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Abstract

Subgoal learning is examined through the use of equations
that are designed to encourage a conceptual rather than
computational approach to solving problems (conducting
statistical tests).  Learners who studied conceptually-oriented
examples transferred more successfully to novel problems
compared to learners who studied computationally-oriented
examples.  These results extend prior work on subgoal
learning by demonstrating another technique for aiding
subgoal learning.

Introduction
Research suggests that learners typically struggle when
they are obligated to solve problems that have different
procedural requirements than those demonstrated by
training problems or worked-out examples, even if those
differences are relatively slight (e.g., Catrambone, 1995,
1996, 1998; Novick & Holyoak, 1991; Reed, Dempster,
& Ettinger, 1985). This difficulty may stem in part from
the fact that learners often represent the problem solving
procedures of training problems or worked-out examples
as a set of linear steps rather than forming a hierarchical
representation that could permit them to successfully
solve novel problems (Dufresne, Gerace, Hardiman, &
Mestre, 1992; Singley & Anderson, 1989)

Educators and researchers alike are concerned with
this problem.  In fact, the Committee on Developments
in the Science of Learning (1999) recently suggested
that “a major goal of schooling is to prepare students for
flexible adaptation to new problems and settings [and
that] students’ abilities to transfer what they have learned
to new situations provides an important index of adaptive,
flexible, learning” (pp. 223). Research indicates,
however, that this goal is rarely achieved (Chi, Feltovich,
& Glaser, 1981; Larkin, McDermott, Simon, & Simon,
1980).

Presumably, emphasizing the structure of an example
through instruction will increase flexible transfer by
helping the learner look beyond the surface features of
the example and test problem to find the goal-related
features that can be used to solve the problem. Thus,
instead of committing to memory the details of

equations as the basis for one’s problem solving
knowledge, a more productive approach would be to
organize this knowledge in such a way that it could
support generalizations across problems in a domain.
One type of knowledge structure that appears to offer the
promise of enhancing this type of procedural
generalization is one organized around subgoals.

Subgoal-Oriented Instruction
As used in the present paper, a subgoal denotes a
meaningful conceptual piece of an overall solution
procedure.  Subgoals are particularly useful to learners
because they can assist them in solving novel problems
since problems within a domain often share a common
set of subgoals, albeit the steps for achieving the
subgoals vary from problem to problem within a domain.
Once learners become familiar with the typical subgoals
in a domain, this knowledge can assist them in identifying
which part of a previously-learned solution procedure
needs to be modified in order to solve a novel problem
(Catrambone, 1996, 1998).

Recently, a line of research has emerged examining
the efficacy of subgoal-oriented instruction
(Catrambone, 1995, 1996, 1998). In particular, this line
of research has explored several techniques for designing
examples that help learners to form subgoals to represent
the purpose of steps in an example’s solution. Across a
series of studies, Catrambone investigated the impact of
making the goal structure of an example’s solution
explicit by using manipulations such as the use of
solution step labels or visually isolating parts of example
solutions. These studies indicated that if examples are
designed in such a way as to encourage subgoal learning,
then learners are more likely to correctly solve new
problems that involve the same subgoals but require new
steps for achieving them.

These studies also suggest that example solutions that
are segregated or labeled encourage learners to self-
explain how the steps go together.  One result of his self-
explanation process is the formation of subgoals
(Catrambone, 1998).  This work parallels research in the
text-comprehension literature on the effects of signals



or cues on text-processing strategies (e.g., Lorch &
Lorch, 1995; Meyer & Rice, 1989). Just as
organizational signals in text induce learners to change
their text-processing strategy by cueing the important
text content and its organizational structure, worked-
example labels are intended to increase the likelihood
that learners will discern the hierarchical conceptual
structure of the problem contained in the example.

