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ABSTRACT OF THE THESIS

Scoial Network Analysis:

Statistical Model, Community Detection and

Friend Recommendation

by

Xiaolu Yu

Master of Science in Statistics

University of California, Los Angeles, 2017

Professor Qing Zhou, Chair

In recent years, Social Network Service (SNS) is a novel, popular way to make friends and

convey information online. Therefore, the analysis of network data has attracted a lot of

attention. It is an area that is rapidly growing, both with Statistics and Computer Science.

This paper first provides a summary of statistical methods used in network data analysis,

including basic definitions, measurements, and descriptive statistics. We then introduce the

Exponential Random Graph Model to fit network data. Secondly, we dig into a more specific

area of network analysis: Community Detection. We discuss two different methods to explore

the community stucture, one is Louvain algorithm and the other is Mixed Membership

Stochastic Blockmodels. After that, we combine the community identification with a two-

stage user similarity algorithm to build a friend recommendation method. In the empirical

study section, we apply this method to a real-world dataset and evaluate its performace

through specific measurements.

ii



The thesis of Xiaolu Yu is approved.

Arash Ali Amini

Hongquan Xu

Qing Zhou, Committee Chair

University of California, Los Angeles

2017

iii



To my mother . . .

who—among so many other things—

saw to it that I learned to touch-type

while I was still in elementary school

iv



TABLE OF CONTENTS

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Graph Theory and Summary Statistics . . . . . . . . . . . . . . . . . . . . . 3

2.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Summary Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Statistical Network Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Exponential(family) Random Graph Model . . . . . . . . . . . . . . . . . . . 7

3.2 Goodness-of-Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Community Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.1 Definition of Community . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.2 Overview of Community Detection Algorithm . . . . . . . . . . . . . . . . . 11

4.3 Louvain Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.4 Mixed-Membership Stochastic Blockmodel . . . . . . . . . . . . . . . . . . . 15

5 Friend Recommendation Algorithm . . . . . . . . . . . . . . . . . . . . . . . 18

5.1 Two-Stage Recommendation Model . . . . . . . . . . . . . . . . . . . . . . . 19

5.2 Combine Community Detection with Friend Recommendation Algorithm . . 20

6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.1 Data Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6.2 ERGM Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

6.3 Friend Recommendation Algorithm Application . . . . . . . . . . . . . . . . 24

7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

v



References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

vi



LIST OF FIGURES

2.1 Examples of graph theory, present an undirected graph derived from Zachary

Karate Club network dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Sub-graph structures: top row is k-cliques and bottom row is k-stars . . . . . 6

4.1 Disjoint community detection . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.2 Overlapping community detection . . . . . . . . . . . . . . . . . . . . . . . . 12

4.3 Hierarchical clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4.4 Latent Position Cluster Model applied on Zachary Karate Club network dataset 14

6.1 Facebook network data degree distribution . . . . . . . . . . . . . . . . . . . 23

6.2 A hierachical clustering adjacency matrix visualization . . . . . . . . . . . . 24

6.3 Degree goodness-of-fit plot for the Exponential Random Graph Model using

edges triangles and geometrically weighted degree terms . . . . . . . . . . . . 25

6.4 Edgewise-Shared-Partners goodness-of-fit plot for the Exponential Random

Graph Model using edges triangles and geometrically weighted degree terms 26

6.5 Geodesic distance goodness-of-fit plot for the Exponential Random Graph

Model using edges triangles and geometrically weighted degree terms . . . . 27

6.6 AUC curve of MMSB applied on facebook network data . . . . . . . . . . . 27

6.7 Precision of the Friend Recommendation Algorithm . . . . . . . . . . . . . . 28

6.8 F1 curve of the Friend Recommendation Algorithm . . . . . . . . . . . . . . 28

vii



LIST OF TABLES

6.1 Summary Statistics of Facebook Social Network Dataset . . . . . . . . . . . 22

6.2 Coefficients of terms used in ERGM fitting . . . . . . . . . . . . . . . . . . . 23

viii



CHAPTER 1

Introduction

Internet applications have gone through the development of Web 1.0 era, ushered in a more

humane Web 2.0 era. The main differences between the two stages are the performance of

system and user interaction. During Web 1.0 peroid, the user can only browse information

provided by the system manufacturer. Then Web 2.0 mode website focuses on the user’s

interactive participation, the user can not only be the reader, but also be the information

provider.

Social Network Services (SNS) is a typical application of Web2.0. After a rapid developing

period, there appears a lot of typical SNS websites such as Facebook, Twitter, Instagram.

