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Original Article

Abstract: Unmeasured confounding may undermine the validity of 
causal inference with observational studies. Sensitivity analysis pro-
vides an attractive way to partially circumvent this issue by assessing the 
potential influence of unmeasured confounding on causal conclusions. 
However, previous sensitivity analysis approaches often make strong 
and untestable assumptions such as having an unmeasured confounder 
that is binary, or having no interaction between the effects of the expo-
sure and the confounder on the outcome, or having only one unmeasured 
confounder. Without imposing any assumptions on the unmeasured 
confounder or confounders, we derive a bounding factor and a sharp 
inequality such that the sensitivity analysis parameters must satisfy the 
inequality if an unmeasured confounder is to explain away the observed 
effect estimate or reduce it to a particular level. Our approach is easy to 
implement and involves only two sensitivity parameters. Surprisingly, 
our bounding factor, which makes no simplifying assumptions, is no 
more conservative than a number of previous sensitivity analysis tech-
niques that do make assumptions. Our new bounding factor implies not 
only the traditional Cornfield conditions that both the relative risk of the 
exposure on the confounder and that of the confounder on the outcome 
must satisfy but also a high threshold that the maximum of these relative 
risks must satisfy. Furthermore, this new bounding factor can be viewed 
as a measure of the strength of confounding between the exposure and 
the outcome induced by a confounder.

(Epidemiology 2016;27: 368–377)

Causal inference with observational studies is of great inter-
est and importance in many scientific disciplines. Although 

unmeasured confounding between the exposure and the outcome 
may bias the estimation of the true causal effect, an approach 
often called “sensitivity analysis” or “bias analysis” over a range 
of sensitivity parameters sometimes allows researchers to make 

causal inferences even without full control of the confounders of 
the relationship between the exposure and outcome.

Sensitivity analysis plays a central role in assessing the 
influence of the unmeasured confounding on the causal con-
clusions. However, many sensitivity analysis techniques often 
require additional untestable assumptions. For instance, some 
authors assume a single binary confounder.1–6 Researchers 
also often assume a homogeneity assumption that there is no 
interaction between the effects of the exposure and the con-
founder on the outcome.5–9 Some sensitivity analysis tech-
niques only allow one to assess how strong an unmeasured 
confounder would have to be to completely explain away an 
effect1–3,10,11 but do not allow one to assess what the effect 
estimate might be under weaker unmeasured confounding 
scenarios (i.e., do not allow one to do sensitivity analysis 
under alternative hypotheses). Performing sensitivity analysis 
under alternative hypotheses can be quite challenging due to 
more parameters needed in the sensitivity analysis. The Corn-
field et al. early study1 on sensitivity analysis for the cigarette 
smoking and lung cancer association, which helped initiate 
the entire field of sensitivity analysis, in fact made all three 
simplifying assumptions: a single binary confounder, no 
interaction, and only sensitivity analysis for the null hypoth-
esis of no causal effect. Although some sensitivity analysis 
results exist for general confounders,8,12 they are only easy to 
implement under some of the above simplifying assumptions.

In this article, we propose a new bounding factor and 
sensitivity analysis technique without any assumptions 
about the unmeasured confounder or confounders. None of 
the assumptions of the null hypothesis, a single binary con-
founder, or no interaction is required for using the bounding 
factor. Nonetheless, our new bounding factor, which makes 
no simplifying assumptions, is no more conservative than 
many previous sensitivity analysis techniques that do make 
assumptions and is furthermore easy to implement. Moreover, 
we show that the new bounding factor implies not only the 
classical Cornfield conditions1 that both the relative risk of 
the exposure on the confounder and that of the confounder 
on the outcome must satisfy but also a stronger condition that 
the maximum of these relative risks must satisfy. The new 
bounding factor can be viewed as a measure of the strength of 
confounding between the exposure and the outcome resulting 
from the confounder. We begin by considering outcomes that 
are binary and extend our results further to time-to-event and 
non-negative count or continuous outcomes. We consider both 
ratio and difference scales.

ISSN: 1044-3983/16/2703-0368
DOI: 10.1097/EDE.0000000000000457

Submitted 10 October 2014; accepted 28 January 2016. 
From the aDepartment of Statistics, University of California, Berkeley, CA; 

and bDepartment of Epidemiology and Biostatistics, Harvard School of 
Public Health, Boston, MA.

This work was partly supported by National Institutes of Health Grant R01 
ES017876.

The authors report no conflicts of interest.
 �Supplemental digital content is available through direct URL citations 
in the HTML and PDF versions of this article (www.epidem.com).

Correspondence: Peng Ding, Department of Statistics, University of California, 
425 Evans Hall, Berkeley, CA 94720. E-mail: pengdingpku@berkeley.edu.

Sensitivity Analysis Without Assumptions
Peng Dinga and Tyler J. VanderWeeleb

Copyright © 2016 Wolters Kluwer Health, Inc. All rights reserved. This is 
an open-access article distributed under the terms of the Creative Commons 
Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), 
where it is permissible to download and share the work provided it is properly 
cited. The work cannot be changed in any way or used commercially.

http://www.epidem.com
mailto:pengdingpku@berkeley.edu
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Epidemiology  •  Volume 27, Number 3, May 2016	 Sensitivity Analysis Without Assumptions

© 2016 Wolters Kluwer Health, Inc. All rights reserved.	 www.epidem.com  |  369

The claim that our technique is “without assumptions” 
requires some clarification. As we will see below, we will, 
without any assumptions, be able to make statements of the 
form: “For an observed association to be due solely to unmea-
sured confounding, two sensitivity analysis parameters must 
satisfy [a specific inequality].” We will also, without assump-
tions, be able to make statements of the form: “For unmea-
sured confounding alone to be able to reduce an observed 
association [to a given level], two sensitivity analysis parame-
ters must satisfy [another specific inequality].” We believe the 
ability to make statements of this form without imposing any 
specific structure on the nature of the unmeasured confounder 
or confounders constitutes a major advance in the literature.

