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Abstract

We present GIGA-Lens: a gradient-informed, GPU-accelerated Bayesian framework for modeling strong
gravitational lensing systems, implemented in TensorFlow and JAX. The three components, optimization using
multistart gradient descent, posterior covariance estimation with variational inference, and sampling via
Hamiltonian Monte Carlo, all take advantage of gradient information through automatic differentiation and
massive parallelization on graphics processing units (GPUs). We test our pipeline on a large set of simulated
systems and demonstrate in detail its high level of performance. The average time to model a single system on four
Nvidia A100 GPUs is 105 s. The robustness, speed, and scalability offered by this framework make it possible to
model the large number of strong lenses found in current surveys and present a very promising prospect for the
modeling of ( ) 105 lensing systems expected to be discovered in the era of the Vera C. Rubin Observatory, Euclid,
and the Nancy Grace Roman Space Telescope.

Unified Astronomy Thesaurus concepts: GPU computing (1969); Markov chain Monte Carlo (1889); Strong
gravitational lensing (1643); Einstein rings (451); Bayesian statistics (1900); Cosmology (343)

1. Introduction

Strong gravitational lensing systems are a powerful tool for
cosmology. They have been used to study how dark matter is
distributed in galaxies and clusters (e.g., Kochanek 1991; Hogg &
Blandford 1994; Broadhurst et al. 2000; Koopmans & Treu 2002;
Bolton et al. 2006; Koopmans et al. 2006; Bradač et al. 2008;
Huang et al. 2009; Vegetti & Koopmans 2009; Jullo et al. 2010;
Grillo et al. 2015; Shu et al. 2015, 2016, 2017; Meneghetti et al.
2020) and are uniquely suited to probe the low end of the dark
matter mass function and test the prediction of the cold dark matter
(CDM) model beyond the local universe (e.g., Vegetti et al.
2010, 2012; Hezaveh et al. 2016; Ritondale et al. 2019; Diaz
Rivero & Dvorkin 2020; Caǧan Sengül et al. 2020, 2021; Gilman
et al. 2021). Multiply lensed supernovae (SNe) are ideal for
measuring time delays and H0 because of their well-characterized
light curves, and in the case of Type Ia, with the added benefit of
standardizable luminosity (Refsdal 1964; Treu 2010; Oguri &
Marshall 2010), provided microlensing can be accurately
characterized (Yahalomi et al. 2017; Foxley-Marrable et al.
2018). Furthermore, SNe have the benefit of fading, so for these
systems lens models can be validated using images that are
uncontaminated by bright point sources (Ding et al. 2021). In

recent years, strongly lensed SNe, both core-collapse (Kelly et al.
2015; Rodney et al. 2016) and Type Ia (Quimby et al. 2014;
Goobar et al. 2017; Rodney et al. 2021), have been discovered.
Time-delay H0 measurements from multiply imaged SNe (e.g.,
Goldstein & Nugent 2017; Shu et al. 2018; Goldstein et al.
2018, 2019; Pierel & Rodney 2019; Suyu et al. 2020; Huber et al.
2022), combined with measurements from distance ladders (e.g.,
Freedman et al. 2019, 2020; Riess et al. 2019, 2022) and lensed
quasars (e.g., Suyu et al. 2010, 2013; Treu & Marshall 2016;
Bonvin et al. 2017; Birrer et al. 2020; Millon et al. 2020; Wong
et al. 2020), can be an important test of the tension between H0

measured locally and the value inferred from the cosmic
microwave background (CMB; Planck Collaboration et al. 2020).
The introduction of neural networks to identify gravitational lens

candidates in imaging surveys has been transformational (e.g.,
Jacobs et al. 2017; Metcalf et al. 2019; Jacobs et al. 2019a, 2019b;
Cañameras et al. 2020). In our recent work, we discovered over
1500 new strong lenses (Huang et al. 2020, 2021) in the Dark
Energy Spectroscopic Instrument (DESI) Legacy Imaging Surveys
(Dey et al. 2019) by using residual neural networks. This trend will
accelerate in the era of the Vera C. Rubin Observatory Legacy
Survey of Space and Time (LSST), Euclid, and the Nancy Grace
Roman Space Telescope, when ( ) 105 strong-lensing systems are
projected to be found in the next decade (Collett 2015). As the lens
search efficiency has dramatically improved, there has been
significant development on strong-lens modeling as well. For
example, the widely used lenstronomy (Birrer & Amara 2018,
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Birrer et al. 2021) is a fully fledged (including, e.g., a suite of
plotting routines) and highly versatile lens modeling package.
However, the computational cost for lens modeling remains high.
For instance, Rojas et al. (2021) modeled 41 systems with a single
deflector in gri bands from the Dark Energy Survey using a
pipeline based on lenstronomy. They used Sérsic profiles for
lens and source light, and for the lensing potential, they used a
singular isothermal ellipsoid model and external shear. They
reported that modeling a single system took 4.3 hr on average. In
addition, lenstronomy uses particle swarm optimization (PSO).
PSO is an easily parallelizable heuristic algorithm for nonconvex
optimization. However, it does not have any guarantee of
convergence, especially in high dimensions (see Section 2.3).
Furthermore, emcee (Foreman-Mackey et al. 2013), a popular
Markov Chain Monte Carlo (MCMC) algorithm in astrophysics,
including being used in lenstronomy, relies on sampling
techniques that also show undesirable behavior in high-dimen-
sional parameter spaces (see Section 2.5.2). For lens modeling
using high-resolution images, often more complex lens and source
models will be used, and this can significantly increase the
dimensionality of the parameter space. For strong gravitational
lenses to realize their full potential as an effective probe for
cosmology, it is crucial that we address these issues and make the
process of modeling lensing systems robust, considerably faster,
and scalable to high-dimensional parameter spaces. In this paper,
we present a Bayesian lens modeling framework that fulfills these
requirements. We describe our gradient-informed, GPU-acceler-
ated (GIGA-Lens) framework in Section 2. In Section 3, we
demonstrate the performance of our pipeline on a large set of
simulated systems. We discuss our results and conclude in
Section 4.

