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Abstract

Feature selection can disclose biomarkers of mental disorders that have unclear biological 

mechanisms. Although neighborhood rough set (NRS) has been applied to discover important 

sparse features, it has hardly ever been utilized in neuroimaging-based biomarker identification, 

probably due to the inadequate feature evaluation metric and incomplete information provided 

under a single-granularity. Here, we propose a new NRS-based feature selection method and 

successfully identify brain functional connectivity biomarkers of schizophrenia (SZ) using 

functional magnetic resonance imaging (fMRI) data. Specifically, we develop a new weighted 

metric based on NRS combined with information entropy to evaluate the capacity of features in 

distinguishing different groups. Inspired by multi-granularity information maximization theory, we 

further take advantage of the complementary information from different neighborhood sizes via a 

multi-granularity fusion to obtain the most discriminative and stable features. For validation, we 
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compare our method with six popular feature selection methods using three public omics datasets 

as well as resting-state fMRI data of 393 SZ patients and 429 healthy controls. Results show that 

our method obtained higher classification accuracies on both omics data (100.0%, 88.6%, and 

72.2% for three omics datasets, respectively) and fMRI data (93.9% for main dataset, and 76.3% 

and 83.8% for two independent datasets, respectively). Moreover, our findings reveal biologically 

meaningful substrates of SZ, notably involving the connectivity between the thalamus and superior 

temporal gyrus as well as between the postcentral gyrus and calcarine gyrus. Taken together, we 

propose a new NRS-based feature selection method that shows the potential of exploring effective 

and sparse neuroimaging-based biomarkers of mental disorders.

Keywords

Feature selection; fMRI; neighborhood rough set; information entropy; multi-granularity; 
schizophrenia

I. Introduction

Researchers in the neuroscience field inevitably suffer from the curse of dimensionality 

due to the high dimensionality of neuroimaging data. Consequently, feature selection that 

eliminates irrelevant and redundant features and only remains important features becomes a 

necessary step to mine the most useful information [1], [2]. Indeed, feature selection plays 

a key role in identifying meaningful biomarkers that characterize the brain impairments of 

mental disorders, thus providing insights on the neural substrates as well as the diagnosis 

and prediction of mental disorders [3].

In recent years, various feature selection methods have been utilized to identify biomarkers 

of mental disorders using neuroimaging data. Widely applied feature selection methods 

are generally categorized into unsupervised and supervised methods based on whether 

the diagnosis labels are utilized or not. If the category label information is unavailable, 

unsupervised feature selection methods, such as unsupervised correlation-based feature 

selection (UCFS) [4], depend on statistical measures to remove the redundant features. 

However, the identified features from such methods could fail to indicate the stable group 

difference due to the lack of guidance from category labels. In contrast, supervised feature 

selection methods, primarily including similarity-based, information entropy-based, and 

hybrid methods [5], [6], can benefit from the guidance of category labels. Similarity-based 

feature selection methods, such as Fisher score (FiSc) [7], [8] and ReliefF [9], [10], evaluate 

feature importance through the ability of features to preserve data similarity which can 

be inferred from label information [11]. However, most similarity-based methods cannot 

handle feature redundancy [5]. Information entropy-based feature selection methods, such 

as minimum redundancy maximum relevance method [8], [12], are proposed to maximize 

relevance between features and labels and minimize redundancy among features. However, 

information entropy-based methods can only handle discrete data, hence data discretization 

processes are required beforehand for continuous features, which could result in information 

loss [6]. Hybrid feature selection methods, such as support vector machine with recursive 

feature elimination (SVM-RFE) [13], [14], aim to provide an aggregated result by ranking 
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features based on classification accuracy. However, the features selected by hybrid methods 

are likely sensitive to the used classifiers [6]. In order to overcome the shortcomings of 

the above methods, more advanced techniques are demanded to obtain more powerful 

biomarkers.

Neighborhood rough set (NRS) is a mathematical tool with a profound theoretical 

foundation and has been used for the goal of feature selection under different granularities 

(neighborhood sizes) [15], [16]. NRS-based feature selection is a supervised method with 

strong interpretability that can effectively reduce redundant and irrelevant features and 

is independent of specific classifiers. Hu first proposed the neighborhood dependency 

degree maximization (NDDM) feature selection method to assess feature importance using 

consistent samples whose neighbors belong to the same class, however, the remaining 

inconsistent samples were completely overlooked [17]. To overcome the limitation, several 

feature selection methods combined with information entropy, which is suitable for 

measuring data uncertainty, have emerged [18]. Chen et al. and Sun et al. proposed 

the entropy gain-based gene selection (EGGS) [19] and decision neighborhood entropy 

with fisher score-based feature selection algorithm (FSDNE) [20] by maximizing joint 

neighborhood entropy and decision neighborhood entropy, respectively. Although EGGS 

and FSDNE further introduced inconsistent samples to assess the importance of features, the 

dominant role of consistent samples was ignored. Moreover, determining the neighborhood 

size in the aforementioned NRS-based feature selection methods is challenging, and 

such single-granularity methods are prone to yield unstable features. To integrate various 

complementary information derived from different granularities, multi-granularity ideas 

were introduced in NRS-based feature selection methods [21], [22]. Based on multiple 

feature ranks obtained by the NDDM method at different granularities, an integrated 

feature order indicating feature importance was obtained via the cross-entropy Monte Carlo 

algorithm, which unfortunately lacks the guidance of label information [22]. Liu integrated 

discriminative features obtained by the NDDM at the finest and the coarsest granularities 

(i.e., the smallest and largest neighborhood sizes), however, such method inevitably missed 

some important features at remaining granularities [23]. In short, constructing an appropriate 

metric to measure the importance of features and determining the neighborhood size remain 

challenges for NRS-based feature selection methods.