Factors that May Influence Subgoal Formation
As previously mentioned, several structural
manipulations have been found to successfully make the
goal structure of a problem’s solution explicit, such as
by the use of labels or visual isolation. But, there might
be other factors that influence subgoal information. For
instance, two potential factors are the nature of equations
used in examples and the presence of conceptual
elaborations.

Conceptual vs. Computational Equations. The process
of calculating sum of squared deviation scores or sums
of squares (SS) for the variance terms in t-tests and
analyses of variance (ANOVAs) can involve two
noticeably distinct types of formulas: conceptual and
computational. According to Gravetter and Wallanu
(2000), the conceptual formula is useful “because the
terms in the formula literally define the process of
adding up the squared deviations” (p. 121). For instance,
the conceptual formula for SS in a t-test, 2)XX( −∑ ,

translates directly into the sum of ( ∑ ) squared
deviations 2)XX( − . This clearly captures how the
variance term measures the amount of spread about the
mean.

In contrast, the computational formula for SS,

N
)X(

X
2

2 ∑−∑ , permits the learner to calculate SS

directly from raw scores which can lead to more
efficient calculations. However, there is a notable
drawback to this convenience: the computational formula
conceals the true meaning behind SS. Unlike the
conceptual formula, a learner cannot directly translate
the terms in the computational formula into a sum of
squared deviation scores. As a result, the leaner may not
grasp that this formula is designed to measure the amount
of spread about the mean.

On the one hand, the computational approach might aid
performance on problems that are just like the examples
that illustrated the approach, but might make far transfer
difficult. That is, in the computational approach, the
equation is streamlined for doing the calculations, but
"hides" what is really going on. On the other hand, the
conceptual approach, although typically more
cumbersome computationally, clearly shows how the
variance is related to the difference of each mean from

the grand mean. Therefore the conceptual approach might
aid far transfer by making it easier for the learner to
determine how to adapt relevant parts of the procedure.

Thus, we hypothesize that conceptually-oriented
equations will be more effective than computationally-
oriented equations at helping learners acquire knowledge
structured around the goal-related features of the
problems they study and this translates to superior far
transfer performance.

Conceptual Elaborations. Another factor that appears
to have the potential to influence subgoal formation is
the use of elaborations in example-based instruction and,
in particular, conceptual elaborations. The literature
contains examples of several types of elaborations that
vary in the degree to which they elaborate the problem at
hand. They range from elaborations involving problem
solutions (Lovett, 1992) to those that focus on rules and
procedures (Catrambone, 1996; Reed & Bolstad, 1991;
Reed et al., 1985).

To date, the success of these various elaborations has
been mixed. Although Lovett (1992) found that far
transfer was facilitated by elaborated solutions, Reed and
his colleagues (Reed & Bolstad, 1991; Reed et al., 1985)
have found virtually no evidence to suggest that rule-
based instructional elaborations—those that elaborate on
the purpose and appropriateness of applying a rule or
procedure in a given problem-solving context—are
beneficial to learners.

In one study, Catrambone (1996) examined the relative
benefits of rule-based instructional elaborations versus
subgoal labels. In this study, Catrambone manipulated
two factors: subgoal labels (present or absent) and rule-
based elaborations (present or absent), where the
elaborations consisted of supplemental material
describing an alternate representation or equation that
could be used to solve the problems the participants were
studying. He found that the labeling manipulation
enhanced transfer while the rule-based elaboration
manipulation did not.

The rule-based elaborations used in the Catrambone
(1996) study, however, offered “what to do” knowledge
not “what it means” knowledge. This distinction is
important in light of research suggesting that rules
conveying “what to do” knowledge might provide little
help to learners for developing a deep understanding of
the rule-based system they are studying whereas
knowledge about “what it means” may facilitate this
depth of understanding (Riesbeck & Schank, 1989). For
instance, an elaboration that describes what is meant by
the term “variance” (see Appendix for an example) might
be more effective than one dedicated to elaborating the
procedural aspect of the variance formula.

In sum, the impact of conceptual elaborations
containing “what it means” knowledge in the context of
subgoal-oriented instruction remains an open question.