2. Lens Modeling

In this section, we introduce the GIGA-Lens14 modeling
framework. In the initial stages of the development of our
pipeline, lenstronomy served as a helpful guide, specifi-
cally, in its approach of using optimization to find a region of
high posterior density from which the MC sampler can be
initialized. We believe that our framework represents a
significant improvement on the lenstronomy modeling
pipeline in terms of speed, optimization, and sampling. Our

entire framework is implementated in both TensorFlow (Abadi
et al. 2015) and JAX (Bradbury et al. 2018). Complete
integration with either of these libraries confers significant
advantages. It enables seamless execution of our code on
graphics processing units (GPUs), which can achieve much
faster gravitational lens simulation and modeling. Even modest,
freely available GPUs are capable of performing basic linear
algebra operations (which are at the core of lens modeling
codes) one to two orders of magnitude faster than a typical
CPU. In addition, our tight integration with TensorFlow allows
us to use the TensorFlow Probability (Dillon et al. 2017) library
for probabilistic modeling (which also provides support for
JAX). Conveniently, this library has already implemented
advanced statistical methods such as variational inference (VI)
and adaptation algorithms (for step size and trajectory length;
Hoffman et al. 2014, 2021) in Hamiltonian Monte Carlo
(HMC). These features play a central role in our pipeline. In
Section 2.1, we describe our lens model, both its physical and
probabilistic aspects. Obtaining the gradient for the posterior
with automatic differentiation is presented in Section 2.2.15

Next, we detail the three main steps in our modeling pipeline.
In Section 2.3, we find the global optimal values for the lensing
parameters using multistart gradient descent. In Section 2.4, we
estimate the covariance matrix around the global optimum
using VI. This allows us to sample the posterior distribution
efficiently with HMC in Section 2.5.

2.1. Model Specification

2.1.1. Physical Model

Given a lens model fully described by a set of parameters Θ,
the predicted counts per second at arbitrary positions on the
image plane, ( )Q x y, ;model , can be determined by evaluating
the deflection angle at (x, y), using this deflection to ray-trace
(e.g., Narayan & Bartelmann 1997) onto the source plane,
setting the surface brightness of the lensed source at (x, y) to the
corresponding surface brightness on the source plane (via
surface brightness conservation), then adding the lens light, and
finally convolving with the point-spread function (PSF).16 To
demonstrate how our modeling pipeline works, we simulate a

Figure 1. A lensing system simulated using lenstronomy is shown on the left. The parameters for this system are taken directly from the lenstronomy starting
guide Jupyter Notebook (Birrer 2021). Although lenstronomy uses a Gaussian PSF for this system, we use a more realistic PSF calculated for the HST WFC3
F140W band using TinyTim (Krist et al. 2011) with an original pixel scale of 0 13. We then subsample this PSF to a scale of 0 065, as shown on the right. This
system will be used to show the step-by-step workflow of our modeling pipeline. It will henceforth be called the reference system.

14 Our framework is publicly available on GitHub under an open-source MIT
license: https://github.com/giga-lens/gigalens.

15 To our knowledge, Chianese et al. (2020) was the first to apply automatic
differentiation in the context of strong lensing.
16 The sky brightness, Isky, can also be included in the model parameters Θ. In
this work, we assume that the sky brightness has been subtracted.
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reference system (Figure 1) using lenstronomy. The lens
model used for this simulation consists of an elliptical power-
law17 (EPL) mass model for the lens (Tessore & Metcalf 2015)
and external shear. The EPL model is characterized by the
surface mass density in units of the critical density, or
convergence,

( ) ( )k
g q

=
-

+

g -
⎛

⎝
⎜

⎞

⎠
⎟x y

qx y q
,

3

2
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1epl

where θE is the Einstein radius; γepl is the mass profile slope;
the coordinates xlens, ylens are aligned with the major and minor
axes of the lens; and q is the axial ratio. The transformation
between the image coordinates (x, y) and the lens-centric
coordinates (xlens, ylens) is

( )
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where f is the position angle and xepl and yepl are the lens
center. The deflection angle for this model can be written in
terms of the Gaussian hypergeometric function, which can be
calculated iteratively, converging to a high degree of accuracy
in a small number of iterations. The truncation error
reaches 10−16 within 35 iterations for q 0.5 (Tessore &
Metcalf 2015).

To include the effects of the local environment, we include
an external shear with a deflection angle

( ) ( ) ( )a g g g g= + -x y x y x y, , . 3ext ext,1 ext,2 ext,2 ext,1

Finally, for our simulations, we model our lens and source light
with an elliptical Sérsic profile (Sérsic 1963):
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where bn= 1.9992n− 0.3271, Reff is the effective radius (half-
light radius), n is the Sérsic index, and xlight and ylight are
aligned with the major and minor axes of the light profile. The
transformation between image coordinates (x, y) and light
coordinates (xlight, ylight) is identical in form to Equation (2).
We will use (xl, yl) to denote the lens light center (in this work,
the lens light center is not fixed to the lens mass center) and (xs,
ys) to denote the source light center. Finally, in lens modeling,
eccentricities are often used through the reparameterization,

( ) ( ( ) ( )) ( )f f=
-
+

 
q

q
,

1

1
cos 2 , sin 2 , 51 2

where f is the position angle. We will use (òepl,1, òepl,2) to
denote the lens mass eccentricities, (òl,1, òl,2) for the lens light
eccentricities, and (òs,1, òs,2) for the source light eccentricities.
Similarly, Rl and Rs will denote the lens and source light
effective radius.

In practice, ( )Q x y, ;model is vectorized to be evaluated on a
grid of pixels simultaneously. This grid is supersampled by
some integer factor ksuper (in this work, ksuper= 2) from the
image coordinates, so there is an additional step in evaluating
model that consists of downsampling (by averaging) the
predicted image by ksuper back to the image coordinate grid.

2.1.2. Probabilistic Model

Our probabilistic model comprises a likelihood function
( ) ( ∣ )Q º Q  p; obs obs and a prior p(Θ), where Q Î d are

the lensing system parameters and obs is the observed image (in
units of counts/sec). The likelihood function requires a pre-
processed observed image obs, as well as specification of the
background (sky) Gaussian noise σbkg and exposure time texp. For
this work, we define
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where ( )Q x y, ;model is our forward model for the observed
image,  is the gain (in e− count−1), and the sum is over all
pixels (x, y) in the observed data. The second term in the
variance map arises from Poisson shot noise: since the expected
value of the electron counts is  texp model , the Poisson variance
is therefore also  texp model , and so the Poisson variance of the

model image is
· ·

= 







t

t t
exp model

2
exp
2

model

exp
. The form of this likelihood

assumes independent per-pixel noise. However, the variance
map s tot

2 can be specified to account for correlated pixels and to
incorporate prior information about the noise at each pixel. For
example, an alternative form for s tot

2 , defined in terms of the

observed image, is sometimes used, ( ) ( )
·

s s= + 


x y, x y

ttot
2
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2 ,obs

exp

, so that the total variance is independent of Θ. This is done for
computational efficiency. For example, it allows for linear light
profile parameters to be solved for in closed form. We note,
however, that this definition for the variance may induce biases
at low signal-to-noise ratios (Horne 1986).18 Therefore, we opt
to use the more rigorous definition. In our pipeline, this incurs
little additional computational cost. We also point out that the
first term in the log-likelihood corresponds to

