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Abstract

Chromatin alterations mediate mutations and gene expression changes in cancer. Chromatin 

immunoprecipitation followed by sequencing (ChIP-Seq) has been utilized to study genome-wide 

chromatin structure in human cancer cell lines, yet numerous technical challenges limit 

comparable analyses in primary tumors. Here we have developed a new whole-genome analytical 
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pipeline to optimize ChIP-Seq protocols on patient-derived xenografts from human 

papillomavirus-related (HPV+) head and neck squamous cell carcinoma (HNSCC) samples. We 

further associated chromatin aberrations with gene expression changes from a larger cohort of the 

tumor and normal samples with RNA-Seq data. We detect differential histone enrichment 

associated with tumor-specific gene expression variation, sites of HPV integration in the human 

genome, and HPV-associated histone enrichment sites upstream of cancer driver genes, which play 

central roles in cancer associated pathways. These comprehensive analyses enable unprecedented 

characterization of the complex network of molecular changes resulting from chromatin 

alterations that drive HPV-related tumorigenesis.

Keywords

Chromatin immunoprecipitation; high-throughput data; histone code; HPV integration; head and 
neck squamous cell carcinoma

Introduction

Aberrations to histone marks and chromatin organization are critical to cancer development 

and progression (1). Many histone modifications (including H3K4me3 and H3K27ac) are 

robust cancer biomarkers (1). These alterations induce widespread changes across larger 

genomic areas than mutations, making them likely regulators of pervasive gene expression 

changes in cancer (2). Changes in gene expression are considered as a fundamental hallmark 

of cancer (3). Many of these changes can be explained by the mutational landscape of the 

disease. However, mutations alone are insufficient to explain vast transcriptomic changes in 

cancers with lower mutation rates, such as hematologic malignancies or virus-induced 

cancers that lack actionable genetic alterations (3). We hypothesize that pervasive alterations 

to chromatin organization can drive functional gene expression changes in virus-induced 

cancers, such as HPV+ head and neck squamous cell carcinoma (HNSCC). Comprehensive 

genome-wide analyses of the chromatin structure, gene expression changes, and viral 

integration sites can shed light on this hypothesis and better elucidate the complex 

cooperative biological activities occurring in the genome during tumorigenesis. However, 

such high-dimensional analysis has never been performed in primary cancer samples of this 

disease and the manner by which chromatin reorganization cooperates with components of 

host and viral genomes to affect tumor progression remains to be delineated.

Chromatin immunoprecipitation followed by high-resolution whole-genome sequencing 

(ChIP-Seq) is the gold-standard method for studying the association of modified histones 

with genomic DNA. However, its use as a modality for large-scale analysis has recognized 

limitations, such as large sample input requirement, variable antibody binding efficiency, 

material loss over the purification steps, overall low DNA outcome/output, and complex 

multilateral quality assessments during the computational procedures (4). Moreover, the 

chromatin accessibility during fragmentation is not uniform across the genome. Open 

chromatin regions are amenable to better fragmentation and therefore are preferentially 

represented in the digested sample. Whereas tightly packed heterochromatin is digested to a 

lesser extent, thereby confounding weak enrichment of true binding sites for 
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heterochromatin markers (5). Finally, the chromatin integrity, the rate of its digestion, and 

strength of DNA-protein binding highly depend on the preservation and processing of the 

patient’s primary cancer tissue (5). Therefore, the majority of ChIP-Seq-generated data in 

cancer are currently limited to cell line analysis (2) and do not represent the wide 

heterogeneity of human malignancy that occurs on a population basis (6). Although multiple 

efforts (such as recently described SimpleChIP protocol) have been made to streamline the 

workflow and to obtain high-quality, unbiased and reasonable data, to date, there is no single 

experimental design, which is optimal to evaluate primary tumor samples.

HPV is the second leading cause of HNSCC after cigarette smoking (7). Several high-

throughput genomic analyses, aimed at facilitating the development of cancer-related 

therapy, revealed that HPV+ tumors have fewer genetic alterations than non-HPV-related 

HNSCCs (3, 8). The virus-related dysfunction of the APOBEC complex in HPV+ HNSCC 

(9) leads to accumulation of the non-synonymous mutations within the isolated hot-spots, 

resulting in genetically-homogeneous disease and narrowing down the number of potential 

targeting candidates. As such, relatively few genetic alterations critical to the development 

of HPV+ HNSCC are currently recognized. Nonetheless, both HPV+ and HPV-HNSCC 

subgroups display relevant pervasive gene expression alterations (3). Amplification of the 

host genome at the site of HPV integration (10, 11) and dysregulation of tumor-suppressor 

genes by HPV oncoproteins (9) cannot fully describe the genome-wide spectrum of gene 

expression changes in HPV+ HNSCC (3). These data lead to the hypothesis that epigenetic 

modifications, such as chromatin reorganization, are central to gene expression 

dysregulation during the HPV-associated carcinogenesis.

In parallel with acquiring the high-quality ChIP-Seq results, assessing the function of 

chromatin structure requires integrated bioinformatics analysis with additional genomics 

data. Recently, mutations in NSD1 were found to define a subtype of HPV-HNSCC in which 

disruption of H3K36 potentially drives oncogenesis. However, this study lacked chromatin 

data to evaluate the association between gene expression and chromatin reorganization in 

head and neck cancers (12). Since modulation in chromatin structure enables transcriptional 

changes to numerous genes simultaneously, new integrated studies with matched chromatin 

and high-throughput transcriptomic data are essential to establish the functional relevance of 

specific chromatin alterations in prevalent types of cancer, such as HPV+ HNSCC.

To determine the role of chromatin structure in HPV-related carcinogenesis, we have 

performed the first ChIP-Seq characterization of chromatin state in primary HPV+ HNSCC 

tumor samples. To address technical challenges with ChIP-Seq, we have performed a 

comprehensive optimization of the current ChIP-Seq methodology aimed at improving its 

applicability to clinically relevant primary tissue samples (Fig. S1.). We have adjusted 

various processing parameters and extensively validated this optimized protocol in tumor 

cell lines, primary patients’ samples, and patient-derived xenograft (PDX) models. The 

chromatin data generated in this study was coupled with matched RNA-Seq data that include 

samples profiled as part of a larger cohort of 72 HPV+ tumors (13). We performed integrated 

bioinformatics analysis of the ChIP-Seq and RNA-Seq data to determine the potential 

functional role of chromatin alterations in HPV+ HNSCC. This integrated analysis was 

performed with a new Expression Variation Analysis (EVA) algorithm that models inter-
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tumor heterogeneity (14) of epigenetic regulation of gene expression. Overall, we have 

shown a strong disease-specific distribution of H3K4me3 and H3K27ac histone marks, 

which correlates with differential gene expression of nearby cancer-related genes, and their 

associated pathways. The analyses further demonstrated a sample-specific association of 

H3K27ac marks with sites of HPV integration and known HNSCC driver genes. Taken 

together, this first integrated analysis of chromatin data in primary tumor samples 

demonstrates the critical role of chromatin distribution in HPV+ HNSCC and is applicable 

to determining that role in other cancer subtypes.

