hint

if CurrentChoice(s,d) ∧ (chosen == -1)
me← -1

if OldChoice(s,d) ∧ (me 6= -1)

SendTo(last choice[d],me,{d})

// learn of decider d and round is active

D: when detect new decider d ∧ (me 6= -1)

SendTo(seq,me,{d})

We begin our derivation by repeating the basic algorithms for the

decider’s actions (Listing 1) and the chooser’s actions (Listing 5) and

channel code (Listing 4), in Listings 6, 7, and 8, respectively. There

is one small change to the chooser’s channel code: we add routines to

clear a chooser’s channel corresponding to a particular decider, and to

copy channel state from one of chooser’s deciders to another. Also, we

replace the null coordinate value ⊥ with −1, as this corresponds to the

null value of a coordinate in the implementation of ALIAS.

Listing 8: Chooser Channel Predicates and Routines

(Bounded Channels, Repeated from Listing 4)

int[deciders] last ack = all[0]

(set〈int〉)[deciders] sent = all[/0]

〈int,Choice〉[deciders] last sent = all[〈0,-1〉]
int[deciders] last choice = all[0]

int max in chan = a non-zero constant

// ⇐⇒ c has an ack from d for its latest choice

boolean HasReceivedAck (d):

last ack[d] == last choice[d]

// ⇐⇒ s acknowledges c’s most recent choice for d

boolean CurrentChoice (s,d):

s == last choice[d]

// ⇐⇒ s acknowledges an obsolete choice for d

boolean OldChoice (s,d):

s < last choice[d]

// ⇐⇒ there is room in the channel to send to d

boolean CanSendTo (d):
| sent[d] | < max in channel

// ⇐⇒ c has sent its most recent choice to d

boolean SentLatest (d):

last sent[d][0] == last choice[d]

// ⇐⇒ s acknowledges c’s most recent message to d

boolean RecentAck (s,d):

s == last sent[d][0]

SendTo (s,x,D):

foreach d ∈ D do

if CanSendTo(d)

send 〈s,x〉 to d

sent[d]← sent[d] ∪ {s}
last sent[d]← (s,x)

last choice[d]← s

ResendTo (D):

foreach d ∈ D do

if | sent[d] |>0

send 〈last sent[d]〉 to d

ReceiveAck (s,d):

sent[d]← sent[d] \ {i: i≤s}
last ack[d]← s

ClearChannel (d):

last ack[d]←0

sent[d].clear()

last sent[d]← (0,-1)

last choice[d]←0

CopyChannel (d,ref):

last choice[d]←last choice[ref]

A Randomized Algorithm for Label Assignment in Dynamic Networks 17

We first consider the computation of hypernodes before continuing

with the remainder of the derivation in Section B.3.

B.2 Computing Hypernodes

Prior to assigning coordinates, ALIAS hypernodes need to be identi-

fied. We select a representative L1 switch for each Li hypernode via

a deterministic function, e.g. the L1 switch with the smallest UID (in

our implementation, MAC address) among those reachable via (i−1)
downward hops from switches in the hypernode. This L1 switch func-

tions as a distributed chooser’s representative (Section 7).

Listings 9 and 10 show the actions executed by L2 switches and L1

switches, respectively, for computing hypernodes and representative

L1 switches. In Action P, each time an L2 switch’s set of neighboring

L1 switches changes, it sends this set of neighboring L1 switches to

all of its L1 neighbors.9 An L1 switch stores this set (Action Q) and

computes the sending L2 switch’s hypernode. Regardless of whether

they represent any hypernodes, all L1 switches perform computation to

determine the set of L2 hypernodes to which they are connected. An L1

switch runs nearly identical code (omitted for space) when it detects

the disconnection of an L2 switch. There is also logic to ensure that

messages are eventually delivered, and that they are delivered in order.

This code is also omitted from the listings for brevity.

Listing 9: Hypernode Computation: L2 Switches

set〈Switch〉 L1s = ... // corresponds to choosers of Listing 6

set〈Switch〉 L3s = ...