( ( ) ( ))
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- Q

Q
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, ;
, 7

x y

2

,
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2
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and the second term is the normalization factor.
The prior for the parameters is typically defined as a product of

independent distributions, each of which can be tuned either to
reflect prior knowledge about lensing parameters or to match a

17 We note that the EPL model is equivalent to the power-law elliptical mass
density profile (PEMD; Barkana 1998).

18 Another issue with using obs to define the noise map s tot
2 is that it may have

negative pixel values due to Gaussian noise. In lenstronomy, the negative
pixels are set to zero, which is not the most rigorous way to estimate the
Poisson noise (however, the final likelihood computation in lenstronomy still
uses model to define the noise map). Despite the slight difference in these two
approaches, for our simulated systems (Section 3), the results using both are
virtually identical.
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physical understanding of the particular system that is being
modeled (e.g., the Einstein radius can typically be estimated to
within 20% from visual inspection). Given our physical under-
standing of the model, our prior ought to vanish for certain regions
of parameter space, such as θE< 0. In our modeling, we make use
of mappings that naturally enforce these constraints. We describe
these mappings in Section 2.2.

In this work, we use a “simulation distribution” to generate a
full set of 22 parameters for 100 lensing systems, and the prior
distribution used to model these lenses (see Section 3) is a
broadened version of this simulation distribution (note that
some rows contain two parameters):

where ( ) a b, is a uniform distribution with support [a, b],
( )m s , is Gaussian with mean μ and standard deviation σ,

and ( )m s x x, ; ,low high is a truncated Gaussian with support
[xlow, xhigh]. For the distribution parameters, we use the
notation a/b to indicate that the simulation distribution uses the
parameter a while the prior uses b. For instance, when
generating our data set, we sample xepl from ( ) 0, 0.03 , while
during modeling, our prior for xepl is ( ) 0, 0.06 .

Note that ( ( ))¼exp is a lognormal distribution, used for five
parameters. Since these distributions are not as intuitive, we show
them in Figure 2. The simulation distribution for the light

amplitudes Il and Is has been chosen in such a way that the typical
signal-to-noise ratio of the arcs is 100 (with a range between 30
and 200) and is comparable to the amplitudes used in the
lenstronomy starting guide Jupyter Notebook (Birrer 2021).
Although the distributions in Equation (8) can be specified in

any format, in this work we make a number of deliberate
choices. Most importantly, for parameters such as ellipticities
(e.g., òepl,1, òepl,2) and centers (e.g., xepl, yepl), we use normal
distributions to reflect their rotational symmetry. For instance,
in Figure 3 we show how a normal distribution for the
ellipticities results in a uniform distribution for the position

Figure 2. Probability density for five components of the simulation and prior distribution that are lognormal.

Figure 3. The corresponding distributions for f, q when the ellipticities are
normally distributed (blue) and uniformly distributed (orange).
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angle f, whereas independent uniform distributions for the
ellipticities break rotational symmetry, resulting in a nonuni-
form distribution for f and a highly non-Gaussian distribution
for q.

2.2. Obtaining Gradient Information

For the models discussed in Section 2.1.1, ( )Q x y, ;model is a
differentiable mapping with respect to the model parameters, Θ.
Therefore, so is the posterior density (Equation (6)) within the
support of the prior.19 This is essential. As we will show in
Sections 2.3 and 2.5, gradient information about the posterior is
necessary to successfully achieve fast convergence for complex
lens models. Although the posterior is theoretically differenti-
able, to obtain a gradient with numerical differentiation (i.e.,
finite difference) would be prohibitively expensive. Therefore,
we exploit the fact that the mapping model is composed of a
sequence of differentiable operations (e.g., convolution) and
use automatic differentiation (AD; Wengert 1964). Crucially
with AD, which is implemented in both TensorFlow and JAX,
the additional computational cost of evaluating the gradient is
independent of the number of parameters (Baydin et al. 2018).

The full gradient
¶
¶Q


i

model that we are interested in can be

calculated in approximately the same amount of time it takes to
calculate model itself.

Although we can calculate the gradient efficiently with AD,
there are regions of parameter space where this gradient is
undefined as a result of having hard boundaries for the
parameters. This can have a number of undesirable effects for
modeling. For example, any algorithm with an iterative
update that has a finite step size for the parameters may result
in certain solutions being updated to positions outside the
support of the prior. Therefore, we instead use smooth,
invertible functions (termed “bijectors”), g, to map from an
unconstrained space to the support of the prior, supp(p). For
instance, the Einstein radius has a semi-infinite support > 0,
so we use the exponential map

( )q g z e: . 9z
E

For other parameters, such as the mass profile slope γ, that may
have a finite support (a, b)= (1, 3), a convenient bijector to use
is the sigmoid mapping:

( )+
-
+g -

g z a
b a

e
:

1
. 10

z

The joint bijector ( )g p: suppd is typically constructed
component-wise from the bijectors for each parameter.20 That
is, ( ˜ )Q = Qg , using the notation ·̃ to henceforth denote
quantities in the unconstrained space. This allows us to
optimize or sample over the unconstrained space d, rather
than manually enforcing constraints on the parameters. Since
the volume element in the unconstrained space is different from

the constrained parameter space, the prior needs to be modified,

˜ ( ˜ ) ( ( ˜ )) ∣ ∣ ( )Q = Q +p p g Jlog log log , 11

where J is the Jacobian of g evaluated at Q̃. The likelihood
remains unchanged,

˜ ( ∣ ˜ ) ( ∣ ( ˜ )) ( )Q = Q p p glog log . 12obs obs

Thus, for the posterior,

˜ ( ˜ ∣ ) ( ∣ ) ∣ ∣ ( )Q = Q + p p Jlog log log . 13obs obs

The constrained parameters that correspond to physical quantities
in the lens model (e.g., θE) are hereafter called physical
parameters. With the posterior distribution thus reparameterized,
it is straightforward to compute its derivatives using AD.