Social network makes full use of convenience of the network instant messaging and brings

the friends circles in real life onto the online world. With the rapid expansion of network

size, social network creates a huge amount of information which has high analytical value.

Research based on the social network data has attracted a lot of attention in different aspects.

For example, how to recommend users with their potential friends, how to help expand thier

social circles, how to increase the stickness between users and keeping the stickiness between

the users and the social network.

In this thesis, we start from a concise introduction to the definition and concepts of graph

theory which are commonly used in network analysis. Chapter 3 discusses the classical

probablistic model fitted in network data, and mainly focuses on the Exponential Random

Graph Model as well as the Goodness-of-fit method. In Chapter 4 we go through two

methods of community detection. The two methods can represent the two main ideas used

in exploring community structures nowadays. Louvain algorithm based on the modularity

optimization to divide network while Mixed Membership Stochastic Model induced from
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the idea of LDA model. In Chapter5, we come up with a friend recommendation method

combining community detection mentioned in the Chapter4 and a two-stage user similarity

algorithm. This method aimed to recommend latent friends for the users in the net in a

more efficient way. The empirical study are done in Chapter 6, in which we apply both the

ERGM model and the new latent friend recommendation method to a facebook network

dataset. Chapter 7 outlines the whole conclusion about the thesis together with remaining

problems and future work.

For simplicity, we restrict our study to the models for static binary network data. That is to

say, the relationship between nodes is a link (edge) either present or not, with relationships

only considered at one occasion.
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CHAPTER 2

Graph Theory and Summary Statistics

In this chapter, we mainly focus on the basic definitions and concepts about graph theory

and summary statistics that will be mentioned or used in this thesis.

2.1 Basic Definitions

Network is typically described using graph theory. A graph G(V,E) consists of a set of N

vertices (nodes) N = {n1, n2, ..., nN}. The set of E edges E = {e1, e2, ..., eE} denotes the

links between nodes. When applied to the social network data, nodes represent the users in

the net and edges linking two different nodes show there are connections between the two

users. Examples of network graph are shown in Figure 2.1. Zachary Karate Club Network

Dataset is a very typical dataset used to represent network structure. Each node is a club

member and the links between them show their friendship with each other.

Adjacency Matrix Adjacency matrix is a square matrix used to represent a finite graph

G of dimension N ×N . The elements in the matrix indicate whether the pairs of nodes are

adjacent or not in the graph. yij = 1 links exists from node ni to node nj

yij = 0 links doesn’t exist between node ni to node nj

(2.1)

Note that this equation only applies to binary network, valued networks are using non-

negative integer values for the entries in matrix.
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Figure 2.1: Examples of graph theory, present an undirected graph derived from Zachary

Karate Club network dataset

Symmetry Links in a network may be symmetric or asymmetric, in another word, undi-

rected or directed. For example, the links in facebook are undirected cause the ties of

friendship will be returned and the links in twitter are directed as your friend may not add

you into his or her friend list. From adjacency matrix perspective, an undirected graph’s

matrix is symmetric (yij = yji).

Geodesic Distance The geodesic distance d(i, j) = minky
[k]
ij > 0 is a tool to measure

the connectivity structure of network in graph theory. It shows the length of the shortest

path between vertices ni and nj. For instance, y
[k]
ij = 1 indicates there is a path of length

k between nodes i and j. The graph is connected if all the geodesic distances are finite for

nodes in the network. Otherwise, it is unconnected. The diameter of a graph is said to be

the largest geodesic distance between two nodes in the network.
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2.2 Summary Statistics

The behavior in the graph can be summarized using various statistics, these statistics not

only show general information about network but are also relevant to some statistical models

like ERGM.

Degree The degree of a node is the number of edges incident on it. It is the simplest

indicator which directly shows how a node is connected within a graph and how important

it is. In a directed graph, in-degree is the number of incoming links and out-degree is the

number of outgoing edges.

Density The density of a network graph is the number of existing edges divided by the

number of possible ones. It is easy to conclude that a network with higher density is more

strongly connected and as a result usually can resist link failures better.

Betweenness Centrality This is a measure of the degree to which a given node lies on

the shortest paths (geodesics) between other nodes in the graph. For node v in graph G, the

betweenness centrality Cb is defined as:

Cb(v) =
∑
s,t 6=v

Ωv(s, t)

Ω(s, t)

Ω(s, t) is the number of distinct geodesics from s to t and Ωv(s, t) is the number of geodesics

from s to t that pass through v.

A vertix has high betweenness if the shortest paths between many pairs of other nodes in

the graph pass through it.