In response to the aforementioned challenges, in this paper, we propose a new multi-

granularity NRS-based feature selection method and apply it to identify biomarkers of 

schizophrenia (SZ) using neuroimaging data. In detail, we first construct a new feature 

evaluation metric to balance the contribution of all samples in evaluating the discriminative 

ability of features and meanwhile emphasize the dominant role of consistent samples 

through a weighting strategy. And then, we come up with a weighted neighborhood rough 

set combined with entropy (WNRE) method based on the new metric to select important 

features under a certain granularity. More importantly, to avoid the unstable outcomes 

derived from a single-granularity method with a specific neighborhood size, we further 

extend WNRE and propose a multi-granularity WNRE-based (MGWNRE) feature selection 

method which integrates features under different neighborhood sizes according to their 

classification ability to obtain more stable and discriminative features. We first verify 

the effectiveness and superiority of MGWNRE method over six state-of-the-art methods 
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on three main omics datasets since they are suitable for algorithm evaluation thanks to 

more accurate ground-truth class labels. Furthermore, we employ our method to explore 

biomarkers of schizophrenia using functional network connectivity (FNC) features derived 

from functional magnetic resonance imaging (fMRI) data. Importantly, we not only utilize 

a main fMRI dataset to explore the sparse and important FNC features in discriminating SZ 

patients from healthy controls (HCs) but also demonstrate the generalization ability of the 

selected features on two fully independent datasets. Our results show that our method yields 

more discriminative features and higher classification accuracies than the six competing 

methods on both the main datasets and the two independent datasets. Taken together, we 

propose a promising NRS-based feature selection method and identify potential biomarkers 

of SZ.

II. Method and Materials

In this section, we first briefly review the NRS theory and information entropy. Then, we 

propose a single-granularity WNRE feature selection method, which effectively evaluates 

the importance of features by taking advantage of all available samples to improve the 

discriminative performance of the selected features. To combine complementary predictive 

powers provided by different granularities, we further extend WNRE to the MGWNRE 

feature selection method to ensure the stability of selected features. To verify our method, 

we employ three omics datasets to evaluate the feasibility of our methods and also apply our 

method to fMRI datasets for discovering biomarkers of SZ. In the experiments, we compare 

our method with six competing feature selection methods.

A. Preliminary Knowledge

We first introduce some basic concepts about NRS theory [17], [20], which are the basis 

of the proposed methods. Let a neighborhood decision system is denoted as NS = ⟨U, A, 
{d}, V, f, δ⟩. Here, U is a nonempty finite set of all samples. A is a nonempty finite set of 

conditional features (i.e., features used for classification). d is a decision feature (i.e., class 

label in classification). V is the union set including both conditional and decision features’ 

values across all samples, so V = ∪a ∈ A ∪ d f xi, α , where f(xi,α) represents the value of 

sample xi with respect to feature α. δ is a neighborhood size used to reflect the relations 

between different samples according to conditional features. B (B ⊆ A) is a conditional 

feature subset.

Equivalence class and neighborhood set are two key sample sets for any sample xi ∈ U. 

Equivalence class of xi (with respect to decision feature d) consists of samples with the same 

class label. And samples in the same equivalence class are indiscernible (equivalent) on d. 
Formally, the equivalence class of xi can be defined by

xi d = xj ∣ xj ∈ U , f xi, d = f xj, d . (1)

Given a feature subset B, neighborhood set of xi contains its similar and indiscernible (close) 

samples whose distance from xi are less than δ. Mathematically, the neighborhood set of xi 

is defined as
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nB
δ xi = xj ∣ xj ∈ U , ΔB xi, xj ≤ δ , (2)

where ΔB(xi, xj)is a distance function to measure the distance (dissimilarity) between 

samples xi and xj on a feature subset B. In this paper, we use Euclidean distance [24].

NRS-based feature selection aims to extract a conditional feature subset including 

discriminative and important features, so that the equivalence class can be approximately 

represented by neighborhood set. Thus, neighborhood dependency degree is proposed to 

evaluate the approximating ability by counting samples whose neighborhood set consistently 

belongs to its equivalence class. Such samples are called consistent samples because 

they accurately belong to a certain class using feature subset B, whereas the remaining 

inconsistent samples do not. Therefore, the significance of conditional feature subset B can 

be characterized by neighborhood dependency degree as

γB
δ(d) = xi ∣ xi ∈ U , nB

δ xi ⊆ xi d / U , (3)

where the |·| indicates the cardinality of a set, and the value of γB
δ (d) ranges from 0 to 

1. In our method, we propose to use the neighborhood dependency degree to weigh the 

importance of consistent samples.

Information entropy [5] is an effective mathematical tool to determine whether a conditional 

feature should be retained according to the reduction of conditional entropy and is 

introduced to alleviate the defect that neighborhood dependency degree ignores the ability of 

features in distinguishing inconsistent samples. Conditional entropy [25] is widely utilized 

to take advantage of all samples to evaluate the discriminative ability of discrete value 

features. However, for continuous value features, the indispensable discretization processes 

may result in information loss. Neighborhood rough set theory is suitable for continuous and 

discrete value features but cannot leverage the inconsistent samples. Therefore, we aim to 

combine these two theories and propose a new metric to measure the importance of features 

according to all samples.

