
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Using Multithreaded Techniques to Mask Memory Latency on FPGA Accelerators

Permalink
https://escholarship.org/uc/item/45m0d5b0

Author
Halstead, Robert Joseph

Publication Date
2015

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/45m0d5b0
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Using Multithreaded Techniques to Mask Memory Latency on FPGA
Accelerators

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Robert Joseph Halstead

March 2015

Dissertation Committee:

Dr. Walid A. Najjar, Chairperson
Dr. Vassilis Tsotras
Dr. Nael Abu-Ghazaleh
Dr. Zizhong Chen

Copyright by
Robert Joseph Halstead

2015

The Dissertation of Robert Joseph Halstead is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

I thank my committee, without whose help, I would not have been here.

iv

To my parents and family.

v

ABSTRACT OF THE DISSERTATION

Using Multithreaded Techniques to Mask Memory Latency on FPGA
Accelerators

by

Robert Joseph Halstead

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, March 2015

Dr. Walid A. Najjar, Chairperson

The performance gap between CPUs, and memory memory has diverged sig-

nificantly since the 1980’s making efficiency memory utilization a key concern for any

application developer. Modern CPUs will process orders of magnitude more data than

their memory architectures can sustain. Multiple levels of caches are used by the ma-

jor CPU architects to cope with this issue. Frequently used data is stored as close as

possible to the core, which allows it to be retrieved in a few cycles. Compared to the

thousands of cycles it would take to be retrieved from main memory. However, data

locality is important for caches to be effective, and as applications become more and

more irregular the CPU’s performance drops. This causes many important applications

(e.g. sparse matrices, graphs, hash tables) to suffer from poor performance. This thesis

explores how custom hardware accelerators using memory masking multithreaded tech-

niques can be used to improve performance. In hardware multithreaded designs thread

states are managed directly in hardware, and with enough application parallelism they

can fully mask memory latency without storing data in caches. Designs scale well to

match the memory architectures bandwidth. The emergence of heterogeneous FPGA

platforms has made it easier to build and test the design on real world hardware.

vi

This thesis starts with the issue of programmability. Hardware development is

notoriously difficult and time consuming. The CHAT tool, a C-to-VHDL compiler, is

presented that assists developers by generating custom multithreaded kernels from high

level software descriptions. The thesis proceeds by using CHAT to generate a custom

Sparse Matrix Vector (SpMV) kernel. Results show how multithreading can provide

data independent performance. Compared to the software and GPU performance which

drops significantly as the benchmark’s irregularity increases. Cache miss rates increase

on the CPU, and memory cannot be coalesced as efficiently on the GPUs. Finally

we use multithreading to accelerate two common database operations: Hash join, and

aggregation. They are the first in-memory implementations on FPGA hardware. The

hash join design shows an improvement of 2x over the best multicore software designs

available, and does so with 33% less memory bandwidth. Aggregation shows comparable

performance when generating hash tables. However, it generates multiple tables that

need to be merged, and this step reduces performance on high cardinality datasets.

vii

Contents

List of Figures x

List of Tables xiii

1 Introduction 1

2 Background 6
2.1 Latency Masking Multithreaded Architectures 7

2.1.1 Full Latency Masking Architectures 8
2.1.2 Sun UltraSPARC T Processors 9

2.2 Sparse Matrix Vector Multiplication . 10
2.2.1 Sparse Matrix Formats . 10

2.2.1.1 Coordinate Format . 11
2.2.1.2 Compressed Sparse Row 11
2.2.1.3 ELLPACK . 13
2.2.1.4 Hybrid format . 14

2.2.2 FPGA Approaches . 14
2.2.3 GPU Approaches . 15

2.3 Accelerating Database Operations with FPGAs 16
2.3.1 Query Processing & DBMSes . 17
2.3.2 Join Operations . 18

3 CHAT - Compiled Hardware Accelerated Threads 20
3.1 Taxonomy of Irregular Applications . 22
3.2 The CHAT Compiler . 25

3.2.1 Hi-CIRRF in SUIF 2.0 . 25
3.2.2 Lo-CIRRF in LLVM . 27

3.3 Simple Irregular Applications . 28
3.3.1 One Dimensional Indexing . 29
3.3.2 Two Dimensional Indexing . 30

3.4 Experimental Evaluation . 31
3.4.1 Convey HC-2ex Implementation 31
3.4.2 Runtime Performance . 33

3.5 Conclusion . 35

viii

4 A Multithreaded Sparse Matrix Mulitplication Kernel 36
4.1 A Multithreaded Sparse Matrix Kernel 37

4.1.1 SpMV Kernel Code . 37
4.1.2 Processing Element . 38
4.1.3 Thread Management . 40
4.1.4 HC-2ex FPGA Implementation 41

4.2 Experimental Evaluation . 42
4.2.1 Experimental Setup . 42
4.2.2 Memory Footprint of Sparse Matrix Storage Formats 45
4.2.3 Dense Matrix Experiments . 45
4.2.4 Throughput Comparison with CSR 47
4.2.5 FPGA vs. GPU Throughput with different Sparse Matrix Formats 50
4.2.6 Normalized Throughput . 51
4.2.7 Throughput on Truly Irregular Data 52

4.3 Conclusion . 53

5 FPGA based Multithreading for In-Memory Hash Joins 55
5.1 Related Work . 55
5.2 Proposed Approach . 57

5.2.1 Build Phase Engine . 57
5.2.2 Probe Phase Engine . 59
5.2.3 Possible Optimizations . 61

5.3 Experimental Results . 62
5.3.1 Convey-MX Platform . 64
5.3.2 FPGA & Software Implementations 64
5.3.3 Dataset Description . 66
5.3.4 Throughput evaluation . 67
5.3.5 Scalability . 71
5.3.6 Throughput Efficiency . 75
5.3.7 FPGA Area Utilization . 77

5.4 Conclusion . 78

6 FPGA based Multithreading for In-Memory Aggregation 79
6.1 A FPGA Aggregation Kernel . 80
6.2 Implementation Considerations & Limitations 83
6.3 Experimental Evaluation . 84

6.3.1 FPGA & Software Implementations 84
6.3.2 Dataset Description . 86
6.3.3 Throughput Evaluation . 88
6.3.4 Effects of the Merge Operation 92

6.4 Conclusion . 93

7 Conclusion 94

Bibliography 97

ix

List of Figures

1.1 Graph comparing the performance of single core processors to memory
from the 1980’s to the 2010’s. 2

2.1 An example matrix that is used to show how different sparse matrix
formats store data. 11

2.2 COO, CSR and ELL sparse matrix storage formats for the example matrix
in Figure 2.1. 12

3.1 A taxonomy of irregular applications where the number of threads and
the workload sizes are, or are not deterministic. 23

3.2 FPGA components for the 1-dimensional kernel as generated by CHAT.
Notice that the B input controller is optimized to shared its data between
all A input controllers. 31

3.3 FPGA components for the 2-dimensional kernel as generated by CHAT.
Notice that the B input controller cannot share its data between separate
A input controllers. 32

3.4 FPGA vs CPU runtime performance comparing sequential and random
data on a 1-dimensionally index array. Dataset sizes range from 1 million
8-byte integers to 10-billion 8-byte integers. 33

3.5 FPGA vs CPU runtime performance comparing sequential and random
data on a 2-dimensionally index array. Dataset sizes range from 1 million
8-byte integers to 10-billion 8-byte integers. 34

4.1 Each PE is assigned a thread. It requests the necessary data (Column,
Vector, and Value) from global memory. Returned data values are pushed
through the multiply pipeline, and summation unit. 39

4.2 The MT-FPGA architecture on one AE. Control signals specify the num-
ber of jobs (length), and the base addresses of the sparse matrix arrays.
All memory channels of the AE are utilized. 40

x

4.3 The sustained SpMV throughput as the matrix sizes increase. The ma-
tricies are dense, but stored in CSR format. The Convey HC-2ex is fully
utilized with 20 PEs. 46

4.4 The sustained memory bandwidth, and throughput as the number of PEs
increases. All test use a dense 4 million non-zero element dense matrix
stored in CSR format. 47

4.5 FPGA, CPU, and GPU throughput performance on suite 1. 48

4.6 FPGA, CPU, and GPU throughput performance on suite 2. 48

4.7 FPGA, CPU, and GPU throughput performance on suite 3. 48

4.8 FPGA vs Kepler GPU throughput performance. The GPU uses different
matrix formats to improve performance. 50

4.9 Throughput performance for each architecture normalized to the available
bandwidth. 51

4.10 Visual printout of the sparse matrices used to benchmark Section 4.2.4
results. 52

4.11 FPGA, CPU, and GPU throughput performance on truly irregular data. 52

5.1 The FPGA Build Phase Engine. 58

5.2 The FPGA Probe Phase Engine. 60

5.3 The Convey MX software and hardware regions. 63

5.4 Each Convey MX FPGA AE has 8 memory controllers, which are split
into 16 channels for the FPGA’s logic cells. 63

5.5 Unique dataset throughput as the build relation size is increased. 68

5.6 Random dataset throughput as the build relation size is increased. . . . 68

5.7 Zipf 0.5 dataset throughput as the build relation size is increased. . . . 69

5.8 Zipf 1.0 dataset throughput as the build relation size is increased. . . . 69

5.9 FPGA throughput scaling. The Build Relation has 221, Probe has 228

tuples . 72

5.10 FPGA throughput scaling. The Build and Probe Relations both have 228

tuples . 72

5.11 Partitioned CPU throughput scaling. The Build Relation has 221, Probe
has 228 tuples . 73

5.12 Partitioned CPU throughput scaling. The Build and Probe Relations
both have 228 tuples . 73

xi

5.13 Non-Partitioned CPU throughput scaling. The Build Relation has 221,
Probe has 228 tuples . 74

5.14 Non-Partitioned CPU throughput scaling. Build and Probe Relations
both have 228 tuples . 74

5.15 Throughput efficiency when Build Relation has 221, Probe has 228 tuples 76

5.16 Throughput efficiency when Build and Probe Relations both have 228 tuples 76

6.1 A flow chart for an aggregation job through the kernel. 80

6.2 The FPGA aggregation engine. 81

6.3 Aggregation throughput for hardware and software approaches on the
uniform dataset. 87

6.4 Aggregation throughput for hardware and software approaches on the
heavy hitter dataset. 88

6.5 Aggregation throughput for hardware and software approaches on the
moving cluster dataset. 89

6.6 Aggregation throughput for hardware and software approaches on the self
similar dataset. 89

6.7 Aggregation throughput for hardware and software approaches on the
Zipf 0.5 dataset. 90

6.8 Aggregation throughput for the FPGA on multiple relation sizes with
uniform key distribution. Results are shown without (solid line), and
with (dashed line) the merge operation. 91

6.9 Aggregation throughput for the FPGA on multiple relation sizes with
heavy hitter key distribution. Results are shown without (solid line), and
with (dashed line) the merge operation. 92

xii

List of Tables

1.1 Cache sizes for Intel Xeon Processors. 2

2.1 Specifications for the UltraSPARC T series procesors. 9

4.1 FPGA utilization when varying the number of PEs. 41

4.2 An architecture specification for the various hardware used in SpMV com-
parisons. 42

4.3 Sparse matrix dimensions, and their throughput (DP GFLOPS) on our
hardware accelerators. All benchmarks are taken from the UF Sparse
Matrix Collection [67]. 43

4.4 The memory storage requirement (MB) for each benchmark in the three
sparse matrix formats. ELL pads all smaller rows to the length of the
longest. When this is unreasonably long (> 10 GB) we mark its size as
N/A. 44

5.1 FPGA Resource utilization. 77

xiii

Chapter 1

Introduction

Processor performance has significantly outpaced memory performance creat-

ing a latency gap. The major chip manufactures rely on multilevel cache designs to

help their CPU processors maintain high performance. Caches leverage the spacial and

temporal locality within an application to reduce the number of requests back to main

memory. Frequently used values are stored closer to the processing core where the la-

tency is much lower. The paradigm woks well for many applications, but there exists

many important applications that do not work well on caches. We call them irregular

applications, and by definition they have poor locality. Applications like sparse matri-

ces, graphs, hash tables, etc. Developers working on these problem often try to remove

irregularity or find ways to improve locality. They are contorting their problems to work

with commodity processors. Table 1.1 shows a few processors Intel has released in its

Xeon line. A trend emerges showing a continual growth in the shared L3 caches size. A

similar pattern can be seen with other chip manufactures, and suggests that the caching

model will be around for the foreseeable future.

1

Table 1.1: Cache sizes for Intel Xeon Processors.

Processor # of Cores L2 cache size L3 cache size

E3-1290 4 256 KB 8 MB
E5-4620 8 256 KB 20 MB
E7-8880 15 256 KB 37.5 MB

Figure 1.1: Graph comparing the performance of single core processors to memory from
the 1980’s to the 2010’s.

Figure 1.1 shows how the gap between CPU and memory performance haw

widened since the early 1980s up until the 2010s. Modern processors can now generate

3 orders of magnitude more requests than the memory architectures can fulfill. This

high request rate coupled with long access latencies means that processors spend the

majority of their time idle. Caches hold data for common memory addresses closer

to the processing units, which shortens the access time by limiting requests to global

memory. CPU cores request data from the on-chip cache, and if the request hits the

value is returned within a few cycles. Much faster than the thousands of cycles needed

to fetch data from main memory. When a request misses, or needs to be written back,

the architecture will issue a global request, but it is only done when necessary.

Applications with predictable memory access patterns are called regular appli-

cations. They often have high locality, and are well suited for caching platforms. Ap-

2

plication with unpredictable memory access patterns are called irregular applications.

They often have poor locality, but developers still try to make them work on commodity

hardware (i.e. caching CPUs). Their workloads pull data from many different memory

locations jumping around memory in seemingly random ways. Two examples of irregular

applications that this thesis addresses are hash tables, and sparse matrices. Hash tables

rely on good hashing functions that randomly distribute keys across a range of values.

Two jobs that accesses the table one after the other can be reading or writing to vastly

different physical locations in memory. This thesis uses hash tables in the context of

database applications, but they are also used for filtering, virus detection, and ironically

caching. Sparse matrices are used for graphs, economic models, and simulations. They

are often large with few non-zero elements. Storage formats are very important for fast

processing, but because the non-zero values can be spread erratically around the matrix

these formats introduce irregularity. Sparse Matrix Vector multiplication (SpMV) is a

common operation that is considered in this thesis.

Latency masking multithreaded architectures are an alternative to the caching

model common in todays CPUs. Commercial machines like the Tera MTA [4], or Cray

XMT [45] have been used in research labs since the early 1990s. They came from

research architectures like the Denelcore HEP [60], and Horizon [36]. They provide

direct hardware support to manage a large number of threads on a single core. When

one thread issues a memory request it relinquishes execution, and it is context switched

out for another. The thread is unstalled once the request has been fulfilled, and ut can

continue executing. These platforms support enough threads to fully mask the memory

latency. If all threads were to issue a request one after the other by the time the last

request is issued the data for the first thread will be available. Identifying enough

parallelism in an application is the hurdle preventing these platforms from becoming

3

general purpose machines. The Sun UltraSPARC T series processors offer a middle

ground between multithreaded, and cache architectures. They rely on caches, but also

offer direct hardware support for 8 to 16 concurrent threads.

Field Programmable Gate Arrays (FPGAs) have shown massive speedup po-

tential for a wide range of applications. Their ability to support highly parallel designs,

coupled with their re-programmability have made them very attractive platforms for

regular applications. Custom pipelined datapaths allow the FPGA to execute in paral-

lel what could take thousands of operations in software. They can outperform software

designs by 100x to 1000x all while reducing energy consumption. Image processing

[17, 69], computer vision [33], data mining [57], bioinformatics [21, 22], financial analy-

sis [56], and streaming databases [44, 47] are just a few of areas where FPGAs can been

used.

Programmability, and ease of use deter many software developers from ex-

panding into hardware development. FPGAs are notorious for complex designs, long

debug cycles, and difficult verification among other things. Some if these difficulties

are inherent to the platform. Hardware design is fundamentally different from software

design, and require a shift in thinking. However, some of these issues can be alleviated

by advances in hardware design tools. Major FPGA manufactures are actively develop-

ing High Level Synthesis (HLS) tools to help software software developers utilize their

boards. The goal for HLS is to compile a high-level language (C, C++, Java, etc.) di-

rectly to RTL. These tools could gain more interest as industry continues to develop new

heterogeneous architectures that incorporate FPGAs. Companies like Convey Comput-

ers [16], Maxeler Technologies [42], and Pico Computing [53] are already already offer

them. Software APIs allow developers to easily interface software execution with their

hardware. Depending on the architecture data can be offloaded to the FPGA similar

4

to GPU platforms, or the FPGA can have direct access to global memory. FPGAs now

have easy access to significantly larger memory spaces, which allows researchers to con-

sider much larger real-world problems. However, the larger memories come at a cost of

higher latencies. It is an open question, the best way to deal with longer memory access

times. Caches are tried, and true for CPUs, but FPGAs offer a level of parallelism that

can be leveraged by other methods.