Materials and Methods

JHU cohort of primary samples

Primary tumor tissue samples were obtained from a cohort of 47 patients with HPV-related 

oropharyngeal squamous cell carcinoma, as previously described (13). For comparison, 

healthy oropharynx mucosal tissue from uvulopalatopharyngoplasty (UPPP) surgical 

specimens were obtained from 25 cancer-unaffected controls (13). All tissue samples were 

collected from the Johns Hopkins Tissue Core under an approved IRB protocol 

(NA_00036235) after obtaining the informed written consent from all subjects. This 

protocol also permitted the usage of the tumor tissue for PDX model development. This 

study qualified for exemption under the U.S. Department of Health and Human Services 

policy for protection of human subjects [45 CFR 46.101(b)] (IRB study number is 

NA_00036235). Additional details are provided in Supplementary Materials and Methods.

Cell Lines

Human HPV+ HNSCC cell lines UM-SCC-047 and UPCI-SCC-090 were provided by Dr. 

Thomas Carey (University of Michigan) and Dr. Susanne Gollin (University of Pittsburgh), 

respectively. Additional details are provided in Supplementary Materials and Methods.

HPV detection

Four independent methodologies were used to validate HPV status in all of our samples: In 
situ hybridization for HR-HPV, ICH staining for p16, qRT-PCR detection for HPV DNA and 

RNA-Seq based detection of HPV expression. Additional details are provided in 
Supplementary Materials and Methods.

Selection of samples for ChIP-Seq analysis

Two HPV+ OPSCC samples from the JHU cohort of primary tumors (13) were used for the 

preparation of the first generation (F1) PDX models, PDX1 and PDX2, using xenografting 

procedures described in (6, 15) for ChIP-Seq analysis. RNA-Seq data was collected for these 

PDXs using the methods and normalization procedures described previously (13). To 

confirm that the PDX models were similar to the tumor samples from which they were 

derived, we compared the RNA-Seq gene expression profile to the profile for its 

corresponding parental tissue. Pearson correlation coefficients were 0.83 for PDX1 and 0.9 

for PDX2, and both p-values were below 10−16. This finding was consistent with our 

previous observations that high-throughput profiles in HNSCC PDX samples were more 

similar to their parental tumor tissue than to other tumor samples or to cell lines (6). We also 
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performed ChIP-Seq analysis on 2 HPV+ HNSCC cell lines (UM-SCC-047 and UPCI-

SCC-090) and two UPPP samples (UPPP1 and UPPP2), where both UPPP samples were 

from the same JHU cohort (13). UPPP is the only surgical procedure performed in the 

oropharyngeal area in healthy individuals, which allows collection of oropharyngeal tissues 

from non-cancer patients as controls, consistent with previous genomics studies of HNSCC 

(16–18). Also, the UPPP samples selected for study here had similar gender, race, ethnicity, 

smoking, and drinking status to that of the HPV+ HNSCC samples selected for ChIP-Seq 

analysis (Table S1). This matching of tumors and controls enabled inference of tumor-

specific differences in chromatin structure, independent of tissue-specific effects on 

chromatin structure.

Histone marks used in ChIP-Seq analysis

Histone modifications H3K4me3, H3K9ac, H3K9me3, and H3K27ac were chosen for ChIP-

Seq analysis. H3K4me3, H3K9ac, and H3K27ac were selected because they were strongly 

implicated in gene expression regulation (19). The H3K9me3 repressive histone mark was 

selected as a negative control.

Preservation of samples

Cells were grown to 80% confluence. Each immunoprecipitation (IP) preparation contained 

4×106 cells. Cell number was verified by Cellometer™ Auto T4 (Nexcelom Bioscience). 

Viable cells from culture were taken directly to the ChIP experiments. When harvesting the 

tissue samples, unwanted material such as fat and necrotic material were removed from the 

sample. Tissue was then snap frozen in liquid nitrogen for later processing. For optimal 

chromatin yield and ChIP results, we used 25 mg of tissue for each immunoprecipitation to 

be performed. Frozen tissue was left to thaw on ice and mass was determined by weight.

Protein-DNA cross-linking

ChIP-DNA was prepared using recently developed SimpleChIP Enzymatic Chromatin IP Kit 

#9005 (Cell Signaling Technology) following manufacturer’s protocol with sample-specific 

adjustments in micrococcal nuclease and sonication steps. 10X phosphate buffered saline 

(PBS) pH 7.4 from Quality Biological Inc. was used wherever PBS is indicated.

MNase/Sonication

Samples were digested by both micrococcal nuclease and sonication. This process was 

additionally optimized and followed by gel electrophoresis to ensure uniform shearing of 

DNA across the genome. Additional details are provided in Supplementary Materials and 

Methods.

Chromatin immunoprecipitation

Equal amounts of chromatin were used per IP step with exceptional performance (XP®) 

monoclonal antibodies validated for ChIP application (Cell Signaling Technology). Rabbit 

monoclonal antibodies were added in particular dilution based on an optimized 

concentration evaluated across a wide variety of commercial monoclonal antibodies. A 1:50 

dilution for H3K4me3 (9751), H3K9ac (9649), H9K9me3 (13969) antibodies and a 1:100 
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dilution for H3K27ac (8173) antibody were used to isolate DNA segments bound by 

individual histone modification. We used 1:50 diluted total H3 (4620) antibody as a positive 

control and 1:250 diluted Normal Rabbit IgG (2729) as a negative control. A 3527-5 

Incubator Shaker (Lab-Line) was used during elution. ChIP-DNA was purified and 

measured following the ChIP kit protocol. The 1/50 portion (2%) of the same chromatin for 

each sample (PDX1, PDX2, UPPP1, UPPP2, UM-SCC-047, UPCI-SCC-090) was used for 

DNA extraction skipping the antibody enrichment steps and was further used for qRT-PCR 

and sequencing as an input control.

Quantitative real-time polymerase chain reaction

ChIP-DNA underwent qRT-PCR using a TaqMan® 7900HT Fast Real-Time PCR System 

(Applied Biosystems) per manufacturer’s recommendations. We used Johns Hopkins lab 

standard 10X PCR Buffer (20), dNTPs (Bioline), FAM (Thermo Fisher Scientific). Primers 

and probes designed in the promoter region of actively expressed GAPDH and RPL10 
genes, and 3′ end of the transcriptionally repressed ZNF333 gene (19), see Table S2 for 

details. Each sample was analyzed in triplicate and underwent one cycle of 10min at 95°C, 

and 50 cycles of 15s 95°C/60s 60°C. Relative fold enrichment of different histones in 

individual samples was quantified in triplicate relative to the 2% input sample using the 2-

ΔΔCT method (21).