More detailed information about NRS and information entropy can be found in literature [5], 

[17], [20], [26].

B. Our Proposed Weighted Neighborhood Rough Set Combined With Entropy (WNRE) 
Feature Selection Method

A key in feature selection is to select discriminative features according to a feature 

evaluation metric. Inspired by prior work (i.e., NDDM [17], EGGS [19], and FSDNE [20]), 

we define a new metric to characterize the discriminative ability of feature subsets using 

all samples and propose a new feature selection method named WNRE. Considering the 

dominant role of consistent samples, we take neighborhood dependency degree as a weight 

to emphasize the capability of feature subsets in yielding consistent samples.

In our method, given neighborhood size δ and decision feature d, the importance of any 

conditional feature subset B is defined by
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Jδ(B, d) =

−γB
δ(d) ∑

i = 1

U
log nB

δ xi ∩ xi d

U ⋅ nB
δ xi ∩ xi d

nB
δ xi

. (4)

The two items in brackets, namely, neighborhood accuracy and neighborhood credibility 

degree, are used to assess the discriminative ability of B on all samples. The former item 

evaluates the approximation accuracy of the neighborhood set to the equivalence class 

using all samples. The latter reflects purity to assess the sample proportion of the same 

class in the neighborhood. In our method, the neighborhood dependency degree is used 

as a weight value to emphasize the discriminative ability of feature subsets on consistent 

samples. In sum, we propose a feature evaluation metric to comprehensively evaluate the 

capacity of feature subsets in distinguishing the whole sample set while highlighting the role 

of consistent samples.

A larger Jδ(B, d) means that the related features in B are more discriminative. Hence, we 

define a significance measurement of a given conditional feature aj ∈ A − B as

Sig aj, B, d = Jδ B ∪ aj , d − Jδ(B, d) . (5)

Here, Sig(aj, B, d) represents the increased contribution of feature subset B after adding a 

feature aj. If Sig(aj, B, d) > 0, it means that feature aj is essential, otherwise, it is deleted 

because it is a redundant feature (when Sig(aj, B, d) = 0) or irrelevant feature (when Sig(aj, 

B, d) < 0). The larger the value of Sig(aj, B, d), the more important feature aj is. In our 

method, we perform a heuristic algorithm to search for the discriminative feature subset. 

In the process, we start from an empty feature set and add features iteratively through 

maximizing Sig(aj, B, d). This operation terminates when Sig(aj, B, d) stops increasing.

In addition, given that the feature selection process is time-consuming on high-dimensional 

data, we first employ the FiSc method [7] to preselect a candidate feature subset to speed up 

the subsequent feature selection process. Herein, we select the top l candidate discriminate 

features as input to the subsequent WNRE feature selection process. The WNRE algorithm 

is described in Algorithm 1.

As shown in Algorithm 1, given the original conditional feature set A, decision feature d, 

and neighborhood size δ, we first initialize the excepted discriminative feature subset B* as 

an empty set. Then, we select the top l features to constitute the candidate feature subset 

A′ based on the FiSc method. Next, the most important feature according to the evaluation 

metric (4–5) is iteratively added into the subset B* one by one. After incorporating a feature, 

B* is judged to see if it meets the terminal condition. If the condition is not satisfied, the 

algorithm continues to iterate and amalgamate the important features, otherwise outputs the 

selected feature subset B*.
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Algorithm 1:

WNRE.

Input: A neighborhood decision system NS = 〈U, A, {d}, V, f, δ〉.

Output: Excepted feature subset B*.

1:  Initialize B* = ∅.

2:  Select top-l features from A to constitute the candidate feature subset A′ based on FiSc method.

3:  do {

4:   for ∀ aj ∈ A′

5:    Compute Sig(aj, B*, d) according to formula (4–5).

6:   end for

7:   Select the feature ak satisfying Sig(ak, B*, d) = max(Sig(aj, B*, d)).

8:   B* = B* ∪{ak}, A′ = A′ − {ak}.

9:  } untilSig(ak, B*, d) < e−10

Since WNRE faces difficulty in determining neighborhood size, we further propose a multi-

granularity fusion strategy to overcome its shortcoming.

C. Our Proposed Multi-Granularity WNRE-Based (MGWNRE) Feature Selection Method

Based on our proposed WNRE method, an extended feature selection method, abbreviated 

by MGWNRE, is proposed to merge the features selected by multiple WNRE processes 

under different neighborhood sizes and yield complementary and stable important features. 

The algorithm is outlined in Algorithm 2.

As shown in Algorithm 2, given initial conditional feature set A, decision feature d, and a set 

of neighborhood sizes Θ, we perform multiple WNRE feature selection processes and merge 

the feature subsets that result in a satisfying performance. Specifically, for arbitrary δ, we 

can obtain a feature subset B* after executing WNRE algorithm. Then, we apply a classifier 

to evaluate the significance of B* and obtain associated comprehensive classification 

performance (CCP, i.e., mean of classification accuracy, sensitivity, and specificity). After 

performing this operation for each δ, we merge feature subsets whose CCP is better than the 

average level and output the final discriminative features.