Closeness Centrality CLC measures the centrality of a node by its closeness (distance)

to ohter nodes. CLC of a node v is defined as:

CLC(v) =
|V | − 1∑

i,v 6=vi d(v, vi)

5



|V | indicates the number of nodes in the specific graph and vi is the node i of the graph.

The closeness centrality decreases if the amout of vertices reachable from the given vertix

decreases, or the distances between the nodes increase.

K-cliques and K-stars These two are particular types of sub-graph. K-cliques is a sub-

graph of k nodes where all nodes are connected to each other. K-stars is a sub-graph of

k + 1 nodes in which k of the nodes are connected through a single node. Examples of the

sub-graph structures are shown in Figure 2.2.

Figure 2.2: Sub-graph structures: top row is k-cliques and bottom row is k-stars
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CHAPTER 3

Statistical Network Modeling

Exponential-framily random graph model (ERGMs)[FS86] is a kind of classical probablistic

models which assumes a likelihood function for the network data given some underlying

parameters. We then can obtain maximum-likelihood estimates for the parameters in the

model from a given dataset, evaluate specific models for goodness-of-fit, perform model

comparisons and do network simulation with the underlying distribution of the model.

3.1 Exponential(family) Random Graph Model

Whenever the density of a random variable being written as:

f(x) ∝ exp{θts(x)}

the family of all such random variables is called an exponential family. And since the random

graphs in our model form an exponential family, we call the model Exponential (family)

Random Graph Model. The form for an ERGM model can be expressed as:

Pθ(X = x) =
exp(θts(x))

c(θ)

X is the random network with n nodes (a matrix of 0’s and 1’s), θ is a vector of parameters,

that is, the vector of coefficients for those statistics. s(x) is a known vector of model statistics

on network x, θt is the transpose of θ. Typical choices for statistics include the number of

edges, the number of triangles and the number of k-stars for different k values.

c(θ) =
∑

all possible graph y

exp{θts(y)}
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c(θ) is a normalizing ”constant” represents the quantity in the numerator summed over all

possible networks (typically constrained to be all networks with the same node set as x).

Replacing s(x) by s(x)− s(xobs) leaves Pθ(X = x) unchanged, thus we recenter s(x) so that

s(xobs) = 0

Then the loglikelihood function is:

`(θ) = − log c(θ) = log
∑

all possible graph y

exp{θts(y)}

Fitting the ERGM then involves finding the estimates of the parameters for all the

network statistical terms in the model. However, merely evaluating (maximizing) ` is actually

computationally berdensome. As it is intractable to compute the summation item c(θ). For

example, a network containing only 10 nodes have 3.52×1013 possible network configurations.

Thus there are several approaches to fit ERGM models without summing over all possible

networks, including maximum pseudolikelihood estimation[SI90], Monte Carlo MLE[VGH09]

and MCMC[CF11].

Here we choose the Monte-Carlo based inference to do approximation. Frequentist

MCMC methods for ERGMs (MCMCMLE) approximate parameter estimates by comparing

the observed network with a set of simulated networks given a parameter configuration. Note

that a computationally feasible sample of networks consistent with the observed summary

statistics is used in the set of all consistent networks. We first initialize an arbitrary estimate

θ(0), then use MCMC to sample M networks from an ERGM model with the parameters.

We define these sampled networks by their adjacency matrices X(1), ..., X(M) and derive the

MCMC log-likelihood equation:

logPM(Y |θ) = θtS(X)− log(c(θ(0)))− log(
1

M

M∑
m=1

exp(θtS(X(m))− (θ(0))tS(X(m))))

As M → ∞, the limit of this MCMC log-likelihood is equal to the log-likelihood of the

ERGM. The argmax of θ is referred to as the MCMCMLE of the network.

8



3.2 Goodness-of-Fit

The Goodness of Fit diagnostics maybe the most sophisticated and developed methods for

model validation. This method is developed at first specifically for the ERGM class of models,

but now can also been applied to other models like latent space models. As a matter of fact,

this method can be applicable to any fitted models which have already simulated networks.

ERGMs can be seen as generative models when they show the process that covers the global

patterns of links prevalence from a local perspective. And this method is motivated by the

generative properties.

To test whether the local model fits the data we now focus on how well it reproduces the

observed global network properties which are not in the model. ”When ERGM parameters

are estimated and a large number of networks are simulated from the resulting model, these

networks frequently bear little resemblance at all to the observed network”[HRS03]. We

do this by choosing a network statistic that is not in the model, for example, the observed

degree distribution, and compare the value of this statistic observed in the original network

to the distribution of values we get in simulated networks from our model.