This thesis considers how multithreaded architecture approaches to latency

masking can be applied to the emerging FPGA memory latency issue. It starts by

addressing the FPGA programmability issue. The Compiled Hardware Accelerated

Threads (CHAT) tool is a C-to-VHDL compiler that can be used to create custom

multithreaded circuits. It is intended to improve development time for application de-

velopers who are not familiar with hardware by generating synthesizeable VHDL. A

standard FIFO interface is used to request, and collect data making the circuit plat-

form independent. Developers only need to interface it with their memory architecture.

CHAT is then used to develop a Sparse Matrix Vector (SpMV) kernel. Finally, this

thesis considers how latency masking multihreading can be applied to common relation

database operations. It presents the first end-to-end in-memory hash join implementa-

tion entirely on an FPGA. Custom multithreaded circuits are presented for the join’s

build and probe phases. A custom multithreaded circuit is also presented for aggrega-

tion.

5

Chapter 2

Background

FPGAs are traditionally used for streaming, and regular applications. They

provide developers a highly parallel platform that can allocate tens to thousands of

individual components, and run them all concurrently. Custom pipelined datapaths can

be created for regular applications because by definition they have predictable memory

access patterns. In this domain FPGAs have been used to achieve significant speedups

over software designs [44, 72, 47, 33].

The FPGA community has began pushing to include reconfigurable fabrics in

heterogeneous architecture. Often this required labs to build one-off custom machines

to test their designs. However, since the mid 2000’s commercial platforms have began to

enter the market. This thesis looks to expand the application domain of FPGAs by con-

sidering applications that are not streamable. That do not have regular memory access

patterns. We incorporate known techniques like latency masking and multithreadding.

The FPGA now decides the memory locations it needs, instead of being simply pushed

new values. We apply our designs to sparse matrix and database applications.

6

2.1 Latency Masking Multithreaded Architectures

Multithreaded architectures provide direct hardware support to manage multi-

ple threads on a single core. This differs from modern multiprocessor architectures that

can execute multiple threads in parallel, but do so on independent cores. A single multi-

threaded core can handle 10s to 100s of concurrent threads while a single multiprocessor

core handles only one, or two with ”simultaneous multithreading” technology.

In parallel applications a multithreaded architecture can offer better core uti-

lization than a multiprocessor architecture. Multiprocessor architectures use multitask-

ing to interleave thread execution, which allocates time slots for threads to be scheduled

into. In the simple case each thread is scheduled in round-robin fashion and given equal

time to execute. However, if a thread is waiting for a resource (i.e. a cache miss) it

will still be scheduled into a slot, and during this time the multiprocessor core will be

idle. In contrast the multithreaded architecture has dedicated hardware resources for

thread management. When a thread needs an unavailable resource it issues the request

and goes into a stalled state. The multithreaded core is then free to execute non-stalled

threads, and it only goes idle if all threads are stalled.

The extra hardware to manage thread states typically results in slower clock fre-

quencies for multithreaded arhcitectures compared to multicore ones. Longer pipelines

are also common to manage the context switching, which could hurt performance on

single threaded applications. However, this is more of a concern for sequential, than for

parallel, applications.

7

2.1.1 Full Latency Masking Architectures

Memory masking multithreaded architectures are not a novel idea. They have

existed in some form since the Denelcore HEP [60, 30], and Horizon Architecture [36, 68]

was proposed in the late 1980’s, if not earlier. The idea was simple. Architects first

measured how many clock cycles it took to fulfill a memory request. In the Horizon’s

case most requests averaged between 50 to 80 cycles, but almost all requests could be

handled within 128 cycles. The architects then built custom processors to supported

that many outstanding requests; 128 threads in the case of the Horizon. The processors

had very fast context switching (one clock cycle) so that once a request was issued

by a thread it could immediately switch to another thread. In this way the processor

was fully utilized. In the worst case all 128 threads would issue a memory request.

However, by the time the 128th request was issued the 1st request would be fulfilled,

and the processor could continue running without interruption. This technique is called

memory masking, and is integral to a multihreaded architecture’s performance.

The Tera Computer Company released its Tera MTA [3, 4, 61] machine. Each

of its processors could run at 300 MHz, and they could support 128 hardware threads.

The only physical machine, that we are aware of, was installed at the San Diego Su-

percomputer Center [10] and it contained 4 processors. Therefore, It could support 512

threads. To lower the network traffic the MTA’s instructions were fetched through a

shared cache. However, it had no data cache and relied purely on multithreading to

mask the memory latency.

The Tera Computer Company eventually merged with the research division of

Cray. They continued to develop their multithreaded platforms; Cray MTA-2 (2002),

and Cray MTA-3/XMT (2009). The MTA-2 was not widely adopted with one unit

8

being sold to the United States Naval Research Laboratory. The XMT was much more

successful in the research community [45, 71, 25, 15]. It supported up to 8,192 processors

each running at 500 MHz, and they could share 128 TBs of RAM [20]. However, the

largest machines sold only contained 64 processors, but the Cray research labs built and

tested machines with up to 512 processors.

The main challenge for multithreaded architectures has been to extract enough

parallelism to fully utilize their processors. Identify parallelism at compile time or

runtime is a non-trivial task. This issue is a major factor preventing these architectures

from being general purpose machine, and being more widely adopted. However, they

have found use in the High Performance Computing industry because they perform

well on irregular applications. Modern CPUs rely on efficient caching to sustain a high

performance, and they struggle with the poor spatial and temporal locality inherent to

irregular applications. However, memory masking is unaffected by the irregular access

patterns.

Table 2.1: Specifications for the UltraSPARC T series procesors.

Year Cores Threads/Core Cache Clock Freq (GHz)

UltraSPARC T1 2005 8 4 3 MB L2 1.4
UltraSPARC T2 2007 8 8 4 MB L2 1.6
UltraSPARC T3 2010 16 8 6 MB L2 1.67
UltraSPARC T4 2011 8 8 4 MB L3 3.0
UltraSPARC T5 2013 16 8 8 MB L3 3.6

2.1.2 Sun UltraSPARC T Processors

Starting in 2005 Sun produced a line of multithreaded multicore processors

based on its UltraSPARC architecture; Table 2.1. The first processor (UltraSPARC

T1) had 8 cores that could support 4 threads concurrently. Each core would context

9

switch between active threads each cycle. This increased the overall latency of a single

thread, but allowed the cores to be better utilized. Threads did not need to be from

the same application, but cache performance improved if the threads were accessing the

same data locations. Sun stedaly improved the architecture by adding more floating-

point units, memory bandwidth, and increased the number of cores. However, when

the UltraSPARC T4 was released they decreased the number of cores, but dramatically

increased the clock frequency. This was a move to broaden their target audience by

improving the single thread performance.

2.2 Sparse Matrix Vector Multiplication

Sparse matrix Vector (SpMV) multiplication is a very important kernel to

Scientific, and High-Performance computing. It has been widely studied for many years.

Most research has focused on how to best store the data in memory; 1. minimize the area

(memory footprint), and 2. improve a platform’s memory accesses. Many formats have

been proposed from the simple Coordinate (COO) or Compressed Sparse Row (CSR)

formats to the specialized ELLPACK and Diagonal (DIA) formats. No one ideal format

exists for all matrices on all platforms. In this section we present the common sparse

matrix storage formats, and report the significant results and approaches for SpMV

using hardware accelerators.

2.2.1 Sparse Matrix Formats

The first concern of any sparse matrix application is how to best store the

matrix in memory for the given architecture. Many different approaches have been

proposed throughout the years, and we highlight the most general ones here. The

10

Figure 2.1: An example matrix that is used to show how different sparse matrix formats
store data.

memory masking model is unconcerned with the access patterns, and therefore we are

interested in finding the matrix format with the smallest memory footprint. We use the

matrix in Figure 2.1 to help show how each format stores its data.

2.2.1.1 Coordinate Format

The coordinate format (COO) is the most intuitive approach to storing a sparse

matrix: for each non-zero element it stores its row position, column position, and value.

As shown in Figure 2.2(a) each data point is stored in a separate array. Each non-zero

element is assigned a unique index, and this index is used to access each array. In our

example we assign the indices in sequential order, but this is not a requirement of COO.

Non-zero elements can be spread randomly throughout the array so long as the row,

column, and value share the same index within their respective arrays.

2.2.1.2 Compressed Sparse Row

The compressed sparse row (CSR) is a natural extension to the COO format

and is the most commonly used format. It stores all the column position, and value

points in two separate arrays; just like COO. However, it saves memory by compressing

the row position. As shown in Figure 2.2(b) some row positions are repeated multiple

11

(a) COO format

(b) CSR format

(c) ELL format

Figure 2.2: COO, CSR and ELL sparse matrix storage formats for the example matrix
in Figure 2.1.

12

times. Instead of storing repetitive values the CSR format uses a rowptr array, which

only points to the first element of each row. To be functionally correct the column, and

value array must be sorted by row such that all elements in row i are placed before any

element in row i + 1.

The compressed sparse column format (CSC) is almost identical to CSR, but

instead of compressing the row array it compresses the column array. The CSC format

is less widely used because its workloads are harder to distribute evenly. SpMV has one

output per row (not per column), and with CSR each output can be computed within a

single processing element (PE). CSC would require synchronization across multiple PEs

to prevent race conditions.

2.2.1.3 ELLPACK

The ELLPACK (ELL) format rose in popularity with vector processors. Peak

performance required each processor to run the same workload. To achieve this ELL

would zero pad the smaller rows until they were the same length as the largest. Figure

2.2(c) shows how our example matrix would be stored in ELL format. Because all rows

are the same length the ELL only requires 2 arrays; one for the columns, and one for the

values. The column position for zero padded data can have any value, but it should be

less than the number of columns in the matrix to avoid out-of-bound memory accesses.

ELL is not as general a sparse matrix format as COO or CSR. It is only

useful when all rows within a matrix have a small variance on the number of non-zero

elements per row. If one, or a few rows are much larger than the rest it can cause too

much zero padding. The extra work from processing zero values would eliminate any of

performance gains.

13

2.2.1.4 Hybrid format

A hybrid (HYB) format was proposed by [8] for GPU accelerators. It splits the

matrix storage between the ELL, and the COO formats. Data that can be reasonably

(low zero padding) stored in ELL will be, and the remaining values are stored in COO

format. This method both reduces the zero padding caused by longer rows, and it

still allows the GPU to benefit from ELL’s structured memory; at least for part of the

computation.

2.2.2 FPGA Approaches

The FPGA architecture is well suited to streaming application paradigms, and

as such much FPGA research has focused on streaming applications. Sparse Matrix

Vector multiplication (SpMV) is no exception. Most published research has focused on

removing all irregularity for SpMV, and then using an FPGA to improve performance.

The most common approach is to store the vector (i.e. the point of irregularity) in

on-chip BRAMs. Allowing each vector accesses to be handled in one cycle regardless of

the access pattern. Modern high-end FPGA do have large quantities of BRAMs on-chip

[76], but they are at most a few megabytes. Not reasonable for the high performance

computing environment where SpMV matters.

Substantial SpMV work has focused on how to best implement the floating-

point Multiply Accumulate (MAc) circuit. Floating-point multiplication takes around

12 cycles, and addition can take up to 27 cycles. Managing states during the accu-

mulation is non-trivial because row lengths can vary drastically even within the same

benchmark. Adder tree structures [64, 80] with feedback loops can be used to handle

multiple row elements in one cycle. However, the number of non-zero elements per row

14

must be larger than the number of channels. Otherwise the design is underutilized, and

loses performance. Other approaches have considered statically assigning the partial dot

products to multiple processing engines [19, 58]. Here a control unit manages the com-

munication, and ensures proper execution within the design. However, the number of

concurrent rows in the MAc circuit is limited to at most two at any given time. However,

multiple MAc circuit can be placed on the FPGA to support more rows in parallel [78].

[24] developed an accumulation reduction circuit that supports an arbitrary number of

rows, and can read a new value every cycle. However, all data from one row must enter

the circuit before any data from another row enters. A control unit arbitrates the data

flow between the floating-point addition unit and temporary buffers.

The emergence of heterogeneous FPGA platforms by Convey Computers, Max-

eler, and Pico has allowed researches to easily implement their designs on real world

hardware. A custom SpMV personality was develop for the Convey HC-1 [49]. The

design caches memory requests locally in case data needs to be reused, but because of

the irregular nature of SpMV it could only sustain 40% of the peak performance.

2.2.3 GPU Approaches

GPUs are large vector machines that rely on SIMD parallelism to achieve

peak performance. The have a fixed architecture that was developed to quickly process

graphics applications. However, with the introduction of the CUDA programing API in

the late 2000’s GPUs have begun branching further into high performance computing

applications. Because the hardware is not customizable much of the research has focused

on how to best reshape the data to best utilize the platform. Performance depends on

either having a lot of data executing on the same instructions (SIMD), and/or coalescing

the memory requests to fully utilized the memory bandwidth. GPUs often have a

15

major memory bandwidth advantage over CPU, and FPGA platforms. The Nvidia

Tesla K20 has 208 GB/s of bandwidth, and the newer Nividia Tesla K40 has 288 GB/s

of bandwidth.

The ELLPACK sparse matrix format was developed to run sparse matrix ap-

plications on early vector processors, and is a common starting point for many SpMV

GPU ports. Slice ELLPACK [46] partitioned adjacent rows together in strips, and each

strip was stored as its own ELLPACK matrix. The strips could be reordered by size to

improve the GPU’s SIMD performance. R-ELLPACK [70] reordered the matrix such

that rows accessing the same vector locations would be closer to each other, and there-

fore improving the locality. The Hybrid (HYB) [8] format stores most of the matrix in

ELLPACK, but some elements (in rows where the number of non-zero elements is larger

than the average) are stored in COO format.

There is no ”one best” format for SpMV on GPU. If the data is random a

generic format like CSR or COO may be best. If the data has dense areas spread

throughout the matrix a blocked format may be best. If the data is structured a custom

format may be best. The research community have empirically shown this to be true

[7, 40]. The HYB format gives bester results, on average, when the matrix is unoptimized

[8], but CSR has been shown better when the rows are first reordered into clusters [52].

The clSpMV tool [62] is an OpenCL SpMV solver that analyzes the matrix and chooses

a format from one of three distinct categories (Diagonal, Flat, or Blocked).

2.3 Accelerating Database Operations with FPGAs

Data analytics is a driving force behind many businesses. Begin able to quickly

identify a custom base, and their needs is paramount in the fast paced and competitive

16

environment. Commercial platforms like IBM’s Netezza [31] and Teradata’s Kickfire

[65] offer FPGA solutions for Database Management Systems. They cover a full range

of database operations from selection and projection, to joins and aggregation. They

work in conjunction with software to analyze workloads and run queries on the best

available resources (software or hardware). Academia is also working to improve these

systems with new and innovative hardware designs.

2.3.1 Query Processing & DBMSes

Academia has developed tools that compile quires down to hardware circuits

using custom library components. The Glacier library [48] is a set of specialized building

blocks that can be combined to make an engine for streaming queries. However, it is

only practical for common queries that have a high re-use rate. The synthesis time

to build an engine is high, and needs to be amortized over many runs to be practical.

The technique has been shown useful for event processing systems like high frequency

trading [56]. The Q100 [75] architecture is a fixed platform with many ASIC database

processing units. A query stream is scheduled through the necessary units. Resources

may go unused for a given query, but the platform avoids long build times.

Netezza [31] is a complete DBMS that uses FPGAs as a filter between the

hard disk and main memory. Customizable queries are sent to the FPGAs which utilize

their close proximity to the hard disk to quickly filter relations before sending them

to memory. The platform tries to reduce the costly data transfers from disk to main

memory [23]. The trade off for this approach is that all requests must start on disk.

In-memory databases cannot leverage the addition hardware FPGAs.

Another full DBMS, Kickfire [65], uses FPGA hardware accelerators connected

through either PCIe or hypertransport. It defines various database operations as HARP

17

logic [35] that consists of a hardware circuit and a large memory systems. All queries

are analyzed by Teradata’s C2 software, which decides if it should handle the job itself,

send it back the the DBMS, or offload it to HARP logic. The customized hardware

supports many common relational database operations [12, 29, 43]

2.3.2 Join Operations

The stream join operation is a common in on-line algorithms where a complete

result is not needed. The algorithm is only concerned with joining tuples within a

window of data, and because of this the entire window can be streamed to a processing

element and handled. This differs from the traditional relational join which has to find

all matches between two relations. The streaming nature made it an ideal target for

FPGA acceleration. The Handshake Join algorithm [66] treats the two relations as

athletes congratulating each other after a match. Data streams through the FPGA in

opposite directions. Two windows of data (one for each relation) are held entirely on the

FPGA, and custom hardware comparators look for matches. When a match is found the

tuples are joined and output. The design can be easily extended to larger window sizes

as the FPGA chips continue to grow in resources, or multiple FPGAs can be chained

together.