However, if statements are made of the form, “If the 
sensitivity analysis parameter take [specified values], then 
such unmeasured confounding can reduce the observed esti-
mate by no more than [a specific level],” then the specifi-
cation of the sensitivity analysis parameters could itself of 
course be viewed as an assumption. Moreover, when plac-
ing the results within a counterfactual or potential outcomes 
framework, the assumptions implicit within that framework 
of course would be needed also to give a potential outcomes 
interpretation to the sensitivity analysis. Thus, certain types 
of statements concerning the sensitivity of conclusions to 
unmeasured confounding can be made “without assump-
tions,” while other types of statements do require assump-
tions concerning the specification of the sensitivity analysis 
parameters themselves, or those implicit within the potential 
outcomes framework.

Our title perhaps merits one further qualification which 
is that what is called in this article “sensitivity analysis” is 
generally now referred to as “bias analysis” in the epidemio-
logic literature. Moreover, such “bias analysis” is relevant not 
only to problems of unmeasured confounding but also mea-
surement error and selection bias, and our focus in this article 
only concerns unmeasured confounding. The term “sensitivity 
analysis” is, however, still employed in statistics, economet-
rics, and in many of the social sciences for issues of unmea-
sured confounding. We believe the technique presented in this 
article will be useful across this range of disciplines and have 
chosen to use the broader term, while acknowledging that ter-
minology in epidemiology has shifted.

SENSITIVITY ANALYSIS: A NEW  
BOUNDING FACTOR

Let E denote the exposure, D denote a binary outcome, 
C  denote the measured confounders, and U  denote one or 
more unmeasured confounders. We will assume for what fol-
lows that the exposure E is binary, but all of the results on sen-
sitivity analysis below are also applicable to a categorical or 
continuous exposure and could be applied comparing any two 
levels of E. For ease of notation, we assume that the unmea-
sured confounder U  is categorical with levels 0,1, , 1… K − . 
But all the conclusions hold for U  of general type (categorical, 

continuous, or mixed; single or multiple confounders). We 
provide proofs and theoretical technical details for general U  
in the eAppendix (http://links.lww.com/EDE/B16).

Let RRobs
ED c

P D E C c P D E C c
|

( | , ) / ( | , )= = = = = = =1 1 1 0  
denote the observed relative risk of the exposure E on the out-
come D within stratum of measured confounders C c= . Define 
RREU k c P U k E C c P U k E C c, | ( | , ) / ( | , )= = = = = = =1 0  as 
the relative risk of exposure on category k of the unmeasured 
confounder within stratum of measured confounders C c= .  
We use RR max RREU c k EU k c| , |=  to denote the maximum of 
these relative risks between E and U , which we will call the 
maximal relative risk of E on U  within stratum C c= . Define

RR
max

minUD E c
k

k

P D E C c U k

P D E C c U k| ,

( | , , )

( | , , )= =
= = = =
= = = =0

1 0

1 0

as the maximum of the effect of U  on D among the unex-
posed comparing any two categories of U  (i.e., the ratio of the 
maximum and minimum of the probabilities of the outcome 
over strata of U  without exposure and within stratum C c= ); 
similarly, define

RR
max

minUD E c
k

k

P D E C c U k

P D E C c U k| ,

( | , , )

( | , , )= =
= = = =
= = = =1

1 1

1 1

as the maximum of the effect of U  on D among the exposed 
comparing any two categories of U  (i.e., the ratio of the 
maximum and minimum of the probabilities of the outcome 
over strata of U  with exposure and within stratum C c= ).  

We use RR max RR RRUD c UD E c UD E c| | , | ,( , )= = =1 0  to denote the 

maximum of the relative risks between U  and D with and 
without exposure, defined as the maximal relative risk of U  on 
D within stratum C c= . Note that if U  is a vector that contains 
multiple unmeasured confounders, then RREU c|  and RRUD c|  
are defined as the maximum relative risk comparing any two 
categories of the vector U .

If C  and U  suffice to control for confounding for the 
effect of E on D, the standardized relative risk

RRtrue
ED c

k

K

k

K

P D E C c U k P U k C c

P D
|

( | , , ) ( | )

(
=

= = = = = =

=
=

−

=

−
∑
∑

0

1

0

1

1 1

1|| , , ) ( | )E C c U k P U k C c= = = = =0

is the true causal relative risk of the exposure E on the 
outcome D within stratum C c= . In the main text, we 
focus the discussion on the whole population. We further 
show in eAppendix 2 (http://links.lww.com/EDE/B16) 
that all the conclusions also hold for exposed and unex-
posed subpopulations. We will for the next several sec-
tions assume all analyses are carried out within strata of C ,  
and thus the condition C c=  is omitted and kept implicitly in 
all the conditional probabilities (e.g., RRobs

ED c|  is replaced by 
RRobs

ED for notational simplicity). Later in the article, we will 
comment on how the results are applicable to estimation aver-
aged over C , rather than conditional on C.

http://links.lww.com/EDE/B16
http://links.lww.com/EDE/B16
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The relative risk pair ( , )RR RREU UD  measures the 
strength of confounding between the exposure E and the out-
come D induced by the confounder U . Our main result ties the 
ratio of the observed relative risk RRobs

ED adjusted only for mea-
sured confounders C  and the true relative risk RRtrue

ED  adjusted 
also for unmeasured confounders U , to the strength of con-
founding, ( , )RR RREU UD . Without any assumptions, we have 
the following result:

Result 1:

	 RR RR
RR RR

RR RR
true obs
ED ED

EU UD

EU UD

≥
×

+ −1
.� (1)

Result 1 shows that even in the presence of unmeasured 
confounding, the true relative risk must be at least as large as 

RR
RR RR

RR RR
obs
ED

EU UD

EU UD

×
+ −1

. In eAppendix 2 (http://links.lww.

com/EDE/B16), we provide a proof for Result 1 and also show 
that the inequality is sharp in the sense that we can always 
construct a model with a confounder U  to attain the equal-
ity. The quantity ( ) ( 1)RR RR RR RREU UD EU UD× + −  is a 
new joint bounding factor for the relative risk. Although quite 
simple, this bound using both RREU  and RRUD has several 
important implications.