9



CHAPTER 4

Community Detection

In this chapter, we dig into a very popular field in social network analysis: Community De-

tection. Exploring community structure can help us get deeper comprehension of the whole

network and its properties. In the real-world social network study, community detection can

help with the analysis of the user behavior in the specific community, provide more effecient

support of commercial promotions.

4.1 Definition of Community

A precise definition of what a ”Community” really is does not exist yet. One of the most

widely accpted and uesd definition is given by Newman and Gievan: A community is a

subgraph containing nodes which are more densely linked to each other than to the rest of

the graph or equivalently, a graph has a community structure if the number of links into any

subgraph is higher than the number of links between those subgraphs[New04].

In community detection, what we do is to confirm nc(> 1) communities in the GraphG(V,E).

C = {C1, C2, ..., Cnc}

and the union of vertices in all communities can cover V in graph G.

If the intersections of every two communities’ vertices are all null sets, we define C as disjoint

community, otherwise it is called overlapping community. Through this concept, we can also

divide the algorithms of community detection into disjoint community detection (Figure 4.1)

and overlapping community detection (Figure 4.2).

10



Figure 4.1: Disjoint community detection

4.2 Overview of Community Detection Algorithm

After Newman and Girvan came up with a classical community detection algorithm: GN

algorithm, the study of social network community ushered into a rapid develop period. Until

now, there are huge amount of algorithms and many more are being created. Generally

speaking, all the algorithms can be divided into two different types.

Classical Community Detection Algorithm The traditional community detection al-

gorithms mostly work on undirected, unweighted network and create disjoint communities.

But now some of them have been improved to discover overlapping communities like Spealer-

listener Label Propagation Algorithm (SLPA). The main idea of these methods is to get use

of the information brought by vertices or edges, like betweenness, modularity and so on. Use

the messages to classify or cluster nodes within the net to achieve community detection. For

instance, hierarchical clustering uses Euclidean Distance as a measure of similarity between

two targeted nodes and take it as the standard to do clustering(Figure 4.3).

11



Figure 4.2: Overlapping community detection

Community Detection based on Statistical Model In recent years some algorithms

has been created of detecting community structure in social networks through statistical

modeling. The core idea of this method is to establish a statistical model based on the

actual network data and simulate the observed network according to the model. Use the

observed network data and statistical methods to transform the community detection prob-

lem into bayesian inference problem. And then use statistical theory and observed data to

obtain the characteristics of the data set, so as to divide the network. This method of sta-

tistical modeling has a reliable theoretical basis of probability, and can be a well performed

community detection algorithm of social networks. This method has become a hot spot in

recent years’ studying. For example, Planted Partition Model and Latent Position Cluster

Model (Figure 4.4).

4.3 Louvain Algorithm

The Louvain method [DFF11]is a simple, easy-to-implement method for identifying com-

munities in large networks. It is a disjoint community detection, but as it can implement

network data in high efficiency, the method is quite popular and has been applied success-

12



Figure 4.3: Hierarchical clustering

fully onto many types of massive network datasets of sizes up to 100 million nodes and

billions of links. The method reveals hierarchies of communities and allows to zoom within

communities to discover sub-communities, sub-sub-communities, etc. Until now it is one of

the most widely used methods for detecting communities in large networks.

The Louvian method is a greedy optimization method that attempts to optimize the

modularity of a partition of the network.

Modularity Modularity is a measure of the structure of networks or graphs. It was de-

signed to measure the strength of division of a network into modules (Communities). Net-

works with high modularity have dense connections between the nodes within communities

but sparse connections between nodes in different communities. Modularity is widely used

in optimization for exploring community structure in networks. The modularity Q usually

be defined as:

Q =
1

(2m)

∑
vw

[
Avw −

kvkw
(2m)

]
δ(cv, cw) =

c∑
i=1

(eii − a2i )

m is the number of links in the graph, A represents the adjacency matrix, kw and kv indicate

the degree of the specfic vertices, cu is the number of the community which vertix u belongs

to.

eij is the fraction of edges with one end vertices in community i and the other in community

13



Figure 4.4: Latent Position Cluster Model applied on Zachary Karate Club network dataset

j:

eij =
∑
vw

Avw
2m

1v∈ci1w∈cjeij =
∑
vw

Avw
2m

1v∈ci1w∈cj

and ai is the fraction of ends of edges that are attached to vertices in community i:

ai =
ki

2m
=
∑
j

eijai =
ki

2m
=
∑
j

eij

Algorithm

1. Treat each node in the graph as a separate independent community. At this point the

number of communities is the same as the number of nodes.