Joining tuples can be an issue for the design. When multiple tuples match

their outputs need to be serialized through a limited number of channels. However, the

Handshake Join implementation has been extended to include an admission control unit

[50, 51]. The unit stalls the stream until the FPGA has enough resources available to

continue. This throttling of inputs is important on applications that join a lot of tuples.

The relational join operations is very important to OLAP workloads, and the

push for real time analysis has lead researchers to explore FPGA designs. Sort-merge

18

join, and hash join are the most common implementations. In software hash join has

been shown to outperform sort-merge [1], but a switch has been predicted as CPUs

increase their SIMD register sizes [5]. Counter intuitively the FPGA community has

focused their efforts on sort-merge implementations [55, 75, 14]. The reason for this

is simple. FPGAs excel at streamable regular applications like merging sorted lists.

Therefore the trick is to develop a streamable sorting algorithm in hardware, which can

be done with sorting networks [37, 32].

19

Chapter 3

CHAT - Compiled Hardware

Accelerated Threads

Designing a hardware accelerator is a difficult task. Not only are the platforms

significantly different from the traditional Von-Newman model, but so too are the de-

velopment cycle and tools. The learning curve is often steep even for classically trained

software developers. The divide is so drastic that developers who write hardware accel-

erators often do not refer to themselves as software developers. In this section we present

the CHAT tool to help bridge the gap between hardware and software development.

The CHAT (Compiled Hardware Accelerated Threads) tool is designed to assist

developers with implementing irregular applications on FPGAs. Ease of programmabil-

ity has historically been a roadblock preventing many developers from exploring FPGA

design options. A steep learning curve coupled with a long debug cycle has made the

startup costs too high. However, there are many performance and energy benefits to

be gained from using reconfigurable custom hardware. CHAT attempts to lower the

startup costs by allowing developers to describe their circuits in a high level language,

20

and simply compile the design into a Hardware Description Language (HDL). We are

not alone in this research. Many academic and industry initiatives are attempting to

address this issue with High Level Synthesis (HLS) tools. Among the most mature are

Vivado HSL[77] (formerly AutoESL[79]), Altera OpenCL (AOCL)[2], ROCCC[72, 54]

and LegUp[13, 39].

HSL tools make differing assumptions about their target applications, their

target architectures, and their design goals. These limitations are necessary because

the nature of hardware development is so different from that of software development.

FPGA accelerators are typically used for regular/streaming applications where the data

has a high spatial and temporal locality. The FPGA’s highly parallel nature allows it to

execute many operations concurrently for a massive performance increase. The typical

HLS tool targets these regular applications, but it is often at the expense of irregular

application support.

Vivado HLS, and AOCL are developed by Xilinx and Altera, respectively, and

therefor designs are tightly coupled to their company’s FPGA platforms. Furthermore,

both these tools only generate designs where all relevant data is stored local to the

FPGA chip. Doing so allows the tools to handle both regular and irregular applications

because all data accesses can be handled in one cycle. However, major restrictions are

placed on the size of problem sets. The largest FPGAs currently available only offer a

few MBs of local storage, and many interesting problems often require many megabytes,

or more of data.

ROCCC and LegUp both assume an off-chip memory source, which makes them

more generalized in the size of problems they can solve. However, ROCCC and LegUp

make different assumptions about their target architectures. ROCCC is very general

and generates VHDL that is synthesizes on any platform. Designs can be unrolled, and

21

the number of I/O memory channels are customizable. In contrast LegUp generates

Verilog specifically for Altera boards, and designs are limited to two memory channels.

Therefore, LegUp kernels cannot sustain good performance on high bandwidth machines.

These tools also make different assumptions about their target algorithms. LegUp is

very general and can interface with a TigerMIPS soft-core processor to handle operations

that are unreasonable as digital circuits. ROCCC always assumes streamable regular

applications which allows it to generate highly optimized kernels. These difference arise

because both tools were designed with different goals in mind. ROCCC builds faster,

and scalable designs for specific applications, and LegUp supports a wider range of

applications.

CHAT is a complement to the ROCCC Compiler. Like ROCCC it is platform

and memory independent allowing for easy porting to emerging FPGA architectures;

Convey Computers[16], Pico Machines[53], Maxeler Technologies[42], etc. However,

where ROCCC generates highly optimized kernels for streaming applications CHAT

generates less optimized, but still highly efficient, kernels for irregular applications.

3.1 Taxonomy of Irregular Applications

FPGA accelerators are not a general purpose solution for any software appli-

cation with poor performance. They are specialized platforms with a set of features

that are well suited to particular applications. Historically, this meant streaming and

compute bound applications. However, FPGAs also offer potential benefits for highly

parallel irregular applications. Modern CPUs rely on good caching algorithms to main-

tain performance, but by definition irregular applications have poor spatial and temporal

locality. Multithreaded architectures were proposed [36, 68, 4, 3, 20] as a possible solu-

22

Figure 3.1: A taxonomy of irregular applications where the number of threads and the
workload sizes are, or are not deterministic.

tion, but their design was not reasonable for general purpose computing. FPGAs offer

a middle ground where CPUs can offload certain jobs to custom multithreaded FPGA

accelerators.

The multithreaded paradigm requires sufficient parallelism within an applica-

tion to fully mask long memory latencies. Therefore, not all irregular applications are

reasonable on such architectures. Here we classify the different types of irregular appli-

cations could have. We also describe how these applications may look within C code,

and explain the various FPGA constructs needed to implement these applications as

digital circuits.

The CHAT tool defines a thread as any output result to memory, and every

application will have at least one. Distinct threads can access the same memory location,

or even overwrite previous results. CHAT applications can fall into one of 4 classes

as shown in Figure 3.1. At runtime the application’s total number of threads can

23

be deterministic, or not. In addition each thread can have a deterministic, or non-

deterministic number of reads and writes.

Applications where the number of threads are deterministic can be optimized

to reduce, or eliminate redundancy. For example consider an application where N

threads read from the same memory location. The compiler can merge them into a

single request, and propagate the value to the N datapaths eliminating N − 1 requests.

Applications with a non-deterministic number of threads cannot merge datapaths so

they need constructs to prevent, or limit redundancy. For example consider traversing

a graph with breadth-first search. Each node in the graph is treated as a thread. New

threads are continually generated during the traversal. However, Two nodes, A and

B, could both point to the same third node C. Without synchronization two threads

would be generated for node C, and performance would begin to decrease exponentially

as more redundant threads are created and processed.

A single hardware Processing Engine (PE) is assigned a thread, or multiple

threads. To improve a design’s parallelism and performance multiple PEs can be used

in the hardware kernel. However, doing so requires scheduling of threads to the available

PEs, and this can be done statically or dynamically depending on the type of application.

If an application’s workload (requests per thread) is deterministic the scheduling can be

optimized at compile time. For example, in the simple case all threads have the same

workload. Therefore, the datapath can assign threads to PEs in round-robin fashion.

If an application’s workload is non-deterministic then the hardware needs a runtime

Thread Management Unit (TMU). Each PE uses flags to signal when it can handle

a new job. The TMU queues up jobs, and assigns them dynamically as PEs become

available. This dynamic scheduling allows long jobs to occupy a single PE while the

other PEs handle many smaller jobs.

24

3.2 The CHAT Compiler

CHAT is a C to VHDL compiler for irregular applications. It is based around

research done for the ROCCC [72, 54] tool, but extends the infrastructure to support

irregular applications. CHAT analyzes kernels at two levels. First high-level analysis

builds a Data Flow Graph (DFG) using the SUIF 2.0 toolset [74] and generates an in-

termediate representation. Next low-level analysis creates a Control Flow Graph (CFG)

using the LLVM compiler [38] and generates the VHDL design.

Algorithm 1 C code for a simple irregular application.

void passthrough (int ∗A, int ∗B, int ∗C, int l ength) {

int i ;

for (i = 0 ; i < l ength ; ++i)

C[i] = B[A[i]] ;

}

3.2.1 Hi-CIRRF in SUIF 2.0

High-level analysis reads the hardware kernel described in the C language.

However, because C was developed as a software language, not all its constructs make

sense in a hardware context; e.g. Dynamic Allocation, Recursion, pointer arithmetic,

etc. Therefore, CHAT only supports a subset of the language. For example arrays are

treated as streams of data. They occupy contiguous blocks of memory, but they can

be randomly accessed. CHAT does not currently support pointer chasing. Rows for

multi-dimensional arrays are assumed to be stored one after the other. Constant values

are stored in hardware registers. Variable values are temporarily stored in registers,

25

Algorithm 2 Sample of the CIRRF generated by CHAT.

. . .

CHAT init inputsca lar (l ength) ;

CHATInputStreams (A,B) ;

. . .

for (i = 0 ; (i < l ength) ; i = i + 1) {

CHATInputFifo1 0 (A, i , suifTmp2 , 0) ;

CHATDataFifo1 2 (B, suifTmp2 , suifTmp3 , 0) ;

suifTmp4 = CHATIntToInt (suifTmp3 , 32) ;

. . .

CHATOutputFifo1 2 (C, i , suifTmp4 , 0) ;

CHAT output C scalar () ;

CHATOutputStreams(C) ;

}

26

and the values are moved around the hardware datapath. Branches in execution will

generate multiple datapaths that are filtered through a multiplexer.

The goal of high-level analysis is to identify the hardware components, and

create a dataflow graph (DFG). New passes are added to the SUIF 2.0 [74] compiler to

achieve this goal. We use Algorithm 1 to highlight the major steps in CHAT, but each

step may require multiple passes in SUIF. First CHAT’s high-level analysis will identify

3 data streams (A, B, and C), and one registered value (length). Two streams will be

identified as input streams (A, and B) because they read values, and one stream will be

identified as an output stream (C) because it is written too. CHAT does not support

streams that both read, and write. Temporary registers are created, called ’suifTmps’,

to direct the datapath. Finally, the CIRRF [27] is output. A sample of the CIRRF file

is shown in Algorithm 2.

User inputs are used to further customize the Hi-CIRRF pass. Parallelism can

be increased by unrolling the for loops which will duplicate the datapaths in the DFG.

Doing so could cause redundant hardware. CHAT will analyze the unrolled design, and

merge components working on the same exact data.

3.2.2 Lo-CIRRF in LLVM

CHAT’s low-level analysis reads the DFG from the Hi-CIRRF pass. It creates

a control flow graph (CFG), and then generates the synthesizable VHDL. Thread man-

agement is a key consideration during this phase. Each thread must maintain its state

locally on the FPGA, but because of the FPGA’s parallelism multiple threads can be

changing states in the same clock cycle. All thread data is stored on-chip in BRAMs,

which are configured as FIFOs. This can be done because CHAT assumes all memory

requests are returned in-order. However, the compiler could be extended to support

27

out-of-order memory requests. In this case a design would implement CAMs instead of

FIFOs.

The Lo-CIRRF compilation is implemented by a number of different passes in

in the LLVM [38] compiler. Here we give a high level overview of what happens, but

just as in the previous section each step may require many different passes. First the

compiler assigns each CIRRF statement into their own basic block, which allows parallel

scheduling for non-sequential operations. A element must block until its dependencies

have valid data, but other elements are free to execute. Buffers are placed throughout

the datapath to limit stalling, and alleviate back-pressure. Paths requiring memory

requests will also be padded with large buffers to allow multiple outstanding requests.

Portability is another goal for the CHAT tool. Designs assume nothing about

the FPGA board it will be implemented on. However, the compiler does create hooks

for developers to leverage for performance. They are important for complex operations

(i.e. division, or floating point operations) where custom DSP blocks are often available,

but are usually board dependent. The compiler will generate simple FIFOs for small

buffers, but for larger buffers the compiler provides hooks to the developer. Custom IP

cores can therefore be used to improve timing, and area utilization.

3.3 Simple Irregular Applications

In this section we use the CHAT tool to build two simple irregular applications.

We also show throughput performance results on a Convey HC-2ex machine. Both are

summation circuits. The first design uses a 1-dimensional stream as the index, and the

other design uses a 2-dimensional stream.

28

Algorithm 3 Summation kernel with a 1-dimensional index stream.

void summation (int ∗∗A, int ∗B, int ∗C, int m, int p) {

int i , j ;

for (j = 0 ; j < m; ++j)

for (i = 0 ; i < p ; ++i)

C[j] += A[j] [B[i]] ;

}

3.3.1 One Dimensional Indexing

We implement the basic irregular application expressed in Equation 3.1. The

actual CHAT code for this equation is shown in Algorithm 3. In this design array B

has a regular access pattern, which iterates from 0 to m. However, array A has an

irregular access pattern because it uses values from B in its index. The values in B can

be anything.

C[m] =

p∑
i=1

A[m,B[i]] (3.1)

The CHAT tool will generate two input controllers (A, and B), and a single

output controller (C). It will also generate two counter components for variables i and

j. Finally the compiler will create a summation datapath. Data from the i counter will

be used for the B input controller to issue memory requests. As the results return they

will be routed to the A input controller where they are combined with the j counter

for a new memory request. The memory requests for A are routed into the summation

datapath, and once p elements have been accumulated the result is sent to the C output

controller. The output controller writes the final result to memory.

29

The design requires only three memory channels, and should be replicated

to utilized the Convey’s 16 memory channels. Replicating the design is done through

the compiler by unrolling a for loop. Unrolling the inner for loop increases thread

level parallelism. Each cycle a single thread issues multiple request, which go into

a summation tree. Unrolling the outer for loop increases application level parallelism.

Each cycle multiple threads are executing in parallel. However, this also means the same

B values can be used by all A controllers. The compiler identifies this, and generate a

single B input controller, and routes the value to all A input controllers.

Algorithm 4 Summation kernel with a 2-dimensional index stream.

void summation (int ∗∗A, int ∗∗B, int ∗C, int m, int p) {

int i , j ;

for (j = 0 ; j < m; ++j)

for (i = 0 ; i < p ; ++i)

C[j] += A[j] [B[j] [i]] ;

}

3.3.2 Two Dimensional Indexing

We also implement an irregular application that is indexed by a 2-dimensional

stream as shown in Algorithm 4. CHAT will optimize this kernel very differently than

the 1-dimensional kernel. The B input controller will provide different values for each

row in A, and therefore it cannot be merged into a single shared memory channel.

Multiple B input controllers must be created for each A input controller.

30

Figure 3.2: FPGA components for the 1-dimensional kernel as generated by CHAT.
Notice that the B input controller is optimized to shared its data between all A input
controllers.

3.4 Experimental Evaluation

In this section we show how the CHAT tool can be used to generate kernels for

real world architectures. We implement both kernels on a Convey HC-2ex, and explain

the our design considerations.

3.4.1 Convey HC-2ex Implementation

The CHAT tool has no limit to how many times a design can be unrolled, but

in practice architecture limitations must be considered. The Convey HC-2ex used here

uses Xilinx Virtex-6 760 boards with 16 memory channels per FPGA. The summation

circuit is very space efficient so our design is memory channel limited, but larger designs

may be area limited. The developer must consider these limitations when using CHAT.

To best utilize the memory channels we must consider how CHAT will optimize the

31

Figure 3.3: FPGA components for the 2-dimensional kernel as generated by CHAT.
Notice that the B input controller cannot share its data between separate A input
controllers.

1-dimensional kernel. The layout of components is shown in Figre 3.2. Each input

memory controller (A and B) will continually request data, and therefore need their

own dedicated channel. The design will have only a single B controller which is shared.

Each output memory controller only has a single valid request per row, and therefore it

is not continually writing results. Therefore, the C controllers can be interlaced into a

single channel. Considering the HC-2ex’s restrictions we can unroll the design 14 times.

One memory channel is used by the B controller, another channel is used for all 14 C

controllers, and 14 channels are used for 14 A controllers.

CHAT cannot optimize the 2-dimensional kernel to share a single B input

controller. The layout of components is shown in Figure 3.3. All controllers for A

and B still continually request data, but now there are multiple B controllers. The

C controllers can still be interlaced into one memory channel. Therefore, the design

can only be unrolled 7 times for the Convey HC-2ex. 7 channels are used for the

32

Figure 3.4: FPGA vs CPU runtime performance comparing sequential and random data
on a 1-dimensionally index array. Dataset sizes range from 1 million 8-byte integers to
10-billion 8-byte integers.

B controllers, 7 channels are used for the A controllers, and 2 channels are used to

interlace the C controllers.

Our experiments compare the performance of 2 FPGAs to one Xeon E5-2643

CPU. We use two FPGAs because the summation kernels presented here are memory

bounded, and each FPGA only has 19.2 GB/s of bandwidth, which is much lower than

the CPU’s 51.2 GB/s. Using 2 FPGAs doubles the bandwidth to 38.4 GB/s, which is

still lower than the CPU.