// when L1 neighbors change

P: when detect change in L1s

foreach n ∈ {L1s ∪ L3s} do

send 〈L1s〉 to n

Listing 10: Hypernode Computation: L1 Switches

set〈Switch〉 L2s = ... // corresponds to deciders of Listing 12

(set〈Switch〉)[L2s] L1 sets = all[/0]

(set〈Switch〉)[L2s] HN = all[/0] // corresponds to HN of Listing 12

// on notification from L2 switch

Q: when receive 〈L1s〉 from s ∈ L2s

L1 sets[s]← L1s

HN[s]← {s}
foreach n ∈ {L2s \ {s}} do

if L1 sets[n] == L1 sets[s]

HN[s]← HN[s] ∪ {n}

foreach n ∈ HN[s] do
HN[n]← HN[s]

B.3 L1-coordinate Assignment: Basic DCP

In this section, we discuss the assignment of L1 coordinates to ALIAS

switches using DCP. We consider two options for L1 coordinate selec-

tion and discuss the tradeoffs associated with each.

9 It also sends this set to neighboring L3 switches to facilitate its

own hypernode’s coordinate assignment, as explained in Section B.4.

Recall that to assign L1 coordinates in ALIAS, we can simply ap-

ply DCP, with L1 switches as choosers and L2 switches as deciders.

Note that a single L1 switch may be participating as a chooser with

respect to several different sets of shared deciders. That is, chooser c1

may share deciders d1 and d2 with chooser c2 and deciders d3 and d4

with chooser c3. In fact, these sets of shared deciders correspond ex-

actly to the L2 hypernodes in the topology.

There are two options for L1 coordinate selection in ALIAS. Both

satisfy the Distinctness property of LSP amongst L1 switches:

1. Single L1 Coordinate: On one hand, we can assign a single L1

coordinate c1 to each L1 switch. In this case, the set of labels for an

L1 switch s1 will be of the form {(c2 1,c1),...,(c2 m,c1)}where c2 1

through c2 m are the L2 coordinates of each of the m hypernodes to

which l1 is connected.

2. L1 Coordinate Per L2 Hypernode: Another option is to assign

to l1 multiple L1 coordinates, one per neighboring L2 hypernode.

Here, l1’s label set will be of the form {(c2 1,c1 1),...,(c2 m,c1 m)},
and l1 will have an L1 coordinate corresponding to each neighbor-

ing L2 hypernode (and therefore each L2 coordinate c2 i).

There are tradeoffs between these two options. With option (1),

we have a simpler protocol; l1 only needs to select and keep track of

one coordinate. However, this scheme may unnecessarily restrict l1’s

coordinate choices, forcing the coordinate domain to be larger than

necessary. This is because l1 may compete with every other L1 switch

in the topology for its coordinate, even if it shares a different set of L2

deciders with each other L1 switch. Additionally, this scheme may re-

sult in extra communication on topology changes. A topology change

that introduces a connection between an L1 switch l1 and L2 switch l2
forces l1 and all of its neighboring L2 switches to rerun DCP. This could

potentially involve all L2 switches in the topology, even those outside

of l2’s hypernode. Option (2) provides the complement of these trade-

offs; it is more complex to implement, but reduces the required size of

the coordinate domain to the largest set of L1 switches all connected to

an L2 hypernode. Additionally, after a topology change, an L1 switch

only needs to communicate with the L2 switches in a single hypernode.

We illustrate these tradeoffs in Figure 15. Suppose the dotted link

is initially not present. In this case, regardless of the option used, each

L1 switch has only a single coordinate, as each only connects to one

L2 hypernode. Because s5 and s6 do not share deciders, they are free to

have the same coordinate, in this case 7. Initially, s5 has only a single

label in its set, {3.7}. Suppose that the dotted link now appears, causing

s5 to share a decider with s6. Under option (1), s5 will have to select a

new coordinate, and will have to communicate with all neighboring L2

switches (in this example, all L2 switches in the topology) to discover

that it cannot select 1 or 7. If it selects x 6=1,7, its new label set becomes

{3.x,4.x}, and the coordinate domain must include at least 3 choices.