First, the result essentially allows for sensitivity analysis 
without assumptions insofar as for an unmeasured confounder 
to reduce an observed estimated RRobs

ED to an actual relative 
risk of RRtrue

ED  the sensitivity analysis parameters RREU  and 
RRUD must be sufficiently large to satisfy the inequality

RR RR

RR RR

RR

RR

obs

true
EU UD

EU UD

ED

ED

×
+ −

≥
1

.

This statement holds without any assumptions about the 
nature of the unmeasured confounder. One could plot those 
values of RREU  and RRUD that would be required to explain 
away the effect estimate (or the lower limit of a confidence 
interval). To conduct sensitivity analysis with prespecified 
strength of the unmeasured confounder, ( , )RR RREU UD , we 
can divide the observed relative risk and its confidence lim-
its by ( ) ( 1)RR RR RR RREU UD EU UD× + − , to obtain a point 
estimate and confidence limits of the lower bound of the true 
causal effect of the exposure E  on the outcome D. We will 
refer to the relative risk adjusted only for C , when divided by 
the bounding factor ( ) ( 1)RR RR RR RREU UD EU UD× + −  as 
the corrected relative risk. It is “corrected” in the sense that 
an unmeasured confounder cannot reduce the relative risk 
any further than what is obtained by division by its bounding 
factor. As an example, suppose we have an observed relative 
risk of 2.1 with a 95% confidence interval [1.4, 3.1]. If we con-

sider an unmeasured confounder with ( , ) = (2,2)RR RREU UD ,  

then the joint bounding factor is 2 2/(2 2 1) = 1.33× + − ,  

and the corrected relative risk is 2.1/1.33 = 1.58 with a 95% 
confidence interval [1.4 /1.33, 3.1/1.33] = [1.05, 2.33]. There-
fore, an unmeasured confounder with ( , ) = (2, 2)RR RREU UD  
cannot explain away the observed relative risk 2.1 or its lower 
confidence limit 1.4, i.e., it cannot reduce the point estimate 
and lower confidence limit of the relative risk to be smaller 
than 1. If we consider an unmeasured confounder with 
( , ) = (2.5, 3.5)RR RREU UD , then the joint bounding factor is 
2.5 3.5 / (2.5 3.5 1) = 1.75× + − , and an estimate for the lower 
bound of the true causal relative risk is 2.1/1.75 = 1.20 with 
a 95% confidence interval [1.4 /1.75, 3.1/1.75] = [0.8,1.77].  
Although the confounder with ( , ) = (2.5, 3.5)RR RREU UD  
cannot explain away the observed relative risk of 2.1,  
it reduces the original lower confidence limit 1.4 to 0.8  
(i.e., less than 1). Note that we are not merely assessing a 
binary confounder, and we are not imposing the no interaction 
assumption. Moreover, we are not restricted to only assess-
ing how much confounding can explain away an effect nor 
are we even assuming that there is a single unmeasured con-
founder (since U  can be a vector of unmeasured confound-
ers). The corrected estimates and confidence intervals above 
are applicable irrespective of the underlying confounder  
(or confounders). We can apply the technique to obtain a 
range of values for the true causal effect under different spec-
ifications of RREU  and RRUD.

Table  1 shows the magnitudes of the joint bounding 
factor for different combinations of RREU  and RRUD. The 
entries in the table for the joint bounding factor are the largest 
observed relative risks that such an unmeasured confounder 
could explain away. We can see from the table that the joint 
bounding factor is always smaller than both of RREU  and 
RRUD, and much smaller than the maximum of them.

As a second important consequence of our main  
Result 1, we also show in eAppendix 2 (http://links.lww.
com/EDE/B16) that once we specify one of the unmeasured  
confounding measures, for example RREU , then to be able  
to reduce an observed relative risk of RRobs

ED to a true causal 
relative risk of RRtrue

ED  the other confounding measure RRUD 
must be at least of the magnitude 

RR
RR RR RR

RR RR RR

obs obs

true obsUD
EU ED ED

EU ED ED

≥
× −
× −

.

For an unmeasured confounder to completely explain 
away the relative risk, i.e., reduce RRobs

ED to RRtrue
ED = 1, once 

we specify RREU  the other unmeasured confounding measure 
much be at least of the magnitude

RR
RR RR RR

RR RR

obs obs

obsUD
EU ED ED

EU ED

≥
× −

−
.

For example, if we have an observed relative risk 
RRobs

ED = 2.5, and we specify the exposure–confounder 

http://links.lww.com/EDE/B16
http://links.lww.com/EDE/B16
http://links.lww.com/EDE/B16
http://links.lww.com/EDE/B16
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association RREU = 3. Then to reduce the observed rela-
tive risk to a true causal relative risk RRtrue

ED = 1.5, the con-
founder–outcome association must be at least as large as 
(3 2.5 2.5)/(3 1.5 2.5) = 2.5× − × − ; to completely explain 
away the observed relative risk (i.e., to reduce the observed 
relative risk to RRtrue

ED = 1), the confounder–outcome associa-
tion must be at least as large as (3 2.5 2.5)/(3 2.5) = 10 .× − −  
The symmetry of Result 1 implies that a similar result also 
holds for RREU  with prespecified RRUD.