2. For each node i, try to allocate it to the communities which its neighbor nodes belong

to respectively. Then calculate the difference of modularity before and after allocation

as ∆Q. Record the neighbor node with the largest ∆Q. If max∆Q > 0, assign node

14



i to the community where the neighbor node of ∆Q is the largest, otherwise remain

unchanged.

3. Repeat Step 2, until the community of all nodes does not change.

4. Compress the graph, compress all the nodes in the same community into a new node,

the weight of the edges between the nodes in the community are then transformed into

the new node weighted sides.

5. Repeat Step 1, until the modularity of the entire graph no longer changes.

The method seems to run in time complexity O(nlogn) with most of the computational effort

being spent on the optimization at the first level.

4.4 Mixed-Membership Stochastic Blockmodel

Mixed Membership Stochastic Blockmodel[ABF08] is a Bayesian model for overlapping com-

munities detection. In this model, the community memberships are treated as hidden random

variables. Given an observed network, such as a social network of friendship ties, we can

discover the hidden community structure by estimating its conditional distribution.

The classical community membership models, for example, the stochastic blockmodel, as-

sume that each vertix belongs to just one community. This kind of models doesn’t realize

that a specific node’s link can be expressed by its memberships in several overlapping com-

munities. And this situation is very common in real-world networks. On the contrary,

MMSB is a type of ”mixed-membership” model, that means each vertix can exhibit multiple

communities.

MMSB assumes there are K communities and each vertix i is related with a vector of

community memberships θi. This vector is a distribution over the communities.

∑
i

θi = 1 θi > 0

For example, in a real-world social network, a user has half of her friends from school and

15



the other half from her neighborhood. For this vertix, θ would place one-half of its mass on

the school community and the other half onto the neighborhood community.

To construct a network, the model thinks of each pair of vertices. For each pair i, j, it chooses

a community indicator zi→j from the ith vertixs community memberships θi points to one of

the communities that its corresponding node belongs to, and then chooses another indicator

zj→i from θj. If these indicators point to the same community, then it means vertices i and

j has high probability to be connected, otherwise, they are likely to be disconnected.

These assumptions show that ties between vertices can be explained by their memberships

in multiple communities, even without the information of where those communities are.

Now we compute the probability that the model connects for a single pair of vertices(i, j),

conditional on their community memberships.

p(yij = 1|θi, θj) =
K∑
k=1

θikθjkβk

βk is the probability that two vertices are connected given that their community indicators

are both equal to k. Make an assumption that the two vertices have zero probability of being

connected if the indicators point to different communities. θik and θjk represent the proba-

bilities that both vertices draw an indicator for the kth community from their memberships.

Then we can see the probability of connection will be high if θi and θj share high weight

for at least one community, such as the two users work in a same company. It will be low

if there is little overlap in their communites. The main idea of this model is that: Vertices

with similar memberships will be more likely connected with each other.

Now for the full network, the model assumes the following generative process:

1. For each vertix, draw community memberships from Dirichlet distribution: θi ∼

Dirichlet(α)

2. For each pair of vertices i and j (i < j):

(a) Draw community indicator zi→j ∼Multinomial(θi)

(b) Draw community indicator zj→i ∼Multinomial(θj)

16



(c) Draw the conncetion between them from Bernoulli distribution:

p(yij = 1|zi→j,zj→i
) =

 βzi→j
zi→j = zj→i

ε zi→j 6= zj→i

Now given the observed network, the model fits a posterior distribution which gives a division

of the nodes into K overlapping communites, that is, the conditional distribution of the

hidden community structure.

p(θ, z|y) = p(θ, z, y)/p(y)

θ is the joint probability distribution over the N per-node community memberships, z is

the per-pair community indicator and y is the observed network. The posterior will place

high probability on configurations of the memberships that describe densely connected com-

munities. With this posterior, we can investigate the community structure. However, the

posterior inference in this bayesian model is difficult. The numerator is easy to compute as

mentioned above, it is just a joint distribution defined by modeling assumption. But the

denominator is the marginal probability of the network data, which sums over all possible

hidden community structures.

p(y) =

∫
θ

∑
z

p(θ, z, y)

Just as the normalizing ”constant” c(θ) in ERGM, compute this marginal over N variables

will require a summation over KN2
configurations of community indicators.