2.3. Maximum a Posteriori Estimate

When sampling from a high-dimensional posterior using
Monte Carlo (MC) algorithms, since all but a small fraction of
the parameter space has a vanishing posterior density,
arbitrarily chosen initializations for these samplers will take a
long time to converge to the posterior distribution. Therefore, it
is necessary to identify a region of high posterior density from
which MC samplers can be initialized. Typically, the maximum
a posteriori (MAP) estimate serves this purpose well:

˜ ˜ ( ˜ ∣ )

( ˜ ( ∣ ˜ ) ˜ ( ˜ )) ( )
˜

˜

Q = Q

= - Q - Q
QÎ

QÎ









* p

p p

argmax log

argmin log log . 14

MAP obs

obs

d

d

Here and below, the notation · * will denote a local optimum,
and the notation ·*MAP will indicate that this local optimum is

also globally optimal. Finding Q̃*MAP is an optimization task,
with the objective function f being the negative (unnormalized)
log posterior density:

( ˜ ) ( ˜ ( ∣ ˜ ) ˜ ( ˜ )) ( )Q = - Q + Qf p plog log . 15obs

There are different approaches to global optimization for
nonconvex, multimodal functions such as Equation (15). For
example, lenstronomy uses PSO. Although this method is
attractive because it requires only the evaluation of the objective
function f (and not its gradient), a major weakness is that there
are “little to no guarantees” (Sengupta et al. 2018) for finding the
global, or even local, minimum. We take the approach of
gradient descent, which has a number of advantages over
heuristic optimization techniques such as PSO. Most impor-
tantly, gradient descent can at least guarantee convergence
toward a local minimum. Furthermore, when close enough to a
local minimum, Q̃*, gradient descent approximately achieves a
geometric convergence rate. That is, ( ˜ ) ( ˜ )( )Q - Q*f fk is upper
bounded by ( )b k , where β< 1 and ˜ ( )Q k is the candidate
solution on the kth iteration, called the kth iterate (Nes-
terov 2004). To achieve the global optimum, we disperse a
large number of samples nMAP throughout a wide region of the
parameter space and carry out gradient descent on each of these
samples (Martí 2003; György & Kocsis 2011). Since the iterates
of these samples will quickly and reliably converge toward local

19 Although the gradient is continuous everywhere, it may vanish in certain
regions of the parameter space owing to extreme misalignment of the lens and
source. We avoid this by setting our prior in such a way

that ( ) ( ) q- + - ~x x y ys sepl
2

epl
2

E.
20 Although g can be specified in any desired form, we find that simply
constructing it component-wise from the standard bijectors Equations (9) and
(10) is sufficient. This component-wise construction is also inexpensive to
evaluate, since each of the standard bijectors is elementary.

5

The Astrophysical Journal, 935:49 (17pp), 2022 August 10 Gu et al.



minima, we only need to ensure that nMAP is large enough such
that at least one of the samples reaches sufficient proximity of
the global minimum. The loss function ( ˜ )Qf is multimodal in
the sense that there exist multiple local minima,21 but we find
that a moderate number of samples nMAP= 300 and
KMAP= 300 iterations of gradient descent are sufficient for
consistent identification of the global optimum. After KMAP

iterations, we take the best of the nMAP samples to be the MAP
estimate Q̃*MAP. As we show in Figure 4, many samples, even
some that start far away from the global minimum, converge to
the neighborhood of the correct solution. If the gradient descent
were run for more iterations, each of them would reach the
same, globally optimal solution (see Figure 5). Typically∼ 5%
(and at least 1%, for systems with a low signal-to-noise ratio)
of the samples converge to the global optimum, with the other

samples eventually converging to local optima. This demon-
strates the robustness of the multistart gradient descent method.
Each of the nMAP samples is initialized by sampling from the

prior: ˜ ˜ ( ˜ )( )Q ~ Qpi
1

for i= 1,K,nMAP. Finally, similar to the
training of neural networks, we use the Adam optimizer
(Kingma & Ba 2017) with an initial large learning rate22

α= 10−2 to accelerate “learning” and escape spurious local
minima, and we decay it to α= 10−3 over 300 iterations to
help the optimization converge and avoid instabilities (You
et al. 2019). This is reflected in the loss trajectories shown in
Figure 5, which show a period of rapid improvement in the first
∼200 iterations toward the neighborhood that surrounds the
global mode, followed by approximate geometric convergence.
As noted in Section 2.2, with AD, the gradient can be

calculated at virtually no additional computational cost.
Furthermore, after initializing nMAP samples, the optimization
can be done simultaneously by virtue of our code’s paralleliza-
tion. Combining these two performance enhancements, this step
of our modeling pipeline is fast: to find the global optimum, it
takes just 17 s (see Section 2.6, Table 1) to run 300 iterations of
gradient descent with nMAP= 300 (Figure 4).

2.4. Variational Inference

After finding the MAP estimate, Q̃*MAP, it is necessary to do an
intermediate step of analysis before sampling via MC. Specifically,
we estimate the posterior covariance matrix of the lens parameters
Σ. This covariance estimate plays an important auxiliary role for
MC sampling: it sets a scale for each of the parameters that is used
to define a proposal distribution in the sampling step, as we will
show in Section 2.5. We find this covariance estimate by using VI
(Blei et al. 2017) to fit a multivariate normal ( ˜ ˜ )m S , (called the
“surrogate” posterior) with a probability density ˜( ˜ ˜ ˜ )mQ Sq ; , to the
true posterior.23 This means minimizing the Kullback−Leibler
(KL) divergence between the two distributions:

˜ ˜ ( ˜( ˜ ˜ ˜ )∣∣ ˜ ( ˜ ∣ )) ( )
˜ ˜

m mS = Q S Q
m S

* * q p, argmin KL ; , . 16VI VI
,

obs

Since the posterior density ˜ ( ˜ ∣ )Q p obs is intractable, we
decompose the KL:

( )

( ˜( ˜ ˜ ˜ )∣∣ ˜ ( ˜ ∣ ))

˜( ˜ ˜ ˜ ) ˜ ( )
( )

[ ˜( ˜ ˜ ˜ ) ˜ ( ˜ )] [ ( )]

˜ ( ˜ ˜ )

˜ ˜

˜ ˜

m

m

m

Q S Q

= Q S -
Q

= Q S - Q +

m

m

Q~ S

Q Q
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17

q p

q
p

p

q p p

KL ; ,

log ; , log
,

log ; , log , log ,

obs

,
obs

obs

obs

ELBO loss

obs

Independent of ,

where Q̃ denotes the expectation value with respect to the
surrogate posterior q̃. Therefore, minimizing the KL divergence
is equivalent to minimizing the evidence lower bound (ELBO).
This is tractable since ˜ ( ˜ )Qp ,obs can be expressed as the
product of the prior ˜ ( ˜ )Qp and likelihood ˜ ( ∣ ˜ )Qp obs , each of

Figure 4. The error trajectories of the lensing parameters (i.e., the difference
between the kth iterate and the ground truth) for the reference system (see
Figure 1) over the course of gradient descent. Trajectories that end in
cn  1.012 (where c c=n DOF2 2 ) are shown with thicker lines, all of which
converge to the global minimum (see Figure 5). We note that a wide range of
samples converge to the correct solution (see text).