On the other hand, with option (2), s5 only reselects its coordinate with

respect to hypernode {s3}, and can select a second coordinate that is

anything other than 7. s5 only communicates with s3 to accomplish

this, and its new label set is {3.7,4.x}, with x 6=7, giving an overall

coordinate domain size of 2.

!"#
$#

!%#

$#

!&#

"#

!'#

(#

!$#

&#

!)#

(#

*+,-.//01#########$2"##################$2(################&2(#

34-5+#"1######$2"##############$267#&26#############&2(#########6#8#9"7(:##

34-5+#%1######$2"##############$2(7#&26#############&2(#########6#8#9(: #

Fig. 15: Two Options for L1-Coordinate Selection

18 Meg Walraed-Sullivan et al.

We can implement the first option by simply running a single in-

stance of DCP: L1 switches take the role of choosers and L2 switches

are deciders. This approach uses the exact algorithms of Listings 6

through 8. However, because of the tradeoffs discussed above, ALIAS

adopts the second option for L1-coordinate selection; it assigns to each

L1 switch l1, a set of coordinates, one for each of l1’s neighboring L2

hypernodes. To implement this, we could run multiple simultaneous

instances of DCP at each L1 switch l1, one instance for each neigh-

boring L2 hypernode, in separate processes on l1. However, this can

be costly in terms of performance. Additionally, hypernode member-

ship changes may cause complicated interactions between these DCP

instances. Instead, we modify the chooser process to keep track of mul-

tiple coordinates at once. We perform this refinement in two steps.

In the first step, we introduce the concept of per-hypernode coordi-

nates into the chooser’s actions and state. This is shown in Listing 11.

Rather than storing just the set of neighboring deciders (c.deciders of

Listing 7), a chooser stores the set of neighboring hypernodes in c.HNs

and a map of hypernodes to their member deciders in c.deciders. The

chooser indexes c.me over its set of neighboring hypernodes, and so

all instances of c.me from Listing 7 are replaced with c.me[h] in List-

ing 11. Note that it is not necessary to index c.seq over hypernodes, be-

cause the only requirement of c.seq is that it increase with each choice;

it need not increase by exactly 1.

Listing 11: Chooser Algorithm: Actions and State

(Multi-Hypernode Refinement 1)

set〈HN〉 HNs

(set〈Switch〉)[HNs] deciders =...

int seq = 0

Choice[HNs] me = all[-1]

(set〈Choice〉)[deciders] hints = all[/0]

// when needs to make a choice

A: when ∃ h ∈ HNs: me[h] == -1

choices← domain(Choice) \ {-1} \ {hints[d]∀ d ∈ deciders[h]}
me[h]← choose from choices

seq ++

SendTo(seq,me[h],deciders[h])

TO arm

// retransmit last msg sent to deciders yet to acknowledge

B: when timeout

dests← {deciders[h]∀ h ∈ HNs: (me[h] 6= -1) ∧ (¬HasReceivedAck(h))}

ResendTo(dests)

TO arm

// receive response from d

C: when receive 〈s, chosen, hint〉 from d

choose h ∈ HNs: d ∈ deciders[h]

ReceiveAck(s,d)

if RecentAck(s,d)
hints[d]← hint

if CurrentChoice(s,d) ∧ (chosen == -1)
me[h]← -1

if OldChoice(s,d) ∧ (me[h] 6= -1)

SendTo(last choice[d],me[h],{d})

// decider d joins HN h and round is active

D: when ∃ d ∈ deciders, h ∈ HNs: (d joins deciders[h])∧ (me[h] 6= -1)

choose d’ ∈ deciders[h]: d’ 6= d

hints[d]← /0

ClearChannel(d)

CopyChannel(d,d’)

SendTo(seq,me[h],{d})

The guards and pseudocode for Actions A, B, and D change to in-

corporate the notion of a hypernode; when a chooser needs to make a

choice for a particular hypernode, Action A executes, Action B resends

to only those hypernodes that require retransmission10, and Action C

is updated to determine the hypernode to which the sending decider

belongs. When a chooser learns that a new decider has joined a hyper-

node, Action D executes and uses channel routines CopyChannel and

ClearChannel to enable a new hypernode member to “catch up” with

the other members. Here, we define joins as the moment when d moves

from deciders[h1] to deciders[h2], with h1 6= h2 and |h2| ≥ 2.