Third, we show in eAppendix 2 (http://links.lww.com/
EDE/B16) that if both the generalized relative risks RREU  
and RRUD have the same magnitude, for an unmeasured con-
founder to reduce an observed relative risk of RRobs

ED to a true 
causal relative risk of RRtrue

ED  both of the confounding relative 
risks must thus be at least as large as

RR RR RR RR RR RR RRobs obs obs true true
EU UD ED ED ED ED ED= ( ) .≥ + −{ }

For an unmeasured confounder to completely explain 
away an observed relative risk of RRobs

ED (i.e., to reduce RRobs
ED 

to a true causal relative risk of RRtrue
ED = 1), both RREU  and 

RRUD must be at least as large as

RR RR RR RR RRobs obs obs
EU UD ED ED ED= ( 1).≥ + −

If one of the confounding relative risks is smaller than 
the lower bound above, we then know that the other one must 
be larger. Thus even if RREU  and RRUD are not of the same 
magnitude, the maximum of RREU  and RRUD must satisfy the 
inequality above. We then have the following “high threshold” 
condition:

max( , )

( )

RR RR

RR RR RR RR RRobs obs obs true true

EU UD

ED ED ED ED ED≥ + −{ } ..

For example, to reduce an observed relative risk of 
RRobs

ED = 2.5 to a true causal relative risk of RRtrue
ED = 1.5, the 

high threshold is (2.5 2.5 1)/1.5 = 2.72+ × ; at least one of 
RREU  and RRUD must be of magnitude 2.72 or above. To com-
pletely explain away an observed relative risk of RRobs

ED = 2.5,  
the high threshold is 2.5 2.5 1.5 = 4.44+ × ; at least one of 
RREU  and RRUD must be of magnitude 4.44 or higher to com-
pletely explain away the effect.

Fourth, the bias formula in (1) is relevant for an appar-
ently causative exposure, which allows researchers to get 
lower bounds of the true causal relative risk given prespecified 
sensitivity parameters RREU  and RRUD. If the exposure E is 
apparently preventive with RRobs

ED < 1, we can use the follow-
ing formula to conduct sensitivity analysis:

	 RR RR
RR RR

RR RR
true obs
ED ED

EU UD

EU UD

≤ ×
×

+ −1
,� (2)

where we modify the definition of RREU  as k EU kmax RR ,
1−  

(i.e., the maximum of the inverse relative risks relating E 
and U ), or equivalently the inverse of the minimum of the 
relative risks relating E and U . For an apparently preven-
tive exposure, (2) allows researchers to obtain an upper 
bound of the causal relative risk RRtrue

ED  by multiplying the 
observed relative risk RRobs

ED by the joint bounding factor 
RR RR RR RREU UD EU UD× + −( 1). We present the proof in 
eAppendix 2 (http://links.lww.com/EDE/B16), and omit anal-
ogous discussion based on (2).

Finally, all the results above are within strata of the 
observed covariates C  as would be obtained from a log-bino-
mial regression model or a logistic regression model with rare 
outcome. If averaged relative risk over the observed covariates 
C  is of interest, the true causal relative risk must be at least as 

large as the minimum of RR
RR RR

RR RR
obs
ED c

EU c UD c

EU c UD c
|

| |

| | 1

×
+ −

 over c. 

TABLE 1.  Magnitudes of the Joint Bounding Factor for Different Combinations of the Exposure–Confounder Association RREU 
and the Confounder–Outcome Association RRUD

Bounding 
Factor

RRUD

1.3 1.5 1.8 2 2.5 3 3.5 4 5 6 8 10

RREU
 � 1.3 1.06 1.08 1.11 1.13 1.16 1.18 1.20 1.21 1.23 1.24 1.25 1.26

 � 1.5 1.08 1.12 1.17 1.20 1.25 1.29 1.31 1.33 1.36 1.38 1.41 1.43

 � 1.8 1.11 1.17 1.25 1.29 1.36 1.42 1.47 1.50 1.55 1.59 1.64 1.67

 � 2 1.13 1.20 1.29 1.33 1.43 1.50 1.56 1.60 1.67 1.71 1.78 1.82

 � 2.5 1.16 1.25 1.36 1.43 1.56 1.67 1.75 1.82 1.92 2.00 2.11 2.17

 � 3 1.18 1.29 1.42 1.50 1.67 1.80 1.91 2.00 2.14 2.25 2.40 2.50

 � 3.5 1.20 1.31 1.47 1.56 1.75 1.91 2.04 2.15 2.33 2.47 2.67 2.80

 � 4 1.21 1.33 1.50 1.60 1.82 2.00 2.15 2.29 2.50 2.67 2.91 3.08

 � 5 1.23 1.36 1.55 1.67 1.92 2.14 2.33 2.50 2.78 3.00 3.33 3.57

 � 6 1.24 1.38 1.59 1.71 2.00 2.25 2.47 2.67 3.00 3.27 3.69 4.00

 � 8 1.25 1.41 1.64 1.78 2.11 2.40 2.67 2.91 3.33 3.69 4.27 4.71

 � 10 1.26 1.43 1.67 1.82 2.17 2.50 2.80 3.08 3.57 4.00 4.71 5.26

http://links.lww.com/EDE/B16
http://links.lww.com/EDE/B16
http://links.lww.com/EDE/B16
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If we assume a common causal relative risk among the levels 
of C  as in the usual log-linear or logistic regression with rare 
outcomes, then the true causal relative risk must be at least as 

large as the maximum of RR
RR RR

RR RR
obs
ED c

EU c UD c

EU c UD c
|

| |

| | 1

×
+ −

 over c. 

See eAppendix 2 (http://links.lww.com/EDE/B16) for further 
discussion.