3.4.2 Runtime Performance

To test feasibility we gather runtime results on two different datasets. First

we use purely sequential data to get a base-line measurement. This will yield the best

performance for the cache dependent CPU tests. It also ensures the FPGA memory

accesses will have few bank conflicts, which should minimize any stalling. The second

33

Figure 3.5: FPGA vs CPU runtime performance comparing sequential and random data
on a 2-dimensionally index array. Dataset sizes range from 1 million 8-byte integers to
10-billion 8-byte integers.

datasets uses randomly generated values because we are interested in performance on

irregular applications. Results are reported for both the 1-dimensional kernel (Figure

3.4) and the 2-dimensional kernel (Figure 3.5).

Looking at results for the 1-dimensional kernel, Figure 3.4, we can see that per-

formance is comparable for sequential data. This is occurs for two main reasons. First

sequential data has excellent spacial locality. Second this is a memory bounded appli-

cation, and the bandwidth for the FPGA(38.4 GB/s) is comparable to the CPU(51.2

GB/s). The CPU does enjoy slightly faster performance, but it comes from the 33%

higher bandwidth, and its order of magnitude faster clock frequency. However, on ran-

dom data we begin to see the advantage of multithreading. The random data loses all

spacial locality, and the CPU performance drops accordingly. Multithreading perfor-

mance relies on an application’s parallelism, and therefore the FPGAs performance is

unaffected by different data. The results show that the FPGA can sustain about 2.4x

speedup over software in spite of it’s slower clock and smaller bandwidth. Results are

34

similar for the 2-dimensional kernel, Figure 3.5. The sequential data is comparable for

both the FPGA, and the CPU results. The FPGA’s runtime on random data is only

about 2x faster than the CPU. Performance drops on both architectures because the

FPGA can no longer share hardware for the B array, and the CPU loses the temporal

locality of the B array.

3.5 Conclusion

In this section we presented the CHAT HLS compiler for irregular applications.

Unlike the current HLS tools being developed by industry and research labs it focuses

on large applications with poor temporal and spatial locality. The tool can generate

custom hardware kernels which use a memory masking multithreaded model to effi-

ciently utilize the FPGAs bandwidth regardless of the memory access pattern. Results

showed around a 2x speedup over software on two irregular kernels. 2x is not usually

a significant performance increase for FPGA applications which have shown speedups

of 100x to 1,000x. However, our results are on memory bounded not compute bounded

applications. We achieved our 2x speedup while yielding a 33% bandwidth advantage

to software.

35

Chapter 4

A Multithreaded Sparse Matrix

Mulitplication Kernel

Sparse Matrix Vector Multiplication (SpMV) is a memory bounded problem

that often has a poor Flop/Byte performance. The operations are simple (multiplication,

and addition) so throughput depends on how fast the Processing Engines can receive

data. Even though the algorithm is simple computationally, it is a very important

application to many fields in computer science (i.e. Scientific Computing, HPC, etc). In

this chapter we explore how multihreading can be used to implement and improve this

common operation. The first concern addressed is how the sparse matrix can be best

store in memory to minimize the number of memory accesses. Then based on the matrix

format a custom multithreaded memory masking kernel is generated by the CHAT tool.

Finally, the hardware kernel’s limits and scalability are explored in the results section.

The performance is also compared with state of the art approaches in software, and

GPU platforms.

36

4.1 A Multithreaded Sparse Matrix Kernel

We use the CHAT compiler to generate a multithreaded SpMV kernel. Our

design is based around the Compressed Sparse Row (CSR) format from Section 2.2.1.2.

Two design choices were important in selecting CSR. First it requires a minimal amount

of memory while being able to support any matrix. ELLPACK uses less memory on

some matrices, but is not a general purpose solution. Second CSR can be easily broken

into independent threads.

Algorithm 5 CHAT SpMV kenrel source code.

void spmv csr (int ∗row , int ∗val , int ∗ co l ,

int ∗vec , int ∗out , int l enght)

{

int r , c , tmp ;

for (r = 0 ; r < l en th ; ++r) {

for (c = row [r] ; c < row [r +1] ; ++c)

tmp = tmp + val [c] ∗ vec [c o l [c]] ;

out [r] = tmp ;

}

}

4.1.1 SpMV Kernel Code

Sample code for a SpMV kernel is shown in Algorithm 5. This is, line for line,

the code used by the compiler. All arrays are treated as streams of data into the FPGA.

Most (row, val, col) are accessed in a streaming (regular) fashion. However, the vec

37

array is accessed by the col array therefore is treated as an irregular accesses. Thread

workloads are determined by the two adjacent elements in the row stream. Threads

are issued in order, but they are not required to have the same workload size. Thus

the out array can write to memory out-of-order. The kernel writes whenever a thread

finishes. The designer can unroll the outer for-loop to generate multiple PEs yielding

higher parallelism.

4.1.2 Processing Element

The bulk of the SpMV’s work is done by the processing element (PEs). These

engines operate independently and the number of PEs is limited by the resources avail-

able on the FPGA (i.e. number of memory channels). Each thread assigned to a PE

will generate one output, which is the sum-of-products for a row. Thread states must

maintain the running sum, and the start/end positions for the memory requests. As

requests are fulfilled the data is sent to a summation unit which produces the final sum-

of-products. Each PE manages the requesting, multiplying, and summing for multiple

threads (rows) concurrently.

The PE’s component layout is shown in Figure 4.1. Each PE manages memory

requests to the column, value, and vector arrays. Our implementation is for the Convey

HC-2ex machine, which supports in-order memory requests. The physical accesses to

memory are fulfilled out-of-order, but the HC-2ex uses a custom crossbar to reorder

the data before returning it to the PE. Thread states can therefore be stored in FIFO

buffers.

A PE will uses a busy flag to stall new threads from entering the datapath.

Once a thread job is assigned to a PE the flag is asserted until all initial requests for

38

Figure 4.1: Each PE is assigned a thread. It requests the necessary data (Column,
Vector, and Value) from global memory. Returned data values are pushed through the
multiply pipeline, and summation unit.

data have been made. Because threads can be small they may not require enough data

to fully mask memory. After all the initial requests have been made a new thread job

will enter the PE, and multiple requests for different threads can be outstanding at any

given time. Workloads are balanced across PEs because new jobs are not assigned until

the PE is ready. A long job will prevent only one PE from getting new jobs while other

PEs are handling many smaller jobs.

FIFO buffers within each PE are large enough to support all the outstanding

requests. As memory returns the data for the column array it is used to generate the

memory requests for the vector array. The data returned for the value array is held

in buffer until the corresponding vector request is fulfilled. As data is returned from

memory it is buffered in the Value and Vector FIFOs with its thread ID (row index).

The summation unit uses the thread IDs to manage concurrent threads. Our compiler

39

Figure 4.2: The MT-FPGA architecture on one AE. Control signals specify the number
of jobs (length), and the base addresses of the sparse matrix arrays. All memory channels
of the AE are utilized.

uses a circuit similar to the one described in [24]. It handles multiple rows concurrently,

and can read a new element every cycle. The circuit assumes all data for one row enters

the datapath before any data from another row enters. This assumption holds for our

kernel because of the HC-2ex’s in-order requests. This reduction circuit is only needed

if the kernel is compiled for floating point operations because addition requires multiple

cycles.

4.1.3 Thread Management

The Convey HC-2ex has 4 Virtex 6 LX760 FPGAs, called application engines

(AEs). Figure 4.2 shows the SpMV kernel layout for one HC-2ex AE. The design can

be replicated to all four AEs at runtime. Each AE has 16 memory channels, and each

PE requires 3 memory channels; for the column, value, and vector requests. Memory

channels are the designs bottleneck, which is limited to 5 PEs per AE. Control registers

in the AE specify the number of threads (i.e. rows) needed by the SpMV kernel. They

are also used to also specify the base addresses for each memory array used by the kernel.

When using multiple AEs the values are partitioned to balance the workload.

40

One thread management unit (TMU) communicates with the 5 PEs. It creates

thread workloads with values from the row pointer array. Access to the row pointer

incurs the same memory latency as all other requests. The TMU buffers threads when

all PEs are busy. Assignment is done dynamically in round robin fashion.

As PE threads complete the output value is buffered by the TMU until it can

be written back to global memory. The TMU manages 5 out streams (one per PE) as

well as the row stream. Reads and writes to these two streams are infrequent, occurring

once per thread, compared to the column, value, and vector streams. The TMU uses one

memory channel, and interleaves its read and write requests. Read and write request

conflicts are resolved by a control unit in favor of the write data, which prevents a

deadlock.

4.1.4 HC-2ex FPGA Implementation

Integrating a kernel into the HC-2ex requires all memory requests to commu-

nicate with Convey’s memory interface. Designs are placed and routed varying the

number of kernel PEs. Area utilization (including the wrapper) for a single AE is shown

in Table 4.1. The design uses only one third of the available slices and BRAMs because

it is limited by the memory channels. As discussed above each PE requires 3 channels,

and the TMU interleaves its requests though the remaining channel.

Table 4.1: FPGA utilization when varying the number of PEs.

PE(s) Slices (118,560) BRAMs (720)

1 25,788 (21%) 107 (14%)
2 29,040 (24%) 133 (18%)
3 32,638 (27%) 179 (24%)
4 36,520 (30%) 209 (29%)
5 39,395 (33%) 239 (33%)

41

4.2 Experimental Evaluation

In this section we compare our MultiThreaded FPGA (MT-FPGA) design and

compare it to modern CPU & GPU platforms. We analyze the memory utilization of

different sparse matrix formats. Dense matrices are used to evaluate the HC-2ex’s best

sustainable performance. We also use real world benchmarks [67] to compare throughput

performance of the architectures using the CSR format.

Table 4.2: An architecture specification for the various hardware used in SpMV com-
parisons.

Company Platform Type Clock (MHz) Cores Memory Bandwidth

Convey HC-2ex FPGA 150 n/a 76.8 GB/s
Nvidia Tesla C1060 GPU 1300 240 102.0 GB/s
Nvidia Tesla K20 GPU 705 2496 208.0 GB/s
Intel E5540 CPU 2530 4 25.6 GB/s

4.2.1 Experimental Setup

We use the Convey HC-2ex to measure the performance of our MT-FPGA

approach. We compare the overall throughput to 3 different architectures; 2 GPUs,

and one CPU. Table 4.2 shows the performance specifications for each architecture.

The FPGA has the slowest clock frequency. It is 4.7x slower than the K20 GPU, and

an order of magnitude slower than the other GPU and CPU. However, SpMV is a

memory bounded application, and the clock frequency does not have as much affect on

performance as the memory bandwidth. The FPGA has 3x more bandwidth than the

CPU, but it is also 2.7x lower than the newest (K20) GPU.

We compare against the best general purpose CPU and GPU approaches we

can find. We use the CUSP Library [8, 18], developed by researchers at NVidia, to

test the GPUs’ performance. We obtain GPU results on a Tesla architecture (GPU-

Tesla) that was released in late 2008. The FPGA’s Virtex-6 architecture was released

42

in early 2009. The more recent GPU Kepler architecture (GPU-Kepler) is also used

to gauge performance on the best hardware currently available. Software performance

is measured on a Intel Xeon E5540 CPU using the Poski library [73] developed at the

University of California, Berkeley.

Table 4.3: Sparse matrix dimensions, and their throughput (DP GFLOPS) on our hard-
ware accelerators. All benchmarks are taken from the UF Sparse Matrix Collection
[67].

Suite 1
Benchmark Name Rows Non-Zero NNZ/Rows

dw8192 8,192 41,746 5
t2d q9 9,801 87,025 9
epb1 14,734 95,053 6
raefsky1 3,242 294,276 91
psmigr 2 3,140 540,022 172
torso2 115,967 1033,473 9

Geo Mean

Suite 2
Benchmark Name Rows Non-Zero NNZ/Rows

Dense 2,000 4,000,000 2,000
Protein 36,417 4,344,765 119
FEM/Cantilever 62,451 4,007,383 64
FEM/Harbor 46,835 2,374,001 51
QCD 49,152 1,916,928 39
Economics 206,500 1,273,389 6
Epidemiology 525,825 2,100,225 4
FEM/Accelerator 121,192 2,624,331 22
Circuit 170,998 958,936 6
Webbase 1,000,005 3,105,536 3

Suite 3
Benchmark Name Rows Non-Zero NNZ/Rows

cage15 5,154,859 99,199,551 19
circuit5M 5,558,326 59,524,291 11
Flan 1565 1,564,794 117,406,044 75
Serena 1,391,349 64,531,701 46

We use 20 benchmarks to evaluate our kernels performance. They were chosen

based on published results from other research groups [73, 8, 49]. They are broken into

three categories based on the number of non-zero elements. The small benchmarks range

43

Table 4.4: The memory storage requirement (MB) for each benchmark in the three
sparse matrix formats. ELL pads all smaller rows to the length of the longest. When
this is unreasonably long (> 10 GB) we mark its size as N/A.

Suite 1
Benchmark Name CSR ELL HYB

dw8192 0.7 1.0 0.7
t2d q9 1.5 1.4 1.4
epb1 1.6 1.7 1.7
raefsky1 4.7 5.6 7.1
psmigr 2 8.7 115.0 13.0
torso2 17.5 18.6 16.7

AVERAGE 5.8 23.9 6.7

Suite 2
Dense 64.0 64.0 96.0
Protein 69.8 118.0 84.6
FEM/Cantilever 64.6 77.9 75.3
FEM/Harbor 38.4 108.0 51.9
QCD 31.1 30.7 30.7
Economics 22.0 145.0 28.9
Epidemiology 37.8 33.7 33.7
FEM/Accelerator 43.0 46.5 55.5
Circuit 16.7 965.0 18.7
Webbase 57.7 N/A 58.7

AVERAGE 74.0 196.0 88.3

Suite 3
cage15 1,620.0 3,870.0 1,920.0
circuit5M 996.0 N/A 1,200.0
Flan 1565 1,890.0 N/A 2,020.0
Serena 1,040.0 4,470.0 1,190.0

AVERAGE 1,380.0 N/A 1,580.0

from a few thousand non-zero elements up to 1-million non-zero elements. The medium

benchmarks range from 1-million non-zero elements up to 5-million non-zero elements.

The large benchmarks all have 60-million non-zero elements, or more. We obtain all our

benchmarks from the University of Florida Sparse Matrix Collection [67]

44

4.2.2 Memory Footprint of Sparse Matrix Storage Formats

Throughput on the MT-FPGA design is contingent only on how much data has

to be streamed to the FPGA. This differs from modern CPU and GPU architectures,

which require effective caching to maintain a high throughput. Memory masking is

effective regardless of the latency (assuming a large enough dataset), or any number

of cache misses. Therefore, the MT-FPGA kernel’s priority is to use a sparse matrix

format with the smallest memory footprint.

In Table 4.4 we compare the memory footprint of common sparse matrix for-

mats. Intuitively we know CSR will always be less than COO; except in the special case

where there is only one element per row. They have the same three arrays, but CSR

does compression on the row. ELL, and HYB are less clear. ELL uses 2 matrices, and

assumes the rows size to be static. If the sparse matrix is uniform then this format could

require less memory than CSR. HYB is a combination of ELL and COO, which makes

its footprint difficult to estimate as well. However, the empirical results from Table 4.4

show that CSR is usually the smallest.

4.2.3 Dense Matrix Experiments

The MT-FPGA approach copes with long memory latencies by issuing many

outstanding requests, and maintaining all the thread states locally. In the early stages

of execution performance is poor because the FPGA does not have enough concurrency.

As the datasets grow larger these startup costs are amortized over the entire execution.

Eventually the TMU will buffer enough, and the PEs will be processing enough threads

so the latency is not an issue.

45

Figure 4.3: The sustained SpMV throughput as the matrix sizes increase. The matricies
are dense, but stored in CSR format. The Convey HC-2ex is fully utilized with 20 PEs.

We run a set of test on the Convey HC-2ex to determine what dataset sizes

are ”large enough” to amortize the startup costs. Results are shown in Figure 4.3. The

experiment uses a dense matrix, but it is stored in CSR format. We intentionally do

this to remove any irregularity. In doing so we can see how startup costs affect the

throughput. The experiment also uses 20 PEs spread across all 4 FPGAs. This fully

utilizes the HC-2ex’s memory channels and fully saturates the memory. In Figure 4.3

we can see that the sustained throughput quickly approaches 4 DP GFLOPS as the

number of non-zero elements approaches 1 Million. From there slowly rises to a peak

sustained throughput of 4.5 DP GFLOPS. This is 75% of the peak (6 DP GFLOPS)

possible throughput. We can see that the MT-FPGA, on the Convey HC-2ex, is only

a reasonable alternative when the sparse matrix has over 1-million non-zero elements.