The refinement above is intuitive, but not directly implementable,

as we have no concrete representation for a hypernode. We address

this with our second step in Listing 12, by introducing the following

representation: To index a variable over a hypernode, we index it over

all individual member switches of the hypernode. To read a value of

a hypernode (e.g. c.me[h]), we read the corresponding value from any

decider in the hypernode, and to write a value to a hypernode, we write

to all members of the hypernode.

To keep track of neighboring deciders and hypernodes, a chooser

c stores the set of neighboring deciders (c.deciders) and a map of each

decider d to the set of deciders in d’s hypernode (c.HN). While c.me

was indexed over hypernodes in Listing 11, it is indexed over all de-

ciders in Listing 12. When the value of c.me is to be written for a

particular hypernode, it is written for all deciders in that hypernode,

and when it is read, it is read from a single member of the hypernode.

The guard for Action A, the set of deciders to receive resent messages

in Action B, and the operations in Action D are all updated to accom-

modate these changes. In Action D, we define“joins” as the moment at

which d moves from HN[d1] to HN[d2], with d1 6= d2 and |HN[d2]| ≥ 2.

Note that hypernode computation runs simultaneously with this

instance of DCP, with L1s of Listing 9, L2s of Listing 10, and HN of

Listing 10 corresponding to choosers (Listing 6), and deciders and HN

(Listing 12) respectively. We transition to these variable names in our

next refinement. Each L2 switch belongs to exactly one hypernode and

therefore participates in exactly one instance of DCP. So, the code for

the decider does not change from that of Listing 6 for this refinement.

The chooser’s channel-related code also remains as in Listing 8.

B.4 L2-coordinate Assignment

We next discuss the assignment of L2-coordinates to L2 hypernodes.

We use the extension of DCP introduced in Section 7.1 to allow each

L2 hypernode to function as a distributed chooser, with neighboring L3

switches as deciders. However, before giving the refinement for this

extension, we first consider the necessity of a distributed chooser for

L2 coordinate selection.

A tempting approach is to use one instance of DCP in which L3

switches are deciders and a single L2 switch from each hypernode is

a chooser. However, this does not work. For example, refer to the net-

work in Figure 8 (Section 7). There are three hypernodes: {s3}, {s4,s5},
and {s6}. The L2-coordinate shared by s4 and s5 must be distinct from

that of s3 and that of s6. Thus, whatever implements the chooser for the

hypernode {s4,s5} needs to communicate with the deciders at s1 and

at s2. Neither s4 nor s5 is connected to both deciders, and so s4 and s5

must together implement a chooser for their hypernode.

Given that we need the cooperation of all L2 switches in a hyper-

node, we apply the extension of DCP introduced in Section 7.1 for L2

coordinate selection. Recall that this extension distributes a chooser C

into a set, Relays(C), of processes that all share a common coordi-

nate as well as a single process, Repr(C), that performs the choosers

10 The astute reader may notice that the channel predicate

HasReceivedAck operates over a hypernode rather than a decider. This

temporary inconsistency will be resolved in our next refinement.