D. Performance Evaluation of MGWNRE and Comparisons With Other Methods

In this section, we perform two experiments to verify the effectiveness of our methods 

and identify stable biomarkers of SZ. In the first experiment, we evaluate the effectiveness 

of our methods on three public omics datasets with classification labels to assess if the 

selected features are discriminative in classifying different classes. In the second experiment, 

our methods are applied to fMRI data to identify discriminative features (that indicate 

biomarkers) that can separate SZ patients from HCs. The generalization ability and stability 

of the identified biomarkers are further evaluated using fully independent fMRI datasets. 

Furthermore, we implement six competing feature selection methods for a comprehensive 

comparison in the two experiments.
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Algorithm 2:

MGWNRE.

Input: A neighborhood decision system NS = 〈U, A, {d}, V, f, δ〉, a set of neighborhood sizes Θ = {δ1, δ2, …, δq}, |Θ| 
= q.

Output: Excepted feature subset B**.

1.  Initialize B** = ∅.

2:  for ∀ δi ∈ Θ

3:   Execute WNRE and obtain a feature subset Bi
*
 with current δi.

4:   Compute CCPi related to Bi
*
.

5:  end for

6:
 Compute average CCP = 1

q ∑i
qCCPi.

7:  for ∀ CCPi

8:   IfCCPi ≥ CCP
9:    B * * = B * * ∪ Bi

*
.

10:   end if

11:  end for

1) Experimental Pipelines for Our Proposed Methods and Competing 
Methods: Fig. 1 shows the experimental pipelines for our proposed methods (i.e., WNRE 

and MGWNRE) and the competing methods (i.e., NDDM, EGGS, FSDNE, UCFS, ReliefF, 

and SVM-RFE). Fig. 1(a) displays the experimental pipeline of each method using the 

main datasets, including three omics datasets and an fMRI dataset, which aims to validate 

the distinguishing ability of the features selected by each method. Fig. 1(b) displays the 

experimental pipeline of each method on two fMRI independent datasets, which focuses on 

validating the generalization ability of the features selected by each method from the main 

fMRI dataset.

As shown in Fig. 1(a), using each main dataset, each method is carried out under an 

outer 10-fold cross-validation with an embedded inner 5-fold cross-validation pipeline to 

ensure that the selected features are reliable and unbiased. Considering the existence of 

intrinsic parameters in each method, the inner cross-validation aims to search the optimal 

parameters and select discriminative features, and the outer cross-validation aims to evaluate 

the distinguishing ability of the selected features on unseen data. Specifically, we perform 

the following steps for each method on each main dataset. For the outer cross-validation, we 

divide data into ten equal folds randomly. Nine of ten folds are used as the outer training 

data to search for discriminative features and train an outer classifier. The remaining fold 

is used as the outer testing data to evaluate the features according to the classification 

performance of the trained classifier. It is worth pointing out that we first employ FiSc 

method on the outer training data to preselect features whose fisher scores are greater 

than the average score as the candidate features to improve computation efficiency. For the 

inner cross-validation, outer training data with candidate features are divided into five equal 

folds. Given specific parameters for each method, four of five folds are used as the inner 
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training data to select features and train the inner classifier with the selected features, and the 

remaining inner one fold is used to evaluate the selected features via the above-mentioned 

comprehensive classification performance of the trained inner classifiers.

To be fair, we search the optimal parameters according to the classification results of 

inner cross-validation to select the most discriminative features for each method. In detail, 

according to the comprehensive classification performance of the trained inner classifiers 

in the inner cross-validation, we use optimal neighborhood size for WNRE, NDDM, 

EGGS, and FSDNE, and optimal numbers of selected features for UCFS, ReliefF, and 

SVM-RFE. As such, for each method, we can obtain ten discriminative feature subsets 

and associated classification performance (i.e., accuracy, sensitivity, and specificity). Finally, 

the classification performances of our proposed methods and the competing methods are 

compared.

To verify the generalization ability of the features selected by each method from the 

main fMRI dataset, the top-10 features with the highest occurring frequency in the 

ten discriminative feature subsets are utilized on independent fMRI datasets for a strict 

classification test, respectively, as shown in Fig. 1(b). In detail, we perform another 

classification experiment under 10-fold cross-validation using independent datasets based 

on the top-10 discriminative features selected by each method. In each run, nine folds are 

used to train a classifier, and the remaining one fold is used to test the performance based on 

the classifier. The classification performances from different methods are compared.

Here, we employ SVM with a linear kernel [14], K nearest neighbor with K of 3 (3NN) 

[19], and AdaBoost [27] as the outer classifiers for separate tests to verify the classification 

performance and take SVM as the inner classifier.

2) Performance Evaluation Experiment on Omics Datasets:

Omics data that is helpful for tumor and cancer diagnosis have been widely used in 

evaluating the performance of feature selection methods [19], [20]. In the first experiment, 

we employ our two methods on three public omics datasets to examine if the features 

selected by our methods have powerful abilities in classifying different classes. Small-round-

blue-cell tumor (SR-BCT) dataset involves 2308 features and 83 samples, including four 

childhood tumor subtypes [20]. Colon dataset involves 2000 features and 62 samples, 

including patients with colon cancer and healthy samples [20]. Breast invasive carcinoma 

(BRCA) dataset involves 6780 features and 305 samples, including four cancer subtypes 

[28].

As shown in Fig. 1(a), using the three omics datasets, respectively, we perform our methods 

and competing methods under the unbiased 10-fold cross-validation pipeline to compare 

the average accuracy, sensitivity, specificity, and the number of selected features of each 

method.