RELATION WITH CORNFIELD CONDITIONS
Under the assumptions of a binary confounder U  and 

the conditional independence between the exposure E and the 
outcome D given the confounder U , Cornfield et al.1 showed 
that the exposure–confounder relative risk must be at least as 
large as the observed exposure–outcome relative risk:

	 RR RRobs
EU ED≥ .� (3)

Schlesselman7 further showed that the confounder–
outcome relative risk must also be at least as large as the 
observed exposure–outcome relative risk:

	 RR RRobs
UD ED≥ .� (4)

We show in eAppendix 2 (http://links.lww.com/EDE/
B16) that the classical Cornfield conditions (3) and (4) are 
just special cases of our result by letting one of RREU  or 
RRUD go to infinity in (1). Moreover, our results apply to gen-
eral confounders not just binary confounders, and our results 
also apply to other possible values of the true causal relative 
risk of the exposure on the outcome. We are not restricted 
to only assessing how strong the unmeasured confounder 
would have to be to completely explain away the effect. 
Thus, for example, for confounding to reduce the observed 
relative risk RRobs

ED to a true causal relative risk of RRtrue
ED , the 

unmeasured confounding measures have to satisfy

	 RR RR RR and RR RR RRobs true obs true
EU ED ED UD ED ED≥ ≥ .� (5)

Perhaps even more importantly with regard to Corn-
field-like conditions, our main Result 1 not only leads to the 
conditions in (5) that both RREU  and RRUD must satisfy but 
also implies the following condition that the maximum of 
RREU  and RRUD must satisfy:

	
max( , )

( )

RR RR

RR RR RR RR RRobs obs obs true true

EU UD

ED ED ED ED ED≥ + −{ } ,,
� (6)

to reduce an observed relative risk RRobs
ED to a true causal rela-

tive risk RRtrue
ED . We show this in eAppendix 2 (http://links.

lww.com/EDE/B16). As a special case, for the unmeasured 
confounder to completely explain away the observed relative 
risk (i.e., RRtrue

ED = 1), it is necessary that

max( , ) ( 1).RR RR RR RR RRobs obs obs
EU UD ED ED ED≥ + −

Once again the results do not require a binary unmea-
sured confounder. They are applicable to any unmeasured 
confounder. Similar low and high threshold Cornfield con-
ditions that the minimum and maximum of the confounding 
measures must satisfy to completely explain away an effect 
were derived on an odds ratio scale of exposure–confounder 
association by Flanders and Khoury12 and Lee,10 and we com-
ment and extend these results in eAppendix 2 (http://links.
lww.com/EDE/B16).

The classical Cornfield conditions and the high thresh-
old generalization are useful to answer the question about the 
magnitude of the association between the exposure and the 
confounder and that between the confounder and the outcome, 
to explain away the observed exposure–outcome association or 
with our new results, to reduce it to a prespecified magnitude. 
The Cornfield conditions in (5) and (6) are especially useful, 
when we want to specify only one of the marginal associations 
RREU  or RRUD as well as their relative magnitudes. However, 
they are inferior to the main Result 1, which is essentially the 
condition that the joint values of ( , )RR RREU UD  must satisfy. 
As will be seen below, although the high threshold conclu-
sions are a useful heuristic, they are weaker than the use of our 
new joint bounding factor in Result 1 insofar as there are sce-
narios which the joint bounding factor in Result 1 can rule out 
an estimate as being due to unmeasured confounding but the 
high threshold conditions cannot. For example, when we have 
an observed exposure–outcome relative risk of RRobs

ED = 3,  
the low threshold (i.e., the classical Cornfield condition) is 
given by

min( , ) 3,RR RREU UD ≥

the high threshold is given by

max( , ) 3 3 2 = 5.45,RR RREU UD ≥ + ×

and the joint threshold condition is given by

RR RR

RR RR
EU UD

EU UD

×
+ −

≥
1

3.

Thus, the low Cornfield threshold is 3, and so we know 
that we must have that both RREU  and RRUD be greater than 3 
to explain away the effect. The high Cornfield threshold is 5.45,  
and so at least one of RREU  and RRUD must be larger than 
5.45 to explain away the effect. Consider an unmeasured con-
founder with ( = 5.5, = 3.1)RR RREU UD , they would exceed 
both the low Cornfield threshold (since RR RREU UD> 3, > 3) 
and the high threshold (since RREU > 5.45), and we might thus 
think it can explain away the observed exposure–outcome rel-
ative risk. However, using our joint threshold condition in (1), 
an unmeasured confounder with ( = 5.5, = 3.1)RR RREU UD  
has a bounding factor 5.5 3.1/ (5.5 3.1 1) = 2.24 < 3× + −  and 
thus such confounding could not explain away an observed 
relative risk of 3. We can see this from our result in (1), but 
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we cannot see this from the classical Cornfield conditions and 
even the new high threshold Cornfield condition. The Corn-
field conditions, both low and high thresholds, although a use-
ful heuristic, are not as useful for sensitivity analysis as our 
bounding factor. This is because there are scenarios, such as 
the one above, in which our bounding factor can rule out an 
estimate as due to unmeasured confounding, while the low 
and high threshold Cornfield conditions cannot.

ILLUSTRATION
Consider the historical study conducted by Hammond 

and Horn,13 in which the point estimate of the observed rela-
tive risk of cigarette smoking on lung cancer was RRobs

ED = 10.73 
with 95% confidence interval [ ]8.02,14.36 . Fisher14 suggested 
that the observed relative risk of the exposure E on the outcome  
D might be completely due to the existence of a common genetic 
confounder. The work of Cornfield et al.1 showed that for a 
binary unmeasured confounder to completely explain away the 
observed relative risk, both the exposure–confounder relative 
risk and the confounder–outcome relative risk would have to be 
at least 10.73. Let us now assume then that both the exposure–
confounder relative risk and the confounder–outcome relative 
risk have the magnitude 10.73. The joint bounding factor is

RR RR

RR RR
EU UD

EU UD

×
+ −

×
+ −1

=
10.73 10.73

10.73 10.73 1
= 5.63.