A Randomized Algorithm for Label Assignment in Dynamic Networks 19

Listing 12: Chooser Algorithm: Actions and State

(Multi-Hypernode Refinement 2)

set〈Switch〉 deciders = ... // corresponds to L2s of Listing 9

(set〈Switch〉)[deciders] HN = ... // corresponds to HN of Listing 9

int seq = 0

Choice[deciders] me = all[-1]

(set〈Choice〉)[deciders] hints = all[/0]

// when needs to make a choice

A: when ∃ d ∈ deciders: me[d] == -1

choices← domain(Choice) \ {-1} \ {hints[d’]∀ d’ ∈ HN[d]}
ME← choose from choices

foreach d’ ∈ HN[d] do
me[d’]←ME

seq ++

SendTo(seq,ME,HN[d])

TO arm

// retransmit last msg sent to deciders yet to acknowledge

B: when timeout

dests← {d ∈ deciders: (me[d] 6= -1) ∧ (¬HasReceivedAck(d))}
ResendTo(dests)

TO arm

// receive response from d

C: when receive 〈s, chosen, hint〉 from d

ReceiveAck(s,d)

if RecentAck(s,d)
hints[d]← hint

if CurrentChoice(s,d) ∧ (chosen == -1)

foreach d’ ∈ HN[d] do
me[d’]← -1

if OldChoice(s,d) ∧ (me[d] 6= -1)

SendTo(last choice[d],me[d],{d})

// decider d joins d′’s HN and round is active

D: when ∃ d, d’ ∈ deciders: (d joins HN[d’]) ∧ (me[d’] 6= -1)

me[d]← me[d’]

hints[d]← /0

ClearChannel(d)

CopyChannel(d,d’)

SendTo(seq,me[d],{d})

actions. Listings 13 and 14 contain the chooser’s actions and state for

Repr(C) and Relays(C), respectively.

As shown in Listing 13 a chooser’s representative maintains the set

of L2 switches to which it connects (c.L2relays), the hypernode mem-

bership of each neighboring L2 switch (c.HN), and the L3 deciders to

which each neighboring L2 switch connects (c.deciders). Since it will

compute a value of c.me to be shared by an entire hypernode, a repre-

sentative needs to index c.me over the set of neighboring hypernodes

(in case it represents multiple hypernodes). As in our previous refine-

ment, we index over hypernodes by writing a value for a hypernode

to all of its L2 members and by reading a hypernode’s value via any

of its L2 members. Therefore, c.me is indexed over the representative’s

neighboring L2 switches. The c.hints variable is index similarly.

Action A is triggered by a hypernode with a null value for c.me

(indicated by an L2 switch with a null value). The representative col-

lects all hints for this hypernode, selects a new choice for the hypern-

ode, and writes this choice to all of the hypernode’s L2 members. As

in previous version of the protocol, it then updates its sequence num-

ber, determines the deciders that neighbor this hypernode, and sends

Listing 13: Chooser Algorithm: Actions and State

(Distributed Chooser, Representative L1 Switches)

set〈Switch〉 L2relays

(set〈Switch〉)[L2relays] HN = ...

(set〈Switch〉)[L2relays] deciders = ...

int seq = 0

Choice[L2relays] me = all[-1]

((set〈Choice〉)[L2relays] hints = all[/0]

// when needs to make a choice

A: when ∃ l2 ∈ L2relays: me[l2] == -1

choices← domain(Choice) \ {-1} \ {hints[l2’]∀ l2’ ∈ HN[l2]}
ME← choose from choices

foreach l2’ ∈ HN[l2] do
me[l2’]←ME

seq ++

dests← {d ∈ deciders[l2’]∀ l2’ ∈ HN[l2]}
SendTo(seq,ME,l2,dests)

TO arm

// retransmit last message sent to deciders yet to acknowledge

B: when timeout

foreach l2 ∈ L2relays: me[l2] 6= -1 do

dests← {d ∈ deciders[l2]: ¬HasReceivedAck(d,l2)}
ResendTo(dests,l2)

TO arm

// receive response from d

C: when ¬Receive.empty()

[s,chosen,hint,rep l1,d,l2]← Receive.removeHead()

ReceiveAck(s,d,l2)

if RecentAck(s,d,l2)
hints[l2]← hint

if CurrentChoice(s,d,l2) ∧ (chosen == -1)

foreach l2’ ∈ HN[l2] do
me[l2’]← -1

if OldChoice(s,d,l2) ∧ (me[l2] 6= -1)