To approximate the posterior and parameters, this model applies VEM algorithm instead

of MCMC (like Gibbs Sampling). VEM is an improved algorithm of EM algorithm and

this novel action largely enhances MMSB’s efficiency, makes it possible to apply model onto

massive network data containing hundreds, thousands, millions vertices. The complexity of

this method is O(KN2).
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CHAPTER 5

Friend Recommendation Algorithm

Social network is designed to help users build and expand their ”social circles”. It gradually

changes the way of people’s information sharing and communication. Nowadays, social net-

working platforms are attracting millions of users from different ages, nationalities. Research

shows that in social networks, users not only want to connect with friends that have alraady

been recognized in real life, but also hope to get to know some of the new friends who share

the same interests. But with the explosive growth of social network size, it is becoming

increasingly difficult for users to obtain new friends. As a result, latent friend recommen-

dation algorithms are created to help with this issue. In this chapter, we first introduce a

two-stage friend recommendation algorithm based on user similarity and then combine it

with community detection to build a more efficient friend recommendation algorithm.

Currently, collaborative filtering recommendations and content-based filtering recommenda-

tions are the most widely used recommendation algorithms. Collaborative filtering based

on the basic idea: use the user’s project score to find neighbors who have similar interests

with the target users. And then use the neighbor user’s score of the targeted project to

recommend. Content-based recommendation algorithm based on the users’ description of

their interests and their behavior to establish interests models, and then conduct similarity

analysis with the targeted projects. These two recommendation methods are based on the

network of users and items. For the potential friends recommendation in the social network,

the recommended object itself is also the social network’s user, so the algorithms for recom-

mending items and recommending friends are different.

Similarity is a significant standard in recommendation algorithms based on social networks.

In the recommendation algorithms, the measurements of similarity between users are mainly
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divided into cosine similarity, correlation similarity and so on. In addition, it is typical to

calculate the user similarity based on the link information between the users.

5.1 Two-Stage Recommendation Model

The recommendation algorithm based on user similarity here uses a two-stage friend rec-

ommendation model[Zho11]. The first stage of the model is the use of cosine similarity

to evaluate user similarity. It based on the adjacency matrix of the user’s chain relation

network G(V,E). From the adjacency matrix C, we obtain the eigenvector representation

of each user, and use the method of cosine similarity to calculate the function of the two

users’ similarity. The second stage of the model is the spread of similarity which takes the

impaction of the user’s friends into consideration. For example, if many of user A’s friends

like user C, then we can assume that user A may be interested in user C.

Now represent user A and B’s eigenvector as (ca1, ca2, ..., can) , (cb1, cb2, ..., cbn), where cij is

the entry in the adjacency matrix.

For the first stage, we calculate user A and B’s cosine similarity as:

Sim(a, b) =

∑n
i=1 caicbi√∑n

i=1 c
2
ai

√∑n
i=1 c

2
bi

For the second stage, the similarity between two users spread along user’s friend circles.

Assume user A and C, besed on the stage 1, we improve the user similarity equation as:

Sim
′
(a, c) = (1− λ)× Sim(a, c) + λ×

∑
cuv=1

Sim(v, c)∑
u cuv

λ is a parameter shows the influence by user’s friends, to simplify calculation, set λ as a

constant and λ ∈ [0, 1]. Through empirical study, the author of this model set the λ as 0.9,

v is the set of friends of A and u is the set of all the users in the graph.
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5.2 Combine Community Detection with Friend Recommendation

Algorithm

For the application of the recommended algorithms, most of the friends recommendation

algorithms need to depend on certain information such as user connection information, friend

similarity to build the recommended model. This kind of models often use matrix to achieve

their goal and produce recommendations. In the real-world social network, however, with

size over millions or even tens of millions of large data sets, the similarity calculation will cost

huge time and space. In turns the user may be waiting for too long to get the recommendation

they want. As a result, it will cause poor user experience and some other bad issues. But if we

apply the algorithms after community detection, that is to say, we apply our recommendation

algorithms onto a smaller sub-graph, the problems above maybe solved.

Through the observation and analysis of social networking site, within the huge amount of

network users, most of them will gradually form a small group structure, this small group

structure is just the community we talked in chapter 4. In general, users in social networks

are most likely to be friends with people from the same social circles, and the probability of

making friends in other circles is relatively low.

What’s more, after the community detection for the network, we can target different users

and recommend different communities to meet their various needs. And since the division of

the community is reusable in a period of time, we can effectively improve the recommendation

efficiency.

The whole process of the improved algorithm is as below:

1. Apply Community Detection Algorithm (In this thesis, I apply Louvain algorithm

and MMSB) to the input social network dataset and output the divided communities

corresponding with vertices in the network.

2. Input the user u who needs recommendation, search for the community he belongs to,

output the name of communities where he in.