Even if we assume such a strong confounder, the 
point estimate of the causal relative risk of cigarette smok-
ing and lung cancer must still be at least as large as 
RR RRtrue obs

ED ED≥ 5.63 = 10.73 5.63 = 1.91 > 1, and the 95% 
confidence interval is [8.02 /5.63,14.36/5.63] = [1.42, 2.55] 
with the lower confidence limit still larger than 1. Thus in 
fact, not even exposure–confounder and confounder–outcome 
relative risks of 10.73 suffice to explain away the effect nor 
the lower confidence limit. In fact, to explain away the point 
estimate of the observed relative risk 10.73, the magnitude of 
RREU  and RRUD (if RR RREU UD= ) should be at least as large 

as 10.73 10.73 9.73 = 20.95+ × . And to explain away the 
lower confidence limit 8.02, these two confounding relative 

risks should be at least as large as 8 02 8 02 7 02 15 52. . . . .+ × =  
More generally, we can plot those values of RREU  and RRUD 
that would be required to explain away the effect estimate or 
the lower limit of the confidence interval. This is given in the 
Figure. To explain away the point estimate, the two parameters 
would have to lie on or above the solid line. To explain away 
the lower confidence limit, the two parameters would have to 
lie on or above the dotted line. These results hold without any 
assumptions on the structure of the unmeasured confounding. 
The numerical results above show that, by using the new joint 
bounding factor, it is even more implausible than using the 
Cornfield conditions that a genetic confounder explains away 
the relative risk between cigarette smoking and lung cancer.

More generally, we could consider corrected estimates 
and confidence intervals for the effect over a range of differ-
ent values of the sensitivity analysis parameters, RREU  and 
RRUD, as in Table 2. The columns of Table 2 correspond to 
RRUD and the rows to RREU . The entries are the corrected 
estimates and confidence intervals for the effect under the dif-
ferent confounding scenarios. In general, a table like this one 
is most informative for sensitivity analysis. SAS code to carry 
out such a sensitivity analysis and to provide such a table is 
given in eAppendix 9 (http://links.lww.com/EDE/B16).

DISCUSSION
A crucial task in causal inference with observational stud-

ies is to assess the sensitivity of causal conclusions with respect 
to unmeasured confounding. In sensitivity analysis, because one 
is assessing the sensitivity of conclusions to the assumption of 
no unmeasured confounding, additional untestable assumptions 
may often seem undesirable and suspect to researchers. We have 
introduced a new joint bounding factor that allows researchers 
to conduct sensitivity analysis without assumptions, that is, we 
provide an inequality, which is applicable without any assump-
tions, such that the sensitivity analysis parameters must satisfy 
the inequality if an unmeasured confounder is to explain away 
the observed effect estimate or reduce it to a particular level. 
We can obtain a conservative estimate of the true causal effect 
by dividing the observed relative risk by the bounding factor; 
the method does not assume a single binary confounder or no 
exposure–confounder interaction on the outcome.

RREU
R

R
U

D �

�

5 10 15 20 25 30 35 40

5
10

15
20

25
30

35
40

(15.52, 15.52)

(20.95, 20.95)

RREURRUD (RREU + RRUD − 1) = 10.73
RREURRUD (RREU + RRUD − 1) = 8.02

FIGURE.  The areas above the two lines are the joint val-
ues of the exposure–confounder association RREU and the  
confounder–outcome association RRUD that can would be 
required to explain away the effect estimate 10.73 and the 
lower confidence limit 8.02.
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Previous sensitivity analysis approaches in the lit-
erature often relied on the assumption of a single binary 
confounder and no-interaction between the effects of the 
exposure and the confounder on the outcome.5,8,9 For exam-
ple, Schlesselman7 assumed a binary confounder, a com-
mon relative risk, γ , of the confounder on the outcome 
for both with and without exposure (i.e., a no interaction 
assumption). Under these assumptions, he obtained the bias  

factor RR RRobs true
ED ED P U E= + − = = + −{ ( ) ( | )} { ( )1 1 1 1 1 1γ γ  

P U E( | )}= =1 0  for sensitivity analysis requiring specifica-
tions of γ , ( | )P U E= =1 1  and P U E( | ).= =1 0  Our result 
requires fewer assumptions and fewer sensitivity parameters 
(two rather than three). We further discuss in eAppendix 4  
(http://links.lww.com/EDE/B16) that, under Schles-
selman’s formula, if P U E P U E( | )/ ( | )= = = =1 1 1 0  
is constrained to be no larger than some limit RREU ,  
then the maximum bias factor that can be obtained from  
Schlesselman’s formula is RR RREU EU× + −γ γ( )1 , which 
is the same as our bounding factor. Thus, in this setting  
Schlesselman’s no interaction assumption does not strengthen 
the bounds; the no interaction assumption is unnecessary. 
Without the no interaction assumption, Flanders and Khoury12 
and VanderWeele and Arah,8 derived general formulas for sen-
sitivity analysis. However, unless the confounder is binary, 
these formulas require specifying a very large number of 
parameters. They also require specifying the prevalence of 
each confounder level. Flanders and Khoury12 derive bounds 
for the true causal relative risk for the exposed popula-
tion which are potentially applicable without specifying the 
prevalence of the unmeasured confounder. However, with-
out specifying the prevalence, their formula only leads to a 
low threshold Cornfield condition, and these bounds are thus 
much weaker than those in this article. We discuss further the 
relation between their results and ours in eAppendix 4 (http://
links.lww.com/EDE/B16).

The relative risk scale is widely used for sensitivity 
analysis in epidemiology and elsewhere, but the risk differ-
ence scale is also often of interest and importance.11,15 We 
show, in Appendix 1, that similar conditions for sensitivity 
analysis also hold for the risk difference. If we use similar 
sensitivity parameters on the relative risk scale for the risk dif-
ference estimate, then we can derive similar lower bounds on 
the effects and determine how much confounding is required 
to explain away an effect or reduce it to a specific level. SAS 
code for this approach is also given in eAppendix 10 (http://
links.lww.com/EDE/B16). We can also do sensitivity analy-
sis for the risk difference using sensitivity parameters on the 
risk difference scale. Unfortunately, however, these conditions 
for the risk difference using risk difference sensitivity param-
eters then depend on the number of categories of the unmea-
sured confounder, and become weaker for confounders with 
more categories. This is not the case for sensitivity analysis 
of the risk difference (or the relative risk) if the sensitivity TA
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parameters themselves are expressed on the relative risk scale, 
in which case the bounding factor is applicable and is the same 
regardless of the number of categories. Due to this property, it 
is perhaps more suitable to conduct sensitivity analysis for the 
risk difference using sensitivity parameters on the relative risk 
scale. See Appendix 2 for further discussion.