ChIP-DNA whole-genome sequencing and normalization

ChIP-DNA for individual sample/antibody and their input controls were sonicated, end-

repaired, and ligated to SOLiD P1 and P2 sequencing adaptors lacking 5′ phosphate groups, 

using the NEBNext DNA Library Prep Set for SOLiD per the manufacturer’s recommended 

protocol (NEB). Libraries were then nick-translated with Platinum Taq. ChIP-DNA was 

sequenced at the Experimental and Computational Genomics Core (ECGC) at Johns 

Hopkins University with a target sequencing coverage of approximately 45,000,000x and 

paired-end reads of 150 bp. Illumina CASAVA 1.8.2 was used to convert BCL files to 

FASTQ files using default parameters (22). Bowtie 2.2.1 was used to map paired-end reads 

to the hg19 human reference genome using default parameters and samtools 0.1.19 was used 

to convert, sort, and index SAM files (23). The count functionality IGVTools package was 

used to generate a tiled data file using default parameters. MACS (Model-based Analysis of 

ChIP-Seq algorithm, version 1.4.2) called ChIP-Seq peaks for each mark and each sample 

using the input DNA in that sample as a control (24). ChIP-Seq peaks were called significant 

if MACS modeled peak p-values are below a threshold of 10−6, and these peaks were 

represented as genomic intervals. The cis-regulatory element annotation system (CEAS) was 

used to associate these genomic intervals with genes (25).

DiffBind Analysis of ChIP-Seq data

To compare the ChIP-Seq peaks for different samples and different modifications, we used 

the R/Bioconductor package DiffBind (26). MACS bed files for the six samples and their 

H3K4me3, H3K9ac, H3K27ac, and H3K9me3 histone marks were used as an input using 

the code in Supplemental File 1. We used DiffBind only to compute pairwise genome-wide 

correlation coefficients between all possible ChIP-Seq signal pairs (24 × 24 total).
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Visualization of Whole Genome ChIP-Seq Enrichments over Genomic Regions

Fold enrichment computed with MACS calls were input to deepTools (27) for visualization. 

DeepTools heatmap functions were used to visualize ChIP-Seq fold enrichment −1.5 – +1.5 

kb region around the transcriptional start sites (TSS) for all known genes. Average profiles 

for ChIP-Seq enrichment in the same −1.5 – +1.5 kb region around the TSS were also 

generated with the profiler tool in deepTools.

Identification of disease-specific genes associated with ChIP-Seq peaks

We sought a list of genes with disease-specific coverage from the ChIP-Seq data for each 

histone mark. To obtain these genes, we compared the CEAS output gene lists for the ChIP-

Seq data in each sample. Specifically, we performed set differences to define the lists of 

genes with ChIP-Seq coverage in 5′ UTR regions that were specific to either tumor or 

normal samples for each histone mark (Tables S3–S6). To obtain the normal-specific gene 

list, we restricted the sets to genes that were shared by both UPPP samples and were not in 

any cancer cell line or PDX sample. To obtain the tumor-specific gene lists, we restricted the 

sets to genes that were shared by both cancer cell lines or by both PDXs and were not in any 

UPPP sample. We created additional annotations for the list of tumor-specific genes in both 

the PDXs and cell lines and the tumor-specific genes only in the PDXs. These lists of genes 

were generated using the code in Supplemental File 2 and carried forward for analysis of 

RNA-Seq data to determine the functional consequences of disease-specific genes.

Gene set analysis

The MSigDB (28) “investigate gene sets” function performed pathway analysis of the 

disease-specific genes for each tumor- and normal-specific H3K4me3 and H3K27ac histone 

mark (Tables S3–S4). Gene set analysis in this software was performed with Hallmark gene 

sets using a hypergeometric test (Tables S7–S10).

Correlation of H3K27ac-enriched genes with other known HPV+ HNSCC gene sets

The R/Bioconductor package GeneOverlap was used to associate the disease-specific gene 

set for H3K27ac (29, 30). A one-sided Wilcoxon gene set test was further applied to assess 

the enrichment of the disease-specific H3K27ac gene set with the continuous weights of the 

gene classifier for HPV+ HNSCC subtypes from (29).

RNA-Seq normalization and analysis

Gene level counts from the RNA-Seq data were obtained from the RSEM V2 pipeline for 

TCGA (3) as described in (13). Heatmaps of RNA-Seq data for disease-specific genes (listed 

in Tables S3–S6) were generated for each histone mark. Unsupervised hierarchical 

clustering in heatmaps used Kendall-Tau dissimilarity distances. Previous work 

demonstrated that this distance quantified the relative variability of gene expression profiles 

(14), enabling it to quantify dysregulation of gene expression by enhancers in this study.
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Expression Variability Analysis bioinformatics for dysregulation of RNA-Seq in tissue-
specific ChIP-Seq peaks

We hypothesized that changes in chromatin structure enabled expression changes in the 

genes with ChIP-Seq coverage in 5′ UTR regions. However, other epigenetic alterations-

based regulatory mechanisms (e.g., transcription factor binding, copy number 

amplifications, etc.) were still required to alter gene expression. Consequently, the 

expression changes in genes with tumor-specific ChIP-Seq coverage at 5′ UTR would be 

more variable than expression changes in genes with normal-specific ChIP-Seq coverage. 

Consistent with this hypothesis, we used the EVA gene set dysregulation algorithm to 

quantify the relative dissimilarity measure (e.g. rank proxy of variance) of gene expression 

profiles in tumor and normal samples using U-theory statistics (14). We applied the EVA 

algorithm in the R/Bioconductor package GSReg to the RNA-Seq data for the gene sets 

defined by the disease-specific chromatin modifications (Supplemental File 2).

HPV integration detection by MapSplice

Detection was performed with MapSplice (31), which was run with the option to identify 

fusions on the RNA-Seq data. The reference for the reads to be mapped was a chimera that 

was prepared from a joint human and HPV16 genome. In this way, a viral integration site 

was visible as a fusion of a human chromosome and HPV genome. We considered the viral 

genome integrated if there were at least three discordant pairs (in which one end of the 

paired end read mapped to the viral genome, and its mate pair mapped to human genome) 

and one split read (in which one end of the paired end read spanned the human-viral 

junction, and its mate pair mapped to either the human or HPV genome). These seven total 

reads support integration at the same locus, according to our recent analysis (32). Additional 
details are provided in Supplementary Materials and Methods.