Figure 5. Six of the best-performing loss trajectories, ranked, over 800 iterations
of gradient descent. We have run 800 iterations (after which the total χ2

difference is  0.5) solely for demonstration purposes. In our pipeline, however,
we terminate the gradient descent at the 300th iteration because at that stage the
best-performing trajectory always ends up at the global minimum. In addition,
with the y-axis in log scale, note the approximate geometric convergence of each
solution starting around the 200th iteration, after the initial steep descent.

21 However, the posterior is not multimodal in the sense that each of these
local minima has vanishing posterior density relative to the global mode.
Although each of these local minima has a large effect on the performance of
MAP, for sampling, they are irrelevant.

22 The learning rate is used as a multiplier for the gradient when updating
parameters in gradient descent, with the simplest implementation being
˜ ˜ ( ˜ )( ) ( ) ( )aQ = Q - Q+

fi
k

i
k

i
k1
. The Adam optimizer is slightly more complex

and rescales the components of the gradient before applying the update. We

refer readers to Kingma & Ba (2017) for a more detailed description of the

Adam update rule.
23 This roughly corresponds to calculating the posterior mode and evaluating
the Hessian of the log posterior density around the mode.
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which is readily available. The gradient of this loss is also
expressible as an expectation (Ranganath et al. 2014):

[( ˜( ˜ ˜ ˜ )
˜ ( ˜ )) ˜( ˜ ˜ ˜ )] ( )

˜ ˜ ˜ ˜ ˜

˜ ˜

m

m

 



= = Q S

- Q Q S
m m

m

S S Q

S

 q

p q

KL ELBO log ; ,

log , log ; , . 18

, ,

obs ,

In practice, at each iteration, we use AD to calculate
˜( ˜ ˜ ˜ )˜ ˜ m Q Sm S qlog ; ,, and approximate the expectation in

Equation (18) with a finite number of samples24 nVI drawn from
( ˜ ˜ )m S , . This forms an estimator for the true gradient ˜ ˜m SKL, ,

which we use to do gradient descent with the Adam optimizer to
minimize the ELBO in Equation (17). We note that the covariance
matrix S̃ is constrained to be positive semidefinite. In keeping
with our method of using unconstraining bijectors in Section 2.2,
we use a Cholesky bijection mapping unconstrained real vectors
to positive semidefinite matrices and optimize over this
unconstrained space.25 We initialize our VI with the MAP
estimate ˜ ˜( )m = Q*1

MAP and a diagonal covariance matrix
˜ ( )S = - 101 6 , based on the intuition that it will be easier for VI
to approximate the true covariance starting from an underestimate.
Based on a coarse optimization for the reference system, we run
VI for KVI= 1000 iterations using nVI= 500, with the learning
rate being increased quadratically from α= 0 to α= 10−3 over

500 iterations.26 This slow increase in learning rate is to avoid
initial instabilities in the optimization that may result from the
crude initial guess for the covariance ˜ ( )S 1 . In our TensorFlow
implementation of the modeling pipeline, we use the TensorFlow
Probability methods for VI, whereas in our JAX implementation
we calculate Equation (18) directly.
The resulting best-fit distribution is only an approximation,

since the true posterior is not necessarily Gaussian (see the
Appendix). Even when the marginals of the posterior appear to be
Gaussian, this does not necessarily imply that the full posterior is
jointly Gaussian (see Figure 6 and Dutta & Genton 2014). This is
consistent with the fact that the VI posterior does not always
exactly agree with the true posterior (i.e., HMC samples).
Nonetheless, we find that the VI covariance matrix is almost
always a sufficiently good estimate of the true covariance.

2.5. Hamiltonian Monte Carlo

For the last step, sampling, we will use HMC (Duane et al.
1987; Neal 2011). HMC relies on gradient information about the
posterior distribution and is known to have several advantages
over gradient-free MCMC samplers (e.g., emcee). Conveniently,
this gradient information is readily available via AD. Using HMC,
we achieve highly efficient sampling. These results are shown in
Section 2.5.1. Furthermore, we compare the performance of HMC
and the widely used emcee sampler in Section 2.5.2 and show
that in high-dimensional spaces HMC is strongly preferred.

Table 1
Summary of the Modeling Pipeline

Step Output Hyperparameters Initialization Execution Time

An estimate of the posterior
mode Q̃*MAP

KMAP: 300 ˜ ˜ ( ˜ )( )Q ~ Qpi
1

i = 1,K,nMAP

1. MAP (Section 2.3) nMAP: 300 17 s

α: ¾ ¾¾- -10
lin, 300

102 3

An estimate of the posterior mean m̃*VI

and covariance S̃*VI

KVI: 1000 ˜ ˜( )m = Q*1
MAP

˜ ( )S = - 101 6

2. VI (Section 2.4) nVI: 500 52 s

α: ¾ ¾¾¾ -0
quad, 500

10 3

Samples drawn from the poster-
ior ( ∣ )Q p obs

nburn: 250 Initialize nHMC walkers by sampling from the VI
posterior

nsample: 750
3. HMC (Section 2.5) nHMC: 50 36 s

ò: 0.3
L: 5

M̃ : ( ˜ )S -*
VI

1

Total 105 s

Note. The hyperparameters for each step are defined in their respective subsections (first column). We adopt the notation ⟶a a
s k,

1 2 to indicate a learning rate that
changes from α1 to α2 over k iterations with a polynomial schedule s (in our case, linear or quadratic). The rightmost column indicates typical execution times for each
modeling step on four A100 GPUs. On a single A100 GPU, the run time is approximately 3.5 times longer (see Figure 8), totaling ∼6 minutes.

24 This way of doing VI is sometimes termed stochastic VI (Hoffman et al.
2013) because of the stochasticity induced by the finite number of samples nVI
used at each iteration.
25 The bijector uses the fact that any covariance matrix can be written in terms
of its Cholesky decomposition Σ = LLT, where the Cholesky factor L is a
lower triangular matrix with a nonnegative diagonal. The unconstrained space
of real vectors ( )+d d 1 2 is then mapped to a covariance matrix by first
reshaping the vector into a lower triangular matrix, exponentiating the diagonal
entries (which defines a valid Cholesky factor L), and then multiplying LLT to
find the corresponding covariance matrix.