Other architectures with shorter latencies could support smaller matrices.

We were also interested in how well the memory system would cope as the

number of utilized memory channels increased. For this experiment we again used a

46

Figure 4.4: The sustained memory bandwidth, and throughput as the number of PEs
increases. All test use a dense 4 million non-zero element dense matrix stored in CSR
format.

dense matrix stored in CSR format. All runs use a 4 million element (2,000 x 2,000)

matrix. Results are shown in Figure 4.4. We start with a single AE, and increase the

number of engines from 1 (3 channels) up to 5 (15 channels) on a single FPGA. Then we

increase the number of AEs used from 1 (15 channels) to 4 (60 channels). The blue bar-

graph shows how the throughput scales, and the red line shows the percentage of time

memory issued no stalls. These results are HC-2ex specific, and they show performance

is limited by the memory architecture not the FPGA design.

4.2.4 Throughput Comparison with CSR

Compressed Sparse Row (CSR) is the most common format for sparse matrix

operations. In this section we compare how the MT-FPGA approach compares to CPU,

and GPU approaches. The FPGA uses a multithreaded approach as described in the

previous sections. The CPU uses the Poski library developed at the University of Cali-

47

Figure 4.5: FPGA, CPU, and GPU throughput performance on suite 1.

Figure 4.6: FPGA, CPU, and GPU throughput performance on suite 2.

Figure 4.7: FPGA, CPU, and GPU throughput performance on suite 3.

48

fornia, Berkeley [73]. Both GPUs use the CUSP library developed by NVidia [8, 18]. As

mentioned in Section 4.2.1 we classify our datasets by the number of non-zero elements,

and the results are reported separately.

Figure 4.5 show the different architecture’s performance on small data sizes.

Because each matrix in this dataset is below or about 1 million non-zero elements we do

not expect the FPGA to sustain it’s peak performance. The startup costs will dominate

the computation. In addition the matrices are small enough that most data can fit on

the CPU cache. Regardless the MT-FPGA still outperforms the CPU, and the Tesla

GPU. However, the newer Kepler GPU does outperform the FPGA in most cases. This

is attributed, in part, to it’s significantly higher memory bandwidth. The GPU has

an almost 3x advantage with 208 GB/s compared to the FPGA’s 76.8 GB/s. Designs

looking at small matrices should look to the GPU, or other non-multithreaded FPGA

designs.

Figure 4.6 shows the different architecture’s performance on medium data sizes.

Here we can see the FPGA’s consistency. For the majority of tests it’s throughput is

around 4 DP GFLOPs/sec. However, it does drop when the NNZ per row is small (<

10). This happens because each PE has a thread startup cost. It takes a few cycles

to initialize the counters, and ID management. During this time the PE does not issue

new requests. Regardless, in the average case the FPGA still outperforms all other

architectures.

Figure 4.7 shows the different architecture’s performance on large data sizes.

Here the FPGA performs substantially better than the GPUs and CPUs. The FPGA

has a mean performance of 3.06 DP GFLOPS while the Kepler GPU only achieved 1.03.

Again the FPGA performance is consistent at 4 DP GFLOPS except on Circuit5M

where the NNZ/row is 11.

49

These results show one major benefit of the multithreaded approach, and that

is it’s consistency. While the GPU performs very well on some rums it also performs

very poorly on others. Assuming the run is ”large enough” the FPGA performs around

3.5 to 4.5 DP GFLOPs/sec consistently.

Figure 4.8: FPGA vs Kepler GPU throughput performance. The GPU uses different
matrix formats to improve performance.

4.2.5 FPGA vs. GPU Throughput with different Sparse Matrix For-

mats

GPUs are custom purpose architectures, which excel at SIMD parallelism.

Performance depends on each processor issuing the same instruction per cycle, which

is hard to guarantee when CSR can have irregularity in the thread sizes. A format

like ELLPACK, where all threads are zero padded to the same length, is better suited

to GPU architectures. However, as mentioned in Section 2.2.1.3 this format can be

inefficient on some matrices, and is not a general purpose solution. A modified format

using both ELLPACK, and COO [8] has been shown to outperform CSR on the GPU.

In Figure 4.8 we show the GPU-Kepler’s performance, using 3 storage formats, to the

50

MT-FPGA using CSR. The GPU shows higher overall throughput, but that is to be

expected because it also has 2.7x the FPGA’s bandwidth.

Figure 4.9: Throughput performance for each architecture normalized to the available
bandwidth.

4.2.6 Normalized Throughput

It is difficult the guage the performance of different platforms simply because

they are so different. They vary drastically in clock frequency, and memory bandwidth.

They also require signifcanlty different appraoches to achieve peak performance. The

CPU must optimize for its caches. The GPU must efficently interlace its memory re-

quest. The FPGA must sustain thousands of outstanding requests. In Figure 4.9 we

normalize each platform’s best performance to its available bandwidth. We do this be-

cause SpMV is a memory bounded problem, and its performance is dominated by how

quickly the processing elements can receive data. In doing so we see that on average all

platforms perform equally well. However, this is a result of the matrix benchmarks used

as we will elaborate upon in the next section.

51

Figure 4.10: Visual printout of the sparse matrices used to benchmark Section 4.2.4
results.

Figure 4.11: FPGA, CPU, and GPU throughput performance on truly irregular data.

4.2.7 Throughput on Truly Irregular Data

The benchmarks used in Section 4.2.4 were chosen from publication done by

other lab groups. Taking a closer look at the types of sparse matrices chosen we see

a pattern emerge. Most all of them have a diagonal where the majority of non-zero

elements are, and a few elements sparsely distributed. Figure 4.10 shows a printout of

these matrices. Looking at them row by row we can see that a lot of data will be shared,

which is very beneficial for the cache dependent CPU designs.

52

In this section we consider how performance is affected if a user had truly

irregular data. We generate 3 sets of matrices. One set has 10 non-zero elements per

row, the next set has 20 non-zero elements, and the last set has 30-non zero elements

per row. The elements are distributed randomly over the entire row. 5 matrices are

generated for each set with a total number of elements between 100 thousand and 2

million non-zero elements. Throughput results are reported in Figure 4.11.

We see a drastic performance difference between the architectures. Most no-

ticeably the GPU and CPU performance drops as the number of non-zero elements

increases within sets. It is more noticeable on the GPU because it has much higher

bandwidth. This occurs because the smaller matrices have fewer rows, and fewer rows

means the vector being multiplied against can better fit in the caches. However, as the

matrices get larger so to do the vectors, and the caches lose their effectiveness. By con-

trast the multithreaded approach is unaffected by any differences in the matrices. The

FPGA performance is always around 4 DP GFLOPs/sec. There is a slight performance

increase (for the FPGA) as the number of elements per row increases. This occurs be-

cause the PEs have a small startup cost for new threads, and it is better amortized with

30 elements per thread than it is with 10.

4.3 Conclusion

In this chapter we showed how multithreading can be beneficial to a real world

application like Sparse Matrix Vector Multiplication. Our MT-FPGA implementation

performed as well as modern GPU and CPU platforms on commonly used matrix bench-

marks. However, on truly irregular data we showed that the multithreading approach

can significantly improve performance over the same CPU and GPU platforms. As ma-

53

trix size increases the CPU and GPU performance drops drastically while the FPGA

performance is consistent independent of the size. It is this consistency and predictability

that make multithreading a enticing alternative to the current cache based platforms.

54

Chapter 5

FPGA based Multithreading for

In-Memory Hash Joins

Large relational databases often rely on fast join implementations for good

performance. Recent paradigm shifts in processor architectures has reinvigorated re-

search into how the join operation can be implemented. The FPGA community has also

been developing new architectures with the potential to push performance even further.

Hashing is a common method used to implement joins, but its poor spatial locality

can hinder performance on processor architectures. Multithreaded architectures can

better cope with poor spatial locality by masking memory/cache latencies with many

outstanding requests.

5.1 Related Work

Many recent works consider the in-memory implementation of joins (hash or

sort-merge). [41] was the first work, which emphasized the importance of TLB misses

in partitioned hash joins and proposed a radix clustering algorithm to keep the parti-

55

tions cache resident. Later [9] studied the performance of hash joins by comparing simple

hardware-oblivious algorithms and hardware-conscious approaches (since the radix clus-

tering algorithm is tightly tailored to the underlying hardware architecture). Results

showed that the simple implementations surpass approaches based on radix cluster-

ing. However recently, [6] applied a number of optimizations and found that hardware-

conscious solutions in most cases are prevalent over hardware-oblivious.

The implementation of sort-merge joins on modern CPUs was studied in [34],

which explored the use of SIMD operations for sort-merge joins and hypothesized that

its performance will surpass the hash join performance, given wider SIMD registers.

Subsequently [1] implemented a NUMA-aware sort-merge algorithm that scaled almost

linearly with the number of computing cores. This algorithm did not use any SIMD

parallelism, but it was reported to be already faster than its hash join counterparts.

Recently, [5] reconsidered the issue and found that hash joins still have an edge over

sort-merge implementations even with the latest advance in width of SIMD registers

and NUMA-aware algorithms.

While the software community has examined both hash and sort-merge joins

the FPGA community has concentrated on sort-merge approaches. The reasons for

this are twofold. Firstly, sorting and merging implementations are straightforward for

parallel FPGA architectures. For example, sorting networks like bitonic-merge [32] and

odd-even sort [37] are well established designs for FPGAs; [14] developed a multi-FPGA

sort-merge algorithm, while [55, 75] used sort-merge as part of a hardware database

processing system. Secondly, efficiently building an in-memory hash table is non-trivial

because of the required synchronization.

Commercial platforms like IBM’s Netezza[31] and Teradata’s Kickfire[65] offer

FPGA solutions for Database Management Systems. They cover a full range of database

56

operations from selection and projection, to joins and aggregation. However, because of

their proprietary nature specific implementation details, and measurements are difficult

to obtain. Some patent information is available [12, 29, 43], but it is difficult to deter-

mine, specifically, how operations are handled with the available literature. By contrast

the scope of this work is much narrower. We look at how FPGAs can be used to improve

only the join operation, which has been historically a time intensive operation.

5.2 Proposed Approach

In this section an implementation outline is presented for the build phase and

probe phase processing engines used for the multithreaded hash join algorithm. Then

a discussion about how existing research can be applied to this work, and how it could

potentially improve performance further.

When building, and probing the hash table, all writes occur during the build

phase while the probe phase only reads the hash table. Because of this separation

the algorithm’s hash table interactions are simplified, for both the CPU and FPGA,

compared to other algorithms using hash tables (i.e. aggregation, duplicate elimination).

5.2.1 Build Phase Engine

Our target datasets are too large to keep in local FPGA BRAMs. There-

fore, our design trades off small and fast on-chip memory for larger and slower off-chip

memory. The build engine copes with the long memory latencies by issuing thousands

of threads and maintaining their states locally on the FGPA. Because of the inherent

FPGA parallelism, multiple threads can be activated during the same cycle while other

threads are issuing memory requests and going idle.

57

Figure 5.1: The FPGA Build Phase Engine.

The entire build relation along with the hash table and the linked lists are

stored in main memory (Figure 5.1). Our hash table uses the chaining collision resolution

technique: all elements hashed to the same bucket are connected in a linked list, and

the hash table holds a pointer to the list’s head. A unique value (0xFFF...FFF) is used

to represent empty buckets in the hash table.

Figure 5.1 also shows how the build engine (FPGA logic) makes requests to

the main memory data structures using 4 channels. In the FPGA logic, local registers

are programed at runtime and hold pointers to the relation, hash table, and linked lists.

They also hold information about the number of tuples, the tuple sizes, and the join

key position in the tuple. Lastly, the registers hold the hash table size, which is used

to mask off results from the hash function. The Tuple Request component will create a

thread for each tuple and issues a request for its join key. The design assumes the join

key size is between 1 and 8 bytes, and it is set at runtime with a register. The tuple can

58

be of arbitrary size. If the key is split between two memory locations the Tuple Request

component will issue both requests, and merge the responses. Requests are continually

issued until all tuples have been processed, or the memory architecture stalls. When a

thread issues a request the tuple’s pointer is added to the thread state, and the thread

goes idle.

As join key requests are completed, the thread is activated, and the key along

with its hash value are stored in the thread’s state. The Write Linked List component

writes the key and tuple pointer to a new node into the appropriate bucket linked list.

The Update Hash Table component issues an atomic request to read, and update the

hash table. The old bucket head pointer is read while the new node pointer replaces it.

An atomic request is needed here because a single engine can have hundreds of threads

in flight, and issuing separate reads and writes would create race conditions. While the

atomic request is issued the new node pointer is added to the thread’s state.

As the atomic requests are fulfilled the thread is again activated, and the Update

Linked List component updates the bucket chain pointer. If no previous nodes hashed

to that location then the atomic request will return the empty bucket value, which is

used to signify the end of a list chain. Otherwise, the old head pointer is used to extend

the list.

5.2.2 Probe Phase Engine

The probe engine also assumes that all data structures are stored in main

memory. Like the build engine it has to use memory masking to cope with high memory

latency and maintain peak performance. Because no data is stored locally, the same

FPGA used for the build engine can be reprogrammed with the probe engine (which

59

Figure 5.2: The FPGA Probe Phase Engine.

can be useful in the case of a small FPGA). Larger FPGAs can hold both engines and

switch state depending on the required computation.

Figure 5.2 shows how the probe engine makes requests to the data structures

in main memory (using 4 channels). Issuing threads, tuple requests, and hashing are

handled the same way as in build engine. Again, the join key and the tuple’s pointer are

stored in the thread’s state. Because the probe phase only reads data structures, there

is no need for atomic operations. The thread only looks up the proper head pointer by

hashed value from the table. The value (0xFFF...FFF) is again used to identify empty

table buckets; if this value is returned then the probe tuple cannot have a match and is

dropped from the FPGA datapath. Otherwise, the thread is sent to the New Job FIFO.

During the probe phase each node in a bucket chain must be checked for

matches. A thread is not aware of the bucket chain length without iterating through

the whole chain. Therefore, threads are recycled within the datapath until they reach

60

the last node in the chain. The Probe Linked List component takes an active thread and

requests its list node. Two channels are devoted to this component because it issues the

bulk of read requests, and its performance is vital to the engine’s throughput.

After the node is returned from memory the Analyze Job component determines

if there was a match. Matching tuples are sent to the Join Tuple component. If a node

is the last in the bucket chain then its thread is dropped from the datapath. Otherwise,

its next node pointer is updated in the thread’s state and is sent to the Recycled Job

FIFO. The datapath can be improved to drop threads once a match is found, but this is

only possible if the build relation’s join key is unique. An Arbiter component is used to

decide the next active thread, which will be sent to the Probe Linked List component.

Priority is given to the recycled threads, thus reducing the number of concurrent jobs

and ensuring that the design will not deadlock. Otherwise, when the recycled job FIFO

fills, its back pressure would stall the memory responses, causing the memory requests

to stall, thus preventing the arbiter from issuing a new job. As matches are found, the

Join Tuple component merges the probe tuple’s pointer (from the thread) with the build

tuple’s pointer (from the node list) and sends the result out of the engine.

5.2.3 Possible Optimizations

In practical workloads, joins are typically combined with selections and pro-

jections, in an effort to minimize intermediate result sizes (e.g., push selections and

projections close to the relation). This approach can also be used here to further im-

prove performance.

Predicate evaluation could filter out tuples, and alleviate memory utilization by

creating gaps in the FPGA datapath. This could improve the build phase performance

because it removes some of the costly atomic operations. The gaps could also mitigate

61

back-pressure in the probe phase caused by long node chains. By adding the selection

hardware on the FPGA, the latency will increase but because it is fully pipelined [63]

it would not decrease the throughput.

Projection and the join step (i.e., using the tuple pointers to actually create the

joined result) are ideal candidates for FPGA acceleration. Both are naturally parallel

and streamable. Many works have leveraged these operations to improve performance

[66, 55, 28]. In the special case where an entire tuple fits in one memory word the probe

engine presented in this work can be easily extended to perform the join step. The

engine already joins the pointers, but a little modification can replace them with the

values instead. In order to capture the real effect of FPGA multithreading in the join

operation, our implementation does not consider the selection, projection and join step.

Another common optimization applied to multi-core hash joins is partitioning,

which eliminates the costly thread synchronization and allows to keep partitioned tu-

ples cache resident [59]. However our FPGA engines cannot abandon synchronization

completely. Even with partitioned data, each engine still has hundreds of outstanding

read and write requests. Since all these requests are processed in a pipelined manner

the only way to avoid race conditions will be to use atomic operations or some form

of locking. Moreover our approach does not cache results on the FPGA BRAM, hence

decreasing the number of tuples processed by each thread via partitioning will not have

any effect on FPGA performance.