SendTo(last choice[d][l2],me[l2],l2,{d})

Listing 14: Chooser Algorithm: Actions and State

(Distributed Chooser, L2 Relay)

Switch myID

// when data to send

S: when ¬Send.empty()

[s,x,hn,rep l1,d] = Send.removeHead()

send 〈s,x,hn,rep l1〉 to d

// when data to receive

R: when receive 〈s,chosen,hint,rep l1〉 from d
Receive.append([s,chosen,hint,rep l1,d,myID])

its choice to the deciders via the appropriate relays.11 Action B dif-

fers slightly from previous version of the protocol, in that it checks for

whether a hypernode has made a choice in a f or loop rather than in

the Action’s guard. This is so the chooser can resend on behalf of all

necessary hypernodes in one execution of Action B, rather than only

resending for a single hypernode when the timer fires. Action C is trig-

gered by a non-empty Receive queue rather than by direct receipt of a

11 The representative includes the L2 switch that triggered this action

as an argument for the SendTo channel routine, so that the routine can

determine the appropriate set of relays for the message.

20 Meg Walraed-Sullivan et al.

message from a decider. The representative does not run its own copy

of Action D, rather all L1 switches run Action D as discussed below.

We next consider the L2 relays of the distributed chooser, as shown

in Listing 14. This listing introduces the two chooser Actions S and

R that partially implement the Send and Receive queues between the

chooser’s relays and representative. When a representative sends its

choice to a decider, it includes the sequence number, the choice itself,

the current hypernode’s members for which it is choosing, its own iden-

tity, and the decider for which the message is intended. The third and

fourth arguments are new in this refinement and are used at the decider

for book-keeping. In Action S, an L2 switch passes the first four param-

eters to the appropriate decider. Similarly, when a decider responds to

a representative’s choice, it includes the sequence number, the choice

(null if the message is a rejection), a set of hints, and the representative

L1 switch for which the message is intended. An L2 relay adds the de-

cider’s and its own identities to this information and enqueues it on the

Receive queue for retrieval by the representative via Action C.

Recall from Section 7 that all L1 switches, including non-rep-

resentatives, execute a version of Action D. This is shown in in List-

ing 15. Action D captures situations in which an L1 switch l1 newly

represents an L2 relay l2, either because l1 has just become a chooser

C ’s representative or because l2 switch has just joined Relays(C). Via

Action D, the representative resets and copies the associated state,

and then resends choices to deciders (via relays) as necessary. Non-

representative L1 switches also maintain and read Receive queues for

neighboring hypernodes. This is so they have current information on

the capacity left in all channels should they become a representative at

some point in the future. This is captured via Action C′, Listing 15.

Listing 15: Chooser Algorithm: Actions and State

(Distributed Chooser, All Neighboring L1 Switches)

// receive response from d

C’: when ¬Receive.empty()

[s,chosen,hint,l1rep,d,l2]← Receive.removeHead()

if ¬(AmRepL1(l2))

ReceiveAck(s,d,l2)

// when AmRepL1(l2) changes or l2’s HN changes

D: when ∃ l2 ∈ L2relays: AmRepL1(l2) becomes true ∨
∃ l2, l2’ ∈ L2relays: (l2 joins HN[l2’]) ∧ (me[l2’] 6= -1) ∧

(AmRep(l2’))

me[l2]← -1

hints[l2]← /0

ClearChannel(l2)

if ∃ l2’ ∈ L2relays: (l2 joins HN[l2’]) ∧ (me[l2’] 6= -1) ∧
(AmRep(l2’))

CopyChannel(l2,l2’)

seq++

dests← {d ∈ deciders[l2’]∀ l2’ ∈ HN[l2]}
SendTo(seq,me[l2],l2,dests)

The remainder of the changes to a chooser are in its channel rou-

tines and predicates, as shown in Listing 16. Since a relay provides a

virtual channel to a decider from a representative, the representative

indexes all channel variables over the entire virtual channel, decider

and relay. This affects all channel-related variables (sent, last sent,

last ack, and last choice) and the channel-bounding predicates.