Identification of transcriptional enhancers

MACS peaks for H3K27ac were further input to Ranking Of Super Enhancers (ROSE) 

analysis software (33) to make enhancer calls for each sample. We applied this algorithm to 

merge H3K27ac peaks from MACS and ranked the resulting merged peaks as enhancers.

Results

High-quality ChIP-Seq data obtained in all tissue types and histone modifications

PDX models, established from primary tumor tissue samples directly implanted into 

immunodeficient mice, maintain important molecular features of human malignancies and 

provide sufficient tissue resources for profiling (6). We first used two HPV+ HNSCC 

patient-derived xenografts, PDX1 and PDX2, to optimize methods for sample preservation 

and processing required for ChIP-Seq analysis. Since human stromal elements are replaced 

by murine stroma as the engrafted tumor grows within its new biological niche, only the first 

passage of PDX tumors was used. These first passage PDX tumors were previously 

confirmed to have DNA methylation profiles similar to the tumor from which they were 

derived (6). Chromatin purification was performed using improved ChIP kit protocol, 

followed by optimized chromatin digestion procedure adjusted for each sample (see 
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Methods for details). PDX samples were processed in parallel with non-cancer controls: two 

primary oropharyngeal samples after uvulopalatopharyngoplasty (UPPP1 and UPPP2) and 

two HPV+ HNSCC cell lines (UPCI-SCC-090 and UM-SCC-047).

ChIP was performed for three well-characterized active histone marks that have been linked 

to carcinogenesis (H3K4me3, H3K9ac, and H3K27ac) (19) as well as a repressive histone 

mark (H3K9me3) using exceptional performance (XP®) monoclonal antibodies specifically 

developed for ChIP applications (see Methods for details). The ChIP-DNA deep sequencing 

produced an average of 46 million reads per sample (range: 29–88 million), which surpassed 

the ENCODE recommended guidelines for ChIP-Seq quality (34). Furthermore, over 89% 

of the reads aligned to the human reference genome (range: 56%–99%). Notably, the read 

frequency alignment did not differ significantly among samples types (Fig. S2A). PDX 

samples showed the lowest alignment rates to the human genome (mean: 76%, Fig. S2B) 

compared to cell lines or UPPP tissues. Nonetheless, the overall mapping rate in PDX 

samples was higher than that reported in standard mapping protocols (35).

The active H3K9ac histone mark enrichment had the highest number of sequencing reads 

across all samples analyzed (average: 59M) (Fig. S2C) as well as the highest alignment rate 

to the genome (average: 93%) (Fig. S2D), followed by the active H3K4me3 and H3K27ac. 

Due to the nature of chromatin structure, repressive histone marks are known to have lower 

sequencing quality. Although the repressive H3K9me3 histone mark had both lowest 

sequencing depth (average: 31M) (Fig S2C) and mapping frequency (average: 82%) (Fig. 

S2D), the overall sequencing quality was on par with that observed in the active marks.

Technical validation confirmed high concordance of ChIP-Seq and ChIP-based qRT-PCR

We performed a qRT-PCR analysis of the same ChIP-DNA that was used for the deep 

sequencing experiments for technical validation of the ChIP-Seq data. Three control 

genomic regions were analyzed: constitutively expressed GAPDH and RPL10, and 

transcriptionally repressed ZNF333 genes (Fig. S3A–H) (2, 19). Furthermore, using RNA-

Seq data from the same samples, we confirmed that histone enrichment within each one of 

the tested genes was associated with their expression level (Fig. S4).

Both ChIP-Seq and qRT-PCR analyses revealed that enrichment of all active histone marks 

near the transcriptionally repressed ZNF333 gene was significantly lower than at the 

transcriptionally active GAPDH and RPL10 genes (Fig. S3A–F). Enrichment of the 

repressive H3K9me3 mark was minimal or undetectable at actively transcribed GAPDH and 

RPL10 genes but was significantly enriched near the repressed ZNF333 gene loci, especially 

in cell lines and primary non-cancer tissues (Fig. S3G–H). Although the qRT-PCR platform 

was more sensitive, a strong concordance of histone enrichment was detected by both 

methodologies (Fig. S3A–H).

Clustering analysis of histone mark enrichment reveals correlation between sample types 
and histone modifications

The spatial correlation of histone enrichment peaks between all 24 samples (4 histone marks 

for six specimens) was calculated with DiffBind (26). The 24 × 24 correlation matrix was 

represented as a heatmap with unsupervised hierarchical clustering. The clustering analysis 
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segregates samples based on the relative similarity of their genome-wide ChIP-Seq peaks for 

each histone mark tested (Fig. 1). The analysis produced two distinct clusters independent of 

tissue type: samples with repressive (H3K9me3) and samples with active (H3K4me3, 

H3K9ac, H3K27ac) histone marks. The cluster of samples with active histone marks was 

further segregated by the disease status of the samples, with all non-cancerous UPPP tissues 

combining into a single cluster. To a lesser degree, a similar disease-specific clustering 

pattern was observed for samples with the repressive H3K9me3 mark. A strong co-

clustering of ChIP-Seq sample-to-sample correlations for active histone marks was observed 

among normal tissues, suggesting a more homogenous genome-wide ChIP-Seq profile in 

these samples compared to the corresponding cancerous specimens. The co-clustering of 

cancerous cell lines and PDX samples further supported this observation. This was also 

consistent with previous studies that suggest strong tissue- and sample-specificity of 

H3K27ac, H3K4me3, and H3K9ac (19, 33).

ChIP-Seq analysis detected biologically relevant histone mark distribution around 
transcription start sites (TSSs)

To validate the biological relevance of the ChIP-Seq peak calls from MACS data, we 

analyzed the profiles of ChIP-Seq peaks in the vicinity of all TSS for all 24 samples. 

Increased enrichment of active histone marks was observed at TSSs with a signal drop at the 

nucleosome-free region (located upstream of the transcription start site) and clear 

enrichment peaks observed for transcribed nucleosomes (directly downstream of the 

transcription start site) (Fig. 2A–C). In opposite, repressed histone mark was not enriched 

around TSS (Fig. 2D). Cell lines showed the highest fold change enrichment of active 

histone marks, which can be attributed to the increased integrity of chromatin structure due 

to the absence of snap freezing steps (36). Nonetheless, the profiles of each histone mark 

were similar across all samples.

The profile of ChIP data relative to ChIP input was lower for the H3K9ac histone mark (Fig. 

2B, S5) than either the H3K27ac or H3K4me3 marks in all samples (Fig. 2A, 2C, 2E, S6). 