5.3 Experimental Results

We proceed with a description of the target architecture, the Convey-MX, and

discuss how engines can be duplicated to match the available memory bandwidth. The

62

Figure 5.3: The Convey MX software and hardware regions.

Figure 5.4: Each Convey MX FPGA AE has 8 memory controllers, which are split into
16 channels for the FPGA’s logic cells.

FPGA hash join implementation is compared in terms of overall throughput against the

best multi-core approach [6]. We match the FPGA’s and CPU’s memory bandwidth

as best we can (38.4 GB/s for the FPGA vs 51.2 GB/s for the CPU) to give the best

comparison possible. We also present experiments on the scalability of the FPGA designs

and their space utilization. Synthesizing FPGAs is well known to be a time intensive

task; nevertheless, all designs presented here are capable of processing different join

queries without needing to re-synthesize the FPGA logic.

63

5.3.1 Convey-MX Platform

The Convey-MX is a heterogeneous platform with a global memory shared

between the CPUs and the FPGAs, allowing us to directly compare hardware and

software in-memory hash join applications on the same memory architecture. Figure 5.3

depicts the MX’s memory architecture. It has two regions (the software and hardware)

connected though a PCIe bus. Each processor (CPU or FPGA) can access data from

both regions, but data accesses across PCIe are significantly longer.

The software region has 2 Intel Xeon E5-2643 processors running at 3.3 GHz

with a 10 MB L3 cache. The multi-socket architecture treats each processor with the

memory, attached to it, as a separate NUMA node. The NUMA asymmetry coefficient

of described architecture is equal to 2.0. In total the software region has 128 GB of 1600

MHz DDR3 memory. Each NUMA node has a peak memory bandwidth of 51.2 GB/s.

The hardware region has 4 Xilinx Virtex-6 760 FPGAs connected to the global

memory through a full crossbar. Each FPGA has 8 64-bit memory controllers running

at 300 MHz (Figure 5.4). The FPGA logic cells run in a separate 150 MHz clock domain

to ease timing and are connected to the memory controllers through 16 channels. The

hardware region has 64 GB of 1600 MHz DDR3 RAM. Each FPGA has a peak memory

bandwidth of 19.2 GB/s. The MX memory also has locking bits at every word block

allowing the FPGA to handle synchronization and atomic operations.

5.3.2 FPGA & Software Implementations

We choose to implement our FPGA designs on a Convey-MX platform, but

the designs themselves are platform independent. The only requirement needed by the

FPGA platform is in-order responses to memory requests. Given this assumption the

64

Probe Engine can be easily ported. The Build Engine requires some form of atomic

operations. We choose the Convey-MX because it is the only FPGA platform we know

of with direct support for atomic operations. However, with additional effort to enforce

synchronization a Maxeler [42], Pico [53], or even a Convey-HC [16] board could be

used.

Additional requirements are needed for the FPGA to achieve high throughput.

First, it should have a high memory bandwidth. Second, it should handle multiple

outstanding memory requests. The longer memory latency a platform has the more

outstanding requests it will need be able to support. Peak performance will be achieved

when memory latency can be fully masked.

Peak performance is dependent on the total number of concurrent engines, and

the clock frequency. The number of engines is determined by the memory bandwidth.

We next show how this applies to the Convey-MX, but the same could be done for other

platforms. Sustained performance is dependent upon the memory architecture as shown

in Section 5.3.4.

On the Convey-MX each FPGA has 16 individual memory channels which is

more than what a single build or probe engine would need. To fully utilize the available

bandwidth and increase parallelism, we duplicate the number of engines per FPGA.

Since the build engine requires four channels (Section 5.2.1), four build engines can

be stored on a single FPGA. Given that each FPGA runs at 150 MHz and, assuming

no stalls, one could achieve a peak throughput of 600 MTuples/s per FPGA for the

build phase. Similarly, the probe engine (Section 5.2.2) requires 4 channels, but also

jointly uses a channel to write the output result to memory. Therefore only 3 probe

engines could be placed on a FPGA. Assuming no stalling the FPGA can reach a peak

throughput of 450 MTuples/s per FPGA for the probe phase.

65

As the state-of-the-art multi-core hash join approach we use the implementa-

tion from [6]. It includes 2 types of hash join algorithms: a hardware-oblivious non-

partitioning join and a hardware-conscious algorithm, which performs preliminary parti-

tioning of its input1. Both implementations perform the traditional hash join with build

and probe phases, however they differ in the way multithreading is used. The non-

partitioning approach performs the join using the hash table which is shared among all

threads, therefore relying on hyper-threading to mask cache miss and thread synchro-

nization latencies. The partitioning-based algorithm performs preliminary partitioning

of the input data to avoid contention among executing threads. Later during the join

operation each thread will process a single partition without explicit synchronization.

The Radix clustering algorithm, which is a backbone of the partitioning stage needs to

be parameterized with the number of TLB entries and cache sizes, making the approach

hardware-conscious. In our experiments we use a two pass clustering and produce 214

partitions, which yields the best cache residency for our CPU.

5.3.3 Dataset Description

Our experimental evaluation uses four datasets. Within each dataset we have

a collection of build and probe relations ranging in size from 220 to 230 elements. Each

dataset uses the same 8-byte wide tuple format, commonly used for performance eval-

uation of in-memory query engines [11]. The first 4 bytes hold the join key, while the

rest is reserved for the tuple’s payload. Since we are only interested in finding matches

(rather than joining large tuples), our payload is a random 4-byte value. However, it

could just as easily be a pointer to an actual arbitrarily long record, identified by the

join key.

1All software experiment were implemented, and run by Ildar Absalyamov.

66

The first dataset, termed Unique, uses incrementally increasing keys which are

randomly shuffled. It represents the case when the build relation has no duplicates,

thus keys in the hash table are uniformly distributed with exactly one key per bucket

(assuming simple modulo hashing). The next dataset (Random) uses random data

drawn uniformly from a 32 bit int range. Keys are duplicated in less than 5% of the

cases for all build relations having less then 228 tuples. The largest relations have no

more than 20% duplicates. For this dataset, bucket lists average 1.6 nodes when the hash

table size matches the relation size, and 1.3 nodes when the hash table size is double

the relation size. The longest node chains have about 10 elements regardless of the hash

table size. To explore the performance on non-uniform input, the keys in the final two

datasets are drawn from a Zipf distribution with coefficients 0.5 and 1.0 (Zipf 0.5 and

Zipf 1.0 respectively); these datasets are generated using the algorithms described in

[26]. In Zipf 0.5 44% of the keys are duplicated in the build relation. The bucket list

chains have on average 1.8 keys regardless of the hash table size, while the largest chains

can contain thousands of keys. In Zipf 1.0 the build relations have between 78% and

85% of duplicates. Their bucket list chains have on average from 4.8 to 6.7 keys. The

longest chains range from about 70 thousand keys in the relation with 220 tuples to

about 50 million in the 230 relation.

5.3.4 Throughput evaluation

We report the multi-core results for both partition-based and non-partitioning

algorithms. Results are obtained with a single Intel Xeon E5-2643 CPU, running on

full load with 8 hardware threads. However because of the memory-bounded nature of

67

Figure 5.5: Unique dataset throughput as the build relation size is increased.

Figure 5.6: Random dataset throughput as the build relation size is increased.

68

Figure 5.7: Zipf 0.5 dataset throughput as the build relation size is increased.

Figure 5.8: Zipf 1.0 dataset throughput as the build relation size is increased.

69

hash join we use two FPGAs to offset the CPUs bandwidth advantage: a single CPU

has 51.2 GB/s of memory bandwidth while two FPGAs have 38.4 GB/s (even with this

bandwidth adjustment, the CPU still has almost a 30% advantage). By matching the

bandwidth be can get a more accurate comparison between the approaches. Obviously,

given of the parallel nature of hash join, the CPU and FPGA performance could easily

be improved by adding more hardware resources.

Figures 5.5 to 5.8 shows the join throughput for two build relations, with 221

and 228 tuples respectively, while increasing the probe relation size from 220 to 230 for

all datasets mentioned in Section 5.3.3. The FPGA performance shows two plateaus

for the Unique, Random and Zipf 0.5 data distributions on Figures 5.5, 5.6 and 5.7.

The FPGA sustains throughput of 850 MTuples/s when the probe phase dominates the

computation (that is, when the size of the probe relation is much larger than the size of

the build relation) and it is close to the peak theoretical throughput of 900 MTuples/s

which can be achieved with 8 engines on 2 FPGAs. When the build phase dominates

the computation, atomic operations restrict FPGA throughput to about 450 Mtuples/s

(in the FPGA 228 plot, the throughput stays almost constant until the probe relation

becomes comparable in size to the build relation). Clearly, in real-world applications the

smaller relation should be used as the build relation. In the worst case we can expect

FPGA throughput to be 600 MTuples/s when both relations are of the same size. For

the extremely skewed dataset, Zipf 1.0, (shown in Figure 5.8) the FPGA throughput

decreases significantly and varies widely depending on the specific data. This happens

because extremely long bucket chains create a lot of stalling during the probe phase that

greatly affects throughput.

The CPU results are consistent with those reported in [6]. The partitioned

algorithm peak performance is around 250 MTuple/s across all datasets, regardless of

70

whether computation is dominated by the build or the probe phase. It is also not

affected by the data skew. For the non-partitioned algorithm, the throughput depends

on the relative sizes of the relations, since like in the FPGA case, the throughput of

the build phase is lower than the probe phase. The non-partitioned algorithm behaves

always worse than the FPGA approach. Interestingly, for the Unique dataset, the non-

partitioned version has better throughput than the partitioned one, because the bucket

chain lengths are exactly one. As the average bucket chain length increases (moving from

the Unique to the Random to the skewed datasets) the throughput of non-partitioned

approach decreases. For the extremely skewed Zipf 1.0 dataset, it falls approximately

to 50 MTuples/s.

Averaging the data points within all datasets yields the following results: the

FPGA shows a 2x speedup over the best CPU results (non-partitioned) on Unique data,

and a 3.4x speedup over the best CPU results (partitioned) on Random and Zipf 0.5

data. The FPGA shows a 1.2x slowdown compared to the best CPU results (partitioned)

on Zipf 1.0 data.

5.3.5 Scalability

To examine scalability, in the next experiments we attempt to match the band-

width between software and hardware as closely as possible: every four CPU threads are

compared to one FPGA (note that this still provides a slight advantage to the CPU in

terms of memory bandwidth). We examine two cases, when the probe relation is much

larger than the build one, and when they are of equal size. Figures 5.9, 5.11 and 5.13

71

Figure 5.9: FPGA throughput scaling. The Build Relation has 221, Probe has 228 tuples

Figure 5.10: FPGA throughput scaling. The Build and Probe Relations both have 228

tuples

72

Figure 5.11: Partitioned CPU throughput scaling. The Build Relation has 221, Probe
has 228 tuples

Figure 5.12: Partitioned CPU throughput scaling. The Build and Probe Relations both
have 228 tuples

73

Figure 5.13: Non-Partitioned CPU throughput scaling. The Build Relation has 221,
Probe has 228 tuples

Figure 5.14: Non-Partitioned CPU throughput scaling. Build and Probe Relations both
have 228 tuples

74

show the results when the probe phase dominates the computation. The FPGA scales

linearly on datasets Unique, Random and Zipf 0.5 (Figure 5.9).

However, for the Zipf 1.0 dataset, the performance does not scale because of

the extreme skew. Each probe job searches through an average of 4.8 to 6.7 nodes in

the linked list. Therefore most jobs are recycled through the datapath multiple times.

Having too many jobs being recycled limits the new jobs entering the datapath causing

back pressure and stalling. The partitioned algorithm scales as the number of threads

increases but at a lower rate than the FPGA approach (depicted on Figure 5.11). The

non-partitioned algorithm shows a drop in performance while moving from 8 to 12

threads because of the NUMA latency emerging while moving from 1 to 2 CPUs (Figure

5.13).

The FPGA scales at a lower rate when the build and probe relation are of the

same size (Figure 5.10), since the throughput of the build phase remains constant while

the probe phase scales. The slope of the scale graph is almost comparable to the CPU

implementations (shown on Figures 5.12 and 5.14). Again the extreme skew case does

not scale for the FPGA.

5.3.6 Throughput Efficiency

To get a direct comparison of throughput we normalize it to the available

bandwidth. As discussed in Section 5.3.1 each FPGA has 19.2 GBs of bandwidth, and

each CPU has 51.2 GBs. The normalized results are shown in Figure 5.15 and 5.16.

When the probe relation dominates the computation (Figure 5.15) the FPGA shows

speedup between 3.2x and 6x on the Unique dataset. It shows a speedup between 4.4x

and 10x on the Random and Zipf 0.5 datasets. Finally, it shows speedup between 0.6x

75

Figure 5.15: Throughput efficiency when Build Relation has 221, Probe has 228 tuples

Figure 5.16: Throughput efficiency when Build and Probe Relations both have 228 tuples

76

and 8.3x on the Zipf 1.0 dataset. When neither relation dominates the computation

(Figure 5.16) the FPGA shows speedup between 1.7x and 8.6x on the Unique dataset.

It shows a speedup between 1.7x and 23.1x on the Random and Zipf 0.5 datasets.

Finally, it shows speedup between 0.2x and 21.6x on the Zipf 1.0 dataset.

Table 5.1: FPGA Resource utilization.

engines Registers LUTs BRAMs

1 probe 65678 (7%) 62521 (13%) 104 (14%)

2 probe 81712 (9%) 74951 (16%) 133 (18%)

3 probe 94799 (10%) 86200 (18%) 154 (21%)

1 build 112476 (16%) 118169 (33%) 41 (4%)

2 build 117202 (17%) 123890 (35%) 48 (5%)

3 build 121408 (17%) 129592 (37%) 55 (6%)

4 build 125588 (18%) 135908 (38%) 62 (7%)

5.3.7 FPGA Area Utilization

Table 5.1 shows the resource utilization (registers, LUTs and BRAMs used)

for the different FPGA designs. We observe that many resources are shared between

engines as their number increases. For example, one probe engine uses 7% of the available

registers, whereas three engines utilize only 10% of the register file. Note that the build

phase uses much more logic resources (LUT) due to its atomic operations, but it also

has very low BRAM utilization. Overall, the space utilization on the FPGA is low,

leaving sufficient space to extend out design for with various optimizations (selections,

projections, join step).

77

5.4 Conclusion

We have presented the performance benefits of the first end-to-end FPGA

implementation of hash joins. Our approach is different as the entire hash-table is built

in memory, leveraging FPGA multithreading to deal with long memory latencies. As

hashing itself is a basic building block for many relational operator implementations,

the presented FPGA design could be extended to support other operations like group-

by aggregations, duplicate elimination, unions, intersections etc. Furthermore, we are

examining how partitioning and thread load balancing can be utilized on the FPGA

approach so as to deal with extremely skewed datasets.

78

Chapter 6

FPGA based Multithreading for

In-Memory Aggregation

Aggregation is widely used in relational databases to group information, or

to count the occurrence of various values. It is a more challenging algorithm, from a

hardware accelerator point-of-view, than hash join. Both designs maintain a hash table

in memory, but they access it in very different fashions. Join runs two distinct phases

sequentially without any overlap. During the build phase tuples from one relation are

used to build the hash table, and every job inserts (i.e. writes) a new node. During the

probe phase tuples from another relation are used to read the hash table, and no job

writes to the table. The aggregation operation builds a histogram, and before it inserts

a new node into the table it must first verify the key does not already exist. In short

aggregation has the option to update an existing, or create a new node, which means

each job must read and write to the hash table.

In this section we present a multithreaded FPGA kernel design for the aggre-

gation operation. We attempt to address the atomic operation performance issue from

79

Figure 6.1: A flow chart for an aggregation job through the kernel.

Chapter 5 by utilizing on-chip CAM logic. Results are compared against five different

software approaches.

6.1 A FPGA Aggregation Kernel

The aggregation kernel is design for large scale database workloads, and the

datasets are assumed to be too large to store locally on the FPGA. Accesses to global

memory incur long latencies. Our kernel uses a multithreaded approach to mask latency

and efficiently utilize the available bandwidth. The implementation uses custom CAM

80

Figure 6.2: The FPGA aggregation engine.

units (local to the FPGA) to reduce the memory requests, and enforce atomic operations

(e.g. lock memory locations). The decision to utilize CAMs is made for performance

reasons. They allow the kernel to reduce the global memory requests by accumulating

data from identical keys locally. They also allow the FPGA to enforce locking on specific

memory channels instead of across all channels. In Chapter 5 Section 5.3.4 the Convey

MX’s atomic operations were shown to be a bottleneck.

Figure 6.1 shows a flow chart for one job through the aggregation engine.

Figure 6.2 shows the layout, and memory channels of the aggregation engine. Each

tuple from the relation is treated as a unique job, and is assigned its own thread on the

FPGA. Jobs are first streamed from global memory by the Tuple Request component.