3. Input user u’s community and construct its adjacency matrix C, use two-stage sim-
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ilarity algorithm to calculate the similarity Sim
′

between u and other users in the

community. Output the list of similarity values of similarities.

4. Input the number of recommended friends K, take the k users in the community which

have the largest k similarity values with user u. Output the No. of these users.

Note that if user u is in multiple communities after overlapping community detection, then

merge the overlapped communities into one and calculate the similarity based on the merged

adjacency matrix. If K is larger than the number of nodes in u′s community, calculate the

similarity over the whole network dataset.
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CHAPTER 6

Experiments

6.1 Data Selection

I collect the social network dataset from SNAP: Stanford Network Analysis Project Web-

site (https://snap.stanford.edu/index.html). The network dataset is grabbed from facebook.

Table 6.1 provides the basic summary statistics of this dataset. Figure 6.1 shows the degree

distribution of this dataset. Since the number of nodes in the network is over 1000, visual-

ization of this network comes up with the problem of ”hairball” phenomenon: the structure

is too complex to project onto two or even three dimensions and the edges overlap heavily.

Even using the layout algorithms like Fruchterman-Reingold[FR91] can not provide a good

performance. So here, I create an adjacency matrix visualization of the facebook network

(Figure 6.2). The visualization of the adjacency matrix may be the simplest way to visualize

a network. The rows and columns of the adjacency matrix are reordered such that the ver-

tices are gathered into highly connected clusters. Here we can see that a local tie structure

is apparent from the blocks along the diagonal.

Nodes Edges Average degree Density

4039 88234 43.6901 0.0144

Triangles kstar 1 kstar 2 kstar 3

1612010 176468 9314849 727318426

Table 6.1: Summary Statistics of Facebook Social Network Dataset
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Figure 6.1: Facebook network data degree distribution

Edges Triangles Gwdegree

-5.168 0.123 -0.454

Table 6.2: Coefficients of terms used in ERGM fitting

6.2 ERGM Fitting

We fit an Exponential Random Graph Model to the facebook network dataset using the

statistical terms: number of edges, triangles and geometrically weighted degree. These are

among the most common choices for ERGM terms. After the iterations of MCMCMLE

methods, we got the coefficients as shown in Table 6.2.

Then the conditional log-odds of three actors having a tie is:

−5.168× change in the number of ties + 0.123× change in number of triangles

−0.454× change in number of geometrically weighted dgree

For the ERGM, we know that better performance could be achieved using a more carefully

chosen set of network summary statistics. The gooodness of fit results for this fiting is

the three plots: Figure 6.3, Figure 6.4 and Figure 6.5. The three plots depict the fit for

ERGM in terms of the distribution of nodal degree, edgewise shared-partners and geodesic
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Figure 6.2: A hierachical clustering adjacency matrix visualization

distance between dyads respectively. We can see that the model performs well at capturing

geodesic distance distribution, while just so so on simulating networks with the correct degree

distribution. It performs quite poor at capturing the edgewise shared-partner distribution.

6.3 Friend Recommendation Algorithm Application

Randomly divide the social network dataset into 60% of the training set and 40% of the test

set, that is, for each user, randomly selected 60% of all his or her friends. The relationship

of this 60% friends is used as training set, the rest as test set.
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Figure 6.3: Degree goodness-of-fit plot for the Exponential Random Graph Model using

edges triangles and geometrically weighted degree terms

Measurements Currently the typical indicators to evaluate the recommendation algo-

rithm are: precision, recall and F1rate. Precision and recall rate are two important concepts

in the field of information retrieval. They also reflect the performance of searching results.

The precision refers to the amount of information related to the total amount of informa-

tion retrieved. It is a measure of signal-to-noise ratio of the search system. The recall rate

refers to the percentage of the amount of retrieved information related to the total amout of

information involved. It is an indicator of the successness for the search system. F1 rate is

based on the above two evaluations.

Precision Definition : precision =
Kcorrect

Ktotal

Recall Definition : recall =
Kcorrect

K

F1 Definition: F1 =
2× recall× precision

recall + precision

Community Detection We apply both Louvain algorithm and Mixed Membership Stochas-

tic Model to the facebook dataset. As these two methods not only represent the disjoint
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Figure 6.4: Edgewise-Shared-Partners goodness-of-fit plot for the Exponential Random

Graph Model using edges triangles and geometrically weighted degree terms

detection and overlapping detection respectively, but also represent classical methods and

statistical methods for community structure exploring. Apply Louvain Algorithm to the

dataset and we obtain a disjoint community structure with 41 communities and the largest

one has 503 nodes within it while the smallest ones have only 3. Fit MMSB to the dataset,

set the number of communities to 30 and the output provides quite good performance with

AUC = 0.794. Figure 6.6 is the AUC curve of the MMSB model. There are 206 nodes

belong to multiple communties.