3) Performance Evaluation Experiment on fMRI Datasets:

FNC features derived from fMRI data potentially can reveal the aberrant brain activity 

of mental disorders such as SZ, which is a common and serious illness [29]. Identifying 
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biomarkers for SZ is expected to help understand the underlying mechanism of the disorder 

and assist in diagnosis.

In the second experiment, FNC features derived from resting-state fMRI data of 100 SZ 

patients and 127 age-matched HCs collected from the Function Biomedical Informatics 

Research Network (FBIRN)1 are taken as the main fMRI dataset which is used to validate 

that our methods can select the significant features in distinguishing HC and SZ groups. 

Then, 163 SZ patients and 149 age-matched HCs from Bipolar-Schizophrenia Network on 

Intermediate Phenotypes (BSNIP)2 [30] and 130 SZ patients and 153 age-matched HCs 

from Maryland Psychiatric Research Center (MPRC)3 are taken as two independent datasets 

which are separately utilized to evaluate the generalization ability of the features selected 

from the main fMRI dataset. Here, 1378 FNC features revealing interactions between brain 

networks are derived from the fMRI data as the initial features for each subject based on the 

previously developed NeuroMark method [31], [32] and toolbox (http://www.yuhuidu.com/).

Using the FNC features, we first carry out our methods on the FBIRN dataset under the 10-

fold cross-validation pipeline (Fig. 1(a)) to examine the ability of selected FNC features in 

distinguishing HC and SZ groups. In the pipeline, the outer cross-validation is leveraged to 

train and evaluate the outer classifier based on the discriminative FNC features selected from 

the associated inner cross-validation. In the experiment, we also evaluate the classification 

performance of the six competing methods using the same pipeline.

Based on the respective top-10 discriminative FNC features selected by each method from 

FBIRN dataset, we perform another classification test on independent datasets (BSNIP and 

MPRC datasets) under a 10-fold cross-validation experimental pipeline (Fig. 1(b)). In this 

pipeline, a classifier is trained using nine folds data, and the remaining one fold data is then 

used to test the classification performance based on the classifier. Finally, we compare the 

classification performance of our methods with that of the competing methods on the two 

datasets. Considering that we only use a small number (i.e., 10) of FNC features selected by 

each method from FBIRN dataset to perform the classification test on independent datasets, 

we would see which feature selection method is more stable according to the classification 

performance.

The selected FNC features which work well in the HC-SZ classification may represent 

meaningful biomarkers for SZ. Therefore, using each fMRI dataset (both main and 

independent datasets), we summarize and analyze the top-10 high-frequency FNC features 

selected by our MGWNRE method. First, we perform a two-sample t-test to test if there 

are significant differences with respect to each selected FNC feature between the HC and 

SZ groups. Then, we compute the average connectivity strength of each selected FNC 

feature for each group (HC or SZ) to show the differences between the groups. We aim to 

investigate if the group differences are consistent across different datasets in terms of the ten 

FNC features.

1The reference number of the IRB approval for FBIRN data is HS No.2009-7128.
2The original source of BSNIP data can be found at https://nda.nih.gov/.
3The reference number of the IRB approval forMPRC data is HP-00045716.
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4) Competing Methods and Comprehensive Comparison of MGWNRE With Other 
Methods on All Datasets:

For a comparison with our methods, we choose six popular feature selection methods, 

including three NRS-based methods (i.e., NDDM, EGGS, and FSDNE) and three non-NRS-

based methods (i.e., UCFS, ReliefF, and SVM-RFE). Since there are multiple datasets and 

competing methods in our work, it is difficult to judge which method works best overall. 

Therefore, we compute an overall ranking on all used datasets for these methods. In detail, 

we first rank all methods according to the comprehensive classification performance for each 

dataset. Then, we calculate the average ranking for each method on the six datasets and 

obtain an overall ranking of these methods. Moreover, we compute the standard deviation of 

the comprehensive classification performance for each method on the six datasets to reflect 

the stability of classification performance.

III. Results

A. Results on Omics Datasets in the First Experiment

Fig. 2 and Table I display the experimental results from the different feature selection 

methods on the omics datasets, including SRBCT, Colon, and BRCA. It should be noted 

that the number of candidate features preselected by FiSc method was 654, 629, and 

2077 for SRBCT, Colon, and BRCA datasets, respectively. Using the SRBCT dataset, 

the classification results based on different classifiers (i.e., SVM, 3NN, and AdaBoost 

classifiers) are shown in Fig. 2(a)–(c), and it can be seen that based on each classifier, 

the proposed MGWNRE consistently obtained superior classification results, and WNRE 

also reached promising results compared with the competing methods. As outlined in Table 

I, among the eight methods, MGWNRE achieved the best performance with an average 

accuracy of 100%, sensitivity of 100%, and specificity of 100% based on both SVM and 

3NN classifiers. Based on AdaBoost classifier, MGWNRE also obtained the highest average 

accuracy (i.e., 95.4%) and highest average sensitivity (i.e., 97.5%). In addition, from the 

table, we can see that WNRE also achieved good classification results which were better 

than that of the most competing methods based on the three classifiers. In short, MGWNRE 

selected a small number of features (i.e., 53 features, only 2.3% of the entire features) and 

achieved satisfactory classification results.