The channel code houses the new Send and Receive queues, and

the SendTo and ResendTo routines append to the Send queue rather

than sending a message directly to a decider as in previous versions

of the protocol. Note that the SendTo and ResendTo routines enqueue

a message intended for a decider d onto the Send queue of every L2

Listing 16: Chooser Channel Predicates and Routines

(Bounded Channels, Distributed Chooser)

int[deciders][L2relays] last ack = all[0]

(set〈int〉)[deciders][L2relays] sent = all[/0]

〈int,Choice〉[deciders][L2relays] last sent = all [〈0,-1〉]
int[deciders][L2relays] last choice = all[0]

int max in chan = a non-zero constant

queue[L2relays] Send

queue[L2relays] Receive

// ⇐⇒ c has an ack from d via l2 for its latest choice

boolean HasReceivedAck (d,l2):

last ack[d][l2] == last choice[d][l2]

// ⇐⇒ s acknowledges c’s most recent choice to d via l2
boolean CurrentChoice (s,d,l2):

s == last choice[d][l2]

// ⇐⇒ s acknowledges an obsolete choice sent to d via l2
boolean OldChoice (s,d,l2):

s < last choice[d][l2]

// ⇐⇒ there is room in the channel to send to d via l2
boolean CanSendTo (d,l2):
| sent[d][l2] | < max in channel

// ⇐⇒ c has sent its most recent choice to d via l2
boolean SentLatest (d,l2):

last sent[d][l2][0] == last choice[d][l2]

// ⇐⇒ s acknowledges c’s most recent message to d via l2
boolean RecentAck (s,d,l2):

s == last sent[d][l2][0]

SendTo (s,x,l2,D):

foreach d ∈ D do

if CanSendTo(d,l2)

foreach l2’ ∈ HN[l2]: d ∈ deciders[l2’] do
Send[l2’].append([s,x, HN[l2],myID,d])

foreach l2’ ∈ HN[l2] do

sent[d][l2’]← sent[d][l2’] ∪ {s}
last sent[d][l2’]← (s,x)

foreach l2’ ∈ HN[l2] do
last choice[d][l2’]← s

ResendTo (D,l2):

foreach d ∈ D do

if |sent[d][l2]|>0

foreach l2’ ∈ HN[l2]: d ∈ deciders[l2’] do
Send[l2’].append([last sent[d][l2’],HN[l2],myID,d])

ReceiveAck (s,d,l2):

foreach l2’ ∈ HN[l2] do

sent[d][l2’]← sent[d][l2’] \ {i: i≤s}
last ack[d][l2’]← s

ClearChannel (l2):

foreach d ∈ deciders[l2] do

last ack[d][l2]← 0

last choice[d][l2]← 0
foreach l2’ ∈ L2relays, d ∈ deciders do

connects to d ← {l2” ∈ HN[l2’]: d ∈ deciders[l2”]}
if connects to d == /0

last sent.erase(d,l2’)

last choice.erase(d,l2’)

last ack.erase(d,l2’)

sent.erase(d,l2’)

CopyChannel (l2,ref,D):

foreach d ∈ D do

last choice[d][l2]← last choice[d][ref]

A Randomized Algorithm for Label Assignment in Dynamic Networks 21

switch that reaches d. As discussed in Section 7, a distributed chooser’s

representative has the option to send a message to a decider d via:

1. every L2 switch that it neighbors, letting the L2 switches filter un-

routable messages

2. all (or a subset) of its neighboring L2 switches that reach d, possi-

bly sending the choice to d via multiple relays

3. a subset of its neighboring L2 switches that reach d, possibly send-

ing the choice to d via multiple relays

4. only one of its neighboringL2 switch that reaches d.

These options have tradeoffs between synchronization complexity and

message load; we favor option (2) as a middle ground.