Overview of Study
The aim of the study was to compare the effectiveness

of conceptual and computational equations, and the use
of elaboration, on performance.  Performance was
assessed in two ways: the time spent studying the training
examples and correctness of solutions on near and far
transfer problems.

Experiment

Method
Participants and Design. Participants were 215
students drawn from several educational psychology
courses at a small, northeastern college who participated
in the experiment for course credit.  The participants
were randomly assigned to one cell of a 2 x 2 x 2
factorial design. The first factor was the characteristics
of the variance formulas (conceptual or computational)
in the t-test example, the second was the characteristics
of the variance formulas (conceptual or computational)
in the ANOVA example, and the third was conceptual
elaboration (elaboration or no elaboration) in the
examples, described below.

Training Phase. Participants received an instructional
booklet containing a general overview of statistical
hypothesis tests and two training examples, one
representing a t-test and another representing the use of
an ANOVA for the same 2-group comparison. The
introduction to statistical hypothesis tests described the
utility of these procedures and provided an overview of
the four-step hypothesis testing process common to both
tests. Each training example was preceded by an overview
of the test that it exemplified.  This explanation
described the purpose of the test without going into
detail regarding how to perform the test’s calculations.

Half of the participants were exposed to examples that
contained conceptual elaborations designed to provide
“what it means” knowledge. That is, they were designed
to describe the conceptual meaning behind the various
formulas used in the two hypothesis tests. The other half
of the participants studied examples in which the
elaborations were not present.

With respect to the t-test example, the variance
formulas were either conceptual or computational in
nature. Similarly, with regard to the ANOVA example,
the variance formulas were either conceptual or
computational in character.

Regardless of the instructional manipulations, the
examples contained a number of invariant structural
features. First, all of the equations used across both tests
were converted to their verbal equivalents so that they
were devoid of any statistical notations. Second, each of
the six calculational subgoals in the two examples was
either labeled or visually isolated.

The t-test subgoals were to find: sample mean for
group 1, variance for group 1, sample mean for group 2,
variance for group 2, pooled variance, and t-statistic. The
ANOVA subgoals were to find/do: preliminary
calculations, sum of squares between, sum of square
within, mean squares between, mean squares within, and
f-value.

The Appendix shows samples of the materials from the
examples.

Test Phase. The test booklet contained three test
problems for the participants to solve. The first test
problem required the participant to apply a t-test. The
second problem required them to apply an ANOVA to a
2-group situation and the third problem asked them to
apply an ANOVA to novel situation involving three
groups.  Thus, the first two problems were near transfer
while the third problem involved more far transfer in that
it required the learner to adapt the equations for variance.
The extension is a more straightforward, modular
extension of the conceptual equations.  However, the
extension is less straightforward in the computational
equations since it involves changes to the “interior” of
the equations.

The test booklet also included two sheets that
participants could refer to, one containing the condition-
specific formulas for the t-test (conceptual or
computational) and the other containing the condition-
specific formulas for the ANOVA. Although these sheets
represented the formulas in the sequence in which they
were applied in the training examples they did not contain
any of the values from those examples.

A binary scoring system was developed to score the
problem-solving protocols. This system was designed to
award participants with points for the accuracy with
which they achieved each subgoal. The three test
problems each contained six calculational subgoals. The
correct numerical answer to the subgoal was awarded one
point. For example, the correct answer to the second
subgoal in the t-test problem, correct group 1 variance,
was 30.2. If a participants’ problem-solving protocol
contained this answer, he/she was given a point.

Since most subgoals contained subcomponents, the
binary system allowed us to award partial credit. This
permitted us to capture the proportion of the subgoal’s
solution—for those participants who did not have the
correct numerical answer for the subgoal—that was
correct. For instance, the equation associated with the
second subgoal (i.e., correct group 1 variance) in the
conceptual condition was coded for the presence or
absence of seven components, ranging from whether
each value was present in the formula to whether the
equation had the correct denominator. In this example, if
a participant’s problem-solving protocol had six of the
seven components, he/she was awarded a .86 for the



subgoal.  If the subgoal was correct except for a trivial
math error, the participant received full credit (one
point) for that particular subgoal.