26 We start from α = 0 to allow Adam to adjust its first- and second-order
moment estimates (see Kingma & Ba 2017).
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Figure 6. A corner plot of the posterior samples for the reference system (see Equation (8) for the definition of each parameter). We show only the lensing parameters,
marginalizing out all light parameters (marginalized posteriors for all 22 parameters are shown in Figure 7). The posterior samples are first obtained in unconstrained
space from both VI and HMC and then converted to physical parameters by applying the bijector g (see text). The samples and 0.5σ, 1σ, 1.5σ, and 2σ contours
(corresponding to roughly 12%, 39%, 68%, and 86% of the probability mass) for both VI and HMC are shown in blue and gray, respectively, and the ground truth is in
red. In the top right inset, we show the model-reconstructed image, residuals (normalized by the square root of the noise variance map), and the reconstructed source
(together with the caustic shown in green and critical curve in red) using the Bayesian mean estimate. Despite the approximately Gaussian marginal distributions on
the corner plot for the true posterior, we show a random cross section of the posterior that is banana shaped (top inset), demonstrating that the full posterior is not
perfectly Gaussian (see text). Since the VI ansatz is a multivariate Gaussian, this is consistent with the fact that the marginals for the VI posterior do not entirely
coincide with those of the true posterior.
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2.5.1. Sampler Configuration

We sample from the posterior ˜ ( ˜ ∣ )Q p obs in the unconstrained
parameter space with HMC and convert back to samples of the
physical parameters ( ∣ )Q p obs using the bijector g. We initialize
nHMC chains27 by sampling from the surrogate posterior
calculated by VI (namely, ( ˜ ˜ )m S * *,VI VI ) and, as is typical for
MC samplers, run nburn burn-in steps before sampling nsample

times.
Correctly configuring the HMC sampler is important to

realizing its advantages. There are three hyperparameters in
HMC: the step size ò, the number of leapfrog steps L, and the
mass matrix M̃ that defines the momentum distribution. Much
work has been done to adaptively set the first two
hyperparameters ò and L. We use the methods introduced by
Hoffman et al. (2014, 2021), as implemented by TensorFlow
Probability, to automatically tune (“autotune”) the hyperpara-
meters during the first 80%28 of burn-in phase. They are then
fixed in the remaining burn-in steps, since their adaptation
generally prevents chains from reaching the stationary
distribution (hence the use of only the first 80% of burn-in
steps for adaptation). Part of this tuning is adjusting the step
size ò to achieve a target acceptance probability for each
proposal: a step size that is too small will result in slower

sampling, but a step size that is too large will result in too many
rejected proposals. Optimal values for the target acceptance
probability range from 0.6 to 0.8 (Betancourt 2018); we use
0.75. The remaining hyperparameter, the mass matrix M̃ ,
defines the momentum distribution, and this provides a way to
inform the HMC algorithm about the scales and correlations of
the parameters. We can significantly improve the sampling
efficiency by setting M̃ to be the inverse covariance matrix of
the posterior (Neal 2011, pp.113–160)—this is called “pre-
conditioned” HMC. This was the main purpose of Section 2.4:
we set ˜ ( ˜ )= S -*M VI

1, the inverse of the inferred covariance
matrix from VI as defined by Equation (16). There have been
proposals (e.g., Sountsov & Hoffman 2021) to adapt the mass
matrix M̃ on the fly during the burn-in steps, which may render
the VI step irrelevant. For now, these methods are not yet well
tested (however, they may be incorporated in future work);
hence, VI remains a necessary step of our modeling pipeline.
Note that a secondary use of the VI step is that each of the
nHMC chains is initialized (see Table 1) by sampling from the
VI posterior, ( ˜ ˜ )m S * *,VI VI .
We show in Figure 7 the posterior samples for our reference

system generated using nHMC= 50 chains and nburn,
nsample= 250, 750. As with the VI step, these hyperparameters
were roughly tuned on the reference system. We report two
metrics that are widely used in the statistics literature to
measure the degree to which our sampler has converged. These
are known as the effective sample size (ESS) and potential scale
reduction factor (PSRF), R̂ (Gelman & Rubin 1992). The former
measures the effective number of independent samples we have
drawn from the posterior by accounting for autocorrelation

Figure 7. Marginalized posterior samples for all 22 parameters of the reference system. As in Figure 6, the ground truth (input values) is marked in red. We report the
ESS and PSRF R̂ for our posterior samples. Note that for each parameter ESS > 26,000 and ˆ <R 1.01. This is achieved with just under 36 s of HMC sampling
(Table 1).

27 We use multiple chains, nHMC = 50, first because our framework naturally
lends itself to parallelization, so it is more efficient to sample for 750 iterations
using 50 chains rather than sampling for 750 · 50 iterations using one chain.
Using multiple chains is also necessary to evaluate sampling diagnostics such
as R̂ (see the end of this section).
28 As recommended by Tensorflow Probability (see https://www.tensorflow.org/
probability/api_docs/python/tfp/mcmc/DualAveragingStepSizeAdaptation).
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within each chain, and the latter is the ratio of the average
within-chain variance to the variance of the pooled samples
across all chains. A large ESS and an R̂ that is close to 1 indicate
that convergence has been achieved (in Gelman & Rubin 1992,
it is suggested that an appropriate condition is ˆ <R 1.1).

2.5.2. Comparison of HMC and emcee

Foreman-Mackey et al. (2013) implemented an affine-
invariant ensemble sampler, emcee. It is a popular MCMC
algorithm in astrophysics. This is the default sampler that
lenstronomy uses. Here we compare the performance of
HMC with emcee, which is gradient-free, by applying both to
the reference system (Figure 1). To make the comparison as fair
as possible, for emcee sampling we initialize the sampler with
the lenstronomy recommended configuration, as detailed in
Birrer (2021), and for our HMC sampling we initialize the
sampler as detailed in Table 1. Furthermore, we run our

pipeline on a single A100 GPU and emcee on a single CPU.
lenstronomy uses uniform priors for each parameter,
whereas we use the prior described in Equation (8). However,
we have found that the difference in priors has virtually no
effect on the sampling results. Finally, for both modeling
pipelines, we use the supersampling factor ksuper= 2 and the
PSF shown in Figure 1.
We take two axes of comparison between HMC and emcee.

First, we observe that our sampling process is significantly more
efficient than emcee, as evidenced by the rate at which HMC
generates independent samples, ∼ 40 ESS/iter (∼300 ESS s−1, on
a single A100 GPU), whereas for emcee it is∼ 0.2 ESS/iter
(∼0.04 ESS s−1) (see Figure 8). Second, we compare the
convergence of the two samplers. We find that although both
sampling methods agree in terms of their central values, they
exhibit dramatically different convergence behavior. In Figure 8,
we show that individual emcee chains tend to devolve to random

Figure 8. A comparison of HMC with emcee performance for the Einstein radius. We illustrate five randomly chosen chains (from 50 total chains) for both HMC and
emcee over 750 sampling iterations. The times shown are for HMC run on a single A100 GPU and emcee run on a modern CPU. Note the poor interchain mixing in
emcee, which leads to a high R̂. In particular, for emcee, R̂ is much higher than the recommended value of 1.1. This is representative behavior for all other physical
parameters.