On the other hand, the ChIP-Seq data for H3K9ac mark had overall higher MACS signal and 

a higher rate of alignment to the human genome than other activating marks (Fig. S2C–D), 

suggesting a wider spread of H3K9ac mark along the genome. The ChIP data for the 

H3K4me3 mark relative to ChIP input was the highest, and there were MACS peaks present 

around the TSSs of more than half of the genes used in the profile analysis (Fig. 2E). Peak 

enrichment for all active marks was highest around 400bp downstream of TSS at third 

transcribed nucleosome, with peaks from the first four transcribed nucleosomes being the 

most clearly distinguished. As expected, in all six samples, the repressive H3K9me3 mark 

did not have any enrichment relative to input control near TSSs (Fig. 2D, S7) (37). Taken 

together, these results demonstrate that ChIP-Seq data in this study consistently detected 

biologically relevant histone marks across different sample types and preservation 

techniques.
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Tissue-specific histone enrichment was associated with gene expression in a cohort of 
primary HPV+ HNSCC and normal samples

The genes with disease-specific histone mark enrichment were identified by comparing the 

presence of specific mark enrichment at their 5′UTRs between PDX and UPPP samples 

(Tables S3–S6). We next analyzed the expression of such genes using RNA-Seq data for 47 

HPV+ HNSCC tumors and 25 non-cancerous controls (13). This RNA-Seq cohort was 

inclusive of the two cell lines, and two UPPP samples, as well as two primary tumors from 

which the PDX models were derived, all of which were used for ChIP-Seq analysis. 

Unsupervised clustering of the RNA-Seq data was performed separately for the sets of 

disease-specific genes defined by the ChIP-Seq analysis in each of the individual histone 

marks (Fig. 3–4, S8–S9).

We detected 948 genes with disease-specific H3K4me3 enrichment: 415 UPPP-specific 

genes and 533 PDX-specific genes, including 206 genes which were also detected in HPV+ 

HNSCC cell lines (Table S3). Unsupervised hierarchical clustering of RNA-Seq data 

revealed a strong separation of the expression of genes that were associated with the disease-

specific H3K4me3 histone mark (Fig. 3, columns). Notably, cell lines and PDX models co-

clustered with primary tumor samples, whereas most normal controls clustered together 

(Fig. 3).

Similar to H3K4me3, H3K27ac revealed multiple disease-specific histone enrichment 

regions and their associated genes (total of 1800 differentially enriched genes: 317 UPPP-

specific genes, and 1483 PDX-specific genes, including 519 genes that were also found in 

cell lines, Table S4). The gene expression analysis of nearby genes also separated tumor 

samples from healthy controls (Fig. 4).

Active H3K9ac and repressive H3K9me3 histone marks demonstrated comparable 

distribution patterns across the entire sample cohort, with only a limited number of histone 

enrichment regions specific to each tissue type (n=27 and n=15 for H3K9ac and H3K9me3 

respectively) (Fig. S8–S9, Tables S5–S6). Nonetheless, the expression data for genes that 

were associated with these tissue-specific regions significantly co-clustered according to the 

disease state (Table 1). Among all four histone marks analyzed, we observed that the ChIP-

Seq data from PDX models reflected the gene expression changes in primary tumor tissues 

(Fig. 3–4, S8–S9), and noticed broad differences between cell lines and primary tumors 

(S10–S13).

Gene expression changes in disease-specific histone enrichment sets had significantly 
more inter-sample variability in tumor than in normal samples

Heatmaps of gene expression data for genes associated with each histone mark visually 

showed greater inter-sample heterogeneity in tumor than normal samples (Fig. 3–4). We 

applied Expression Variation Analysis (EVA) algorithm (14) to the RNA-Seq data for sets of 

genes that are specifically enriched by individual marks (Fig. S14). This algorithm 

quantified their variability in tumor samples relative to normal specimens, by reporting p-

values testing the null hypothesis that there is no difference in variation for genes in the 

disease-specific sets for each histone mark. The EVA analysis of the gene expression data 
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found significant dysregulation of the disease-specific gene sets for all histone marks (Table 

1).

Genes with nearby tumor-specific enrichment of H3K4me3 and H3K27ac were associated 
with established cancer-related pathways

H3K27ac and H3K4me3 had the largest sets of genes with disease-specific histone 

modification enrichment (Tables S3–S4). The PDX-specific gene sets include numerous 

functional cancer-related genes that have been implicated in HPV+ HNSCC, including E2F 

transcription factors (E2F1, E2F4 etc), growth factors and their receptors (EGFR, FGF1 etc), 

forkhead box proteins (FOXE1, FOXE3), RAS oncogenes (RAB23, RAB35, etc), SRY-box 

proteins (SOX2, SOX15, etc), tumor necrosis factors (TNFAIP1, TNFSF15, etc), and 

NOTCH pathway proteins (NOTCH3, JAG1, DVL3), as well as TP63, P53AIP1, TK1, 
ANO1, BIRC5, and SNAI1 (Tables S3–S4). Many of these genes are involved in cancer-

related KRAS, NOTCH, p53, NFκB, IL/STAT, MYC, G2M checkpoint, glycosis, 

spermatogenesis and UV response pathways (Tables S7 and S9). Notably, the normal-

specific gene sets for H3K4me3 and H3K27ac are enriched for pathways associated with 

allograft rejection, apoptosis, inflammatory response and IFNγ response pathways (Tables 

S8 and S10). These data suggest that histone marks can control the disease-specific gene 

expression.

H3K27ac enrichment segregates tumor samples by their HPV integration status, and 
H3K27ac enrichment regions correlate with sites of HPV integration

The clustering analysis of RNA-Seq data in gene sets associated with the H3K27ac mark 

enrichment segregated the tumor samples into two main subgroups (Clusters 1 and 2, Fig. 

4), which was not observed for other histone marks (Fig. 3, S8–S9). Consistent with our 

findings, recent publications have established two subtypes of HPV+ HNSCC from gene 

expression profiles (29, 30), called HPV-KRT and HPV-IMU in (30) or mesenchymal and 

classical in (29). The HPV-KRT was associated with keratinocyte differentiation and 

episomal HPV, while HPV-IMU was associated with strong immune response, mesenchymal 

differentiation and HPV viral integration within the DNA (30). Moreover, that study also 

found that the episomal HPV infection correlated with the HPV-positive mesenchymal 

subtype from (29). The subtypes defined in these studies are correlated, and also associated 

with HPV-integration. In our cohort, HPV integration was detected only in one tumor 

specimen of ten in Cluster 1, whereas samples within the Cluster 2 were enriched for 

positive HPV integration (13 out of 29, Fisher Exact Test p-value of 0.064). Gene set 

enrichment analysis showed that genes with tumor-specific H3K27ac-associated enrichment 

were significantly associated with HPV-KRT (30) (Table S11) and with the classical 

subtypes (29) (Fig. S15A–D), confirming the relationship of H3K27ac enrichment to HPV 

integrated HNSCC subtypes.