The experimental results using the Colon dataset based on the three classifiers are presented 

in Fig. 2(d)–(f) and Table I. From the figure, we can see that the classification results of 

MGWNRE were remarkably better than that of other competing methods based on SVM 

and 3NN classifiers. From the table, it can be seen specifically that among all methods, 

MGWNRE attained the highest average accuracy of 88.3% based on SVM classifier and 

88.6% based on 3NN classifier, and its classification performance based on AdaBoost 

classifier was also better than that of most competing methods. In addition, WNRE obtained 

acceptable classification performances compared with other methods based on different 

classifiers. In summary, MGWNRE achieved an excellent distinguishing ability using 

relatively few features (i.e., 70 features, 3.5% of the entire features).
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Fig. 2(g)–(i) and Table I display the results on the BRCA dataset using the three classifiers. 

Compared with the competing methods, MGWNRE selected a small number of important 

features (i.e., 72 features, only 1% of the entire features) and obtained the highest average 

accuracy of 72.2%, sensitivity of 90.0%, and specificity of 68.4% when using SVM 

classifier, and satisfactory classification results when using other two classifiers. In addition, 

the proposed WNRE method also achieved promising results relative to the competing 

methods.

B. Results on fMRI Datasets in the Second Experiment

Using fMRI data of SZ patients and HCs, the classification results of the main dataset 

(i.e., FBIRN) based on the three classifiers are presented in Fig. 3(a)–(c) and Table II. It 

should be noted that the number of candidate features preselected by FiSc method was 

430 for FBIRN dataset. The figure provides an overview of the classification performance 

for each feature selection method, and we can see that both MGWNRE and WNRE got 

outstanding results. From the table, it is seen that compared with the competing methods, 

MGWNRE identified the fewest features (i.e., 21 features, only 1.5% of the entire features) 

and reached the best average accuracy and specificity based on each classifier. Based on 

3NN classifier, MGWNRE obtained the highest average accuracy of 93.9%, sensitivity of 

93.8%, and specificity of 94.0%. In addition, WNRE also obtained outstanding classification 

results compared with the competing methods based on each classifier.

Using the top-10 high-frequency FNC features selected by each method on the FBIRN 

dataset, the experimental results of the two independent datasets (i.e., BSNIP and MPRC 

datasets) are shown in Fig. 3(d)–(i) and Table II. As displayed in Fig. 3(d)–(f) and Table II, 

compared with the competing methods, MGWNRE obtained the best average accuracy and 

sensitivity based on 3NN and AdaBoost classifiers, and outperformed five of six competing 

methods based on SVM classifier which achieved an average accuracy of 76.3% on BSNIP 

dataset. Besides, WNRE also got an acceptable classification performance on BSNIP 

dataset. Regarding the results on MPRC dataset (Fig. 3(g)–(i) and Table II), MGWNRE 

got excellent classification results with an average accuracy of 83.8%, sensitivity of 84.3%, 

and specificity of 83.1% based on SVM classifier, which outperformed all six competing 

methods. Based on 3NN and AdaBoost classifiers, MGWNRE also obtained promising 

classification results. In addition, WNRE was superior to most competing methods based 

on each classifier on MPRC dataset. To summarize, using only the top-10 FNC features 

selected by our proposed methods on the main fMRI dataset, the SZ patients and HCs in the 

fully independent datasets can be effectively distinguished.

To show the group difference of the top-10 high-frequency FNC features selected by 

MGWNRE from the main fMRI dataset, Table III includes the P-values and T-values of each 

FNC feature obtained by performing a two-sample t-test between the HC and SZ groups 

in the FBIRN, BSNIP, and MPRC datasets. For FBIRN and BSNIP datasets, our results 

suggest that there were significant differences (P-value < 0.05) between the two groups for 

all the ten FNC features. For MPRC dataset, nine of ten FNC features showed significant 

differences between groups.
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More interestingly, Fig. 4 and Table III both support that the changes in the connectivity 

strengths of FNCs in the SZ group relative to the HC group were very consistent across 

the three datasets. Among the ten FNC features, the SZ group showed higher connectivity 

strengths than the HC group in four FNCs, including the connectivity between the thalamus 

and superior temporal gyrus, middle temporal gyrus and insula, middle temporal gyrus and 

anterior cingulate cortex, and right middle occipital gyrus and hippocampus. In contrast, the 

connectivity strengths of the remaining six FNCs were lower in the SZ group relative to 

the HC group. In sum, our method found the most significant FNCs that showed consistent 

changing trends in SZ across multiple datasets.

C. Results of the Comprehensive Comparison of MGWNRE With Other Methods on All 
Datasets

To compare the comprehensive classification performance of the feature selection methods 

based on the three classifiers, Fig. 5 shows the overall ranking of each method on the 

multiple datasets, including SRBCT, Colon, BRCA, FBIRN, BSNIP, and MPRC. The 

proposed MGWNRE not only ranked in the top but also had lower standard deviations 

than the other six competing methods based on each classifier. WNRE also obtained the 

suboptimal ranking based on the three classifiers. Taken together, the selected features by 

our methods are stable and discriminative in terms of classification performance.

IV. Discussions

In the neuroscience field, the identification of meaningful biomarkers of mental disorders 

from neuroimaging data is an important topic for the mission of precision diagnostics. 

Feature selection technologies help select meaningful features to construct an efficient and 

interpretable model with strong generalization capability [5]. Recently, feature selection 

has shown the potential in characterizing the aberrant brain functional connectivity of 

schizophrenia using fMRI data, however, the underlying neurological mechanism of the 

disorder remains unclear [33]. Neighborhood rough set-based feature selection methods 

have been shown to appropriately identify sparse and more discriminative features, but they 

are rarely used in biomarker exploration for brain disorders.