Procedure. Participants were asked to study carefully
the instructional booklet containing the training
examples since after studying it they would be asked to
solve several problems. They recorded the amount of
time they spent studying each example. The participants
were informed that they would not be able to refer to any
of the examples while solving the problems but that they
would have a copy of the formulas. This constraint was
designed to increase the likelihood that participants
would focus their attention on studying the examples and
how they were solved.

Participants were run in groups ranging in size from 5
to 30 participants. Participants worked for approximately
75 minutes and were asked to show all their work.

Results
To validate the scoring system that was developed, two
raters independently scored a random sample of 10% of
the problem-solving protocols and agreed on scoring
98% of the time. Disagreements were resolved by
discussion. One experimenter independently scored the
remaining problem-solving protocols.

A 2 x 2 x 2 analysis of variance was initially conducted
on the study times for the two examples (i.e., t-test and
2-group ANOVA) and the correctness measures for the
three test problems, using elaboration, type of t-test
formulas, and type of ANOVA formulas as grouping
factors.  There was no systematic effect of elaboration
on correctness and so, in the interest of clarity and
brevity, this factor will not be discussed below in the
context of correctness. Table 1 presents the mean scores
for each condition on the correctness measures for the
three test problems.

Training Times for T-Test Example: There was a
significant main effect of elaboration, F (1, 207) =
10.11, MSE = 10.8, p < .01, which indicated that the
participants presented with the elaborated material (M =
8.11 min.) spent more time studying the examples
compared to participants who studied unelaborated
materials (M = 6.73 min.). There were no other
significant main effects or interactions.

Training Times for ANOVA Example: There were no
significant main effects or interactions for training times
on the ANOVA example.

Performance on T-Test Problem (Near Transfer):
There was a significant main effect of t-test formula, F
(1, 211) = 9.18, MSE = 1.32, p = .009, which indicated
that the participants exposed to the conceptual t-test
example outperformed those who studied the
computational version. There was no effect on
performance as a function of the version of the ANOVA
example studied and there was no interaction between the
factors.

Performance on 2-Group ANOVA Problem (Near
Transfer): There were no significant main effects for
this dependent measure; t-test: F (1, 211) = 1.06, MSE =
2.09, p = .31; ANOVA: F (1, 211) = 0.21, p  = .65.
However, the two-way interaction between t-test
equations and ANOVA equations was significant, F (1,
211) = 5.52, p < .02. Examination of the mean scores
suggest a disordinal interaction, that is, the effects of the
t-test factor reverse themselves as the levels of the
ANOVA factor change. Specifically, for the participants
provided with conceptual t-test formulas, the conceptual
ANOVA group obtained a higher score than the
computational group.  For participants provided with the
computational t-test formulas, the computational
ANOVA group obtained a higher score than the
conceptual group.

Performance on 3-Group ANOVA Problem (Far
Transfer): There were no significant main effects for
this dependent measure; t-test: F (1, 211) = 2.55, MSE =
2.65, p = .11; ANOVA: F (1, 211) = 0.10, p  = .75. The
interaction was significant, F (1, 211) = 6.01, p < .02.
Examination of the mean scores revealed the same
disordinal interaction found in the 2-group problem. That
is, for the participants provided with conceptual t-test
formulas, the conceptual ANOVA group obtained a
higher score than the computational t-test formulas. For
participants provided with the computational t-test
formulas, the difference was reversed.