Figure 9. Autocorrelation of the Einstein radius, ˆ ( )r t , using HMC and emcee (see text). This is representative behavior for all other physical parameters. Note that
the vertical scale for HMC is 1/10 that of emcee.
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walks. This random walk behavior manifests itself in three ways.
First, emcee makes slow progress exploring the posterior,
whereas HMC draws virtually independent samples each iteration,
traversing the posterior very efficiently. Second, compared with
HMC, we observe high interchain variance in emcee, evidenced
qualitatively by the differing marginal distributions for each of the

individual chains and quantitatively by the substantially higher R̂
for emcee (Figure 8). Relatedly, in Figure 9 we find that the
autocorrelation time for HMC is much lower than that of emcee:
within just 10 iterations, the autocorrelation shrinks to negligible
levels, compared to emcee, which has a characteristic auto-
correlation lag of∼300. The empirical autocorrelation at lag τ for a

Figure 10. A sample of 100 lenses simulated using lenstronomy. We include the effects of Gaussian noise with standard deviation σbkg = 0.2, Poisson shot noise
with an exposure time =t 100 sexp with = 1 (assuming HST observations), and the PSF (see Figure 1). The pixel scale is 0 065, and the cutout size is 5 2 × 5 2
(80 pixels by 80 pixels).
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single MC chain fn|n= 1,K,N is defined by Sokal (1997):
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We emphasize that this autocorrelation is independent of the
iteration number. That is, burn-in does not remove autocorrela-
tion, nor does running a chain for a very long time.

Our investigation of emcee revealed undesirable character-
istics even for low to moderate dimensional spaces, as shown
above in the case of the reference system with 22 parameters.
While in this regime it is possible that, through tuning and
longer sampling time, higher-quality convergence can still be
achieved using emcee, Betancourt (2018) pointed out that in
higher dimensions any gradient-free sampler is likely to be
much less efficient compared with HMC. Furthermore, Huijser
et al. (2017) found that in moderate (∼50) to high (> 100)
dimensions affine-invariant ensemble samplers (such as
emcee) can have more severe problems. They showed that
for high-dimensional posteriors, in addition to slow conv-
ergence, an affine-invariant sampler can misleadingly appear to
converge even when it has not. In strong-lens modeling, it is
critical to avoid this pernicious behavior, since models for
high-resolution observed data that use complex light profiles

such as shapelets (Birrer et al. 2015), wavelets (Galan et al.
2021), or pixelization (Nightingale et al. 2021) can easily
have 50 parameters. The modeling of perturbations to the
smooth lensing potential, whether due to dark matter subhalos
or line-of-sight halos, will require even more. If we wish to fit
these sophisticated models to observed data, we must be able to
do robust inference in spaces of moderate to high dimensions.

2.6. Pipeline Summary and Hyperparameter Settings

Our pipeline is a sequence of three steps, with the ultimate
goal of producing a collection of samples from the posterior
distribution from which robust statistical inferences can be
made. We summarize these three steps in Table 1 and report the
hyperparameter and initialization settings that we used for the
reference system.
From our experience of using lenstronomy, the PSO

initialization usually needs to be at least somewhat close to the
optimum. With multistart gradient descent, we find this to be
unnecessary. While samples that start near the optimum are
virtually assured to reach it, as expected, those that start far
away can often succeed as well (see Figure 4). This suggests
that multistart gradient descent has a much weaker dependence
on initialization than PSO. In the next section, we will show the
application of our pipeline to 100 simulated systems. We find
that the MAP initialization in Table 1 does not need to be
adjusted to successfully model these systems, providing further

Figure 11. Difference between the recovered parameters and ground truth (input values) for the 100 simulated systems in Figure 10. The points are the mean of the
posterior, and the uncertainties correspond to the 68% highest posterior density interval. Note that as nl and ns increase, their uncertainties increase as well. This is
because the light becomes more compact at higher Sérsic indices, resulting in higher degeneracy between the Sérsic indices and the half-light radii.
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evidence that multistart gradient descent is not sensitive to
initialization, so long as the prior is broad and nMAP is
sufficiently large. The remaining initializations (for VI and
HMC) do not need to be changed either. Furthermore, the
hyperparameters in Table 1 that were chosen for modeling the
reference system have also been found to suffice for the 100
simulated systems in Section 3.

The total execution time for our reference system is 6
minutes on a cutting-edge A100 GPU (available through
NERSC Perlmutter early access29). On a GPU node on
Perlmutter, which has four A100 GPUs,30 it takes 105 s
(Table 1).

3. Results

To demonstrate the performance of our lens modeling
pipeline, we simulate a sample of 100 systems using
lenstronomy (see Figure 10). The parameters for these
systems are sampled from the simulation distribution defined in
Equation (8). Our prior, also defined in Equation (8), has the
same center as the simulation distribution but has been
broadened considerably so that it is less informative.

We apply our modeling pipeline as described in Table 1 to
each of these systems and show the excellent agreement with
the ground truth (input values) in Figure 11. The hyperpara-
meters listed in Table 1 were roughly tuned (to the appropriate
order of magnitude) on the reference system and left unchanged

when modeling the sample of 100 simulated systems. The
average time to model one simulated system is comparable to
the reference system (see Table 1). Moreover, we find that our
pipeline consistently exhibits favorable MC convergence
(Table 2): even the largest R̂ for any parameter over all 100
simulated systems was 1.017, and the smallest ESS was
26,822, an order of magnitude higher than the typical value
with emcee.

4. Discussion and Conclusion

In this work we present a new framework for modeling
strong gravitational lenses that is robust, efficient, and scalable
to high-dimensional parameter spaces. We achieve this via
algorithmic improvements and extensive use of two technol-
ogies. For the former, we use multistart gradient descent in
place of PSO, and HMC augmented with VI in place of
emcee. For the latter, first, massive parallel processing on
GPUs allows us to simulate thousands of systems at once,
orders of magnitude faster than existing lensing codes that use
CPUs. This fast simulation capability is key for efficient
forward modeling. Second, automatic differentiation provides
access to gradient information that is a highly valuable guide
for each step in our pipeline, at virtually no additional
computational cost.
We have demonstrated our pipeline’s performance on a large

set of simulated systems. We make a reasonably general choice
for our lens model (EPL + external shear, with lens and source
light modeled with Sérsic profiles) in this work. But we
emphasize that our modeling methodology is an overarching
framework. The capabilities described above are applicable to