Aiming at constructing a more effective feature evaluation metric and overcoming the 

shortcoming of the determination of neighborhood size in traditional NRS-based feature 

selection methods, we propose a new feature selection method, i.e., MGWNRE, to identify 

the sparse and important features that can distinguish different classes well. Herein, based 

on NRS theory and information entropy, we develop a feature evaluation metric that not 

only assesses the importance of features using both consistent and inconsistent samples 

but also highlights the dominant contribution of consistent samples. Based on the novel 

metric, we propose WNRE and extend it to a multi-granularity level (i.e., MGWNRE) 

to minimize the need in determining a prior neighborhood size, thus further ensuring the 

distinguishing capability as well as stability of the selected features. Moreover, we manifest 

the feasibility and effectiveness of the discriminative features selected by MGWNRE 

through comprehensive evaluations on omics and fMRI datasets. It is known that all 

supervised feature selection methods involved in the paper are for classification tasks in 
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which the selected features are used for distinguishing different groups. However, sometimes 

a prediction task with continuous output also can be converted to a classification problem 

with discrete labels before using these methods [34].

Comparing classification performance with the six state-of-the-art feature selection methods 

on the three omics datasets, our results demonstrated that MGWNRE can identify better 

discriminative features to separate different classes. In detail, the improved classification 

results using the features selected by MGWNRE indicated that the proposed method can 

effectively identify a small number of discriminative features to classify different groups, 

and present the superiority of MGWNRE over the competing methods. In addition, we 

found that the classification performances of compared NRS-based methods were generally 

inferior to non-NRS-based methods, although NRS-based methods can select fewer features. 

Impressively, our MGWNRE method not only outperformed the NRS-based methods, which 

indicated that the proposed feature importance metric more appropriately characterized the 

discriminative ability of features, but also outperformed non-NRS-based methods. In short, 

this experiment verified the practicability of MGWNRE in identifying the discriminative 

features.

Findings from the fMRI datasets further support that the features detected by MGWNRE 

can distinguish SZ patients from HCs well. Specifically, MGWNRE method achieved a 

promising average accuracy of 93.9% based on 3NN classifier on the main fMRI dataset, 

whereas all competing methods had accuracies below 90%. Existing systematic reviews 

reported that using a sample size similar to our work, the classification accuracies of 

most previous studies classifying SZ patients and HCs were less than 90% [35], [36]. 

In addition, only using the top-10 high-frequency FNC features selected from the main 

fMRI dataset, MGWNRE also obtained satisfactory classification accuracies of 76.3% and 

83.8% based on SVM classifier for the two independent cohorts, respectively. While the 

classification accuracies of the competing methods ranged from 65.1% to 81.7% based on 

SVM classifier on the independent cohorts. In previous studies differentiating SZ patients 

from HCs, the accuracies on completely independent datasets were around 70% [37]. 

The high classification accuracy on independent datasets in our work demonstrated the 

robustness and stability of the features selected by our MGWNRE. In short, our proposed 

feature importance metric in WNRE can efficiently represent the discriminative ability 

of features. In the meantime, MGWNRE further improves the single-granularity WNRE 

method by providing complementary information at different granularity levels.

Furthermore, our work highlights a small number of discriminative functional connectivity 

that contributes to distinguish HCs and SZ patients. Based on our MGWNRE, we analyzed 

top-10 important FNC features, primarily including the thalamus, cerebellum, temporal 

(e.g., middle and superior temporal gyrus), parietal (e.g., left and right postcentral gyrus, 

and superior parietal lobule), occipital gyrus (e.g., right middle and inferior occipital gyrus), 

and calcarine gyrus regions, which showed abnormalities in SZ patients compared with 

HCs. Specifically, SZ patients showed significantly altered thalamus-related functional 

connectivity, including lower thalamic functional connectivity with the cerebellum and 

caudate, and significantly higher thalamic functional connectivity with the superior temporal 

gyrus. Indeed, it is well known that the thalamus plays a key role in information processing 
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in the brain and shows significant abnormalities in SZ. Previous studies have reported 

the analogous aberrant functional connectivity in SZ patients. Using resting-state seed-

based functional connectivity, Ferri et al. found that SZ patients had smaller thalamic 

connectivity with the cerebellum and greater thalamic connectivity with multiple sensory-

motor regions, including the superior temporal gyrus [29]. Also using the seed-based 

functional connectivity, Huang et al. studied the functional dysconnectivity pattern of 

salience network in first-episode SZ patients which had shown a notable reduced functional 

connectivity between the thalamus and caudate head compared with HCs [38]. In addition, 

we found that SZ patients presented lower connectivity between the superior parietal lobule 

and inferior occipital gyrus compared with HCs, which is consistent with a previous study 

that also reported lower connectivity between the superior parietal and occipital cortex [39]. 