Discussion
The overall performance differences among the groups
can be summarized as follows: the combined t-test

Table 1: Scores on Test Problems as a Function of T-Test and ANOVA Examples

T-Test Conceptual T-Test Computational
ANOVA

Conceptual
ANOVA

Computational
ANOVA

Conceptual
ANOVA

Computational

T-Test Problem (max = 6) 5.43 5.46 4.99 5.07
2-Group ANOVA Problem (max = 6) 4.16 3.61 3.50 3.87
3-Group ANOVA Problem (max = 6) 4.02 3.55 3.12 3.74



conceptual and ANOVA conceptual condition tended to
outperform the other conditions consisting of the other
possible combinations of t-test formulas and ANOVA
formulas on near and far transfer problems. There was
little evidence of improved generalization by any group
as a function of having been provided with elaborations.
The results suggest that the first example sets the tone
for the interpretation of the second example and
performance on the far transfer problem.  If the first t-
test example used conceptual equations, then
performance on the far transfer (3-group) ANOVA
problem was particularly aided if the ANOVA example
was also conceptual. If the first t-test example was
computationally-oriented, the performance on the far
transfer ANOVA problem was better if the ANOVA
example was also computationally-oriented.  Thus, it
appears that in order for a learner to acquire a more
subgoal-oriented approach to these problems, the best
pedagogical approach would be to make both examples
use conceptual equations.  Even if the ANOVA example
was conceptually-oriented, its benefits on the far transfer
ANOVA problem were reduced if the initial t-test
example was not also conceptual.  Consistency in the
examples appears to be important for subgoal learning.

The results advance prior work on subgoal learning by
demonstrating that generalization can be enhanced
through the nature of the equations used in examples.
Thoughtfully-designed examples that include
conceptually-oriented equations seem to an effective
way to help learners solve novel problems.

Two caveats remain, however. First, under certain
circumstances, the conceptual formula represents the
most direct way of calculating sum of squares. In
particular, when a data set consists of a small number of
whole numbers and its mean is a whole number (which
characterizes the data used in the present study), the
resulting deviation score will be a whole number, which
allows the learner to avoid the computational burden of
decimals or fractions. Thus, one could argue that the
advantage of the conceptual group in the present study
therefore appears to be computational, rather than in
increasing understanding. This suggests that a follow up
study should explore the impact of presenting
computational and conceptual equations to learners in
situations in which the latter is clearly more
cumbersome computationally (e.g., resulting means are
not whole numbers and/or data set contains decimals).

Second, while the present results are consistent with
the claims about benefits to transfer for learners who
acquire useful subgoals (e.g., Catrambone, 1996, 1998),
subgoal-learning was demonstrated only indirectly here.
Thus, an important extension of the present work is to
add converging measures, such as talk-aloud protocols,
to determine if the transfer advantage can be clearly tied
back to subgoal learning.
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Appendix

Sample Materials from T-Test Example and ANOVA Example

SAMPLE OF PROBLEM STATEMENT:
A car manufacturer that makes a car called the Jupiter just came out with a new model, the Jupiter XL. Some of the
modifications made to the car are expected to improve the mpg (miles per gallon) rating of the car while other
modifications are not.  The manufacturer has hired your firm, an independent consumer research firm, to test the new
model. To determine if there is any difference between the mpg rating of the old and new models, you collect a random
sample of 5 cars of the old model and 6 cars of the new model.  You drive the cars along the same city route and record the
average mpg rating of each car.  Here are the data:

Old Model New Model
Car MPG Car MPG

1 30 1 37
2 34 2 36
3 34 3 40
4 29 4 36
5 33 5 34

6 33

SAMPLE OF CONCEPTUAL ELABORATION FOR THE COMPUTATIONAL T-TEST VARIANCE CALCULATION
A variance is a measure of how much the scores that make up a group deviate from the mean of a group. Even though it is
not obvious in the calculation below, part of the calculation of the variance involves computing the difference between each
score in a group and the mean for the group. Thus, a variance measures the variability of scores around a mean.

SAMPLE OF COMPUTATIONAL T-TEST VARIANCE CALCULATION
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