Because of these observations, we hypothesized that H3K27ac enrichment is associated with 

HPV-integration. To test this hypothesis, we investigated whether the H3K27ac marks 

themselves co-localized with the sites of HPV integration in each sample profiled with 

ChIP-Seq. Of the four cancer samples with ChIP-Seq data, three had HPV integrated into 

the host genome. The HPV genome was integrated into narrow genomic regions that were 
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unique to each sample (PDX2 - 9q34.3, UPCI-SCC-090 – 9q22.33, UM-SCC-047 – 3q28) 

(Fig. 5). In all three cases, HPV integration sites co-localized with H3K27ac enhancers (38) 

in a sample-specific manner (Fig. 5). Notably, HPV integration and H3K27ac histone 

enrichment co-localized upstream of TP63, FOXE1, NOTCH1, and EGFL7, which all have 

been implicated in HNSCC tumorigenesis. Moreover, HPV integration-specific histone 

enrichment at locus 9q22.33 is proximal to the FRA3C DNA fragile site (10), which further 

confirmed chromatin’s multifaceted role in HPV integration and carcinogenesis.

Discussion

The primary novelty of our study was a generation of the first ChIP-Seq data for human 

oropharyngeal samples, composed of two primary healthy tissues, two HPV+ HNSCC cell 

lines, and two HPV+ HNSCC PDXs. This study also presented the first chromatin-based 

analysis of HNSCC tumors, defining high disease-specificity of H3K4me3 and H3K27ac 

histone marks. We demonstrated that these histone marks were associated with tumor-

specific transcriptional changes in their target genes. These chromatin-regulated genesets 

included well-characterized HNSCC-driving genes, such as EGFR, FGFR1, and FOXA1 
(Tables S3–S4). Our analysis also correlated tumor-specific dysregulation of the known 

cancer-related pathways, such as NOTCH and NFκB (Table S7 and S9) with chromatin re-

organization. Moreover, this was the first HNSCC-based study to describe the relationship 

between chromatin structure and HPV integration status of HPV+ HNSCC subtypes.

ChIP-Seq requires a large amount of input DNA. Due to this limitation, large consortia, such 

as ENCODE, limited ChIP-Seq analysis for cancer samples to cell lines (2). Many recent 

high-profile publications utilizing ChIP-Seq to study tumorigenesis had similar difficulties 

and limited their ChIP-Seq analysis to a minimal number of samples, often only to a single 

specimen for each tissue type (38). The limitations of input specimen size posed a particular 

challenge for studying primary HPV+ HNSCC tumors, which can be relatively small. To 

overcome this limitation and enlarge the tissue volume available for ChIP-Seq analysis, we 

have performed primary tumor xenografting. We acknowledge that minor changes associated 

with the xenografting procedure may occur due to tumor evolution and altered tumor 

environment. To address this concern, we limited ChIP-Seq studies for first generation 

PDXs. We found that a single xenografting step preserved the gene expression profile of the 

primary tissues, similar to previous observations that early stage xenografts preserved DNA 

methylation profiles of the parental neoplasm (6).

One limitation of our study is a modest sample size of 2 HPV+ HNSCC PDXs and 2 HPV+ 

HNSCC cell lines. In addition to being small, HPV+ HNSCC tumors are often not surgically 

excised, limiting primary tissue availability. In fact, there are fewer than 10 HPV+ HNSCC 

cell lines worldwide (10), and a limited number of HPV+ HNSCC PDXs are currently 

described (39). These limitations are reflected in relatively small cohorts of HPV+ HNSCC 

samples in large consortia for HNSCC genomics profiling, such as TCGA (3). Thus, our 

dataset is still a unique resource to characterize the chromatin landscape of these virally 

associated tumors.
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To evaluate this small cohort of ChIP-Seq samples, we selected DiffBind, a bioinformatics 

algorithm that allowed for appropriately powered genome-wide correlation analyses using 

integration with RNA-Seq data from a larger cohort of HPV+ HNSCC samples (47 tumors 

and 25 normals). Specifically, DiffBind (Fig. 1) considered each gene as an event and was 

thus sufficiently powered to perform sample-to-sample comparisons for the genomic regions 

defined by the ChIP-Seq profile.

In RNA-Seq analysis with available data for a larger HPV+ HNSCC cohort, we observed 

much larger inter-sample heterogeneity of gene expression in tumor samples within tumor-

specific ChIP-Seq peaks than that of normal samples within normal-specific ChIP-Seq peaks 

(Fig. 3–4). Within individual tumor samples, changes in gene expression may arise from 

histone modifications, but may also be influenced by mutations, DNA methylation, and copy 

number variations. Therefore, to tease out chromatin structure related changes, it is essential 

to relate the tissue-type-specific ChIP-Seq peaks analysis with the inter-tissue-type 

heterogeneity of gene expression, rather than directly evaluating gene expressional levels. 

Recently, the EVA algorithm was developed to compare the variability of expression profiles 

for gene sets in tumor samples relative to that of normal specimens (14). This reliable 

quantification of the relative variability in sample phenotypes can indicate significant 

pathway dysregulation in one phenotype relative to another. Therefore, the EVA algorithm 

was uniquely suited to determine gene expression dysregulation associated with tissue-

specific chromatin structure in our study (Table 1). Future work is needed to adapt EVA to 

account for sample-specific marks for integrated analysis of large cohorts with matched 

ChIP-Seq and RNA-Seq data.

Both the correlation-based ChIP-Seq and RNA-Seq analyses demonstrated higher tissue-

type specificity in active H3K4me3 and H3K27ac histone marks than the active mark 

H3K9ac or repressive mark H3K9me3. Both of these histone marks have been found to be 

pervasive in actively transcribed genes, as well as enhancer regions reported in previous 

studies (38). Enhancers are known as tissue-specific regulators of gene expression during 

cell differentiation and cancer development (33, 38, 40, 41). Enhancers are commonly 

identified as genomic elements enriched by histone modification (H3K27ac and different 

H3K4me isoforms), predominantly hypomethylated (42, 43), and occupied by various 

transcription factors, BRD4 (BET bromodomain protein, an activator of RNA polymerase II 

- PolII), MED1 (PolII transcription subunit) proteins, and PolII itself (33). H3K27ac 

enrichment at enhancer regions is recognized by BRD4, whose inhibition leads to a 

dysregulation in gene expression of oncogenes such as MYC, MYB, MMP9, BCL2, and 

CCND1 (40, 41, 44, 45). This is in a strong concordance with our observation that the 

regions with differential enrichment of the H3K27ac histone mark were found near known 

HNSCC associated genes: EGFR, CEBPD, TP63, FOXE1, NOTCH1, GATA6, SOX2, and 

EGFL7 (Table S4), whose expression may also be regulated through BRD4 and its inhibitors 

(40, 41, 44–46). This suggests that BRD4 may play a role in expression regulation of those 

genes (Table S4) and their associated HNSCC-related pathways (Table S7), which merits 

further investigated.