More importantly, new findings have been observed in our paper: (1) significantly lower 

connectivity between postcentral gyrus and calcarine gyrus in SZ patients (compared with 

HCs); (2) higher connectivity between middle temporal gyrus and insula, between middle 

temporal gyrus and anterior cingulate cortex, and between right middle occipital gyrus and 

hippocampus in SZ patients (compared with HCs). In terms of the first new finding, we have 

good reason to speculate that the interaction between sensory function and visual processing 

might be disrupted in SZ because of the reduced connectivity between the postcentral 

gyrus (the primary sensory receiving area of touch) and the calcarine gyrus (closely related 

to the visual processing) [40], [41]. In recent research, Ramsay et al. also highlighted 

the relationship between the low-level visual sensory discrimination impairments and the 

cognitive disruptions of mental disorders including SZ [42]. For the second new finding, 

as is well known that the middle temporal gyrus is involved in language and semantic 

memory processing, and the insula as well as anterior cingulate cortex are both closely 

linked to cognitive and emotional processing [43], [44], [45], our findings further indicated 

that the information communication between language and emotional processing might 

be extremely active in SZ. A study indirectly supporting our findings reported that SZ 

patients have shown a larger negative response to negative words than HCs, which indicated 

the anomalies in the interactions between semantic and emotion processing of SZ [46]. 

Additionally, studies have shown that the occipital cortex is associated with the maintenance 

of visuospatial information, and the hippocampus plays a crucial role in memory and 

learning [39], [47]. The higher connectivity between the occipital gyrus and hippocampus 

that we found in this paper would support that vision abnormality (e.g., hallucinations) in 

SZ may be associated with memory impairments. Taken together, we found important brain 

functional impairments in SZ by using our proposed method, as the few related features 

selected by our method can distinguish the SZ and HC groups well using different datasets.

V. Conclusion

In this paper, a new NRS-based feature selection method, named MGWNRE, is proposed 

to identify the sparse and important features that can distinguish different classes well 

and is applied to explore biomarkers revealing brain functional impairments in SZ. A new 

feature evaluation metric is developed in MGWNRE, which not only makes full use of 

all samples when assessing feature importance but also emphasizes the contribution of 

consistent samples in the assessment. The use of sufficient data in assessing the features’ 
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importance ensures that more complete and reliable important features can be selected 

in our method. More importantly, the multi-granularity idea in MGWNRE incorporates 

complementarily important features selected at different granularities, further improving 

the stability and generalization ability of the selected features. We verify the effectiveness 

and superiority of the proposed MGWNRE method over six competing methods on three 

well-known omics datasets and three fMRI datasets. Furthermore, the reliable biomarkers 

of SZ are identified based on MGWNRE, which reveals brain functional impairments of 

SZ. However, it should be noted that more computation time is an inherent shortcoming 

of all NRS-based feature selection methods, although the computation efficiency of our 

proposed methods is comparable to previous NRS-based methods. In addition, single-modal 

data could not fully characterize all abnormalities of SZ, and we expect to further validate 

the proposed method by integrating multimodal data.
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Fig. 1. 
The experimental pipelines for the proposed methods (i.e., WNRE and MGWNRE) and 

the competing methods (i.e., NDDM, EGGS, FSDNE, UCFS, ReliefF, and SVM-RFE). 

(a) Denotes the outer 10-fold cross-validation with embedded inner 5-fold cross-validation 

experimental pipeline of each method on main datasets (i.e., the SRBCT, Colon, BRCA, 

and FBIRN datasets). (b) Denotes a 10-fold cross-validation experimental pipeline on 

independent datasets (i.e., the BSNIP and MPRC datasets) using the top-10 high-frequency 

features selected from the FBIRN dataset by each method. FiSc is the abbreviation for 

Fisher score-based feature selection method, which is used to preselect candidate features to 

improve computing efficiency. Classification performance includes accuracy, sensitivity, and 

specificity.
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Fig. 2. 
Classification performance of various methods on omics datasets. (a–c) Show the 

classification performance on SRBCT dataset based on SVM, 3NN, and AdaBoost 

classifiers, respectively. (d–f) Show the classification performance on Colon dataset based 

on SVM, 3NN, and AdaBoost classifiers, respectively. (g–i) Show the classification 

performance on BRCA dataset based on SVM, 3NN, and AdaBoost classifiers, respectively. 

“♦” means the average value of 10-fold cross-validation results.
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Fig. 3. 
Classification performance of various methods on fMRI datasets. (a–c) Show the 

classification performance on the main dataset (i.e., FBIRN) based on SVM, 3NN, 

and AdaBoost classifiers, respectively. (d–f) Show the classification performance on 

the independent dataset (i.e., BSNIP) based on SVM, 3NN, and AdaBoost classifiers, 

respectively. (g–i) Show the classification performance on the other independent dataset 

(i.e., MPRC) based on SVM, 3NN, and AdaBoost classifiers, respectively. “♦” means the 

average value of 10-fold cross-validation results.
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Fig. 4. 
Average FNC strength of HC and SZ groups on the features selected by MGWNRE for 

(a) FBIRN dataset, (b) BSNIP dataset, and (c) MPRC dataset. The brain is divided into 

seven brain functional domains, including sub-cortical (SC), auditory (AU), sensorimotor 

(SM), visual (VI), cognitive-control (CC), default-mode (DM), and cerebellar (CB) 

domains. “Corr” represents the connectivity strength between different ICs. IC denotes the 

independent component representing one brain functional network.
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Fig. 5. 
Algorithm ranking chart of the comprehensive classification performance based on (a) SVM 

classifier, (b) 3NN classifier, and (c) AdaBoost classifier for different feature selection 

methods on all datasets, including SRBCT, Colon, BRCA, FBIRN, BSNIP, and MPRC 

datasets. For each method, the red diamond symbol indicates the ranking, and the length of 

the blue horizontal line represents the standard deviation of the comprehensive classification 

performances on multiple datasets.
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