The hazard ratio is widely used for analyzing data with 
time-to-event outcomes. In eAppendix 7 (http://links.lww.
com/EDE/B16), we show that under the assumption of having 
a rare outcome at the end of follow-up, the same bounding 
factor also applies to the hazard ratio with the confounder–
outcome relative risk replaced by the confounder–outcome 
hazard ratio. Likewise similar results also apply to non-nega-
tive outcomes (e.g., counts or positive continuous outcomes) 
by replacing the confounder–outcome relative risk by the 
maximum ratio by which the confounder may increase the 
expected outcome comparing any two confounder categories.

The new joint bounding factor ( )RR RREU UD×  
( 1)RR RREU UD+ −  plays a central role in our sensitivity 
analysis approach, which, in turn, gives us a new measure 
of the strength of unmeasured confounding induced by a  
confounder U . Our approach has the advantage of mak-
ing no assumptions about the structure of the unmeasured  
confounder or confounders, and of delivering conclusions 
much stronger than the original Cornfield conditions.

In general, a table with many different possible sensitivity 
analysis parameters including values that are quite extreme, such 
as Table 2, will be most informative. However, at the very least, 
in any observational study, researchers should report how much 
confounding would be needed to reduce the estimate, and how 
much confounding would be needed to reduce the confidence 
interval, to include the null. We believe that if this were always 
done in observational studies, the evidence for causality could 
much more easily be assessed and science would be better served.
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APPENDIX 1

Conditions for the Risk Difference Using 
Sensitivity Parameters on the Relative Risk 
Scale

As in the text, we assume analysis is conducted, 
and all probabilities below are, conditional on, or within 
strata of the measured covariates C . Define the bound-
ing factor as BF RR RR RR RRU EU UD EU UD= /( 1)× + − ,  
the prevalence of the exposure as f P E= =( )1 , and the 
probabilities of the outcome with and without exposure as 
p P D E1 1 1= = =( | ) and p P D E0 1 0= = =( | ). The causal risk 
differences for the exposed and unexposed populations are

RDtrue
ED

k

K

p P D E U k P U k E+

−

− ∑= ( = 1 = 0, = ) ( = = 1),1
=0

1

| |

RDtrue
ED

k

K

P D E U k P U k E p−

−

∑ −= ( = 1 = 1, = ) ( = = 0) ,
=0

1

0| |

and the causal risk difference for the whole population is

RD P

RD

true
ED

k

K

E

D E U k P D E

U k P U k

f

= { ( = 1 = 1, = ) ( = 1 = 0,

= )} ( = )

=

=0

1−

∑ −| |

DD EDf+ −+ −true trueRD(1 ) .
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We show in eAppendix 5 (http://links.lww.com/EDE/
B16) that the lower bounds for the causal risk differences are

RD BFtrue
ED Up p+ ≥ − ×1 0 ,

RD BFtrue
ED Up p− ≥ −1 0/ ,

RD BF BF

BF BF

true
ED U U

U U

p p f f

p p f f

≥ − × × + −{ }
− × × + −

( ) (1 ) /

= ( / ) (1 )

1 0

1 0 {{ }.

Note that even without knowing f , we can use the 
inequality RD RD RDtrue true true

ED ED ED≥ + −min( , ) to obtain a lower 

bound for RDtrue
ED .

As an example, suppose the probabilities of the out-
come with and without exposure are p p1 0= 0.25, = 0.1,  
and therefore the observed risk difference is 
RDobs

ED p p= = 0.151 0− . If we assume that the unmeasured 

confounding measures are ( , ) = (2, 2)RR RREU UD  with the 
joint bounding factor of 2 2 / (2 2 1) = 1.33× + − , then the 
true risk difference for the exposed is at least as large as 
0.25 0.1 1.33 = 0.12− × , the true risk difference for the unex-
posed is at least as large as 0.25/1.33 0.1 = 0.09− , and the true 
risk difference for the whole population is at least as large as 
min(0.12, 0.09) = 0.09. If we further know that the prevalence 
of the exposure is f = 0.2, the true risk difference for the whole 
population is at least as large as 0.12 0.2 0.09 0.8 = 0.10.× + ×

The above results imply that, for an unmeasured 
confounder to reduce the observed risk difference to be 
RD RDtrue true

ED ED+ −,  and RDtrue
ED , respectively, the Cornfield condi-

tions for the joint bounding factor for the exposed, the unex-
posed, and the whole population, respectively, are

BF RDtrue
U EDp p≥ − +( )/ ,1 0

BF RDtrue
U EDp p≥ + −1 0/( ),

BF

RD

RD

true

true

U

ED

ED

p f

p f p f

p p f f≥ 





+ − −
+ −

−

1

2

{ (1 ) }

4 (1 )

{

0

0 1
2

1 0

++ − −

















p f p f0 1(1 ) }

.

Note that if the true causal risk difference is RDtrue
ED = 0,  

the above conditions all reduce to BF RRobs
U ED≥ . Suppose, 

again, the probabilities of the observed outcome with and 
without exposure are p p1 0= 0.25, = 0.1, and the prevalence 
of the exposure is f = 0.2. For an unmeasured confounder U  
to reduce the observed risk difference of RDobs

ED = 0.15 to a 
true risk difference of RDtrue

ED = 0.05, the joint bounding factor 
resulting from the confounder must be at least as large as 

BF
2 0.1 0.2U ≥ 





+ × − × +
× × ×

1
(0.05 0.1 0.8 0.25 0.2) 4

0.25 0.1 0.