Results After applying the two-stage user similarity algorithm and Top K recommendation

algorithm, we obtain the result from training data. We compare three different types of

friend recommendation methods. Figure 6.7 and Figure 6.8 shows the performance of these

methods with the change of number K (The number of friends recommended). One is to use

MMSB as community detection algorithm, one is using Louvain Algorithm to do community

detection and the ordinary line represents directly applying user similarity algorithm to the

whole dataset without doing any community structure exploring. We can see that no matter
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Figure 6.5: Geodesic distance goodness-of-fit plot for the Exponential Random Graph Model

using edges triangles and geometrically weighted degree terms

with precision measure or F1 rate measure, the MMSB always provides the best result,

Louvain method does not perform well. It’s easy to understand that MMSB can discover the

hidden structure of the social network from statistical perspective, which is quite reliable.

The method using modularity has the limit in dividing communities, especially it will always

divide communities into very large ones and quite small ones.

Figure 6.6: AUC curve of MMSB applied on facebook network data
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Figure 6.7: Precision of the Friend Recommendation Algorithm

Figure 6.8: F1 curve of the Friend Recommendation Algorithm
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CHAPTER 7

Discussion

In this thesis, we first introduce the background of current social network and the char-

acteristics of it. Then we provide an overview with graph theory, summary statistics and

basic concepts of social network. After that, we fit the statistical model: ERGM to the

social network data. This reveals the main idea of statisticians working on network and can

help to obtain a deeper understanding of social network analysis. Finally, combining with

the community detection algorithm, we come up with an improved friend recommendation

algorithm by which we can enhance the efficiency and performace especially on large social

network.

Although this thesis discusses some methods about social networking friend recommendation,

there are still many problems need to be solved in the future:

1. In spite of the good fitting performance MMSB provides, the time spend to apply

this model is much longer than to apply the louvain algorithm. Actually, there are

many improved MMSB model like aMMSB, WMMSB which make improvement in

this aspect.

2. We need to consider the dynamic network as this is the type appeared in the real-

world. When there are new users participate into the network, we need to reconstruct

the whole net structure with the information they bring in. Then we need to redo

community detection. This will waste a lot of time. Therefore, how to add new users

into the divided communities with only slight adjustment is a problem.

3. In this thesis, we only consider the binary static network, which is the simplest one. In

real-world network there exists large amount of other information, how to apply model
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to the complicated network is a problem waiting to study.
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[HMM00] Ivan Herman, Guy Melançon, and M Scott Marshall. “Graph visualization and
navigation in information visualization: A survey.” IEEE Transactions on visu-
alization and computer graphics, 6(1):24–43, 2000.

[HRS03] Mark S Handcock, Garry Robins, Tom AB Snijders, Jim Moody, and Julian Besag.
“Assessing degeneracy in statistical models of social networks.” Technical report,
Citeseer, 2003.

[KS14] Younghoon Kim and Kyuseok Shim. “TWILITE: A recommendation system for
Twitter using a probabilistic model based on latent Dirichlet allocation.” Infor-
mation Systems, 42:59–77, 2014.

[MYL08] Hao Ma, Haixuan Yang, Michael R Lyu, and Irwin King. “Sorec: social recom-
mendation using probabilistic matrix factorization.” In Proceedings of the 17th
ACM conference on Information and knowledge management, pp. 931–940. ACM,
2008.

[New04] Mark EJ Newman. “Detecting community structure in networks.” The Euro-
pean Physical Journal B-Condensed Matter and Complex Systems, 38(2):321–330,
2004.

[SI90] David Strauss and Michael Ikeda. “Pseudolikelihood estimation for social net-
works.” Journal of the American Statistical Association, 85(409):204–212, 1990.

31



[VGH09] Marijtje AJ Van Duijn, Krista J Gile, and Mark S Handcock. “A framework for
the comparison of maximum pseudo-likelihood and maximum likelihood estima-
tion of exponential family random graph models.” Social Networks, 31(1):52–62,
2009.

[Wan13] Binghui Wang. “Latent Friend Recommendation Algorithm in Social Network.”
2013.

[Zho11] Qiudan Li Zhongfeng Zhang. “Lateent Friend Recommendation in Social Network
Services.” Journal of China Society for Scientific and Techinical Information,
30(12):1319–1325, 2011.

32