Finally, the ClearChannel function becomes more complicated, as

a result of the fact that we represent a hypernode with its constituent L2

members. Because of this representation, the channel bounding vari-

ables may include entries for decider-L2 switch pairs (d,l2) for which

l2 is not connected to d, but there is some l′2 in l2’s hypernode that is

connected to d. If l′2 leaves the hypernode containing l2, then any (d,l2)
values need to be removed.

For L2-coordinate assignment, the decider becomes more complex

as well. A decider keeps a record of all L2 and L1 switches it has seen

(d.L2relays and d.L1reps). It indexes the choosers that it has seen over

d.L2relays and d.L1reps, representing a chooser via its constituent L2

members (d.chooser). Finally, the decider indexes its choice variables

(chosen, and last seq) over entire choosers, L2 relays and L1 represen-

tatives. This is necessary because the representative switch for a hy-

pernode can change. Thus, deciders may maintain duplicate informa-

tion for a hypernode, namely information obtained from two different

switches claiming to represent that hypernode. Recall from Section B.2

that an L2 switch sends its current set of neighboring L1 switches to L3

switches when this set changes. As such, a decider d always knows the

most recent set of L1 switches to which a neighboring L2 is connected,

and d can compute the current representative switch for the hypernode

and select the appropriate value of d.chosen to pass to an overlying

communication protocol. Deciders employ a similar representation for

hypernodes as do choosers; they simply index over hypernodes by in-

dexing over the hypernodes’ member switches (as shown in Action G).

A decider may be connected to a chooser via multiple L2 switches,

and thus needs to make a decision on whether to accept a value received

via an L2 switch based on the hypernode of the L2 switch. This adds

a small amount of complexity to the decider’s Action G; A decider

compares a requested value x to those held by L2 switches in all other

hypernodes, regardless of the representative switches for those hyper-

nodes. As such, a decider compares x to chosen[l′2][l
′
1] for any value of

l′1. Listing 17 shows the modified decider code.

B.5 Summary

This completes the protocol derivation from the basic DCP to a solution

for coordinate selection in ALIAS. L1 switches function as choosers for

L1 coordinates (Listings 8 and 12), as potential representatives for L2

coordinate selection (Listings 13, 15, and 16) and as hypernode calcu-

lators (Listing 10). L2 switches act as relays for L2 coordinate selec-

tion (Listing 14), as deciders for L1 coordinate selection (Listing 6)

and as hypernode change notifiers (Listing 9). Finally L3 switches are

deciders for L2 coordinate selection (Listing 17).

Listing 17: Decider Algorithm

(Distributed Chooser)

set〈Switch〉 L2relays = ...

set〈Switch〉 L1reps = ...

(set〈Switch〉)[L2relays][L1reps] choosers = ...

Choice[L2relays][L1reps] chosen = all[-1]

int[L2relays][L1reps] last seq = all[0]

// when connected to new L2 switch

F: when new l2 ∈ L2relays with representative l1
L2relays← L2relays ∪ {l2}
L1reps← L1reps ∪ {l1}
choosers[l2][l1]← {l2}
chosen[l2][l1]← -1

last seq[l2][l1]← 0

// respond to a message from L2 switch l2
G: when receive 〈s,x,hn,l1〉 from l2

L1reps← L1reps ∪ {l1}
if s≥last seq[l2][l1]

foreach l2’ ∈ choosers[l2][l1] do

choosers[l2’][l1]← hn

last seq[l2’][l1]← s
if ∃ l2’∈ L2relays, l1’∈ L1reps: (l2’/∈ choosers[l2][l1]) ∧

(chosen[l2’][l1’] == x)

foreach l2’ ∈ choosers[l2][l1] do
chosen[l2’][l1]← -1

else

foreach l2’ ∈ choosers[l2][l1] do
chosen[l2’][l1]← x

hints← {chosen[l2’][l1’]∀ l1’ ∈ L1reps, l2’ ∈ (L2relays \ choosers[l2][l1])}

hints← hints \ {-1}
send 〈s,chosen[l2][l1],hints,l1〉 to l2