Table 2
Summary Statistics of Lensing Parameters

Parameter Mean Error μz ˆá ñR R̂max 〈ESS〉 ESSmin

θE −0.00026 −0.04 ± 0.09 1.001 1.013 35465 30846
γepl 0.01608 0.12 ± 0.08 1.001 1.017 35407 28045
òepl,1 0.00235 0.08 ± 0.09 1.001 1.011 35590 29438
òepl,2 −0.00159 0.01 ± 0.10 1.001 1.006 35505 31213
xepl 0.00031 −0.10 ± 0.10 1.001 1.004 35617 33434
yepl 0.00082 0.06 ± 0.09 1.001 1.008 35569 32745
γext,1 0.00088 0.07 ± 0.09 1.001 1.012 35542 27926
γext,2 −0.00060 −0.06 ± 0.09 1.001 1.010 35382 30456
Rl −0.00203 −0.09 ± 0.09 1.000 1.007 35768 33695
nl −0.00321 −0.05 ± 0.08 1.000 1.008 35777 33752
òl,1 −0.00038 −0.21 ± 0.10 1.000 1.003 35444 33593
òl,2 −0.00006 −0.01 ± 0.10 1.001 1.003 35495 33247
xl 0.00003 0.03 ± 0.09 1.001 1.003 35687 33086
yl 0.00006 0.13 ± 0.08 1.000 1.003 35641 32861
Il 1.20330 0.07 ± 0.08 1.000 1.007 35758 33603
Rs 0.00599 0.13 ± 0.09 1.000 1.005 35497 32109
ns 0.01192 0.04 ± 0.09 1.000 1.005 35613 32820
òs,1 −0.00255 −0.09 ± 0.10 1.000 1.004 35556 31342
òs,2 0.00282 0.05 ± 0.10 1.001 1.005 35711 31810
xs −0.00087 −0.06 ± 0.09 1.001 1.017 35443 26822
ys −0.00092 0.03 ± 0.08 1.001 1.017 35470 29876
Is −0.09109 −0.05 ± 0.09 1.000 1.003 35580 33416

Note.We show the errors for the 22 lensing parameters in Figure 11. Mean error denotes the average difference between the recovered parameters and the ground truth
for the 100 simulated systems. The notation z denotes errors that have been scaled by the posterior standard deviation. For example, for a given system, if the posterior

mean and variance of the Einstein radius are [ ] [ ]q q ,E E and the ground truth Einstein radius is qE, then [ ] ( [ ] ) [ ]q q q q= - z E E E E . We report the average
(over all 100 systems) scaled error μz for each parameter and find that they are all consistent with zero bias. We also report statistics for the MC convergence
diagnostics, including the mean and extremal values. Specifically, for any given parameter, the R̂max and ESSmin values are the largest R̂ and smallest ESS for that
parameter across all 100 simulated systems.

29 https://www.nersc.gov/systems/perlmutter/
30 Currently, only the JAX implementation of our pipeline supports distributed
computing over multiple GPUs, due to the lack of support for distributed
computing on TensorFlow (outside of neural networks).
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any parameterized lens model. For instance, if we opt instead to
use shapelets (Birrer et al. 2015) as a source light model, for
small nmax (Shajib et al. 2021), only∼ 10% more computation
time is needed. More importantly, as we showed in
Section 2.5.2, a gradient-informed modeling pipeline is
necessary to do rigorous statistical inference on models with
many parameters. Fifty-one of the lensing systems that we
discovered in Huang et al. (2020, 2021) have been observed
with the Hubble Space Telescope (HST; ID: 15867; PI:
Huang). We will apply the GIGA-Lens framework to model a
subset of these systems and report the results in an upcoming
publication (X. Huang et al. 2022, in preparation).

In this work, we have developed the core components for a
gradient-based lens modeling framework. There is much room
for expansion within this framework. For instance, although we
did not find significant multimodality in the posterior for the
model we consider in this work (i.e., all local modes have
vanishing posterior density compared to the global mode), it is
unclear whether this will still be the case for more complex lens
and source models. We believe that this can be addressed using
more advanced samplers (using HMC as a substrate) such as
adiabatic MC (Betancourt 2015), parallel tempering (Earl &
Deem 2005), or annealed importance sampling (Neal 2001).
The latter is also capable of estimating normalizing constants,
which enables the computation of Bayes factors. This is
necessary for model comparison, which is particularly useful
for tasks such as the modeling of subhalos and line-of-sight
low-mass halos.

Finally, the execution time can very likely be significantly
shortened from the 105 s reported in this work via a
combination of technological and algorithmic improvements.
For the former, we plan to use eight A100 GPUs, and we
expect that this will cut the execution time roughly in half,
bringing the total time to below 1 minute. In addition, further
improvement on GPU speed is almost a certainty. For the latter,
on one hand, advances in mass matrix adaptation for HMC
(Stan Development Team 2021) may allow the VI step to be
eliminated, potentially offering up to a factor of two speed gain.
On the other hand, the VI step can be improved to fit the
posterior exactly (Kingma et al. 2017; Papamakarios et al.
2018), allowing HMC to be eliminated from the pipeline. This
framework and its further improvements make it possible, for
the first time, that the ( ) 105 strong lenses expected to be
discovered in the next-generation surveys can be modeled on a
reasonable timescale.
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Appendix

Below, we show modeling results for four types of typical
systems: folds, cusps, crosses, and doubles (Figure A1.). As
shown in Figure A2, for all four systems, the posterior mean
agrees (within uncertainty) with the ground truth. For the fold
(Figure A2, panel (a)), we point out the clear banana-shaped
posterior (for similar examples with cluster lensing, see Jullo
et al. 2007), as well as the weaker constraint on γ (the
standard deviation here is±0.1, compared to the more typical
±0.05 for the other systems). This is worth keeping in mind
when doing density profile slope studies. Furthermore, note
the tendency for the VI posterior in (a) to underestimate the

Figure A1. Four archetypal lensing systems selected from Figure 10. The numbers in the upper left corner refer to the ordering in Figure 10. All four systems have a
comparable signal-to-noise ratio. The source location is marked with a star, the critical curves are in red, and the caustics are in green. Observe the presence of an inner
critical curve and caustic in the cross system, due to the fact that γepl < 2 (e.g., O’Riordan et al. 2019).
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Figure A2.Modeling results for each of the four archetypal systems. The samples and 0.5σ, 1σ, 1.5σ, and 2σ contours (corresponding to roughly 12%, 39%, 68%, and
86% of the probability mass) for both VI and HMC are shown in blue and gray, respectively.
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posterior scale. In contrast, for the cusp (b), the VI posterior
overestimates the posterior scale for θE. Notably, for the cross
(c), the results are qualitatively similar to the results for the
reference system (which is also an approximate cross). That
is, the degree of agreement between the ground truth and
posterior mean is comparable to that of the reference system,
and in both cases, the marginals of the VI posterior are similar
to those of the true posterior. Finally, for the double (d), the
marginals of the VI nearly perfectly agree with those of the
true posterior.
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