2

× ×
22 0.8

0.05 0.1 0.8 0.25 0.2

1 74×
− + × − ×















( )

. .=

Therefore, as in the text both of the confounding 
measures RREU  and RRUD must be at least as large as 1.74,  
and the maximum of them must be at least as large as 
1.74 1.74 0.74 = 2.88.+ ×

The above results are useful for apparently causative 
exposures with RDobs

ED > 0, which give (possibly positive) 
lower bounds for the causal risk differences. However, for 
apparently preventive exposure with RDobs

ED < 0, we need to 
modify the definition of RREU  as RR RREU u EU u= ( )1max − .  
And we have the following analogous results on the upper 
bounds of the causal risk differences:

RD BFtrue
ED Up p+ ≤ × −1 0 ,

RD BFtrue
ED Up p− ≤ −1 0 / ,

RD BF BF

BF BF

true
ED U U

U U

p p f f

p p f f

≤ × − × + −{ }
− × × + −

( ) (1 ) /

= ( / ) (1 )

1 0

1 0 {{ }.

The results above are conditional on measured covariates 
C. Due to the linearity of the risk difference, we can also obtain 
the lower bound of the marginal risk differences averaged over 
the observed covariates C  using 

RD RD

RD RD

true true

true true

ED c ED c

ED c ED c

P C c E

P

+ +

− −

∑

∑

= ( = = 1),

=

|

|

|

(( = = 0)C c E| ,  

RD RDtrue true
ED c ED c P C c= ( = ).|∑

 

In eAppendix 5 (http://links.lww.com/EDE/B16), we provide 
details and proofs for the results above, discuss statistical 
inference for the causal risk difference bounds under finite 
samples, and give formulas for how large the bounding factor 
would have to be to reduce an estimate or a confidence inter-
val to 0 or to some other specified quantity. In the eAppendix 
(http://links.lww.com/EDE/B16), we also provide software 
code to implement this sensitivity analysis approach for the 
risk difference.

APPENDIX 2

Conditions for the Risk Difference Using 
Sensitivity Parameters on the Risk Difference 
Scale

In Appendix 1, we considered sensitivity analysis for 
the risk difference with sensitivity analysis parameters on 
the relative risk scale. In this Appendix, we consider sen-
sitivity analysis for the risk difference with parameters 
defined on the risk difference scale. Unfortunately, for the 
reasons described below, the results for the risk difference 
with parameters defined on the difference scale are not as 
practically useful as when the parameters are defined on the 
relative risk scale.

Let RDobs
ED P D E P D E= ( = 1 = 1) ( = 1 = 0)| |−  denote 

the observed risk difference, and

http://links.lww.com/EDE/B16
http://links.lww.com/EDE/B16
http://links.lww.com/EDE/B16
http://links.lww.com/EDE/B16
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RDtrue
ED

k

K

P D E U k P D E

U k P U k

= { ( = 1 = 1, = ) ( = 1 = 0,

= )} ( = )
=0

1−

∑ −| |

denote the standardized risk difference.
Define αk P U k E P U k E= = = − = =( | ) ( | )1 0  as the 

difference in the probability that the confounder U  takes a 
particular value k  comparing exposed and unexposed. We 
use RD maxEU k k= | |1≥ α , the maximum of these absolute 
differences, to measure the exposure–confounder associa-
tion on the risk difference scale, defined as the maximal 
risk difference of the exposure E  on the confounder U . 
Define βk P D E U k P D E U* ( | , ) ( | , )= = = = − = = =1 1 1 1 0  
and βk P D E U k P D E U= = = = − = = =( | , ) ( | , )1 0 1 0 0  
as the difference in the probability of the outcome com-
paring the category k  and 0 of the confounder U  with 
and without exposure. Define RD maxUD E k k| =1 1

*= | |≥ β  and 
RD maxUD E k k| =0 1= | |≥ β  as the maximums of these differ-
ences with and without exposure, respectively. We use 
RD RD RDUD UD E UD E= ( , )| =1 | =0max  to measure the con-
founder–outcome association in the risk difference scale, 
defined as the maximal risk difference of the confounder U  
on the outcome D.

We first consider a binary unmeasured confounder. 
For binary confounder U , the maximal risk difference RDEU  
becomes the ordinary risk difference RDEU , and the maximal 
risk difference becomes the maximum of two conditional risk 
difference RD RD RDUD UD E UD E= ( , )| =1 | =0max . We have that

RD RD RD RDobs true
EU UD ED ED× ≥ − ,

which further leads to the following low and high thresholds:

min

max

( , ) ,

( , )

RD RD RD RD

RD RD RD RD

obs true

obs

EU UD ED ED

EU UD ED E

≥ −

≥ − DD
true ,

which generalize previous results under the null of zero causal 
effect of E on D.11,15,16

For categorical confounder U , no simple form of the 
bounding factor is available, but we can still show that RDEU  
and RDUD must satisfy the following conditions: 

RD RD RDobs true
EU ED ED K≥ − −( )/( 1),

RD RD RDobs true
UD ED ED≥ −( )/ 2,

max

max

( , )

( ) / ( 1), (

RD RD

RD RD RD RDobs true obs tr

EU UD

ED ED ED EDK≥ − − − uue )/ 2 .{ }
When K = 3 such as a three-level genetic confounder, 

these conditions reduce to

	
min

max

( , ) ( ) / 2,

( , ) (

RD RD RD RD

RD RD RD

obs true

ob

EU UD ED ED

EU UD ED

≥ −

≥ ss trueRD− ED ) / 2.
�

The results above generalize previous results11 from 
the null hypothesis of no effect (RDtrue

ED = 0) to alternative 
hypotheses (RDtrue

ED  arbitrary). We show the proofs and exten-
sions for the above results in eAppendix 6 (http://links.lww.
com/EDE/B16).

We can see from above that the generalized Cornfield 
conditions for the risk difference under alternative hypotheses 
depend on the number of categories of U , and become less 
informative as the number of categories increases. Therefore, 
a binary confounder is not the most conservative case for sen-
sitivity analysis with parameters expressed the risk difference 
scale. However, the Cornfield conditions for the relative risk 
do not suffer from this problem. Therefore, it seems that it is 
more appropriate to conduct sensitivity analysis with parame-
ters expressed on the risk ratio scale, and a binary confounder 
is the most conservative case for sensitivity analysis with 
parameters expressed on the risk ratio scale.17,18
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