Upon arrival they are sent to the first data CAM filter keys which combines duplicate

keys into a single job on the FPGA. As an example assume the first 5 tuples have the

following keys: A, B, A, C, A. The CAM will merge data from the 4th and 5th tuples

81

with they data from the 1st tuple because their keys match. The design assumes a

count aggregation function, and therefore the CAM maintains an occurrence count of

duplicate keys. Continuing with the example, the first tuple with key A misses in the

CAM so it updates the CAM with the key value pair (A, 1). The job then continues

through the FPGA to search for a matching node in the hash table. The second tuple

with key A hits in the CAM so it updates the key value pair to (A, 2), and the FPGA

terminates the job. The third tuple with key A is also terminated after updating the key

value pair to (A, 3). Eventually the first job (which was not terminated) will complete

and increment an existing node with the value of 3, or create a new node for key A with

an initial value of 3.

Jobs that do not get merged into other threads by the first CAM search the

hash table for an existing node with the same key. The design uses linked lists as the

conflict resolution strategy (i.e separate chaining). Memory latency plays an key part

in this phase of the execution. If two keys share a hash value, and neither find a match

in the linked list they both will try and insert a new node to the chain. Because the

latency can be hundreds of cycles a race condition is created. Both threads will create

a new node, and attempt to connect it with the same existing node. To prevent this

condition a second CAM, HT Lock, is used to lock the hash table’s location that holds

the linked list’s head pointer. Jobs are sent to the Wait for Lock FIFO and stalled until

the lock is released.

Once a job obtains the lock, and passes through the second CAM it begins

searching through the linked list. First it requests the head pointer, which is stored in

the hash table. A job follows the linked list chain one node at a time. If it ever finds

a matching key it updates the node. If it reaches the last node in the list the thread

allocates a new node, and inserts it into the chain. When the thread needs to update

82

or initialize a node it reads the value from the filter keys CAM, which holds the count

for all jobs merged into this thread. The thread’s key value is flushed from both CAMs

freeing the locks, and allowing other jobs to unstall and continue their execution. The

engine is done once no more threads are in the datapath.

6.2 Implementation Considerations & Limitations

By incorporating CAMs into the FPGA design we can increase the portability.

To my knowledge the Convey MX is the only commercially available platform offering

support for atomic operations. Using generic CAMs to enforce locks means the atomic

operations are all internal to the FPGA chip, and can be routed on any platform with

sufficient area. This also allows the design to lock only the memory channels which need

locking. On the MX if any channel needs atomic operations then a custom wrapper is

needed which has atomic logic for all channels.

CAMs allow fast lookups, which the design uses merge duplicate keys into a

single job. It reduces the number of global memory requests because fewer jobs are in

the engine. However, CAMs are difficult to implement on reconfigurable fabrics. Their

ability to check multiple locations within a single cycle results in high fanout rates

that inflate quickly as the CAM grows in size. Current FPGA chips offer little custom

hardware support (i.e. DSP units, BRAMs, etc.) for CAMs, and therefore they can

be area intensive. Our design was limited by CAM size. A Convey HC-2ex is used to

implement the design as discussed in Section 6.3.1, and it needs more than 500 threads

to fully mask the memory latency. However, each CAM only holds 128 unique elements,

which was done to meet the 150 MHz timing constraint. Platforms with higher or lower

clock frequencies can use smaller or larger CAMs.

83

Multiple aggregation engines can be placed on a single FPGA, or duplicated

across multiple FPGAs. A single CAM could be shared among all these engines, but it

would create many routing issues. In addition communication channels between FPGAs

are typically limited. Therefore the engines in our design utilize their own distinct

CAMs. It increases modularity, and makes them truly parallel. However, doing so

requires each engine to work on its own hash table, and introduces an extra merging

phase at the end of the computation. The merge step can be made streamable by forcing

the aggregation engines to build sorted linked list. This introduces negligible overhead

because linked lists are not sequential data structures. It can also reduce the search

time to find matching key nodes.

6.3 Experimental Evaluation

The multithreaded aggregation approach is compared to a number of software

implementations. Software designs are run on a single Intel Xeon E5-2643 CPU, and

the hardware design is run on 2 Xilinx Virtex-7 LX760 FPGAs. Because aggregation

is a memory bounded application we compare 2 FPGAs with 1 CPU so the memory

bandwidth is comparable. However, at 38.4 GB/s the FPGA is still giving a 33%

bandwidth advantage to the CPU, which has 51.2 GB/s.

6.3.1 FPGA & Software Implementations

All software and hardware experiments are performed on th same machine;

a Convey HC-2ex. It is a heterogeneous platform that offers a shared global memory

space between the software and hardware. While the memory can be directly accessed

by any processor it is divided into regions connected through PCIe with portions closer

84

to the CPU, and portions closer to the FPGAs. The hardware region has 4 runtime

programmable Xilinx Virtex-6 LX760 FPGAs with fast access to 64 GBs of global mem-

ory. The software region has 2 Intel Xeon E5-2643 CPUs with fast access to 128 GBs

of global memory.

Each of the 4 FPGAs has 8 memory controllers that run at 300 MHZ, but to

simplify timing they are duplexed into 16 channels at 150 MHz for the FPGA logic.

All channels have an 8-byte data bus that connects to Convey’s custom crossbar. The

engine proposed in Section 6.1 requires 4 memory channels. A single channel to stream

in the tuples. Another channel to communicate with the in-memory hash table. Two

channels for the in-memory linked lists. To better utilize the available bandwidth four

engines are placed on a single FPGA. The hardware kernel has a total of 8 multithreaded

aggregation engines running in parallel across 2 FPGAs. The peak theoretical through-

put for the FPGA is therefore 1200 MTuples/s. However, as stated in Section 6.2 our

implementation is limited by the CAM size, and we do not expect to sustain such a high

throughput.

Multiple software approaches are compared against1. The algorithms are briefly

outlined here:

• Individual Tables is similar to the algorithm implemented in hardware. The

tuples are evenly split between individual threads (without partitioning), and each

thread works with its own hash table. Once the aggregation is complete all tables

must merge their results together.

1All software implementations were written and run by Ildar Absalyamov. Their description is
included here for comparative purposes.

85

• Shared Table(atomic) splits the tuples evenly between threads, but all threads

write to a single hash table. Intel specific locking hardware is used to synchronize

the execution. No merge step is needed.

• Hybrid Table is a combination of Individual Tables and Shared Table. Each

thread has its own small table based on the processor’s L2 cache size. Values that

match, or that fit are written to the small table. Values that do not are overflowed

into a large shared table. Once aggregation is complete the small tables are merged

into the large shared table.

• Partitioning (Individual Output) uses individual tables per thread, but before

aggregation is performed the tuples are partitioned. Therefore, each table works

on unique values and the final tables can be concatenated instead of merged.

• PLAT (Partitioned Local Aggregation Tables) is a combination of all the

previous techniques. It first partitions the tuples into workloads with mutually

exclusive keys. Each thread has its own small table based on the L2 cache size.

Values that do not fit into the small table are written to a larger table. Once

aggregation completes the small tables are merged with their large tables. Finally

the large tables are concatenated together.

6.3.2 Dataset Description

Aggregation performance in software drops off significantly as the dataset’s

key cardinality increases. When the CPU’s caches can hold the entire hash table the

performance is high because few memory requests are needed. We compare the hardware

and software design on 5 datasets with varying key distributions. Each dataset consists

of 5 benchmarks with cardinalities ranging from 210 unique keys to 222 unique keys.

86

Figure 6.3: Aggregation throughput for hardware and software approaches on the uni-
form dataset.

• In the Uniform dataset all key values are randomly generated. They are un-

ordered and evenly distributed throughout the relation.

• In the Heavy Hitter dataset a single key value is shared by 50% of the tuples.

The remaining key values are evenly distributed throughout the rest of the relation.

• In the Moving Cluster dataset key values are grouped into clusters. Lower key

values are more likely to appear at the beginning of the relation, and higher key

values are more likely to appear at the end of the relation.

• In the Self Similar dataset a single key value is shared by 20% of the tuples. Of

the remaining 80% of tuples 20% of those share a single key value. This pattern is

repeated recursively to generate the relation. Tuples are randomly shuffled. The

algorithm is described in [26].

• In the Zipf dataset key values fall the Zipf distribution with a coefficient factor

of 0.5. The algorithm is described in [26].

87

Figure 6.4: Aggregation throughput for hardware and software approaches on the heavy
hitter dataset.

6.3.3 Throughput Evaluation

Throughput is considered across 2 FPGA, and 5 software (2 partitioned, and

3 non-partitioned) approaches. All software results were run on a single Xeon E5-2643

CPU with 8 hardware threads. The hardware results are run on 2 Xilinx Virtex-6

LX760 FPGAs. 2 FPGAs are compared with 1 CPU to balance out the software’s

memory bandwidth advantage. A single CPU has 51.2 GB/s of memory bandwidth,

but the 2 FPGAs combined only have 38.4 GB/s. The CPU still has the advantage with

30% more bandwidth, but it is not as severe.

Key cardinality is varied for each of the dataset’s benchmarks, and the through-

put performance results are shown in Figures 6.3 to 6.7. Software performance is in-

versely related to the dataset cardinality. Benchmark’s with few unique keys create few

hash table nodes, which better fit in the software’s caches. However, as the number

of unique keys increases caches become less effective. This trend is shown across all 5

benchmarks. Partitioned algorithms are outperformed by non-partitioned algorithms,

88

Figure 6.5: Aggregation throughput for hardware and software approaches on the mov-
ing cluster dataset.

Figure 6.6: Aggregation throughput for hardware and software approaches on the self
similar dataset.

89

Figure 6.7: Aggregation throughput for hardware and software approaches on the Zipf
0.5 dataset.

but the difference is only noticeable with low cardinality. Throughput over 500 MTu-

ples/sec is possible on benchmarks with around 1K unique keys. However, throughput

drops below 100 MTuples/sec for all algorithms, on all datasets when the benhmarks

have more than 1M unique keys. Software performs best on the Moving Cluster dataset;

Figure 6.5. This is because the key values are grouped together within the benchmarks,

which allows the CPU to better utilize its caches.

The mulithreaded hardware approach has 8 custom engines that build 8 sep-

arate hash table. Two sets of results are reported in Figures 6.3 to 6.7. The FPGA

approach only builds the hash tables, and once completed the results are split across

8 hash tables. The FPGA(merging) approach adds an extra step where all nodes are

merged together into a single table. With 8 engines running at 150 MHz the peak per-

formance is 1200 MTuples/sec, but our design is limited to 128 outstanding jobs by the

CAM size. The FPGA has consistent performance across all benchmarks, when not

considering the merge step, in 4 of the 5 datasets. Uniform, Moving Cluster, and Zipf

90

Figure 6.8: Aggregation throughput for the FPGA on multiple relation sizes with uni-
form key distribution. Results are shown without (solid line), and with (dashed line)
the merge operation.

all sustain throughput between 300 MTuple/sec and 400 MTuples/sec. Heavy Hitter has

higher performance ranging between 500 and 600 MTuples/sec because 50% of the tu-

ples share a key value. The duplicate keys are merged together into a single outstanding

request, and merging jobs does not stall the datapath. Self Similar is the only dataset

where performance drops as the cardinality increases. At low cardinality many tuples

share the same keys, but the distribution disburses as the cardinality increases. At low

cardinalities it performs similar to Heavy Hitter, and at high cardinalities it performs

similar to the other datasets.

The merge step has a fixed cost that depends on the number of unique keys.

Aggregation creates a histogram of results so all benchmarks, no matter the size, will

reduce into a fixed number of nodes. Results show that the merge step is insignificant

to performance below 128 million keys, but the performance begins to drop at higher

cardinality. The performance is still an order of magnitude higher than software.

91

Figure 6.9: Aggregation throughput for the FPGA on multiple relation sizes with heavy
hitter key distribution. Results are shown without (solid line), and with (dashed line)
the merge operation.

6.3.4 Effects of the Merge Operation

To easily interface the FPGA aggregation with existing database management

systems the final result should have all matching keys allocated to one node in a hash

table. Managing memory locks locally on the FPGA improved portability, but it also

required each engine to work on individual hash tables. In our case this means a single

key can be spread across 8 hash table. To complete the operation an extra merging step

must be done. As discussed in Section 6.3.1 we build sorted linked-list chains, which

allows the merging to be done in a streaming fashion.

The merge step requires finite time dependent on the key cardinality. It is

independent of the relation’s size, or key distribution. The merge step will have a larger

effect on overall performance for high cardinality benchmarks, but the effect will be less

pronounced as the relation size increases.

Figures 6.8 and 6.9 show the throughput performance for multiple relation

sizes. The solid-lines show performance when only the aggregation step is performed.

92

The dashed-lines show performance when the merge step is included. We report results

for two datasets (uniform and heavy hitter) which are representative of all five datasets.

As expected the merging operation’s effects are only noticeable on high cardinality

benchmarks, and the effect is lessened as the relation size increases from 8 million tuples

to 64 million tuples.

6.4 Conclusion

In this chapter we have presented a multithreaded FPGA implementation for

the aggregation operation. The design is easily portable between FPGA architectures

because is uses CAMs to enforce synchronization. All data structures are stored in main

memory, which allows the DBMS to seamlessly transition between software and hard-

ware execution. Results show that throughput performance is consistent and predictable

regardless of a relation’s size and cardinality. However, the final merge step does af-

fect performance when the relation size and cardinality are similar (i.e. few tuples are

aggregated together). Performance ranges between 300 and 600 MTuples/sec depend-

ing on the key distribution. Results show that the multithreaded FPGA approach can

significantly outperform many software approaches on high cardinality benchmarks.

93

Chapter 7

Conclusion

Many interesting problems that require sparse matrices, hash tables, or any

irregular data structures are going to have trouble with cache centric hardware. Re-

gardless, it seems unlikely that the major chip manufactures are going to move away

from their cache model. Luckily there has been a push by the hardware industry toward

heterogeneous platforms. Companies are actively developing FPGA accelerators that

easily connect through PCIe, and providing APIs to easily integrate them with existing

software. These advances allow researchers to quickly develop and prototype algorithms

that do not rely on caching to cope with long memory latencies. Since the 1980s pro-

cessor performance has outpaced memory performance, causing memory bandwidth to

be the bottleneck for many applications.

Latency masking multithreaded architectures have existed since the early 1990s.

They perform well on applications with sufficient parallelism, but identifying parallelism

is a non-trivial task. Some chip manufactures like Oracle, with its UltraSPARC T series,

have partially adopted this platform into their CPU designs. However, The emerging

heterogeneous platforms can offer the best of both worlds. Caches work well for regular

94

applications, but the irregular applications can be offloaded to accelerators with custom

multithreaded kernels.

Programmability is the first issue addressed by this thesis. Designing custom

hardware is notoriously difficult. The startup costs often discourage software developers

from building/using hardware circuits. We present the CHAT tool, which is a C to

VHDL compiler that can generate custom memory masking mulithreaded hardware

circuits. It is designed to be portable with standard FIFO interfaces. Developers only

need to know enough hardware logic to connect the FIFOs to their memory architecture.

Results from Chapter 3 showed that the multithreaded model can accelerate memory

bounded kernels with irregular access patterns by 2x over software implementations.

In Chapter 4 the CHAT tool is used to generate a custom SpMV kernel. Many

important problems in high performance computing and scientific computing rely on

sparse matrices. They have been used to represent economic models, hardware circuits,

graphs, and simulation runs. Using benchmarks chosen by other research groups we

showed that a multithreaded FPGA approach can perform as well as CPU and GPU

platforms. However, these benchmarks exhibited regular memory access patterns that

are well suited to the CPU’s caches, and the GPU’s memory coalescing. Performance

when using irregular sparse matrices showed that the FPGA’s performance was higher

than the GPU in terms of throughput. This even though the GPU had 2.7x the memory

bandwidth of the FPGA; 208 GB/s vs. 76.8 GB/s.

In Chapter 5 we present the first FPGA based in-memory hash join algorithm

for relational databases. Hash join is handled in two phases. The build phase which

creates a hash table based on one relation, and the probe phase that read and compares

against the hash table for another relation. The custom kernels rely on multithreading

to cope with the long memory latency that can take upwards of 500 cycles to complete.

95

An end-to-end implementation requires atomic operations to prevent race conditions

during the build phase. Our design utilized custom memory locks provided by the

Convey MX platform, but the same functionality could be had by incorporating CAMs

into the FPGA kernel. The overhead for atomic operations limited performance, but

the multithreaded approach still outperformed software (which used caches) on uniform

and slightly skewed datasets. Heavily skewed datasets resulted in long linked list chains

that made performance unpredictable.