In this study, we demonstrated the correlation of H3K27ac enrichment and HPV integration 

status. However, currently, there is no gold-standard for evaluation of HPV integration. 
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Whole genome sequencing (WGS) is a preferred but expensive methodology (32). Some 

researchers agree that the detection of multiple reads across the human-viral fusions defines 

the HPV integration into the genome, whereas no detection of human-viral reads represents 

the episomal virus (32). Nonetheless, in many cases such as samples with lower sequencing 

depth, low HPV copy number, utilization of whole exome sequencing (WES) or RNA-Seq 

evaluation, the desired number of the human-viral junctions may not be reached or detected. 

Such results could produce false negative detection of HPV integration. Parfenov and 

colleagues developed a protocol with stringent criteria and detected 71% of HPV integration 

in HPV+ TCGA population using three independent high-throughput methodologies: RNA-

Seq, WGS, and WES (32). Using only RNA-Seq analysis, a lower rate (34%) of HPV 

integration was detected, and the high false-negative rate of integration detection may be 

because only transcriptomic data was evaluated. Nonetheless, analysis of gene expression 

from this RNA-Seq data in genes associated with ChIP-Seq marks for H3K27ac 

distinguished clusters of HPV+ HNSCC samples with different numbers of HPV-integration 

calls.

The role of HPV-integration in HNSCC is an area of active research. A recent study 

supported the hypothesis that HPV is only transiently integrated into the host genome and 

then subsequently excised out of the human genome together with human sequences to form 

human-viral chimeric episomes with multiple copies of HPV (32, 47). If this hypothesis is 

true, the human-viral fusion sites, that we called integration sites in this study, could instead 

represent chimeric human-viral episomes described in other studies (32, 47). The fact that 

the episomal and integrated HPV can co-exist in the same tissue or even the same cell (30, 

32, 47, 48), and both can be transcribed, adds another twist to the complex picture of HPV 

infection in human cancers. Southern blots or FISH-based technologies followed by high-

resolution microscopy might help to resolve this scientific dispute (32, 49), and should be 

evaluated in conjunction with H3K27ac binding sites in future studies.

Although the role of HPV-integration is controversial, recent studies have demonstrated that 

HPV+ HNSCC samples with episomal and integrated HPV have unique signatures of gene 

expression, and can be separated based on them (22, 30, 32, 47–49). Clustering of gene 

expression data described two HPV+ HNSCC subtypes: mesenchymal and classical (29). A 

later study independently found two subtypes: HPV-KRT (integrated HPV) and HPV-IMU 

(episomal HPV) (30). The episomal HPV infection also correlated with the HPV-positive 

mesenchymal subtype reported in (29). Our analysis of both gene expression signatures 

confirmed the predominant association of tumor-specific H3K27ac-associated genes with 

HPV-KRT (30) and classical subtype (29), confirming the strong correlation between HPV 

integration and H3K27ac enrichment (Fig. S15A–D and Table S11). This association was 

further supported by co-localization of HPV-integration sites with H3K27ac peaks (Fig. 5).

Published data suggest that integration of different viruses correlates with an “open 

chromatin” landscape (50, 51). The integration of the HPV genome is crucial to HPV-related 

carcinogenesis and progression (52). Indeed, 34–71% of HPV+ HNSCC tumors have the 

virus integrated into the host genome (10, 48). Furthermore, recent data confirm that 

integration of oncogenic viruses, including HPV, into the host genome, is not random (32). 

The murine leukemia virus (MLV) tends to integrate into DNase I hyper-sensitive sites (50), 
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most likely accommodated by the interaction of MLV integrase with BRD proteins, known 

to bind “open chromatin” mark, H3K27ac (46). Integration of gamma-retrovirus also 

correlates with H3K27Ac modification (51). Our results further indicated that H3K27ac 

marks distinguish tumor samples with and without HPV integration (Fig. 4 and S15A-D, 

Table S11). HPV integration sites also strongly co-localize with H3K27ac marks in each 

sample (Fig. 5). HPV integration in the UM-SCC-047 cell line was located in close 

proximity (5.5Mb) to the fragile FRA3C site, which is known to have a high double-

stranded break rate (10, 11). Additionally, sites of HPV integration were near known cancer-

related genes in our samples: TP63 (18) (047 cell line); FOXE1 (53) (090 cell line); 

NOTCH1 (8) (PDX2); and EGFL7 (54) (PDX2). This suggests that HPV integration occurs 

near genes that play a central role in HNSCC development (Tables S3–S6).

The correlation of the HPV integration status and tumor stage is still an active area of 

research. In our study cohort, only 3 out of 47 HPV+ HNSCC patients were TNM stage III, 

whereas the other 44 were TNM stage IV tumors. This is reflective of the clinical 

presentation of HPV+ HNSCC, which is predominantly diagnosed with the large regional 

nodal disease. This homogenous tumor population limited any conclusions regarding the 

correlation of HPV integration and TNM stage. A larger number of early stage samples will 

be required for the further detailed investigation to elucidate the correlation of the tumor 

stage and HPV integration status in HNSCC.

This study has several limitations, primarily associated with the small sample size. First, the 

small ChIP-Seq cohort limited statistical analyses of high-throughput data between samples. 

Also, the simple detection of HPV integration did not allow us to draw any conclusions 

regarding HPV excision during carcinogenesis. Homogeneous distribution of TNM stages 

within HPV+ HNSCC patients prevented drawing a conclusion between clinical 

characteristics and HPV integration status.

A large amount of tumor volume required for ChIP-Seq analysis, prohibited the use of 

primary tumor tissue, limiting our study to cell lines and xenografts. We recognize that 

changes occur in the tumor microenvironment during xenografting, and in combination with 

small sample size, some limited conclusions could be drawn. However, utilizing 

bioinformatic methods such as DiffBind, an adequate statistical power was achieved. The 

small size of our cohort also limited any definitive conclusions about the genetic and 

epigenetic difference between samples with and without HPV integration into the host 

genome.

Our confirmation of the correlation of H3K27ac mark and HPV integration is a critical first 

step to delineating the relationship between enhancers and viral HNSCC carcinogenesis. 