In Chapter 6 we present a portable FPGA based in-memory aggregation algo-

rithm for relational databases. The design uses custom CAM logic to enforce memory

locking, and ensure synchronization while creating the hash table. The implementation

is more challenging than hash join because each tuple must read through the linked list

chains searching for a match before it can write to memory. Multithreading is again

used to cope with long memory latencies, but the design is ultimately limited by the

CAM size. Regardless results show the FPGA approach can sustain between 300 and

600 MTuples/sec on a variety of key distributions.

96

Bibliography

[1] M.-C. Albutiu, A. Kemper, and T. Neumann. Massively parallel sort-merge joins in
main memory multi-core database systems. Proceedings of the VLDB Endowment,
5(10):1064–1075, 2012.

[2] Altera. Altera SDK for OpenCL, 2014.

[3] G. Alverson, R. Alverson, D. Callahan, B. Koblenz, A. Porterfield, and B. Smith.
Exploiting heterogeneous parallelism on a multithreaded multiprocessor. In Pro-
ceedings of the 6th International Conference on Supercomputing, pages 188–197,
1992.

[4] R. Alverson, D. Callahan, D. Cummings, B. Koblenz, A. Porterfield, and B. Smith.
The tera computer system. In Proceedings of the 4th International Conference on
Supercomputing, pages 1–6, 1990.

[5] C. Balkesen, G. Alonso, J. Teubner, and M. T. Özsu. Multi-core, main-memory
joins: Sort vs. hash revisited. Proceedings of the VLDB Endowment, 7(1):85–96,
2013.

[6] C. Balkesen, J. Teubner, G. Alonso, and M. Özsu. Main-memory hash joins on
multi-core CPUs: Tuning to the underlying hardware. In Proceedings of the IEEE
International Conference on Data Engineering, pages 362–373, 2013.

[7] M. M. Baskaran and R. Bordawekar. Optimizing sparse matrix-vector multiplica-
tion on gpus using compile-time and run-time strategies. IBM Reserach Report,
RC24704 (W0812-047), 2008.

[8] N. Bell and M. Garland. Efficient sparse matrix-vector multiplication on CUDA.
Technical report, NVIDIA, 2008.

[9] S. Blanas, Y. Li, and J. M. Patel. Design and evaluation of main memory hash join
algorithms for multi-core cpus. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pages 37–48, 2011.

[10] J. Boisseau, L. Carter, A. Snavely, D. Callahan, J. Feo, S. Kahan, and Z. Wu. Cray
t90 vs. tera mta: The old champ faces a new challenger. 1998.

[11] P. A. Boncz, S. Manegold, and M. L. Kersten. Database architecture optimized
for the new bottleneck: Memory access. In Proceedings of the 25th International
Conference on Very Large Data Bases, pages 54–65, 1999.

97

[12] J. Branscome, M. Corwin, L. Yang, J. Shau, R. Krishnamurthy, and J. I. Cham-
dani. Processing elements of a hardware accelerated reconfigurable processor for
accelerating database operations and queries. Patent: US 20080189251 A1, 2008.

[13] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson, S. Brown,
and T. Czajkowski. Legup: high-level synthesis for fpga-based processor/accelerator
systems. In Proceedings of the 19th ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, pages 33–36, 2011.

[14] J. Casper and K. Olukotun. Hardware acceleration of database operations. In
Proceedings of the ACM/SIGDA International Symposium on Field-programmable
Gate Arrays, pages 151–160, 2014.

[15] G. Chin, A. Marquez, S. Choudhury, and K. Maschhoff. Implementing and evaluat-
ing multithreaded triad census algorithms on the cray xmt. In IEEE International
Symposium on Parallel & Distributed Processing, pages 1–9, 2009.

[16] Convey Computers. http://www.conveycomputer.com/.

[17] D. Crookes, K. Benkrid, A. Bouridane, K. Alotaibi, and A. Benkrid. Design and
implementation of a high level programming environment for fpga-based image
processing. IEEE Proceedings Vision, Image and Signal Processing, 147(4):377–
384, 2000.

[18] CUSP-library. http://cusplibrary.github.io/.

[19] M. DeLorimier and A. DeHon. Floating-point sparse matrix-vector multiply for
fpgas. In Proceedings of the ACM/SIGDA 13th International Symposium on Field-
Programmable Gate Arrays, pages 75–85, 2005.

[20] J. Feo, D. Harper, S. Kahan, and P. Konecny. Eldorado. In Proceedings of the 2nd
Conference on Computing Frontiers, pages 28–34, 2005.

[21] E. Fernandez, W. Najjar, E. Harris, and S. Lonardi. Exploration of short reads
genome mapping in hardware. In International Conference on Field Programmable
Logic and Applications, pages 360–363, 2010.

[22] E. Fernandez, W. Najjar, and S. Lonardi. String matching in hardware using the
fm-index. In IEEE 19th Annual International Symposium on Field-Programmable
Custom Computing Machines, pages 218–225, 2011.

[23] P. Francisco et al. The netezza data appliance architecture: a platform for high
performance data warehousing and analytics. IBM Redbooks, 2011.

[24] M. Gerards, J. Kuper, A. Kokkeler, and B. Molenkamp. Streaming reduction cir-
cuit. In 12th Euromicro Conference on Digital System Design, Architectures, Meth-
ods and Tools, pages 287 –292, 2009.

[25] E. L. Goodman, D. J. Haglin, C. Scherrer, D. Chavarria-Miranda, J. Mogill, and
J. Feo. Hashing strategies for the cray xmt. In IEEE International Symposium on
Parallel & Distributed Processing, Workshops and Phd Forum, pages 1–8, 2010.

[26] J. Gray, P. Sundaresan, S. Englert, K. Baclawski, and P. Weinberger. Quickly
generating billion-record synthetic databases. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, pages 243–252, 1994.

98

[27] Z. Guo, A. Buyukkurt, J. Cortes, A. Mitra, and W. Najjart. A compiler inter-
mediate representation for reconfigurable fabrics. International Journal of Parallel
Programming, 36(5):493–520, 2008.

[28] R. J. Halstead, B. Sukhwani, H. Min, M. Thoennes, P. Dube, S. Asaad, and B. Iyer.
Accelerating join operation for relational databases with fpgas. In Proceedings of
the IEEE 21st Annual International Symposium on Field-Programmable Custom
Computing Machines, pages 17–20, 2013.

[29] F. D. Hinshaw, D. L. Meyers, and B. M. Zane. Programmable streaming data
processor for database appliance having multiple processing unit groups. Patent:
US 7577667 B2, 2009.

[30] R. E. Hiromoto, O. M. Lubeck, and J. Moore. Experiences with the denelcor hep.
Parallel Computing, 1(3):197–206, 1984.

[31] IBM Netezza. http://www.ibm.com/software/data/netezza/.

[32] M. Ionescu and K. Schauser. Optimizing parallel bitonic sort. In Proceedings of the
11th International Symposium on Parallel Processing, pages 303–309, 1997.

[33] S. Jin, J. Cho, X. Dai Pham, K. M. Lee, S.-K. Park, M. Kim, and J. W. Jeon. Fpga
design and implementation of a real-time stereo vision system. IEEE Transactions
on Circuits and Systems for Video Technology, 20(1):15–26, 2010.

[34] C. Kim, T. Kaldewey, V. W. Lee, E. Sedlar, A. D. Nguyen, N. Satish, J. Chhugani,
A. Di Blas, and P. Dubey. Sort vs. hash revisited: Fast join implementation on
modern multi-core cpus. Proceedings of the VLDB Endowment, 2(2):1378–1389,
2009.

[35] R. Krishnamurthy, C. Ku, J. Shau, C. Zhang, K. Surlaker, J. Branscome, M. Cor-
win, and J. Chamdani. Methods and systems for generating query plans that are
compatible for execution in hardware. US Patent App. 12/168,821, 2010.

[36] J. Kuehnand and B. Smith. The horizon supercomputing system: architecture and
software. In Proceedings of the ACM/IEEE Conference on Supercomputing, pages
28–34, 1988.

[37] M. Kumar and D. Hirschberg. An efficient implementation of batcher’s odd-even
merge algorithm and its application in parallel sorting schemes. IEEE Transactions
on Computers, 100(3):254–264, 1983.

[38] C. Lattner and V. Adve. Llvm: A compilation framework for lifelong program
analysis & transformation. In Proceedings of the International Symposium on Code
Generation and Optimization, 2004.

[39] LegUp. http://legup.eecg.utoronto.ca/.

[40] K. Li and W. Yang. Performance analysis and optimization for spmv on gpu using
probabilistic modeling. IEEE Transaction on Parallel and Distributed Systems,
2014.

[41] S. Manegold, P. Boncz, and M. Kersten. Optimizing main-memory join on modern
hardware. IEEE Transactions on Knowledge and Data Engineering, 14(4):709–730,
2002.

99

[42] Maxeler Technologies. http://www.maxeler.com/.

[43] K. Meiyyappan, L. Yang, J. Branscome, M. Corwin, R. Krishnamurthy, K. Surlaker,
J. Shau, and J. I. Chamdani. Accessing data in a column store database based
on hardware compatible indexing and replicated reordered columns. Patent: US
20090254516 A1, 2009.

[44] A. Mitra, M. Vieira, P. Bakalov, W. Najjar, and V. Tsotras. Boosting xml filtering
with a scalable fpga-based architecture. Conference on Innovative Data Systems
Research, 2009.

[45] D. Mizell and K. Maschhoff. Early experiences with large-scale cray xmt systems.
In IEEE International Symposium on Parallel & Distributed Processing, pages 1–9,
2009.

[46] A. Monakov, A. Lokhmotov, and A. Avetisyan. Automatically tuning sparse
matrix-vector multiplication for gpu architectures. In High Performance Embedded
Architectures and Compilers, pages 111–125. 2010.

[47] R. Moussalli, M. Salloum, W. Najjar, and V. Tsotras. Accelerating xml query
matching through custom stack generation on fpgas. In High Performance Embed-
ded Architectures and Compilers, pages 141–155. 2010.

[48] R. Mueller, J. Teubner, and G. Alonso. Streams on wires: A query compiler for
fpgas. Proceedings of the VLDB Endowment, 2(1):229–240, 2009.

[49] K. Nagar and J. Bakos. A sparse matrix personality for the convey hc-1. In IEEE
Symposium on Field-Programmable Custom Computing Machines, pages 1 –8, 2011.

[50] Y. Oge, T. Miyoshi, H. Kawashima, and T. Yoshinaga. An implementation of
handshake join on fpga. In Second International Conference on Networking and
Computing, pages 95–104, 2011.

[51] Y. Oge, T. Miyoshi, H. Kawashima, and T. Yoshinaga. A fast handshake join
implementation on fpga with adaptive merging network. In Proceedings of the 25th
International Conference on Scientific and Statistical Database Management, pages
44:1–44:4, 2013.

[52] J. C. Pichel, F. F. Rivera, M. Fernández, and A. Rodŕıguez. Optimization of sparse
matrix–vector multiplication using reordering techniques on gpus. Microprocessors
and Microsystems, 36(2):65–77, 2012.

[53] Pico Computing. http://picocomputing.com/.

[54] Riverside Optimizing Compiler for Configurable Computing.
http://roccc.cs.ucr.edu.

[55] M. Sadoghi, R. Javed, N. Tarafdar, H. Singh, R. Palaniappan, and H.-A. Jacob-
sen. Multi-query stream processing on fpgas. In Proceedings of the 2012 IEEE
International Conference on Data Engineering, pages 1229–1232, 2012.

[56] M. Sadoghi, M. Labrecque, H. Singh, W. Shum, and H.-A. Jacobsen. Efficient event
processing through reconfigurable hardware for algorithmic trading. Proceedings of
the VLDB Endowment, 3(1-2):1525–1528, 2010.

100

[57] D. Sart, A. Mueen, W. Najjar, E. Keogh, and V. Niennattrakul. Accelerating
dynamic time warping subsequence search with gpus and fpgas. In IEEE 10th
International Conference on Data Mining, pages 1001–1006, 2010.

[58] Y. Shan, T. Wu, Y. Wang, B. Wang, Z. Wang, N. Xu, and H. Yang. FPGA and
GPU implementation of large scale SpMV. In IEEE 8th Symposium on Application
Specific Processors, pages 64 –70, 2010.

[59] A. Shatdal, C. Kant, and J. F. Naughton. Cache conscious algorithms for relational
query processing. In Proceedings of the 20th International Conference on Very Large
Data Bases, pages 510–521, 1994.

[60] B. Smith. The architecture of hep. In On Parallel MIMD Computation: HEP
Supercomputer and Its Applications, pages 41–55, Cambridge, MA, USA, 1985.
Massachusetts Institute of Technology.

[61] A. Snavely, L. Carter, J. Boisseau, A. Majumdar, K. S. Gatlin, N. Mitchell, J. Feo,
and B. Koblenz. Multiprocessor performance on the tera mta. In Proceedings of
the ACM/IEEE Conference on Supercomputing, pages 1–8, 1998.

[62] B.-Y. Su and K. Keutzer. clspmv: A cross-platform opencl spmv framework on
gpus. In Proceedings of the 26th ACM International Conference on Supercomputing,
pages 353–364, 2012.

[63] B. Sukhwani, H. Min, M. Thoennes, P. Dube, B. Iyer, B. Brezzo, D. Dillenberger,
and S. Asaad. Database analytics acceleration using fpgas. In Proceedings of the 21st
International Conference on Parallel Architectures and Compilation Techniques,
pages 411–420, 2012.

[64] J. Sun, G. Peterson, and O. Storaasli. Sparse matrix-vector multiplication design on
fpgas. In Proceedings of the 15th Annual IEEE Symposium on Field-Programmable
Custom Computing Machines, pages 349–352, 2007.

[65] Teradata Kickfire. http://www.teradata.com/.

[66] J. Teubner and R. Mueller. How soccer players would do stream joins. In Proceedings
of the ACM SIGMOD International Conference on Management of Data, pages
625–636, 2011.

[67] The University of Florida Sparse Matrix Collection.
http://www.cise.ufl.edu/research/sparse/matrices/.

[68] M. R. Thistle and B. J. Smith. A processor architecture for horizon. In Proceedings
of the 1988 ACM/IEEE Conference on Supercomputing, pages 35–41, 1988.

[69] I. S. Uzun, A. Amira, and A. Bouridane. Fpga implementations of fast fourier
transforms for real-time signal and image processing. In IEEE Proceedings Vision,
Image and Signal Processing, volume 152, pages 283–296, 2005.

[70] F. Vazquez, E. Garzon, J. Martinez, and J. Fernandez. The sparse matrix vector
product on gpus. In Proceedings of the International Conference on Computational
and Mathematical Methods in Science and Engineering, volume 2, pages 1081–1092,
2009.

101

[71] O. Villa, D. Chavarria-Miranda, and K. Maschhoff. Input-independent, scalable
and fast string matching on the cray xmt. In IEEE International Symposium on
Parallel & Distributed Processing, pages 1–12, 2009.

[72] J. Villarreal, A. Park, W. Najjar, and R. Halstead. Designing modular hardware
accelerators in c with roccc 2.0. In 18th IEEE Annual International Symposium on
Field-Programmable Custom Computing Machines, pages 127 –134, 2010.

[73] S. Williams, L. Oliker, R. Vuduc, J. Shalf, K. Yelick, and J. Demmel. Optimization
of sparse matrix-vector multiplication on emerging multicore platforms. Parallel
Computing, 35(3):178 – 194, 2009.

[74] R. P. Wilson, R. S. French, C. S. Wilson, S. P. Amarasinghe, J. M. Anderson,
S. W. K. Tjiang, S.-W. Liao, C.-W. Tseng, M. W. Hall, M. S. Lam, and J. L. Hen-
nessy. Suif: an infrastructure for research on parallelizing and optimizing compilers.
SIGPLAN Notices, 29(12):31–37, 1994.

[75] L. Wu, A. Lottarini, T. K. Paine, M. A. Kim, and K. A. Ross. Q100: The Ar-
chitecture and Design of a Database Processing Unit. In Proceedings of the 19th
International Conference on Architectural Support for Programming Languages and
Operating Systems, pages 255–268, 2014.

[76] Xilinx. Virtex-6 Family Overview, 2012.

[77] Xilinx. Vivado Design Suite User Guide High-Level Synthesis, 2012.

[78] Y. Zhang, Y. Shalabi, R. Jain, K. Nagar, and J. Bakos. Fpga vs. gpu for sparse
matrix vector multiply. In International Conference on Field-Programmable Tech-
nology, pages 255 –262, 2009.

[79] Z. Zhang, Y. Fan, W. Jiang, G. Han, C. Yang, and J. Cong. Autopilot: A platform-
based esl synthesis system. High-Level Synthesis: from Algorithm to Digital Circuit,
2008.

[80] L. Zhuo and V. K. Prasanna. Sparse matrix-vector multiplication on fpgas. In Pro-
ceedings of the ACM/SIGDA 13th International Symposium on Field-Programmable
Gate Arrays, pages 63–74, 2005.

102