Further functional studies among larger cohorts are necessary to establish the role of 

chromatin structure in mediating HPV integration and alterations to cancer-related genes in 

HPV+ HNSCC. The presented optimized ChIP protocol for primary tumor samples and 

integration of the ChIP-Seq results with RNA-Seq data has wide applicability and can be 

expanded to better understand the interplay between chromatin structure changes and their 

downstream effects on gene expression in various types of cancer.
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Figure 1. Non-ordered DiffBind analysis revealed a spatial correlation between histone marks in 
different sample types
The histone mark enrichment distribution was analyzed by the DiffBind algorithm, which 

calculates the spatial correlations between genomic distributions of histone marks in two 

different samples. The correlations range from 0 (no correlation, white) to 1 (strong 

correlation, dark green). Overall, 24 samples were used in the analysis to build 24 × 24 

matrix: two of each tissue type (cell lines – red; xenografts - blue; normal controls – back) 

and four histone marks (active: H3K4me3, H3K9ac, and H3K27ac, as well as repressive: 

H3K9me3). Two main patterns were revealed: independent clustering of repressive mark 

regardless of tissue type and the cluster of normal controls regardless of active histone mark 

nature.
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Figure 2. Histone mark enrichment distribution near transcription start sites
The average genome-wide histone enrichment calculated by MACS near transcriptions start 

sites (TSS, ±1.5 kbp) was calculated for all known genes for each individual histone 

modification: H3K4me3 (A), H3K9ac (B), H3K27ac (C), and H3K9me3 (D) and shown for 

individual samples (cell lines: UM-SCC-047 [red] and UPCI-SCC-090 [pink]; xenografts: 

PDX1 [blue] and PDX2 [green]; normal controls: UPPP1 [black] and UPPP2 [gray]). The 

relative fold enrichment was calculated by MACS algorithm, which accounted for the 

background signal by comparing the ChIP peaks within an individual study sample to its 

own 2% input DNA control, via looking for read orientation and mapping density that 
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indicates histone binding. Notably, histone mark enrichment near the TSS was detected only 

for active, but not the repressive modifications. (E) H3K4me3 histone mark enrichment 

calculated by MACS near individual TSS (±1.5 kbp) genome wide was ranked by the overall 

fold enrichment for individual samples. The scale of fold enrichment distribution for 

individual samples is on the right of each enrichment matrix. Notably, half of all known 

genes had H3K4me3 enrichment near TSSs.
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Figure 3. Expression variation analysis revealed the strong correlation of tissue specific 
H3K4me3 histone peaks with an expression of nearby genes
Two normal and two xenograft tissues were compared by histone enrichment distribution at 

5′UTR of all known genes to detect disease specific histone enrichment peaks (vertical bar 

beside heat map: normal – black, cancer – blue and purple), with all overlapping histone 

enrichment peaks removed from the analysis (Table S3). Additionally, purple regions were 

detected both in xenografts and cell lines. The expression of the associated gene to each 

differentially enriched region was evaluated by RNA-Seq for all six ChIP-Seq study samples 

(horizontal bar above heat map: cell lines – red, xenografts – blue [1 and 2], and normal 

controls – black) as well as an extended cohort of 47 HPV+ tumors (yellow, including PDX-

parental tissues – green [1 and 2]) and 25 non-cancer controls (gray/black). The expression 

of the nearest gene was calculated as Z-score ranging from −6 (underexpression) to 6 

(overexpression). Both samples- (columns) and tissue-specific histone enrichment regions 

(rows) were hierarchically clustered without supervision, which revealed segregation of 
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samples and histone enrichment by disease status. The p-values for disease-specific samples 

segregation is listed in Table 1. The HPV status of HNSCC samples was indicated as pink 

(Int-, episomal HPV genome with no detected HPV integration into the host genome by 

MapSplice) or orange (Int+, integration of HPV into host genome detected by MapSplice). 

Three tumor samples with TNM stage III are indicated by asterisks.
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Figure 4. Expression of genes next to tumor-specific H3K27ac enrichment signatures correlates 
with HPV integration status of HNSCC samples
The analysis was performed similarly to that shown in Fig. 3. Two normal and two xenograft 

tissues were compared by histone enrichment distribution near 5′UTR of known genes to 

detect disease-specific histone enrichment peaks (vertical bar beside heat map: normal – 

black, cancer – blue and purple, see Table S3 for gene list). The expression of the closest 

gene to each differentially enriched region was evaluated by RNA-Seq for six ChIP-Seq 

study samples (horizontal bar above the heat map: cell lines – red, xenografts – blue [1 and 

2], and normal controls – black) as well as extended HPV+ cohort of 47 tumors (yellow or 

green [1 and 2]) and 25 non-cancer controls (gray/black). The expression of the associated 
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gene was calculated as Z-score ranging from −5 (underexpression) to 5 (overexpression). 

The HPV status of HNSCC samples was indicated as pink (Int-, episomal HPV genome with 

no detected HPV integration into the host genome by MapSplice) or orange (Int+, 

integration of HPV into host genome detected by MapSplice). Segregation of samples by 

gene expression of H3K27ac-enriched genes revealed two dominate tumor clusters (salmon, 

Clusters 1 and 2) with a different distribution of Int+ HPV HNSCC samples. Three tumor 

samples with TNM stage III are indicated by asterisks.
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Figure 5. Detection of enhancer at the sites of HPV integration
Integrated genome viewer (IGV) visualization of H3K27ac-ChIP-Seq peaks for six study 

samples are shown (xenografts: PDX1 without detected HPV integration into host genome 

[Int-], and PDX2 with integrated HPV [Int+]; HPV+ HNSCC cell lines: UPCI-SCC-090 and 

UM-SCC-047 both with integrated HPV genome and normal controls: UPPP1 and UPPP2, 

both HPV-). Three genomic regions with detected sites of HPV integration for the three Int+ 

HPV+ HNSCC samples are shown: 9q34.3 (HPV integration for PDX2 sample); 9q22.3 

(HPV integration for UPCI-SCC-090 sample); and 3q28 (HPV integration for UM-SCC-047 

sample). HPV integration sites in each sample were detected by MapSplice of RNA-Seq 

data and are shown in green. Enhancer regions (red) were defined by ROSE analysis.
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Table 1

EVA analysis defines tissue specificity of the differentially enriched histone peaks

PDX-specific histone enrichment regions UPPP-specific histone enrichment regions

H3K4me3 <1×10−10 9.35×10−10

H3K9ac 2.59×10−4 2.46×10−3

H3K9me3 <1×10−10 6.14× 10−4

H3K27ac 1.23×10−9 3.78×10−8

The list of genes next to the tissue-specific histone enrichment peaks (Tables S3–S6) were used for EVA algorithm analysis (14). PDX-specific 
regions and their genes (column 1) and UPPP-specific regions and their genes (column 2) were used for p-value calculations.
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